
Security in MQTT and CoAP Protocols
of IOT’s Application Layer

Anup Burange, Harshal Misalkar(&), and Umesh Nikam(&)

Amravati, India
{awburange,hdmisalkar,uvnikam}@mitra.ac.in

Abstract. The Internet of Things (IoT) is a framework of interconnected
computing devices mechanical and digital machines, internationally identifiable
physical objects (or things) or people that are have unique identity and the
ability to transfer data over a network without human-to-human or human-to-
computer interaction., their combination with the Internet, and their represen-
tation in the digital world. The accessibility and availability of cheap compo-
nents of IoT devices enables a extensive range of applications and provide smart
environments. These devices perform actuating and sensing tasks and identified
through unique addresses. The IoT devices are connected to the Internet and
expected to use the Constrained Application Protocol (CoAP) at the application
layer as a main web transfer protocol. Message Queuing Telemetry Transport
(MQTT) does not enforce the use of a particular security approach for its
applications, but instead leaves that to the application designer. Therefore, IoT
solutions can be based on application context and specific security requirements.
MQTT is a Client Server publish/subscribe messaging transport protocol. It is
lightweight, open, uncomplicated, and designed to make implementation more
easier. These characteristics of MQTT make it perfect for use in most of the
situations, including communication in Machine to Machine (M2M) and
Internet of Things (IoT). In IOT there is major use of Wireless Sensor Networks
(WSN) which connects virtual world to physical world. In this paper focus is
given to application layer of IOT. In application layer two important protocols
are MQTT and CoAP. Security mechanism is proposed in the paper for these
protocols.

Keywords: MQTT � CoAP � IOT

1 Introduction

The IoT is built on three main pillars related to the capability of objects which must
have communication capability, computational capability and may have interaction
capability:

(i) Communication capability: Objects in IoT must have a minimal set of com-
munication capability. What we mean by this is not only a communication
channel, but also everything related to it, in order to make an efficient com-
munication, such as, an address, identifier, and name. The objects may have all
these features or some of them [8].

© Springer Nature Singapore Pte Ltd. 2019
S. Verma et al. (Eds.): CNC 2018, CCIS 839, pp. 273–285, 2019.
https://doi.org/10.1007/978-981-13-2372-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2372-0_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2372-0_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2372-0_24&domain=pdf

(ii) Computational capability: Objects must have some basic or complex computa-
tional capability, in order to process data and networks configurations. For
instance, receive commands over the communications channel, manage network
tasks, save the status from a sensor, activate an effector.

(iii) Interaction capability: The IoT technology may have an interaction capability in
terms of sensing and actuating. This can be done either by, sensors and/or
actuators. Sensors are things which sense or detecting the real world environ-
ment (e.g., light, humidity, temperature, movement, voice, etc.). Effectors are
things that change or effect the real world such as, switches that allow you to
trigger or to turn on/off anything that can change the real word such as motors,
beepers, cameras, etc [1].

2 IOT Architecture

Many architecture models have been proposed from different organizations and
researchers. Figure 1 provides the main and general model which consists of three-
layer architecture perception layer, network layer, and application layer. The definitions
of these layers are defined below:

1. Perception layer: The perception layer can also be called physical layer. This layer
consists of physical objects or devices such as sensors, RFID system, meters, GPS
system. This layer basically collect identification or information depends on the
type of the sensor or the physical device.

2. Network layer: The network layer is also known as transmission layer. This layer is
responsible for interconnection and communication functions. The transmission can

Table 1. IoT stack with standaridized security solutions.

IoT layer IoT protocol Security protocol

Application CoAP User-defined
Transport UDP DTLS
Network IPv6, RPL IPsec, RPL security
6LoWPAN 6LoWPAN None
Data-link IEEE 802.15.4 802.15.4 security

Network Layer

Perception Layer

Application Layer

Fig. 1. IOT architecture

274 A. Burange et al.

be done through wired or wireless communication technologies such as Wi-Fi,
Bluetooth, 3G, ZigBee. Many transmission and security protocols can be deployed
in this layer such as: IPV4, IPV6, DTLS, IPsec. This layer should securely transfer
the data from the physical layer to application layer.

3. Application layer: The application layer provides and manages application services
for users needs. Many application protocols can be deployed in this layer such as
CoAP, and HTTP depends on the type of application and the IoT devices [7].

The recent challenge in consideration with security of IOT devices is to fix security
bugs & its security updation. In addition to new protocols that are designed specifically
for the Internet of Things such as Message Queuing Telemetry Transport (MQTT) and
Constrained Application Protocol (CoAP), security mechanisms should need to be
developed or upgrade [2].

3 MQTT (Message Queueing and Transport Protocol)

For IoT devices and applications, MQTT is the most recognized messaging protocol
and it is the base of many active groups or industries in the IoT field. Lightweight,
easy-to-use message protocols are being provided by MQTT as IOT solutions. MQTT
involves some safety mechanisms in addition to common implementations such as
SSL/TLS for transport protection [5]. For applications MQTT does not implement the
use of a specific security approach, but in its place handover that task to the application
designer, because of this IoT solutions are based on application structure and definite
security necessities. MQTT uses transport layer security (TLS), for most of the
deployments where data is encrypted and its reliability is validated. To control
admittance most implementations of MQTT also use permission features in the MQTT
server.

3.1 Architecture

Every sensor in a client/server model of MQTT is known as client that connects to a
broker, that broker act as a server. Connection is established using TCP/IP. As MQTT
is message oriented protocol, each message is having discrete amount of data, trans-
parent to the broker. The broker is a server which can be installed on any machine.
MQTT runs on TCP/IP layer therefore it is connection oriented protocol, every client
must establish connection with the broker before starting communication. Every
message is available to an address, identified as a topic. Clients may subscribe to
several topics. Clients can subscribe to various topics. Each client subscribed to a topic
gets every message published to the topic. Consider a simple network with three nodes
that release TCP connections with the broker. Nodes Y and Z are subscribe to the topic
humidity (Fig. 2).

Security in MQTT and CoAP Protocols of IOT’s Application Layer 275

Afterward Node X displays a value of 30% for topic humidity, then the broker
transmits the message to all the subscribed notes.

Fig. 2. Architecture of MQTT

Fig. 3. Architecture of MQTT

276 A. Burange et al.

The publisher-subscriber model on which MQTT works allows MQTT clients to
communicate one-to-one, one-to-many and many-to-one.

3.2 MQTT Vulnerabilities

The MQTT protocol carries a number of potential vulnerabilities. For example, open
ports can be used to launch denial-of-service (DoS) attacks as well as buffer overflow
attacks across networks and devices [6]. Depending on the number of IoT devices
connected and use cases supported, the complexity of “topic” structure can grow
significantly and cause scalability issues. MQTT message payloads are encoded in
binary, and corresponding application/device types must be able to interoperate.
Another problem area is with MQTT message usernames and passwords, which are
sent in clear text. Transport encryption with SSL and TLS can protect data when
implemented correctly. To protect against threats, sensitive data including user IDs,
passwords, and any other types of credentials should always be encrypted. To secure
MQTT protocol we should consider the security of client, broker, operating system.

3.3 MQTT Security

By its nature, MQTT is a plain protocol. All the information exchanged is in plain-text
format. In other words, anyone could access to this message and read the payload.
There are several use cases where we want to keep information private and guarantee
that it cannot be read or modified during the transmitting process. In this case, there are
several approaches we can use to face the MQTT security problem:

1. Create a VPN between the clients and the server.
2. Use MQTT over SSL/TSL to encrypt and secure the information between the

MQTT clients and MQTT broker.

Our attention is, on how to create an MQTT over SSL. To make MQTT a secure
protocol, we have to follow these steps:

Fig. 4. Publisher-subscriber model of MQTT

Security in MQTT and CoAP Protocols of IOT’s Application Layer 277

• Create a private key (CA Key).
• Generate a certificate using the private key (CA cert).
• Create a certificate for Mosquitto MQTT server with the key.

The final step is configuring Mosquitto MQTT so that it uses these certificates.

3.4 Securing MQTT Server

The first step in this process is creating a private key. Connect to the Raspberry Pi using
ssh or a remote desktop and open a command terminal. Before starting, it is important
to ensure OpenSSL is installed on Raspberry Pi.

[openssl genrsa -out mosq-ca.key 2048]

Using this command, we are creating a 2048-bit key called mosq-ca.key. The result
is shown in the picture below:

The next step is creating an X509 certificate that uses the private key generated in
the previous step. Open the terminal again and, in the same directory in which private
key is stored, write:

[openssl req -new -x509 -days365 -key mosq-ca.key -out mosq-ca.crt]

In this step, we need to provide different information before creating the certificate.

• Country Name
• State or Provenance Name
• Locality Name
• Organization Name
• Organizational Unit Name
• Common Name
• Email Address.

3.5 Creating the MQTT Server Certificate

Once the private key and the certificate are ready, we can create the MQTT server
certificate and private key:

278 A. Burange et al.

opensslgenrsa -outmosq-serv:key2048½ � ð1Þ

During this step, we need to create a CSR (Certificate Signing Request). This
certificate should be sent to the Certification authority that, after verifying the author
identity, returns a certificate. We will use a self-signed certificate:

openssl req -new -keymosq-serv:key -outmosq-serv:csr½ � ð2Þ
we have used the private key generated in the step before. Finally, we can create the

certificate to use in our MQTT Mosquitto Server:

openssl x509 -req -inmosq-serv:csr -CAmosq-ca:crt -CAkeymosq-ca:key -½
CAcreateserial� outmosq-serv:crt -days 365 -sha256� ð3Þ

All done! We have completed the steps necessary to secure our MQTT server.

openssl x509 -inmosq-serv:crt -noout -textjavascript:void 0ð Þ½ � ð4Þ

4 CoAP (Constrained Application Protocol)

CoAP runs over UDP, not TCP. Clients and servers communicate through connec-
tionless datagrams. Retries and reordering are implemented in the application stack.
Removing the need for TCP may allow full IP networking in small microcontrollers.
CoAP allows UDP broadcast and multicast to be used for addressing. CoAP follows a
client/server model. Clients make requests to servers, servers send back responses.
Clients may GET, PUT, POST and DELETE resources. CoAP employs a client-server
model and request/response message pattern, where client devices send information
requests directly to server devices, which then respond. Support for an observer
message pattern enables clients to receive an update whenever a requested state
changes, for example a valve opening or closing, while confirmed message delivery
provides some level of assurance under the connectionless UDP transport.

The Constrained Application Protocol (CoAP) is a web transfer protocol at the
application layer intended to be used with constrained devices The Internet Engineering
Task Force (IETF) working group has designed this protocol to be used for M2M
applications, IoT objects and suitable for constrained devices that have limited amount
of ROM and RAM [9]. One design goal of CoAP is limiting the need for fragmentation
by using small message overhead. Moreover, this protocol suitable for constrained
networks such as 6LoWPAN which supports the fragmentation of IPv6 packets into
small frames. CoAP provides an interaction model similar to the client/server of HTTP.

Security in MQTT and CoAP Protocols of IOT’s Application Layer 279

CoAP Architecture as shown it extends normal HTTP clients to clients having
resource constraints. These clients are known as CoAP clients. Proxy device bridges
gap between constrained environment and typical internet environment based on HTTP
protocols. Same server takes care of both HTTP and CoAP protocol messages [4].

4.1 DTLS for CoAP Security

DTLS is used more than CoAP to provide continuous security. Just as TLS being used
for securing HTTP over TCP, Datagram TLS (DTLS) is used for securing CoAP over
UDP. DTLS is implemented between transport layer and application layer as in Fig. 7.
As DTLS operated on top of the UDP protocol, the complexity of its implementation
increased which requires mechanisms to provide reliability. To design a DTLS version

Fig. 5. CoAP message format

Fig. 6. CoAP architecture

280 A. Burange et al.

that can be used in constrained environments, it is important to minimize the code size,
and the number of messages exchanged to get an optimized handshake protocol.

Figure 8 shows how the DTLS handshake works using CoAP, providing com-
munication reliability by CON and ACK messages using CoAP block-wise transfer
which contain DTLS handshake messages as a payload. When the DTLS handshake
session has finished, the client can initiate the first CoAP request.

Fig. 7. Abstract Layering of DTLS-Secured CoAP

Fig. 8. CoAP protocol layers

Security in MQTT and CoAP Protocols of IOT’s Application Layer 281

4.2 DTLS over CoAP (CoAPs)

DTLS protocol can be integrated with CoAP to provide end-to-end security. In this
implementation, we used the open source TinyDTLS and CoAP libraries. Tiny DTLS
supports the cipher suite based on Pre-shared keys (PSK) with the Advanced
Encryption Standard (AES): TLS PSK WITH AES 128 CCM 8. We implement two
nodes a CoAP server and CoAP client, with an integration of Tiny DTLS for both
server and client. We observe the output and compare the simulation result with the
previous CoAP simulation.

The general interactions of data between DTLS and CoAP in both forward and
reverse directions are illustrated in Fig. 9(a) and (b) respectively. In the forward
direction, CoAP packets are sent to DTLS module to add the security functionality [3].

There are two interfaces in this operation: DTLS receives normal data packets from
CoAP and then sends encrypted data to CoAP. Afterward, the encrypted packets are
sent across to UDP as shown in Figure (a).

In the reverse direction, the secured packets received from UDP are sent across to
DTLS for decryption then sending it back to CoAP as shown in Figure (b).

5 Experiment Results

IoT sensor devices have limited memory, CPU and power resources. In our experiment,
we test the Constrained Application Protocol with and without security in constrained
sensor nodes. In order to know the impact of deploying security mechanisms on
constrained devices, we test and compare the memory footprint:

(a) Memory Footprint

The Internet Engineering Task Force group (IETF) classified constrained devices with
consideration of code size and data size as shown in Table 2. Therefore, it is important

Fig. 9. (a) Encrypting a CoAP packet using DTLS (b) Sending a DTLS decrypted to CoAP

282 A. Burange et al.

to know the code size and the data size for an application to measure the memory
usage. The difficulty of providing a secure communication increase with limited
resources. The classification of constrained devices is shown below:

Class 0 devices are very constrained nodes. They have limited memory and pro-
cessing capabilities and may not have enough resources to communicate securely
and directly to the Internet. Thus, they need a help of larger devices such as a proxy
or gateway to participate in Internet communications.
Class 1 devices are quite constrained nodes. They cannot easily use full protocol
stack such as HTTP or TLS. However, they are capable to use protocols that
designed for constrained nodes such as CoAP over UDP. In our implementation, we
use Wismote node which has 16 KB of RAM and 128 KB ROM and considered as
a class 1 device.
Class 2 devices can support most protocols used in Internet communication.

The memory footprint is provided by the MSP430-GCC compiler. We obtained the
RAM and ROM by utilizing the MSP430-GCC size command of the firmware files.
Table 3 shows the require memory size for both server and client with and without
security implementation for Wismote sensor. Figures 10 and 11 show the impact of
deploying security for CoAP. The difference of the RAM size between the two codes is
about 30%. Whereas, the flash memory or ROM has increased by approximately 59%.

Table 2. Classes of constrained devices

Name Data size (e.g., RAM) Code size (e.g., Flash)

Class 0 �10 KB �100 KB
Class 1 *10 KB *100 KB
Class 2 *50 KB *250 KB

Table 3. Memory footprint

Node type RAM [bytes] ROM [bytes]

CoAP Client 8210 44831
CoAP Server 8200 50224
CoAPs Client 11396 86583
CoAPs Server 11274 89737

Security in MQTT and CoAP Protocols of IOT’s Application Layer 283

6 Conclusion

The Internet of Things is considered as one of the largest improvement to the existing
technology nowadays. It is extremely important to have a secure IoT system in order to
develop and improve this technology to be used in a large scale. In this paper, we
address the fundamentals of the Internet of things and the key features and require-
ments. Followed by the the Constrained Application Protocol (CoAP) as it will be a
significant part of IoT. We present an overview of the Datagram Transport Layer
Protocol (DTLS) which is one way of providing an end-to-end security for IoT

Fig. 10. RAM footprint

Fig. 11. ROM footprint

284 A. Burange et al.

applications. We also addressed security techniques for securing MQTT protocol,
which is also one of the important protocol of IOT.

References

1. Asim, M.: A survey on application layer protocols for Internet of Things (IoT). Int. J. Adv.
Res. Comput. Sci. 8(3), 996–1000 (2017). ISSN 0976-5697

2. Kraijak, S., Tuwanut, P.: A survey on IoT architectures, protocols, applications, security,
privacy, real-world implementation and future trends. In: 11th International Conference on
Wireless Communications, Networking and Mobile Computing (WiCOM 2015), pp. 1–6,
September 2015. https://doi.org/10.1049/cp.2015.0714

3. Rahman, R.A., Shah, B.: Security analysis of IoT protocols: a focus in CoAP. In: 2016 3rd
MEC International Conference on Big Data and Smart City (ICBDSC), pp. 1–7. IEEE (2016)

4. Ugrenovic, D., Gardasevic, G.: CoAP protocol for web-based monitoringin IoT healthcare
applications. In: 2015 23rd Telecommunications Forum Telfor(TELFOR), pp. 79–82,
November 2015

5. Thangavel, D., Ma, X., Valera, A., Tan, H.-X., Tan, C.K.-Y.: Performance evaluation of
MQTT and CoAP via a common middleware. In: IEEE Ninth International Conference on
Intelligent Sensors, Sensor Networks and Information Processing 2014, Singapore (2014).
ISSNIP.2014.6827678

6. Chen, M., Wan, J., Gonzalez, S., Liao, X., Leung, V.C.M.: A survey of recent developments
in home M2M networks. IEEE Commun. Surv. Tutor. 16(1), 98–114 (2014). First Quarter

7. Wang, M., Zhang, G., Zhang, C., Zhang, J., Li, C.: An IoT-based appliance control system for
smart homes. In: 2013 Fourth International Conference on Intelligent Control and Information
Processing (ICICIP), pp. 744–747, 9–11 June 2013

8. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of Things: vision,
applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

9. Ishaq, I., Hoebeke, J., Moerman, I., Demeester, P.: Experimental evaluation of unicast and
multicast CoAP group communication. Sensors 16(7), 1–8 (2016). NCBI

Security in MQTT and CoAP Protocols of IOT’s Application Layer 285

http://dx.doi.org/10.1049/cp.2015.0714

	Security in MQTT and CoAP Protocols of IOT’s Application Layer
	Abstract
	1 Introduction
	2 IOT Architecture
	3 MQTT (Message Queueing and Transport Protocol)
	3.1 Architecture
	3.2 MQTT Vulnerabilities
	3.3 MQTT Security
	3.4 Securing MQTT Server
	3.5 Creating the MQTT Server Certificate

	4 CoAP (Constrained Application Protocol)
	4.1 DTLS for CoAP Security
	4.2 DTLS over CoAP (CoAPs)

	5 Experiment Results
	6 Conclusion
	References

