q

Check for
updates

Privacy Preserving Multi Keyword Ranked
Search with Context Sensitive Synonyms
over the Encrypted Cloud Data

Anu Khuranal(m), Rama Krishna Challa?, and Navdeep Kaur®

! LK. Gujral PTU, Kapurthala, Punjab, India
annu_khurana@yahoo. com
2 Department of Computer Science and Engineering, NITTTR,
Chandigarh, India
rkc_97@yahoo. com
3 Department of Computer Science and Engineering,
Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
drnavdeep. iitr@gmail. com

Abstract. The increase in the number of people and organizations relying on
cloud for storing their data has led to significant increase in the volume of data
on cloud. Wherever the Cloud Service Provider (CSP) allows encryption of
documents and metadata, keyword search becomes necessary for quick, easy
and effective retrieval of outsourced encrypted cloud data. As the cloud users,
over the period of time may tend to forget the exact keywords for issuing a
search query, the keyword search therefore should support synonyms. But the
synonym discovery is always context sensitive, as not all synonyms can simply
replace a word in all occurrences of a query. It is therefore, important to keep
the connotation of the word under consideration. As some synonyms can infuse
a different meaning, than the one user actually intends for and can cause drift to
user’s search. In this paper, we propose a scheme Context sensitive Multi
keyword Ranked Search (CSMRS) to this issue by analyzing the encrypted
query click logs. The results achieved show that the synonyms selected with
CSMRS are more appropriate and as per the context as intended by the user.

Keywords: Multi-keyword - Synonyms - Context sensitive
Privacy preserving - Cloud - Encrypted query click logs

1 Introduction

With cloud computing, computing now sees no border. A number of users are getting
hooked up with cloud because of the enormous benefits it provides, with a good
percentage, using storage as a service [1]. Since the volumes of data stored on the cloud
may contain user’s sensitive information as well, therefore the data is stored in
encrypted format on the cloud. However, at the time of locating and retrieval of the
desired documents, a user would prefer a search mechanism for easy and quick retrieval
of the needed documents. Encryption though required, makes the operations like
searching difficult. The notion of searchable encryption (SE) without the loss of data

© Springer Nature Singapore Pte Ltd. 2019
S. Verma et al. (Eds.): CNC 2018, CCIS 839, pp. 165-180, 2019.
https://doi.org/10.1007/978-981-13-2372-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2372-0_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2372-0_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2372-0_15&domain=pdf

166 A. Khurana et al.

confidentiality has been introduced for the first time by Song et al. [2]. Thereafter many
researchers, have worked towards increasing efficiency and improving ways of
searching over the encrypted data [3-9]. But, these searchable encryption schemes do
not directly fit into the cloud environment as they lack the effective mechanism to
ensure file retrieval accuracy.

Many researchers [10-19] gave keyword search schemes for searching over
encrypted cloud data. Later, for enhancing the search capability, some researchers [20—
22] worked in the domain of keyword ranked search allowing queries that support
synonyms.

Fu et al. in [20] used searchable index tree with the document index vectors for
searching related documents. They built a common synonym thesaurus on the foun-
dation of the New American Roget’s College Thesaurus. They extend the extracted
keywords for building index with common synonyms in order to allow synonym based
search.

Mittal et al. in [21] created a customized synonym dictionary that is updated as new
keywords from the files to be outsourced are added. On finding a new keyword,
synonyms for every relevant keyword are added to the synonym dictionary. They later
expand their query with synonyms from this synonym dictionary and perform search
for locating relevant documents.

Saini et al. in [22] builds a synonym dictionary during setup phase. For the query
issued, the cloud instead of replacing the query keywords with synonym suggests some
synonyms for the user. If the user selects the synonym then the query returns ranked
search results for the same.

As per the literature survey the existing schemes of search over encrypted cloud
data supporting synonyms either keep waiting for user input or use a fixed set of
synonyms. But the synonyms are context sensitive. Synonym for a word simply cannot
replace all occurrences of a word in all the queries. For e.g. the words “powerful” and
“muscular” are synonyms for the word “strong” but when we use “strong coffee” we do
not equally say “powerful coffee” or “muscular coffee”. This means the word “pow-
erful” is not used as a synonym for the word “strong” over here. However, in the search
query “powerful man” synonym “strong” or “muscular” may replace the keyword
“powerful” and we can use “strong man” or “muscular man” as parallel queries in order
to get more relevant results as per user’s intent.

In this paper, we propose a scheme Context Sensitive Multi keyword Ranked
Search (CSMRS) that supports privacy preserving multi keyword ranked search over
encrypted cloud data supporting context sensitive synonyms. CSMRS uses encrypted
query click logs for locating the relevant synonyms as per the context. CSMRS limits
the synonym replacement in the multi keyword queries according to relevance as per
the co-occurring words in the query. The encrypted query click logs are recorded
whenever a data user downloads any document against the issued search query.

Privacy Preserving Multi Keyword Ranked Search with Context Sensitive Synonyms 167

2 Problem Formulation

2.1 Problem

To find the context sensitive synonyms, we need to extract the context sensitive syn-
onyms from the full set of synonyms picked from SP for a word. Neighbouring words
in a search query can help to understand the context for a word, hence the need for
query click logs. However, for multi keyword ranked search with context sensitive
synonyms over the encrypted cloud data we need to take care that it should be privacy
preserving. It means that the search query and the search results returned to the user
should be hidden from the public cloud server, despite it performing the search
operation.

2.2 System Model

CSMRS considers the cloud data hosting service to involve four different entities
namely the data owner, the data user, public cloud server and a trusted third party
wherein the private cloud server is considered as the trusted third party. The details of
the responsibilities of these entities is given in Sect. 5. The architecture of the proposed
CSMRS is shown in Fig. 1.

Public Cloud

and

User(s)

Access Control (Data Decryption Keys)

Fig. 1. Architecture of CSMRS (Context Sensitive Multi Keyword Ranked Search)

2.3 Threat Model

In this paper, we consider public cloud server to be “honest-but-curious”. It is assumed
that it carries out the assigned duties honestly, but is curious to examine data for
additional insight. Regarding private cloud we consider it as a trusted third party.

168 A. Khurana et al.

2.4 Notations and Preliminaries
Notations

I(M): Document Index encrypted with key M

I(M, S): Document Index encrypted with key M further encrypted with key S
t(M): Query unique words encrypted with key M

t(M, S): Query unique words encrypted with key M further encrypted with key S
##/: Table containing all ciphers of the word vectors

SP: Synonym Dictionary

€D: Collocation Dictionary

O: Master Encrypted Query Click Log.

Preliminaries

Paillier Encryption

It is a probabilistic public key algorithm with additive homomorphic properties.
This means that given E (al) and E (a2) one can get E (al + a2). It can also be used to
find E(al) * a3, where a3 is not encrypted. We use the ability of the Paillier encryption
to increment the count (number of times a query has been issued against which doc-
uments are downloaded) in the encrypted query click logs. We also use Paillier
encryption for encrypting the term frequency of the keywords and their squares in the
Index.

3 Encrypted Query Click Logs in CSMRS

Query logs are extremely valuable for information acquisition. Ranging from simple
statistics to deeper mining, query logs can be used to get a variety of information like
user’s search preferences, automatic generation of natural language resources, semantic
analysis etc. [23]. To achieve all this, one of the most important steps of query pro-
cessing is segmentation of the query into terms. If the query logs contains the URL or
reference of the document opened or clicked by the user then they are referred to as
query click logs.

The proposed scheme CSMRS uses query click logs, but because it is deployed in a
public cloud environment the query click logs used are encrypted. Further, because we
need to segment the query into terms, the query encryption is done word-wise/term-
wise. The encrypted query click logs are maintained on the public cloud server, which
can cause a threat in spite of encryption of the query terms. Also, encryption of the
query term-wise can allow statistical attacks reveal the pattern of search. Even the most
commonly and frequently issued queries by an organization/user may be guessed.
Therefore, simply encrypting them with a deterministic encryption algorithm could
result in failure in preserving the privacy of the search terms in a cloud environment.
Also, if we use non-deterministic encryption algorithms, we would not be able to align
the queries against each other. So, we need a mechanism which allows aligning the

Privacy Preserving Multi Keyword Ranked Search with Context Sensitive Synonyms 169

query terms without actually making the pattern reveal the plaintext. To overcome, the
problem of retrieving the plain text through crypto attacks, CSMRS introduces and uses
word vectors. It further encrypts the obtained word vectors with ciphers from the table
#4 by lookup method. The word vectors obtained for every word is different even if
they have the same set of alphabets as shown in the Sect. 4.1. This uniqueness provided
in the formation of word vectors makes the guessing of the plain text very difficult, as it
will be needed to be done for every word. CSMRS makes the encryption of plain text
even stronger as after obtaining the word vectors they are further encrypted with
corresponding cipher from table #4/. CSMRS provides protection against guessing of
plaintext by infusing dummy words [24] in the query and in the index.

4 Important Notion

4.1 Word Vectors

Word vector is a bit string build up with key M. The key M has the random English
alphabets. It is ensured that the key has the complete alphabet set, the alphabets are
repeated many times and the alphabets like ‘i°, ‘e’, ‘a’ and others which are more in use
in the formation of English words have the repetition number higher than rest of the
alphabets.

If we consider, English alphabets to have letters ‘a to f* with ‘a’ being used in most
of the English words constructed over the set {“a’, ‘f”} then a snippet of column matrix

could be as shown in Fig. 2.

dabecfiedadfeab. ...

Fig. 2. Snippet of the /D matrix (key M) on which the word vectors are built

Example: Over the set {‘a’, ‘f”} with key M as in Fig. 2, for getting the word vector for
the word “bed” check the /D matrix (key M), pick first character of the word “bed” i.e.
‘b’ and compare with /D matrix since first character is ‘d’ in /D matrix set it to 0, next
is ‘a’ setit to 0, next is ‘b’ set it to 1. Once the bit is set 1, pick next character from the
given word i.e. ‘e’ here. From the point last left, start checking the /D matrix. Keep
setting all bits to O till a match is found so after setting three bits to 0, next bit is set to 1
for character ‘e’. Now the bit is set to 1, so pick next character i.e. ‘d’ from the given
word and start checking from the point last left. Next character is ‘d’ in /D matrix set it
to 1. Since the bit has been set to 1, so pick next character from the word. We do not
have any more characters left, so set remaining all bits from the point last left to 0.
Hence the obtained word vector for the word “bed” is 00100011000000.

Similarly the word vectors for the words “bad”, “dad”, “bed”, and “bead” based on
the snippet of this matrix will be

170 A. Khurana et al.

bad = 00100000110000, dad = 11000001000000,
bed = 00100011000000, bead = 00100010110000

Obtained word vectors are further treated to ensure cryptographic strength by
shifting it around by a shift factor $. In CSMRS, mid-point is taken as the shift factor.
So, the word vector 00100011000000 for the word “bed” after shifting becomes
10000000010001.

4.2 # Table

During setup phase (offline phase) we build a ## table, wherein, we record prebuilt
word vectors (of words and dummy words) and their equivalent ciphers with a non-
deterministic cipher (AES in our case) with a random key S. We limit the use of non-
deterministic cipher in a manner, that we encrypt it and record only one of the random
cipher obtained for a word vector in the #4# table. The entire table is built during the
setup phase and uploaded on the private cloud server. The presence of key M and 44/
table at different locations provides security to the final cipher obtained and its link to
the plain text. Therefore, having the key M alone does not reveal the final cipher being
uploaded on the public cloud.

4.3 Encrypted Query Click Logs

Query logs are widely used in web search. As Wei et al. in [25] refers that search with
synonyms is a challenging task in web as it could lead to intent drift to user’s search.
Wei et al. in [25] gives a solution to this issue in web search by the analysis of co-
clicked queries and further alignment of these queries against each other, where the co-
clicked queries are the queries leading to clicking the same documents. So, with a
different methodology but similar idea, we have used encrypted query click logs. These
encrypted query click logs need to be aligned word by word against each other.
Therefore, their encryption as discussed, need to be word-wise or term-wise. To align
the queries while preserving the privacy of the search terms, CSMRS uses word vectors
for every unique word of index file (M) and queries #(M). These word vectors are
created at the user’s end with the help of a unique key M shared with him by the data
owner. Once generated /(M) is sent to the private cloud where they are further
encrypted by key S to form /(M, S). The key M gives a unique fingerprint to each word.
The queries are also encrypted by keys M and S to generate #(M, S).

We store this information, without feeling a threat because otherwise also, a cloud
server is capable of having a history of all the search process and collect this infor-
mation. To break the direct linkage, between the issued query and its recorded entry in
O in the public cloud server, the log for a file download is recorded in the private cloud
server. At a suitable periodic interval i.e. depending on the number of queries being
issued, these logs are written to the public cloud server.

Privacy Preserving Multi Keyword Ranked Search with Context Sensitive Synonyms 171

S Proposed CSMRS Overview

CSMRS architecture comprises of four entities data owner, data user, trusted third party
(Private cloud in this case) and public cloud.

— Data Owner: Data owner is responsible for outsourcing a collection of documents
D = (DI, D2, D3,...) in an encrypted form C = (CI, C2, C3,....) to the cloud
server. He encrypts the document collection D with a symmetric key encryption
AES with key K. In order to perform multi-keyword ranked search over the out-
sourced encrypted data, the data owner builds searchable index /(M). [(M) is then
sent to the private cloud where all word vectors (M) are replaced with ciphers from
#4 to form I(M, S) by lookup method. This is done for every document to be
uploaded.

— Data User: Data users are authorized users who can securely search the document
collection for keyword(s). They use the secret key which is shared with them by the
data owner and can issue a search request. The search query #(M) issued by the data
user is encrypted with the same key M with which index keywords were encrypted.

— Private Cloud: The private cloud server on receiving the search query #(M) assigns
weight of 2 to the query keywords. It further checks the synonym dictionary $P and
add all synonyms of the query keywords with weight 1. Then it extends the
encrypted query with dummy keywords with weight O and further encrypts it with
the key S to get #M, S). The dummy keywords are randomly added to the query to
protect against statistical attacks of guessing the more frequently used terms. It then
sends the search #(M, S) to the public cloud server.

— Public Cloud: Public cloud in the offline stage constructs the collocation dictionary
€D by calling the AlignQuery() procedure that works on the master encrypted query
click log Q. In online stage the public cloud server on receiving the search query ¢
(M, S), refines the synonyms of #M, S) with procedure SynSelection(), find the
cosine similarity and returns a ranked list of top n encrypted documents to the data
user. The data user can download the files of his intent and then decrypt it with the
key K secretly shared with him by the data owner.

6 Proposed CSMRS Framework

This section gives a detailed description of CSMRS with integrated security and pri-
vacy mechanisms.

6.1 Build_Index()

Key_Gen(m)

With the size parameter m, generate the secret key M where M is 1D matrix of size m,
M € {a, z}. M contains many non-uniform occurrences of the characters ‘a-z’ and it is
not in a collating sequence but a random order.

172 A. Khurana et al.

Algorithm 1: Build Word Vector.

Procedure Build Word Vector(M, WD).

Initialization: Extract the distinct words from the file, file name and the file descriptor
(these are the words that acts as tag for the document, and are entered by the data
owner while uploading the document) as WD.
for each WD as wd
w=splitword(wd)
for each w as wi
if first occurrence
set wi =1
else
set 0
end if
endfor
I(M) = (M) + Paillier Encrypted(Term Frequency, square (Term Frequency))
endfor
return 1(M)

end procedure
Algorithm 2: Build_Vec(i(M),’#V).

Procedure: Build Vec(I(M), #4).

Initialization: extract the distinct word vectors from /(M) as EW
for each EW as ew
= Paillier Encrypted(Term Frequency, square (Term Frequency))
Lookup ¥V
Find corresponding cipher CR
i(M,S)=CR, f
endfor
Randomly add into I(M,S) dummy keywords with Paillier encrypted (term frequency
0)
return (M, S)
end procedure

6.2 Dictionaries

Synonym Dictionary (D)

SD is built during offline stage and kept on the private cloud. It contains commonly
used synonyms for a word in all grammatical usages of a word. We used Moby
Thesaurus [26] for picking the synonyms. All entries in $P are encrypted with key
M and S.

Privacy Preserving Multi Keyword Ranked Search with Context Sensitive Synonyms 173

Collocation Dictionary (€D)

€D is an M, S keys encrypted dictionary having the aligned words and the words co-
occurring with these aligned words (neighbour words). AlignQuery() procedure is used
to align the queries available in the co-clicked query clusters. The detailed process is as
explained below:

Master Query Click Log O

Every time a user download a document for a particular query it is recorded in a log on
the private cloud. All these logs from private cloud server are appended into the master
query click log O after a periodic interval. The appropriate period for update of O
depends upon the usage of the system. However, regular updating of O gives an
efficient execution of the scheme. Q contains the encrypted query #M, S) issued by the
user, doc id of the document that was downloaded and the count n (number of times the
same document was downloaded for the given query). n is encrypted with Paillier
encryption that is additively homomorphic so that n is not revealed to the cloud server
however n could be incremented on appending more entries to Q.

Co-clicked Query Clustering

Co-clicked query clusters are greedily formed by first reserving all the doc-ids that are
linked to a particular query and then putting into cluster all the queries that were issued
with which these doc ids are linked.

Query Pair Alignment

CSMRS aligns the query pairs in a manner similar to [25]. It selects the co-clicked
query pairs with similar length i.e. same number of terms. These pairs have same terms
at all positions except one in order to extract the words that are replacement for each
other. These extracted words become the aligned words that are recorded in the col-
location dictionary along with the neighbouring keywords.

Algorithm 3: FormCluster(Q).

Procedure: FormCluster(Q).

c=1
A:
for each docid in O as d
Store into cluster c,(¢(M,S), docid) for d
for each t(M,S)in ¢ extract docid
goto A
endfor
endfor
increment ¢
end procedure

174

A. Khurana et al.

Algorithm 4: AlignQuery().

Procedure: AlignQuery().

call cluster()
for each ¢
pick ¢(M,S)with equal number of keywords as c
n=count (t)
fori=1ton
forj=(i+1) ton
if weight not 0 and only one keyword is different in corresponding t
add into €D, differing keywords as main_word and aligned word
add the similar words of t as neighbor words.
end if
endfor
endfor
endfor
return €D
end procedure

// €D composition= (main_word, aligned_word, neigbour words)

Algorithm 5: SynSelection(t(M,S), €D).

Procedure: SynSelection(t(M,S), €D).

Initialization: extract the distinct word with weight 2 as MW and weight 1 as SW
for each MW as mw

Lookup €D
Store into aw aligned words for mw

endfor
for each SW as sw

if swin aw then
keep sw in t(M,S)
else

drop sw

endfor
return #(M,S)
end procedure

Privacy Preserving Multi Keyword Ranked Search with Context Sensitive Synonyms 175

6.3 Search

#4/ and SP in the private cloud requires one time build up during the setup phase of
CSMRS. Figure 6 shows the total time required to build cipher dictionary and syn-
onym dictionary.

€D requires time to time update to acquire more suitable synonyms. During
experiments it was seen that if collocation dictionary is not updated it resulted in less
number of matched synonyms. The only periodic computation cost incurred by
CSMRS is aligning of queries and updating of collocation dictionary.

The search process requires users’ encrypted query # M, S) to be sent to the public
cloud server. Here it looks the collocation dictionary and matches the aligned words
using procedure SynSelection().This process filters out all the excess synonyms added
in the query. The filtered out synonym terms are those which actually were never used
in the users’ query simply because the use of those words together is inappropriate.
Now finally we are left with the main keywords, shortlisted synonyms and dummy
keywords in the #M, S). We calculate the cosine similarity using Eq. 1, and find the
relevant documents. In Eq. 1, Q refers to the final query #M, S) after synonym
selection phase and D refers to the stored documents. The top n relevant documents
returned are ranked as per their similarity scores and returned to the user. The presence
of dummy words in the query and in the index file does not affect the final scores as
their term frequency was set to O in index file. In the entire search process only the final
score are known to the cloud server. CSMRS preserves the privacy of entire data and
process from the cloud server.

similarity = cos(0) = b.o _ > i1 DiQi (1)

PlL-lell, YL DR/ @

7 Experimental Results

The experiments are done in python on a Linux machine with Intel i7 processor with
8 GB RAM. For alignment of encrypted query click logs the encrypted queries were
built for the search queries in accordance with selected queries from AOL-user-ct-
collection [27] a corpus of query logs. We ran the word alignment algorithm on both
the selected queries in plain and then on the encrypted queries of the same queries to
check the similarity in the aligned words returned by them. We found that the words
aligned are almost similar with both. Though with encrypted queries we only had some
extra dummy keywords almost everywhere in order to conceal the actual data. The
dataset of documents was specially built to make the documents suitable to run and use
the queries corpus from AOL-user-ct-collection.

176 A. Khurana et al.

8 Functionality and Efficiency

8.1 Index Generation

Index generation step in CSMRS is one time computation comprising of two main
steps i.e. forming /(M) and its further encryption to [(M,S). In CMSRS we include word
vectors of the unique words from the document to be uploaded, unique keywords of its
filename and file descriptors (these acts as document tags and are entered by the data
owner while uploading the file/document). We include the term frequency of these
words and their squares and encrypt them with Paillier encryption.

For constructing /(M) key M is built with English alphabets randomly placed, they
are repeated many times and the frequency of most appearing alphabets in formation of
words in English language is more than other alphabets. The length for M used in our
scheme is 167. The randomness and repetition of alphabets is good enough to construct
many English words. We experimented creating word vectors and careful examination
of 10,000 English words picked from the /usr/share/ dict/british-english of Ubuntu
14.04.

Figure 3 shows the index construction time. It shows the word vector creation time
and time taken for final encryption of the index by lookup method into the $#4# table. It
shows that the time taken for final encryption of the word vector in private cloud is
almost negligible with respect to the total time taken for index construction. The
generation time of the index is increasing linearly with respect to the number of
keywords.

Index Construction Time (in secs)
9.0000

30000
70000

%\ 60000 nword vector time

0
* 50000
é 40000 n Finding equivalent
g cipher by lookup
E 3.0000 method
20000 Total index
construction time
1.0000 I
00000 .

1000 2000 4000 8000 12000

Number of keywords

Fig. 3. Index construction time (in secs.)

Privacy Preserving Multi Keyword Ranked Search with Context Sensitive Synonyms 177

The total index construction time in Fig. 3 includes time taken for extracting the
unique keywords for the relevant document along with its term frequency and its
square, word vector creation time and time taken for encryption by lookup method in
table.

9 Search over Encrypted Data

9.1 Search Efficiency

The public cloud server computes the similarity scores with Eq. 1, and return the top
n ranked list of the relevant documents during the search process. Figure 4 shows the
time taken by CSMRS for searching the relevant files. It clearly shows assuming that
having fixed number of keywords in the query, the search time is dependent on the
number of documents in the dataset.

Search Time (in ms)

_®

N

-

o

TIME TAKEN
o 3 N w

0 5000 10000 15000 20000 25000 30000
NO.OF DOCUMENTS

Fig. 4. Search time (in ms)

9.2 Synonym Quality

We experimented with some selected search queries and saw that our scheme did not
give weight to “powerful” as synonym when it was listed with the word “coffee”.
Similarly we tried another query “ship goods to Bombay” over here the word “boat”
was not given weight as synonym for the word “ship”. One detailed example of the
query pair alignment and reduction of synonyms from the full list of synonyms is
shown in the Table 1.

178 A. Khurana et al.

Table 1. Example of reducing synonym terms by CSMRS with given queries to be aligned for
the word sharp

Query Woman with sharp tongue
Example word Sharp
Complete synonym list Able, acerbic, acidic, acidulous, acrid, adept, adroit, agile,

annoying, artful, astringent, biting, brainy, brilliant,
capable, caustic, clever, consummate, cool, cultivated,
cutting, deft, dexterous, experienced, expert, effectual,
effective, efficient, facile, galling, gifted, harsh, hateful,
hurtful, ingenious, intelligent, keen, learned, masterful,
masterly, nasty, practiced, piquant, polished, powerful,
prepared, proficient, pungent, qualified, responsible, rough,
sharp, savvy, skilled, skillful, smart, spiky, talented, tart,

accomplished
Aligned queries in master Woman with loose tongue, woman with red tongue,
query click log woman with cut tongue, woman with pierced tongue,

woman with cursing tongue, woman with sarcastic tongue,
woman with rough tongue, woman with pleasant tongue,
woman with pungent tongue, woman with biting tongue
Synonyms filtered and selected | Sarcastic, rough, pungent, biting

for example word

10 Conclusion

In this paper, we addressed the problem of privacy preserving context sensitive syn-
onym support over the multi-keyword ranked search over the encrypted cloud data by
exploiting the encrypted query click logs. The proposed Context sensitive Multi-
keyword Ranked Search (CSMRS) takes care of preserving the privacy of the user data.
CSMRS uses and stores encrypted query click logs but does not reveal the exact
number of keywords in the query to the public cloud server and befools it by extending
the users’ encrypted query with dummy keywords. This makes CSMRS secure against
mapping of the cipher with a particular keyword. Final encryption of users’ data (either
index keywords or query keywords) is possible with cipher table in private cloud server
after getting word vectors from the data user. This prevents unauthorized users to make
search requests. Also the word vector design of each word provides a strong safety
feature against crypto attacks. Though encrypted query click logs gives some sense of
presence of similar keywords but it leaks nothing more than that, as the cloud server
cannot reach to the exact plain keywords from it. Also the cloud servers are curious
enough to analyze user’s queries and can even get the history so our query click logs
stores nothing beyond the capability of the public cloud server. Rather we are using it
for our benefit. We also take care that these query click logs are first stored on the
private cloud server and later it updates the public cloud server master query click logs.
It does so to hide the exact relevance of the encrypted queries issued with its encrypted

Privacy Preserving Multi Keyword Ranked Search with Context Sensitive Synonyms 179

query click log entry. CSMRS shows improvement in the quality of the synonym
selection for the expansion of search query and hence the ranked search results contains
relevant documents. The search time taken by CSMRS is similar to the existing
schemes.

References

et

11.

12.

13.

14.

15.

16.

Rightscale 2016 State of the Cloud Report - Hybrid Cloud Adoption Ramps as Cloud Users
and Cloud Providers Mature (2016). http://assets.rightscale.com/uploads/pdfs/RightScale-
2016-State-of-the-Cloud-Report.Pdf

Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In:
IEEE Symposium on Security and Privacy (2000)

Goh, E.-J.: Secure Indexes*. Cryptology ePrint Archive: Report 2003/216 (2004)

Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted
data. In: loannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp- 442-455. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_30

Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with
keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 506-522. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3_30

Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566-582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_33

Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. SIAM J. Comput.
32(3), 586615 (2003)

Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:
improved definitions and efficient constructions. In: ACM CC 2006 (2006)

Brinkman, R: Searching in encrypted data. Ph.D. thesis. University of Twente (2007)
Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over encrypted
cloud data. In: Proceedings of ICDCS 2010 (2010)

Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked
search over encrypted cloud data. In: Proceedings of IEEE INFOCOM, pp. 829-837 (2011)
Ahsan, M.M., Chowdhury, F.Z., Sabilah, M., Wahab, A-W.B.A., Idris, M.Y.L.B.: An
efficient fuzzy keyword matching technique for searching through encrypted cloud data. In:
International Conference on Research and Innovation in Information Systems (ICRIIS)
(2017)

Yang, C., Zhang, W., Xu, J., Xu, J., Yu, N.: A fast privacy-preserving multi-keyword search
scheme on cloud data. In: International Conference on Computing & Processing
(Hardware/Software), pp. 104-110 (2012)

Xu, Z., Kang, W., Li, R., Yow, K., Xu, C.Z.: Efficient multi-keyword ranked query on
encrypted data in the cloud. In: ICPADS 2012, pp. 244-251 (2012)

Xu, J., Zhang, W., Yang, C., Xu, J., Yu, N.: Two-step-ranking secure multi-keyword search
over encrypted cloud data. In: International Conference on Computing & Processing
(Hardware/Software), pp. 124-130 (2012)

Yang, C., Zhang, W., Xu, J., Xu, J., Yu, N.: A fast privacy-preserving multi-keyword search
scheme on cloud data. In: International Conference on Computing & Processing
(Hardware/Software), pp. 104-110 (2012)

http://assets.rightscale.com/uploads/pdfs/RightScale-2016-State-of-the-Cloud-Report.Pdf
http://assets.rightscale.com/uploads/pdfs/RightScale-2016-State-of-the-Cloud-Report.Pdf
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/3-540-45682-1_33

180

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
217.

A. Khurana et al.

Handa, R., Challa, R.K.: A cluster based multi-keyword search on outsourced encrypted
cloud data. In: 2nd IEEE International Conference on Computing for Sustainable Global
Development, pp. 115-120 (2015)

Krishna, C.R., Handa, R.: Dynamic cluster based privacy-preserving multi-keyword search
over encrypted cloud data. In: 6th IEEE International Conference on Cloud System and Big
Data Engineering, pp. 146-151 (2016)

Khan, N.S., Krishna, C.R., Khurana, A.: Secure ranked fuzzy multi-keyword search over
outsourced encrypted cloud data. In: 5th IEEE International Conference on Computer and
Communication Technology, pp. 241-249 (2014)

Fu, Z., Sun, X., Linge, N., Zhou, L.: Achieving effective cloud search services: multi-
keyword ranked search over encrypted cloud data supporting synonym query. IEEE Trans.
Consum. Electron. 60(1), 164-172 (2014)

Krishna, C.R., Mittal, S.A.: Privacy preserving synonym based fuzzy multi-keyword ranked
search over encrypted cloud data. In: International Conference on Computing, Communi-
cation and Automation (ICCCA2016), pp. 1187-1194 (2016)

Saini, V., Challa, R.K., Khan, N.S.: An efficient multi-keyword synonym-based fuzzy
ranked search over outsourced encrypted cloud data. In: Choudhary, R.K., Mandal, J.K.,
Auluck, N., Nagarajaram, H.A. (eds.) Advanced Computing and Communication Tech-
nologies. AISC, vol. 452, pp. 433—441. Springer, Singapore (2016). https://doi.org/10.1007/
978-981-10-1023-1_43

Medelyan, O.: Why not use query logs as corpora? In: Ninth ESSLLI Student Session,
pp- 1-10 (2004)

Liu, C., Zhu, L., Wang, M., Tan, Y.: Search pattern leakage in searchable encryption: attacks
and new construction. J. Inf. Sci.: Int. J. 265, 176-188 (2014)

Wei, X., Peng, F., Tseng, H., Lu, Y., Wang, X., Dumoulin, B.: Search with synonyms:
problems and solutions. In: Coling 2010, Poster Volume, Beijing, pp. 1318-1326 (2010)
(2017). http://moby-thesaurus.org/

(2017). http://www.cim.mcgill.ca/ ~ dudek/206/Logs/AOL-user-ct-collection

http://dx.doi.org/10.1007/978-981-10-1023-1_43
http://dx.doi.org/10.1007/978-981-10-1023-1_43
http://moby-thesaurus.org/
http://www.cim.mcgill.ca/%7edudek/206/Logs/AOL-user-ct-collection

	Privacy Preserving Multi Keyword Ranked Search with Context Sensitive Synonyms over the Encrypted Cloud Data
	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Problem
	2.2 System Model
	2.3 Threat Model
	2.4 Notations and Preliminaries

	3 Encrypted Query Click Logs in CSMRS
	4 Important Notion
	4.1 Word Vectors
	4.2 Table
	4.3 Encrypted Query Click Logs

	5 Proposed CSMRS Overview
	6 Proposed CSMRS Framework
	6.1 Build_Index()
	6.2 Dictionaries
	6.3 Search

	7 Experimental Results
	8 Functionality and Efficiency
	8.1 Index Generation

	9 Search over Encrypted Data
	9.1 Search Efficiency
	9.2 Synonym Quality

	10 Conclusion
	References

