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Foreword

I am, personally, honored to have this opportunity to write a few words (as fore-
word) for the book entitled Document Image Analysis: Current Trends and
Challenges in Graphics Recognition. About me, I have several years of experience
in the pattern recognition domain, especially in graphics recognition, and I worked
as the President of the Graphics Recognition (GREC) Technical Committee-10
(TC-10), which is in the framework of the International Association for Pattern
Recognition (IAPR).

The book starts with a clear and concise overview of document image analysis;
the author puts a position about where does graphics processing lie (Chap. 1),
which is immediately followed by graphics recognition (Chap. 2) in detail. The best
part of the book is it summarizes the rich state-of-the-art techniques in addition to
those international contests that have been happening in every 2 years since the 90s.
This summary helps readers understand the scope and importance of graphics
recognition in the domain. Another important issue is the author framed the need
for validation protocol (Chap. 3) so that it allows a fair comparison that let us
review our advancements then and now. Three different fundamental approaches,
viz. statistical (Chap. 4), structural (Chap. 5), and syntactic (Chap. 7), are com-
prehensively described for graphics recognition by taking state-of-the-art (up to
date) research techniques in addition to the hybrid approaches (Chap. 6). For a
complex graphics recognition problem, structural approaches are found to be
appropriate and have been well covered in the book. Interestingly, even though
there exist a few works on the syntactic approach for graphical symbol recognition,
the author sets a position and its importance as the image description happens to be
close to human understanding language. The summary of the book (Chap. 8) is
succinct and to the point, which is the best in the book. One of the primary reasons
behind this is graphics recognition is not just limited to document imaging prob-
lems, such as architectural drawings, electrical circuit diagrams, and maps, but also
(bio)medical imaging. This clearly opens the space for graphics recognition
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community and help researchers move forward, and at the same time, other
researchers (outside the graphics recognition community) can take advantage of
graphics recognition state-of-the-art techniques. Therefore, I strongly believe the
book has the potential to attract a large audience.

La Rochelle, France
July 2018

Jean-Marc Ogier, Ph.D.
President

University of La Rochelle
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Preface

The book focuses on a challenging research topic: graphics recognition—a subfield
of a larger research domain, i.e., pattern recognition—which has been considered as
a key problem toward document content understanding and interpretation, and
mostly architectural and engineering drawings and electrical circuit diagrams. In
general, starting with its definition, we have discussed basic steps used in
state-of-the-art methods, major applications, research standpoints based on several
dedicated methods for graphics recognition. In the 60s and 70s, the resource-
constrained machines did not allow the use of complex recognition techniques [1]
and few data were processed. Since then, the development of more powerful
computer machines, interactions between disciplines, and the introduction of new
applications (data mining, creating a taxonomy of documents) led to the develop-
ment of several concepts [2]. Graphics recognition has had an extremely rich
state-of-the-art literature in symbol recognition and localization since the 70s [3],
where the state-of-art methods are categorized into three approaches: statistical,
structural, and syntactic.

As stated before, the book covers statistical, structural, and syntactic approaches
and addresses their merits and demerits considering the context. Through com-
prehensive experiments, it also provides an idea of whether the aforementioned
approaches can be combined. It, in general, contains research problems, and
state-of-the-art methods that convey basic steps as well as prominent techniques,
evaluation metrics and protocols, and research standpoints/directions that are
associated with it. The book is not limited to straightforward isolated graphics
(visual patterns) recognition. It aims to address complex and composite graphical
symbol recognition [4–12]. Recent trends on several other different (but major)
real-world problems are also discussed. Further, few examples will demonstrate to
see whether graphics recognition can be extended to other domains, such as
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graphics recognition in medical imaging, so that we can prove that graphics
recognition is not just limited to a few problems, such as technical drawings,
architectural drawings, electrical circuit diagrams, and other document imaging.

Vermillion, USA K. C. Santosh, Ph.D.
July 2018 Assistant Professor and Graduate

Program Coordinator
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Chapter 1
Document Image Analysis

1.1 Document Image Analysis (DIA)

1.1.1 What is Document Imaging?

Conventionally speaking, paper documents are referred to as document images, and
are considered for document image analysis/processing. Paper documents have been
overwhelmingly increased since a few decades and the we are required to automati-
cally process them. In the early 80s, since printed documents have been widely used,
paper-less-office could be the objective of the smart office, where computers needed
process them as if experts were used.

In document image analysis/processing, paper documents are scanned and stored
for further processing. How about those camera-based documents and those dynamic
texts, i.e. running texts in the videos? Canwe then define document image processing
as scanning-storing-retrieving-managing? In addition, an expected outcome will be
limited to producing compatible electronic format so that they are easier to access.
Can we just limited to a set of simple techniques and procedures that are used to
convert document images (often, scanned) from pixel information into a format that
can be read by a computer?

In a broader understanding, document imaging can be taken as the practice of using
high-end equipments, such as scanners and cameras so that they can automatically be
accessed and processed as expected. Commercially speaking, in what follows, a few
things can be itemized that help us understand the meaning of document imaging:

(a) Frequent document information retrieval;
(b) Document sharing;
(c) Document search, indexing and retrieval; and
(d) Special compliance requirements.

In short, it can provide a way to convert the document to a format that can be accessed
easily, and of course, it reduces costs and increases efficiency at work. If the invoices

© Springer Nature Singapore Pte Ltd. 2018
K. C. Santosh, Document Image Analysis,
https://doi.org/10.1007/978-981-13-2339-3_1
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2 1 Document image Analysis

are imaged, it can be viewed from anywhere. Having the imaged data, text mining
can be done and therefore, search and retrieval of similar documents can easily be
processed.

Even today, we are surrounded by paper documents, and are often scanned. This
means that DIA has a long and significant importance. For example, business forms,
postal documents, bank checks, newspapers (media), administration documents that
can be from any institutions/agencies, such as hospital, government education and
businesses. How good it could be if a machine can automatically process them in
accordance with the users need [1]. As a quick note, As reported in [2], the cost of
manual data extraction can go up to 9 EUR for a single invoice. At this point, we
have to think of a commercial system where thousands of data have to be processed
in every single day. Can we stay as it is: manual data extraction, even today? In 2015,
document information extraction tool has been proposed and made it available (in
collaboration with ITESOFT (https://www.itesoft.com). France) [3–6]. The main
idea behind it is to carry out (extract) those information which users think is/are
important, not all information, since full-page information can overwhelm the users.
Such a tool definitely requires a comprehensive procedures starting from document
pre-processing, graphics processing to text processing. An example is illustrated in
Fig. 1.1. In this example, it is clear that no other information is/are of interest except
those text in blue. This means that table processing does not look trivial since all
contents may not be useful. However, under the purview of the DIA, we cannot
avoid working on graphics processing, such as logo and line. In short, graphics can
ease text processing. In what follows, a set of such major processes will be broadly
explained.

1.1.2 Basics to DIA and Challenges

Let us start with the objective of the DIA [1]:

The objective of document image analysis is to recognize the text and graphics components
in images, and to extract the intended information as a human would.

This means that DIA is mainly related to texts and graphics, and both could be
handwritten and machine-printed. Theses are often related to processes, such as text
and or graphics separation, localization (spotting, for instance), and recognition and
retrieval [7]. According to [8], DIA can be considered as document image inter-
pretation and understanding. In both research articles [1, 8], core ideas remain the
same.

Considering global processes, let us categorize DIA into two domains [1]:

(a) text processing and
(b) graphics processing.

https://www.itesoft.com


1.1 Document Image Analysis (DIA) 3

Fig. 1.1 Document page: a sample showing a typical table processing problemalongwith document
layout analysis. Tables can happen everywhere, such as header, body and footer of the document
page. In the body, annotated texts/information (in blue) are the ones experts/users think is important



4 1 Document image Analysis

Fig. 1.2 Document image analysis or processing: basic hierarchy

For better understanding, in Fig. 1.2, fundamental document image analysis/
processing hierarchy has been clearly illustrated. Note that it does not refer to pro-
cesses/techniques. In text processing, basic tasks include (and not limited to)

(a) Document skew angle estimation/correction;
(b) Document layout analysis (finding columns, paragraphs, text lines and words);
(c) Handwritten, machine-printed text and graphics separation;
(d) Table detection and processing; and
(e) Optical Character Recognition (OCR) and text recognition (handwritten and

machine-printed).

Understanding document’s layout can ease subsequent processes [9–13]. Simply,
layout understanding and/or analysis refers the division of page into text blocks,
lines and words in accordance with the reading order, and it is required to address
large scale projects in the domain: document digitization. In general, and in the
way Shafait [13] mentioned, a set of few but major processes can be enumerated as
follows:

(i) Binarization (a process to convert grayscale or color document image into a
bi-level representation);

(ii) Noise removal (a process to detect and remove noise in a document that are
usually introduced by processes, such as scanning or binarization);

(iii) Skew correction (a process to detect and correct the document’s orientation
angle from the horizontal direction);

(iv) Page and zone segmentation (processes to divide a document page into homo-
geneous zones, where each zone is composed of a set of predefined classes,
such as text, image and graphics).
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Fig. 1.3 Document page: a sample showing a typical problem of handwritten (in red) and printed
(in blue) text separation, including graphics or possible noise (in black)

Note that, the overall idea is to process/arrange document in a way that it is read-
able. Likewehave discussed before, document page layout analysis is not trivial since
one needs to deal with possible skewness [14]. Besides, handwritten and machine-
printed document page separation in addition the possible use of graphics could
be interesting so that further processing is feasible, such as document information
retrieval [15, 16]. An example is provided in Fig. 1.3. In [15], authors mentioned that
one has to face everyday a varieties of document types, content, quality and structure.



6 1 Document image Analysis

Not limited to these, documents can be skewed, noisy and sometimes overlapped
with graphics (unconstrained annotations). It is also important to know such annota-
tions in any languages they wrote, such as French, German and English; to separate
the content: typed or handwritten, and to deal with document structure: structured
(tables), semi- structured (forms) and possible heterogenous document page. At the
same point, we note that table contains a large portion of the information of the doc-
uments. For example, invoices, bank transactions and receipts are often happened
in tabular format, and they are important as well as sensitive. Connecting the table
information with the ones in the paragraph using table caption could be one of the
better ideas to narrow down the document information search and retrieval process.
Further, end-users may not be interested in header and footer information since they
can be repeated for all documents of a specific document category. A comprehensive
study has been reported in [3, 5, 6]. In such a process, it could be more efficient, if
we are able to identify what type of document (meaning, category or brand, such as
‘Nike’, ‘Adidas’ and ‘McDonald’) is used before we process entire document page.
Traditionally, it could be done by detecting and recognizing the ‘logo’ or any other
graphical symbol [17–19] that has been printed in the document page.1 An example
is provided in Fig. 1.4. This is not just limited to demonstrating logo problem but also
other important issues, such as handwritten, printed text separation (including graph-
ics), logo detection/recognition (not to be confused with stamp), script identification
(in multi-script document page) [20–22], document layout analysis [9–13], border
removal [23–25] and signature recognition/verification [26–28]. In Figs. 1.3 and 1.4,
we have seen two different samples, where in both cases document clean-up and/or
border removal is required. Further processes, such as logo detection/verification
and signature (including handwriting) recognition/verification are other important
issues. Note that stamp and logo look similar but, they need to be differently treated
(see Fig. 1.4). Borders exist when a page has been scanned or photocopied. Textual
noise, such as extraneous symbols from the neighboring page of the book and/or
non-textual noise, such as black borders, speckles are appeared. Automated signa-
ture verification is required in case one has to deal with large data, and it happens
more often in bank cheques (checks) processing across the world for any sort of
financial transactions. This means that, application is not limited to what has been
shown in Fig. 1.4.

It is important to remind that the text processing is not the aim of the book.
However, we understand that text processing can not be sidelined from the DIA
perspective. In what follows, graphics processing will broadly be explained.

1Detecting a graphical symbol ‘logo’ can be used to provide an example to avoid complexity
document retrieval process. In document understanding, there exist several ways to do exactly
similar task: document identification. For more information, follow Sect. 1.2.
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Fig. 1.4 Document page: a sample showing several different problems in the DIA, such as hand-
written, printed text separation (including graphics), logo detection/recognition (not to be confused
with stamp), script identification (in multi-script document page), document layout analysis, border
removal and signature recognition/verification
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1.2 Graphics Processing

Can we work on text processing without dealing with graphics? Even though, we
have clear-cut separation of text and graphics processing (see Fig. 1.2), one cannot
simply work on one side of the DIA since a document contains both of them. Where
does the graphics processing lie then?

As mentioned earlier, let us start with a few important applications, where docu-
ment image retrieval, classification and recognition have been greatly influenced by
the appropriate use of graphics processing. In our advanced technology, where busi-
ness data increases everyday. Having massive data in hand, one needs to able to use
salient features/entities, such as logos, stamps or seals. Use of logo and stamp detec-
tion does not only help document authentication but also useful document retrieval
and classification.More detailed informationwere reported in [17–19].On thewhole,
for a massive administrative data, detecting graphics i.e. logo, for instance can help
reduce the processing time or speed up the document retrieval and/or classifica-
tion. This means that graphics processing cannot be sidelined from text processing
(Fig. 1.5).

In a similar fashion, text (handwritten and machine-printed) recognition has been
significantly merged/influenced by the use of graphics. In this framework, just to
name a few, one cannot forget two applications:

(i) drop-cap processing in historical/ancient documents; and
(ii) map processing.

While taking cultural heritage preservation into account, several digitization
projects (in Europe, France in particular) to save the contents of thousands of ancient

Fig. 1.5 Document page: a sample showing a difficulty in OCR due to graphics [29–32]
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documents, Coustaty [29] mentioned in his PhD report (Navidomass project (ANR-
06-MDCA-012)) that images of these documents are used to identify the history
of books. The thesis was dedicated particularly to graphical images i.e., drop-caps
appeared mostly as the first character of the paragraph. It has been taken as one of
the complex images, since it is composed of different layers of data (images com-
posed of strokes). To extract distinct features from such graphics, unlike the way text
recognition has been done, their primary idea is to describe graphics by taking two
different layers of information: shapes and lines. Introducing two different bags: bag
of patterns and bag of strokes has enriched the quality of the image description. In
this project, authors [29–32] have clearly identified the appropriate use of graphics
in text recognition (ancient document images).

Besides, especially for historical maps, needless to mention that text recognition
from maps is not trivial. This is primarily because of map labels often overlap with
othermap features, such as road lines (intersections), do not follow a fixed orientation
within a map, and can be stenciled and handwritten text [33–38]. Also, many histor-
ical scanned maps suffer from poor graphical quality due to bleaching of the original

Fig. 1.6 Document page: a sample showing a typical problem of text and graphics recognition
from maps [33–36]
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paper maps and archiving practices. This presents the idea of text string separation
from mixed text/graphics images [7]. In addition, the importance of line structure
extraction (line-drawing) was highlighted [39]. Later, text/graphics separation has
been revisited in the literature [40] (Fig. 1.6).

Like in text processing, in both articles [1, 8], for graphics processing, basic tasks
are image segmentation, layout understanding and graphics recognition. Once again,
not surprisingly, as mentioned earlier, input images are scanned paper documents.
More detailed information can be found in Chap. 2.

1.3 Summary

Text processing cannot just go alone, and it holds same for graphics processing [45].
In this chapter, we have learned that text and graphics processing complement to each
other. In other words, even though a large portion of the document image contains
textual information, we find that document image analysis is not just limited to text
processing. As an example, graphics processing can help rich the optical character
recognition quality. At the same time, it is important to note that text/graphics sep-
aration do not really make a difference with text/graphics recognition. Use of the
term ‘separation’ and ‘recognition’ vary from an application to another. Besides,
document layout understanding eases further issues in both cases: text and graphics
processing. It is important to note that this chapter has taken care of several dif-
ferent topics even though they do not typically fall under the graphics recognition
framework (Figs. 1.7 and 1.8).

Next chapter will be focussed on graphics recognition, retrieval and spotting, in
reference to what we have discussed in this chapter. Learning graphical symbols
and spotting them in the scanned document, such as architectural floor plan and
mechanical drawing (line drawings, for instance) could be interesting, regardless of
their versions: handwritten or machine-printed [46]. Interpreting such a document
image can be done by recognizing/spotting the graphical symbols, such as door,
bath-tub, stove, sink and walk-in closet [41, 47]. Recently, an end-to-end procedural
floor plan design has been addressed, where a wide variety of input image styles and
building shapes, including non-convex polygons are handled for architectural tools
and digital content generation [48, 49]. Arrowhead can be taken as an important
entity that can be used to interpret mechanical drawings (engineering) [43, 44, 50],
in addition to other graphical symbols and/or visual cues/primitives, such as line, arc
and circle. Analyzing electrical circuit diagram could be another useful application
in the graphics recognition framework [46, 47, 51–59].
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Fig. 1.7 Document page: a
sample showing a typical
problem of graphics
(graphical symbol)
recognition and/or spotting
from the architectural floor
plan [41]
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Fig. 1.8 Document page (mechanical drawing) [41]: a sample showing a typical problem of graph-
ics processing. Beside text processing, arrowhead can be taken as an entity to interpret mechanical
drawings (engineering) [42–44]. Note that information (data) extraction based on what has been
pointed by the arrowhead are important

References

1. R. Kasturi, L. O’Gorman, V. Govindaraju, Document image analysis: a primer. Character
Recognit. 27(1), 3–22 (2002)

2. B. Klein, S. Agne, A. Dengel, Results of a study on invoice-reading systems in Germany, in
Simone Marinai and Andreas Dengel. Proceedings of International Workshop on Document
Analysis Systems. Lecture Notes in Computer Science, vol. 3163 (Springer, Berlin, 2004), pp.
451–462

3. K.C. Santosh, A. Belaïd, Document information extraction and its evaluation based on client’s
relevance, in 12th International Conference on Document Analysis and Recognition (2013),
pp. 35–39

4. K.C. Santosh, A. Belaïd, Client-driven content extraction associated with table, in Proceedings
of the 13th IAPR International Conference on Machine Vision Applications (2013), pp. 277–280

5. K.C. Santosh, A. Belaïd, Pattern-based approach to table extraction, in Pattern Recognition
and Image Analysis - 6th Iberian Conference, IbPRIA 2013, Funchal, Madeira, Portugal, June
5–7, 2013. Proceedings (2013), pp. 766–773

6. K.C. Santosh, g-DICE: graph mining-based document information content exploitation. Int. J.
Doc. Anal. Recognit. (IJDAR) 18(4), 337–355 (2015)

7. L.A. Fletcher, R. Kasturi, A robust algorithm for text string separation frommixed text/graphics
images. IEEE Trans. Pattern Anal. Mach. Intell. 10(6), 910–918 (1988)

8. G. Nagy, Twenty years of document image analysis in PAMI. IEEE Trans. Pattern Anal. Mach.
Intell. 22(1), 38–62 (2000)

9. A. Dengel, G. Barth, Anastasil: hybrid knowledge-based system for document layout analysis,
in Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI’89),
vol. 2 (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989), pp. 1249–1254

10. H.S. Baird, Anatomy of a versatile page reader. Proc. IEEE 80(7), 1059–1065 (1992)
11. L. O’Gorman, The document spectrum for page layout analysis. IEEE Trans. Pattern Anal.

Mach. Intell. 15(11), 1162–1173 (1993)



References 13

12. S.-W. Lee, D.-S. Ryu, Parameter-free geometric document layout analysis. IEEE Trans. Pattern
Anal. Mach. Intell. 23(11), 1240–1256 (2001)

13. F. Shafait, Geometric layout analysis of scanned documents. PhD thesis, Kaiserslautern Uni-
versity of Technology, Germany (2008)

14. A.L. Spitz,Correcting for variable skew, inProceedings of the 5th IAPR International Workshop
on Document Analysis Systems, Princeton, NJ (USA), ed. by D. Lopresti, J. Hu, R. Kashi.
Lecture Notes in Computer Science, vol. 2423 (Springer, Berlin, 2002), pp. 179–187

15. A. Belaïd, K.C. Santosh, V. Poulain D’Andecy, Handwritten and printed text separation in
real document, in Proceedings of the 13th IAPR International Conference on Machine Vision
Applications, MVA 2013, Kyoto, Japan, May 20–23, 2013 (2013), pp. 218–221

16. X. Peng, S. Setlur, V. Govindaraju, R. Sitaram, Handwritten text separation from annotated
machine printed documents usingMarkovRandomFields. Int. J. Doc.Anal. Recognit. (IJDAR)
16(1), 1–16 (2013)

17. A. Alaei, M. Delalandre, A complete logo detection/recognition system for document images,
in 2014 11th IAPR International Workshop on Document Analysis Systems (2014), pp. 324–328

18. R. Jain, D. Doermann, Logo retrieval in document images, in 2012 10th IAPR International
Workshop on Document Analysis Systems (2012), pp. 135–139

19. A. Alaei, P.P. Roy, U. Pal, Logo and seal based administrative document image retrieval: a
survey. Comput. Sci. Rev. 22, 47–63 (2016)

20. K. Ubul, G. Tursun, A. Aysa, D. Impedovo, G. Pirlo, T. Yibulayin, Script identification of
multi-script documents: a survey. IEEE Access 5, 6546–6559 (2017)

21. Sk Md Obaidullah, C. Halder, K.C. Santosh, N. Das, K. Roy, PHDIndic_11: page-level hand-
written document image dataset of 11 official indic scripts for script identification. Multimedia
Tools Appl. 77(2), 1643–1678 (2018)

22. Sk Md Obaidullah, K.C. Santosh, C. Halder, N. Das, K. Roy, Automatic indic script identifi-
cation from handwritten documents: page, block, line and word-level approach. Int. J. Mach.
Learn. Cybern. (2017)

23. F. Shafait, J. van Beusekom, D. Keysers, T.M. Breuel, Document cleanup using page frame
detection. Int. J. Doc. Anal. Recognit. (IJDAR) 11(2), 81–96 (2008)

24. F. Shafait, T.M. Breuel, The effect of border noise on the performance of projection-based page
segmentation methods. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 846–851 (2011)

25. M. Agrawal, D. Doermann, Clutter noise removal in binary document images. Int. J. Doc. Anal.
Recognit. (IJDAR) 16(4), 351–369 (2013)

26. R. Martens, L. Claesen, Incorporating local consistency information into the online signature
verification process. Int. J. Doc. Anal. Recognit. 1(2), 110–115 (1998)

27. R. Jayadevan, S.R. Kolhe, P.M. Patil, U. Pal, Automatic processing of handwritten bank cheque
images: a survey. Int. J. Doc. Anal. Recognit. (IJDAR) 15(4), 267–296 (2012)

28. D.Rivard, E.Granger,R. Sabourin,Multi-feature extraction and selection inwriter-independent
off-line signature verification. Int. J. Doc. Anal. Recognit. (IJDAR) 16(1), 83–103 (2013)

29. M.Coustaty,Contribution à l’analyse complexededocuments anciens, application aux lettrines.
(Complex analysis of historical documents, application to lettrines). PhD thesis, University of
La Rochelle, France (2011)

30. M. Coustaty, R. Pareti, N. Vincent, J.-M. Ogier, Towards historical document indexing: extrac-
tion of drop cap letters. IJDAR 14(3), 243–254 (2011)

31. M. Coustaty, K. Bertet, M. Visani, J.-M. Ogier, A new adaptive structural signature for symbol
recognition by using a Galois lattice as a classifier. IEEE Trans. Syst. Man Cybern. Part B
41(4), 1136–1148 (2011)

32. M. Clément, M. Coustaty, C. Kurtz, L. Wendling, Local enlacement histograms for historical
drop caps style recognition, in 14th IAPR International Conference on Document Analysis and
Recognition (2017), pp. 299–304

33. Y.-Y. Chiang, S. Leyk, C.A. Knoblock, A survey of digital map processing techniques. ACM
Comput. Surv. 47(1), 1:1–1:44 (2014)

34. Y.-Y.Chiang, S. Leyk,N.H.Nazari, S.Moghaddam,T.X.Tan,Assessing the impact of graphical
quality on automatic text recognition in digital maps. Comput. Geosci. 93(C), 21–35 (2016)



14 1 Document image Analysis

35. Y.-Y. Chiang, C.A. Knoblock, Recognizing text in raster maps. Geoinformatica 19(1), 1–27
(2015)

36. J.H. Uhl, Extracting human settlement footprint from historical topographic map series using
context-based machine learning. IET Conf. Proc. (2017), pp. 15(6 .)–15 (6 .)(1)

37. Y.-Y. Chiang, Unlocking textual content from historical maps - potentials and applications,
trends, and outlooks, in Recent Trends in Image Processing and Pattern Recognition, ed. by
K.C. Santosh, M. Hangarge, V. Bevilacqua, A. Negi (Singapore, 2017), pp. 111–124

38. G. Nagy, A. Samal, S. Seth, T. Fisher, E. Guthmann, K. Kalafala, L. Li, S. Sivasubramaniam,
Y. Xu, Reading street names from maps - technical challenges, in GIS/LIS (1997)

39. T. Kaneko, Line structure extraction from line-drawing images. Pattern Recognit. 25(9), 963–
973 (1992)

40. K. Tombre, S. Tabbone, L. Pélissier, B. Lamiroy, Ph. Dosch, Text/graphics separation revis-
ited, in Proceedings of the 5th IAPR International Workshop on Document Analysis Systems,
Princeton, NJ (USA), ed. by D. Lopresti, J. Hu, R. Kashi. Lecture Notes in Computer Science,
vol. 2423 (Springer, Berlin, 2002), pp. 200–211

41. M. Delalandre, E. Valveny, T. Pridmore, D. Karatzas, Generation of synthetic documents for
performance evaluation of symbol recognition & spotting systems. Int. J. Doc. Anal. Recognit.
13(3), 187–207 (2010)

42. W. Min, Z. Tang, L. Tang, Recognition of dimensions in engineering drawings based on
arrowhead-match, in Proceedings of 2nd International Conference on Document Analysis and
Recognition, Tsukuba (Japan) (1993), pp. 373–376

43. L. Wendling, S. Tabbone, Recognition of arrows in line drawings based on the aggregation of
geometric criteria using the Choquet integral, in Proceedings of 7th International Conference
on Document Analysis and Recognition, Edinburgh (Scotland, UK) (2003), pp. 299–303

44. L. Wendling, S. Tabbone, A new way to detect arrows in line drawings. IEEE Trans. Pattern
Anal. Mach. Intell. 26(7), 935–941 (2004)

45. B.B. Chaudhuri, Digital Document Processing: Major Directions and Recent Advances
(Advances in Pattern Recognition) (Springer, New York, 2006)

46. M. Rusiñol, J. Lladós, Symbol Spotting in Digital Libraries: Focused Retrieval over Graphic-
rich Document Collections (Springer, London, 2010)

47. K.C. Santosh, L. Wendling, B. Lamiroy, Bor: Bag-of-relations for symbol retrieval. Int. J.
Pattern Recognit. and Artif. Intell. 28(06), 1450017 (2014)

48. L.-P. de las Heras, S. Ahmed, M. Liwicki, E. Valveny, G. Sánchez, Statistical segmentation
and structural recognition for floor plan interpretation. Int. J. Doc. Anal. Recognit. (IJDAR)
17(3), 221–237 (2014)

49. D. Camozzato, L. Dihl, I. Silveira, F. Marson, S.R. Musse, Procedural floor plan generation
from building sketches. Vis. Comput. 31(6–8), 753–763 (2015)

50. G. Priestnall, R.E. Marston, D.G. Elliman, Arrowhead recognition during automated data cap-
ture. Pattern Recognit. Lett. 17(3), 277–286 (1996)

51. K.C. Santosh, B. Lamiroy, J.-P. Ropers, Inductive logic programming for symbol recognition,
in Proceedings of International Conference on Document Analysis and Recognition (IEEE
Computer Society, 2009), pp. 1330–1334

52. K.C. Santosh, Reconnaissance graphique en utilisant les relations spatiales et analyse de la
forme. (Graphics Recognition using Spatial Relations and Shape Analysis). PhD thesis, Uni-
versity of Lorraine, France (2011)

53. K.C. Santosh, B. Lamiroy, L. Wendling, Spatio-structural symbol description with statistical
feature add-on, inGraphics Recognition. New Trends and Challenges, ed. byY.-B. Kwon, J.-M.
Ogier, Lecture Notes, in Computer Science, vol. 7423, (Springer, Berlin, 2011), pp. 228–237

54. K.C. Santosh, B. Lamiroy, L. Wendling, Symbol recognition using spatial relations. Pattern
Recognit. Lett. 33(3), 331–341 (2012)

55. K.C. Santosh, L. Wendling, B. Lamiroy, Relation bag-of-features for symbol retrieval, in 12th
International Conference on Document Analysis and Recognition (2013), pp. 768–772

56. K.C. Santosh, B. Lamiroy, L. Wendling, DTW-radon-based shape descriptor for pattern recog-
nition. Int. J. Pattern Recognit. Artificial Intell. 27(3), 1350008 (2013)



References 15

57. K.C. Santosh, L. Wendling, Graphical Symbol Recognition (Wiley, New York, 2015), pp. 1–22
58. K.C. Santosh, Complex and composite graphical symbol recognition and retrieval: a quick

review, in Recent Trends in Image Processing and Pattern Recognition, Revised Selected
Papers, ed. by K.C. Santosh, M. Hangarge, V. Bevilacqua, A. Negi Communications in Com-
puter and Information. Science 709, 3–15 (2017)

59. K.C. Santosh, B. Lamiroy, L.Wendling, Integrating vocabulary clustering with spatial relations
for symbol recognition. Int. J. Doc. Anal. Recognit. 17(1), 61–78 (2014)



Chapter 2
Graphics Recognition

2.1 Graphical Symbols

Visual cues and/or designs that are interpreting information about specific contexts
refer to graphical symbols. In general, they are two-dimensional shapes (in terms of
geometry) in addition to their composition in the highest contextual level of infor-
mation. It is required to have automatic graphics interpretation and recognition as it
happens to be in a variety of applications, such as

(a) engineering drawings and architectural drawings [1–7],
(b) electrical circuit diagrams [8–17],
(c) line drawings [18–21],
(d) musical notations [22, 23],
(e) maps (historical) and road signs [24–30],
(f) mathematical expressions [31],
(g) logos [32–34], and
(h) optical characters that are rich in graphics [35–40].

This book will not consider all topics (mentioned above) even though they fall under
the graphics recognition framework. The book will be more focused on those graph-
ical symbols used in electrical circuit diagrams, engineering and architectural draw-
ings, and line drawings regardless of their versions: handwritten or machine-printed.

Following Chap.1, graphics recognition has been one of the intensive research
topics since the 70s in the pattern recognition (PR) and document image analysis
(DIA) community [41–44]. In 1998, the following statement: “none of these methods
works in general” influenced researches: what we have done so far and what/where
we have/are now? [45, 46]. The statement helped move further [46, 50]. Further,
the usefulness of graphics recognition has been reported in the year 2015 [50] and
survey has been made in the same year [16].
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2.2 Basics to Graphics Recognition

Not a surprise, graphics are combined with texts in addition to colors. This means
that graphics provide more information, i.e., a picture speaks thousands of words. If
we do not consider a few generic techniques that are under the DIA framework, text
recognition can be taken as different side of the DIA work with respect to graphical
symbol recognition. However, their boundary is not straightforward or separable.
More often, researchers observed that their solutions complement each other [41,
44, 51]. Therefore, needless to mention, text analysis in graphics requires special
attention [35]. To understand the importance of graphics recognition, one should
be able to understand that the graphical symbol recognition (or any meaningful
shapes/parts/regions) has been the subject of several different projects (as mentioned
in Sect. 2.1) [2, 51–56]. Generally speaking, these proposed approaches are roughly
categorized into the following:

(a) data acquisition,
(b) data preprocessing, and
(c) data representation/description and recognition/classification.

The first two items: data acquisition and preprocessing techniques—which can
be considered as a unit, in a broad sense—are application dependent. In some cases,
where data are clean, preprocessing may not be required. Text/graphics separation
refers to document image segmentation [57]; and they basically decompose docu-
ment image into two layers so that one can consider the layer, where graphics lie.
More detailed study on text/graphics separation can be found in [58]. In the frame-
work of data description, graphical symbols are described either in terms of a set
of numbers, i.e., feature vector by taking into account the overall shape (statistical
data representation) or in terms of structured forms (graph representation) by taking
visual cues/words that compose whole graphical symbol. Besides, the rule-based
representation can describe the overall shape of the pattern. In both cases, visual
cues/words are found to be application dependent. In the decision process, matching
techniques often follow the way how graphical symbols are represented. In general,
data description (or representation) is said to be good if it can maximize the inter-
class distance and minimize the intraclass distance [47]. The term good refers to how
compact the feature vector is and how well two feature vectors can be discriminant.
Existing approaches, broadly speaking, can be divided into three different categories:
(i) statistical, (ii) structural, and (iii) syntactic. These categories are assumed to be
based on feature-based matching concept. Before proceeding to upcoming chapters,
it is found that neither of the techniques alone can help achieve expected performance.
This means that, in the literature, we have observed a common trend, where authors
combine different techniques from different categories: statistical, structural, and
syntactic. Integrating/combining them (statistical and structural, for instance) aims
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at taking advantage of both techniques [11, 12, 15–17]. Meaning, it is worth to inte-
grate if they compliment each other and satisfy the utility functions that can reach
the goal. More detailed information can be found in Chap.3.

2.3 Contests and Real-World Challenges in Graphics
Recognition

In Chap.1, an importance of graphics processing has been outlined in the framework
DIA.Considering the same, this section aims to include graphics recognition contests
and check whether they have been addressing real-world projects. Since 1995, the
international association of pattern recognition (IAPR) sponsored graphics recogni-
tion (GREC) workshops, supported by technical committee 10 (TC-10: http://iapr-
tc10.univ-lr.fr/) organized several contests in the framework of graphics recognition.
The contests are not limited to graphical symbol recognition, retrieval, and spotting;
they also came up with several other contests, such as arc and line segmentations.

While considering all contests, the observation can be summarized as follows. In
brief, the primary objectives of the GREC contests are to evaluate the state of the
art of graphics recognition techniques (plus other related works), to generate perfor-
mance evaluation tools, techniques, and to provide datasets for future extensions [5,
59–61]. The contests do not just provide summary of results from the participated
institutions/researchers but also provide datasets and guide for evaluating their tools,
i.e., a comprehensive protocol.

In the following, the list of contests can be enumerated as follows:

(a) GREC’13: Arc and line segmentation contest [64]
Since geometric primitives, such as line and arc (see Fig. 2.1) helps in automatic
conversion of line drawing document images into electronic form, their recog-
nition and/or detection is important. As mentioned in the title, two challenges
were proposed: arc segmentation and line segmentation. For these contests, engi-
neering drawings (for arc segmentation challenge) and cadastral maps (for line
segmentation challenge) were used. The reported highest possible segmentation
accuracies were 54.10 and 66% for arc and line, respectively.

(b) GREC’11: Arc segmentation contest: performance evaluation on multi-
resolution scanned documents [65]
The sixth edition of the arc segmentation contest was to work on document
images with different scanning resolutions. In this contest, altogether nine doc-
ument images were scanned with three resolutions each and the ground truth
images were provided (annotated by the experts). It was observed that the tool
that has vectorization techniques/algorithms produced better results on scanned
images even with low resolution.

(c) GREC’11: Symbol recognition and spotting contest [66]
This contest followed the series started since the GREC’03 workshop (see item

http://iapr-tc10.univ-lr.fr/
http://iapr-tc10.univ-lr.fr/
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J, below). Unlike the previous ones, it also included symbol spotting problem in
addition to the isolated symbol recognition.

(d) GRECC’09: Arc segmentation contest: performance evaluation on old docu-
ments [67]
This was focused on empirical performance evaluation of raster-to-vector algo-
rithms in the area of graphics recognition. For the contest, old document images
were used, where a few commercial software were participated. This helped us
check whether automatic vectorization methods (prototypes) reached the matu-
rity as if they could be taken as a commercial software.

(e) GREC’07: Third contest on symbol recognition [68]
This contest followed the series started since the GREC’03 workshop (see item
J, below). The main different between two contests is changes in test data.

(f) GREC’07: Arc segmentation contest [69]
As expected, the idea was to check/compare different state-of-the-art systems:
arc segmentation. Four algorithms were tested.

(g) GREC’05: Arc segmentation contest DBLP:conf/grec/Wenyin05
In the sixth series of graphics recognition workshop organized by IAPR TC10,
this was the third arc segmentation contest, where three tools were participated.
In addition, second evaluation of the RANVEC and the arc segmentation contest
was reported [70]. In the latter case, important facts are recalled and provided
detailed information about changes made on the system compared to GREC‘01.

(h) GREC’05: Symbol recognition contest [71]
This was the second symbol recognition contest, and organizers brought general
principles of both contests: GREC’03 and GREC’05.

(i) GREC’03: Arc segmentation contest [72]
In the fifth series of graphics recognition workshop organized by IAPR TC10,
the arc segmentation contest provided rules, performance metrics and data.

(j) GREC’03: Symbol recognition contest [63]
This was the first international symbol recognition contest, where organizers
described the framework of the contest: goals, symbol types and evaluation
protocol.Asmentioned in their report, the ideawas tomake participants ready for
the upcoming contest. Organizers provided the way they have built the database
and the methods they used to add noise. This helped researchers evaluate the
robustness of their methods/algorithms.

(k) GREC’01: Arc segmentation contest [73–75]
As the fourth in the series of graphics recognition contests organized by IAPR
TC10, the first arc segmentation contest was held in association with the
GREC’01 workshop. In addition to general rules, organizers provided arcs and
circles in engineering drawings and other scanned images containing line-work
for the test. We find that the tool that has an algorithm to vectorize binary images
smooths the vectors to a sequence of small straight-like lines received better
results. We note that engineering drawings were mostly used.

(l) GREC’97: International graphics recognition contest—raster-to-vector conver-
sion [76, 77]
It is important to note that vectorization techniques can help boost the perfor-
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mance of the further processes, such as arc segmentation. Based on the expe-
rience, GREC team started with the idea of raster-to-vector conversion in the
second series of graphics recognition workshop.
Further, they have defined a computational protocol to evaluate performance for
systems that convert raster data to vector. In this contest, continuous and dashed
lines, arcs, and circles and text regions were considered as the graphical entities.

(m) GREC’95: Dashed line detection [78–80]
The first graphics recognition contest was dashed line detection, where test
image generator created random line patterns with a few constraints.
At this point, it is important to note that visual cues, such as dashed line,
are essential for high-level technical drawing understanding if we are able
to detect/segment them. The idea was to automatically segment them since
machine vision is required for a large amount of data. As a consequence, the
contest was about automatic detection of dashed lines on test drawings at three
difficulty levels: simple,medium, and complex. They basically have dashed and
dash-dotted lines in straight and curved shapes, including interwoven texts.

In the year 2007 (GREC’07), Prof. Tombre highlighted an important issue
that whether graphics recognition is an unidentified scientific object [81]. In this
discussion, he has clearly mentioned the fact as follows. Since the day when
Prof. Kasturi gave a new start to a technical committee of the IAPR, namely, TC10
on line drawing interpretation, researchers have focused on graphics-rich documents
and more specific issues, such as raster-to-graphics conversion, text/graphics separa-
tion and symbol recognition/localization. To emphasize new focus, TC10 was titled
as the technical committee of graphics recognition. Meaning, GREC started since
then with a series of LNCS volumes.1 No doubt that graphics recognition contests
provide a clear benchmark for researchers and help proceed in reference to what has
been done in the past.

Researchers do not really see any doubt on the growing interest/importance of the
field: graphics recognition. A few specialized areas, such as telephone and power
companies that hold huge numbers of drawings with the same syntax/format and/or
appearance are interesting applications. Automatic data conversion helps develop
processing tool cost-effective, since these data are rich graphics and graphical symbol
as a query is possible. In other words, it is required to convert paper documents that
contain graphics into electronic formats, which is becoming more and more useful
in a variety of applications.

Besides, in recent years, we have observed the significance of “end-to-end doc-
ument analysis benchmarking” and “open resource sharing repository” to advance
as well as to facilitate fair comparison [82, 83]. More information can be gathered
from the project called “Document Analysis and Exploitation” (DAE).2

Back to the real-world problems, symbol recognition is not straightforward as
shown in Fig. 2.6. In general, common problems are recognition and localization
(more often, we call it spotting) of graphical symbols in electronic documents, in

1URL: http://dblp.uni-trier.de/db/conf/grec/index.html.
2URL: http://dae.cse.lehigh.edu/DAE/.

http://dblp.uni-trier.de/db/conf/grec/index.html
http://dae.cse.lehigh.edu/DAE/
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Fig. 2.1 A few test images from GREC’11: arc segmentation contest [65]

architectural floor plans (see Figs. 2.2 and 2.3), wiring diagrams and network draw-
ings (see Figs. 2.4 and 2.5) [5, 12, 47, 66].

Beside the lineal and fully isolated graphical symbol recognition (see Fig. 2.6), in
this book, a new challenging problem will be highlighted (see Fig. 2.7), where the
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Fig. 2.2 A few test images from GREC’11: symbol segmentation contest [66]

dataset is composed of a variety of symbols, such as linear (fully isolated), complex,
and composite (with texts in it). Note that the characteristics of the problem are
not different than what have been addressed in a series of graphics recognition con-
tests/workshops. Primarily, the difference lies in the dataset. These samples (called
by the name FRESH dataset) are taken from the book [84]. Two different symbols
from different classes look very similar in shape (with slight changes) [12, 85–87].
Graphical cues and/or texts can also be present. They do not always connect with the
graphical symbols we are looking for; they can also be isolated in the same image.
For such a case, an isolated graphical symbol (or known part of it) can be applied
for two different reasons: (i) to recognize similar symbols; and (ii) to detect known
and meaningful parts/regions [17]. Detecting meaningful parts/regions with respect
to the applied query symbol refers to symbol spotting. Therefore, not to be confused,
we are not just limited to symbol recognition problem. We are also required to spot
themeaningful parts/regions that can convey contextual information about the graph-
ical documents. Further, it is always interesting to check the similarity between two
different symbols that are taken from different contexts. The latter issue is taken as
one of the open challenging issues in the literature. On the whole, the task has been
referred to as either the parts/regions or the complete symbol recognition [5, 12, 47,
88–90]. A priori knowledge about graphical symbol can help decide the techniques
for data representation and recognition.
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Fig. 2.3 An example graphical symbol spotting/localization in the architectural floor plan [5, 66]

2.4 Graphical Symbol Recognition, Retrieval, and Spotting

Under the scope of pattern recognition, symbol recognition is a particular application,
where test input patterns are classified as one of many classes that are predefined
symbol types (ground truths) in the particular application domain. Graphical symbols
do not necessarily be a complete symbol as shown in Figs. 2.2 and 2.4. It can be
other visual cues or visual primitives, such as arc, lines, and circle that can be used to
interpret complete document images. In a broad sense, in reference to [88], symbols
can be defined as the graphical entities which hold a semanticmeaning in any specific
domain,where logos, silhouettes,musical notes, and simple line segment groupswith
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Fig. 2.4 A few test images from GREC’11: symbol segmentation contest (electrical symbols) [66]

an engineering, electronics, or architectural flair constitute are some examples of
symbols that have been investigated recently by the graphics recognition community
(see previous Sect. 2.1). Extracting/retrieving similar documents, based on visual
cues (graphical primitives) can be considered as graphical symbol retrieval. This, of
course, requires a clear knowledge of symbol spotting.

In what follows, the brief research standpoints on graphics recognition are sum-
marized. More detailed information can be found in [16, 17].

2.5 Research Stand Points: A Quick Overview

Before we move to Chap.3, generally speaking, the whole graphical symbol recog-
nition process is based on either

(a) alignment of features between a query and template symbols, i.e., computing
distance between two feature vectors; or

(b) comparing decomposed parts, i.e., meaningful visual cues/words, such as lines,
arcs, and circles, and the relations (spatial relations) between them.
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Fig. 2.5 Few test images (electrical circuit diagram): GREC’11: symbol segmentation contest [66].
An interesting problem to see how one can go for symbol spotting/localization

Fig. 2.6 GREC’03: illustrating lineal and fully isolated graphical symbols [62]
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Fig. 2.7 An example of a a
query and b–e graphical
symbol or meaningful
parts/regions spotting.
Further, it also illustrates the
complexity of the
dataset [12, 84]. Graphical
elements in the red box the
detected regions in
accordance with what has
been applied as a query

These are commonly described within the framework of statistical and structural
approaches, respectively. A quick overview can be found in the previous work [17].
In statistical approach, shape descriptors are widely used. A quick overview the
most commonly used shape descriptors for graphical symbol recognition is provided
in [91]. On the other hand, structural approaches allow low-level primitives or visual
cues analysis so that recognizing graphical symbols and/or localizing known visual
parts are possible. Not to be confused, ROIs refer to meaningful parts. Like in other
domain, the concept is in the scope of regions-of-interest (ROI) analysis and labeling.
This means that one can take a graphical symbol as a set of visual cues or meaningful
parts, such as arcs, lines, triangles and rectangles [3, 12, 92]. The set also includes
higher level visual cues like loops. Their interpretations, however, depend on the
dataset and the context. The context can be either local or global. Therefore, visual
cues in graphical symbol recognition, on the whole, can be considered as one of the
key steps toward document image understanding and content interpretation. Consid-
ering both approaches into account, we have observed the use of their best possible
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combination [12, 15]. For this, a clear statement can be taken from theGREC’10 [24]
and a part of it is outlined as follows:

... the recurring wish for methods capable of efficiently combining structural and statistical
methods’ and ‘the very structural and spatial nature of the information we work with makes
structural methods quite natural in the community.

An extension, i.e., symbol spotting is possible, but one can view this as a kind of
graphical symbol retrieval problem [5, 14, 88, 93, 94] that is basically user guided.
Additionally, using the local descriptors like scale invariant feature transform (SIFT)
and other techniques like bag-of-features (BOFs), recognition/retrieval process can
be accomplished. In both cases, it is possible to avoid segmentation process, i.e.,
primitive and/or region extraction. The questions, such as “what technique does how
much/well in which context?” has not been well answered yet.

No doubt (see Sect. 2.3), graphics recognition has a rich literature with several
different techniques [47, 50, 95, 96]. More often, symbol recognition methods are
not generic enough to be used for different purposes and/or datasets. However, these
methods not require a large set of parameters, and sometimes, they are parameter-free,
i.e., easy to implement. This means that methods are data dependent. Another rea-
son could be the restriction posed by the industrial needs. Industrial projects require
automated systems with higher accuracy so that the cost of human intervention can
be reduced. This will ensure its effectiveness as well. As a result, graphical symbol
recognition techniques might be tuned into process data under several different cir-
cumstances. Industrial projects are related to information retrieval and/or document
reverse engineering. Such projects require powerful computers (high-performance
computing (HPC) machines in addition to huge storage capacity. Within this frame-
work, scientific community provides serious attention in recognizing symbols in

Fig. 2.8 Handwritten electrical circuit diagram
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document images [96–99].Note that the processed images are not necessarily be tech-
nical documents. For graphics recognition, it is required to have consistent advances
in research so that scalability issue can be addressed. The scalable property can help
reach the industrial needs and/or expectations. This also explains why well-known
approaches were very specific and were guided by a priori knowledge. A priori
knowledge can be either context or the source/complexity of the data. Both of them
can be used as well. This will definitely help us move forward to other similar prob-
lems, such as digitization of the handwritten electrical circuit diagrams (see Fig. 2.8).
Digitizing handwritten electrical circuit diagrams in accordance with the floor plan
can help automate the full residence needs (depends on the regional variation, i.e.,
geography).

2.6 Summary

In this chapter, we have startedwith the conventional definition of graphical symbols,
the location of graphics recognition in DIA and its major processing units, several
international contests that are related to graphics recognition and their importance,
and a quick overview of research standpoints (from the author’s perspective). On
the whole, we have discussed the importance of graphics recognition in the DIA
framework. Our next chapter will discuss graphics recognition systems and valida-
tion/evaluation protocols.
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Chapter 3
Graphics Recognition and Validation
Protocol

3.1 Basic Steps: Symbol Recognition Systems

As mentioned in Sects. 2.1 and 2.2 of Chap.2, graphics recognition refers to the the
recognition of graphical symbols or any meaningful shapes. The research topic has
been the subject of numerous reviewed research articles [1–7]. More often, existing
systems are composed of two major units:

(a) data acquisition and preprocessing; and
(b) data representation and recognition.

Keeping these items in mind, in the following, a brief review will be made.

3.1.1 Data Acquisition and Preprocessing

Scanned documents at grayscale often include noise, distortion, and deformation
at different levels. Broadly speaking, in raster data, acquisition and preprocessing
tools/techniques are aimed at retrieving the input data to the most “relevant” infor-
mation in accordance with the need. This helps locate the regions-of-interest in any
studied document image. Out of several different steps, a binarization step ([8, 9], for
example) can be used to retrieve important information. It is important to note that the
binarization process influences the subsequent processes, which are related to data
representation and recognition techniques. As an example, in the framework of bina-
rization, foreground and background separation can be considered as an important
tool [10]. Not to be confused, foreground and background separation cannot be taken
as a generic tool for all types of applications. This means that, in high-level term,
document segmentation is required and it varies from one application to another [11].
For example, inconsistent results happen from issues, such as defects such as
creases, stains on paper and heterogeneous wears. Similar issues have to be cor-
rected by taking specific operators (algorithms) into account. This can be considered
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as a precursor for any suitable data acquisition and preprocessing. In some cases,
human expertise, i.e., user intervention, is required in addition to the automatically
operated tools/techniques.

Other challenging issues are how to define criteria and their evaluation (protocol)
for the quality document interpretation, since definition varies from one application
to another. In other words, output from this unit may undergo subsequent processes
that are consistent with the sentiments of the data and/or the needs. For example, if
we consider an application: text/graphics separation [12–18], wewill be able to prune
the data by removing small connected components. In other words, for such an appli-
cation, small connected components refer to texts and their removal help focus on
graphics. Basically, text/graphics separation means decomposing document image
into two layers. For more detailed information about the usefulness of text/graphics
separation, we can refer to previous works [19]. Several different techniques were
used to separate text parts from background [20]. Among them, Fletcher and
Kasturi [21] provided promising results and can be considered for wide ranges of
data. The primary issue, however, is that it has to rely on a priori knowledge (the size
of connected components, for instance), since it may omit small disconnected graph-
ical symbols/shapes/elements. In such a case, one has to consider local segmentation
that helps advance performance. For this problem, recently, sparse representation has
been used [22].

On the whole, take home message is that the unit we call acquisition and prepro-
cessing requires a priori knowledge about the document structure the complexity of
the graphics in there. Knowing both the layout of the document and the complex-
ity of the graphics help the right use of document segmentation techniques and the
subsequent processes.

3.1.2 Data Representation and Recognition

As mentioned earlier, the quality preprocessor yields quality data at the output and
data representation and recognition steps are related to what has been processed
before.

In Chap.2, it was mentioned that data, i.e., graphical symbols are represented
either in terms of feature vectors that estimates the overall shape (statistically speak-
ing) or in more structured forms (graphs, for instance: structurally speaking) by
taking meaningful visual cues, element or primitives. In structural approach, the pri-
mary part is how can we select tools that can extract visual cues, visual elements
and/or primitives that can convey overall shape/structure of the graphical symbol.
Note that, visual primitive selection tools vary in accordance with the requirement,
i.e., they are application dependent.

It is important to observe that data quality and their complexity help determine
how data can be represented. In a similar fashion, data representation is followed
by matching techniques that are used in the decision process. This means that an
appropriate data representation is assumed to be compact and discriminant. In addi-
tion, the data representation (feature vector, for instance) is expected to minimize the
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intra-class distance and maximizes the inter-class distance [23]. Intra-class distance
is measured within a specific class and similarly, the distance between two samples
belonging to two different classes refers to inter-class distance. Further, feature com-
putation must be practically feasible in terms of time complexity as well as the data
portability, i.e., storage format. Considering both issues, classification task can be
easier.

Recognition/classification is considered as the process of identifying to which
class a test sample/data belongs. The performance is based on how big is the training
data. Not just in graphics recognition, in general, automatic recognition, description,
classification and grouping of patterns (clustering) are important issues in many
disciplines, such as biology, chemistry, physics and remote sensing, where data, i.e.,
pattern/signal representation (shape analysis, for example) plays a crucial role [6,
24]. Patterns can be either graphical symbols [25] or other visual structures like
cursive characters [26]. For all kinds of pattern, broadly, following the state-of-the-
art literature, for pattern representation, any one or the combination of the following
three different approaches can be used:

(a) statistical [27–30],
(b) structural [31–33] and
(c) syntactic [34–36].

The selection of the approach relies on the application, i.e., problem (data) complex-
ity [37, 38]. In Chaps. 4–6, a detailed explanation will be provided. In the literature,
several methods are particularly worked on isolated symbols. This means that com-
plex and composite symbols connected to a complex environment (texts, for instance)
were been sidelined [5, 23, 25, 39]. Let us summarize reasons with examples.

(a) The techniques/algorithms that come under statistical approaches fairly check
the similarity based on the computed distances between two feature vectors [25,
40]. For graphical symbol recognition problem, let us refer the the previous
work, which is based on Dynamic Programming (DP) technique to match the
Radon signatures [41–43].

(b) To handle vector-based representation of primitives (attributed relational graphs
(ARG), for example) [5, 44–46], graph matching techniques/algorithms that
come under structural approaches are effective. In case nodes are labeled, graph
matching can be straightforward, i.e., relational signature alignment [47–53].
This can definitely avoid NP-hard problem that can always happen in general
graph matching techniques.

(c) The techniques/algorithms based on graph grammar that come under syntactic
approaches will be appropriate to search graphical elements/symbols ormeaning
parts/regions in technical documents [34–36, 54–57].

Note that graph grammar may be close to a feature vector description that follows
composition rules of visual primitives. Besides, user-intervention (or expert) can help
advance any of the approaches mentioned above.

In a fewwords,wehave neither observed any absolute standard on the choice of the
best approaches, nor found straight forward combinations of techniques/algorithms.
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More often, structural and statistical pattern recognition approaches have been inte-
grated [58]. In a similar fashion, unification of syntactic and statistical pattern recog-
nition approaches could be an interesting concept [59]. It holds true for syntactic and
structural pattern recognition approaches [38, 60–63].

3.2 Validation

To make a fair comparison (often called, an apple-to-apple comparison), one should
note the following two majors points:

(a) Datasets; and
(b) Evaluation metrics.

This means that, in order to see, how far we have been advanced, one needs to
follow the exact similar evaluation protocol. More often, the characteristics of the
datasets, their availability for further researches and the applications (or intentions)
may change one’s evaluationmetric. Not just datasets and evaluationmetrics, wemay
be biased in implementing previously reported algorithms. As a consequence, we are
unable to track researches done over several years, since results cannot be consistent
as algorithms may not be tuned (i.e., parameters) as in the original references [64].

In the year 2010, Lehigh University targeted at the Document Image Analysis
(DIA) research community for distributing document images and associated docu-
ment analysis algorithms. In addition, it provides an unlimited range of annotations
and “ground truth” for benchmarking and evaluation of new contributions to the
state-of-the-art [65]. For more detailed information of the DAE project, one can fol-
low the link: (URL: http://dae.cse.lehigh.edu/DAE/), where the goal is written as
follows:

Building and maintaining a national resource to support critical research and development
in translation, document analysis, preservation, and exploitation.

Besides, it has been clearly mentioned that the DAE project aims to provide an
environment for the hosting and distribution of reproducible data, annotations and
software [66–68]. As said in [68], DAE was conceived and built around a core data
model that establishes an exhaustive range of relations between document images,
annotation areas, interpretations or ground truth, but also links the data to user interac-
tions, experimental protocols or program executions. It also provides several different
services, such as querying, up- and download and remote execution.

Of course, having new datasets will help us move forward. This will not certainly
tell us that we have improved with respect to the literature or previous works.

http://dae.cse.lehigh.edu/DAE/
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3.2.1 Datasets, Evaluation Protocol, and Their Relation

In [69], Haralick mentioned that performance evaluation for the DIA has a different
emphasis than performance evaluation in other research areas. Following Sect. 2.3
of Chap.2, we have observed that different datasets and evaluation protocols have
been provided since 1995. Besides, evaluation metrics are varied not just because of
the datasets but also because of the intended applications.

A quick overview of the performance evaluation protocol for graphics recognition
systems can be found in thework reported by Phillips et al. [70]. In theirwork, authors
define a computational protocol for evaluating the performance of raster to vector
conversion systems, since their graphical entities handled are continuous and dashed
lines, arcs, and circles, and text regions. In addition, their protocol allows matches of
the type one-to-one, one-to-many, andmany-to-one between the ground truth and the
test results. As mentioned earlier, it is important to note that datasets are important,
and in some cases, authors generated synthetic data and ground truths [71, 72], and at
the same timewe are aware of applications: symbol recognition and spotting systems.
Authors applied their approach to generate large data (relatively) of architectural
drawings and electrical circuit diagrams so that it provides flexibility to realize well-
trained system. For more information, we can refer to other works [73–76]. In a
similar fashion, for arc segmentation [77, 78], authors proposed different idea on
their evaluation protocol.

In short, evaluation metrics can be changed and it is mainly based on the com-
plexity of associated datasets, ground truths and applications. In what follows, few
evaluation metrics are provided with appropriate arguments.

3.2.2 Evaluation Metric

Let us assume feature-based matching between two images: query (q) and database
(d) image.

Matching score between two patterns tells us how similar or dissimilar they
are. For any query pattern {Pq}q=1,...,Q over all database (or template) patterns
{Dd}d=1,...,D , distance vector can be computed as,

Distance(Pq ,Dd) =

⎡
⎢⎢⎢⎣

Sq,1

Sq,1

...

Sq,D

⎤
⎥⎥⎥⎦ ,

where matching score S is based on the distance between two patterns: Sq,d =
δ(Pq ,Pd) = ∑ ||I q

i − I d
i ||, for instance. We must be aware of computing dis-

tance between two candidates is depend on what metric we use, and in our case, we
used l2-norm. In general, matching techniques are influenced by how we represent
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patterns. One has to understand how to identify the appropriate use of the evaluation
metric, since, more often, it follows nature of the datasets/application.

To generalize similarity between the two given test candidates, similarity score
can be normalized into [0, 1] by,

S = S − Smin

Smax − Smin
.

As a result, for a better understanding, similarity can formally be expressed as,

Similarity(Pq ,Pd) = 1 − Distance(Pq ,Pd)

≡
{
1 the closest pattern/candidate
0 the farthest pattern/candidate.

This means that database patterns are ranked in accordance with the decreasing order
of similarity in [1, 0].
Example 1.
Consider a query pattern Pq that is matched with database pattern: {Pd}d=1,...,10,
the corresponding distance vector can be expressed as,

Distance(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
8
2
1
3
4
7
8
9
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

then Smin = 1 and Smax = 10, and

Distance(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
7/9
1/9
0
2/9
3/9
6/9
7/9
8/9
4/9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Now,

Similarity(�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
2/9
8/9
1
7/9
6/9
3/9
2/9
1/9
5/9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Based on Similarity(�) score, one can consider the following measures: recognition
and retrieval. In other words, these metrics can be used according to what we are
looking at; it can be either recognition, spotting or retrieval.

3.2.3 Recognition

Recognition can be considered as the straightforward nearest neighbor algorithm that
can classify/detect the closest candidate [79]. In other words, the query/test pattern is
said to be recognized with the database pattern from which it produces the smallest
possible score. It can be expressed as,

Recognitiond = argmin
d∈D

⎡
⎢⎢⎢⎣

Sq,1

Sq,1

...

Sq,D

⎤
⎥⎥⎥⎦ .

In case of normalized distance vector, Similarity(�) = 1 for the matched/recognized
pattern. Therefore, following the previous example, pattern in index 4 is the matched
pattern for that specific query. For a quick understanding, one can considered it as
the k Nearest Neighbor (NN) classification problem, where k = 1.

3.2.4 Retrieval

Not just relying on the best candidate/pattern, search space can be increased to select
other potential similar candidates for the query. This allows to produce a short-list
from the database based on the similarity scores. There are several different ways
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to evaluate retrieval performance, and they are dataset dependent and ground truths.
They are in general,

(a) balanced dataset and
(b) imbalanced dataset.

Considering the ground truth information, real-world datasets are not labeled nor
do they are balanced. This makes evaluation difficult in terms of a fair comparison
with the state-of-the-art approaches, since the evaluation metrics can be different
from now and then. Researchers often selected (manually) data to make the right
fit (ground truths) so that comparison is possible. To avoid possible biasing for a
comparison, much efforts were been added [80].

Based on the nature of the datasets, in the following, two different types of retrieval
metrics can be summarized.

3.2.4.1 Fully Labeled and Balanced Dataset

Balanced dataset is expected to have identical numbers of ground truth for all known
classes. For example, shape datasets kimia shape99 [81] consists of 9 classes, each
one is having 11 samples. In such a case, we use mainly two different retrieval
measures, and can be made fair comparison with all previously reported works.

1. Precision and recall
For any chosenquery, conventionalprecision and recallmeasures canbe explained
as follows. Consider a query, precision can be computed as,

Precision = n

k
,

where n is the number of retrieved relevant candidates and k is the number of
retrieval candidates. In a similar fashion, recall can be computed as,

Recall = n

N
,

where N is the number of relevant candidates, which we call ground truths.
Considering performance evaluation, recall alone is not enough since it is trivial
to produce recall of 100% by returning all candidates in response to any query.
Therefore, computing the precision is more important to see how many nonrele-
vant candidates are retrieved.
Fscore is another measure, which combines precision and recall. It can be
expressed as,

Fscore = 2 × precision × recall

precision + recall
.
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Since recall and precision are evenly/equally weighted, we can call it as Fscore1
measure.
In general, Fscoreβ measure (for nonnegative real values of β) can be expressed
as,

Fscoreβ = (1 + β2) × precision × recall

β2 · precision + recall
.

Note that two commonly used F measures are the F2 measure and F0.5 measure.
The former one weights recall twice as much as precision and the latter one
weights precision twice as much as recall.
As a reminder, precision takes all retrieved images into account. What if we can
retrieve and evaluate an algorithm at a given cut-off rank? In other words, can we
consider only the top-most results returned by the algorithm? Such a measure is
called by precision at K or precision@k since k = 1, . . . , K , where K is the
requested list or cut-off. Having such a framework, retrieval rate can be known
by another measure called retrieval accuracy [79, 81, 82]. It is defined as the
ratio of the number of correctly classified candidates to the requested lists.

2. Bull’s eye score
In this metric/measure, the idea is to increase the search space and it can go
up to 2 times the number of relevant patterns/candidates in the dataset for each
studied class.For such a search space, test sample is compared with all candidates
(patterns in the database) and the numbers of correctly classified pattern/candidate
are reported. Bull’s eye score [83–86] can be expressed as,

Bull’s eye score =
∑

n

N
.

Like before, n is the number relevant patterns/candidates and N , ground truth for
the specific query.

Example
Let us have a query Q1with 10 ground truths, i.e., N = 10 and therefore, the shortlist
we request is K = 10. For a test, the boolean result is as follow:

OutputQ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
1
0
1
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where 1 refers to correctly classified pattern/candidate and 0, otherwise. Then, the
precision and recall are

PrecisionQ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/1
2/2
2/3
3/4
3/5
4/6
5/7
6/8
6/9
6/10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and RecallQ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/10
2/10
2/10
3/10
3/10
4/10
5/10
6/10
6/10
6/10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Fscore is fairly straightforward as soon as we have precision and recall values. At
this point, global/average retrieval accuracy or retrieval rate is the last element of
the precision vector as mentioned above. Since the shortlist is taken as the value of
ground truths, i.e., K = N , and in this example, one can see that recall is limited to
60%. Increasing the shortlist can increase the recall but, precision can be decreased.

In bull’s eye test, as said earlier, K = 2 × N . In this case, retrieval result can be
expressed as,

OutputQ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
1
0
1
1
1
0
0
1
0
0
1
0
0
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where, bull’s eye score = 100%.
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3.2.4.2 Imbalanced Dataset

Real-world data are often imbalanced. Imbalanced data may not have identical num-
bers of ground truths for all classes. In this context, retrieval efficiency [49, 87] may
be an appropriatemetric, since precision and recall curve could potentially be biased.
Retrieval efficiency for a shortlist of size K can be computed as,

ηK =
{

n/N if N ≤ K
n/K otherwise,

where, like before, n is the number of returned relevant candidates and N the total
number of relevant ones in the dataset. Note that, if N ≤ K , ηK computes con-
ventional recall. In an opposite condition, it computes precision. In this way, the
output contains similar patterns/candidates in terms of both precision or recall, for
any provided shortlist.

As mentioned above, one of the key merits of the metric is that average retrieval
efficiency curve cannot biased even if we have different ground truths for different
test samples/queries. For more understanding, an example (see below) will help
understand the process.
Example
Consider a query Q1 has 6 ground truths, i.e., N = 6 and we request for K = 10.
The boolean result is as follow:

OutputQ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
1
0
1
1
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where 1 refers to correctly classified pattern/candidate and 0, otherwise. Then, the
precision and recall are
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PrecisionQ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/1
2/2
2/3
3/4
3/5
4/6
5/7
6/8
6/9
6/10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and RecallQ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/6
2/6
2/6
3/6
3/6
4/6 ←
5/6
6/6
6/6
6/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Retrieval efficiency can now be computed as,

Retrieval efficiencyQ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/1
2/2
2/3
3/4
3/5
4/6
5/6
6/6
6/6
6/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that precision has been biased from the index 6 (see arrow). This means that,
in retrieval efficiency, recall is combined with precision from where it starts getting
biased. Therefore, retrieval efficiency can be considered as the best fit metric in case
of imbalanced dataset(s) [49, 50, 52, 53]. Similar works can be found in [88, 89]

In short, two different examples address the appropriate selection of the evaluation
metric in accordance with nature of the dataset. In cases of labeled and balanced
dataset, precision and recall measures are trivial. It can, however, be also used in
imbalanced dataset if and only if the shortlist is less than or equal to the minimum
ground truths, i.e., K ≤ N from the set of queries. For instance, if any query Qq has
the smallest number of relevant patterns/candidates, then that value is taken as the
maximumshort list to compute precision and recall. Alternatively, retrieval efficiency
could potentially be the best selection as it combines both of them without biasing.

3.3 Summary

In this chapter, we have quickly explained basic idea symbol recognition systems,
where it includes how data can be taken and preprocessed before representing them
in a way they can be classified as expected. All graphics recognition systems or algo-
rithms require validation protocol and we have observed that their protocol varied



3.3 Summary 47

from one application to another. More often, changes happened because of the nature
of the datasets.However, reported resultswere found to be in the forms of recognition,
precision, and retrieval. While explaining this, we have also discussed about Doc-
ument Analysis and Exploitation (DAE), which is hosted at the Lehigh University
and the goals.

Computing recognition is straightforward as it happens in all dataset types. How-
ever, retrieval measure is not trivial. This means that it needs an attention for an
appropriate selection so that a fair comparison can be made with the reported state-
of-the-art methods.

As mentioned in Sect. 3.1, to represent a pattern, any one or the combination of
the following three different approaches can be used: (i) statistical, (ii) structural and
(iii) syntactic. In the following chapters, we will discuss them in detail.
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Chapter 4
Statistical Approaches

4.1 Statistical Pattern Recognition: A Quick Review

In statistical pattern recognition, appearance-based processing/analysis (shape analy-
sis [1, 2]) plays an important role. This holds true for all pattern recognition problems,
and, of course, graphical symbol recognition is a part of it [3, 4]. A quick overview
can be found in [5–7], and more importantly, this chapter is motivated by them. Not
surprisingly, primary concepts will be taken in such a way that the chapter will be
complete by itself.

Shape features are usually categorized into two families [8]:

(a) contour-based descriptors and
(b) region-based descriptors.

Based on the nature or complexity of the studied sample, i.e., pattern one can select
one of them or both. However, we must be aware of the following issues:

(a) pattern representation (can be isolated or complex/composite pattern);
(b) matching/comparison between two representations (for recognition purpose);

and
(c) extensibility.

The first two items are related to the recognition performance of the algorithm(s).
Recognition performance does not just include recognition rate or efficiency but also
computational complexity (or processing time). In other words, as mentioned in the
earlier chapter, the quality of the representation determines the former factor while
matching the latter one.

Briefly, in statistical pattern recognition approaches and considering feature-based
(vector, for instance) algorithm, two issues are primarily involved [5, 9]:

(a) feature selection; and
(b) model selection

© Springer Nature Singapore Pte Ltd. 2018
K. C. Santosh, Document Image Analysis,
https://doi.org/10.1007/978-981-13-2339-3_4

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2339-3_4&domain=pdf


54 4 Statistical Approaches

for recognition. Note that a pattern is represented as an n-dimensional feature vector,
which can mathematically be expressed as X = (x1, x2, . . . , xn) ∈ R

n . The recog-
nition is then made by separating the feature space into known classes. Not to be
confused, the paragraph does not convey that feature vectors can only represent
patterns; they can be matrices.

In what follows, our discussion will be targeting on how patterns are represented
and how can they be benefitting in terms of computational complexity from the way
they represent [5].

4.1.1 Contour-Based Shape Analysis

As mentioned before, several approaches are used to describe contours through the
use of a small set of features. The feature selection is driven by the needs and/or appli-
cations, where issues, such as robustness to noise and tolerance to small distortions
can be considered.

Often, to name a few, we have observed frequent use of Fourier descriptor and its
variants, polygonal primitives (approximation), curvature-based descriptors, Hough
transform, and distance- and angle-based shape descriptor (i.e., shape context).

• Fourier descriptor (FD): It is considered as one of the commonly used techniques to
describe shape [10–15]. Because of their simplicity and robustness, such descrip-
tors have been widely used in several different applications, such as character
recognition [16].

• Polygonal primitives via contour: It requires dynamic programming for
matching, since feature vectors are varied as pattern sizes vary [17, 18]. The
approximated/estimated polygonal shape may result in data/information loss. As
a consequence, as an example, the degree of ellipticitymay not be suitable for poly-
gon recognition [17]). In [19], the authors described a contour-oriented 2D pattern,
where their recognition is robust to estimate polygonal inconsistency. However,
high time complexity can be considered as its major drawback.

• Hough transform (HT) [20–22]: The generalized HT can be considered as another
widely used technique. As before, it suffers from high computational time and
storage requirement. This means that the work presented in [22] does not process
faster and it is practically appropriate. Later, both time and space complexity were
reduced with the use of regions-of-interest (ROIs) [23].

• Curvature approaches [24–27]: They describe shapes in scale space by taking
contours (boundaries) [24, 25]. Shape similarity can be estimated by computing
distance between their corresponding scale-space representations.
Within this framework, skeleton can be another way to perform pattern match-
ing [28, 29]. Very specifically, for each instance of the pattern, we build a graph
by taking the medial axis of the shape into account [29]. Not to be confused, since
it aims to extract the skeleton from the shape of the pattern, it is preferred to have
silhouette pattern. Extended graphs have been proposed [30–32] with the use of
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shock graphs. Other previous works have focused on methods to see how efficient
two graphs can be matched [24, 29]. As these methods follow global optimiza-
tions, they are found to be effective. On the other hand, they suffer from high
complexity issue. In their comparison study, we observed that they may not work
on scaling as compared to polar curvature methods [27]. More information about
graph matching can be obtained from this chapter.
In just two points, in general,

(a) contour-based descriptors are suitable for silhouette shapes (solid); and
(b) they cannot capture internal contents and may not describe patterns or shapes

with hole(s), where boundary is not obvious/clear.

• Shape context (SC): SC is another important descriptor in the computer vision
domain. The SC aims to describe shapes that helps measure/check shape similarity
and the recover/reconstruct point of correspondences [33]. In their explanation,
the first step is to pick n points (shape contour). For each point pi , there are n − 1
vectors that can be produced by connecting pi to all remaining points on the
contour. As a consequence, the set of all these feature vectors can enrich shape
description at every specific point. Since it takes all points and their corresponding
description (vectors), the overall feature matrix is found to be far too detailed and,
therefore, is highly discriminant. We found that it is robust to small perturbations.
At the same time, it does not guarantee scale-invariance.

4.1.2 Region-Based Shape Analysis

Ascompared to contour-based descriptors, region-based descriptors take into account
all pattern pixels. In other words, a complete information can be preserved.

• Moment theory: More often, moment theory that includes methods, such as geo-
metric, Legendre, Zernike, and pseudo-Zernike moments [34–42]. Moments with
invariant property are important to pattern recognition, and we found that it was
introduced in 1960 [43]. Further, since we have more studies in the domain, we
must be aware of their fair comparison [34, 37]. The primary idea behind com-
parative studies is to see whether we have improved invariance properties, such as
rotation, translation, and scaling [35, 42, 44–46]. At the same time, like before,
reducing the processing time of the Zernike moments is the must [47]. In a sim-
ilar fashion, the proposed orthogonal moments (computed from either binary or
grayscale image [40] can help reconstruct the image [41].

• Fourier descriptor: Not to be confused, FD can also be used as a region-based shape
descriptor. In 2002, Zhang and Lu [48] proposed a region-based generic Fourier
descriptor (GFD). The FGD can overcome the limitations of contour-based FD. It
uses the 2D Fourier transform (FT) on a polar-raster sampled shape. Polar repre-
sentation can help avoid the rotation issue (in the Fourier spectra). Further, theGFD
outperforms common contour-based (classical Fourier and curvature approaches)
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and region-based (Zernike moments) shape descriptors [48].
However, high processing time is the major demerit of these approaches. We
also found that possibility of optimization and complexity reduction has been
reported [47, 49]. In brief, in the following, let us summarize region-based descrip-
tors:

(a) Normalization process (representing global shape of the pattern by a single
vector, for instance), is used to satisfy common geometric invariance prop-
erties. For example, normalization process includes centroid computation,
re-sampling, and re-quantization can help.

(b) A single feature vector may not always capture complete shape information
about the pattern. In other words, the descriptor is less discriminant. Its dis-
crimination power and robustness can be extended by selecting an optimal set
of features, including the suitable classifiers as well as their possible combi-
nation [50–53]. Detailed idea of how can classifiers can be combined is not
the scope of the book. But, as an example, in the field of graphical symbol
recognition, descriptors were combined with different classifiers. The whole
process helps boost the recognition performance [54].

On the whole, it is not straightforward to categorize strictly state-of-the-art litera-
ture into contour- and region-based descriptors, since their mathematical/theoretical
background looks similar. We found that their choice/selection relies on the need and
the nature of the studied sample, i.e., application dependent.

4.2 Graphics Recognition

In statistical pattern recognition, common geometric properties are centroids, axes of
inertia, circularity, area, line intersections, holes and projection profiles, geometric
moments, and image transformations. This holds true for graphical symbol recogni-
tion. Following the statistical approaches, let us summarize graphics recognition in
detail.

• As discussed earlier, shape descriptors consider the pattern’s global appearance.
Let us have more detailed explanation in [55].
However, a set of fewgeometric properties/features, such as the degree of ellipticity
i.e., the ratio of major to minor axis [40], the maximum orientation axis [56] and
fuzzy topological attributes [57–59] may not be suitable for complex graphical
symbol recognition. To separate isolated symbols with distinct shapes [3], the
aforementioned properties may work. In [60], the authors derived the angular
radial transform (ART). For graphics recognition, it is considered as a powerful
method helps produce optimal performance [61]. It is important to note that the
concept was initially tested for the MPEG problem.
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• Global shape representation is popular due to its implementation simplicity. Fur-
ther, it does not require additional preprocessing and segmentation as compared to
local descriptor in the computer vision domain. As an example, the GFD concept
was clearly reported in [8]. Besides, in [62], global shape descriptors were tested
for graphical symbol recognition, where processing time was also included as an
important factor. In [63], authors observed that results (using multi-oriented and
multi-scale character dataset) are generally better than both Zernike moments and
circular features.
The Radon transform (RT) is found to be another popular descriptor in the
domain. It can globally describe a pattern by taking all possible projections into
account [64]. Note that it is derived from the Trace transform [65]—a widely used
pattern representation method. In many applications, to represent pattern, the RT
was combined with the distance transform or with distance between the regions-
of-interest in the angular scans [66–68]. Their reported results were encouraging.
Let us have more detailed explanation. In [68], the feature vector representing
shape distribution is computed after normalizing all possible projection profiles
i.e., (0, π [. As a consequence, it eases (speeds up) matching process . However,
it does not carry complete shape information about the studied pattern. Since the
authors observed that a single feature vector cannot preserve complete information,
they introduced histograms (profiles) of the RT instead of compressing them into a
single vector [69]. In this context, the authors assumed that the studied patterns are
of exactly the same size. At this point, note that the RTs are essentially histograms
or profiles. In contrast, in [5, 70], since pattern sizes can be varied, dynamic time
warping (DTW) is used tomatch corresponding histograms for all projections. The
use of the DTW absorbs varying histogram sizes due to the change in image size.
The primary advantage of the use of the DTW is that it can avoid feature matrix
compression into a single vector. Compression process helps miss information.
In their approach, we still need to understand that the DTW is a commonly used
technique that was used to compute distances between two profiles [71].

• Ifwe consider complex and composite graphical symbol,we are required to employ
robust descriptors that can describe the pattern without significant loss of infor-
mation. Further, it may not be appropriate to use exactly the same descriptor for
multiple applications, since there are several issues like variability of appearance.
Such a variation refers to rotation, partial occlusions, elastic deformations, and
intra-class and inter-class differences.
In [72], their shape descriptor aimed to deal with the changes in appearance. Fol-
lowing the idea of principal components, recognition process can be made rotation
and reflection invariance.Within this framework, the blurred shape model descrip-
tor (BSM) encodes the probability of appearance of each pixel that outlines the
shape of the pattern.
In [73], the authors introduced a concept that can learn models based on the shape
variations. It relies on the active appearance model (AAM). The concept allows
us to integrate shape deformations. They have considered the BSM descriptor that
can handle basic shape and appearance. This clearly tells us that it overcomes the
limitations that were in original BSM. Their results were interesting.
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• In [74], a new descriptor was proposed. It creates a histogram for each pixel by
taking remaining pixels into account. A feature vector is built by taking all possible
histograms that are statistically combined. The authors found that the descriptor
is appropriate for graphical symbol recognition (technical drawings). Based on its
working principle, its shape is found to be similar to the skeleton. As a result, it may
not be precise for patterns, where one needs to differentiate topological properties.
It suffers from high computational cost. In [75], Kullback–Leibler divergence
technique is used to assess similarity between graphical symbols, where symbols
are represented as 2D kernel densities. In their results, it produces high accuracy
in comparison to other state-of-the-art methods in the domain. On the other hand,
these methods [74, 75] were not tested on complex and composite symbols. As
a result, we cannot guarantee its usefulness on complex and composite graphical
symbol recognition.

• In [76], the author introduced a connection between the sparse representation
concept and the use of vocabulary. Using local descriptors, visual vocabulary is
built in terms of dictionary. After that, following its sparse representation, they
construct a vector model for every symbol and adapt the tdf-if approach. For
both isolated, and deformed and degraded symbols, the method is found to be
encouraging, since it outperforms the state-of-the-art shape descriptors, such as
Zernikemoments [44] andR-signature [68].However, the resultswere not reported
on complex and composite symbols [77] (see Fig. 4.3) and other symbol spotting
problems [78, 79].

• For shape analysis and graphical symbol recognition, a few works presented ear-
lier can help understand more [3, 4, 80]. In these articles, we observe the use-
fulness and/or importance of the shape descriptors for document analysis and a
collection of techniques that are used for graphical symbol recognition. Most of
them (techniques) are suitable for isolated line symbols, regardless of their source:
machine printed and handwritten. Moreover, for degradation (due to noise), occlu-
sions and all sort of variants can be handled by statistical approaches. In particu-
lar, in [3], shape analysis for symbol representation refers to simple isolated 2D
binary shapes. Few test samples are shown in Figs. 4.1 (machine printed) and 4.2
(handwritten). In both cases, degradation, noise (at different levels) can be seen,
and therefore, complexity has been extended. Further, missing parts (lines, see
Fig. 4.2) could make the problem more difficult.

But these statistical approaches may not suitable for composite symbols that are
connected texts and other graphical elements, for instance [4, 77–79, 83]. In statis-
tical approaches, global signal-based descriptors [8, 33, 44, 48, 68, 84] cannot be
precise, since they do not preserve small changes within the symbol. As a result, like
we have discussed earlier, it may not work for complex and composite symbols (see
Fig. 4.3). Besides, Fig 4.4 can help understand the real-world example and its dif-
ficulty. More specifically, considering the way how global signal-based descriptors
are formed, deformation can lead to centroid change that produces errors in the ring
projection [84] and occlusion can lead to the change in tangents along the bound-
ary (shape context [33], for instance). Besides, we have observed that integrating
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Fig. 4.1 Few test sample images from GREC’05 [81] (source: DAE, http://dae.cse.lehigh.edu/
DAE/)

http://dae.cse.lehigh.edu/DAE/
http://dae.cse.lehigh.edu/DAE/
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Fig. 4.2 2 hand-drawn samples from 10 different known classes (reported in [71, 82])
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Fig. 4.3 Few sample images (queries and the corresponding symbols) from the FRESH
dataset [77]). For every query symbol: query1 to query4, few relevant symbols are shown (regardless
their order) based on their similarity (experts). It has both linear as well as symbols in the composite
form that includes texts
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Fig. 4.4 A sample showing symbols have to be identified from the circuit diagram [91] (source:
DAE, http://dae.cse.lehigh.edu/DAE/)

descriptors [85–87] and several machine learning classifiers [88] can help boost
their performance because off-the-shelf methods are designed for isolated line sym-
bols [54]. As an example, in [85], we have found that several features (such as
compactness, ellipticity, angular features, and GFD) are combined. Similarly, in [89,
90], a set of statistical features can be used to partition line drawings into shapes
based on how meaningful the parts of the symbols are. The proposed technique pro-
vided an accurate and consistent regions-of-interest or meaningful parts detection.
Regions-of-interest refers to the conversion of a complete line drawing into a set
of isolated shapes. But the downside of their technique is it has high computational
cost.

On thewhole, except for a few algorithms that are especially developed for specific
tasks, statistical approaches are simple to compute with low computational cost
as compared to other techniques, such as graph-based pattern representation and
recognition that comes under structural approaches. Statistical signatures are simple
to compute that does not mean that it has not discrimination power. Discrimination
power and robustness strongly depend on how we select the set of features.

http://dae.cse.lehigh.edu/DAE/
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4.3 Experiments

Since the difficulties, in graphics recognition, are observed in complex and composite
graphical symbol recognition. In what follows, let us have a quick overview (exper-
imental results) of how far shape descriptors (global) can handle. In our discussions
(see previous section), we have discussed that within the framework of shape analy-
sis in pattern recognition—graphics recognition, in particular—the Radon transform
(RT) [64]-based techniques are widely adopted because [5]

1. It is a rich transform, where each pattern’s point lies on a set of lines in the spatial
domain and contributes a curve to the Radon image;

2. It is a lossless transform and pattern reconstruction is possible; and
3. It is possible to make rotation, scaling, and rotation transformations invariant.

A summary of how the concept of theDTW-Radon [5] has been derived/motivated
can be explained as follows. The RT yields R-signature [68] by taking an integral
function and the discrete Fourier transform on the radial and angular slices of the
Radon image. In a similar fashion, the RT yields φ-signature [92], which is com-
puted by applying an integral function on the angular slices of the Radon image so
that rotation invariance property can be maintained. A basic normalization process
can help provide translation and scaling invariant. These signatures are simple to
compute. However, they are less discriminant since no complete information can be
preserved. It is primarily because of the compression process at the time of trans-
forming the Radon image into 1D signature. Besides, the normalization process does
not help preserve fine details and, therefore, the signatures computed from noisy
images may not be accurate enough to make a difference. We have observed that
theR-signature, without a surprise, has been adopted by multiple applications, such
as graphical symbol recognition [88] and activity recognition [93, 94]. After that,
the generalized version of R-transform was reported in the year 2012 [95], where
more insights to theoretical geometric interpretations were discussed. Specifically, it
addresses exponent values variation at the time of using integral function, instead of
just using numeric value, i.e., 2 as reported/studied in [68]. The generalized version
opens doors since one needs to tune that value since the optimal value varies from
one dataset to another, i.e., application dependent. This means that the exact same
value cannot be used. The results vary as soon as exponent value changes. The effect
can be more pronounced in case we use noisy images. As an example, high exponent
value may cause high variation in the R-transform [95]. As a result, the signature
is different from the ideal analytical values. This means that the R-transform with
different exponent values (except 1) due to noise may not be suitable for recognition.
In addition, their techniques use the compression of the Radon image [68, 92], it has
similar limitations as discussed before. The similar statement holds true for other
work [96].

Instead of relying on the 1D signatures, use of the histograms of the Radon
transform (HRT)in [69] could be a better idea. In contrast to previous work [68],
the HRT is more efficient as it produces 2D histogram. However, such a set of
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histograms is not invariant to rotation. As a consequence, these histograms need to
be corrected by taking image rotation angle so that corresponding histograms can be
matched for similarity checking between two different patterns. For these histograms,
image size is an important factor. This means that to make histograms of equal sizes,
images are scaled into a fixed sizewindow.At the same time, lossless resizing/scaling
techniques has to be applied. If not, shape information of degraded patterns can be
skewed because of the wrong aspect ratio [97]. Therefore, in many applications,
heavy computational time could be a better idea, where it has to discriminate several
shape deformations, such as degradations and distortions. In [98], authors employed
phase-only-correlation (POC) algorithm that helps satisfy rotation-invariant property,
where logarithmic of HRT (LHRT) was used to normalize the histograms. With
this concept, POC may provide several peaks (similar magnitudes) in case periodic
images (chess-board, for instance) are considered. In brief, such approaches may
not be suitable for deformed patterns (degradations and distortions, occlusions, and
nonuniform scaling).

We note that the RT is a set of histograms or features that can be parametrized.
In order to fully exploit information of the Radon image, resizing an image may not
be a wise idea nor does compressing the Radon histogram work. Therefore, the use
of dynamic programming can be an interesting alternative because of the following
reasons:

(a) Dynamic programming (Dynamic time warping (DTW)) can absorb varying
histogram sizes at the time of matching.

(b) In contrast to previous works [70, 99, 100], the optimal selection of number of
histograms is another important issue as it can reduce computational cost.

(c) To reduce the number of DTW matchings, a priori knowledge about the pattern
orientation can be used to make one-to-one histogram matching.

(d) With this idea of using DTW, broader perspectives can be established by tak-
ing several different problems, such as different levels of noise, distortion, and
occlusion.

In [5], more information can be found.

4.3.1 DTW-Radon: How Does It Work?

4.3.1.1 Shape Representation

Radon transform (RT) [64] is a set of projections of the shape of the pattern at
different angles. In other words, for an image pattern P(x, y) and for a given set of
angles, the RT can be taken as the projection of all nonzero points that eventually
produces a matrix.

Mathematically, the integral of P over a line L (ρ, θ) defined by ρ = x cos θ +
y sin θ can be expressed as
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R(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
P(x, y)δ(x cos θ + y sin θ − ρ)dxdy, (4.1)

where δ(.) is the Dirac function,

δ(x) =
{
0 if x �= 0
1 otherwise,

with θ ∈ [0, π [ and ρ ∈] − ∞,∞[. For the RT, Li be in normal form (ρi , θi ). For
all θi , the RT now can be described as the length of intersections of all linesLi . Note
that the range of ρ i.e., −ρmin < ρ ≤ ρmax is entirely based on the size of pattern. A
complete illustration is provided in Fig. 4.5.

Can we make the RT transformation invariant (affine transformation: translation,
scaling, and rotation) [101]?

1. Translation: Consider image centroid (xc, yc) such that translation vector is u =
(xc, yc) and the Radon transform is R(ρ − xc cos θ − yc sin θ, θ). This results the
shift of its transform in ρ by a distance equal to the projection of translation vector
of the lineL . This helps the RT to be translation invariant.

2. Scaling: Normalization can help, i.e., the profiles/histograms can be normalized
into [0, 1] at every projecting angle.

3. Rotation: To make corresponding histogram/profile matching efficient, a priori
knowledge about the orientation angle can be computed as [102],

α = arg

[
min

θ

d2σ 2
θ

dθ2

]
, (4.2)

where variance and mean of projection at θ are

σ 2
θ = 1

P

∑
ρ

(R(ρ, θ) − μθ)
2

μθ = 1

N

∑
ρ

R(ρ, θ)

and N is the number of samples. If angle of rotation is α, then Rα(ρ, θ) =
R(ρ, θ + α). This means that, we are required to make a circular shift of the
profiles/histograms.
In [102], the RT is tested to detect linear trends in images. In other words, a
pattern’s principal/global orientation can be estimated by considering presence
of the pixels in that particular direction/angle. This means that the RT profile
along this direction usually has larger variations. Mathematically, the variance of
the projection is locally maximum. In case of multiple local maxima, the second
derivative of the variance would provide a unique solution. We have also noted
that the derivative removes the low-frequency components of the variance.
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Fig. 4.5 The Radon features
for all possible projections
over [0, π [ and the complete
Radon transform i.e., a
collection of all the Radon
histograms (features)
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Fig. 4.6 Images, their
corresponding orientation
estimation and the Radon
features, where GREC03 test
samples are used [103].
Orientation angles α are
estimated as follows: 90◦ for
reference and 17◦ for
rotation sample

For better understanding, in Fig. 4.6, the Radon features for reference and rota-
tion (a known class of graphical symbol) are shown. In this example, estimated the
orientation angles and the Radon histograms (features) from their corresponding
images are shown. Note that the idea behind the use of rotation correction before
corresponding profile matching can reduce recognition time.

Let us repeat, the RT is a set of parametrized profiles/histograms that are in the
range: [0, π [, where π is not included. Formally, a complete set R(ρ, b) of the Radon
features can be expressed as

F = {Fb}b=1,...,B, (4.3)

where the total number bins B can be formulated as
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B = 180

Θ
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

180 when Θ = 1◦
90 when Θ = 2◦
60 when Θ = 3◦
36 when Θ = 5◦
. . . so on,

with Θ as the projection angle-range. As said before, to avoid loss of information,
compressing a matrix into a 1D signature is not the choice. In general, a single Radon
feature at bin b is Fb is the set of histograms. In case when Θ = 1◦, each projecting
angle can represent a bin. Altogether, we have 180 bins. If Θ = 5◦, all histograms
within the range are averaged to produce a single feature and there are 36 bins in
total. To perform experiments, different numbers of bins can be used. Based on the
value of B, there will be different outputs. In other words, performance function (f)
is parametrized by B, i.e., f (B). For any particular test, argmaxB f (B) can help
decide the optimal number of bins.

4.3.1.2 Shape Matching

As explained before, we have set of features F in a specified number of bins B for
any pattern P . Given two patterns: query Pq and database Pd , matching can be made
by computing distance between two corresponding features (cf. Eq. (4.3)) from the
complete sets ofF q andF d . Since the RT produces different ρ sizes in accordance
with the pattern size, let us employ DTW algorithm [104]. In what follows, let us
discuss matching process first and then matching/(dis)similarity score between two
patterns.

Consider we have two feature vectors X = {xk}k=1,...,K and Y = {yl}l=1,...,L of
size K and L , respectively, and K �= L . To provide the optimal alignment between
both vectors potentially having different lengths, we first construct a matrix M of
size K × L . We then, for each element in matrix M , compute local distance δ(k, l)
between the elements ek and el . With this procedure, we compute D(k, l), which is
defined as the global distance up to (k, l),

D(k, l) = min

⎡
⎣D(k − 1, l − 1),

D(k − 1, l),
D(k, l − 1)

⎤
⎦ + δ(k, l) (4.4)

with an initial condition D(1, 1) = δ(1, 1) such that it allows warping path, which
follows diagonally from (1, 1) to (K , L), i.e., start to end. The basic idea is to
find the path from which the least cost is produced. This means that the warp-
ing path provides the difference cost between two features. Formally, the warping
path is, W = {wt }t=1...T , where max(k, l) ≤ T < k + l − 1 and t th element of W
is w(k, l)t ∈ [1 : K ] × [1 : L] for t ∈ [1 : T ]. The optimized warping path W sat-
isfies the following three conditions: (c1) boundary condition, (c2) monotonicity
condition, and (c3) continuity condition:
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c1. w1 = (1, 1) and wT = (K , L);
c2. k1 ≤ k2 ≤ · · · ≤ kK and l1 ≤ l2 ≤ · · · ≤ lL ; and
c3. wt+1 − wt ∈ {(1, 1)(0, 1), (1, 0)} for t ∈ [1 : T − 1].
The condition, c1 conveys that the path starts from (1, 1) to (K , L), aligning all
elements to each other. Another condition, c2 helps path advance one step at a time.
The final condition, c3 limits steps in the warping path to adjacent cells. We also
observe that c3 implies c2. With all three different conditions, let us formally express
the global distance between X and Y as,

Dist. (X,Y) = D(K , L)

T
. (4.5)

The last element of the K × L matrix gives the DTW-distance between X and Y,
which is normalized by T . T the number of discrete warping steps along the diagonal
DTW-matrix that goes diagonally from beginning to end of the matrix. Backtracking
procedure helps find the the minimum cost index pairs (k, l) along the diagonal,
starting from (K , L) by using DP:

wt−1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, l − 1) if k = 1
(k − 1, 1) if l = 1

argmin

⎧⎨
⎩
D(k − 1, l − 1),
D(k − 1, l),
D(k, l − 1)

⎫⎬
⎭ otherwise.

In this implementation, we found that the lexicographically smallest pair has to be
considered in case the “argmin” is not unique. Thewhole process is shown in Fig. 4.7,
where two nonlinear feature vectors with different sizes are used.

4.3.2 Results and Comparison

With this idea of shape representation and matching, in Fig. 4.8, we observe that
the concept is robust to shape distortion and deformation (at different levels), where
graphical symbol is considered. Having such encouraging performance, let us extend
the test results on three different datasets:

(a) GREC [106],
(b) CVC [71] and
(c) FRESH [105].

While taking DTW-Radon into account, for several different number of bins B,
it would be interesting to check how well other well-known shape descriptors can
perform. For the test, the following shape descriptors are used:
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Fig. 4.7 DTW algorithm
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Fig. 4.8 Matching scores (in 10−3) between distortion as well as deformed symbols (s1–s4), where
test images are taken from FRESH dataset [105]

(a) R-signature [68],
(b) GFD [48],
(c) SC [33] and
(d) ZM [44].

For all shape descriptors, selecting the parameters that are suitable for the test is a
crucial factor. For the RT, projecting angle range is [0, π [, where all possible profiles
are used. In case of GFD, both parameters radial (4 : 12) and angular frequency
(6 : 20) parameters are tuned to select the best pairs, since the best pairs can be
varied from one dataset to another. For SC, 100 sample points used as reported
in [33]. In case of ZM, 36 zernike functions of order less than or equal to 7 are used.

In what follows, results are provided.

(a) GREC dataset

(i) Dataset description.
In this dataset1 [103], different categories, such as ideal, rotation, scal-
ing, distortion, and degradation are considered. Few samples are shown
in Fig. 4.1.
In this dataset, 50 different models are categorized into 3 sets: set 1 (5
model symbols), set 2 (20 model symbols) and set 3 (50 model symbols).
Each model symbol has 5 test images in every category except the ideal
one. In their dataset, since vectorial distortion works only for symbols with
straight lines (not arcs), 15 model symbols are vectorially distorted. Further,
9 different models of degradation are used.

(ii) Results and analysis.
For evaluation, each test image is matched with the model symbols to get the
closest model. Since dataset is fully labelled and has balanced test images,
as an evaluationmetric, recognition can be applied (see Sect. 3.2 in Chap. 3).

1International symbol recognition contest, 2003.
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Table 4.1 GREC dataset: average recognition rates (in %) for all data categories

Images set DTW-Radon (with different B)

180 90 60 36 18 09 02

Ideal 100 100 100 100 100 100 100

Rotate 97 94 88 73 82 77 71

Scale 100 100 100 100 84 74 57

Rotate +
scale

98 97 94 82 79 73 62

Distort 100 100 100 100 85 72 47

Degrade 99 98 95 84 67 47 35

Table 4.2 GREC dataset: comparison using the average recognition rates (in %) for all possible
data categories

Images set GFD ZM SC R-sign DTW-Radon
(B = 180)

Ideal 100 100 100 100 100

Rotate 98 94 97 94 97

Scale 99 98 99 96 100

Rotate + scale 98 93 98 92 98

Distort 100 94 100 92 100

Degrade 91 79 78 76 99

Test results for all types of aforementioned categories of datasets are shown
in Tables 4.1 and 4.2. In Table 4.1, one can check how number of bins
(DTW-Radon) affect the recognition performance, and Table 4.2 provides
comparative study among other global shape descriptors. It is composed of
results separately from ideal, rotation, scaling, combination of rotation and
scaling, distortion and degradation categories. Following Tables 4.1 and 4.2,
the following observations can be found.
• For ideal test images, one cannot judge the differences between shape
descriptors. In DTW-Radon, it is important to notice that we have 100%
recognition rates from all provided number of bins. For rotated images,
GFD performs better, proving a marginal difference with SC and DTW-
Radon for 180 bins. For scaled images, DTW-Radon outperforms all,
where B = 180, 90, 60 and 36 provide 100% recognition rates. For other
test images (rotation plus scale), DTW-Radon (B = 180), GFD and SC
produce similar results.
In brief, we cannot conclude that “the best” performer (shape descriptor).
Besides, one cannot judge the superiority of the methods. Only execution
time comparison would be an alternative.
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• R-signature does not provide satisfactory results on vectorial distorted
test symbols. This does not hold true for other descriptors. At the same
time, DTW-Radon (36 bins) can be compared with “the best” performer
from the state of the art. In case of binary degradations, there exist notable
differences between DTW-Radon and GFD.

(b) CVC dataset

(i) Dataset description.
This dataset comes from [71], which is of size 10 × 300 sample images. This
means that there are 10 different known classes of hand-drawn architectural
symbols with 300 samples per class. In Fig. 4.2, few samples are shown.
The dataset has different problems, such as distortions, gaps, overlapping as
well as missing parts within the shapes.

(ii) Results and analysis.
For evaluation, each test sample is matched with known classes and number
of correct matches is reported over the requested list. In our dataset, there
are 300 samples per class, the size of the requested list can be 300. This
means that we can retrieve all similar images from every class including
itself. In Tables 4.3 and 4.4, the average retrieval rates for all requested
shortlists (e.g., top-20, top-40, and so on, i.e., increasing steps of 20) are
provided. In Table 4.3, one can check how the number of bins affects the
recognition performance, while Table 4.4 compares DTW-Radon results
with other global shape descriptors.
In contrast to GREC dataset, SC provides the best performance from the
list. However, it cannot outperform DTW-Radon.
In our retrieval list, up to top-60, we do not see differences between the
methods. After top-60, one can make a difference. This means that if we
are looking for retrieval stability, we should not stop at top-60. In the latter
framework, DTW-Radon outperforms SC by more than 16%. SC lags GFD
by approximately 9%. Further, ZM follows R-signature.
In brief, in contrast to benchmarking descriptors, recognition rates from
DTW-Radon for B = 180, 90, 60 and 36 provide better results.

(c) FRESH dataset

(i) Dataset description.
Let us consider a real-world problem (industrial project). In our dataset, we
are required to identify a set of different known symbols in aircraft elec-
trical wiring diagrams [105] (see Fig. 4.3). It has been clearly mentioned
before that symbols may either be very similar in shape. They can be having
slight changes in the shape. Further, they may also be composed of other
known and graphical cues/elements. They do not necessary be connected. In
addition, texts are appeared. It is composed of roughly 500 different known
symbols. This dataset has no absolute ground-truth, and human validation
was required, where possible subjective bias was avoided [77, 107–110].
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Table 4.3 CVC dataset: average retrieval rate (in %)

Requested
list

DTW-Radon (with different B)

180 90 60 36 18 09 02

Top-20 99 99 99 98 94 92 83

Top-40 99 99 98 97 92 88 79

Top-60 97 97 97 96 90 86 67

Top-80 97 97 97 94 88 81 64

Top-100 97 97 96 94 84 80 61

top-120 97 96 96 93 80 74 60

Top-140 95 95 95 92 76 67 58

Top-160 95 95 94 91 73 64 57

Top-180 93 93 94 89 67 61 54

Top-200 93 92 91 86 62 56 53

Top-220 93 92 91 86 59 53 50

Top-240 92 90 88 84 55 51 49

top-260 91 89 86 83 52 44 46

Top-280 88 87 85 81 48 42 45

top-300 86 86 84 78 47 39 44

Six volunteers were used to manually select what they consider as “simi-
lar” symbols, for all queries executed in this section. While selection, they
did not provide any ranking order nor degree of visual resemblance (shape
similarity).

(ii) Results and analysis.
Since the aim is not only limited to recognizing symbols but also extends to
ranking them. Note that the number of ground-truths varied from one query
to another. As traditional precision and recall cannot be used for imbalanced
dataset, retrieval efficiency [111] can be used as explained in Sect. 3.2 of
Chap. 3.
In Tables 4.5 and 4.6, retrieval efficiencies are provided for K ranging
from 1 to 10. From the set of benchmarking shape descriptors, GFD per-
forms better. GFD is followed by SC and then ZM. DTW-Radon (with
B = 180, 90, 60) outperforms all of them. The minimum score from DTW-
Radon with B = 36 can also be compared.

Overall, considering global shape descriptors, DTW-Radon is found to be con-
sistent. However, it does not clearly tell it can always outperform others. The idea
behind a series of test results is that shape descriptors are application dependent
(nature of the dataset).
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Table 4.4 CVC dataset: comparison using the average retrieval rates (in %)

Requested list GFD ZM SC R-sign. DTW-Radon
(B = 180)

Top-20 96 68 98 82 99

Top-40 93 62 95 75 99

Top-60 90 59 95 69 97

top-80 88 57 92 65 97

Top-100 85 55 91 62 97

Top-120 83 54 88 59 97

Top-140 81 52 87 56 95

Top-160 78 50 85 54 95

Top-180 76 50 83 51 93

top-200 73 48 81 49 93

Top-220 71 44 78 48 93

Top-240 68 41 78 46 92

Top-260 66 39 75 45 91

Top-280 63 37 73 43 88

Top-300 61 36 70 42 86

Table 4.5 FRESH dataset: retrieval efficiency (in %) over 30 queries

Requested list D-Radon (with different B)

180 90 60 36 18 09 02

Top-2 92 92 91 87 78 77 75

Top-4 83 82 81 76 66 62 60

Top-6 77 75 74 69 57 53 50

Top-8 76 75 73 64 49 45 45

Top-10 73 71 69 58 44 42 41

Table 4.6 FRESH dataset: comparison using the retrieval efficiencies (in %) over 30 queries

Requested list GFD ZM SC R-sign DTW-Radon
(B = 180)

Top-2 91 88 87 84 92

Top-4 80 72 72 71 83

Top-6 74 65 63 60 77

Top-8 71 60 59 51 76

Top-10 69 56 54 49 73
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4.4 Summary

In this chapter, statistical approaches have been covered for graphics recognition,
where we have detailed several statistical techniques/algorithm including their use-
fulness. In addition to recognition and/or retrieval performance, time complexity
issue has been addressed. We have observed that the primary advantage of such
approaches is robust to noise, degradation, occlusions, and deformations. These are,
however, not useful for complex and composite graphical symbols. For such a latter
issue, structural approaches could be a better choice. In the next chapter, we will
discuss about structural approaches for graphics recognition.
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Chapter 5
Structural Approaches

5.1 Context

For graphics recognition, we have observed that statistical pattern recognition
approaches are found to be suitable for isolated graphical symbols, regardless of
noise, deformation, degradation, and occlusion. Further, pattern can be handwritten
and/or machine-printed. However, they may not work for complex and compos-
ite graphical symbols. In such a case, another idea is to decompose the symbols
into either vector-based primitives, such as points, segments, lines, and arcs, or into
meaningful parts (e.g., circles, triangles, and rectangles). These are considered as
the peculiar structure of technical documents. These structures (low-level and high-
level) can be considered as a set of primitives, which can naturally induce the use of
both structural and syntactic approaches [1–4] to recognize graphical symbols and
graphical elements of particular interests. Note that graphical elements can be just a
portion of the complete graphical symbol. Recognition a part of the whole graphical
symbol can help understand the graphical symbol recognition process. In high-level
definition, we call it graphical symbol/element spotting.

The choice depends on how robust the representation can be made as well as
on the skills to make algorithm faster (considering real-world projects). Since both
approaches use primitives (as basic building blocks), in what follows, we first dis-
cuss primitive extraction. We can then discuss how can they be related/connected to
each other. Connecting them could possibly be handled by spatial relations. Visual
primitives and their possible relations (pairwise) introduce structural and syntactic
approaches for graphical symbol recognition, retrieval, and spotting purposes. For
specific applications, previously reported works can be referred [5–8].
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5.2 Visual Primitives

If we consider a raster data, where a graphical symbol is naturally represented by the
set of pixels. In this context, let us start with a few examples, where one can have
usefulness of the local descriptors, and key point selection is the major concern.
Key point selection at the corner can help understand/detect corners in addition
to their orientations, such as corners facing northeast and southeast, for instance.
Vectorization could be another interesting issue, such as dashed-line detection or just
a straight line. Curve (in engineering drawing) can be another important features to be
exploited. Since an arc can complement/support curve detection, arc detection could
help recognize the structure of the graphical symbol. Further, high-level primitives,
such as circle and thick component, can proceed with graphical symbol/element
recognitionmuch faster than that are coming fromacollectionof low-level primitives.
Let us be specific, thick component refers to the filled region that represents diode
in electrical circuit diagram.

In brief, let us provide a few issues with examples. For raster data, key point
selection with the use of the local descriptors can be an issue to be discussed. It
is, however, not trivial that which local descriptors are more appropriate and how
their performances depend on the selection of key points or regions, since the use
of descriptors varies from one dataset to another. This means that the use of local
descriptors can be application dependent. Comprehensive discussions can be found
in [9] for any image recognition/understanding problem.

(a) Vectorization [10] is the task of extracting primitives like simple lines [11, 12]
and arcs [13–15] including geometric primitives, such as loops and contours or
simple shapes like circles and rectangles.
In technical documents, these primitives are considered as primary elements as
they can represent a complete graphical symbol structure [16–18]. These prim-
itives serve a common basis or basic building blocks for both structural and
syntactic approaches. It is important to notice that such a set of primitive (mean-
ingful) extraction is not trivial since problems (studied image samples) vary
widely.
For line extraction, the Hough transform [19, 20] can be used. With this, appli-
cations are reasonably limited. For example, in case of degraded scanned docu-
ment, it suffers from high computational cost. Several approaches are based on
the extraction of strings from the skeleton [21, 22] having well-known distortion
problems but they require a correct localization of junctions (points) [23–26] by
matching opposite edges [27]. These solutions are limited since the concept is
sensitive to the complexity of processed shapes. Motivated by this, the orthogo-
nal zig-zag algorithm [28] and adaptations [20, 29] were proposed to make line
extraction efficient.

(b) Curves and arcs are taken as another subject of research interest. Digital curves
have been extracted based on the polygonal approximation in the form of skele-
ton strings (using the Haar transform, for instance) [30–33]. The method leads
naturally to a loss of information (or accuracy)with respect to the initial structure,
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but it offers implementations simplicity for the subsequent algorithms.
Other approaches that follow the initial curve are more accurate [34–36]. How-
ever, some of them follow dynamic programing concept and they are slow (pro-
cessing time). In a few cases, code optimizations can help [37–39] speed up the
process.
Fewmethods that are focussed on key points help the segmentation process since
key points can be considered as seeds [40–43]. These approaches often require
threshold initialization, due to which their performance varies as the type of
the application changes. This means that developing generic algorithms is not
trivial. It is also difficult to combine several different approaches to detect both
arcs and segments that are fundamental to ensure accurate symbol recognition.
Therefore, avoiding over-segmentation is required (see Fig. 5.1, for example). If
not, it may generate several unwanted small components for further processing,
i.e., matching in recognition step [44].
At this point, let us discuss on potential shortcomings. In arc-fittingmethods [14,
26, 40, 45], the main drawbacks can be from noise and distortions that lead to
local errors, i.e., over-segmentation is always possible. Other approaches that
are built from the Hough transform [46, 47] often produce accurate results in
the presence of distortion. But, like we have discussed earlier, manual threshold
initialization is the must. The reason behind this is because they are sensitive to
noise. Moreover, they suffer from expensive computational cost. Methods that
are based on stepwise arc extension can improve segmentation by studying spe-
cific arcs [13, 48, 49], and remain more stable in more cases.
At this point, we observed that vector data require the use of robust extraction
operators to ensure analysis and correct understanding of documents [50–52].
Most of these approaches have been compared in GREC contests: 2001 and
2003 [45, 53–55], for example. The generic method RANVEC [26, 54] over-
comes other methods in most of the problems. One of the drawbacks of this
method is that it may omit small parts since it selects points randomly, aiming
to reduce the computational time. For more detailed information about GREC
contests, refer to Chap. 2.

(c) Other primitives, such as thick components or filled regions, circles, corners,
and extremities (i.e., loose end points) can be extracted using classical image
analysis operators as reported in previous works [15, 57–59]. Figure 5.2 shows
a few examples. As mentioned in the PhD thesis report [5], we can now describe
a few of them as follows, in addition to recent developments:

• For thick components, it uses standard skeletonization using chamfer distance
and computes the histogram of line thicknesses; and an optimal cut value is
computed from the histogram to distinguish between thick zones and thin
zones.

• For circle and arc, as in [15], the random sample consensus minimization
(RANSAC) scheme is used to detect circles and arcs. The performance of the
method was demonstrated (as the winner) in the arc segmentation contest on
GREC in 2011 [60].
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Fig. 5.1 An example
showing over-
segmentation [7]. It
illustrates two identical
shapes (symbols) in different
scales produces different
number of segments

Using gradient-direction-based segmentation and direct least-square fitting, a
fast and accurate circle detection algorithm, reported in [61], outperforms the
circular Hough transform [62], the randomized circle Hough transform [63],
and the fast circle detection [64] in both processing speed and detection pre-
cision. Moreover, very recently, as reported in [65], their method also outper-
forms RANSAC [15] in arc detection precision and speed. In [66], very recent
arc detection contest was reported.

• Considering technical documents (rich in graphics), a common drawback is
error-prone raster-to-vector conversion. For example, primitive types such as
arc and corner are not extracted (as expected) as the degradation or noise
level increases. However, robust vectorization exists in line drawing images
(engineering drawings, for instance) [25, 26, 67]. The use of such low-level
primitives varies widely in accordance with the complexity of the symbol.

5.3 Spatial Relations

Spatial reasoning is regarded as a central skill to many human tasks, as being able
to communicate about the space. A common and natural way to share spatial infor-
mation is through the use of spatial predicates [68] such as Left of and Right of, in
order to derive relationship between the spatial entities.

To handle image recognition, partial recognition of visual primitives used to guide
the recognition of remaining parts within it [69]. It is based on the question, i.e., effect
of spatial relations on recognition performance [70, 71]. A quick explanation of this
can be illustrated from Figs. 5.3, 5.4 and 5.5. Can we connect (via relations) all
objects to see whether it is possible to describe image? In Fig. 5.3, without having a
priori knowledge about objects (their labels), one cannot make a difference between
two images. We can, however, take advantage of intra- and inter-object relations to
describe images. A prototype is shown in Fig. 5.4. Such a description can make two
images different. This could be computationally expensive since we have compute
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Fig. 5.2 Few examples showing visual primitive extraction. Visual primitives are thick (or filled)
components, circles, and corners [5]. The samples are taken from FRESH dataset [56]

two different layers of relation: intra- and inter-object. Intra-object relations can
describe the shape of the object and inter-object can help understand the arrangements
in the complete image. Another idea could be based on region segmentation (see
Fig. 5.5). In this prototype, we observe that an object can be decomposed into a set
of regions, i.e., regions-of-interest that are then used for description via relations. In
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(a)

(b)

Fig. 5.3 Can we just rely on relations for an image description? It can help provide spatial arrange-
ments (of the objects) but not their features/properties. Note that posters are different from one
image to another. Centroids (of the objects) are used to compute spatial relations

the domain of graphics recognition, the concept has been widely used. Section 5.4
will provide more detailed explanation (see Figs. 5.11 and 5.12). Before that, let us
first discuss types of relations, and their merits and demerits.

Not a surprising, in document image analysis, relations are used for analysis of
architectural documents and for automatically recognition of models [72] and the
graphical drawings understanding of scanned color map documents [73] or to define
efficient retrieval methods [74–77].

In the following, we first briefly outline spatial relations, their types, properties,
as well as their appropriate applications. After that, detailed study about the impact
of spatial relations for document image analysis (graphics recognition, in particular)
will be explained.
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Fig. 5.4 Image can be described via the use of spatial relations: intra- and inter-object. Intra-object
graph can help describe object on the whole, and that makes two posters are different as shown in
Fig. 5.3. Inter-object relations are shown as before

Fig. 5.5 Image can be described via the use of spatial relations: intra- and inter-object, where
regions-of-interest (ROIs) are used. Each color represents a region to be used for computing spatial
relations

5.3.1 Types of Spatial Relations

In [78], authors provide one of the first consistent studies of spatial relations and
their variations according to the context. An important family of spatial relations and
associated properties came from Freeman [79], and are grouped as follows:

(a) topological relations,
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Fig. 5.6 Possible topological relations between two objects A and B

(b) metric relations, and
(c) directional relations.

Topological relations describe neighborhoods and incidence, such as disconnected
and externally connected, metric describes distance relations like near and far, and
directional relations provide order in space, such as north, south, and east.

(a) Topological relations:
In connectionwith [80], basic topological relations close to humanunderstanding
are disconnected (DC), externally connected (EC), covers (Cr) or covered by
(CB), contains (Cn) or inside (I), and equal (EQ). Figure5.6 shows an illustration
of it. In this illustration, we can observe that topological relations satisfy affine
transformation invariant properties.

(b) Metric relations:
It provides an idea of distance between two spatial objects. Consider a metric
on a set X is a function (called the distance function or simply distance), then

d : X × X → R,

where R is the set of real numbers. For all x , y, and z in X , this function is
required to satisfy the following conditions (c1–c4):

(c1) d(x, y) ≥ 0, i.e., non-negativity,
(c2) d(x, y) = 0 if and only if x = y,
(c3) d(x, y) = d(y, x), i.e., symmetry, and
(c4) d(x, z) ≤ d(x, y) + d(y, z), i.e., triangle inequality.

Based on it, many modifications have been made according to the applications.
Computer representation of geospatial information has beenmotivated by proxim-

ity relations such as nearness and locality, as described in [81]. For example, nearness
is derived from relative distance, i.e., relative distance(x, y) = d(x,y)

μc
where μc is

the mean distance measured from the center.

(c) Directional relations:
In general, they provide an idea of orientation of the primary spatial objects with
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respect to a reference. Each object is represented by one or more representative
points, and the space is partitioned using these points. The relation is then deter-
mined using the partitions to find where the object representative points are.
Depending on the concept of partitioning, there are several different ways to
handle directional relations between the spatial objects. In the following, we
provide some of the fundamental concepts or models.

(i) Angle-based model
Angle-based relational models provide a true orientation of spatial objects. Two
fundamental models fall under this category.

• Cone-shaped model: The relations can be approximated by their centers based
on discretized angle [82, 83], i.e., ∠(CA, CB) between the objects A and B.
It is sometimes also called the bi-center model. It provides several different
configurations based on star calculus [84]. In Fig. 5.7, one can have an idea of
progressive refinement of bi-center model from 4 to 8 directions and so on.
This model possesses the following shortcomings.
– Relations remain unchanged unless there exists significant separation.

Fig. 5.7 Star calculus via
bi-center model via
angle-based theory. It shows
a cone-based method to
compute relations between
the studied objects
(primitives). The star
calculus can be extended
with a small angular step
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– It does not take shape and size into account. Since it is robust to small
variations of shape and size, one cannot guarantee that the centroid falls
within the spatial object.

– It does not carry topological information: objects having inside or contain
topological configurations, for instance, yield ambiguous spatial predicates.

– It provides no directional relation in case of centroid coincidence from two
studied objects (even for two different shapes).

It is best suited when the studied objects are far from each other.
• Angle histogram: Such an approach considers all pixelswhere the cone-shaped
model only took the centroid into account [85]. As a consequence, their com-
putational cost increases dramatically.
Let us consider two objects A and B as the sets of their pixels:

A = {ai }i=1...m and B = {
b j

}
j=1...n .

The m × n pairs of points allow for the computation of a set of angles θi, j

between each (ai , b j ). The histogramH representing the frequency of occur-
rence of each angle fθ can then be formulated as

Hθ (A,B) = [θ, fθ ].

For a simplicity, histogram values can be aggregated into a single value.
The major difference with bi-center model lies in the fact that the averaging
is made on the objects’ points for the centroid method while it is applied after
angle computation in the aggregation method. If the objects are far from each
other, this averaging converges to bi-centercenter model.

(ii) Projection model:
The projection model uses the classical minimum boundary rectangle (MBR)
model [86]. Figure 5.8 shows the MBR model and its iconic vertical and hori-
zontal projections, regardless of the compactness of the objects. Compacity is
defined as the percentage of the spatial object in theMBR. Such a partitioning of
the space is dynamic according to the shape and size variation of the reference
object [87].
The following properties can be summarized.

• MBR is only appropriate as long as spatial objects are regular. This means
that it depends on compactness. Compacity of more than 0.80 is found to be
regular.

• False overlapping is possible. It misleads results in case of no actual intersec-
tion of the spatial objects (see Fig. 5.9).

Having fundamental concepts of all three basic families of spatial relations, can we
provide knowledge representations in one particular problem?
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Fig. 5.8 MBR: a complete
illustration showing
horizontal and vertical
projections (Xh1 and Xh2
refer to horizontal
projections, and Xv1 and Xv2
refer to vertical projections
from both A and B)

Fig. 5.9 False overlapping,
example (where
compacity(A) = 0.56)

5.3.2 Can We Quantify Spatial Relations?

Now the question is can be precise enough to deal quantitative spatial reasoning for
image recognition, which is beyond geographical structures (or GIS)? Another way
to categorize spatial reasoning [88, 89] is either based on

(a) qualitative or
(b) quantitative knowledge representation.

The former one conveys Boolean spatial information, i.e., 1 for the presence of
spatial object and 0 otherwise. The latter one is often based on fuzzy set theory [90]
allowing a better managing of the ambiguous aspect of spatial relations. However,
their impacts vary equally according to the nature of applications. Let us have two
examples so that both ideas can be explained, and help us find the differences between
them.

(a) In Fig. 5.8, consider an object A as the reference, and we have the following
relations:
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Fig. 5.10 Inner transversal
splitting (INS) example. The
concept is taken from the
previous work [91]

Qualitative relation(B,A) =
⎡

⎣
0 0 1
0 0 1
0 0 1

⎤

⎦ and

Quantitative relation(B,A) =
⎡

⎣
0 0 0.005
0 0 0.880
0 0 0.115

⎤

⎦ .

This means that object B is found to be extended from right bottom to right top
with respect to object A.

(b) In another example, one can consider the complexity in drawing images such as
ladder-like sketches. For example, overlap(lineA, rectangleB) does not answer
about “howmuch”. Therefore,metrical details are necessary as explained in [91],
for instance. Figure 5.10 shows an example of it.

Overall, metrical details provide precision and of course,more confidence in recogni-
tion. However, the selection of either qualitative or quantitative spatial representation
can be summarized as follows:

• Qualitative interpretation provides spatial relations more close to natural language
as used in spatial predicates like right, left. Qualitative knowledge is usually
cheaper since it does not need to compute percentage value.

• On the other hand, quantitative spatial reasoning is chosen in cases where it needs
natural instead of all-or-none relations [79]. Consequently, fuzzy concepts have
been introduced in several different applications since they are directly related
to shape and size information and are comparable to human perception. Angle
histograms rather than just a single angle value is one of the basic examples.
Similarly, fuzzy landscape based on fuzzymorphological operators [92] and force-
histogram approaches have been popularly used such as force histograms [93]. If
there is uncertainty, then it is inherently suited for fuzziness [94].

5.4 Structural Approaches for Graphics Recognition

In brief, structural approaches are based on symbolic data structures such as strings,
trees, and graphs. Graphs are most commonly used while strings and trees are always
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included as special cases. In document analysis, the most recent advancement in
graph-based pattern recognition is presented in [95]. The formal concept of graphs
can be found in [96].

Howcanwemake structural approaches different fromstatistical ones?Unlike sta-
tistical approaches, structural approaches provide a powerful representation, convey-
ing how parts are connected to each other, while also preserving generality and exten-
sibility [5, 97–100]. Graph-based or graph-like representation provides an abstract
concept of the studied image. Let us elaborate this with some examples. In [101],
authors introduced the notion of interest points by considering corners and junctions.
Later, it has been represented using local descriptors such as SIFT features [102].
In [103], for example, local descriptor (Harris–Laplace detector [104]) is used to
build a proximity graph for any studied symbol. Figure 5.11 shows an example of it.
In [105], adjacency relations between the segmented regions have been described.
Skeletal graph for shape representation is another example. It uses skeleton points,
which are categorized into three families: junction, end, and branch points. Consid-
ering graphical symbol recognition, in [106], a skeletal graph is used to represent
the symbol from electrical diagrams. For graph matching, bounded search is used to
select the pose of the graph such as rotation, translation, and scale for a minimum
error transformation. It is entirely based on probabilistic models. In [107], graphs
are used for building a model-based scheme for recognizing hand-drawn symbols in
schematic diagrams. To construct the graph, as said before, endpoints, junctions, and
crossings are represented by vertices attributed with the number of neighbors and the
angles between incident edges. The edges represent connecting lines in the drawing
attributed with the length and curvature of the respective line. Such graph-based rep-
resentation schemes are not limited; they vary widely, such as attributed relational
graph (ARG) [108–110], region adjacency graphs (RAG) [111, 112], constraint net-
works [113], deformable templates [114], and proximity graph [103]. Similarly, other
forms of graph-likeARG (specifically designed for symbol representation) [115] pro-
vide fundamental parameters related to structural approaches. Figure 5.12 shows an
example of a line graph. On the whole, they vary from one application to another,
i.e., one representation does not fit for all [116, 117].

Structural approaches are particularly well suited for recognizing complex and
composite graphical symbols [5, 118]. Recognizing region-of-interest (graphical
symbol, for instance) in a technical document refers to the identification/detection
of a part of the graph. The process is known by the name subgraph isomorphism,
which is crucial in any real-world context [119, 120]. This, on the other hand, as
said before, leads to a very high computational cost (NP-hard problem: polynomial
time) [96, 121], which is often the case when complex and composite symbols
are taken for evaluation. Further, variability of the size of graphs that can be due
to presence of noise and possible distortions leads to computational complexity in
matching. Besides, their common drawback comes from error-prone raster-to-vector
conversion. This makes symbol representation weak but, varies with the application.

In the framework of stroke-based hand-drawn symbol recognition, several studies
have been presented in [122, 123]. The first study is related to template-based match-
ing and another one uses ARGs where the vertices represent geometric primitives
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Fig. 5.11 Proximity graph
representation using interest
points (circle in blue) using
local descriptor [5], where
edges are represented in red
(see Fig. 5.4 for a generic
concept)

like lines and arcs (based on their shapes) and the edges represent the geometric
relationships between them. For matching, it is primarily based on graph match-
ing or graph isomorphism detection presented in [124]. The work is conceptually
similar to [125], which was extended from previous works reported in [126, 127].
These approaches perform well as long as vertices are well separated since they are
taken from online strokes. On the whole, this presents an idea of how vectorization
difficulties are avoided.

In [128, 129], their interest is tomap an inaccurate isomorphic structure to address
noise artifacts and distorted data by incorporating cost functions for deletion, inser-
tion, and node/edgemodification.Weknow that themethods are still sensitive to noise
and are suffering from heavy time computational cost even after the integration of the
statistical assumptions using error-tolerant features when searching subgraphs [112,
130], for instance. For the same problem, various heuristics are still employed, but
they do not guarantee to show significant difference. They, however, aim to have a
closer to a so-called optimal solution as long as the problem is defined with some
constraints.

Considering the time complexity issue, several works are more focused on com-
puting symbol signatures by taking regions-of-interest (ROIs) in the document
image [131–133]. These methods aim to provide faster matching in comparison
to general graph matching. The performance of such methods is based on how accu-
rate the ROIs are extracted. This means that the methods fail when ROIs do not carry
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Fig. 5.12 An example
illustrating a a symbol, b line
extraction, and c its
corresponding relational
graph [5] (see Fig. 5.5 for a
generic concept)

symbols. Further, in [134], author aimed to address how efficiently computational
cost can be reduced through the use of graph-based structural pattern recognition
approaches. The work has been developed to represent an image by a graph using the
state-of-the-art methods but, a new technique named fuzzy multilevel graph embed-
ding (FMGE) is used to transform that graph to numeric feature vectors [135]. As
a consequence, it empowers the structural pattern recognition approaches by utiliz-
ing statistical pattern recognition tools. Such a graph is used to perform symbol (line
drawing) recognition and spotting.While transforming the graphs to numeric feature
vectors, there may a loss of information. As a consequence, the FMGE method can
be compared with inexact methods, but it may be less accurate than exact methods.

In [136], authors proposed a symbol spotting technique using graph serialization to
reduce the usual computational complexity of graphmatching. As said before, graphs
are used to represent the documents and a (sub)graph matching technique is used
to detect the symbols in them. Serialization of graphs is performed by computing
acyclic graph paths between each pair of connected nodes. Graph paths are one-
dimensional structures of graphs which are less expensive in terms of computation.
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At the same time, they enable robust localization even in the presence of noise and
distortion. For large graph databases, they propose a graph factorization approach to
index, which is intended to create a unified indexed structure. Once graph paths are
extracted, the entire database of graphical documents is indexed in hash tables by
locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data
structure aims to execute an approximate k-NN search in a sub-linear time.

Other methods are based on the relaxation principle based on constraint propaga-
tion for matching nodes. Besides high computational cost, another main drawback
is that it does not guarantee robustness for correct local matching. These discrete
approaches, where a label is associated with each primitive, allow a local focus-
ing on inconsistent matching. Such a principle has been used to carry electrical
symbol recognition [137, 138]. Later, Wilson and Handcock have extended the dis-
crete relaxation by introducing a Bayesian model [139]. The probabilistic relaxation
assigns each node a probability measure according to the constraints. They are then
iteratively updated to maximize a measure of consistency on the whole [140–142].
Fuzzy concept has also been in use on the relaxation mechanism for handling uncer-
tain data [143, 144]. Graph-based method allows invariants and is independent of
labels [145].

Very recently, in [146, 147], authors introduced an interesting approach where
a Galois lattice is used to classify structural signatures that are extracted using the
Hough transform. These structural signatures are based on a topological graph, where
there are only five topological relations computed between the segments (based on
connected and disconnected topological configurations). As reported in the paper,
the Galois lattice-based classification is robust to noise. However, the performance is
inconsistent when symbols are found to be connected with other graphical elements
or texts in the whole document image. Later, the advancement has been reported
in [148, 149].

In [150], authors addressed the problem of symbol spotting in scanned and vector-
ized line drawings.A set of primitives index the structure of the symbol it is composed
of. Such an indexing is used to retrieve similar primitives from the database. Primi-
tives are encoded in terms of attributed strings representing closed regions. Similar
strings are clustered in a lookup table so that the set of median strings act as indexing
keys. A voting scheme formulates hypothesis in certain locations of the line drawing
image where there is a high presence of regions similar to the queried ones, and
therefore, a high probability to find the queried graphical symbol. As reported in the
paper, the method is found to be robust to noise and distortion, which are introduced
by the scanning and raster-to-vector processes. A comprehensive study has been
reported in [151].

5.5 Spatial Relations on Graphics Recognition

Effect of spatial relations on recognition performance was examined comprehen-
sively for image and/or scene understanding [69], document analysis, and recognition
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Fig. 5.13 Example: use of
spatial relation in the context
of symbol recognition. Use
spatial predicates, such as
inside make easy to
understand the relation
between two primitives: thick
(or filled component) and
circle that compose a symbol

tasks [152, 153]. Asmentioned earlier, spatial relations can be either topological [80,
154], directional [83, 93], and metric in nature. Their choice/selection depends on
type of application, i.e., studied sample: how complex it is. For example, in [125],
topological configurations are handled with a few predicates like (a) intersection, (b)
interconnection, (c) tangency, (d) parallelism, and (e) concentricity expressed with
standard topological relations as described in [154]. However, more often, we have
disjoint, touch, overlap, contain/inside, cover/covered by, and equal (see Fig. 5.6).

In a similar way, various directional relation models have been developed for a
wide range of different situations. A summary of what has been discussed in the
earlier section can be itemized as follows:

• If the objects are far enough from each other, their relations can be approximated
by their center based on the discretized angle: bi-center model [82, 83].

• If they are neither too far nor too close, relations can be approximated by their
minimumbounding rectangle (MBR) as long as they are regular [86, 155, 156].But
the quality of theMBRdepends on compactness (i.e., Compactness = Area(A)

Area(M B R(A))
)

of the MBR tile.
• Approaches like angle histograms [85] tend to be more capable of dealing with
overlapping, something the previous approaches have difficulties with. However,
since they consider all pixels, their computational cost increases dramatically.
In [157, 158], authors have shown an example of a piece of engineering work
about how the MBR and the angle-based theory recognize graphical symbols.
Other methods, like for instance, force histograms [93], use pairs of longitudinal
sections instead of pairs of points, also at the cost of high time complexity. Use
of fuzzy landscapes [92] that is based on fuzzy morphological operators can be
another idea.
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At this point, the question is, “can we think of integrating different two types of
spatial relations: topology and direction?” Have we observed previous works address
the issue?

Previously mentioned approaches address only either topological or directional
relations. Managing both comes at high computational costs. Even then, no existing
model fully integrates topology with directions. They rather have various degrees of
sensitivity to or awareness of topological relations. For graphics recognition, while
methods like [125] focus on topological information only, the approach we will
discuss is to see whether we can unify both topological and directional information
and make one descriptor [158, 159] without adding significant running time cost.

Placing spatial relations in the context of recognition and symbol descrip-
tion [159], one should note that spatial relations also have a language-based com-
ponent (related to human understanding, e.g., to the right of) that can be formalized
in a mathematical way (e.g., the 512 relations of the 9−intersection model [154]).
Therefore, qualitative and quantitative relations are interesting representations. For
example, consider an object A extending from right (98%) to top (2%) with respect
to B is expressed as right – top(A,B). This spatial predicate remains unchanged up
to a reasonable change of the objects’ shape and position. Taking this into account,
let us discuss natural relations than the all-or-none nature of standard relations [79].

Once again, to handle image recognition, partial recognition of primitives is used
to guide the recognition of remaining parts within it [69]. In this context, for a
complete image recognition, the effect of spatial relations between the primitives
on recognition performance has to be determined [70, 71]. In graph-based pattern
representation, connectivity that exists between the nodes must have meaningful
information. Spatial reasoning has been considered as a central skill since it is a
common and natural way to share spatial information through the use of spatial
predicates [68] that ultimately derive relationship between the primitives. To illustrate
such a concept, we refer to Fig. 5.13, where it shows how connectivity between
the primitives must be meaningful for recognition. To compute spatial relations, a
common angle-based theory based on star calculus is shown in Fig 5.7.

5.6 Can We Take Complex and Composite Graphical
Symbols into Account?

Not just limited to star calculus model, in document image analysis, precise rela-
tions are required to analyze/understand scanned architectural and color map docu-
ments [160], recognize models [72], and to define efficient retrieval methods [75–77,
161]. Similarly, authors have shown the usefulness of relational indexing of vectorial
primitives for line drawing images [162]. Considering the problem of symbol local-
ization in real documents, composed of individual parts and constrained by spatial
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relations, as said before, global signal-based descriptors cannot be applied since they
are, unfortunately, primarily designed for applications where symbols are isolated.
Such a problem related to the segmentation/recognition paradigm [163], for instance,
where an accurate segmentation of meaningful parts is expected. In this context (as
shown in Fig. 4.3 of Chap. 4), we are required to formalize the possible links that
exist between them to build a graph-like structure [159, 164, 165]. Considering such
a real-world problem, these methods outperform the state-of-the-art methods used
in graphical symbol recognition.

5.6.1 Symbol Recognition Using Spatial Relations

Following earlier section, let us take those graphical symbols as shown in Fig. 4.3 of
Chap. 4. If we consider/follow the how structural approaches have been defined, we
can easily come up with the idea that spatial relations can be computed between all
possible pairs of the visual primitives as shown in Fig. 5.2 that compose a complete
symbol. At the same time, we also need to think of time complexity. Note that the
concept was primarily taken from previous works [5, 6, 159] in order just to provide
a screenshot of how relations affect the recognition performance.

In what follows, we first have a clear concept of what spatial relations are and how
can a graphical symbol be represented. Then, a series of experimental test results
will be provided.

(a) Visual primitives and spatial relations:
A set of well-controlled visual primitives [166] are defined as shown in Fig. 5.2.
To express the spatial relations, we compute a spatial signature R that exists
between any two visual primitives: A and B. To compute R, we are required
have reference. For example, A is to the right of B: right(A,B), where B is
referenced. In this context, since the number of vocabulary types varies from
one image to another, one cannot have a thumb rule for a reference selection. In
this case, it is a wise idea to compute a unique reference point from each pair.
After that, directional relations (qualitative and/or quantitative) with respect to
the reference point can be computed. This can avoid potential ambiguity in
reference selection.
A unique reference set R is defined by the topology of the MBRs of A and B

and with the help of the 9-intersection model [154]. Using [80], R is either the
common portion of two neighboring sides in the case of disconnected MBRs or
the intersection in the case of overlapping, equal or otherwise connected MBRs.
Based on the topology, R can be either a point, a line or a rectangle. Regardless
the nature of the R, its centroid point Rp is taken as a reference point so that
spatial relation R between A and B can be computed.
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For a given reference point Rp, let us rotate a radial line with a regular interval
of Θ = 2π/m. As shown in Fig. 5.14, a radial line rotation generates a Boolean
histogram H by intersecting object X (A or B) in the space,

H(X,Rp) = [I (Rp, jΘ)] j=0,...,m−1,

where

I (Rp, θi ) =
{
1 if line(Rp, θi ) ∩ X �= ∅
0 otherwise.

Without loss of generality, such a histogram that can cover sectors defined by
two successive angle values. Furthermore, rather than providing Boolean values
(qualitative relations), one can take percentage of pixels into account of thewhole
object. Considering both objects:A and B, spatial relational signature R(X,Rp)

is the set of both histograms:

R(X,Rp) = {H(A,Rp), H(B,Rp)}. (5.1)

This means that relational signature/histogram can take object’s shape and sizes
into account, in addition to spatial features. Figure 5.15 provides a graphical
illustration.
In brief, for each sector (made by two consecutive radial lines, see Fig. 5.14),
histograms are computed for both visual primitives, i.e., counting the percentage
of pixels of the studied primitives lying in it.

(b) Graph-based graphical symbol representation:
Since visual primitives types are fixed and labeled, one can compute spatial
relations between the types (in terms of histograms described earlier). This tells
us all that symbol can be represented as a complete ARG, where each vertex
represents a distinct attribute type and the edges are labeled with a numerical
expression of the spatial relations.
More formally, we express the ARG as a 4-tuple G = (V, E, FA, FE ) where

V is the set of vertices;
E ⊆ V × V is the set of graph edges;
FA : V → AV is a function assigning labeled attributes to the vertices where
AV is the set of attributes type set

∑
T
; and

FE : E → 	E is a function assigning labels to the edges where R represents
the spatial relation of the edge E . Note that R does not provide symmetry,
R(A,B) �= R(B,A). But, this can be solved by fixed ordering of V and R is
not affected.

For any graphical symbol having three different types of attribute: {T1,T2,T3},
the following ARG representation can be made:
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G = {
V = {T1,T2,T3},
E = {(T1,T2), (T1,T3), (T2,T3)},

FA = {(T1,Tcircle), (T2,Tcorner ), (T3,Textremity)}
FE = {((T1,T2), R(T1,T2)), ((T1,T3), R(T1,T3)),

((T2,T3), R(T2,T3))}
}

This forms a complete graph, and therefore has r = t (t−1)
2 edges for t attribute

types.
Since attribute types are fully labeled, corresponding relations are computed
from between their types, the general NP-hard graph matching problem can be
avoided. For more information, refer to previous work [159].
In our matching strategy, we are first taking the simplifying assumption that V q

and V d are identical. We have observed that, for two graphs: Gq and Gd , their
corresponding vertices, V q and V d , contain the same vocabulary elements. This
means that one can set up a bijective matching functions ϕ : V q → V d and
σ : Eq → Ed . This bijection exists such that uv is an edge in graph Gq if and
only if ϕ(u)ϕ(v) is an edge in graph Gd . Further, we consider that ordering is
preserved over the vertices sets V q and V d . I.e. v1 < v2 ⇒ ϕ (v1) < ϕ (v2).
Inspired from [167] (see Fig. 5.16 for a complete illustration), thanks to our fixed
labeling of attribute types, corresponding R alignment is possible between the
two given graphs and we can provide a matching score between the two given
graphs Gq and Gd ,

Dist.(Gq , Gd) =
∑

r∈E

δ
(
Fq

E (r), Fd
E (σ (r)

)
,

where δ(a, b) = ||a − b||2. In case where two graphs are not of exact same size,
graph transformation is required (see Fig 5.16 for detailed information about
vertex and edge insertion). Further, Fig. 5.17 shows a complete idea on how two
labeled graphs are matched [167].

(c) Experiments (results and comparison):
Let uswork on a real-world industrial problem to identify a set of different known
symbols in aircraft electrical wiring diagrams: FRESH dataset (see Fig. 4.3 of
Chap. 4). To validate the method, a set of query images (30 queries) are taken
as test samples. Note that, based on the similarity score, images are ranked in
accordance with the applied query. As mentioned in Chap. 3, for evaluation,
retrieval efficiency (ηK ) for the short list K is used.
In the following, results are discussed (with comparison) and they are categorized
as follows:

(a) Radial line model (see Fig. 5.18) and
(b) Basic relations (see Fig. 5.19).
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Fig. 5.14 Relational
signature/histogram using
radial line rotation

Fig. 5.15 Relational signature/histogram will be changed in accordance with the object’s shape,
given a reference point

Fig. 5.16 A graph transformation: Gq → Gd

In Fig. 5.18, for radial line model, a series of tests with Θ varying over
{1◦, 3◦, 5◦, 7◦, and 9◦} were made. Without surprise, the lower the Θ , the better
the results. In Fig. 5.19), results from cone-shaped [82], MBR [156], and angle his-
togram [85] are shown, where they cannot be compared with the results from radial
line model.
For a comparison, in addition to shape descriptors (statistical approaches in Chap. 4),
“graphical symbol recognition using spatial relations” can also be compared with
other methods that are designed for graphical symbol recognition, such as sta-
tistical integration of histogram array (SIHA) [168] and kernel density matching
(KDM) [169]. For detailed information can be obtained from [159].
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Fig. 5.17 Computing matching cost between two graphs: G A → G B

5.6.2 Extension: Symbol Spotting

In symbol spotting/localization problem (real documents) that are composed of indi-
vidual parts and constrained by spatial relations, global signal-based descriptors
may not be an appropriate choice since they are, unfortunately, primarily designed
for applications where line symbols are isolated. In Chap. 4, we have discussed the
same.
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Fig. 5.18 Average retrieval
efficiency (ηK ) for the list
K = [1, . . . , 10] using the
radial line model. It uses
different resolutions: 1◦, 3◦,
5◦, 7◦, and 9◦. The higher
the resolution (meaning less
θ), the better the retrieval
performance (quality)
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Fig. 5.19 Average retrieval
efficiency (ηK ) for the short
list K = [1, . . . , 10] using
basic spatial relations: MBR,
cone-based (star calculus),
and angle-based techniques
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Further, if the problem is related to the segmentation/recognition paradigm [163],
an accurate segmentation of meaningful parts/regions is expected. These meaningful
primitives like saliency points, lines, and arcs can then be used to formalize the
possible links that exist between them to build a graph-like structure. Graph-based
symbol recognition techniques are powerful but can suffer from time complexity
issues. In Sect. 5.6.1, we have just discussed, where time complexity issue has been
avoided. Within the framework, can we use Bag-of-Relations (BoR) indexing will
reduce the execution time during the symbol recognition/localization process(es).

As reported in [159], meaningful primitives are basically used for building BoRs
based on their pairwise topological relations and directional relations. In other
words, topological and directional relations for all possible combinations are inte-
grated. Bags correspond to topological relations between the visual primitives, where
directional relations are further computed so that relation precision can further be



5.6 Can We Take Complex and Composite Graphical Symbols into Account? 105

exploited. The idea behind the use of two different types of spatial relations is that
one of the two relations cannot exploit rich information. For example, topological
relation: disconnected does not convey any information about how visual primitives
are oriented. This means that directional relations may provide additional/useful
information for image recognition. As a consequence, combining them could be a
better idea. Note that the number of bags is limited to the number of possible topo-
logical relations, regardless of shape, size, and number of the visual primitives that
compose the symbol. In each bag, directional relations are computed and stored.
Consequently, for recognition, directional relation matching takes place only with
those which share similar topological and vocabulary type information. This not only
simply reduces the computational complexity in matching but also avoids irrelevant
relation matching, thanks to the labeled primitive type.

In this previous section, visual primitives are grouped by type. While the idea can
avoid the NP-hardness of the underlying graph matching problem, it requires at least
two different types of visual primitives in a symbol to compute the needed spatial
relations. It is therefore inappropriate for symbols having only a single vocabulary
type (e.g., four corners from a rectangle-shaped symbol) regardless howmany visual
primitives it contains. However, computing all possible relations that exist between
individual visual primitives is computationally expensive but, it is possible to reduce
the execution using Bag-of-Relations (BoR) indexing.

(a) Bag-of-relations:
Any symbol S is decomposed into a variable number p of visual primitives,
each of which belongs to a vocabulary type Tt (in our case 1 ≤ t ≤ 4). For any
vocabulary type Tt , there are mt visual primitives,

Tt = {℘ t
i }, i = [1, . . . , mt ] and p = ∑

t mt . (5.2)

Any pair of primitives (℘1, ℘2), as illustrated in Fig. 5.20, can be represented
by both the vocabulary types each part belongs to (represented by their color)
and by the topological relation that characterizes them: (a) disconnected (DC),
(b) externally connected (EC), (c) overlap (O), (d) contain/inside (Cn/I), (e)
cover/covered by (Cr/CB), and (f) equal (EQ). This means that in general,
visual primitives are categorized into six topological relations. For simplicity,
we rewrite such a set of topological relations as

Categorization = {Ck},k = [1, . . . , 6], (5.3)

preserving the label ordering {CDC,CEC,CO, . . . ,CEQ}.
To obtain the topological relation between two primitives T (℘1, ℘2), we use the
9-intersection model [154, 170, 171] relative to the boundaries (∂∗), interiors
(∗o) and exteriors (∗−) of ℘1 and ℘2:
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T (℘1, ℘2) =
⎡

⎣
℘o
1 ∩ ℘o

2 ℘o
1 ∩ ∂℘2 ℘o

1 ∩ ℘−
2

∂℘1 ∩ ℘o
2 ∂℘1 ∩ ∂℘2 ∂℘1 ∩ ℘−

2
℘−
1 ∩ ℘o

2 ℘−
1 ∩ ∂℘2 ℘−

1 ∩ ℘−
2

⎤

⎦ . (5.4)

Their definitions use basic set operations like=, �=,⊆ and∩ [170]. For example,

• equal(℘1, ℘2) := points(℘1) = points(℘2),
• disconnected(℘1, ℘2) := points(℘1) �= points(℘2) or points(℘1) ∩ points(℘2)

= ∅,
• inside(℘1, ℘2) := points(℘1) ⊆ points(℘2), and
• intersects(℘1, ℘2) := points(℘1) ∩ points(℘2) �= ∅.
Since the intersects definition covers both equal and inside, they must be sep-
arated. Therefore, the previous definitions have been augmented with the con-
sideration of boundary and interior so that the overlap and externally connected
can be distinguished [172]:

• overlap(℘1, ℘2) := ∂℘1 ∩ ∂℘2 �= ∅ & ℘o
1 ∩ ℘o

2 �= ∅; and
• externally connected(℘1, ℘2) := ∂℘1 ∩ ∂℘2 �= ∅ & ℘o

1 ∩ ℘o
2 = ∅.

Therefore, the topological relation T (℘1, ℘2) provides a Boolean value for each
of the elements of the matrix shown in (5.4). It is straightforward to combine
these elements to obtain {Ck}.
Following visual primitives in Fig. 5.2, let us have a few examples that can help
understand the process of how bags (topology-based) can be created.

• (symbol 1 in Fig. 5.2):
In this case, all possible combinations of visual primitives are found to be
in disconnected configurations except two neighboring corners: southeast
and northeast . As a consequence, we have two different bags: disconnected
and externally connected.

• (symbol 2 in Fig. 5.2):

In this example, circles are overlapped. When thick is taken into
account, two different topological relations, i.e., externally connected (with
circle on the left) and contain/inside (with circle on the right) are found. Sim-
ilarly, northeast corner is externally connected with thick, northwest corner
is disconnected with thick, and corners are disconnected. Both corners are

covered by circles. On the whole, we have four bags: overlap, externally con-
nected, cover/covered by, and contain/inside.

Note that, in order to avoid computing several relations, visual primitive: extrem-
ity is not taken into account. For all of these pairs (in every bag), corresponding
directional relations are computed using the radial line model (as illustrated in
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Fig. 5.14). In Fig. 5.21, two relational signatures (histograms) are shown.
In the matching process, we can only consider bags where matching candidate
pairs share identical values for their vocabulary types and topological relations,
thanks to the indexing of topological bags, i.e., bag-of-relations. Further, as
an example, Fig. 5.22 shows an example, where matching can be significantly
reduced since unlike the conventional matching procedure, directional relation
matching happens only when pairs (of visual primitives) share exactly similar
vocabulary type information with the query pair in that particular bag.

(b) Results and analysis:
Like the previous concept (mentioned in Sect. 5.5), it may not be an appropriate
choice for isolated graphical symbol recognition, especially in case of degrada-
tion, noise, and deformations. In those latter cases, one cannot extract expected
visual primitives and therefore spatial relations are missed. However, for the
clean data, the method performs as best as other state-of-the-art graphics recog-
nition methods.
On the other side, the interesting part of the work is, it can be used for all kinds of
graphical symbol/element spotting in cases: composite and complex electrical
and architectural circuit diagrams.

(a) For the FRESH dataset (as mentioned before: Fig. 4.3 of Chap. 4), using the
exact same evaluation protocol (metric), average retrieval efficiency (ηK ) for
the short list K = [1, . . . , 10] is shown Fig. 5.23. The results can be compared
with Fig. 5.18, where vanilla or straight radial line model is employed. BoRs
(Fig. 5.23) provide a performance improvement by approximately 3–4% com-
pared to Fig. 5.18.
Additional interesting comparison can be summarized as follows. It is important
to comment on the previous approach [159] that is relying on anARGframework,
which requires minimum two visual primitive types. As a consequence, isolated
symbols (with a single visual primitive type) cannot be handled. For example,
in the GREC dataset, a symbol can sometimes be composed of a collection of
a single vocabulary type: four corners for any rectangle-shaped symbol. This is
how the method is different from other work, reported earlier [159].

(b) Another similar experimental test can prove the effectiveness of the BORs con-
cept. For this, let us consider SESYD datasets1 [173]. It contains two different
datasets: (i) bag-of-symbols (BoS) and (ii) electrical diagrams (circuit) (ED).
In both datasets, a model symbol is used as a query to retrieve and or spot the
exactly similar (or similar) symbols fromall database. Fromeachdatabase image,
multiple similar symbols are expected to be retrieved. Note that, as before, since
the ground truth varies from one query symbol to another, retrieval efficiency
(for evaluation) is computed. In Fig. 5.24, two examples (one per dataset) illus-
trating symbol retrieval using (a) three different queries in BoS dataset and (b)
four different queries in ED dataset.

1http://mathieu.delalandre.free.fr/projects/sesyd/.

http://mathieu.delalandre.free.fr/projects/sesyd/
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Fig. 5.20 Bag-of-relations (BoRs) model: each item in every bag represents a visual primitive and
its color represents its vocabulary type

(c) Can it be user-friendly?
Following the idea of how it works, we observe that it could be used as a user-
friendly tool for graphical symbol/element spotting (retrieval). In a few words,
user takes a set of visual primitives. Since user provides their queries by selecting
pair(s) of visual primitive, a user-friendly symbol retrieval test can be made.
Following Fig. 5.25, two queries (explained below) can be considered to check
whether the concept/technique can be user-friendly:

Query 1 “Retrieve symbols with a thick inside a circle”.
Based on the query description, symbols are retrieved from the database.
In this example, one can see no shape and size information about visual
primitives has been taken into account.

Query 2 “Retrieve rectangle-shaped symbols”.
To illustrate it, we use a set of four corners facing each other representing
a rectangle and retrieve database symbols accordingly.

5.7 Summary

In this chapter, we have comprehensively reported several different (but, major)
structural approaches for graphical symbol recognition, retrieval, and spotting. Fur-
ther, usefulness of visual cues or meaning parts that compose a graphical symbol
together with their spatial relations is explained. Common methods used to extract
visual cues are explained and experimented on graphics recognition problem. In a
similar fashion, graph-based graphical symbol recognition techniques are explained,
where the use of spatial relations is primarily focused. Testing on several different
datasets (graphics recognition), in this chapter, effect of spatial relations has been
proved. Next chapter will discuss few possibilities to combine/integrate statistical
and structural approaches for graphics recognition.
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Fig. 5.21 Twodisconnected pairs of primitives℘1 (circle) and℘2 (corner) and directional relational
histograms using the radial line model (RLM) with respect to the unique reference pointRpc . RLM
is applied for both primitives, and the unique reference point is derived using their topological
relations. More information about RLM can be found in Sect. 5.6.1

Fig. 5.22 Matching directional relations in disconnected category. Each item represents a visual
primitive and color represents its vocabulary type
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Fig. 5.23 Average retrieval
efficiency (ηK ) for the short
list K = [1, . . . , 10] on
FRESH dataset using the
BORs concept
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Fig. 5.24 Two examples
(one per dataset) illustrating
symbol retrieval using a
three different queries in BoS
dataset and b four different
queries in ED dataset
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Fig. 5.25 Symbol retrieval
in accordance with the user’s
choice: visual primitives. For
this, FRESH and GREC
datasets are used
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Chapter 6
Hybrid Approaches

6.1 Context

To effectively work on graphical symbol localization in real documents, one is able to
identify meaningful parts (regions-of-interest) that can help characterize their shape
description and formalize the possible links that exist between them. This means that
integrating spatial relations (edge feature in a graph) and shape description of the
extracted visual parts/primitives (as a node feature in a graph) can help enrich the
graphical symbol description [1].

Not a surprising (refer to Chap. 5), in the literature, structural approaches are
found to be powerful representations since they can represent how individual parts
(regions-of-interest) are connected (in the form of graph). However, relations, as
discussed in Chap. 5, always do not exploit shape information. In addition, in case
whenwe need to work on local graphical elements that can exhibit subtle differences,
global signal-based shape descriptors may not be a good choice. In order to exploit
complete information, we are required to describe local shapes.

In this chapter, let us try and combine both structural and statistical approaches,
and try to avoid the shortcomings of each of them. For this, as mentioned in the
previous chapter, graphical symbol can be decomposed by detecting their various
meaningful parts called visual primitives, and describe them using graph, where spa-
tial relations can represent edges and shape descriptors can describe nodes. Figure6.1
provides an idea of how node features can be combined with edge features, where we
do not specifically target any problem; it is a generic version of the Attributed Rela-
tional Graph (ARG), where both features are combined. For simplicity, in Fig. 6.1,
there are just numbers representing signal-based descriptors (quantified) with all
required metrical details.
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Fig. 6.1 An example
illustrating an attributed
relational graph (ARG) via a
node features; b relations
and c integrating both, for a
complete graphical symbol
description
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6.2 Hybrid Approaches for Graphics Recognition

Let us have a quick review of graphics recognition [1]. This helps to move on to
hybrid approaches. In the following, the first part of our discussion will be based on
Chap.4 and second part will be from Chap.5.

1. A comprehensive review of shape analysis and corresponding tests can be found
in [2]. More detailed discussions can be found in Chap.4. Their context consists
of isolated (mainly binary) shapes. In parallel, statistical approaches like global
signal-based descriptors [3–8] may not be suitable for distorted images. The
primary reason behind it is that small details have been filtered out. As a result,
complex and composite graphical symbols cannot be differentiated, where we
are required to make a difference between two classes of symbol with a slight
change in visual appearance. Not a surprising, the previously mentioned methods
may not accommodate with connected or composite symbols (which, in [3]). This
happens because of unstable centroid detection and possible occlusions that can
lead to build unstable/nonuniform tangents (shape context [6], for instance). In
brief, these descriptors may not be appropriate for capturing small details.
At this point, can we just combine several descriptors or combine classifiers,
separately? In the literature, researchers integrated several descriptors [9–11] and
combined several classifiers [12] to increase their performance. Such an idea was
partially taken from the GREC 1998 [13] that off-the-shelf methods are primarily
designed for isolated graphical line symbols. In these statistical approaches, even
though statistical signatures are simple to compute and do not suffer from heavy
computational cost, their discrimination power and robustness strongly depend on
the selection of an optimal set of features. This means their combination does not
guarantee expected performance feature selection that varies fromone application
to another.

2. Besides, another idea is to decompose the symbols into either vector-based primi-
tives, such as points, lines, and arcs or into meaningful parts (regions-of-interest),
such as circles, triangles, and rectangles. More detailed explanation can be found
in Chap.5 as such methods fall under structural approaches. With either vector-
based primitives or regions-of-interest, one care build attributed relational graphs
(ARG) [14, 15], region adjacency graphs (RAG) [16], constraint networks [17],
and deformable templates [18]. Their common drawback, however, is related
to error-prone raster-to-vector conversion. For example, noisy, deformed, and
degraded symbols are affected more. As a consequence, such errors can increase
confusions among different classes of symbols. In this context, changes in graph
sizes can help fluctuate in computational complexity.
Several other approaches focused on signature computation by takingmeaningful
regions-of-interest [19–21]. They speed up matching process in comparison to
graph matching. Not a surprising, they are dependent on the region-of-interest
detector; we call it visual primitives or meaningful parts/regions.

Other studies integrate spatial relations for symbol recognition: symbol repre-
sentation and matching techniques of several different structural approaches can be
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found in [2, 16, 22, 23]. These works are pertinent because structural approaches
provide a powerful representation. However, we cannot guarantee that they can pro-
vide expected outcomes; and some of their limitations can be addressed integrating
with statistical approaches.

On the whole, the conclusion is that one needs an appropriate image description
so that the advantages of statistical features can be integrated with the expressiveness
of structural approaches. Such a concept can be generic and scalable. Let us have the
statement reported by Prof. Tombre, at the event called graphics recognition (GREC)
workshop in 2010 [24]:

. . . the very structural and spatial nature of the information we work with makes structural
methods quite natural in the community. Their efficient integration into methods which also
take full advantage of statistical learning and classification is certainly the right path to
take.

How efficient it could be, if we are able to integrate two different approaches: struc-
tural and statistical by just taking their advantages?

An interesting example that uses shape descriptions and relations to form aRAG is
found in [25]. In the vector-based RAG description, segmented regions are basically
labeled as vertices and geometric properties of adjacency relations are used to label
edges. However, we are required to be robust enough so that segmented regions will
not be changed even when images are transformed.

In stroke-based hand-drawn symbol recognition, let us consider two previously
reported works [26, 27]. One is based on template-based matching and the other one
is based on ARG, where the vertices represent geometric primitives, such as lines
and arcs, and the edges represent the geometric relationships between the vertices.
Matching relies on graph matching or graph isomorphism [28], i.e., conceptually
similar to [29]. Thesemethodsworkwell if vertices arewell segmented. In their study,
online strokes can be easily segmented. Recently, Galois lattice [30] was introduced
that aims to classify structural signatures extracted from the Hough transform. These
signatures rely on a topological graph, where five topological relations are computed
between the segments in addition to their lengths. Note that their length is based
on connected and disconnected topological configurations. The first three relations
are guided by connected topology, and the remaining two are based on disconnected
topology. Their study tells us that Galois lattice-based classification is robust to noise.
The method, however, was not tested on the symbols when they are appeared with
other graphical elements or with possible texts.

6.3 Integrating Shape with Spatial Relations for Graphics
Recognition

Briefly, shape descriptors are appropriate for isolated patterns. In order to work on
complex and composite graphical symbols, bag-of-visual words approaches could
potentially be used. It, however, needs extensive training sets. In addition, it may
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Fig. 6.2 Two different features: a spatial relations and b shape descriptors are used to describe
the graphical symbol. Spatial relations are used to connect (edges in graph) between the visual
primitives (nodes) and shape descriptors (signatures) are used to statistically describe what do they
look like

not consider/preserve global structure or arrangements of the visual words that are
extracted from the studied graphical symbols. Further, human-intuitive visual seman-
tics cannot be seen. Therefore, these approaches are ill-suited in a few cases, such as
(a) when large training samples are costlier to collect; (b) when symbols’ visual data
itself is redundant; and (c) when it is required to check semantics (close-to human
description) in symbol description.

In case of real-world data, we are clear that no extensive training set is available
(FRESH dataset, i.e., aircraft electric wiring diagrams [31]). More often, only one
instance for each symbol class is available. In such a context, the approach can be
considered as an appropriate one, if we are able to use a set of well defined, robust,
high-level visual part extractors, and segmenting shapes into visual parts, where
missing a few does not destroy whole information about the symbol. The driving
motivation behind this is that well-mastered, robust, and generic extraction tools can
replace statistical bag-of-words learning techniques in case we need more data (for
learning).

This results in the extensive use of spatial relations for graphical symbol recogni-
tion (Chap. 5: once the symbols are segmented into their meaningful parts/regions,
one can use spatial relations between them, where in case of the radial line model
(we call RLM) global spatio-structural information can be expressed (but based on
visual primitives). Such relations, however, may not explicitly define shape feature
in the same way shape descriptors do. The spatial relation descriptors express global
pixel distributions between the individual parts (regions-of-interest).

In Sect. 6.4, let us explain how can we construct hybrid approach for graphics
recognition (see Fig. 6.2).



126 6 Hybrid Approaches

6.4 Hybrid Approach on Symbol Description

Let us first describe the visual primitives and their possible changes in shape and size.
From their visual appearance, one can understand that the use of shape descriptor
(feature) is worth considering in addition to the formation of relative positioning,
i.e., spatial relations.

6.4.1 Graph via Visual Primitives

As in Fig. 5.2 of Chap.5, in the following, we will discuss how can we construct an
ARG based on extracted visual primitives (graphical elements) that are connected
(via relative spatial relations).

(a) Visual primitives:
In general, the visual primitives can be of any kind. The main idea of it is
how visually pertinent for the studied application. It can be easily extended or
modified by using different vocabularies and other visual cues to adapt to other
domains.
Like in earlier chapter, in this study, based on the complexity of the problem
(electrical symbols), we have a set of well-controlled visual primitives, and they
are circles, corners, loose end extremities, and thick (filled). We can express this
as a set of visual primitive types:

∑
T

= {Tthick,Tcircle,Tcorner ,Textremity}. In
Fig. 5.2 of Chap.5, few examples are provided.

(b) Graph-based representation:
Instead of taking individual graphical elements to compute possible pairwise
spatial relations, it is wise to group them in accordance with the types/classes. In
our case, a graphical symbol has four different types of visual primitives, thick
component, circle, corner, or extremity. Note that the number of elements in one
category can be varied from one symbol to another.
To represent a symbol by a complete ARG, let us take a 4-tuple graph: G =
(V, E, FA, FE ), where
V is the set of vertices (primitive types);
E ⊆ V × V (set of graph edges);
FA : V → ∑

T
(a function that assigns attributes to the vertices); and

FE : E → RE (a function that assigns labels/types to the edges and R refers to
spatial relations of the edge E as described in Chap.5).
Formally, FA and FE can be expressed as

FA = {(T1,Tthick), (T2,Tcircle), (T3,Tcorner ), (T4,Textremity)}, and

FE = {((T1,T2), RT1,T2), ((T1,T3), RT1,T3), ((T2,T3), RT2,T3)}, (6.1)

respectively.
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For a complete graph, there exist r = t (t−1)
2 edges for t attribute types. With this

fixed and completely labeled attributes, we are able to avoid the NP-hardness
in graph matching [32, 33]. Besides, it also preserves coherence/consistency as
visual primitives are semantically different.

(c) Limitation of ARG and its extension:
In our set of visual primitives, shape and size of the thick components/patterns
vary. Variations in their shape and sizewill not help discriminate their differences
by just taking pairwise spatial relations. As a result, the performance may not
be optimal [32, 33], which has been clearly mentioned in Chap.5. In Fig. 6.3,
a closer look at the extracted thick patterns from different symbols tells us that
shape and size of the thick pattern vary, and are related to category of the symbol

from which they are extracted. For example, a thick pattern that is extracted
from a junction is visually different from another triangle-shaped ones (diode

symbol or from an arrow: , ) in both shape and size. To better distin-
guish these think patterns (in the ARG framework, as mentioned above), shape
descriptors can be applied to label vertices:

FA = {(T1,Tthick),ST1), (T2,Tcircle), (T3,Tcorner ), (T4,Textremity)}.
(6.2)

In this way, we have observed that vertices are not just labeled by their types
but also labeled by statistical signatures (via shape descriptors). However, a
single vertex (for one type of visual primitives) via a shape descriptor does not
sufficiently exploit shape information, since the elements can be sparse (having
different shapes and sizes). Therefore, we focus on thick visual primitive type,
since the number of thick patterns varies a lot from one symbol to another. Under
the ARG framework, the vertex labeled with the thick primitive type will be split
into more specialized thick sub-vertices. In general, it can be done separately for
all individual thick patterns:

ST1 = {sT1,κ , . . . , sT1,K }, (6.3)

whereK is the number of thick patterns in any studied symbol, which in return
results in a graph: {Gκ}κ=1,...,K ARGs (see Fig. 6.4).
Of course, with description as shown in Fig. 6.4), matching timewill basically be
increased and it is based on number of thick patterns that compose the symbol.
To reduce heavy computational time (processing time), let us introduce thick
pattern clustering.
Clustering of thick patterns will definitely reduce the number of graphs since
similar thick patterns can be averaged to form a single vertex for that particular
graph. Not to be confused, clustering refers to the use of shape features so that
similar ones can be grouped. Since one does not know how many thick patterns
are similar in that particular symbol, one has to work on unsupervised clustering.
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Fig. 6.3 Symbols and their corresponding thick patterns,where extracted thick patterns are enlarged
for better look (visibility)

6.4.2 Shape-Based Thick Pattern Description in Arg
via Clustering

This primary idea is to work on thick pattern clustering based on their appearance.
This means that thick patterns with different shapes will fall under different clusters
or groups with the help of shape descriptors. We have a strong assumption that
the thick patterns in one cluster are assumed to be extracted from similar types of
graphical symbols even though the source can be complex and composite in nature.
The discussion is primarily borrowed from the established work reported earlier [1,
34] that is based on PhD report [35, 36].

Let us repeat, since we have no a priori knowledge of the number of shape varia-
tions or the number of thick patterns in a database, unsupervised clustering is required.
In what follows, let us discuss how such a clustering can be handled. In general, two
basic steps [37, 38] can be discussed.

(a) Distance matrix:
After computing the similarity/dissimilarity scores between all possible pairs of
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Fig. 6.4 ARG description from three visual primitives (thick, corner and extremity, for example):
a the original graph is split into b several graphs (based on number of thick patterns)

thick patterns, a distance (similarity or dissimilarity) matrix can be constructed,
which we often call: distance matrix.
Let us represent a thick pattern p by a signature (shape) sp of size i . For thick
patterns: a and b, δ(sa,sb), the distance (similarity or dissimilarity) metric
between the signatures can be computed. Beside the use of shape descriptor, the
outcome relies on the metric used. A few but, obvious metrics are

δ(sa,sb) =

⎧
⎪⎨

⎪⎩

∑
i |sa [i] − sb [i]| (City-block),√∑

i (sa [i] − sb [i])2 (Euclidean), and
∑

i (sa [i] − sb [i])2 (Squared euclidean).

(6.4)



130 6 Hybrid Approaches

Fig. 6.5 Dendrogram
example using eight thick
patterns (labeled with
clusters c1, c2, . . . , c8). They
merged based on their
similarity (see
height/distance between
them to know which are
merged first)

There are different ways to select “which combination” of shape descriptor and
metric yields the better results, and it is basically based on the following two
issues.

(b) Merge/cluster patterns:
Similar thick patterns can be clustered/grouped that can be in the form of a hier-
archical cluster tree. Other methods/techniques can be employed.
Considering similarity matrix (via computed distance between shape descrip-
tors), for our problem, we can work on measuring their distances, i.e., how far
one pattern is from others? This means that linkage methods could potentially be
a better choice for our discussion. Note that in the literature, broadly speaking,
we have three different types of linkage methods, and all of them rely on the
distance matrix:

(i) Single-linkage clustering (SLC),
(ii) Complete-linkage clustering (CLC), and
(iii) Average-linkage clustering (ALC).

SLC is also known by nearest neighbor clustering. This means that the most
closest ones are merged to form a cluster. CLC takes the maximum distance
between the two clusters. ALC uses the mean distance between elements of
each cluster. Mathematically, the distance between two clusters ca and cb can be
expressed as

D(ca, cb) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{ δ(sa,sb) : sa ∈ ca, sb ∈ cb} (SLC),
max{ δ(sa,sb) : sa ∈ ca, sb ∈ cb} (CLC), and

1

|ca| × |cb|
∑

sa∈ca

∑

sb∈cb
δ(sa,sb) (ALC).

(6.5)
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In our specific context, we consider an agglomerative hierarchical clustering
scheme, where the similarity matrix will be used. Technically, it deals with
erasing rows and columns in this similaritymatrix each time clusters are grouped.
Grouping/clustering happens based on the similarity score, where the selected
metric and linkage method may change the outcome. If two patterns are merged,
similarity matrix will be update by erasing the rows and columns. This will also
replace the merged distance values by the linkage values. Until all clusters are
merged or it reaches a preset cluster threshold, the process repeats.
Figure6.5 shows an example of a dendrogram using agglomerative hierarchical
clustering. In Fig. 6.5, we observe that a single cluster is the outcome of the
whole clustering process. Not to be confused, having a single cluster at the
output is not our aim. The similarity between pairs is simply taken from the
linkage distance computation technique that can be either SLC, CLC, or ALC.
For instance, clusters c1 and c2 are merged at a distance of 1.5. This is also called
the dendrogrammatic distance.

The whole clustering process does not answer two questions: cluster verification
and validation. These are essentials because of the following reasons:

(a) It will check all possible pairs between both descriptor metrics and linkage
methods, and it will suffer from high time complexity issue. To avoid this, we
need to checkwhetherwe are able to compute an optimal combination via cluster
verification.

(b) How can we find the optimal number of clusters? Can we set cut-off threshold
to stop the process of agglomerative hierarchical clustering?
In Fig.??, there exists no cut-off threshold; instead, it provides a whole clus-
tering process. Cut-off threshold refers to the appropriate number of clusters at
the output. In this case, one of the two different conditions can be considered:
(a) a manual threshold and (b) an automatic threshold via cluster validation
techniques. The latter condition is interesting, since manual threshold cannot
be generic. For cluster validation, either unsupervised or supervised approaches
can be employed. In our context, unsupervised cluster validation is appropriate.

6.4.3 Cluster Verification and Validation

(a) Cluster verification:
Cluster analysis depends on

(a) shape descriptors,
(b) distance metric, and
(c) linkage function.

This means that different results can happen from different pairs of distance met-
ric and linkage technique. Besides, since the optimal combination depends on
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what shape signatures/descriptors and data are being considered, cluster verifica-
tion is required. Therefore, an obvious solution is that the cophenetic correlation
coefficient [39–41] can be used. This lets us choose the best pair.
In hierarchical clustering, the height of the link is known by cophenetic dis-
tance that represents the distance between two clusters. For any original data
S = {si }, we produce dendrogram Z after the clustering process. Suppose δ̄ is
the average value of all distance measures δ

(
si ,s j

)
between the data samples

and z̄ be the average of the Zi, j (the dendrogrammatic distance between the data
samples). The cophenetic correlation coefficient (CCC) then can be computed
as [41]

CCC =

∑

i< j

(
δ
(
si ,s j

)− δ̄
) (

Zi, j − z̄
)

√
√
√
√
√

⎡

⎣
∑

i< j

(
δ
(
si ,s j

)− δ̄
)2

⎤

⎦

⎡

⎣
∑

i< j

(
Zi, j − z̄

)2

⎤

⎦

. (6.6)

The dendrogrammatic distance is the height of the node at which these two points
are first merged (see Fig. 6.5 for better understanding).
Note that we have agreed on use of the CCC. It tells us a combined measure
between two different sets of values: (i) distance metric and (ii) linkage function.
In other words, if the clustering is valid, the linking of patterns in a cluster tree
produces a strong correlation with the distance between the clusters. Ideally, for
the accurately clustered patterns, the CCC value is equal to 1. Considering a
set of arbitrary features, we are able to illustrate (i) how the cluster verification
works and (ii) how we can we achieve the best combination of a distance metric
and a linkagemethod (see Table6.1, as an example). In Table6.1, CCCvalues are
provided for all possible pairs. In this example, like we have mentioned earlier,
the Euclidean distance metric and the average-linkage clustering technique is
found to be the best compared to others, since the CCC value is close to 1. This
helps us that no remaining pairs need to process for cluster validation. Unlike
in our illustration (see Table6.1), the number of pairs can be increased if we
employ more distance metrics.

(b) Cluster validation:
Determining the expected number of clusters is our concern, since number of
clusters has an effect on the recognition performance. For example,

• If many clusters are at the output, cluster size will be small and their elements
will be highly similar and consistent. This also means their inter-cluster ele-
ments are close to each other. Further, the more the number of clusters, the
more the time complexity. It is also sensitivity to noise.

• In an opposite case, if fewer clusters are at the output, they will then auto-
matically be larger in size. This means that intra-cluster distance can be large
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Table 6.1 CCC from all possible pairs of distance metric and clustering linkage methods (see data
in Fig. 6.6). The best pair is the one from which the CCC produces value that is closer to 1

Techniques City-block Euclidean Squared
Euclidean

SLC 0.8469 0.8738 0.8203

CLC 0.8460 0.8720 0.8203

ALC 0.8560 0.8833 0.8240

Fig. 6.6 An example of a
data: a set of 2D points. A
few 2D points are considered
to simplify the problem

i.e., their elements do not have similar appearance. They, however, are more
robust to noise since they do not take detailed information about the shape.

We have mentioned earlier that the evaluation measures that are applied to check
several aspects of cluster validity are traditionally grouped into two approaches:
supervised and unsupervised.

Supervised measures often take external indices, since they use additional infor-
mation. In our problem, since we do not have external input to determine the number
of clusters, unsupervised technique is only way to proceed. Unsupervised measures
of cluster validity are often based on (i) cluster cohesion and (ii) separation that are
under the framework of internal indices.

(i) Cluster cohesion refers to how tight is the cluster (compactness). In other words,
it expresses how closely related the objects in a cluster are.

(ii) Cluster separation refers to how distinct or well separated a cluster is from other
clusters. It is assumed that the clusters themselves should be widely separated.
Three common approaches that measure the distance between two different
clusters are (i) the closest member (in the clusters), (ii) themost distantmembers,
and (iii) the centers of the clusters.

Within the framework, we have several different indices to validate the clusters in
the literature. In this chapter, in order just to understand the concept, let us use a few
of them but well-known indices:
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(a) Dunn index,
(b) Davies–Bouldin index,
(c) Silhouette index, and
(d) Score function.

Dunn Index (DU):

It is the ratio between the minimal intra-cluster distance to maximal inter-cluster
distance [42]. The DU for k clusters can be computed as

DUk = min
i=1,...,k

⎧
⎨

⎩
min

j=i+1,...,k

⎛

⎝ dist.(ci , c j )

max
m=1,...,k

dist.(cm)

⎞

⎠

⎫
⎬

⎭
, (6.7)

and dist.(ci , c j ) = min
sa∈ci ,sb∈c j

δ(sa, sb) and

dist.(cm) = max
sa ,sb∈c

δ(sa, sb).

As expected, for large inter-cluster distance and small intra-cluster distance, it pro-
duces the maximum value.

Davies–Bouldin Index (DB):

It determines both: inter-class distance and their individual compactness [43]. The
DB index can be computed as

DBk = 1

k

k∑

i=1

max
j=1,...,k,i �= j

{
dist.(ci ) + dist.(c j )

δ(ci , c j )

}

, (6.8)

and dist.(ci ) = 1

ni

∑

sa∈ci
δ(sa, s

mean
i ),

where ni is the number of elements and smean
i is the centroid of cluster ci . The DB

index is expected to be small for the best number of clusters.

Silhouette Index (SI):

It computes the following: (i) silhouette width for each sample, (ii) average silhouette
width for each cluster, and (iii) overall average silhouettewidth for a total dataset [44].
The silhouette takes cluster tightness and separation into account. The average sil-
houette width helps decide how good the clusters are. Since it is an average of all
observations, it can be computed as

SIk = 1

n

n∑

i=1

(dist̂2.i − dist̂1.i )

max(dist̂1.i , dist̂2.i )
, (6.9)

where n is the total number of elements, dist̂1.i is the average distance between the
element i and all other elements in its own cluster, and dist̂2.i is the minimum of the
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average distance between i and elements in other clusters. It maximizes its value for
the best output.

Score Function (SF):

Like the two other indices: DI and DB, SF [45] also relates inter-class and intra-class
distances, and can be formalized as

(i) Between class distance (bcd), and
(ii) Within class distance (wcd).
Inter-class distance, i.e., bcd, can mathematically be computed as follows:

bcd =

k∑

i=1

δ(smean
i , smean

tot. ) × ni

n × k
, (6.10)

where k is the number of clusters of size n, smean
i is the centroid of cluster ci

having ni elements, and smean
tot. is the centroid of all clusters.

In a similar fashion, intra-class distance, i.e., wcd can mathematically be com-
puted as

wcd =
k∑

i=1

(
1

ni

∑

sa∈ci
δ(sa, s

mean
i )

)

. (6.11)

By taking bcd and wcd into account, SF can be computed as

SF = 1 −
(
1/ee

bcd−wcd
)

. (6.12)

The higher the value of the SF, the more appropriate the number of clusters. In
other words, it maximizes the bcd and minimizes the wcd, which is expected.

To understand how cluster validation indices work, we take an example from
Fig. 6.7, where best number of clusters are presented. In Fig. 6.7, we observe that all
cluster validation indices produce two clusters at the output.

6.5 Experiments

6.5.1 Graphical Symbol Recognition

The recognition framework principally follows the corresponding relation match-
ing (presented earlier, see Chap. 5) for matching two graphs: G1 and G2, where
G(V, E, FA, FE ). Then, their distance is computed as
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Fig. 6.7 Cluster validation: like it is mentioned in Table6.2, two clusters are at the output (from
all indices), where it started with six clusters in the beginning

Table 6.2 Cluster validation: two clusters are at the output (from all indices), where it started with
six clusters in the beginning

Indices Clusters

1 2 3 4 5 6

Silhouette
index

— 0.7650 0.6523 0.6689 0.7059 0.7983

Dunn index — 1.2878 0.6695 0.7906 0.7071 0.5590

Davies–
Bouldin
index

— 0.0359 0.0984 0.1329 0.0725 0.0428

Score
function
index

0.0000 1.0000 0.9000 0.8700 0.5620 0.5200

Dist.(G1,G2) =
∑

r∈E
δ (F1E (r), F2E (σ (r)) , (6.13)

where

• δ(, ) = distance between two relational signatures,
• F1 (respectively F2) = function that computes relational signature of an edge, and
• σ : E1 → E2 = function that maps edges from one graph to the other.

In this chapter, graphical symbol description has been enriched by adding signal-
based (shape) node features. More specifically, a symbolS hasK number of thicks
and we have a set of {Gκ}Kκ=1 ARGs representing it andK varies from one symbol
to another.

To compute the similarity between the two symbols, a query symbol S q =
{Gq

κ}Kκ=1 and a database symbol S db = {Gdb
κ ′ }K ′

κ ′=1, the main idea is to find the best
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matched graphs pair, i.e., distance between them is small (or close to zero). To
find similarity between the symbols,S q andS db, their corresponding graphs, Gdb

κ

(database) Gq
κ (query), are matched. For a pair of symbols S † and S ‡, we can

formally compute the minimum distance as follows:

�(S †,S ‡) = min
κ

(

min
κ ′

(
Dist.(G†

κ ,G
‡
κ ′)
))

. (6.14)

In Fig. 6.8, we have three possible cases to realize graph matching, where thick
pattern clustering is not considered. The closest candidate for any query symbolS q

inwhole database symbols {S db}db=1,...,DB can be computed asmin
db

(
�
(
S q ,S db

))
.

We are not just limited to select the closest candidate (recognition); retrieval is
possible, where database symbols are ranked based on the similarity score.

Like other graph matching procedure (mentioned in previous chapters), it may
suffer from heavy computational complexity. But an inclusion of thick pattern clus-
tering can help reduce time complexity in graph matching.

For each query symbol, the first step is to select the cluster in which the query
thick belongs to. For distance computation, between any test thick pattern, centroid
(signature) of the particular cluster, i.e., δ(sa, smean

i ), is used. With this process, more
than one cluster can be selected if a query symbol has multiple thick patterns with a
different appearance (shape). Once we select cluster(s), the symbols related to those
thick patterns (corresponding symbols) are taken for graphmatching. Note that graph
matching is explained in Eq. (6.13).

6.5.2 Results

For shape-based signatures (to label nodes), let us employ exactly similar set of
shape descriptors as reported in Chap. 4 in this thick pattern clustering mechanism:
(a) Zernike moments (ZM) [4], (b) R-signature [5], (c) Shape context (SC) [6], (d)
Generic Fourier descriptor (GFD) [7], and (e) DTW-Radon [46, 47].

With the use of clustering of thick patterns, we aim to take similar ones in a cluster
that eventually increase retrieval performance via corresponding relational signature
matching. Let us remind that radial line model is used to produce signature, as
discussed in Chap. 5. This means that the current approach is the combined version
of both chapters: Chaps. 4 and 5.

Not to be away from the real-world problem and to make a fair comparison with
the results (before), complex and composite graphical symbol dataset (see Fig. 4.3
of Chap.4) is considered for the test. This means that the evaluation metric, we call
retrieval efficiency [32, 33, 48, 49], is used as a measure of retrieval quality. In such
a context, let us broadly include two major objectives:

(a) Check how shape descriptors and cluster validation indices affect on the clusters
at the output, and
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Fig. 6.8 Between two
symbols: S q and S db, few
graph matching schemes are
shown. Each encircled token
represents a graph. The basic
idea is to illustrate how
simple it is, without
integrating thick pattern
clustering

(b) Check how thick pattern clustering can help enrich the symbol description
(through experimental results).

Following the reported results in Fig. 5.18 of Chap.5, it is a time to check whether
inclusion of thick pattern selection (plus relations) improves the performance of
the system. Since clustering performance relies on signatures (shape) and cluster
validation indices, it is wise to consider into account.

Figure6.9 shows the comparison of performance of cluster validation indices for
different shape descriptors. In these tests, retrieval performances on a one-to-one
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Fig. 6.9 Average retrieval
efficiency (requested list:
1−10) using signal-based
shape descriptors (aimed for
thick patterns clustering) and
several different cluster
validation indices
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basis can be observed and analyzed. In brief, GFD outperforms all, but DTW-Radon
performs almost equally having a marginal difference. Zernike moments, shape con-
text, and R-signature are lagging behind. It is important to note that these results
are based on the dataset (particular to electrical circuit diagram) and are completely
based on how thick patterns are extracted. Therefore, one cannot draw conclusion on
which descriptor performs the best, as their performances vary with the changes in
datasets, i.e., studied samples.

Shape descriptor selection does not end the process. It also needs to account cluster
validation indices since we know that results may be changed in accordance with the
change in cluster validation index. As shown in Fig. 6.9, for all shape descriptors, two
indices, Dunn and Davies–Bouldin, provide almost similar advancements, while the
remaining indices do not. Therefore, for this dataset, either Dunn or Davies–Bouldin
index can be considered.

Considering such a dataset, we observe that thick pattern selection via clustering
advances retrieval performance in addition to relational signature matching. How-
ever, the difference is marginal. This means that it does not always guarantee the
increment in performance, since difference is not statistically significant. The pri-
mary reason behind this is that not all query symbols contain thick pattern in their
visual primitive sets. In other words, the absence of thick visual primitive type means
ranking has beenmade only through relational signaturematching. For a quick visual
illustration and to check where it has been advanced, let us provide a qualitative
example.
Example

For a query , DTW-Radon (for labeling nodes, thick), , the first
five ranked database symbols retrieved are as follows:
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6.6 Conclusions

In this chapter, we have discussed a detailed study of several different (but, major)
hybrid approaches that are designed for graphics recognition, i.e., graphical symbol
recognition, retrieval, and spotting. More specifically, we have explained a complete
concept of how the shape signatures of the extracted visual primitives (showing sig-
nificant shape variations) can be integrated with spatial relations that exist between
them. Inspired from the GREC’10 [24] and real-world problem, the concept has been
tested to see how well it works. Further, we have discussed on unsupervised clus-
tering, where a very specific visual primitive i.e., thick pattern is taken into account.
Note that the clustering of thick patterns thus opens a generic idea that it can be
applied for other visual primitives (and even for other image recognition problems).
In short, this chapter aims to bring an attention to the use of a hybrid approach in
graphics recognition since it combines both worlds: structural and statistical; and
more importantly, they complement each other.

In the next chapter, let us discuss syntactic approaches for graphics recognition.
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Chapter 7
Syntactic Approaches

7.1 Syntactic Approaches-Based Graphical Symbol
Recognition

This section provides a quick review of syntactic approaches-based graphical sym-
bol recognition. Considering theories and models, in semantic approaches, syntac-
tic expressions are found to be powerful descriptions. Like semantic descriptions,
these are language independent. Interestingly, for syntactic descriptions, nonstandard
models do not pose any issue. In other words, syntactic descriptions can be made
as simple as semantic ones. Further, scientific theories can be drawn by syntactic
descriptions [1].

In graphics recognition [2], the syntactic approaches rely on grammar-based (or
rule-based) formal notions of composition. For example, graph grammars have been
widely adopted concept in describing 2D graphical symbol or pattern [3, 4]. Even
though we consider them as powerful tools, they require extensive preprocessing
in case of noisy data, where the rule-set (grammar) has to accurately describe the
shape of the pattern/symbol. For a quick reference about array, tree, and graph gram-
mars, let us refer to the previous work by Rosenfeld [5]. Graph grammars are first
used to perform diagram recognition. They were limited to local 2D patterns and/or
structures. Interestingly, graph grammars are not limited to 2D and/or isolated pat-
terns; it can also be extended to interpret electrical circuit diagrams, i.e., complex
and composite graphical symbols. For the same purpose, the build-weed-incorporate
(BWI) programming was introduced later. BWI provides a concept about interac-
tion or possible relations among distant symbols (physically) and such a property is
semantically crucial. To know more about graph grammars and their genericity, let
us refer to previous work [6].

Like it is mentioned earlier, human design with standard rules, i.e., semantics,
can help build computer-aided design (CAD) projects. The quotation of industrial
designs, for example, follows specific rules. Rules follow either the 2D grammars [7,
8] or the plex grammars [9]. Labeled graph (but, undirected) representation—which
we call web—was explained well in [7] to syntactically analyze the dimensions.
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Using the conventions of web grammar, it is possible to construct a set of rules. This
means that they specify howwell all dimension sets can be produced. Plex grammars
are powerful and can be generalized because they are able to combine the strings-,
trees-, andweb-grammars as sub-cases. Integrating relations that exist between visual
primitives or cues in a string in a grammar are crucial. But concatenation does not
always produce expected results and the effective way to integrate/combine relations
into string can be more standard. The generic schema, however, can be restricted by
the complexity of the problem [10].

Using grammars, there has always been an attraction behind the projects, such
as diagram interpretation and full syntactic analysis of engineering drawings [11,
12]. Often, attributed or labeled graph grammars and possible applications to the
schematic diagrams interpretation were introduced in [11], where the grammar was
used to extract a description. Not limited to schematic diagrams, two other classes of
diagramswere studied: flowcharts and circuit diagrams. In [12], engineering drawing
interpretation was introduced. It is based on the combination of schemata expressing
their prototypes, where construction was based on a library of image analysis (fairly
low-level) and a set of control rules with the use of parser.

Graph grammars can be supported by the use of textures in architectural plans,
where we observed that texture analysis and recognition is important [13]. Models
that are based on the texture features can add another level of image understanding.
The parser then helps decide whether the grammar accepts the symbol description
by the use of the repetitive structured patterns with different textures. A region
adjacency graph (RAG) representation can be transformed into the grammar for all
vectorized documents. After that, in [14], within the framework, as an extension
of the previous work, the clustering that is based on representatives through shape
analysis. Few other approaches were used in the process of vectorization [15] so
that data simplification by taking basic shapes is possible. This makes subsequent
processes easy. Integrating structural and syntactic approaches is always an attraction
that advances the recognition of graphical elements or symbols in the technical
documents [16].

Considering the vector-based symbol recognition, syntactic symbol recognition
concept was introduced by Yajie et al. 2007 [17]. In contrast to state-of-the-art
approaches, where geometric relations among primitives are used, their method
employs a model that can describe geometric information of all visual primitives
or cues. This, of course, relates to the whole symbol description that is based on
mathematical properties. Since it is based on mathematical model, which is rotation
and scale invariant (theoretically), in this framework, vector-based symbol recogni-
tion can achieve its optimal performance.

Formal learning techniques help characterize 2D graphical symbols [18]. For
example, authors introduced the inductive learning programming (ILP) tool to auto-
matically learn symbols that are formally described (first-order logic). An objective
of the technique is to describe 2D graphical symbols by the controlled set of visual
cues or primitives and their relationships, i.e., spatial relations. Visual cues or prim-
itives can be of any complexity; not necessarily just basic lines and/or points.
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In brief, following the state-of-the-art literature, the use of syntactic approaches
is limited and is application dependent, since it is not trivial to transform statistical
features or signatures into spatial relations (spatial predicates), such as left and right,
and top, and bottom. If transformed, it can be inaccurate and the semantic description
does not contain complete information about the symbol as compared to statistical
values. However, such approaches are always appropriate in case it requires close-to
human language interpretation/representation.

7.2 Inductive Logic Programming (ILP)

7.2.1 Basics to ILP

ILP [19–21] is a topic built at the intersection of machine learning (ML) and logic
programming (LP). In other words, it combines automatic learning and first-order
logic (FOL) programming. In the following, we describe FOL and how can we use
ILP.

(a) Machine learning:
Learning from the experience (data) for any provided task aims at advancing per-
formance [22], which is a research area under artificial intelligence (AI) [23–25].
Like all subjects in AI, machine learning requires interdisciplinary proficiency.
Different topics can be enlisted as probability theory, statistics, pattern recog-
nition, data mining, cognitive science, and computational neuroscience. It is
primarily focussed to automatically recognize complex patterns and produce
intelligent decisions based on experience. However, the difficulty lies in com-
plexity of the problems. This means that there can be several different sets of
all possible characteristics from all possible inputs. In one word, intuitive theo-
ries are based on human knowledge; meaning, systems of abstract concepts that
organize, predict, and describe the observations [26]. It resembles an interaction
of human and machine learning.
Machine learning uses several different algorithms, such as decision tree learn-
ing (DTL), association rule learning (ARL), artificial neural network (ANN),
genetic programming (GP), Bayesian network (BN), support vector machine
(SVM), reinforcement learning (RL), and ILP [2]. Among many applications,
such as natural language processing (NLP), syntactic pattern recognition (SPR),
search engines, medical diagnosis, bioinformatics, classifying DNA sequences,
speech processing, and handwriting recognition, in this chapter, we focus on
ILP to check and learn whether graphical symbols can be well described. It is
important to note that, regardless of the applications, themain aim of the learning
is to characterize the experience [27].
Let us discuss FOL first and then ILP.
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Table 7.1 Language of FOL—grammar [28]

Sentence ::= AtomicS | ComplexS

AtomicS ::= True | False | RelationSymb(Term, . . . ) | Term = Term

ComplexS ::= (Sentence) Sentence Connective Sentence | ¬Sentence

| Quantifier Sentence
Term ::= FunctionSymb(Term, . . . ) | ConstantSymb | Variable

Connective ::= ∧ | ∨ | ⇒ | ⇔
Quantifier ::= ∀ Variable | ∃ Variable

Variable ::= a | b | . . . | x | y | . . .

ConstantSymb ::= A | B | . . . | John | 0 | 1 | . . . | π |. . .
FunctionSymb ::= F | G | . . . | Cosine | Height | FatherOf | + | . . .

RelationSymb ::= P | Q | . . . | Red | Brother | Apple | > |. . . |

(b) First-order logic:
It is close to natural language that considers the problem is composed of objects,
with individual identities and characteristics that help distinguish, and rela-
tions [28]. Since relations can be functional, we can consider it as a powerful
representation. More often, in FOL, relations (between the objects) are used to
build predicates, such as

(a) loved(David, Alex),
(b) above(Ball, Table) and
(c) Russian(David).

In example (a), loved refers to relation between terms or variables: David and
Alex. For example (b), an object Ball is above another object called Table.
Similarly, an object David is a Russian citizen, expressed in example (c).
Following Table7.1, a very simple semantic of FOL can be expressed as

(∀ y Black(y) ≡ Black(Object1) ∧ Black(Object2)
∧ Black(Object3) ∧ . . .)

Using the same FOL (mentioned earlier), let us have an example (see below):

∀ y (animal(y) ∧ ¬ tiger(y)) ⇒ jumps(y).

7.2.2 How Does ILP Work?

In brief, ILP [20] combines automatic learning and first-order logic programming. It
requires three main sets of information, the automatic solving and deduction theory
set aside (see Fig. 7.1):
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Fig. 7.1 Inductive Logic
Programming (ILP)
framework

(a) Domain knowledge base K ,
(b) A set of positive examples E +, and
(c) A set of negative examples E −.

Domain knowledge base K is composed of a set of known vocabulary, rules, and
predicates (axioms). E + characterizes with the set of predicates ofK and E − aimed
to be excluded from the system. With these data, the ILP concludes the set of prop-
ertiesP in terms of predicates and domain knowledgeK such that E + can satisfy
P . In document image understanding [29, 30] and to retrieve semantics (from the
input texts) [31], such an approach has been widely used. The approach lets us learn
common characteristics within classes. This means that it can extract and express
nontrivial semantics. In the following, the ILP solver—Aleph—is freely available
from the Oxford University Computing Lab1 will be used.

7.2.3 ILP for Character/Text Recognition

ILP has been already been successfully used in many areas. However, this section is
mainly related to document analysis and recognition—any type of symbols including
handwritten characters.More specifically, we review theway how images and or texts
are described.

(a) Character recognition
As reported in [29, 30, 32], document image (structure) can be analyzed with
the use of the ILP, where it learns letters via structural description. Structural
description has beenmade through the use of visual cues or primitives in addition
to their relations (physical). As an example, the description of a letter E can be
described as shown in Fig. 7.2. In this example, we describe the letter via
the use of stroke, relations, such as part_of, line and spatial predicates,
such as right top.

1http://web2.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html.

http://web2.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html
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Fig. 7.2 Description of a
letter (adopted from [32])

(b) Semantic extraction
By extracting semantics from written texts [31, 33], complex queries can be
managed. It relies on a simple but through the use of relations. To understand
this, a typical example of how we can learn logic programs (see Fig. 7.3) is
important. The idea is to represent a problem by the defined first-order Horn-
clause (dependency tree see Fig. 7.3, adopted from [33]). Let us discuss more
about how relational structure can be expressed (see below):

is(a1). Fraun(a2). Optician(a3). a(a4). German(a5).

In general, use of the relational operator, R can be used: R(a2,a1), for
instance. With this, the aforementioned example can be encoded by
is_a(Fraun,Optician).

(c) Information extraction
To extract relevant information from unstructured texts [34], ILP has been an
attraction for several years. For example, in message understanding and infor-
mation extraction, objects/entities, such as person’s name, addresses, and affili-
ations, are widely terms [35, 36]. Further, use of the experts is important. In case
of named entity recognition (NER), experts (linguistic) have to be integrated in
addition to the use of the ILP [34]. Let us remind that ILP does not substitute
linguists, but it can use as a complementary tools where automation is required.
Based on Fig. 7.4, background knowledge can be written as

b_entity(Name). b_entity(Organization). b_entity(Address). . . .

b_word(Mr.). b_word(KC). b_word(lives). . . .

b_tag(Verb). b_tag(Noun). . . . . . .

. . .

(d) Semantic distribution
The probabilistic logical model has been recently used [37–39] and for example,
first-order logical probability tree is shown in Fig. 7.5. In Fig. 7.5,student(S)
and course(C) as well as simple probability FOL predicates are used to
describe.
With this formal description (for any problem), ILP works on reasoning.
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Fig. 7.3 Dependency tree:
“Fraun is a German
Optician”

Fig. 7.4 Entities, an
example

Fig. 7.5 First-order logical probability tree [37]

7.3 ILP for Graphical Symbol Recognition

7.3.1 Overview

Bridging the semantic gap between low-level image description and the content
within the image is important [2, 18]. As an example, it is assumed that patterns can
be described via their shape (shape feature) so that the comparison can be made to
perform classification or clustering. Expressing information contents that are close-
to human description or “natural” description has been always an interesting research
topic, which is in the framework of structural pattern recognition. In the framework
of structural approaches, low-level visual cues or primitives that helps build lexical
data is the first step terminal concepts, where spatial predicates are widely used so
that higher level description (rules) can be possible [40].

In this approach,weaim todescribe visual cues primitives (structures, for instance)
that compose a complete symbol. As an example, few visual primitive types are
considered (Fig. 5.2 ofChap.5). Once the 2Dgraphical symbol is expressed as a set of
visual primitives, their relations can be computed using the quantitative assessment
of directional spatial relationships, such as “to the right of,” “above,” and “south
of.” To compute spatial predicates, the vanilla version of the force histogram-based
approach was used [41–43]. This helps us describe a symbol with FOL predicates,
visual cues/primitives, and their possible relations (relative positions). In general,
such a framework yields an interesting way to describe any studied image. It contains
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both expressiveness and flexibility. However, the actual set of visual cues can be small
and/or large and therefore, their relations. As an example, we are able to reduce or
extend the size in accordance with the need and the algorithms to describe relations.
For example, the use of statistical- or signal-based extractions can help optimize the
sie [44]. Let us remind that relations that convey the relative positioning between the
visual cues can also include quantitative information (e.g., [45–47]).

7.3.2 Graphical Symbol Representation

Let us follow exactly similar procedure to extract visual primitives from the graphical
symbol (see Chaps. 4–6). As a reminder, in Fig. 7.6, few sample images and the
corresponding visual primitives are shown. It is important to note that we keep their
spatial positions as they are in the original image. In our illustration, for symbol
141_2, there are three types of visual primitives. Symbol 180_3 is composed of four
types of visual primitives. In a similar fashion, there are only two types of visual
primitives (circle and corner) that compose a symbol 226_2.

For a better understanding, let us take two sample images (see below):

Both of them can be described as follows (adopted from [2]):

% start: symbol 225_2*****************************

type(primitive_170,cornerne). type(primitive_171,cornernw).

type(primitive_172,cornerse). type(primitive_173,extremity).

has(img_225_2,primitive_170).

has(img_225_2,primitive_171).

has(img_225_2,primitive_172).

has(img_225_2,primitive_173).

nw(primitive_170,primitive_171).

n(primitive_170,primitive_172).

nw(primitive_170,primitive_173).

se(primitive_171,primitive_170).

ne(primitive_171,primitive_172).

n(primitive_171,primitive_173).

s(primitive_172,primitive_170).

sw(primitive_172,primitive_171).

w(primitive_172,primitive_173).

se(primitive_173,primitive_170).

s(primitive_173,primitive_171).
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Fig. 7.6 Symbol decomposition via visual cues or primitives: thick, circle, corner, and extremity
(adopted from [2])
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e(primitive_173,primitive_172).

% end: symbol 225_2*****************************

% start: symbol 226_2*****************************

type(primitive_174,circle).

type(primitive_175,cornerne).

type(primitive_176,cornerse).

type(primitive_177,cornersw).

has(img_226_2,primitive_174).

has(img_226_2,primitive_175).

has(img_226_2,primitive_176).

has(img_226_2,primitive_177).

e(primitive_174,primitive_175).

e(primitive_174,primitive_176).

inside(primitive_174,primitive_177).

w(primitive_175,primitive_174).

n(primitive_175,primitive_176).

nw(primitive_175,primitive_177).

w(primitive_176,primitive_174).

s(primitive_176,primitive_175).

w(primitive_176,primitive_177).

inside(primitive_177,primitive_174).

se(primitive_177,primitive_175).

e(primitive_177,primitive_176).

% end: symbol 226_2*****************************

With such a description (symbol 225_2, for instance), we observe that the first
two lines refer to the visual primitive types:

type(primitive_AA, visual_primitive).

After that, the next four lines tell us where they come from, i.e., image_name

has(image_name,primitive_AA).

The last six lines convey the pairwise spatial relations using the spatial predicates,

s(primitive_AA,primitive_BB)

i.e., primitive_AA is to the south primitive_BB.
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7.3.3 Graphical Symbol Recognition

The primary idea is to learn common characteristics from set of chosen symbols. This
helps express nontrivial knowledge of visual representations, relying on semantic
concept. Let us have a few tests such that we can understand how ILP solver works.

(a) Proof of a concept, example:
To prove the concept, let us take a small set of symbols, as shown in Fig. 7.7.
From this set, to show what kind of data we actually manipulate, let us select
two symbols (named 225_2 and 226_2) as positive examples. The remaining
symbols are taken as negative examples, i.e., counterexamples.
At the output (via ILP solver), it has a [theory] section. We expect to have
rules in it and they are related to positive examples. For each rule, the solver gives
matching statistics. It indicates how precise are the rules. The rule is said to be
perfect if it produces, in the theory section, one single rule. Such a rule covers
all positive examples, where no negative examples are covered. The latter case
is often ideal. More often, the theory covers multiple rules. Each of them covers
a subset of the positive examples. Further, it is not surprising to see negative
examples in the theory. But, in this example, we have

[theory]

[Rule 1] [Pos cover = 2 Neg cover = 0]

symbol(X):-

has(X,Y), type(Y,cornerne),

has(X,Z), n(Y,Z), type(Z,cornerse).

[positive examples covered]

symbol(img_225_2).

symbol(img_226_2).

[negative examples covered]

test

[covered]

symbol(img_225_2):-

has(img_225_2,primitive_170),

type(primitive_170,cornerne),

has(img_225_2,primitive_172),

n(primitive_170,primitive_172),type(primitive_172,

cornerse).

The last part of the theory [covered] provides an example of one symbol used
(from a set of positive examples). This allows us to have “visual” verification, for
better understanding. In our example, the complete interpretation of the output
of our solver is that symbols 225_2 and 226_2 can be formally and completely
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distinguished from other counter symbols using two corners in the following
positions:

Note that, if we check counterexamples in Fig. 7.7, we do not find exactly similar
spatial positioning of two corners (as shown above).

(b) Global behavior, extension:
Since aforementioned example (set of symbols) looks easy to characterize posi-
tive samples with respect to counter (negative) samples, we better move forward
by taking more difficult scenario. “Easy to characterize” refers to trivial solution
(rule) from ILP. For new tests, we still consider exactly same set as shown in
Fig. 7.7.

• Let us consider symbols {195_2, 198_2, 199_2, 200_2, 207_2, 208_2} as
positive examples, from which we expect to induce theory. Other symbols are
taken as counter examples. Below is the output from the ILP solver:

symbol(X):-

has(X,Y), type(Y,circle),

has(X,Z), inside(Z,Y),

type(Z,cornernw).

In this test, the chosen positive examples have circles containing a visual

primitive type, northwest corner . We observe that all positive examples
are characterized with the rule as mentioned before.

• In case of another set of positive examples, i.e., symbols, such as {180_1,
180_3, 184_1, 185_1, 185_3, and 186_2}, the ILP solver produces multiple
rules (see below).

[Rule 1] [Pos cover = 1 Neg cover = 0]

symbol(img_180_1).

[Rule 2] [Pos cover = 2 Neg cover = 0]

symbol(X):-

has(X,Y), type(Y,circle),

has(X,Z), e(Y,Z),

type(Z,cornernw).

[Rule 3] [Pos cover = 3 Neg cover = 0]

symbol(X):-

has(X,Y), type(Y,blackthick),

has(X,Z), type(Z,cornersw),

has(X,A), ne(Z,A).
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Fig. 7.7 A small set of symbol

In this test, symbol 180_1 is not covered and for the remaining positive sym-
bols, multiple rules are produced, where each of them covered by a separate
rule.

(a) [Rule 2] describes the symbols that has a circle and a corner ; and
circle is to the east of corner.

(a) In [Rule 3], we observe that the corresponding symbols has visual prim-
itives: thick and corner . Surprisingly, it has a third but unspecified,
primitive, which is at the northeast location with respect to the defined cor-
ner.
We have learned that ILP solver can induce generic relationships (regardless
of the underlying shape!) in contrast to quantitative classification [48, 49].

7.4 Summary

In this chapter, we have discussed the first step toward another approach of graphics
recognition by taking visual primitives and spatial predicates. In other words, like in
structural approaches, we have taken spatial predicates to take visual primitives into
account so that FOL-based description of the symbol is possible. Further, ILP can
be used to extract “semantic” contexts or concepts from a set of graphical symbols.
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The interesting part of such an approach is that the description of the symbols
can now be integrated/combined with other, more context-related information. Let
us summarize the approach in just two major points:

1. The information need not necessarily be visually represented (for example, from
surrounding text). As a consequence, it opens a new scope of possible combined
text/image concept characterization and learning. It is also possible to extend such
a concept to generate symbols from the FOL descriptions (for visual validation
of classification results, for instance) [50].

2. In contrast to statistical models, it can adapt the complexity of the classification
with respect to the learning data, where parameters are not required.
Besides, it can induce generic relationships (regardless of the underlying shape!)
in contrast to quantitative classification [48, 49]. On the other hand, it is observed
that if the learning set is contradictory, it cannot produce rule that helps classify
the set of symbols. An important point is that the method, as it currently stands,
depends on the visual cues/primitives.

Aswe observed that the performance and its extensions are based onwhat we have
extracted, i.e., visual primitives that compose the symbol, the idea can be extended
by increasing the visual cues. Besides, refining spatial predicates can help in preci-
sion. This means that use of relative distance and size, such as close, far, large, and
small can strengthen the image description. We are aware of that extensions can be
possible, since state-of-the-art image analysis can be used in accordance with the
need. More information can be found in [2, 18]. At the same time, considering sta-
tistical descriptions can be a better quantifier. For example, the difference between
the shapes that relies onMarkov logic can handle precise values (statistical) [51, 52].
Regarding graphical symbol recognition, a few specific reported works can be [53–
58], where relational signatures are used instead of relying on high-level semantics
(i.e., predicates, such as Left and Right). Not a surprising, these techniques are taken
from the statistical and structural approaches (previous chapters).

Prospective works will be to combine such a concept to formal concept anal-
ysis [59] and Galois lattices to achieve unsupervised learning of visual concepts.
Further, the use of bag-of-relations for recognition as discussed and validated in
Chap.5 can be taken as one of many interesting ideas.
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Chapter 8
Conclusion and Challenges

8.1 Summary State-of-the-Art Works and Extensions

We have discussed a research topic: graphical symbol recognition, which is con-
sidered as a challenging subfield of the research domain: pattern recognition (PR).
Within the PR framework, it has been taken as a key task toward document content
understanding and interpretation, and mostly architectural, engineering drawings,
and elecDBLP:phd/hal/Santosh11atrical circuit diagrams. In brief, starting with its
definition, the book discussed basic steps that are taken from the state-of-the-art
methods, a few projects, and key research standpoints. Specifically, research stand-
points are relying on the state-of-the-art works that were addressing graphics recog-
nition [1]. For a clear and concise report, readers can take a note/message reported
work [2].

At the time (around 60 and 70s) when the resource-constrained machines did not
allow complex data representation and/or recognition techniques [3], it was difficult
to automate a tool that has to be dealt with big data. With the increasing demand
and the evolution of more powerful machines, interactions between disciplines and
new projects on data mining, document taxonomy led the progress in many ways
or concepts [4]. Since the 70s, graphics recognition has a rich state-of-the-art litera-
ture [5, 6]. In the literature, the state-of-art works are grouped into the three different
categories/approaches: statistical, structural, and syntactic.

In all cases (approaches,mentioned earlier), themethods have been tested in accor-
dance with the context, i.e., defined problem that may be restricted by the industrial
needs, for instance, and the provided dataset. Within this framework, the recogni-
tion problem is trivial, where two (test and model) symbols are aligned/matched
to check how similar they are. The similarity, more often, relies on the computed
distance between the features representing the patterns. The test symbol is said to
be correctly classified as the model symbol or class from which it yields the highest
similarity score. As an extension, for a retrieval task, methods are able to short-
list model symbols in accordance with the order of similarity. Other methods are
positioned with different applications, where the recognition of graphical elements

© Springer Nature Singapore Pte Ltd. 2018
K. C. Santosh, Document Image Analysis,
https://doi.org/10.1007/978-981-13-2339-3_8

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2339-3_8&domain=pdf


164 8 Conclusion and Challenges

and/or the localization of significant or known visual parts are crucial. The latter
work is referred to as symbol spotting. Symbol spotting basically user-driven, where
test query can be either an isolated graphical symbol or other graphical elements
(meaningful parts) that signify the common characteristics of a set of train symbols
(Ref. Chap.2). For evaluation, we have observed that recognition rate (accuracy),
precision and recall, F-measure, ROC curve, and confusion matrices are common
performance measures. It is important to note that computing the aforementioned
metrics is not obvious since ground truths are uncertain and missed in case of real-
world data [7]. Therefore, for such a situation, as an alternative solution, retrieval
efficiency can be taken as a retrieval quality measure in case of datasets, where the
number of similar symbols varies from one class to another (imbalanced but labeled
ground truths). Not a surprising, it often happens in real-world project [1]. Several
different techniques/approaches are found in the literature. As stated earlier, two
major points: datasets and evaluation metrics, are important to make a fair compari-
son. This means that, in order to see, how far we have been advanced, one needs to
follow the exact similar evaluation protocol. More often, the characteristics of the
datasets, their availability for further researches, and the applications (or intentions)
may change one’s evaluation metric. Besides, one may be biased in re-implementing
previously reported algorithms/techniques. As a consequence, we are unable to track
researches done over several years, since results cannot be consistent as algorithms
may not be tuned (i.e., parameters) as in the original references [8]. As reported
in [9], document analysis and exploitation (DAE) was conceived and built around a
core data model that establishes an exhaustive range of relations between document
images, annotation areas, interpretations, or ground truth. It also connects the data to
user interactions, experimental protocols, or program executions. In Chap. 3, more
detailed discussion has been made on several different services, such as querying,
up- and download, and remote execution.

Based on our review, statistical approaches are appropriate to recognize isolated
symbols as they are robust to noise (of almost all types), degradations, deformations,
and occlusions. Statistical signatures (shape-based signatures) are basically simple
(1D feature vector) to compute with low computational cost. Several different signal-
based features can be combined. Discrimination power and robustness, however,
strongly depend on the selection of an optimal set of features. Integrating features
are not straightforward and trivial, since appropriate fusion of classifiers is also
crucial. A more detailed information can be taken from Chap. 4 and [?] for extended
results.

On contrary, structural approaches are particularly well suited for recognizing
complex and composite graphical symbols (Ref. Chap.5 and previous works [10,
11]). Under this framework, graphical elements/symbols can be used for spot-
ting/localization. For example, these techniques/algorithms are designed to recognize
meaningful region-of-interest that can be a complete graphical symbol or any basic
shapes representing the characteristics of any particular graphical symbol in technical
documents. In structural approaches,methods are relyingon symbolic data structures,
such as graphs, strings, and trees. In the state-of-the-art literature, graph-based pattern
representation (including matching) has been considered as a prominent technique
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even if it suffers from high computational cost. Graph matching cost, i.e., computa-
tional complexity often increases when complex and composite symbols are taken
for study due to the well-known problem: subgraph isomorphism. Further, due to the
presence of noise and possible distortions in the studied patterns, graph sizes vary a
lot. This variation is taken as one of the reasons that helps increase graph matching
computational cost. In contrast to statistical approaches, structural approaches pro-
vide a powerful representation since they convey how parts are connected to each
other. Such a representation preserves the technique’s generality and extensibility.
The term “extensibility” allows us to combine/integrate to other methods that come
from different approaches.

Since not a single method (either from statistical or structural) provides a satisfac-
tory performance, hybrid approaches (Ref. Chap.6) are designed to check whether
they can compliment each other. In other words, hybrid approaches try to inte-
grate best of the two worlds: statistical and structural, for instance. In the previ-
ously reported work [?], results have been extended/advanced. Such approaches are
often dedicated to the graphical symbol localization in accordance with the specific
rules and are based on a set of arbitrary graphical symbols. Not to be confused,
the concept of integrating descriptors and classifiers can be different than hybrid
approaches. Within the framework, in visual cues/primitive selection, error-prone
raster-to-vector conversion can limit the number of applications. As we are aware
that primitive extraction is not generic, one can focus on those primitives that are
important in that particular application. Therefore, depending on the studied sam-
ples, graphs vary. For example, graph can be either proximity graph or line graph.We
observed that, often, proximity graph uses local interest points (via computer vision
local descriptors) and line graph uses lines (high-level information). Researchers
have shown that the line graph is appropriate for technical line drawings.

Syntactic approaches (Ref. Chap.7) describe graphical symbols (or technical
documents) using well-mastered grammars (rule-set, for instance). For syntactic
approaches, one can use similar primitives as in structural approaches. An idea to
use syntactic approaches is to make image description close to the language (first-
order logic description). As reported in [12], statistical signatures to spatial predicates
conversion may not carry precise information. This means that no metrical details
can be found. This results syntactic approaches do not possess detailed information
and the approaches may not handle complex and composite documents.

Even thoughwe have not observed that state-of-the-artmethods are generic, appli-
cations in graphical symbol recognition are not limited. Other than conventional
graphics recognition tasks, arrow detection can be considered as one of the graph-
ical symbol/elements and has several different applications. Arrow detection was
initially designed for a technical document understanding, where detecting arrows
(pointers, in general) can help locate quotation, measurements, and of course, mean-
ingful regions/parts [13–15]. Figure8.1 shows an example of it. Not a surprising,
use of arrow detection can be extended to other domains as well. Arrow detection
has recently been considered as an important step in biomedical images to advance
the CBIR problem [16–19]. Regardless of applications, often, they aim to address
regions-of-interest. Like in technical drawing, detecting overlaid arrows in medical
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Fig. 8.1 Arrow detection: another important task in graphics recognition. Arrow detection helps
locate important quotations and meaningful parts. Highlighted regions (in yellow) are the detected
arrows

images can help speed up in region labeling since biomedical images, by nature, tend
to be very complex. Few examples are shown in Fig. 8.2. For better understanding, a
complete project is demonstrated in Fig. 8.3, where a project from the US National
Library of Medicine’s (NLM’s) entitled Open-iSM image retrieval search engine is
provided. In brief, pointer detection can minimize the distractions from other image
regions, and more importantly, meaningful regions (regions-of-interest) are often
referred to article text and figure captions. It can thus help better analyze the content
using other text semantics through the use of natural language processing. Further,
can we use pointer location to learn regions-of-interest so that one does not require to
learn all pixels (end-to-end) from the image (see Fig. 8.2)? In Fig. 8.2 (right), pointers
help learn “infiltrate” without considering all pixels into account. From the machine
intelligence (machine learning) viewpoint, one should not stop learning, since learn-
ing helps machine robust. This may sometime confuse decisions. Can we just avoid
redundancies (via the use of pointer location) fromwhichmachines are confused? Of
course, let us examine more and extend graphics recognition techniques to another
level. In a similar fashion, robust circle-like element detection can help advance
abnormality chest X-ray screening [20–22]. These examples can prove that graphics
recognition is not just limited to technical drawings, architectural drawings, electrical
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Fig. 8.2 Illustrating the importance of arrow/pointer detection that helps locatemeaningful regions.
Regions (in red) are labeled as soon as we detect arrows. These regions-of-interest (in red) are
automatically generated regions based on the changes in gradients (not annotated by experts)

Fig. 8.3 Addressing the usefulness of the annotated arrow in biomedical images. Its location
pointing region-of-interest (ROI) and relationship between the texts and ROI (source: US National
Library of Medicine’s (NLM’s) Open-iSM can help advance image retrieval search engine (url:
https://openi.nlm.nih.gov))

circuit diagrams, and other business document imaging; it can attract a large audience
(up to the level of medical imaging [23]).

https://openi.nlm.nih.gov
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