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Abstract. Mesh-free methods are particularly suitable for material
forming simulations, where application of the finite element method can
be troublesome due to mesh distortion. This work involves the simula-
tion of stretch blow moulding which is the main manufacturing process
used to produce PET drink bottles, a market estimated to grow to $45
billion by the end of 2021. Due to the large deformation involved in
the process, conventional finite element simulations can suffer from mesh
related issues. This can require a re-meshing procedure and possible solu-
tion degradation. In this paper a Lagrangian mesh-free formulation is
employed. Initial results confirm the effectiveness of mesh-free methods
in simulating the free-blow process.
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1 Introduction

Stretch blow moulding is a manufacturing process used to produce plastic bottles
for the drink industry; an industry valued at an estimated $45 billion [1]. The
process features two stages: an injection stage used to make the preform and
a process to stretch and blow this preform into the shape of a bottle, Fig. 1.
The preform is heated above its glass transition temperature and inserted into
the mould, stretched axially by a stretch rod and radially expanded by high
pressure air. In its early stages, preform design was a trial and error based
process. In recent years, developments in the field of computational mechanics
have allowed for this complex process to be simulated. Traditionally, this process
has been simulated using the finite element method (FEM). However, the task
of simulating the process is difficult due to the large deformation involved. This
is particularly problematic for the FEM where the elements may become too
distorted and force the solver to fail; implicating preform design as it is difficult
to obtain accurate thickness distributions and contact conditions, degrading the
quality of the simulation considerably in highly detailed regions.
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In the last twenty years a new class of methods, which look to overcome the
difficulties associated with the finite element method, have risen in popularity.
These methods are termed mesh-free, or mesh-less methods, and were popularised
by the element-free Galerkin method. Mesh-free methods have been applied to
large deformation, fragmentation, and fracture problems, where mesh alignment,
and distortion can cause issues. For an overview of the mesh-free methods, and
applications, see the review comprehensive review by Chen et al. [2].

In this paper, a Galerkin mesh-free method is applied to simulate the free
blow process of stretch blow moulding, which features the preform and the
stretch-rod, but no mould. The benefits of using a mesh-free method in this
work is the ability to simulate the process without encountering mesh related
issues, such as mesh distortion during large deformation, and the difficulties
associated with finer intricate details, such as logos and ribs. In the FEM these
difficulties can lead to the need to adopt a re-meshing procedure, leading to
possible solution degradation.

Fig. 1. Stretch blow moulding

2 Mesh-Free Approximation Methods

In mesh-free methods, the approximation of any scalar field u(x) is constructed
based on a set of data points. In Galerkin based mesh-free methods the moving-
least squares (MLS) [3] approximation has been applied frequently to construct
the test and trial functions. The MLS approximation was used in the element-free
Galerkin method [4], which proposes an approximation of the form:

uh(x) =
m∑

j

pj(x)aj(x) (1)

where pj is a complete polynomial basis of a given order, and aj the coefficients
of the approximation, which are obtained from a weighted least squares fit about
the point x. The weighted least squares fit is defined by the functional J(x):

J(x) =
n∑

I

w(x − xi)[pT (xI)a(x) − uI ]2 (2)
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where w(x − xi) is the weight function.

Fig. 2. Mesh-free discretisation

Minimisation of this function yields the moving least squares shape function,
defined by:

φI = pT A−1BI (3)

where A is a Gram matrix, defined as the product of the polynomial basis func-
tions:

A(x) =
N∑

I

w(x − xI)P (xI)PT (xI) (4)

and BI is given by:
BI(x) = w(x − xI)p(xI) (5)

The weight function wI defines a set of open covers ωI , Fig. 2, the union of
which should fully contain the domain, i.e. Ω ⊆ ∪IωI . Points whose domain of
influence contains the approximation point x possess a non zero and positive
weight w(x − xI) > 0. Hence, contributing to the approximation at that point.
In this work a cubic B-spline weight function, with a circular domain of influence
(r) is used Eq. 6. The size of the domain of influence is obtained by enforcing a
certain number of nodes lie within the support of a point, which is necessary for
the Gram matrix A to invertible.

w(r) =

⎧
⎪⎨

⎪⎩

2
3 − 4r2 + 4r3, if r ≤ 1

2
4
3 − 4r + 4r2 − 4

3r3, if 1
2 < r ≤ 1

0 if r > 1
(6)

Finally, the MLS approximation can then be written in terms of the shape func-
tions φI and the nodal values of the field uI :

uh(x) =
N∑

I

φI(x)uI (7)
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3 Lagrangian Mesh-Free Formulation

Consider the equilibrium of a body initially occupying the region B0, with bound-
ary Γ . It is assumed that the boundary can be divided into a displacement bound-
ary, Γu, where boundary displacements are prescribed, and a traction boundary
Γt, where prescribed loading is applied. Subject to external loading T̄ , and pre-
scribed displacements ū the body B0 will undergo a motion ϕ(X, t), such that
at any time t the coordinates of the body will be given by Ωt = ϕ(B0, t). Denote
ΩX the set of material coordinates X which define the body at t = 0, i.e.
ΩX = ϕ(B0, 0), along with the material boundaries ΓX

t and ΓX
u . In each time

instance t ∈ [0, T ], the motion ϕ(X, t) should satisfy the following boundary
value problem:

PiJ,J = ρ0ϕ̈i, X ∈ B0, t ∈ [0, T ] (8)

subject to the boundary conditions:

PiJNJ = Ti for all X ∈ ΓX
t (9)

ϕi = ϕ̄i for all X ∈ ΓX
u (10)

Multiplying through (8) by a set of virtual displacements δu yields:

(PiJ,J − ρϕ̈i) · δui = 0 (11)

Integrating Eq. 11 and applying divergence theorem yields the well known prin-
ciple of virtual work, given in terms of the material coordinates:

∫

ΩX

[δuiρ0üi + δFijPij ]dΩ −
∫

ΓX
t

δuiTidΓ = 0 (12)

Substituting the MLS approximation (7) yields the semi-discrete equations:

mI üI = fext
I − f int

I (13)

where mI is the mass of node I. The internal and external force vectors are given
by

fext
I =

∫

ΓX
t

φI T̄ dΓ ; (14)

f int
I =

∫

ΩX

BT
I P̂ dΩ (15)

where P̂ is the Voigt form of the first Piola-Kirchoff stress tensor, and BI the
strain-displacement matrix. These equations are integrated in time using an
explicit central difference time stepping scheme [5].
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3.1 Boundary Conditions

The MLS shape functions do not possess the Kronecker delta criteria (φI(XJ ) �=
δIJ), which complicates boundary condition imposition. A number of different
techniques have been proposed, including modification of the weak form [4],
and transformation methods [6]. In explicit mesh-free methods, the optimum
technique to apply boundary conditions is still an open-topic. However, in this
work the method proposed by Joldes [7] is used. Where the boundary conditions
are enforced using a predictor-corrector type approach, defined by:

u = upre + ucorr (16)

where ucorr is obtained from the solution of a system of equations about the
(n + 1)th time step, which results in the following update formula:

ucorr = P (ū − Φu) (17)

where Φ is a matrix of shape function values at boundary points, and P a matrix
that converts displacement corrections into the traction force that would be
required to enforce the kinematic constraint.

3.2 Domain Integration

Domain integration is required to integrate the weak form. Conventionally, as in
the finite element method, this is performed using Gauss integration. However,
due to the non-polynomial characteristic of mesh-free shape functions, and mis-
alignment of the supports with the integration point high errors can be attributed
to this technique [8]. In lieu of this, nodal integration schemes have been pro-
posed, however they have been shown to suffer from rank instabilities. In order
to remove these instabilities Chen et al. [9] proposed a smoothed integration
scheme. This integration scheme is constructed to satisfy the divergence free
condition necessary for first order convergence:

∑

I

∇φI = 0 (18)

In order to satisfy the divergence free condition the deformation gradient is
smoothed around a nodal representative domain, constructed from a Delaunay
tessellation. The smoothing is given by:

FiJ(xL) =
1

AL

∫

ΓL

φIuIinJdΓ + δiJ (19)

4 Simulation

4.1 Material Model

Motivated by the rubber-like behaviour of PET above its glass transition temper-
ature Tg, a hyperelastic material model was fitted to biaxial data. The biaxial
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Fig. 3. Material model

data was obtained using the Queen’s biaxial stretcher [10] at a strain rate of
8s−1, and a temperature of 105 ◦C (Fig. 3).

The Yeoh model was chosen based on this fit, the strain energy density func-
tion for this model is given by [11]

ψ(C10, C20, C30, κ) = C10(I∗
1 − 3)+

C20(I∗
1 − 3)2 + C30(I∗

1 − 3)3 +
κ

2
(J − 1)2 (20)

where (C10, C20, C30, κ) are the material parameters in the Yeoh model, J the
determinant of the deformation gradient F , and I∗

1 the first invariant of the
deviatoric Cauchy deformation tensor C, defined by:

I∗
1 = trace(C∗) (21)

where
C∗ =

1
J2/3

FT F (22)

4.2 Loading

The material parameters, and the loading on the preform are summarised in
Fig. 4. Both the stretch rod speed, and the pressure are ramped up over a short
time period. The pressure is applied in two stages, an initial blow at a lower pres-
sure (0.6 MPa), followed by a high pressure blow at 1.2 MPa, which is consistent
with industrial practice.

4.3 Geometry

In this simulation a 31.7 g preform was used, the geometry of which is shown
in Fig. 5(a). From this geometry, a simplified mesh-free axisymmetric model fea-
turing 409 nodes was constructed, Fig. 5(b).
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(a) Pressure and stretch rod loading

Inputs Value
Density 1380 kg/m3

Stretch
rod speed 1 m/s

C10 3.0208 MPa
C20 −0.1478 MPa
C30 0.0042 MPa
κ 500 MPa

Fig. 4. Model inputs

(a) Geometry Specification (b) Mesh-free Discretisation

Fig. 5. Preform geometry

Fig. 6. Deformation of the preform at t = 0.08, t = 0.12, and t = 0.20 s
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Fig. 7. Thickness distribution

5 Results

The evolution of the bottle is shown in Fig. 6. As it can be seen at first the
deformation is dominated by the effects of the stretch rod until a critical thickness
is reached, at this point the bottle expands rapidly in the radial direction. The
final shape of the bottle is consistent with those published in literature [12]
In Fig. 7 the thickness distribution is plotted against the axial coordinate. The
bottle is thickest at the bottom and the top, where the least stretching happens,
it then reaches a minimum across the middle section of the bottle.

6 Conclusion

In this work a mesh-free Galerkin method has been applied to simulate the free
blow process of stretch blow moulding. Results have highlighted the ability of
mesh-free methods to deal with large deformation, without encountering mesh
related issues which can cause difficulties for finite element based simulations.

7 Future Work

To progress this work further the mould has to be taken into account, and the
direct pressure application replaced with a representative model for the air flow
within the cavity [13].
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