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Abstract Workload analysis and characterization are the first steps toward effec-
tive cloud infrastructure capacity planning. Identifying workload patterns based on
resource utilization not only enables informed decisions about mapping of current
request to available capacity, but also serves as a meaningful indicator for future
resource requirements. Of paramount concern is the optimal utilization of data cen-
ter server capacity, i.e., the CPU, I/O, and memory. The compute capacity of modern
servers can be further harnessed by optimal utilization of individual CPU cores. A
precise CPU core-level usage monitoring and provisioning can lead to cumulative
benefits of optimal CPU utilization, efficient VM placement, reduced VM migra-
tions, and energy efficiency through lower power consumption. In this paper, we
make a preliminary analysis of usage patterns of CPU cores in the case of CPU-
and memory-intensive workloads on an experimental cloud setup in our laboratory.
The aim is to make a comparative analysis of the utilization of individual CPU
cores with that of aggregated CPU usage to explore the feasibility of incorporat-
ing a fine-grained usage detail for resource scheduling and VM provisioning. Initial
experiments reveal observable differences between the utilization of individual CPU
cores and that reported by aggregate CPU usage. Usage difference ranges from 1 to
29% below and between 4 and 20% above the aggregate. Incorporating such finer
details can leverage the vast compute capacity of multicore servers and effective
power usage.
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1 Introduction

Scalability, agility, guaranteed quality of service, the illusion of infinite computa-
tional resources, and access to high-end computing infrastructure on a pay-as-per-
usage basis, without the painstaking exercise of setting up a private IT infrastructure,
have led to the relentless adoption of cloud computing solutions for a range of
computing requirements—business intelligence, engineering design, scientific com-
puting, social networking, and content delivery. These services are hosted on data
centers that house hundreds of thousands of servers and supporting infrastructure.
For instance, Amazon, which made the IT infrastructure available via the Internet in
2006, a technology termed cloud computing [1], has around 450,000 servers spread
across seven different data centers around theworld [2] that provide the infrastructure
services—compute, storage, and networking. Google data center caters to the diverse
requests of its cloud users through 900,000 plus servers hosted in data centers in 16
different geographical locations [2]. The envisioned growth in computing and storage
requirements, diversity of services, and emergence of innovative server technologies
that also entail growing power consumption and increasing carbon footprints calls
for adoption of capacity planning of cloud data centers as a continual process.

Data center capacity planning aims to determine a system configuration for given
service requests that comply with the service-level agreement (SLA) [3] with min-
imal over- or under-provisioning of resources. The first step to effective capacity
planning is the analysis of resource usage patterns of cloud workloads to identify
associated challenges and their implications on resource provisioning and overall sys-
tem performance. A vast body of literature records design of scheduling algorithms
with CPU utilization as the primary performance metric [4–10]. With several CPU
cores crammed into a single socket, and multisocket servers with massive compute
capacity, the use of individual core usage as decision parameter for VM scheduling
is one possible approach to effective utilization of server compute capacity.

Driven by the observation that aggregate CPU usage is not always reflective of
the usage of individual CPU cores, we conduct a preliminary analysis of utilization
of CPU cores in case of CPU-intensive and memory-intensive workloads. Through
this study, the aim is to achieve following objectives:

1. Effective utilization of compute capacity of all the cores of a multicore server by
considering individual CPU core capacity rather than the aggregate CPU usage.

2. Identify and segregate cores that are underutilized, to schedule to incomingwork-
load thereby reducing energy wastage.

3. Mitigate situations of overloaded CPU cores to maintain desired performance
and sustainable energy consumption levels.

The rest of this paper is organized as follows. Section 2 gives a brief overview of
related work on workload analysis and characterization. Section 3 discusses some
background concepts and findings from past research that reveal suboptimal use
of CPU cores. Experimental setup and results are discussed in Sect. 4. Section 5
concludes with directions for future work.
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2 Related Work

Resource requirements of applications deployed on the cloud depend on their pro-
cessing needs. Consequently, each workload has different challenges which guide
the analysis and characterization process.

Based on behavioral characteristics, Mahambre et al. [4] identify five cloud
workload patterns, i.e., periodicity, threshold, relationship, variability, and image
similarity, for capacity planning decisions such as migration, re-provisioning,
load balancing, and initial placement of the workloads. Moreno et al. [5] present a
comprehensive analysis ofworkload characteristics to studyheterogeneity due to user
behavior and task resource usage. Their study shows that users are responsible the
most for introducing heterogeneity in the cloud as compared to task diversity which
is a consequence of diverse service requests due to the illusion of infinite resources
to the users. Authors in [6] characterize the interactive behavior of Web applications
in terms of number of instructions executed per second, and CPU, memory and disk
utilization. Peng et al. [7] develop a classification scheme based on computational
needs of the workloads for compute-intensive, I/O-intensive, and network-intensive
applications. Zhang et al. [8] consider both the heterogeneity of machine hardware
and workload diversity for dynamic capacity provisioning. Cloud infrastructure is
heterogeneous due to the presence of machines frommultiple generations, heteroge-
neous processor architectures and speed, and different memory and disk capacities.
Singh and Chana [9] characterize workloads based on QoS requirements for dif-
ferent workload types such as scientific computing, online transaction processing,
performance testing, and storage and backup services. Authors in [10] classify cloud
workloads based on their functional characteristics, into six categories—scientific
processing, Big Data application, OLTP, caching, streaming, and Web serving. The
aim is to customize the resource requirements with the actual utilization of a specific
workload for effective cloud monitoring.

Fromour study of the abovework and the conclusions drawnbyLozi et al. [11],we
infer that compute capacity of data center servers can be harnessed more effectively
by considering per-core CPU usage rather than the aggregated utilization.

3 Related Concepts

3.1 Capacity Planning

Capacity planning is the process of determining computing infrastructure (hardware,
software, and connection interface) and the floor area to house these components to
cater to services for a future time period [12]. Data center capacity planning involves
server capacity planning as well as network capacity planning. This work focusses
on server capacity planning in which an IT department determines the amount of
server hardware resources required to provide the desired levels of service for a given
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workload mix for the least cost [12]. The central objective is to provision resources
in compliance with SLA.

The notion of capacity planning as perceived by cloud actors depends on their
corresponding role. National Institute of Standards and Technology (NIST) [13]
defines five cloud actors: consumer, provider, auditor, broker, and carrier. Of interest
for server capacity planning are the roles of cloud consumer and cloud provider.
The main aim of a cloud provider is to provision resources in a way that maximizes
returns on investment, whereas a cloud user is concerned with quality of service
that would justify rental cost. These benefits can be fully realized through optimal
utilization of compute capacity of server.

3.2 Workload Analysis and Characterization

Workloadanalysis involves a detailed investigationofworkload features of interest, to
identify their behavioral characteristics, intra- and inter-dependencies, and impact on
systemperformance.Workload characterization is the process of precisely describing
the system’s global workload in terms of its main components. Workload analysis
measures cloud services along different dimensions including infrastructure capacity
planning, energy efficiency, performance, reliability, and security. Two fundamental
issues with workload analysis specific to infrastructure capacity planning [3] are:

1. Workload arrival pattern
2. Workload intensity

Workload arrival patternmeasures the rate at which jobs arrive for service.Work-
load intensity refers to the amount of work done over a unit of time. Job arrival
patterns are highly unpredictable and exhibit different behavioral patterns—diur-
nal, seasonal, and flash crowd [14]. Additionally, workloads may have either steady
resource demands or may manifest temporal patterns such as periodic, bursting,
growing, and on-and-off. An effective server capacity planning scheme should ensure
resource availability on demand and provisioning for required time duration.

Job Arrival Patterns as Non-homogeneous Poisson Process. Non-
homogeneous Poisson process is one way to model real-world job arrival patterns.
Formally, given the occurrence of events at a constant rate λ, over a period T , the job
inter-arrival time can be modeled as a Poisson process with exponential distribution
which is governed by Eq. (1) below:

P(N (t) � k) � (λt)k

k!
e−λt , k � 0, 1, 2, . . . (1)

where the randomvariableN(t) denotes the number of events that occur in t timeunits,
P is the probability of occurrence of k events, and λ, known as the rate parameter,
measures the number of events that occur per unit of time. Variability in job arrival
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can be captured using non-homogeneous Poisson process in which the rate parameter
λ changes with time.

3.3 Multicore Scheduling

Multicore processors are the consequence of unsustainable power consumption and
heat dissipation resulting from increasedCPU clock frequency for performance gains
[15]. The layout of a typical quad-core processor chip is shown in Fig. 1. Each core
has a separate Level 1 (L1) cache for data and instructions and a Level 2 (L2) cache
that holds both instruction and data, which are private. L2 cache is either united
or distributed. L2 cache is usually physically distributed with a united Level 3 (L3)
cache. Somemulticores have an off-chip Level 4 (L4) cache. Two central issueswhen
scheduling on multicore servers are contentions due to access to shared resources
and efficient utilization of individual cores. The vast processing capability of modern
multicore processors can be tapped, by keeping all the cores busy to the maximum.
This has been achieved by adapting the operating system scheduler for single-core
systems to that of scheduling large number of cores.

The Linux Scheduler. Completely Fair Scheduler (CFS), introduced in Octo-
ber 2007, is the default process scheduler in Linux since kernel version 2.6.23 and
supersedes the O(n) scheduler and O(1) scheduler. O(n) scheduler was used in ker-
nel versions from 2.4 to 2.6 and was replaced by O(1) scheduler in 2001, due to
non-scalability issues. The O(1) scheduler maintains a constant scheduling time
irrespective of the number of jobs in the system and uses average sleep time of a
process to distinguish between interactive and non-interactive jobs. However, this

Fig. 1 A multicore chip
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heuristic makes the scheduler complex with incidental cases of non-interactive jobs
being identified as interactive jobs. CFS uses the concept of execution time and alle-
viates such miscalculations by organizing the jobs as red–black tree. The job with
lowest execution time is the leftmost node of the tree and is picked up by CFS when
invoked to schedule a process. CFS is a work-conserving scheduler which implies
that the cores are prevented from being idle if there are processes ready for execution.
However, experimental studies conducted by Lozi et al. [11] reveal that the Linux
scheduler leaves cores idle while threads are waiting in run queues. This is revealed
by performance degradation.

4 Results and Discussion

To make a comparative analysis of individual core usage with that of aggregate CPU
utilization, we monitor per-core CPU utilization for workload types given below:

• A CPU-intensive workload is one that involves massive computation such as in
financial modeling and scientific applications.

• Memory-intensive workloads involve high memory activity such as pushing of
large volumes of data into and out of memory and frequent and long durations
of memory read and write operations. Such workloads need not necessarily bloat
memory usage and involve minimal CPU processing.

4.1 Experimental Cloud Setup

Usage of CPU cores is collected on a cloud setup in the laboratory. The experimental
cloud consists of a controller node, a Network File System (NFS) server node, and
two compute nodes. The configuration and software environment details are given
in Table 1.

Table 1 Node configuration

Node Configuration Environment

Server and compute Intel core i7 4790 3.60 GHz
quad-core CPU, 16-GB
1600 MHz DDR3 RAM

Linux Kernel Version
4.4.0-116-generic,
QEMU-KVM Version 2.5.0

Controller Intel core i7 4770 3.40 GHz
quad-core CPU, 16-GB
1600 MHz DDR3 RAM

Linux Kernel Version
4.4.0-116-generic
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4.2 Design of Experiments

Applications used to generate different workload types are listed in Table 2, and dif-
ferent test cases are given in Table 3. Experiments are conducted on VMs running on
a single host that uses full virtualization with Kernel-based Virtual Machine (KVM).
The core virtualization infrastructure is implemented as a loadable kernel module
(kvm.io). The modules, kvm-intel.ko and kvm-amd.ko, correspond to processors
specific to Intel and AMD, respectively. Virtualization with KVM leverages basic
mechanisms of CPU scheduling, memory management, and I/O access, provided by
the Linux kernel.

To emulate real-world service request scenario, we generate variable job arrival
times using a non-homogeneous Poisson process. Workloads are executed through a
Bash script according to the generated job arrival times. Resource utilization log is
collected for 1 hour at 3 seconds interval using System Activity Report (sar) system
monitoring tool for both the guest and the host. Usage statistics extracted from the
collected log are analyzed using R programming environment.

Baseline Resource Usage. To obtain CPU utilization for running basic system
services and virtualization overheads, we run two VMs with no other workload on
the guest or the host. A plot of the aggregated CPU usage is shown in Fig. 2, and
usage statistics are given in Table 4. Spikes in the graph indicate some high CPU
activity for a short duration. Mean value indicates that only 1–3% of the core usage
accounts for running operating system as well as virtualization software.

CPU-IntensiveWorkload on Single VM. Per-CPU core usage of host and guest
machines when running CPU-intensive workload on a single machine is depicted in
Fig. 3. Summary statistics for host and guest are given in Tables 5 and 6, respectively.

Table 2 Workload generation

Workload type Real-world application

CPU intensive Prime factorization, Fibonacci series
generation, factorial calculation

Memory intensive Swap two integers, array copy

Table 3 Test cases for usage monitoring

Test case Measurement objective

Baseline resource usage Overhead due to basic system services and
virtualization

CPU-intensive workload on single VM Individual CPU core usage

Memory-intensive workload on single VM Individual CPU core usage

CPU-intensive workload on one VM,
memory-intensive workload on second VM

CPU core usage for workloads with
complementary computational requirements

CPU-intensive workloads on three VMs CPU core usage for workloads having similar
computational requirements



36 E. Patel and D. S. Kushwaha

Fig. 2 Baseline aggregate
host usage

Table 4 Summary statistics of baseline host CPU core usage

CPU usage Min. Median Mean Max. Standard
deviation

Aggregate 0.15 2.05 2.15 48.34 2.53

Core 0 0.00 2.40 2.35 39.28 2.55

Core 1 0.00 2.20 1.99 64.87 3.13

Core 2 0.00 2.40 1.80 80.49 3.91

Core 3 0.00 1.00 2.24 44.42 2.51

Table 5 Summary statistics for host CPU core usage with CPU-intensive workload

CPU usage Min. Median Mean Max. Standard
deviation

Aggregate 1.96 75.48 70.60 80.53 13.01

Core 0 0.00 04.00 41.57 100.00 44.97

Core 1 0.34 100.00 80.73 100.00 33.48

Core 2 0.00 100.00 90.54 100.00 20.21

Core 3 0.34 100.00 68.12 100.00 41.44

Mean utilization of the cores lies between 41 and 90%, whereas aggregate usage is
70% with core 2 being highest utilized and core 0 being the least utilized than what
is given by the aggregate usage. High values for standard deviation show the widely
varying usage levels of individual cores. Core usage by the VM as given in Table 8
reveals near equal usage of all the vCPUs for executing the workload.
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(a) (b)

(c)

Fig. 3 CPU utilization for CPU-intensive workload. a Host aggregate, b per-core host, and c per-
core guest

Memory-Intensive Workloads. Figure 4 shows a plot of per-core CPU usage
for host and guest, running memory-intensive workloads on a single VM. The plots
reveal that CPU activity is low with memory-intensive workloads as compared to
CPU-intensive workloads, as the case should be. The cores either are mostly idle or
have very low utilization as the median values in Table 7 reveal.

In this case, utilization of core 1 is 2% lesser than the aggregate and utilization of
core 2 is 5% higher as given in Table 6.

Memory- and CPU-Intensive Workloads. The usage plots for this case are
shown inFig. 5, andTable 8 contains the usage statistics.Whilemean aggregatedCPU
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Table 6 Summary statistics for guest CPU core usage with CPU-intensive workload

CPU usage Min. Median Mean Max. Standard
deviation

Aggregate 2.11 100.00 92.11 100.00 17.28

Core 0 3.01 100.00 92.22 100.00 17.06

Core 1 1.67 100.00 92.09 100.00 17.32

Core 2 1.67 100.00 92.11 100.00 17.27

Core 3 1.33 100.00 92.08 100.00 17.34

(a) (b)

Fig. 4 Memory-intensive workloads a Aggregate CPU usage, b per-CPU core host usage, and c
per-core guest usage

usage is close to 21%, core 0 and core 1 have higher mean usage. Such a usage detail
can be detrimental when scheduling pCPUs to vCPUs in a virtualized environment.
Also, since computational requirements of CPU- and memory-intensive workloads
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Table 7 Summary statistics of host and guest CPU core usage for memory-intensive workload

CPU usage Min. Median Mean Max. Standard
deviation

Host usage

Aggregate 1.40 11.59 11.84 28.85 03.76

Core 0 0.00 1.97 13.135 96.20 20.81

Core 1 0.00 0.60 08.389 98.00 21.59

Core 2 0.00 1.60 15.485 100.00 22.10

Core 3 0.00 0.200 10.446 77.110 08.22

VM usage

Aggregate 5.51 45.05 45.76 100.00 14.74

Core 0 4.19 45.80 45.92 100.00 16.33

Core 1 1.60 45.20 45.59 100.00 16.23

(a) (b)

Fig. 5 Compute- and memory-intensive workloads: a host aggregate usage and b host per-core
utilization

are complementary, the workloads do not contend for compute capacity of cores as
can be seen from Fig. 6.

Compute-Intensive Workloads on three VMs. To study CPU core usage with
workloads having similar computational requirements, we run two VMs, each with
compute-intensive workloads, on a single host. Figure 7 contains the usage plots,
and utilization values are given in Table 9.

From Table 9, we make similar observations as in the previous cases that in the
case of multiple VMs running workloads in terms of similar resource requirements,
core utilization is not uniform.Mean utilization of Core 1 is higher than that reported
by the aggregate usage while that of Core 3 is below the aggregate value.



40 E. Patel and D. S. Kushwaha

Table 8 Summary statistics of host CPU Core usage for memory- and CPU-intensive workloads

CPU usage Min. Median Mean Max. Standard
deviation

Aggregate 3.23 20.62 20.95 53.79 6.23

Core 0 0.00 17.14 24.63 100.00 22.34

Core 1 0.00 18.30 25.02 100.00 24.93

Core 2 0.00 25.27 19.95 100.00 24.43

Core 3 0.00 13.21 19.17 100.00 21.94

(a) (b)

Fig. 6 Guest per-core utilization. a Memory-intensive workload and b CPU-intensive workload

Table 9 Summary statistics of host with CPU-intensive workloads on three VMs

CPU usage Min. Median Mean Max. Standard
deviation

Aggregate 53.36 73.85 75.08 100.00 10.51

Core 0 07.12 94.67 74.70 100.00 25.18

Core 1 07.38 72.65 82.02 100.00 26.16

Core 2 08.45 96.67 75.52 100.00 23.61

Core 3 10.03 94.64 67.95 100.00 22.37

Table 10 summarizes the percentage difference in utilization of individual cores
from that of the aggregated usage. With compute-intensive workloads on single VM
(Case II), a core usage of 29% below and 20% above the aggregate usage is recorded.
When running only memory-intensive workloads (Case III), individual core usage is
3% above and below the aggregate usage. Similarly, in case of CPU- and memory-
intensive workloads (Case IV) and CPU-intensive workloads onmultiple VMs (Case
V), the core usage varies between 1% below and 4% above the aggregate usage
for Case IV and 7% above and below the aggregate usage in Case V. Knowledge
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(a) (b)

Fig. 7 CPU-intensive workloads on three VMs. a Host aggregate usage and b per-core host usage

Table 10 Usage comparison of CPU cores with aggregate usage

Aggregate Core 0 Core 1 Core 2 Core 3

Case II 70.60 41.57 80.73 90.54 68.12

Case III 11.84 13.14 8.40 15.48 10.45

Case IV 20.95 24.63 25.02 19.95 19.17

Case V 75.08 74.70 82.02 75.52 67.95

of individual core usage can be instrumental in effective scheduling and resource
utilization.

5 Conclusion and Future Scope

In this work, we conducted an empirical study of utilization of CPU cores of a
multicore server to analyze core-level CPU usage to verify our observations that
aggregated CPU usage is not reflective of utilization at the core level. We collected
CPU usage for five test cases—baseline usage and CPU core usage in case of CPU-
intensive workload on single VM, memory-intensive workload on single VM, CPU-
intensive workload on one VM and memory-intensive workload on the other, and
CPU-intensive workloads on two VMs. We observe that basic system services and
virtualization software incur someoverhead in terms ofCPUusage, as the case should
be. The remaining four cases clearly bring out differences between aggregated CPU
usage and individual coreswhich ranges from1 to 29%below and between 4 and 20%
above the aggregate usage. A precise knowledge of individual core usage will help in
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identifying cores that are underutilized and making informed scheduling decisions.
Additionally, it will also be a vital input for reducing the load of overloaded cores
and devising policies to prevent aggravating of the overload situation.

As future research, we would study core usage for I/O- and network-intensive
workloads. A model based on the usage measurements of the four workload type-
s—CPU, memory, I/O, and network intensive—would then be developed for work-
load characterization and prediction at the level of individual CPU cores. We would
delve deeper into the varied usage levels of the CPU cores to study their criticality
and impact on overall performance on different workload types. Scheduling policies
that consider usage of CPU cores and account for inferences derived from the investi-
gations would be developed, the impact of such a fine-grained scheduling on overall
system performance would be analyzed, and approaches to mitigate performance
loss would be investigated.
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