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Chapter 3
Heavy Metal Toxicity and Antioxidative 
Response in Plants: An Overview
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Abstract Environmental pollution caused by heavy metals has received worldwide 
attention. The intractable and pertinacious nature of heavy metals leads to severe 
threat to environment, and affects the life of both plants and animals, causing seri-
ous diseases in humans. Heavy metal toxicity in plants cause imbalances in the 
redox metabolism that leads to oxidative damage which is characterized by enhanced 
production of reactive oxygen species (ROS). To minimize the deleterious conse-
quences of ROS, plants in general have developed biological detoxification and 
defense mechanisms that protect the cellular components from being oxidized. 
Antioxidative defense activity of plants is composed of enzymatic scavengers such 
as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glu-
tathione reductase (GR) and guaiacol peroxidase (GPX) and non-enzymatic compo-
nents like ascorbic acid (AA), α-tocopherol, carotenoids, flavonoids and proline that 
plays the most crucial and effective role in detoxifying ROS and the changes in their 
activity is often used to predict metal tolerance. In this chapter, the current state of 
knowledge about the role of ROS, defense mechanisms and adaptation strategies of 
plants with special reference to antioxidative defense system to alleviate heavy 
metal toxicity is discussed. Recent researches have thrown ample lights on how 
enzymatic and non-enzymatic machinery of plants can protect, regulate and inte-
grate cell responses to heavy metal stress.
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3.1  Introduction

Early on, metal pollution only affected the small portion of the population which 
was in close proximity of the metal source. However, at the turn of the nineteenth 
century, the start of the industrial revolution resulted in a greater demand for prod-
ucts such as coal, iron and steel. Pollutants were no longer restricted to small areas, 
but instead, were distributed over a wide area, by means of air and water. This has 
caused deleterious effects to the ecosystem and human health. Today, many soils 
throughout the world have been known to be polluted with heavy metals.

Heavy metals include arsenic (As), silver (Ag), lead (Pb), cadmium (Cd), zinc 
(Zn), mercury (Hg), chromium (Cr), copper (Cu) iron (Fe), etc. Heavy metals are 
better described as ‘trace metals’—metals found at low concentrations, usually less 
than one ppm or less, in a specified source, e.g. soil, plant tissue or groundwater 
(Phillips 1981). Heavy metals are not considered as a pollutant if persist in low 
concentrations. They occur naturally in the environment due to their presence in 
bedrocks. Some heavy metals such as zinc and copper are also essential micronutri-
ents for living organisms. The term ‘heavy metal pollution’ refers to heavy metal 
levels that are relatively higher than the normal background concentration; mere 
presence of the metal is insufficient evidence of pollution (Alloway and Ayres 
1997).

Heavy metal concentrations in soil range from less than 1  mg kg−1 to over 
1000 mg kg−1 (Adriano 2003). They are present in the earth’s crust naturally in dif-
ferent minerals at different concentration and many of these metals are essential for 
cells (e.g. Cu, Fe, Mn, and Zn) (Marschner 1995). The world-wide emissions of 
metals to the atmosphere by natural sources is estimated as: Ni: 26, Pb: 19, Cu: 19, 
As: 7.8, Zn: 4, Cd: 1.0, Se: 0.4, (thousand tonnes year−1). Whereas, from anthropo-
genic sources: Pb: 450, Zn: 320, Ni: 47, Cu: 56, As: 24, Cd: 7.5, Se: 1.1 (thousand 
tonnes year−1) (Valavanidis and Vlachogianni 2010). It is obvious from these num-
bers that Pb, Zn, Ni and Cu are the most important metal pollutants generated by 
anthropogenic activities.

3.2  Heavy Metals and Their Impact on Plants

3.2.1  Cadmium

Cadmium is commercially used in paint pigments, glass making, electroplating, 
photography, dying, stabilizer, and in batteries. It is classified as a probable human 
carcinogen (group B1) by the USEPA and toxic to organisms. In the past, there have 
been examples of marked Cd contamination in areas where food has been grown. 
This was particularly so for rice crops in Japan where Cd concentrations from 200 
to 2000 ppb were found (Elinder 1985). In general, soils which have been histori-
cally contaminated with Cd from industrial operations are now no longer used for 
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agricultural purposes. The accumulation of Cd in water and soil has caused major 
environmental and human health concern. It is a biologically non-essential metal, 
toxic to both plant and human beings (Shukla et al. 2007).

Plants upon exposure to Cd show various symptoms such as chlorosis, growth 
inhibition, burning of root tips, and finally death (Kahle 1993). Cd affects stomatal 
function, water transport and cell wall elasticity (Baszynskiet al. 1980). Baryla et al. 
(2001) reported an increase in the stomatal resistance of plants that were treated 
with Cd. Inhibition of photosynthesis is another toxic effect of Cd, which is brought 
about by reduced stomatal conductance in response to metal toxicity and sensitivity 
of photosystem II to high Cd concentration. Cd may affect PS II on both the oxidis-
ing (donor) and reducing (acceptor) side (Haag-Kerwer et al. 1999). Rubisco activ-
ity in the Calvin cycle is inhibited by high Cd. The clearest symptom of Cd 
phytotoxicity is leaf chlorosis. High Cd concentration in the plant induces increased 
respiration and activities of the tricarboxylic acid cycle as well as other pathways of 
carbohydrate utilisation (Arisi et al. 2000).

Hyperaccumulation of Cd is a rare phenomenon in higher plants. Thlaspi caer-
ulescens has been identified as Cd hyperaccumulator (Baker et al. 2000). Ecotypes 
of T. caerulescens accumulate up to 12,500 mg kg−1 Cd dry weight, without show-
ing signs of toxicity (Peer et al. 2003). Cd hyperaccumulation in Arabidopsis hal-
lerii has also been reported (Cosio et  al. 2004). Vetiver grass could be used to 
remediate Cd-polluted soil, since it accumulated 218 g Cd ha−1 at a soil Cd concen-
tration of 0.33 mg Cd kg−1 (Chen et al. 2000). Several plant species have been iden-
tified which are capable of accumulating and tolerating moderate to high levels of 
Cd in their tissues such as Solanum lycopersicum, Chenopodium murale, Poa annua, 
Calotropis procera, and Abutilon indicum (Varun et al. 2012, 2015; D’Souza et al. 
2013).

3.2.2  Arsenic

Arsenic (As) is a naturally occurring metalloid, commonly used in pesticides and 
wood preservatives. In India, As contamination of groundwater has resulted in 
widespread well contamination and possess serious health risk. Frequent use of As 
contaminated water in irrigation resulting in As poisoning of humans and other 
animals through dietary intake (McArthur et  al. 2001). Similar contamination is 
also been reported from various regions with As in subsoils worldwide.

Arsenite [AsO2
− or As(III)] and arsenate [AsO4

−3 or As(V)] are the dominant 
inorganic arsenic moieties found in terrestrial plants and both forms are phytotoxic. 
Arsenate is predominantly found in aerobic soils. Formation of ADP-As complexes 
instead of ATP leads to cell death. Arsenate is often designated as more phytotoxic 
of the two arsenic from but the relative toxicities are species-specific (Wang et al. 
2002).

Non-accumulators have a phytotoxic threshold at approximately 5–100  mg 
kg−1As dry weight (wt.). Fern pteriodophyte, Pteris vittata can accumulate As in 
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contaminated as well as non-contaminated soils suggesting that hyperaccumulation 
is a constitutive trait (Wang et  al. 2002). Holcus  lanatus can accumulate upto 
560 mg kg−1 As, and Pteris vittata can accumulate up to 27,000 mg kg−1 As dry wt., 
with phytotoxic symptoms appearing around 10,000 mg kg−1As dry wt. (Gumaelius 
et al. 2004). Ferns like Pteris cretica, P. longifolia, and P. umbrosa can hyperaccu-
mulate As (Wei and Chen 2006). Another fern, Pityrogramma calomelanos has also 
been discovered as an As hyperaccumulator, it showed great potential in phytoreme-
diation of As contaminated soils (Francesconi et al. 2002).

3.2.3  Mercury

Over the past few decades, several thousand tons of Hg have been released to the 
environment by human activity (Ebinghaus et  al. 1999).  Once released into the 
atmosphere it can be exchanged between soil and water by wind erosion, degassing 
of mineralized rock formations, and volcanic eruptions. Use of elemental Hg-Au 
amalgamation in mining is a common practice, which results in significant Hg con-
tamination in the surrounding environment. Organomercurials like methyl-Hg and 
phenylmercuric acetate are the most toxic forms of Hg followed by ionic Hg(II), 
while elemental Hg(0) is the least toxic form.

Mercury is a persistent environmental pollutant with bioaccumulation ability in 
fish, animals, and human beings (Chang et al. 2009). The mechanism and extent of 
Hg toxicity depend strongly on the type of compound and the redox state of mer-
cury. Terrestrial plants are generally insensitive to the harmful effects of Hg. 
However, it is known to affect photosynthesis and oxidative metabolism by interfer-
ing with electron transport in chloroplasts and mitochondria. Mercury also inhibits 
the activity of aquaporins and reduces plant water uptake (Sas-Nowosielska et al. 
2008).

Hg is toxic to plants, and to date Hg hyperaccumulating plants have not been 
identified. However, Hg hyperaccumulating Amanita muscaria (mushroom) has 
been identified and can accumulate 96–1900 ng g−1 dry wt. (Falandysz et al. 2003). 
Most of the phytoremediation studies focused on converting the organomercurials 
to Hg(0), which is volatile and is released into the atmosphere. Transgenic poplar 
and cottonwood trees expressing merA and/or merB could be used as phytoremedia-
tors which do not require harvesting or replanting each season (Che et al. 2003). 
Plants growing on Hg-polluted soils show a reduced growth and vitality (Tomiyasu 
et al. 2017). Specific Hg-adapted metallophytes do not seem to exist. However, 13 
plant species accumulated Hg out of 87 examined from a highly contaminated waste 
area originating from a chemical plant in Italy (Massa et al. 2010). Polygonum avic-
ulare was identified as the best accumulator; however, its slow growth and low 
productivity prevents it to be used for phytoextraction purposes.
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3.2.4  Chromium

Chromium (Cr) with its great economic importance in industrial world is a major 
metal pollutant of the environment. It is used in industries for chrome plating, wood 
preservation, textile dyeing and pigmentation, manufacturing pulp and paper, and 
tanning (Sharma and Adholeya 2011). Leather tanning industries produce large 
amounts of organic and chemical pollutants, especially, chromium. This Cr contain-
ing untreated effluent and sludge discharged by tanneries possess a serious threat to 
the environment and human health. Chromium is present in many oxidation states 
[Cr(II) to Cr(VI)], the most common forms are Cr(0, III, and VI). World Health 
Agency and EPA has determined Cr(IV) as a carcinogen. It is considered to be 1000 
times more toxic than Cr(III). Cr(VI) contamination in the soil and groundwater has 
been reported in various regions of California, USA (EPA 2004).

Cr is a toxic and non-essential element to plants. The toxic effects of Cr are pri-
marily dependent on the metal speciation, which determines its uptake, transloca-
tion and accumulation (Shankar et al. 2005). The two stable forms of Cr i.e. Cr(III) 
and Cr(VI) are taken up by the plants by different mechanisms. Barcelo et al. (1986) 
reported an inhibition of micronutrients like P, K, Zn, Cu and Fe translocation 
within bean plant parts was observed when treated with Cr in growth matrix. Sujatha 
and Gupta (1996) reported that tannery effluent irrigation caused micronutrient defi-
ciencies in several agricultural crops. Cr induced chlorosis was also observed in rye 
grass (Ottabbong 1989). Cr compounds are highly toxic to plants and are detrimen-
tal to their growth and development (Shankar et al. 2005).

Davies et al. (2002) reported that while some plants are not affected by low Cr 
concentration (3.8 × 10−4 μM Kg−1), however it is toxic to most of the higher plants 
at 100 μM Kg−1 dry weight. Zhu et al. (1999) reported that Eichhornia crassipes 
was a good accumulator of Cr and Cd. Pulford et al. (2001) investigated Zn and Cr 
content in different tree species and found Cr to be accumulated mainly in roots, 
whereas Zn was translocated to shoots. Zavoda et al. (2001) found that Helianthus 
annuus and Brassica juncea accumulates significant Cr in roots.

3.2.5  Copper

Copper (Cu) is not poisonous in its metallic state but some of its salts are poisonous. 
Cu is an essential element and enzyme co-factor for oxidases (cytochrome c oxi-
dase, superoxide dismutase) and tyrosinases. Cu contamination in soil usually 
results from mining, pesticides, and industrial wastes. It deposits in the liver and 
disrupts the liver’s activity thus adversely affect the nervous system, reproductive 
system, adrenal function, development of the child, etc. (Badiye et al. 2013).

Cu contributes to several physiological processes in plants including photosyn-
thesis, respiration, carbohydrate distribution, nitrogen and cell wall metabolism, 
seed production and disease resistance (Kabata-Pendias 2001). Leaf chlorosis is an 
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initial symptom of Cu toxicity (Zhu and Alva 1993). Mitchell et al. (1988) reported 
leaf chlorosis in Banksia ericifolia, Casuarina distyla and Eucalyptus eximia grown 
at elevated Cu. At higher Cu toxicity, leaves become wilted before eventually 
becoming necrotic. Copper toxicity can be associated with a purpling of foliage but 
this is not apparent in all species (O’Sullivan et al. 1997).

Copper toxicity has a significant effect on root-shoot growth and biomass of the 
plants (Minnich et al. 1987). In a study conducted by Patterson and Olson (1983) 
the germination of six tree species was found less sensitive to Cu than subsequent 
root elongation. Citrus paradisi x Poncirus trifoliata seedlings exposed to excess 
Cu produce few new roots and have a thickened tap root (Zhu and Alva 1993). Most 
Cu-tolerant plants are excluders, and no confirmed Cu accumulators have been 
identified to date. Liao and Chang (2004) identified an aquatic weed; Eichhornia 
crassipes can accumulate 21.62 kg Cu ha−1, and could be used for phytoremediation 
Cu contaminated waste water. Elsholtzia haichowensis has been identified as a Cu 
tolerant and accumulating plant species in mining areas (Yang et al. 2002).

3.2.6  Zinc

Zinc (Zn) is considered as one of the most important micronutrients for animals and 
plants but on the other hand is toxic if it exceeds the sufficient level (Hambidge and 
Krebs 2007). About 70% of the world’s Zn originates from mining, while the 
remaining 30% comes from recycling secondary zinc. Farm manures also have high 
concentrations of Zn, which make them a promising amendment for Zn-deficient 
soils. Zinc is an essential element for living organisms and is toxic to living organ-
isms only at very high concentrations (McIntyre 2003). It is an essential component 
for protein production in all terrestrial life and is the second metal only to iron in 
terms of abundance in living organisms.

The first symptom of Zn toxicity exhibited by most plants is a general chlorosis 
of the younger leaves (Fontes and Cox 1995). This chlorosis can further progress to 
reddening due to anthocyanin production in younger leaves. Plants exhibiting Zn 
toxicity have smaller leaves than their control plants (Ren et al. 1993). Zinc stressed 
Glycine max exhibit vertically oriented leaves (Fontes and Cox 1995). In severe 
cases, plants may exhibit necrotic lesions on leaves and eventually entire leaf death. 
In roots, Zn toxicity is apparent as a reduction in the growth of the main root, fewer 
and shorter lateral roots and a yellowing of roots (Ren et al. 1993). Khurana and 
Chatterjee (2001) reported a reduction in biomass, seed number, seed weight and 
soluble proteins in sunflower (Helianthus annuus) plants grown in Zn-laden soil.

The first Zn hyperaccumulator identified was Thlaspi caerulescens. It can accu-
mulate 25,000–30,000 μg g−1 Zn, although T. caerulescens can accumulate a maxi-
mum dry weight of 40,000 ug g−1 Zn in its shoots (Pence et al. 2000). Arabidopsis 
halleri has also been found to increase in its shoot Zn concentration from 300 ug g−1 
dry wt at 1 μM Zn to 32,000 ug g−1 at 1000 μM Zn without phytotoxicity (Zhao 
et al. 2000).
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3.2.7  Lead

Lead (Pb) has been commonly used for thousands of years because of its wide-
spread occurrence, easy to extract and easy to work with. Pb is the most significant 
toxin of the heavy metals. It accumulates primarily in the surface soil layer, and its 
concentration decreases with the soil depth. It may exist in the atmosphere as dust, 
fumes, mist and vapours and in soil as mineral. Soils along roadsides are particu-
larly lead rich because of pollution from vehicles burning leaded gasoline (Eick 
et al. 1999). Important sources of lead pollution are geological weathering, indus-
trial processing of ore and minerals, leaching of metals from solid wastes. Once it is 
introduced into the growth matrix, it is very difficult to remove Pb.

A high Pb level in soil induces abnormal morphology in many plant species. It 
causes irregular radial thickening in pea roots, cell wall of the endodermis, and lig-
nifications of cortical parenchyma (Paivoke 1983). Lead also induces proliferation 
effects in the repair process of vascular plants. A significant amount of lead in the 
plant causes reduction in plant growth (Salim et al. 1995). Lead toxicity can cause 
plasma membrane alteration in plants because Pb2+ is physiologically similar to 
Ca2+ (Srivastava and Gupta 1996). Elevated Pb interferes with chlorophyll forma-
tion and the normal metabolism of Fe (Kacabova and Natr 1986). High concentra-
tion of Pb has been linked to poor seed germination, high stomatal resistance, 
inhibited CO2 uptake and low photosynthetic rate (Poskuta et  al. 1987). Lead 
induced inhibition of seed germination has been reported in Hordeum vulgare, 
Elsholtzia argyi, Spartina alterniflora, Pinus halepenis, Oryza sativa and Zea mays 
(Islam et al. 2007; Senger et al. 2009).

Certain plants (mostly, belonging to the Brassicaceae, Euphorbiaceae, Asteraceae, 
Lamiaceae, and Scrophulariaceae families) have been identified which have the 
potential to uptake Pb (USEPA 2000). Many plants have a strategy of Pb exclusion 
as Thlaspi praecox, which hyperaccumulates Cd and Zn but exclude Pb (Vogel- 
Mikus et al. 2005), however, several plant species can hyperaccumulate Pb. Sesbania 
drummondii, Brassica species and Pelarogonium can accumulate significant Pb 
content in roots (Blaylock et al. 1997; Sahi et al. 2002), without showing any symp-
toms of toxicity.

3.2.8  Nickel

Nickel (Ni) is an essential element that can be toxic and possibly carcinogenic in 
high concentrations only. It is found in different concentrations in all soil types of 
diverse climatic regions. The normal range of Ni in soil is 2–750 ppm, with a critical 
soil concentration at 100 ppm (Gardea-Torresdey et al. 2005). Exposure to Ni com-
pounds causes irreversible damage to the nervous system, cardiovascular system, 
lungs and gastrointestinal tract (Axtell et  al. 2003). Nickel has been classified 
among the essential micronutrients and remains associated with some metallo-
enzymes, but Ni is toxic at elevated concentrations in plants (Srivastava et al. 2005).
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Toxic symptoms of Ni include yellowing, necrosis, chlorosis, deformed and 
stunted growth and ROS generation (Halliwell and Gutteridge 1999).

Serpentine and ultramafic soils are naturally occurring regions of high Ni con-
centrations characterized by unique Ni-tolerant flora. The majority of Ni hyperac-
cumulators have been collected from these soils. Alyssum lesbiacum and Thlaspi 
goesingense are both Ni hyperaccumulating plants in the Brassicaceae family. In 
Alyssum genus alone, 48 different species have been discovered containing between 
1000 and 30,000 μg g−1 Ni in leaf (Baker and Brooks 1989; Kerkeb and Kramer 
2003). Several Ni phytoextraction using hyperaccumulators has been patented 
(Chaney et al. 1999).

3.3  Reactive Oxygen Species

Anthropogenic activities and natural tragedies such as pollution, drought, salinity, 
UV radiation, temperature extremes and heavy metals generate different kinds of 
stresses that adversely affect the biological systems and cellular metabolic pro-
cesses such as respiration and photosynthesis which unavoidably lead to the produc-
tion of reactive oxygen species (ROS). ROS are highly reactive component which 
includes free radicals such as superoxide anion (O2

•−), hydroxyl radical (OH∙), as 
well as non-radical molecules like hydrogen peroxide (H2O2) and singlet oxygen 
(1O2). ROS production takes place by a sequenced reduction of molecular oxygen 
(O2) under high energy subjection or electron-transfer reactions (del Río et al. 2006; 
Blokhina and Fagerstedt 2010; Heyno et  al. 2011). The O2 molecule with two 
impaired electrons and same spin quantum number act as a toxic and strong oxidiz-
ing agent. This spin orientation makes O2 susceptible to accept electrons one at a 
time that ultimately leads to the generation of the so-called ROS, which generate 
oxidative stress on cellular compartments. Several metabolic pathways, localized in 
different cellular compartments such as chloroplast, mitochondria and peroxisomes 
also contribute to the ROS production continuously as a byproduct of biochemical 
reactions (Navrot et al. 2007). Under normal conditions, these oxidants are scav-
enged by various antioxidative defense mechanisms and maintain a cellular equilib-
rium (Heyno et al. 2011) but heavy metal load can disturb this balance that eventually 
leads to a rapid increase in intracellular production of ROS which is significantly 
destructive for biomolecules and different compartments of the cell (Fig. 3.1). It has 
been reported that 1–2% of O2 consumption leads to the formation of ROS in plant 
tissues (Bhattacharjee 2005).

High concentration ROS are immensely harmful for plants and when the level of 
ROS exceeds the threshold level, a cell is said to be in a state of ‘oxidative stress’. 
Oxidative stress is essentially a regulated process and the destiny of plant cell is 
determined by its capacity to maintain equilibrium between the oxidative and anti-
oxidative state. ROS affect many cellular functions by damaging nucleic acids, 
 oxidizing proteins, and causing lipid peroxidation (Foyer and Noctor 2005). 
Changes in the concentration of ROS determine its function, like at low concentra-
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tion it acts as a signalling factor that trigger the defense machinery of the cell while 
at high concentration it becomes detrimental for the cell (Gratao et al. 2005).

3.4  Types of ROS

ROS has been well known for playing a dual role as both harmful and beneficial 
species which is categorised by its intracellular concentration. The most common 
ROS include singlet oxygen (1O2), superoxide radical (O2

•−), hydrogen peroxide 
(H2O2) and hydroxyl ions (OH•). Although, atmospheric oxygen is relatively non- 
reactive in its ground state as it has two unpaired electrons with parallel spin which 
makes it paramagnetic and, therefore does not participate in reactions with organic 
molecules until gets activated (Fig.  3.2), but when the cell is exposed to excess 
excitation energy reversion of one of its unpaired electron takes place that contrib-
ute to the emergence of singlet state with two electrons in different spins. This reac-
tion controls the spin orientation of electrons and thereby 1O2 undergoes divalent 
reduction with concurrent shifting of two electrons. In the process of ROS forma-
tion several intermediates are formed as shown in Fig. 3.3.

Under heavy metal stress, highly reactive singlet oxygen (1O2) can be produced 
via reaction between oxygen and the chlorophyll triplet state. The chlorophyll trip-

Fig. 3.1 Antioxidants and ROS behaviour under equilibrium and oxidative stress
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let state can react with 3O2 to give up the highly reactive 1O2 (Krieger 2005). This 
formation of photosynthetic singlet oxygen may damage the photosynthetic machin-
ery of plants i.e., PSI and PSII (Skovsen et al. 2005). 1O2, an oxidizing agent can 
damage the molecules like proteins, pigments, nucleic acids and lipids, and is 
thought to be the most important species responsible for light induced loss of PSII 
activity which may trigger cell death (Scandalios 2005). 1O2 can be quenched by 
β-carotene, α-tocopherol or can react with the D1 protein of photosystem II as a 
target. Therefore, Singlet oxygen plays an important role in providing protection 
against photooxidative stress (Halliwell 2006).

Fig. 3.2 Different types of 
ROS showing number of 
unpaired electrons

Fig. 3.3 Schematic representation of generation of different reactive oxygen species by energy 
transfer in plants
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The formation of superoxide radical (O2
•−) in chloroplast is mainly formed in the 

thylakoid localized PSI during non-cyclic electron transport chain (ETC), as well as 
other cellular compartments. It is generally considered to be the first ROS generated 
under stressful environment. It causes membrane lipid peroxidation by transforma-
tion into OH• and 1O2 which are more reactive and toxic. The O2

•− is synthesised 
through reduction of O2 during electron transport of chloroplasts and other compart-
ments of the plant cell. O2

•− is a nucleophilic reactant with both oxidizing and reduc-
ing properties that can be generated by electrons flow in PS I which accelerate the 
production of other highly harmful radicals like OH•, and more possibly 1O2 
(Halliwell 2006).

During photooxidation reactions, NADPH oxidase as well as xanthine oxidase 
(XOD) also contributes to H2O2 production in plants. H2O2 is moderately reactive 
and is relatively long-lived molecule with a half-life of 1 ms (Allen et al. 1997). 
H2O2 has no unpaired electrons, unlike other oxygen radicals; it can cross mem-
brane via aquaporins and consequently can cause oxidative damage far from the site 
of its formation. It may inactivate enzyme by oxidizing their thiol group, such as 
Calvin cycle, Cu/Zn-SOD, and Fe-SOD.

Hydroxyl radical is one of the most dangerous radical as it has a single unpaired 
electron, thus it can react with oxygen in triplet ground state. Hydroxyl radical has 
the capability to damage different cellular components such as lipid peroxidation 
(LPO), protein damage and protein destruction (Foyer et al. 1997). Excess forma-
tion of OH˙ can lead to cell death because the cells have no enzymatic mechanism 
to eliminate OH.

3.5  Sites of Production of ROS

ROS are continuously and predominantly produced at several locations in chloro-
plasts, mitochondria, peroxisomes, plasma membrane, endoplasmic reticulum and 
cell wall. But when ROS is formed by the inevitable leakage of electrons and a 
number of adverse abiotic stress factors such as light, drought, low temperature and 
heavy metal stress, it may cause significant damage to plants cell structures, whereas 
at low concentrations, it acts as secondary messenger for the plant.

3.5.1  Mitochondria

Mitochondria is known as “energy factory” and it is a major site for ROS production 
(Navrot et al. 2007). Plant mitochondria differ from animal counterparts by being 
involved in photorespiration. The cellular environment of plant mitochondria is also 
distinctive because of the presence of photosynthesis, which creates O2 and carbo-
hydrate rich environment (Noctor et al. 2006). When plants are exposed to heavy 
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metal toxicity, distribution and transport of metal ions to apoplast followed by cyto-
solar uptake causes ROS generation due to their redox-active nature (Sharma and 
Dietz 2009). The Major components of mtETC responsible for ROS production is 
complex I and complex III. Mitochondrial matrix contains several enzymes which 
produce ROS but some of them produce ROS directly like aconitase and other like 
1-galactono-ɣ-lactone dehydrogenase (GAL) which indirectly feeds electrons to 
ETC (Rasmusson et  al. 2008). O2

•− is the primary ROS formed by monovalent 
reduction in the ETC. In aqueous solution, O2

•− is moderately reactive, but this O2
•− 

is converted to H2O2 by the Mn-SOD and the APX (Sharma et al. 2012). Abiotic 
stresses like heavy metals plays a major role as they affect the plant cell bioenerget-
ics and influence the tight coupling of ETC and ATP generation by reducing the 
electron carriers like ubiquinone thus ultimately generate oxidants (Blokhina and 
Fagerstedt 2010). Transition metals such as Cu, Fe and Zn are crucial for a proper 
functioning of several enzymes involved in the TCA cycle, electron transport, syn-
thesis of ATP and antioxidative defense (Nouet et al. 2011; Tan et al. 2010). Findings 
of several studies focusing on plant metal stress responses point toward the emer-
gence of oxidative stress and mitochondrial dysfunction as determinants in metal- 
induced cytotoxicity. In several plant species, metal stress enhances mitochondrial 
ROS generation mainly by affecting respiratory gas exchange rates (Losch 2004).

3.5.2  Chloroplast

Chloroplast is an important cell organelle which plays an important role as photosyn-
thesis takes place here. It is a highly complex cell organelle which contains organised 
thylakoid membrane system that harbours all components of the light- capturing pho-
tosynthetic apparatus. PSI and PSII are the main sources of ROS in Chloroplasts 
(Fig. 3.4). ROS production by these sources is enhanced in plants by abiotic factors 
such as drought, salinity, temperature extremes as well as combination of these con-
ditions with high light stress (Fannschmidt 2003). Normally, the electron flow from 
the excited centre to PS centre and ultimately NADP which is then reduced to 
NADPH and enters the Calvin cycle and reduce the final electron acceptor, CO2. Due 
to decreased NADP supply resulting from stress conditions, there is a leakage of 
electron from ferredoxin to O2, reducing it to O2

•− (Elstner 1991).

 2 2 2 22 2O Fd O Fdred ox+ ® +-•

 

PSI and PSII plays an important role in the production of ROS. The site of leak-
age of electrons from the ETC of PSI is 2Fe-2S and 4Fe-4S clusters. PSII acceptor 
side of ETC contains QA and QB which is responsible for the generation of O2

•− 
(Cleland and Grace 1999). PS II contains a reaction centre P680 from which the 
electrons get excited. PS II is responsible for the generation of 1O2, which occurs in 
two ways, firstly, when abiotic stress upsets the delicate balance between light 
 harvesting and energy utilisation which leads to the formation of triplet Chl (3Chl*) 
which on reacting with dioxygen (3O2) liberates 1O2(Karruppanapandian et  al. 
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2011). Secondly, when ETC is over reduced the light harvesting at PS II to gener-
ates 1O2 (Asada 2006) and causes peroxidation of membrane lipids, damage mem-
brane proteins and lead to cell death (Triantaphylids et al. 2008)

3.5.3  Peroxisomes

Peroxisomes are small, dynamic and spherical organelles bounded by a single lipid 
bilayer membrane and are the major site of intracellular H2O2 production due to 
integral oxidative metabolism (Palma et al. 2009). The major function of peroxi-
somes is breakdown of very long chain fatty acids through beta-oxidation. There are 
two sites for the production of superoxide radical, first site is in the matrix of per-
oxisomes where xanthine oxidase (XOD) catalyses the oxidation of xanthine and 
hypoxanthine to uric acid which generates O2

•− and the second one is in the peroxi-
some membrane dependent on NADPH where a small ETC is composed of NADH 
and Cyt b and contribute to O2

•− production. Peroxisomes also play an important 
role in photomorphogenesis degradation of branched amino acids, biosynthesis of 
plant hormones like auxin and production of glycine betaine (Corpas et al. 2001). 
Peroxisomes also maintain a redox balance to counteract the oxidative stress. In 
peroxisomes, three integral peroxisomal membrane polypeptides (PMPs) having 
different molecular masses of 18, 29 and 32 kDa were involved in the superoxide 
production. The NADH acts as the electron donor of 18 and 32 kDa, whereas the 

Fig. 3.4 Schematic representation of generation of ROS within chloroplast under heavy metal 
stress
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29 kDa acts as the electron donor of NADPH to reduce cytochrome c. Therefore, 
peroxisomes should be considered as important signalling molecules such as O2

•−, 
H2O2 and NO˙.

3.6  Heavy Metal Induced Antioxidative Defense System 
in Plants

Under normal physiological conditions, harmful oxidizing metabolites are pro-
duced at an inexpensive level and an appropriate equilibrium exist between the gen-
eration and scavenging of ROS that maintain the redox potential of the cell. Exposure 
of plants to unfavourable environmental conditions such as temperature extremes, 
heavy metals, drought, water availability, air pollutants, nutrient deficiency, salinity 
stress perturbed this balance between the production and quenching of ROS, giving 
rise to rapid increases in intracellular ROS levels (Noctor et al. 2002; Sharma et al. 
2010) which can induce oxidative damage to lipids, proteins, and nucleic acids 
(Fig. 3.5).

Fig. 3.5 Overview of antioxidant defense mechanism of plants under heavy metal stress
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The available form of heavy metals for plants uptake are found as soluble compo-
nents in the soil solution or those solubilised by root exudates (Blaylock and Huang 
2000). Plants require certain heavy metals for their growth and upkeep, but excessive 
amounts of these metals can become toxic to plants and at the same time the ability 
of plants to accumulate essential metals equally enables them to acquire other nones-
sential metals (Djingova and Kuleff 2000). As metals are non- biodegradable, they 
adversely affect the plant both directly and indirectly. When heavy metal concentra-
tions within the plant exceed the optimal level it start showing some direct toxic 
effects like inhibition of cytoplasmic enzymes and damage to cell structures due to 
oxidative stress (Jadia and Fulekar 1999). To protect the cellular components from 
oxidative damage by heavy metal contamination, plants have developed many strate-
gies. Among them antioxidative defense mechanism is the most effective fortifica-
tion to shield the plant cell (Fig.  3.5). Plants possess very efficient scavenging 
systems for ROS that protect them from destructive oxidative reactions. These 
defenses are not restricted to the intracellular compartment, but are also found in the 
apoplast to a limited extent. Antioxidants are molecules that protect the biomole-
cules of the cell from being oxidized by free radical reactions thus reduce or obstruct 
the process of cellular damage. Though protective measures of plants are different 
from species to species, the presence of antioxidative defense is universal for all that 
includes both enzymatic and non-enzymatic forms (Tables 3.1 and 3.2).

3.6.1  Enzymatic Antioxidants

3.6.1.1  Superoxide Dismutase

Metalloenzyme superoxide dismutase (SOD) is the most effective intracellular 
enzymatic antioxidant that plays central role in defense against oxidative damage is 
found in all aerobic organisms and is susceptible to ROS mediated oxidative dam-
age. The enzyme SOD belongs to the group of metalloenzymes and catalyzes the 
dismutation of O2

•− to O2 and H2O2.

Table 3.1 Enzymatic antioxidants, their function and cellular location

Enzymatic 
antioxidants Subcellular location

Enzyme 
code Reaction catalysed

Superoxide 
dismutase (SOD)

Peroxisomes, mitochondria, 
cytosol, and chloroplast

1.15.1.1 O•−+ 2O2
•− + 2H+ → 

2H2O2 + O2

Catalase (CAT) Peroxisome and mitochondria 1.11.1.6 2H2O2 → O2+ 2H2O
Ascorbate 
peroxidase (APX)

Peroxisomes, mitochondria, 
cytosol, and chloroplast

1.11.1.11 H2O2+ AA → 2H2O + 
DHA

Glutathione 
reductase (GR)

Mitochondria, cytoplasm, and 
chloroplast

1.6.4.2 GSSG + NADPH → 
2GSH + NADP+

Guaiacol peroxidase 
(GPX)

Mitochondria, cytoplasm, 
chloroplast, and ER

1.11.1.7 H2O2 + DHA → 2H2O 
+ GSSG
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Three isozymes of SOD (Fig. 3.6) copper/zinc SOD (Cu/Zn-SOD), manganese 
SOD (Mn-SOD), and iron SOD (Fe-SOD) are reported in plants (Racchi et  al. 
2001). All forms of SOD are nuclear encoded with an amino terminal targeting 
sequence that positioned them to their respective subcellular compartments (Bowler 
et al. 1992). Mn-SOD is localized in mitochondria, whereas Fe- SOD is localized in 
chloroplasts (Jackson et al. 1978). Cu/Zn-SOD is present in three isoforms, which 
are found in the cytosol, chloroplast, and peroxisome and mitochondria (del Río 
et al. 2006). Eukaryotic Cu/Zn-SOD is a dimer and cyanide sensitive whereas the 
other two (Mn-SOD and Fe-SOD) are cyanide insensitive and may be found as 
dimer or tetramers forms (del Río et al. 2006). SOD activity has been reported to 
increase in plants exposed to various environmental stresses, including drought and 
metal toxicity (Table  3.3). Increased activity of SOD is often associated with 
increased tolerance of the plant against heavy metal stress. Overproduction of SOD 
has been reported to result in enhanced oxidative stress tolerance in plants (Gupta 
et al. 1993). KCN and H2O2 are used for the identification and sensitivity of SOD 
isozymes while their activity can be detected by negative staining. The Mn-SOD is 
resistant to both inhibitors; Cu/Zn-SOD is sensitive to both inhibitors whereas; 
Fe-SOD is resistant to KCN and sensitive to H2O2.

3.6.1.2  Catalase

Under heavy metal stress catalase (CAT), a tetrameric heme containing enzyme is 
an indispensable detoxifier of ROS as it possess the potential to directly dismutase 
H2O2 into H2O and O2. It has high affinity for H2O2, but lesser specificity for organic 
peroxides (R-O-O-R). It has a very high turnover rate (one molecule of CAT can 
convert ≈6 million molecules of H2O2 to H2O and O2 per minute) and it does not 
require any reducing equivalent like other antioxidant enzymes. CAT plays an 

Table 3.2 Non-enzymatic antioxidants, cellular location and their functions

Non-enzymatic 
antioxidants Sub-cellular location Function

Ascorbic acid Peroxisomes, mitochondria, 
cytosol, chloroplast, vacuole, 
and apoplast

Detoxifies H2O2 via action of APX

Reduced 
glutathione

Cytosol, chloroplast, 
mitochondria, peroxisome, 
vacuole, and apoplast

Acts as a detoxifying co-substrate for 
enzymes like peroxidases, GR and 
glutathione-S- transferase

α -Tocopherol Mostly in membranes Protects against and detoxifies products of 
membrane lipid peroxidation

Carotenoids Chloroplasts and other 
non-green plastids

Quenches excess energy from the 
photosystems, LHCs

Flavonoids Vacuole Direct scavengers of H2O2 and 1O2 and 
OH•

Proline Mitochondria, cytosol, and 
chloroplast

Efficient scavenger of OH• and 1O2 and 
protect cell from lipid peroxidation
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important role in the removal of H2O2 produced by oxidases in peroxisome due to 
β-oxidation of fatty acids, photorespiration and purine catabolism (Garg and 
Manchanda 2009). Catalase has been shown to depict variable responses under 
heavy metal stress (Table 3.4).

3.6.1.3  Ascorbate Peroxidase

Ascorbate Peroxidase (APX) is a fundamental constituent of the Ascorbate- 
Glutathione (ASC-GSH) cycle, and is thought to play an extremely important role 
in scavenging ROS and protecting cells in higher plants, algae, euglena and other 
organisms. APX efficiently scavenges H2O2 in the cytosol and chloroplast exactly in 
the manner as CAT detoxifies it in peroxisome. The APX reduces H2O2 to H2O and 
DHA (dehydroascorbate), using Ascorbic acid (AA) as a reducing agent (Fig. 3.7).

 H O AA H O DHA2 2 22+ ® +  

Fig. 3.6 Isozymes of SOD with their sub-cellular location and reaction catalysed
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Table 3.3 Impact of heavy metals on SOD activity

S.N.
Heavy 
metal Plant species

Effect on SOD 
activity References

1. Cd Triticum aestivum Increased Khan et al. (2007)
2. As Pteris cretica Increased Xie et al. (2009)
3. As Pteris ensiformis Increased Xie et al. (2009)
4. Cd, Cu, Hg Oryza spp. Inhibited Cai-lin et al. (2003)
5. Pb, Cd Solanum nigrum, Brassica 

juncea
Increased Yang et al. (2010)

6. Pb, Cd Zea mays, Raphanus sativus Unchanged Yang et al. (2010)
7. Cd Hordeum vulgare Increased Guo et al. (2004)
8. Cd Arabidopsis thaliana Increased Skorzynska et al. 

(2004)
9. Cd Oryza sativa Increased Hsu and Kao (2004)
10. Cr Leersia hexandra Decreased Yan et al. (2008)
11. Cd Brassica juncea Increased Mobin and Khan 

(2007)
12. Cd Vigna mungo Increased Singh et al. (2008)
13. Cd Cicer arietinum Increased Hasan et al. (2008)
14. Cu Brassica campestris Increased Li et al. (2009)

Table 3.4 Changes in catalase activity in response to heavy metals

S.N.
Heavy 
metal Plant species

Effect on CAT 
activity References

1. Cd Oryza sativa Increased Hsu and Kao (2004)
2. Cd Arabidopsis thaliana Declined Cho and Seo (2005)
3. Cu Anabaena doliolum Decreased Srivastava et al. (2005)
4. Cd Cicer arietinum Increased Hasan et al. (2008)
5. Pb Pteris vittata First increased 

then declined
Zhu and Xia (2012)

6. Cd Brassica juncea, Vigna 
mungo

Increased Mobin and Khan (2007) 
and Singh et al. (2008)

7. Mn Polygonum pubescens First increased 
then declined

Yan et al. (2011)

8. Cd Glycine max Decreased Balestrasse et al. (2001)
9. Hg, Cu, 

Cd
Oryza sativa Fluctuation Cai-lin et al. (2003)

10. Cd Phragmites australis, 
Capsicum annuum

Decreased Pietrini et al. (2003) and 
Leon et al. (2002)

11. Cd Triticum aestivum Increased Khan et al. (2007)
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Based on locations, viz., cytosolic, mitochondrial, peroxisomal, and chloroplas-
tid (stromal and thylakoidal) and types of amino acid, the APX family is made up of 
five isomers (Sharma and Dubey 2004). APX has a higher affinity for H2O2 than 
CAT and POD (peroxidase) and it may have a more crucial role in the management 
of ROS during stress. Aravind and Prasad (2003) demonstrated increased leaf APX 
activity under Cd stress in Ceratophyllum demersum. Enhanced activity of APX 
was also reported by a number of researchers in Brassica juncea, Triticum aestivum 
and Vigna mungo (Mobin and Khan 2007; Khan et al. 2007; Singh et al. 2008). Hsu 
and Kao (2004) reported that under non-heat shock conditions pretreatment of 
Oryza sativa seedlings with H2O2 resulted in an increase in APX activity and protect 
rice seedlings from subsequent Cd stress. Pekker et al. (2002) studied the expression 
of APX under iron overload in leaves of de-rooted bean plants and found a rapidly 
induced expression of APX (mRNA and protein) in response to iron surcharge.

3.6.1.4  Glutathione Reductase

Glutathione reductase (GR) is a flavoprotein oxidoreductase which reduces GSSG 
(oxidized form of glutathione) to GSH (reduced form of glutathione) by using 
NADPH as a reductant. Reduced glutathione (GSH) is used up to regenerate AA 
from Monodehydroascorbate (MDHA) and dehydroascorbate (DHA), and as a 
result is converted to its oxidized form (GSSG) (Fig. 3.8). GR, a crucial enzyme of 
ASC-GSH cycle, maintain a high cellular GSH/GSSG ratio by catalyzing the for-
mation of a disulfide bond in glutathione disulfide. It is primarily found in 

Fig. 3.7 Enzymatic antioxidant regulation for heavy metal-induced oxidative stress tolerance
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chloroplasts with low amounts occurring in the mitochondria and cytosol. GSH is a 
low molecular weight compound which reacts with the detrimental ROS members 
and act as a reductant to prevent thiol groups from being oxidized. GR activity 
found to be increased in the presence of Cd in Triticum aestivum, Capsicum ann-
uum, Arabidopsis thaliana, Vigna mungo, Brassica juncea (Skorzynska et al. 2004; 
Khan et al. 2007; Mobin and Khan 2007; Singh et al. 2008).

3.6.1.5  Guaiacol Peroxidase

Guaiacol peroxidase (GPOX) is a heme containing enzyme composed of 40–50 kDa 
monomers; that eliminates excess H2O2 both during normal metabolism as well as 
during stress. APX can be distinguished from plant-isolated guaiacol peroxidase 
(GPOX) in terms of differences in sequences and physiological functions. GPOX 
degrade indole-3-acetic acid (IAA) and plays a vital role in the biosynthesis of lig-
nin as well as defense against biotic stress by consuming H2O2. GPOX prefers aro-
matic electron donors such as guaiacol and pyragallol (Asada 1999). The activity of 
GPOX varies considerably depending upon plant species and conditions of stress. 
In most of the studies, GPOX activity was found to be enhanced in response to 
heavy metal stress (Arvind and Prasad 2003; Cho and Seo 2005). While Radotic 
et al. (2000) noted an initial increase in GPOX activity in spruce needles subjected 
to Cd stress and subsequent Cd-treatments caused a decline in the activity.

Fig. 3.8 Cellular redox maintained by GR with its primary functions to protect the cells against 
heavy metal stress
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3.6.2  Non-enzymatic Antioxidants

The other half of the antioxidant machinery is comprises of non-enzymatic antioxi-
dants like ascorbic acid, glutathione, α-tocopherol, carotenoids, phenolics, flavo-
noids, and amino acid cum osmolyte proline. They also play essential role in plant 
growth and development by influencing cellular processes like mitosis, cell elonga-
tion, senescence and cell death.

3.6.2.1  Glutathione

Tripeptide glutathione (glu-cys-gly; GSH) a critical metabolite of plants is consid-
ered to be the most important non-enzymatic intracellular defense against ROS 
induced oxidative damage. It is localized in all cell compartments like cytosol, chlo-
roplast, endoplasmic reticulum, vacuole, peroxisomes, mitochondria, as well as in 
apoplast and plays a crucial role in numerous physiological processes, including 
detoxification of xenobiotics, regulation of sulphate transport, expression of stress- 
responsive genes, signal transduction and conjugation of metabolites. It occurs 
abundantly in reduced form (GSH) in plant tissues and maintains the normal reduc-
ing environment of cells so as to restrain the inhibitory effects of ROS induced 
oxidative stress (Harinasut et al. 2003).

Enhanced antioxidant activity in the leaves and chloroplast of Phragmites aus-
tralis was studied by Pietrini et al. (2003). He found its association with a large pool 
of GSH which resulted in protecting the activity of many photosynthetic enzymes 
under Cd stress. Increased concentration of GSH has also been observed with the 
increasing Cd concentration in Pisum sativum by Metwally et al. (2005), Sedum 
alfredii by Sun et  al. (2007) and Vigna mungo by Molina et  al. (2008). While 
Srivastava et al. (2005) reported a significant decline in GR activity and GSH pool 
under Cu stress.

3.6.2.2  Ascorbic Acid

Ascorbic acid (AA) is the most broadly studied and abundantly found antioxidant 
compound which is considered to be the most substantial component of a wide range 
of enzymatic and non-enzymatic reactions as it donates its free electron to them. A 
minor concentration of AA is being generated by D-galacturonic acid while the 
remaining considerable amount is produced by Smirnoff-Wheeler pathway in mito-
chondria, catalyzed by L-galactano-γ-lactone dehydrogenase. AA is the first line of 
non-enzymatic defense against ROS as 90% of its concentration is found in cytosol 
and apoplast (Barnes et al. 2002). Demirevska-Kepova et al. (2006) reported that the 
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content of oxidized ascorbate increased during Cd exposure in Hordeum vulgare 
plants. Contrarily, a decrease in the ASH in the roots and nodules of Glycine max 
under Cd stress has also been observed (Balestrasse et al. 2001). Cd also decreases 
the ASH content in Cucumis sativus chloroplast and in the leaves of Arabidopsis 
thaliana and Pisum sativum (Skorzynska et al. 2004; Romero et al. 2007) whereas, 
it remained unaffected in Populus Canescens roots (Romero et al. 2007).

3.6.2.3  α -Tocopherol

Vitamin E is an important natural antioxidant of plant leaves, found in the chloro-
plast envelope, thylakoid membranes and plastoglobuli. Its most common and bio-
logically active form is α-tocopherol. Due to the presence of three methyl groups in 
its molecular structure, α-tocopherol has the highest antioxidative activity among 
the four isomers of tocopherols (α, β, γ, δ) found in plants (Kamal and Appelqvist 
1996). It is a potent scavenger of photosynthesis-derived reactive oxygen species 
(mainly 1O2 and OH˙), which check the propagation of lipid peroxidation by deacti-
vating lipid peroxyl radicals in thylakoid membranes. Level of α-tocopherol changes 
differentially in response to environmental limitations (drought, heavy metals, 
salinity), intensity of stress and sensitivity to stress. It has been observed that 
increased production of α-tocopherol results from altered expression, degradation 
and regeneration of genes that regulate different biochemical pathways, contribute 
to plant stress tolerance, while decreased levels favor enhanced production of ROS 
and oxidative damage. Srivastava et  al. (2005) reported a general induction in 
α-tocopherol content in Anabaena doliolum under NaCl and Cu stress. Shuangxia 
and Daniell (2014), observed that under heavy metal stress, α-tocopherol content in 
the TMT leaves increased up to 7.5-fold, twice higher than in the wild type.

3.6.2.4  Carotenoids, Flavonoids, Proline and Phenolic Compounds

Carotenoids are the members of lipophilic antioxidant family which are found in the 
plastids of photosynthetic and non-photosynthetic plant tissues and in microorgan-
isms. Carotenoids unveil their antioxidative activity by protecting the photosyn-
thetic machinery in different ways;

 (i) Reacts with lipid peroxidation products to end the chain reactions,
 (ii) Prevent the formation of 1O2 as it reacts with 3Chl* and excited chlorophyll 

(Chl*),
 (iii) Scavenge 1O2 and generate heat as a by-product, and
 (iv) Dissolve the excess excitation energy, via the xanthophyll cycle.

When excess excitation energy damage the photosynthetic apparatus of plants, 
flavonoids functions as a secondary ROS scavenging system (Fini et al. 2011). They 
also have a role in scavenging 1O2 and alleviate the damages caused to the outer 
envelope of the chloroplast membrane (Agati et al. 2012). Proline, an osmolyte is 
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also regarded as a non-enzymatic antioxidant to prevent the damaging effects of 
different ROS members. Proline is synthesized using glutamic acid as a substrate, 
via a pyrroline 5-carboxylate (P5C) intermediate. It is well documented that under 
heavy metal stress there is a dramatic accumulation of proline in plants. It has been 
known to act as an osmo-protectant, a metal chelator, a protein stabilizer, an inhibi-
tor of lipid peroxidation, and OH∙ and 1O2 scavenger (Trovato et al. 2008).

Phenolics are secondary metabolites (flavonoids, tannins, hydroxycinnamate 
esters, and lignin) which possess antioxidant properties. Janas et al. (2009) observed 
that ROS could serve as a common signal for accumulation to Cu2+ stress and cause 
accumulation of total phenolic compounds in dark grown lentil roots. Dursun et al. 
(2016) reported that the application of Cd, Cu, and Pb increased the total phenolics 
in all treatments of Zea mays.

3.7  Conclusion

It is well documented that almost all plants exhibit a fundamental metal tolerance 
when exposed to heavy metals. Some species are even capable of hyperaccumula-
tion of heavy metals by employing different tolerance mechanisms as compared to 
non-accumulating ones. Overall, under normal physiological metabolism, produc-
tion and scavenging of reactive oxygen species is in dynamic equilibrium state and 
the involvement of ROS in various metabolic processes might have general implica-
tions but when plants are exposed to heavy metal stress they experience overproduc-
tion of ROS which adversely affect the plant and ultimately results in oxidative 
damage. Oxidative stress is a condition in which intra and extracellular compart-
ments of the cells produce considerable amount of ROS or free radicals, which 
damage the integrity of cells by its toxic effects like membrane lipid peroxidation, 
protein cross linking, loss of enzyme activity and ion transport, destruction of 
nucleic acids, lipids and proteins that ultimately leads to its death. However, the 
cells are equipped with magnificent antioxidative defense system for the fortifica-
tion of harmful effects of ROS. This chapter gives an insight into how both arms of 
the antioxidant machinery; either being enzymatic or non-enzymatic, work in syn-
chronicity to diminish the damaging effects of ROS and develop tolerance against 
heavy metal stress conditions. Although remarkable progress has been achieved in 
recent years, there are still equivocation and gaps in our understanding of how heavy 
metals induced the antioxidative defense system of plants. Explanation of the mech-
anism of plant resistance to heavy metals, and further exploration of key factors 
controlling heavy metal damage and resistance are the focus of future research, in 
order to provide important basis for the plant and heavy metal relationship.
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