
Chapter 9
Prediction of Structures and Interactions
from Genome Information

Sanzo Miyazawa

Abstract Predicting three dimensional residue-residue contacts from evolution-
ary information in protein sequences was attempted already in the early 1990s.
However, contact prediction accuracies of methods evaluated in CASP experiments
before CASP11 remained quite low, typically with <20% true positives. Recently,
contact prediction has been significantly improved to the level that an accurate three
dimensional model of a large protein can be generated on the basis of predicted
contacts. This improvement was attained by disentangling direct from indirect
correlations in amino acid covariations or cosubstitutions between sites in protein
evolution. Here, we review statistical methods for extracting causative correlations
and various approaches to describe protein structure, complex, and flexibility based
on predicted contacts.

Keywords Contact prediction · Direct coupling · Amino acid covariation ·
Amino acid cosubstitution · Partial correlation · Maximum entropy model ·
Inverse Potts model · Markov random field · Boltzmann machine · Deep neural
network

9.1 Introduction

The evolutionary history of protein sequences is a valuable source of information
in many fields of science not only in evolutionary biology but even to understand
protein structures. Residue-residue interactions that fold a protein into a unique
three-dimensional (3D) structure and make it play a specific function impose struc-
tural and functional constraints in varying degrees on each amino acid. Selective
constraints on amino acids are recorded in amino acid orders in homologous protein
sequences and also in the evolutionary trace of amino acid substitutions. Negative
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Fig. 9.1 Amino acids at sites
i and j in a MSA are shown
with a phylogenetic tree.
Causative correlations
between sites in protein
evolution are extracted from
the MSA or phylogenetic
tree, and utilized to infer
close residue pairs

effects caused by mutations at one site must be compensated by successive muta-
tions at other sites (Yanovsky et al. 1964; Fitch and Markowitz 1970; Maisnier-Patin
and Andersson 2004), causing covariations/cosubstitutions/coevolution between
sites (Tufféry and Darlu 2000; Fleishman et al. 2004; Dutheil et al. 2005; Dutheil
and Galtier 2007), otherwise most negative mutants will be eliminated from a
gene pool and never reach fixation in population. Such structural and functional
constraints arise from interactions between sites mostly in close spatial proximity.
Thus, it has been suggested and also shown that the types of amino acids (Lapedes
et al. 1999, 2002, 2012; Russ et al. 2005; Skerker et al. 2008; Burger and van
Nimwegen 2008; Weigt et al. 2009; Halabi et al. 2009; Burger and van Nimwegen
2010; Morcos et al. 2011; Marks et al. 2011) and amino acid substitutions (Altschuh
et al. 1988; Göbel et al. 1994; Shindyalov et al. 1994; Pollock and Taylor 1997;
Pollock et al. 1999; Atchley et al. 2000; Fariselli et al. 2001; Fodor and Aldrich
2004; Fleishman et al. 2004; Dutheil et al. 2005; Martin et al. 2005; Fares and
Travers 2006; Doron-Faigenboim and Pupko 2007; Dutheil and Galtier 2007; Dunn
et al. 2008; Poon et al. 2008; Dutheil 2012; Gulyás-Kovács 2012) are correlated
between sites that are close in a protein 3D structure. However, until CASP11,
contact prediction accuracy remained quite low, typically with ≤20% true positives
for top-L/5 long-range contacts in free modeling targets (Kosciolek and Jones
2016); L denotes protein length. Recently contact prediction has been significantly
improved to the level that an accurate three dimensional model of a large protein
(�250 residues) can be generated on the basis of predicted contacts (Moult et al.
2016). These improvements were attained primarily by disentangling direct from
indirect correlations in amino acid covariations or cosubstitutions between sites in
protein evolution, and secondarily by reducing phylogenetic biases in a multiple
sequence alignment (MSA) or removing them on the basis of a phylogenetic tree;
see Fig. 9.1.

Here, we review statistical methods for extracting causative correlations in amino
acid covariations/cosubstitutions between sites, and various approaches to describe
protein structure, complex and flexibility based on predicted contacts. Mathematical
formulation of each statistical method is concisely described in the unified manner
in an appendix, the full version of which will be found in the article (Miyazawa
2017a) submitted to arXiv.
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9.2 Statistical Methods to Extract Causative Interactions
Between Sites

The primary task to develop a robust method toward contact prediction is to
detect causative correlations, which reflect evolutionary constraints, in amino acid
covariations between sites in a multiple sequence alignment (MSA) or in amino acid
cosubstitutions between sites in branches of a phylogenetic tree; see Table 9.1. The
former was called direct coupling analysis (DCA) (Morcos et al. 2011).

Table 9.1 Statistical methods for disentangling direct from indirect correlations between sites

Category

Method name Method/algorithm

(A) Direct coupling analysis of amino acid covariations between sites in a MSA

Boltzmann machine Markov chain Monte Carlo to calculate marginal
probabilities and gradient descent to estimate fields
and couplings

CMI (Lapedes et al. 2012) Boltzmann machine to estimate conditional mutual
information

mpDCA (Weigt et al. 2009) Message-passing algorithm to estimate marginal
probabilities and gradient descent to estimate fields
and couplings

mfDCA (Morcos et al. 2011; Marks
et al. 2011)

Mean field approximation to estimate the partition
function

PSICOV (Jones et al. 2012) Graphical lasso (Gaussian approximation with an
exponential prior) with a shrinkage method for a
covariance matrix

GaussDCA (Baldassi et al. 2014) A multivariate Gaussian model with a normal-
inverse-Wishart prior

plmDCA (Ekeberg et al. 2013,
2014)

Pseudo-likelihood maximization with Gaussian pri-
ors (�2 regularizers)

GREMLIN (Balakrishnan et al.
2011; Kamisetty et al. 2013)

Pseudo-likelihood maximization with �1 regulariza-
tion terms (Balakrishnan et al. 2011) or with Gaus-
sian priors (Kamisetty et al. 2013) which depend on
site pair

ACE (Cocco and Monasson 2011,
2012; Barton et al. 2016)

Adaptive cluster expansion of cross-entropy with
Gaussian priors

Persistent VI & Fadeout Variational inference with sparsity-inducing prior,
horseshoe (Ingraham and Marks 2016)

Sutto et al. (2015) Boltzmann machine with �2 regularization terms

DI (Taylor and Sadowski 2011) Partial correlation of normalized mutual informations
between sites

(B) Partial correlation analysis of amino acid cosubstitutions between sites in a phylogenetic tree

pcSV (Miyazawa 2013) Partial correlation coefficients of coevolutionary sub-
stitutions between sites within branches in a phyloge-
netic tree
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9.2.1 Direct Coupling Analysis for Amino Acid Covariations
Between Sites in a Multiple Sequence Alignment

The direct coupling analysis is based on the maximum entropy model for the
distribution of protein sequences, which satisfies the observed statistics in a MSA.

9.2.1.1 Maximum Entropy Model for the Distribution of Protein
Sequences

Let us consider probability distributions P(σ) of amino acid sequences, σ ≡
(σ1, . . . , σL)T with σi ∈ {amino acids, deletion}, single-site and two-site marginal
probabilities of which are equal to a given frequency Pi(ak) of amino acid ak at
each site i and a given frequency Pij (ak, al) of amino acid pair (ak, al) for site pair
(i, j), respectively.

P(σi = ak) ≡
∑

σ

P(σ)δσi ak
= Pi(ak) (9.1)

P(σi = ak, σj = al) ≡
∑

σ

P(σ)δσi ak
δσj al

= Pij (ak, al) (9.2)

where ak ∈ {amino acids, deletion}, k = 1, . . . , q, q ≡ |{amino acids, deletion}| =
21, i, j = 1, . . . , L, and δσi ak

is the Kronecker delta. The distribution PME with the
maximum entropy is

PME(σ|h, J ) (9.3)

= arg max
P(σ)

[−
∑

σ

P(σ) log P(σ) + λ(
∑

σ

P(σ) − 1)

+
∑

i

[hi(ak)(
∑

σ

P(σ)δσi ak
− Pi(ak))]

+
∑

i

∑

j>i

[Jij (ak, al)(
∑

σ

P(σ)δσi ak
δσj al

− Pij (ak, al))]] = 1

Z
e−HPotts(σ|h,J )

(9.4)

where λ, hi(ak), and Jij (ak, al) are Lagrange multipliers, and a Hamiltonian HPotts,
which is called that of the Potts model for q > 2 (or the Ising model for q = 2), and
a partition function Z are defined as

−HPotts(σ|h, J ) =
∑

i

hi(σi ) +
∑

i<j

Jij (σi , σj ), Z =
∑

σ

e−HPotts(σ|h,J ) (9.5)

where hi(ak) and Jij (ak, al) are interaction potentials called fields and couplings.
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Although pairwise frequencies Pij (ak, al) reflect not only direct but indirect
correlations in amino acid covariations between sites, couplings Jij (ak, al) reflect
causative correlations only. Thus, it is essential to estimate fields and couplings from
marginal probabilities. This model is called the inverse Potts model.

9.2.1.2 Log-Likelihood and Log-Posterior-Probability

Log-posterior-probability and log-likelihood for the Potts model are

log Ppost(h, J |{σ}) ∝ �Potts({Pi}, {Pij }|h, J ) + log P0(h, J ) (9.6)

�Potts({Pi}, {Pij }|h, J ) = B
∑

σ

Pobs(σ) log PME(σ|h, J ) (9.7)

where Pobs(≡ ∑B
τ=1 δσστ/B) is the observed distribution of σ specified with

{Pi(ak)} and {Pij (ak, al)}, and B is the number of instances; sequences στ are
assumed here to be independently and identically distributed samples in sequence
space. P0(h, J ) is a prior probability of (h, J ).

Let us define cross entropy (Cocco and Monasson 2012) as the negative log-
posterior-probability per instance.

S0(h, J |{Pi}, {Pij }) ∝ −(log Ppost(h, J |{σ}))/B
≡ SPotts(h, J |{Pi}, {Pij }) + R(h, J ) (9.8)

where the cross entropy SPotts, which is the negative log-likelihood per instance for
the Potts model, and the negative log-prior per instance R are defined as follows.

SPotts(h, J |{Pi}, {Pij }) ≡ −�Potts({Pi}, {Pij }|h, J )/B (9.9)

= log Z(h, J ) −
∑

i

∑

k

hi(ak)Pi(ak) −
∑

i

∑

k

∑

j>i

∑

l

Jij (ak, al)Pij (ak, al)

(9.10)

R(h, J ) ≡ − log(P0(h, J ))/B (9.11)

The maximum likelihood estimates of h and J , which minimize the cross entropy
with R = 0, satisfy the following equations.

∂ log Z(h, J )

∂hi(ak)
= Pi(ak),

∂ log Z(h, J )

∂Jij (ak, al)
= Pij (ak, al) (9.12)

It is, however, hardly tractable to computationally evaluate the partition function
Z(h, J ) for any reasonable system size as a function of h and J . Thus, approximate
maximization of the log-likelihood or minimization of the cross entropy is needed
to estimate h and J .
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The minimum of the cross entropy with R = 0 for the Potts model is just the
Legendre transform of log Z(h, J ) from (h, J ) to ({Pi}, {Pij }), (Eq. 9.10), and is
equal to the entropy of the Potts model satisfying Eqs. 9.1 and 9.2;

SPotts({Pi}, {Pij }) ≡ min
h,J

SPotts(h, J |{Pi}, {Pij }) =
∑

σ

−P(σ) log P(σ) (9.13)

The cross entropy SPotts(h, J |{Pi}, {Pij }) in Eq. 9.10 is invariant under a certain
transformation of fields and couplings, Jij (ak, al) → Jij (ak, al) − J 1

ij (ak) −
J 1

j i(al)+J 0
ij , hi(ak) → hi(ak)−h0

i +∑
j �=i J 1

ij (ak) for any J 1
ij (ak), J 0

ij and h0
i . This

gauge-invariance reduces the number of independent variables in the Potts model to
(q − 1)L fields and (q − 1)L × (q − 1)L couplings.

A prior P0(h, J ) yields regularization terms for h and J (Cocco and Monasson
2012). If a Gaussian distribution is employed for the prior, then it will yield �2 norm
regularization terms. �1 norm regularization corresponds to the case of exponential
priors. Given marginal probabilities, the estimates of fields and couplings are those
minimizing the cross entropy.

(h, J ) = arg min
(h,J )

S0(h, J |{Pi}, {Pij }), S0({Pi}, {Pij }) ≡ min
(h,J )

S0(h, J |{Pi}, {Pij })
(9.14)

Since S0({Pi}, {Pij }) is the Legendre transform of (log Z(h, j) + R(h, J )) from
(h, J ) to ({Pi}, {Pij }), these optimum h and J can also be calculated from

hi(ak) = −∂S0({Pi}, {Pij })
∂Pi(ak)

, Jij (ak, al) = −∂S0({Pi}, {Pij })
∂Pij (ak, al)

(9.15)

In most methods for contact prediction, residue pairs are predicted as contacts in
the decreasing order of score (Sij ) calculated from fields {Jij (ak, al)|1 ≤ k, l < q};
see Eq. 9.47.

9.2.1.3 Inverse Potts Model

The problem of inferring interactions from observations of instances has been
studied as inverse statistical mechanics, particularly inverse Potts model for Eq. 9.4,
in the filed of statistical physics, as a Markov random field, Markov network or
undirected graphical model in the domain of physics, statistics and information
science, and as Boltzmann machine in the field of machine learning.

The maximum-entropy approach to the prediction of residue-residue contacts
toward protein structure prediction from residue covariation pattems was first
described in 2002 by Lapedes and collaborators (Giraud et al. 1999; Lapedes
et al. 1999, 2002, 2012). They estimated conditional mutual information (CMI),
which was employed as a score for residue-residue contacts, for each site pair by
Boltzmann leaning with Monte Carlo importance sampling to calculate equilibrium
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averages and gradient descent to minimize the cross entropy and successfully
predicted contacts for 11 small proteins.

Calculating marginal probabilities for given fields and couplings by Monte Carlo
simulations in Boltzmann machine is very computationally intensive. To reduce
a computational load, the message passing algorithm, which is exact for a tree
topology of couplings but approximate for the present model, is employed instead
in mpDCA (Weigt et al. 2009). Because even the message passing algorithm is
too slow to be applied to a large-scale analysis across many protein families, the
mean field approximation is employed in mfDCA (Morcos et al. 2011; Marks et al.
2011); JMF = −C−1, where Cij (ak, al) ≡ Pij (ak, al)−Pi(ak)Pi(al). In the mean
field approximation, a bottleneck in computation is the calculation of the inverse
of a covariance matrix C that is a (q − 1)L × (q − 1)L matrix. In the mean
field approximation, a prior distribution in Eq. 9.11 is ignored and pseudocount is
employed instead of regularization terms to make the covariance matrix invertible.

The Gaussian approximation (a continuous multivariate Gaussian model) for the
probability distribution of sequences is employed together with an exponential prior
(an �1 regularization term) in PSICOV (Jones et al. 2012), and with a normal-
inverse-Wishart (NIW) prior, which is a conjugate distribution of the multivariate
Gaussian, in GaussDCA (Baldassi et al. 2014). The use of NIW prior has a merit
that fields and couplings can be analytically formulated; see Eqs. 9.30 and 9.31.

All methods based on the Gaussian approximation employ the analytical formula
for couplings, J � −C−1 = −�, which are essentially as same as the mean field
approximation with a difference that the covariance matrix (C) or precision matrix
(�) is differently estimated based on the various priors. The mean field and Gaus-
sian approximations may be appropriate to systems of dense and weak couplings
but questionable for sparse and strong couplings that is the characteristic of residue-
residue contact networks. Although the mean field and Gaussian approximations
successfully predict residue-residue contacts in proteins, it has been shown (Barton
et al. 2016; Cocco et al. 2017) that they do not give the accurate estimates of fields
and couplings in proteins.

A pseudo-likelihood with Gaussian priors (�2 regularization terms) is maximized
to estimate fields and couplings in plmDCA (Ekeberg et al. 2013, 2014) for the
Potts model with sparse interactions as well as reducing computational time; see
Eq. 9.38 for the symmetric plmDCA and Eq. 9.41 for the asymmetric plmDCA. The
asymmetric plmDCA method (Ekeberg et al. 2014) requires less computational time
and fits particularly with parallel computing.

GREMLIN (Kamisetty et al. 2013) employs together with pseudo-likelihood
Gaussian priors that depend on site pair, although its earlier version (Balakrishnan
et al. 2011) employed �1 regularizers, which may be more appropriate to systems of
sparse couplings. The �1 regularizers appear to learn parameters that are closer to
their true strength, but the �2 regularizers appear to be as good as the �1 regularizers
for the task of contact prediction that requires the relative ranking of the interactions
and not their actual values (Kamisetty et al. 2013).

One of approaches to surpass the pseudo-likelihood approximation for systems
of sparse couplings may be the adaptive cluster expansion (ACE) of cross
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entropy (Cocco and Monasson 2011, 2012; Barton et al. 2016), in which cross
entropy is approximately minimized by taking account of only site clusters
the incremental entropy (cluster entropy) of which by adding one more site is
significant. In this method (Barton et al. 2016), a Boltzmann machine is employed
to refine fields and couplings and also to calculate model correlations such as
single-site and pairwise amino acid frequencies under given fields and couplings.
The results of the Boltzmann machine for both biological and artificial models
showed that ACE outperforms plmDCA in recovering single-site marginals (amino
acid frequencies at each site) and the distribution of the total dimensionless
energies (HPotts(σ)) (Barton et al. 2016); those models were a lattice protein,
trypsin inhibitor, HIV p7 nucleocapsid protein, multi-electrode recording of cortical
neurons, and Potts models on Eridös-Rényi random graphs. More importantly ACE
could accurately recover the true fields h and couplings J corresponding to Potts
states with Pi(ak) ≥ 0.05 for Potts models (L = 50) on Eridös-Rényi random
graphs (Barton et al. 2016). On the other hand, plmDCA gave accurate estimates
of couplings at weak regularization for well sampled single-site probabilities, but
less accurate fields. Also, plmDCA yielded less well inferred fields and couplings
for single-site and two-site probabilities not well sampled, indicating that not
well populated states should be merged. As a result, the distribution of the total
energies (Barton et al. 2016) and the distribution of mutations with respect to
the consensus sequence were not well reproduced (Cocco et al. 2017). Similarly,
the mean field approximation could not reproduce two-site marginals and even
single-site marginals (Cocco et al. 2017) and the Gaussian approximation could
not well reproduce the distribution of mutations with respect to the consensus
sequence (Barton et al. 2016).

However, the less reproducibility of couplings does not necessarily indicate
the less predictability of residue-residue contacts, probably because in contact
prediction the relative ranking of scores (Eq. 9.47) based on couplings is more
important than their actual values. ACE with the optimum regularization strength
with respect to the reproducibility of fields and couplings showed less accurate
contact prediction than plmDCA and mfDCA. For ACE to show comparable
performance of contact prediction with plmDCA, regularization strength had to be
increased from γ = 2/B = 10−3 to γ = 1 for Trypsin inhibitor, making couplings
strongly damped and then the generative properties of inferred models lost (Barton
et al. 2016) (Table 9.2).

9.2.2 Partial Correlation of Amino Acid Cosubstitutions
Between Sites at Each Branch of a Phylogenetic Tree

In the DCA analyses on residue covariations between sites in a multiple sequence
alignment (MSA), phylogenetic biases, which are sequence biases due to phyloge-
netic relations between species, in the MSA must be removed as well as indirect
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Table 9.2 Free softwares/servers for the direct coupling analysis

Name Methods URL

EVcouplings (Marks et al. 2011) mfDCA http://evfold.org

EVcouplings,
plmc (Toth-Petroczy et al. 2016;
Weinreb et al. 2016)

mf/plmDCA https://github.com/debbiemarkslab

DCA (Morcos et al. 2011;
Marks et al. 2011)

mfDCA http://dca.rice.edu/portal/dca/home

GaussDCA (Baldassi et al.
2014)

GaussDCA http://areeweb.polito.it/ricerca/cmp/code

FreeContact (Kaján et al. 2014) mfDCA, PSICONV http://rostlab.org/owiki/index.php/
FreeContact

plmDCA (Ekeberg et al. 2013,
2014)

plmDCA http://plmdca.csc.kth.se/
https://github.com/pagnani/plmDCA

CCMpred (Seemayer et al.
2014)

plmDCA Performance-optimized software
https://github.com/soedinglab/ccmpred

GREMLIN (Balakrishnan et al.
2011; Kamisetty et al. 2013)

GREMLIN http://gremlin.bakerlab.org/

ACE (Cocco and Monasson
2011, 2012; Barton et al. 2016)

ACE https://github.com/johnbarton/ACE

Persistent-vi (Ingraham and
Marks 2016)

Persistent VI https://github.com/debbiemarkslab

correlations between sites, but instead are reduced by taking weighted averages
over homologous sequences in the calculation of single and pairwise frequencies
of amino acids.

Needless to say, it is supposed that observed pattems of covariation were caused
by molecular coevolution between sites. Whatever caused covariations found in the
MSA, it has been confirmed that they can be utilized to predict residue pairs in
close proximity in a three dimensional structure. Talavera et al. (2015) claimed,
however, that covarying substitutions were mostly found on different branches of
the phylogenetic tree, indicating that they might or might not be attributable to
coevolution.

In order to remove phylogenetic biases and also to respond to such a claim above,
it is meaningful to study covarying substitutions between sites in a phylogenetic
tree-dependent manner. Such an alternative approach was taken to infer coevolving
site pairs from direct correlations between sites in concurrent and compensatory
substitutions within the same branches of a phylogenetic tree (Miyazawa 2013).
In this method, substitution probability and mean changes of physico-chemical
properties of side chain accompanied by amino acid substitutions at each site in
each branch of the tree are estimated with the likelihood of each substitution to
detect concurrent and compensatory substitutions. Then, partial correlation coeffi-
cients of the vectors of their characteristic changes accompanied by substitutions,
substitution probability and mean changes of physico-chemical properties, along
branches between sites are calculated to extract direct correlations in coevolutionary

http://evfold.org
https://github.com/debbiemarkslab
http://dca.rice.edu/portal/dca/home
http://areeweb.polito.it/ricerca/cmp/code
http://rostlab.org/owiki/index.php/FreeContact
http://rostlab.org/owiki/index.php/FreeContact
http://plmdca.csc.kth.se/
https://github.com/pagnani/plmDCA
https://github.com/soedinglab/ccmpred
http://gremlin.bakerlab.org/
https://github.com/johnbarton/ACE
https://github.com/debbiemarkslab
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substitutions and employed as a score for residue-residue contact. The accuracy of
contact prediction by this method was comparable with that by mfDCA (Miyazawa
2013). This method, however, has a drawback to be computationally intensive,
because an optimum phylogenetic tree must be estimated.

9.3 Machine Learning Methods to Augment the Contact
Prediction Accuracy Based on Amino Acid Coevolution

All the DCA methods such as mfDCA, plmDCA, GREMLIN, and PSICOV predict
significantly nonoverlapping sets of contacts (Jones et al. 2015; Kosciolek and Jones
2016; Wuyun et al. 2016). Then, increasing prediction accuracy by combining
their predictions together with other sequence/structure information have been
attempted (Skwark et al. 2013, 2014, 2016; Kosciolek and Jones 2014, 2016; Jones
et al. 2015; Wang et al. 2017; Shendure and Ji 2017); see Table 9.3.

PconsC (Skwark et al. 2013) combines the predictions of PSICOV and plmDCA
into a machine learning method, random forests, and employs alignments with
HHblits (Remmert et al. 2012) and jackHMMer (Johnson et al. 2010) at four
different e-value cut-offs. Five-layer neural network is employed instead of random
forests in PconsC2 (Skwark et al. 2014), and plmDCA and GaussDCA are employed
in PconsC3 (Skwark et al. 2016). A receptive field consisting of 11 × 11 predicted
contacts around each residue pair is taken into account in each layer except the first
one.

Table 9.3 Machine learning methods that combine predicted direct couplings with other
sequence/structure information

Name Basic method Post-processing

PconsC3
(Skwark et al. 2016)

plmDCA, GaussDCA 5 layer DNN; http://c3.pcons.net.
PconsC (Skwark et al. 2013), PconsC2 (Skwark
et al. 2014)

MetaPSICOV
(Kosciolek and Jones
2014, 2016; Jones
et al. 2015)

PSICOV, mfDCA,
GREMLIN/CCMpred

A two stage neural network predictor; CONSIP2
pipeline
http://bioinf.cs.ucl.ac.uk/MetaPSICOV

RaptorX
(Wang et al. 2017)

CCMpred Ultra-deep learning model consisting of 1- and
2-dimensional convolutional residual neural
networks
http://raptorx.uchicago.edu/ContactMap/

iFold (CASP12 2017) Deep neural network (DNN)

EPSILON-CP PSICOV, GREMLIN,
mfDCA, CCMpred,
GaussDCA

4 hidden layer neural network with
400-200-200-50 neurons (Shendure and Ji 2017)

http://c3.pcons.net
http://bioinf.cs.ucl.ac.uk/MetaPSICOV
http://raptorx.uchicago.edu/ContactMap/
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MetaPSICOV (Jones et al. 2015; Kosciolek and Jones 2016) combines the
predictions of PSICOV, mfDCA, and CCMpred/GREMLIN into the first stage of
a two-stage neural network predictor together with a well-established “classic”
machine learning contact predictor, which utilizes many features such as amino acid
profiles, predicted secondary structure and solvent accessibility along with sequence
separation predicted, as an additional source of information for a little depth of
MSAs. The second stage analyses the output of the first stage to eliminate outliers
and to fill in the gaps in the contact map. On a set of 40 target domains with a
median family size of around 40 effective sequences in CASPII, CONSIP2 server
achieved an average top-L/5 long-range contact precision of 27% (Kosciolek and
Jones 2016).

Wang et al. (2017) have also shown that a ultra-deep neural network (RaptorX)
can significantly improve contact prediction based on amino acid coevolution. They
have modeled short-range and long-range correlations in sequential and structural
features with respect to complex sequence-structure relationships in proteins by one-
dimensional and two-dimensional deep neural networks (DNN), respectively. Both
the DNNs are convolutional residual neural networks. The 1D DNN performs con-
volutional transformations, with respect to residue position, of sequential features
such as position-dependent scoring matrix, predicted 3-state secondary structure and
3-state solvent accessibility. The 2D DNN does 2D convolutional transformations
of pairwise features such as coevolutional information calculated by CCMpred,
mutual information, pairwise contact potentials as well as the output of the 1D
DNN converted by a similar operation to outer product. Residual neural networks
are employed because they can pass both linear and nonlinear informations from
initial input to final output, making their training relatively easy.

9.4 Performance of Contact Prediction

New statistical methods based on the direct coupling analysis are confirmed in
various benchmarking studies (Moult et al. 2016; CASP12 2017; Kamisetty et al.
2013; Wuyun et al. 2016) to show remarkable accuracy of contact prediction,
although deep, stable alignments are required. They can more accurately detect
a higher number of contacts between residues, which are very distant along
sequence (Morcos et al. 2011). The top-scoring residue couplings are not only
sufficiently accurate but also well-distributed to define the 3D protein fold with
remarkable accuracy (Marks et al. 2011); this observation was quantified by
computing, from sequence alone, all-atom 3D structures of 15 test proteins from
different fold classes, ranging in size from 50 to 260 residues, including a G-protein
coupled receptor. The contact prediction performs relatively better on β proteins
than on α proteins (Miyazawa 2013). These initial findings on a limited number of
proteins were confirmed as a general trend in a large-scale comparative assessment
of contact prediction methods (Wuyun et al. 2016; Adhikari et al. 2016).



134 S. Miyazawa

In CASP12, RaptorX performed the best in terms of F1 score for top L/2 long-
and medium-range contacts of 38 free-modeling (FM) targets; the total F1 score
of RaptorX was better by about 7.6% and 10.0% than the second and third best
servers, iFold_1 and the revised MetaPSICOV, respectively (Wang et al. 2017;
CASP12 2017). Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and
398 membrane proteins, the average top L(L/10) long-range prediction accuracies
of RaptorX are 0.47(0.77) in comparison with 0.30(0.59) for MetaPSICOV and
0.21(0.47) for CCMpred (Wang et al. 2017; CASP12 2017).

9.4.1 MSA Dependence of Contact Prediction Accuracy

In the direct-coupling-based methods, the accuracy of predicted contacts depends on
the depth (Miyazawa 2013; Kamisetty et al. 2013; Wuyun et al. 2016) and quality
of multiple sequence alignment (MSA) for a target. 5 × L (protein length) aligned
sequences may be desirable for accurate contact predictions (Kamisetty et al. 2013),
although attempts to improve prediction methods for fewer aligned sequences have
been made (Skwark et al. 2013, 2014, 2016; Wang et al. 2017). PconsC3 can be used
for families with as little as 100 effective sequence members (Skwark et al. 2016).
Also, RaptorX (Wang et al. 2017) attained top- L/2-accuracy >0.3 for long-rang
contacts even by using MSAs with 20 effective sequence members.

Deepest MSAs including a target sequence were built with various values of
E-value cutoff (Skwark et al. 2013) and coverage parameters (Jones et al. 2015;
Kosciolek and Jones 2016) in sequence search and alignment programs based on
the hidden Markov models such as HHblits and jackHMMer. Although prediction
performance tends to increase in general as alignment depth is deeper (Miyazawa
2013), it was reported (Kosciolek and Jones 2016) that in the case of transmembrane
domains, building too deep alignments could result in unrelated sequences or
drifted domains being included. To increase alignment quality, E-value and coverage
parameters may be carefully tuned for each alignment (Kosciolek and Jones
2016). In the case of alignments that might contain regions of partial matches,
a too stringent sequence coverage requirement could result in missing related
sequences. On the other hand, a too permissive sequence coverage requirement
could pick up unrelated sequences, permitting many partial matches. A trade-off
is required between the effective number of sequences and sequence coverage, and
an appropriate E-value must be chosen not to much decrease both alignment depth
and sequence coverage (Hopf et al. 2012).

9.5 Contact-Guided de novo Protein Structure Prediction

It is a primary obstacle to de novo structure prediction that current methods and
computers cannot make it feasible to adequately sample the vast conformational
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space a protein might take in the precess of folding into the native structure (Kim
et al. 2009). Thus, it is critical whether residue-residue proximities inferred with
direct coupling analysis can provide sufficient information to reduce a huge search
space for a protein fold, without any known 3D structural information of the protein.

Algorithms are needed to fold proteins into native folds based on contact
information; see Table 9.4. Distance geometry generation (Havel et al. 1983; Braun
and Go 1985) of 3D structures, which may be followed by energy minimization and
molecular dynamics, will be just the primary one. In EVfold (Marks et al. 2011),
contacts inferred by direct coupling analysis and predicted secondary structure
information are translated into a set of distance constraints for the use of a distance
geometry algorithm in the Crystallography and NMR System (CNS) (Brünger
2007). It was confirmed that the evolutionary inferred contacts can sufficiently
reduce a search space in the structure predictions of 15 test proteins from different
fold classes (Marks et al. 2011), and of 11 unknown and 23 known transmembrane
protein structures (Hopf et al. 2012). Because distance constraints from predicted
contacts may be partial in a protein sequence, they should be embedded into ab
initio structure prediction methods.

Table 9.4 Contact-guided de novo protein structure prediction methods and servers

Name Contact prediction

EVfold (Marks et al. 2011,
2012)/EVfold_membrane
(Hopf et al. 2012)

mfDCA/plmDCA Using distance geometry
algorithm (Havel et al. 1983) and
simulated annealing of CNS
(Brünger 2007); http://evfold.org/

DCA-fold (Sufkowska et al.
2012)

mfDCA Simulated annealing using a
coarse-grained molecular dynamics
for a Cα model

FRAGFOLD/FILM3 MetaPSICOV Combining fragment-based folding
algorithm (Jones et al. 2005) with
PSICOV (Kosciolek and Jones 2014)
and with MetaPSICOV (Jones et al.
2015).

FILM3 (Nugent and Jones 2012) is
employed instead of
FRAGFOLD (Jones 2001) for
transmembrane proteins.

CONFOLD (Adhikari et al.
2015)

EVFOLD/FRAGFOLD
(PSIPRED for 2nd
structures)

Two-stage contact-guided de novo
protein folding, using distance
geometry simulated annealing
protocol in a revised CNS v1.3.

http://protein.rnet.missouri.edu/
confold/

Rosetta (Kim et al. 2004;
Ovchinnikov et al. 2016)

GREMLIN Fragment assembly

http://evfold.org/
http://protein.rnet.missouri.edu/confold/
http://protein.rnet.missouri.edu/confold/
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Sulkowska et al. also showed that a simple hybrid method, called DCA-fold,
integrating mfDCA-predicted contacts with an accurate knowledge of secondary
structure is sufficient to fold proteins in the range of 1–3 Å resolution (Sufkowska
et al. 2012). In this study, simulated annealing using a coarse-grained molecular
dynamics model was employed for a Cα chain model, in which Cαs interact with
each other with a contact potential approximated by a Gaussian function and a
torsional potential depending on Cα dihedral angles at each position.

Adhikari et al. (2015) studied a way to effectively encode secondary structure
information into distance and dihedral angle constrains that complement long-range
contact constraints, and revised the CNS v1.3 to effectively use secondary structure
constraints together with predicted long-range constraints; CONFOLD (Adhikari
et al. 2015) consists of two stages. In the first stage secondary structure information
is converted into distance, dihedral angle, and hydrogen bond constraints, and then
best models are selected by executing the distance geometry simulated annealing.
In the second stage self-conflicting contacts in the best structure predicted in the
first stage are removed, constrains based on the secondary structures are refined,
and again the distance geometry simulated annealing is executed.

Baker group (Ovchinnikov et al. 2016) embedded contact constraints predicted
by GREMLIN (Kamisetty et al. 2013) as sigmoidal constraints to overcome noise
in the Rosetta (Kim et al. 2004) conformational sampling and refinement. They
found that model accuracy will be generally improved, if more than 3 L (protein
length) sequences are available, and that large topologically complex proteins can
be modeled with close to atomic-level accuracy without knowledge of homologous
structures, if there are enough homologous sequences available.

On the other hand, a fragment-based folding algorithm FRAGFOLD was com-
bined with PSICOV (Kosciolek and Jones 2014) and with MetaPSICOV (Jones
et al. 2015; Kosciolek and Jones 2016); In this approach, predicted contacts are
converted into additional energy terms for FRAGFOLD in addition to the pairwise
potentials of mean force and solvation (Jones et al. 2015; Kosciolek and Jones
2016). FILM3 (Nugent and Jones 2012), with constraints based on predicted
contacts and ones approximating Z-coordinate values within the lipid membrane,
is employed instead of FRAGFOLD for transmembrane proteins.

RaptorX (Wang et al. 2017) employed the CNS suite (Brünger 2007) to generate
3D models from predicted contacts and secondary structure converted to distance,
angle and h-bond restraints, and could yield TMscore >0.6 for 203 of 579 test
proteins, while using MetaPSICOV and CCMpred could do so for 79 and 62,
respectively.
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9.5.1 How Many Predicted Contacts Should Be Used to Build
3D Models?

The number of feasible contacts surrounding a residue in a protein is about 6.3
(Miyazawa and Jernigan 1996), which corresponds to the maximum number of
contacts per a protein, 6.3L/2, where L denotes protein length. However, more than
50% of known 3D structures in the PDB have less than 2L contacts, and in the test
on 15 proteins in EVfold benchmark set, less than 1.6L predicted contacts yielded
best results (Adhikari et al. 2015). In the original EVfold, the optimal number
of evolutionary constraints was in the order of 0.5L to 0.7L (Hopf et al. 2012).
Because prediction accuracy tends to decrease as the rank of contact score increases,
and different proteins need different numbers of predicted contacts to be folded
well, protein folds were generated with a wide range of the number of predicted
contacts, and then best folds were selected; from 30 to L in EVfold (Hopf et al.
2012), and from 0.4L to 2.2L in CONFOLD (Adhikari et al. 2015). In RaptorX, the
top 2L predicted contacts irrespective of site separation were converted to distance
restraints (Wang et al. 2017). On the other hand, Jones group reported (Kosciolek
and Jones 2014) that artificially truncating the list of predicted contacts was likely
to remove useful information to fold a protein with FRAGFOLD and PSICOV, in
which the weight of a given predicted contact is determined by its positive predictive
value.

9.6 Evolutionary Direct Couplings Between Residues Not
Contacting in a Protein 3D Structure

Needless to say, evolutionary constraints do not only originate in intra-molecular
contacts but also result from inter-molecular contacts/interactions. Even in the case
of intra-molecular contacts, if there are structural variations including ones due to
conformational changes in a protein family, evolutionary constraints will reflect
the alternative conformations (Morcos et al. 2011; Hopf et al. 2012; Anishchenko
et al. 2013). Also, intra-molecular residue couplings may contain useful information
of ligand-mediated residue couplings (Morcos et al. 2011; Ovchinnikov et al.
2016). On the other hand, inter-molecular contacts may allow us to predict protein
complexes, and are useful to build protein-protein interaction networks at a residue
level.

9.6.1 Structural Variation Including Conformational Changes

MSA contains information on all members of the protein family, and direct
couplings between residues estimated from the MSA reflect the structures of all
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members. It was shown (Anishchenko et al. 2013) that 74% of top L/2 direct
couplings residue pairs that are more than 5 Å apart in the target structures of 3883
proteins are less than 5 Å apart in at least one homolog structure.

Conformational change is an interesting case of structural variation. Many pro-
teins adopt different conformations as part of their functions (Tokuriki and Tawfik
2009), indicating that protein flexibility is as important as structure on biological
function. Protein flexibility around the energy minimum can be studied by sampling
around the native structure in normal mode/principal component analysis, coarse-
grained elastic network model, and short-timescale MD simulations. However,
distant conformers that require large conformational transitions are difficult to
predict. If conformational changes are essential on protein functions, evolutionary
constraints will reflect the multiple conformations. Toth-Petroczy et al. (2016)
showed that coevolutionary information may reveal alternative structural states of
disorderd regions.

Morcos et al. (2011) found that some of top predicted contacts in the response-
regulator DNA-binding domain family (GerE, PF00196) conflict with the structure
(PDB ID 3C3W) of the full-length response-regulator DosR of M. tuberculosis, but
are compatible with the structure (PDB ID 1JE8) of DNA-binding domain of E. coli
NarL.

Sutto et al. (2015) combined coevolutionary data and molecular dynamics
simulations to study protein conformational heterogeneity; the Boltzmann-learning
algorithm with �2 regularization terms was employed to extract direct couplings
between sites in homologous protein sequences, and a set of conformations con-
sistent with the observed residue couplings were generated by exhaustive sampling
simulations based on a coarse-grained protein model. Although the most represen-
tative structure was consistent with the experimental fold, the various regions of the
sequence showed different stability, indicating conformational changes (Sutto et al.
2015).

Sfriso et al. (2016) made an automated pipeline based on discrete molecular
dynamics guided by predicted contacts for the systematic identification of functional
conformations in proteins, and identified alternative conformers in 70 of 92 proteins
in a validation set of proteins in PDB; various conformational transitions are relevant
to those conformers, such as open-closed, rotation, rotation-closed, concerted, and
miscellanea of complex motions.

9.6.2 Homo-Oligomer Contacts

Intra-molecular contacts that conflict with the native fold may indicate homo-
oligomer contacts (Anishchenko et al. 2013). Such a case was confirmed for
homo-oligomer contacts in the ATPase domain of nitrogen regulatory protein C-
like sigma-54 dependent transcriptional activators (Morcos et al. 2011) and between
transmembrane helices (Hopf et al. 2012). It was pointed out (Hopf et al. 2012) that
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the identification of evolutionary couplings due to homo-oligomerization is not only
meaningful in itself but also useful because their removal improves the accuracy of
the structure prediction for the monomer.

9.6.3 Residue Couplings Mediated by Binding to a Third Agent

Direct couplings between residues found by the DCA analysis can be medi-
ated (Morcos et al. 2011) by their interactions with a third agent, i.e., ligands,
substrates, RNA, DNA, and other metabolites. This indicates that binding sites with
such a agent may be found as residue sites directly coupled but not in contact.

If interactions with a third agent requires too specific residue type at a certain
site, then the residue type will be well conserved at the binding sites. This often
occurs, and has been utilized to identify binding sites. However, the interactions for
binding are less specific but certainly restricted, direct couplings between residues
around the binding sites may occurs.

Hopf et al. (2012) devised a total evolutionary coupling score, which is defined
as EC values summed over all high-ranking pairs involving a given residue and
normalized by their average over all high-ranking pairs, and showed that residues
with high total coupling scores line substrate-binding sites and affect signaling or
transport in transmembrane proteins, Adrb2 and Opsd.

9.7 Heterogeneous Protein-Protein Contacts

An application of the direct coupling analysis to predict the structures of protein
complexes is straightforward. In place of a MSA of a single protein family, a single
MSA that is built by concatenating the multiple MSAs of multiple protein families
every species can be employed to extract direct couplings between sites of different
proteins by removing indirect intra- and inter-protein couplings (Pazos et al. 1997;
Skerker et al. 2008; Weigt et al. 2009; Hopf et al. 2012).

A critical requirement for sequences to be concatenated is, however, that
respective sets of the protein sequences must have the same evolutionary history
to coevolve. In other words, phylogenetic trees built from the respective sets of
sequences employed for the protein families must have at least the same topology.
One way to build a set of cognate pairs of protein sequences is to employ
orthologous sequences for each protein family, the phylogenetic tree of which
coincides with that of species. Thus, a genome-wide analysis of finding protein-
protein interactions based on protein sequences is not so simple.

Weigt et al. (2009) successfully applied the direct coupling analysis to the
bacterial two-component signal transduction system consisting of sensor kinase
(SK) and response regulator (RR), which are believed (Skerker et al. 2008) to
interact specifically with each other in most cases and often revealed by adjacency
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in chromosomal location. This analysis is based on the fact that in prokaryotes
cognate pairs are often encoded in the same operon. Genome-sequencing projects
have revealed that most organisms contain large expansions of a relatively small
number of signaling families (Skerker et al. 2008). However, it is not as simple as in
prokaryotes to build a set of cognate pairs of those protein sequences in eukaryotes.

Hopf et al. (2014) developed a contact score, EVcomplex, for every inter-
protein residue pair based on the overall inter-protein EC score distributions,
evaluated its performance in blinded tests on 76 complexes of known 3D structure,
predicted protein-protein contacts in 32 complexes of unknown structure, and then
demonstrated how evolutionary direct couplings can be used to distinguish between
interacting and non-interacting protein pairs in a large complex. In their analysis,
protein sequence pairs that are encoded close on E. coli genome were employed to
reduce incorrect protein pairings.

9.8 Discussion

Determination of protein structure is essential to understand protein function.
However, despite significant effort to explore unknown folds in the protein structural
space, protein structures determined by experiment are far less than known protein
families. Only about 41–42% of the Pfam families (Finn et al. 2016) (Pfam-
A release 31.0, 16712 families) include at least one member whose structure is
known. The number and also the size of protein families will further grow as
genome/metagenome sequencing projects proceed with next-generation sequencing
technologies. Thus, accurate de novo prediction of three-dimensional structure is
desirable to catch up with the high growing speed of protein families with unknown
folds. Coevolutionary information can be used to predict not only proteins but
also RNAs (Weinreb et al. 2016) and those complexes, together with experimental
informations such as X-ray, NMR, SAS, FRET, crosslinking, Cryo-EM, and others.

Here, statistical methods for disentangling direct from indirect couplings
between sites with respect to evolutionary variations/substitutions of amino acids
in homologous proteins have been briefly reviewed. Dramatic improvements on
contact prediction and successful 3D de novo predictions based on predicted
contacts are described in details in the recent reports of CASP-11 (Moult et al. 2016)
and CASP-12 meetings (CASP12 2017). Machine learning methods, particularly
deep neural network (DNN) such as MetaPSICOV, iFold, and RaptorX, have
shown to significantly augment contact prediction accuracy based on coevolutionary
information. However, the present state-of-the-art DNN methods are, at least at the
very moment, not powerful enough to extract coevolutionary information directly
from homologous sequences. It was reported that without coevolutionary strength
produced by CCMpred the top L/10 long-range prediction accuracy of RaptorX
might drop by 0.15 for soluble proteins and more for membrane proteins (Wang
et al. 2017), indicating that the direct coupling analysis is still essential for contact
prediction.
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The primary requirement for the direct coupling analysis is a high quality
deep alignment. However, genome/metagenome sequencing projects provide more
genetic variations from which more accurate and more comprehensive information
on evolutionary constraints can be extracted. One of problems is that species being
sequenced may be strongly biased to prokaryotes, making it hard to analyze eukary-
otic proteins based on coevolutionary substitutions. Experiments of vitro evolution
may be useful to provide sequence variations for eukaryotic proteins (Ovchinnikov
et al. 2016).

For a large-scale of protein structure prediction, computationally intensive meth-
ods such as the ACE and Boltzmann machine (MCMC and mpDCA) can hardly
be employed. The Gaussian approximation with a normal-inverse-Wishart prior, the
Gaussian approximations with other priors (PSICOV) and mean field approximation
(mfDCA) are fast enough but their performance of contact prediction tends to
be compared unfavorably with the pseudo-likelihood approximation (plmDCA),
indicating that they may be inappropriate for proteins with sparse couplings.

The accurate estimates of fields and couplings are very informative in evaluating
the effects (
HPotts) of mutations (Hopf et al. 2017), identifying protein family
members and also studying folding mechanisms (Morcos et al. 2014; Jacquin et al.
2016) and protein evolution (Miyazawa 2017b). It should be also examined whether
the distribution of dimensionless energies (HPotts) over homologous proteins can be
well reproduced. Accuracy of estimates of fields and couplings and the distribution
of dimensionless energies depends on regularization parameters or the ratio of
pseudocount (Barton et al. 2016; Miyazawa 2017b), and therefore they should be
optimized. It was also pointed out that group L1 regularization performs better
than L2 for the maximum pseudolikelihood method (Ingraham and Marks 2016).
The ACE algorithm, which can be applied only for systems of sparse couplings,
may be more favorable with respect to computational load for the estimation of
fields and couplings than Boltzmann learning with Monte Carlo simulation or
with message passing. However, both the methods are computationally intensive.
Recently, another approach consisting of two methods named persistent-vi and
Fadeout, in which the posterior probability density with horseshoe prior is approx-
imately estimated by using variational inference and noncentered parameterization
for such a sparsity-inducing prior, has shown to perform better with twofold
cpu time than the maximum pseudolikelihood method with L2 and group L1
regularizations (Ingraham and Marks 2016).

The remarkable advances of sequencing technologies and also statistical methods
are likely to bring many targets within range of the present approach in the near
future, and have a potential to transform the field (Moult et al. 2016).

Appendix

An appendix described in full will be found in the article (Miyazawa 2017a)
submitted to the arXiv.
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Inverse Potts Model

A Gauge Employed for hi(ak) and Jij (ak, al)

Unless specified, a following gauge is employed; we call it q-gauge, here.

hi(aq) = Jij (ak, aq) = Jij (aq, al) = 0 (9.16)

In this gauge, the amino acid aq is the reference state for fields and couplings,
and Pi(aq), Pij (ak, aq) = Pji(aq, ak), and Pij (aq, aq) are regarded as dependent
variables. Common choices for the reference state aq are the most common
(consensus) state at each site. Any gauge can be transformed to another by the
following transformation.

J I
ij (ak, al) ≡ Jij (ak, al) − Jij (·, al) − Jij (ak, ·) + Jij (·, ·) (9.17)

hI
i (ak) ≡ hi(ak) − hi(·) +

∑

j �=i

(Jij (ak, ·) − Jij (·, ·)) (9.18)

where “·” denotes the reference state, which may be aq for each site (q-gauge) or
the average over all states (Ising gauge).

Boltzmann Machine

Fields hi(ak) and couplings Jij (ak, al) are estimated by iterating the following 2-
step procedures.

1. For a given set of hi and Jij (ak, al), marginal probabilities, P MC(σi = ak) and
P MC(σi = ak, σi = al), are estimated by a Markov chain Monte Carlo method
(the Metropolis-Hastings algorithm (Metropolis et al. 1953)) or by any other
method (for example, the message passing algorithm (Weigt et al. 2009)).

2. Then, hi and Jij (ak, al) are updated according to the gradient of negative log-
posterior-probability per instance, ∂S0/∂hi(ak) or ∂S0/∂Jij (ak, al), multiplied
by a parameter-specific weight factor (Barton et al. 2016), wi(ak) or wij (ak, al);
see Eqs. 9.8 and 9.12.


hi(ak) = −(P MC(σi = ak) + ∂R

∂hi(ak)
− Pi(ak)) · wi(ak) (9.19)


Jij (ak, al) = −(P MC(σi = ak, σi = al) + ∂R

∂Jij (ak, al)

− Pij (ak, al)) · wij (ak, al) (9.20)
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where weights are also updated as wi(ak) ← f (wi(ak)) and wij (ak, al) ←
f (wij (ak, al)) according to the RPROP (Riedmiller and Braun 1993) algorithm;
the function f (w) is defined as

f (w) ≡
{

max(w · s−, wmin) if the gradient changes its sign,

min(w · s+, wmax) otherwise
(9.21)

wmin = 10−3, wmax = 10, s− = 0.5, and s+ = 1.9 < 1/s− were
employed (Barton et al. 2016). After updated, hi(ak) and Jij (ak, al) may be
modified to satisfy a given gauge.

The Boltzmann machine has a merit that model correlations are calculated.

Gaussian Approximation for P(σ) with a Normal-Inverse-Wishart Prior

The normal-inverse-Wishart distribution (NIW) is the product of the multivariate
normal distribution (N ) and the inverse-Wishart distribution (W−1), which are
the conjugate priors for the mean vector and for the covariance matrix of a
multivariate Gaussian distribution, respectively. The NIW is employed as a prior
in GaussDCA (Baldassi et al. 2014), in which the sequence distribution P(σ)

is approximated as a Gaussian distribution. In this approximation, the q-gauge
is used, and Pi(aq), Pij (ak, aq) = Pji(aq, ak), and Pij (aq, aq) are regarded as
dependent variables; see section “A Gauge Employed for hi(ak) and Jij (ak, al)”; in
GaussDCA, deletion is excluded from independent variables.

The posterior distribution for the NIW is also a NIW. Thus, the cross entropy S0
can be represented as

S0(µ, �|{Pi}, {Pij })= −1

B
log[

B∏

τ=1

N ({δστ
i ak

}|µ, �)N (µ|µ0, �/κ)W−1(�|
, ν)]
(9.22)

= −1

B
log[N (µ|µB,�/κB)W−1(�|
B, νB) (9.23)

(det(2π�))−B/2(
κ

κB
)dim �/2 (det(
/2))ν/2

(det(
B/2))ν
B/2

�dim �(νB/2)

�dim �(ν/2)
(det �)−(ν−νB)2]

(9.24)

where �dim �(ν/2) is the multivariate � function, µ is the mean vector, and dim �

is the dimension of covariance matrix �, dim � = (q − 1)L excluding deletion in
GaussDCA. The normal and NIW distributions are defined as follows.

N (µ|µ0, �) ≡ (det(2π�))−1/2 exp(− (µ − µ0)T �−1(µ − µ0)

2
) (9.25)
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W−1(�|
, ν) ≡ (det(
/2))ν/2

�dim �(ν/2)
(det �)−(ν+dim �+1)/2 exp(−1

2
Tr
�−1) (9.26)

Parameters µB , κB , νB , and 
B satisfy

μB
i (ak) = (κμ0

i (ak) + BPi(ak))/(κ + B) , κB = κ + B , νB = ν + B

(9.27)


B
ij (ak, al) = 
ij (ak, al) + BCij (ak, al)

+ κB

κ + B
[(Pi(ak) − μ0

i (ak))(Pj (al) − μ0
j (al))] (9.28)

where the 
 and ν are the scale matrix and the degree of freedom, respectively,
shaping the inverse-Wishart distribution, and C is the given covariance matrix;
Cij (ak, al) ≡ Pij (ak, al) − Pi(ak)Pi(al). The mean values of µ and � under NW
posterior are µB and 
B/(νB − dim � − 1), and their mode values are µB and

B/(νB +dim � +1), which minimize the cross entropy or maximize the posterior
probability. The covariance matrix � can be estimated to be the exactly same value
by adjusting the value of ν, whichever the mean posterior or the maximum posterior
is employed for the estimation of �. In GaussDCA, the mean posterior estimate
was employed but here the maximum posterior estimate is employed according to
the present formalism.

(µ, �) = arg min
(µ,�)

S0(µ, �|{Pi}, {Pij }) = (µB,
B/(νB + dim � + 1)) (9.29)

According to GaussDCA, ν is chosen in such a way that σij (ak, al) is nearly
equal to the covariance matrix corrected by pseudocount; ν = κ +dim � +1 for the
mean posterior estimate in GaussDCA, but ν = κ − dim � − 1 for the maximum
posterior estimate here.

From Eq. 9.15, the estimates of couplings and fields are calculated.

J NIW
ij (ak, al) = −∂S0({Pi}, {Pij })

∂Pij (ak, al)
= − (κ + B + 1)

κ + B
(�−1)ij (ak, al) (9.30)

Because the number of instances is far greater than 1 (B � 1), these estimates of
couplings are practically equal to the estimates (J MF = −�−1) in the mean field
approximation, which was employed in GaussDCA (Baldassi et al. 2014).

hNIW
i (ak) = −

∑

j �=i

∑

l

J NIW
ij (ak, al)Pj (al) − (κ + B + 1)

κ + B

∑

j

∑

l �=q

(�−1)ij (ak, al)

[δij

δkl − 2Pi(al)

2
+ κB

κ + B
(Pj (al) − μ0

j (al))] (9.31)
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The (hNIW
i (ak) − hNIW

i (aq)) does not converge to log Pi(ak)/Pi(aq) as J NIW → 0
but hMF

i (ak) − hMF
i (aq) does; in other words, the mean field approximation gives

a better h for the limiting case of no couplings than the present approximation.
Barton et al. (2016) reported that the Gaussian approximation generally gave a better
generative model than the mean field approximation.

In GaussDCA (Baldassi et al. 2014), µ0 and 
/κ were chosen to be as
uninformative as possible, i.e., mean and covariance for a uniform distribution.

μ0
i (ak) = 1/q,


ij (ak, al)

κ
= δij

q
(δkl − 1

q
) (9.32)

Pseudo-likelihood Approximation

Symmetric Pseudo-likelihood Maximization

The probability of an instance στ is approximated as follows by the product of
conditional probabilities of observing στ

i under the given observations στ
j �=i of all

other sites.

P(στ) ≈
∏

i

P (σi = στ
i |{σj �=i = στ

j }) (9.33)

Then, cross entropy is approximated as

S0(h, J |{Pi}, {Pij }) ≈ SPLM
0 (h, J |{Pi}, {Pij }) ≡

∑

i

S0,i (h, J |{Pi}, {Pij })
(9.34)

S0,i (h, J |{Pi}, {Pij }) ≡ −1

B

∑

τ

�i(σi = στ
i |{σj �=i = στ

j }, h, J ) + Ri(h, J )

(9.35)

where conditional log-likelihoods and �2 norm regularization terms employed in
Ekeberg et al. (2013) are

�i(σi = στ
i |{σj �=i = στ

j }, h, J ) = log[ exp(hi(σ
τ
i ) + ∑

j �=i Jij (σ
τ
i , σ

τ
j ))∑

k exp(hi(ak) + ∑
j �=i Jij (ak, σ

τ
j ))

]
(9.36)

Ri(h, J ) ≡ γh

∑

k

hi(ak)
2 + γJ

2

∑

k

∑

j �=i

∑

l

Jij (ak, al)
2 (9.37)
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The optimum fields and couplings in this approximation are estimated by minimiz-
ing the pseudo-cross-entropy, SPLM

0 .

(hPLM, J PLM) = arg min
h,J

SPLM
0 (h, J |{Pi}, {Pij }) (9.38)

Equation 9.38 is not invariant under gauge transformation; the �2 norm reg-
ularization terms in Eq. 9.38 favors only a specific gauge that corresponds to
γJ

∑
l Jij (ak, al) = γhhi(ak), γJ

∑
k Jij (ak, al) = γhhj (al), and

∑
k hi(ak) = 0

for all i, j (> i), k and l (Ekeberg et al. 2013). γJ = γh = 0.01 that is relatively
a large value independent of B was employed in Ekeberg et al. (2013). γh = 0.01
but γJ = q(L − 1)γh were employed in Hopf et al. (2017), in which gapped sites
in each sequence were excluded in the calculation of the Hamiltonian H(σ), and
therefore q = 20.

GREMLIN (Kamisetty et al. 2013) employs Gaussian prior probabilities that
depend on site pairs.

Ri(h, J ) ≡ γh

∑

k

hi(ak)
2 +

∑

k

∑

j �=i

γij

2

∑

l

Jij (ak, al)
2 (9.39)

γij ≡ γc(1 − γp log(P 0
ij )) (9.40)

where P 0
ij is the prior probability of site pair (i, j) being in contact.

Asymmetric Pseudo-likelihood Maximization

To speed up the minimization of S0, a further approximation, in which S0,i is
separately minimized, is employed (Ekeberg et al. 2014), and fields and couplings
are estimated as follows.

J PLM
ij (ak, al) � 1

2
(J ∗

ij (ak, al) + J ∗
j i(al, ak)) (9.41)

(hPLM
i , J ∗

i ) = arg min
hi ,Ji

S0,i (h, J |{Pi}, {Pij }) (9.42)

It is appropriate to transform h and J estimated above into a some specific gauge
such as the Ising gauge.

ACE (Adaptive Cluster Expansion) of Cross-Entropy for Sparse Markov
Random Field

The cross entropy S0({hi, Jij }|{Pi}, {Pij }, i, j ∈ �) of a cluster of sites �, which
is defined as the negative log-likelihood per instance in Eq. 9.14, is approximately
minimized by taking account of sets Lk(t) of only significant clusters consisting of
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k sites, the incremental entropy (cluster cross entropy) 
S� of which is significant
(|
S�| > t) (Cocco and Monasson 2011, 2012; Barton et al. 2016).

S0({Pi, Pij |i, j ∈ �}) �
|�|∑

l=1

,
∑

�′∈Ll(t),�
′⊂�


S0({Pi, Pij |i, j ∈ �′}) (9.43)


S0({Pi, Pij |i, j ∈ �}) ≡ S0({Pi, Pij |i, j ∈ �}) −
∑

�′⊂�


S0({Pi, Pij |i, j ∈ �′})

(9.44)

=
∑

�′⊆�

(−1)|�|−|�′| S0({Pi, Pij |i, j ∈ �′}) (9.45)

Lk+1(t) is constructed from Lk(t) by adding a cluster � consisting of (k+1) sites in
a lax case provided that any pair of size k clusters �1, �2 ∈ Lk(t) and �1 ∪ �2 = �

or in a strict case if �′ ∈ Lk(t) for ∀�′ such that �′ ⊂ � and |�′| = k. Thus,
Eq. 9.43 yields sparse solutions. The cross entropies S0({Pi, Pij |i, j ∈ �′}) for the
small size of clusters are estimated by minimizing S0({hi, Jij }|{Pi, Pij }, i, j ∈ �′)
with respect to fields and couplings. Starting from a large value of the threshold t

(typically t = 1), the cross-entropy S0({Pi, Pij }|i, j ∈ {1, . . . , N}) is calculated
by gradually decreasing t until its value converges. Convergence of the algorithm
may also be more difficult for alignments of long proteins or those with very strong
interactions. In such cases, strong regularization may be employed.

The following regularization terms of �2 norm are employed in ACE (Barton
et al. 2016), and so Eq. 9.43 is not invariant under gauge transformation.

− 1

B
log P0(h, J |i, j ∈ �) = γh

∑

i∈�

∑

k

hi(ak)
2+γJ

∑

i∈�

∑

k

∑

J>i,j∈�

∑

l

Jij (ak, al)
2

(9.46)
γh = γJ ∝ 1/B was employed (Barton et al. 2016).

The compression of the number of Potts states, qi ≤ q, at each site can be
taken into account. All infrequently observed states or states that insignificantly
contribute to site entropy can be treated as the same state, and a complete model can
be recovered (Barton et al. 2016) by setting hi(ak) = hi(ak′)+ log(Pi(ak)/P

′
i (ak′)),

and Jij (ak, al) = J ′
ij (ak′ , al′), where “′” denotes a corresponding aggregated state

and a potential.
Starting from the output set of the fields hi(ak) and couplings Jij (ak, al) obtained

from the cluster expansion of the cross-entropy, a Boltzmann machine is trained
with Pi(ak) and Pij (ak) by the RPROP algorithm (Riedmiller and Braun 1993)
to refine the parameter values of hi and Jij (ak, al) (Barton et al. 2016); see
section “Boltzmann Machine”. This post-processing is also useful because model
correlations are calculated.

An appropriate value of the regularization parameter for trypsin inhibitor were
much larger (γ = 1) for contact prediction than those (γ = 2/B = 10−3) for
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recovering true fields and couplings (Barton et al. 2016), probably because the task
of contact prediction requires the relative ranking of interactions rather than their
actual values.

Scoring Methods for Contact Prediction

Corrected Frobenius Norm (L22 Matrix Norm), SCFN
ij

For scoring, plmDCA (Ekeberg et al. 2013, 2014) employs the corrected Frobenius
norm of J I

ij transformed in the Ising gauge, in which J I
ij does not contain anything

that could have been explained by fields hi and hj ; J I
ij (ak, al) ≡ Jij (ak, al) −

Jij (·, al) − Jij (ak, ·) + Jij (·, ·) where Jij (·, al) = Jji(al, ·) ≡ ∑q

k=1 Jij (ak, al)/q.

SCFN
ij ≡ SFN

ij − SFN·j SFN
i· /SFN·· , SFN

ij ≡
√ ∑

κ �=gap

∑

l �=gap

J I
ij (ak, al)2 (9.47)

where “·” denotes average over the indicated variable. This CFN score with the gap
state excluded in Eq. 9.47 performs better (Ekeberg et al. 2014; Baldassi et al. 2014)
than both scores of FN and DI/EC (Weigt et al. 2009; Morcos et al. 2011; Marks
et al. 2011; Hopf et al. 2012).
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