Chapter 11 ®
Harnessing the Combined Power Qs
of SAXS and NMR

A. M. Gronenborn

Abstract Single types of methodologies are no longer sufficient to adequately
describe complex biological structures. As a result, integrated approaches that
combine complementary data are being developed. This chapter describes the
integration of nuclear magnetic resonance and small-angle scattering approaches
to characterize solution structures of multi-domain proteins.

Keywords Integrated structural biology - Multi-domain proteins - NMR -
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A major challenge for structural biology is providing a mechanistic understanding
of the plethora of functions and associated conformational changes performed by
macromolecular and supramolecular complexes that underlie cell biology. Obtain-
ing structures of such assemblies is a necessary prerequisite, and the rich data that
they provide will open up new opportunities in the biomedical, biotechnological,
and pharmacological arenas.

In order to investigate and adequately describe multifaceted biological systems,
single types of methodologies are no longer sufficient: researchers are turning
more and more to integrated approaches, using complementary structural data. The
complexity of biological phenomena, linked to the inherent partiality of any rep-
resentation, requires the pursuit of multiple methods and models. As is universally
appreciated, individual types of structural data are limited in scope, accuracy and
generality, and any inherent shortcomings can be overcome or minimized using
complementary information in an integrative fashion.

In addition to the traditional structural biology techniques of X-ray crystallogra-
phy, nuclear magnetic resonance (NMR) and electron microscopy (EM), additional
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methods are increasingly used, alone and in combination, with traditional methods
to generate structural information. These include mass spectrometry of crosslinked
complexes (Cohen and Chait 2001) and native complexes (Mehmood et al. 2015),
synchrotron radiation circular dichroism spectroscopy (Cowieson et al. 2008),
electron paramagnetic resonance spectroscopy (EPR) combined with site-directed
spin labelling (Hubbell et al. 2000), Small-Angle Scattering (SAXS) (Lipfert
and Doniach 2007), and computational docking with sparse distance restraints
(Schneidman-Duhovny et al. 2012).

Although the integration of all structural methodologies with cell biology,
biochemistry and computational approaches has made major strides over the last
few years, the current chapter focusses specifically on the integration of NMR and
SAXS for structural biology, emphasizing their remarkable complementarity.

NMR has unique capabilities for studying structure and dynamics of
biomolecules at the atomic level. Structural characterization of a protein or any other
biological macromolecule by NMR in solution invariably describes a distribution of
interconverting conformers, in contrast to most structural descriptions from X-ray
crystallography, cryo EM or solid-state magic-angle spinning NMR. Solution NMR
ensembles encompass conformational families that range from a narrow distribution
for well-folded, globular proteins or domains to a wide distribution for unfolded or
partially folded polypeptide ensembles.

In contrast to the atomic-level information available by NMR, SAXS affords low
resolution information but furnishes important data on the global size and shape of
a particle in solution, ideally complementing the NMR-derived data. Or, in other
words, SAXS provides an overall picture of the 3D space occupied by all coexisting
conformers, while high resolution NMR describes the details of the conformational
landscape at the atomic level. Several excellent reviews describing the general use
of SAXS for biomolecules in solution have been published, covering a number of
different aspects of the technique (Guinier and Fournet 1955; Doniach 2001; Koch
et al. 2003; Putnam et al. 2007; Svergun and Koch 2003; Doniach and Lipfert
2012). Furthermore, a focused review on the use of SAXS to derive global shape
information of folded RNA molecules is also available (Bhandari et al. 2016).

Like all structural techniques, NMR and SAXS each have advantages and
disadvantages, as well as unique strengths and shortcomings. For example, SAXS is
not limited by the molecular size of the particle under investigation (Graewert and
Svergun 2013; Grant et al. 2011; Hura et al. 2009; Jeffries and Trewhella 2013;
Martel et al. 2012) and can describe the contours of molecules with molecular
masses of a few hundred kDa, a size too large for atomic level structure determi-
nation by solution NMR. Solution NMR, on the other hand, can provide detailed
information about the atomic structure and dynamics of molecules, even for rare
conformational sub-states (Sekhar and Kay 2013). However, both techniques are
affected by potentially confounding factors to different degrees. While both methods
ideally require monodispersity of the dissolved molecules, SAXS data quality
is exquisitely sensitive to aggregation, and even a very small percentage (~1%)
of aggregated species can compromise the data analysis. In contrast, such small
amounts of aggregates would not be observed by solution NMR and the presence
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of very large aggregates does not interfere with structural characterization of the
smaller major component. For both SAXS and NMR, an additional complexity
arises from conformational averaging on different timescales, reflecting the presence
of local as well as global motions, which are important inherent properties of
proteins (Henzler-Wildman and Kern 2007). Therefore, it is desirable to combine
orthogonal techniques, which provide a more comprehensive description of the
structure and dynamics than any individual method alone. In this regard, it is
noteworthy that SAXS and NMR measurements can be performed on the same
solution, ideally lending themselves to be used in an integrative fashion.

Given their complementarity, the integrated use of NMR and SAXS provides a
powerful means to more completely describe the solution behavior of biological
macromolecules, filling-in gaps or inherent imprecisions in the data extracted by
either technique alone. Thus, when characterizing solution structures and architec-
tures, it is desirable to obtain a SAXS shape envelope into which high resolution
structures can be fitted, thus allowing the overall architecture of a multi-domain
protein or multiprotein complex to be visualized.

NMR is an effective method for determining protein structure in solution at
atomic resolution and has been routinely used for over 25 years (Fig. 11.1).
However, for multi-domain proteins, even if a large number of distance-, angle-
and chemical shift restraints are available, the relative orientations of individual
domains are difficult to ascertain, given the predominantly local nature of the NMR-
derived constraints. This limitation can be overcome, to some degree, by using
extensive sets of residual dipolar couplings (RDCs). RDCs can be measured in
solution NMR spectra, if molecules experience weak alignment in the magnetic
field, either caused by the molecule’s own magnetic susceptibility anisotropy or
by employing very dilute liquid crystalline media (Tjandra and Bax 1997). These
couplings contain information about the orientation of the associated inter-nuclear
vector, relative to the molecular susceptibility anisotropy tensor and, therefore,
provide angular restraints for structure calculations. Addition of RDC-derived
restraints to conventional structure determination algorithms results in remarkable
improvements, both locally as well as globally.

Algorithms for determining NMR structures aim to locate the global minimum
of a target function containing terms for covalent geometry, non-bonded contacts,
and the experimentally derived distance and angular restraints. The most important
geometric information is provided by the nuclear Overhauser effect (NOE), which
is translated into distances between proton pairs separated by <6 A. Despite
their short-range nature, these distances are highly conformationally restrictive,
especially if they involve atoms that belong to units (amino acids or nucleotides) that
are far apart in the linear sequence. Other experimental NMR restraints that provide
short range structural information are three-bond coupling constants and secondary
"H and '3C chemical shifts. Three-bond coupling constants (°J) are related to
torsion angles by the Karplus equation (Karplus 1963), with the 3Jyn. coupling
providing direct information about the phi backbone torsion angle. In a similar
way, the empirical correlation between a protein’s backbone conformation (phi/psi
angles) and the difference in '3Ca and '3Cb chemical shifts from random coil values
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Fig. 11.1 Schematic illustration of NMR-provided information. 2D spectrum (middle), NOESY
data and distances (left), chemical shift-derived phi, psi angles (top), J coupling-derived dihedral
angles and RDC-derived orientational restraints (right), are all combined to determine an atomic
model (bottom)

are used in NMR structure determination. 'H chemical shifts are primarily used for
refinement purposes, although recent advances in the ab initio calculation of proton
shifts hold great promise for their routine use in NMR structure determination. In
addition to these originally used parameters, paramagnetic relaxation enhancements
(PRESs) (Gillespie and Shortle 1997) and pseudocontact shifts (PCS) (Bertini and
Luchinat 1999) augment the arsenal of geometric restraints that can be obtained by
NMR.

SAXS data are measured as scattering signal intensity at a given value of q, where
q = 4msin 6/), with 20 the scattering angle and A the X-ray wavelength. Several
program suites are available for processing SAXS data (e.g., PRIMUS, Scatter)
(Rambo). The SAXS scattering profile (Fig. 11.2) at very small scattering angles
(low q region) is frequently analyzed using the Guinier approximation, since the
data for q close to zero vary linearly with q (Guinier and Fournet 1955). Thus,
plotting the scattering intensity as In I(q) vs q° results in a straight line with the
slope equal to — Rg2/3 and the vertical intercept equal to the natural log of the zero-
angle scattering intensity 1(0). In this manner, the radius of gyration, Rg, i.e. the
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Fig. 11.2 Schematic illustration of SAXS data and analysis. (a) Scattering pattern (top), an
experimental scattering intensity profile with fit (middle), and a low-resolution dummy bead model
(bottom). (b) A theoretical scattering intensity profile (middle) and the various basic methods for
analysis of SAXS data

average root-mean-square distance from the center of density in the molecule can
be extracted. Using the Guinier plots for the estimation of Rg, the maximum ¢
that is acceptable to include in the fit is 1.3/Ry. The extrapolated intensity at zero
scattering angle, 1(0), is proportional to the electron density contrast between the
scattering entity and the buffer and can be used to determine the molecular mass
of the molecule (Fischer et al. 2010; Mylonas and Svergun 2007). Plotting I(0) vs
concentration yields a straight line, unless large scale conformational averaging is
present. Indeed, for highly flexible systems, the electron density contrast between
the solute and the solvent is difficult to discern, rendering accurate determination of
the volume and molecular weight values difficult.

Conformational flexibility or large amplitude motions in a molecule can be
discerned from analysis of the scattering data using Kratky plots in which the
scattering data is transformed as q>*I(q) vs q (Fig. 11.2b) (Glatter and Kratky
1982). Kratky plots for well-ordered globular, disordered and highly flexible, as
well as partially ordered entities exhibit characteristic features (Hammel 2012;
Kikhney and Svergun 2015; Rambo and Tainer 2011) that can be used for an initial
characterization of the system under investigation.
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The most powerful means for analyzing SAXS data consists of Fourier trans-
forming the scattering intensity 1(q) into a pair-distance distribution function P(r)
(Fig. 11.2b). This function represents a continuous r’-weighted histogram of all
electron-pair distances in the molecule (Glatter 1977). The P(r) function permits
assessment of the overall quality of SAXS data analysis, since Ry and 1(0) can be
extracted directly from the P(r) function by integrating the function over all values
of r. Calculating Ry and I(0) directly from P(r) uses all of the experimental data
in real space, compared to solely using the linearly approximated points from the
Guinier plot in the low-q region.

SAXS data together with RDC data, initially, were used to successfully refine
known solution NMR structures of single-chain proteins with simulated annealing
(SA) protocols (Grishaev et al. 2005; Lee et al. 2007). The power of combining
SAXS and NMR, however, is most evident for multi-domain proteins, in which
individual domains are connected by flexible linkers (Hennig and Sattler 2014). For
example, it is possible to determine global architectures of complexes, employing
experimental SAXS and RDC data in conjunction with solution NMR-derived
component structures, as shown by us and others (Wang et al. 2009; Ellis et al.
2009). A very instructive and comprehensive review on the integration of SAXS and
NMR for the analysis of the structural dynamics of modular multi-domain proteins,
using DNA replication proteins as examples, was published recently (Thompson
et al. 2017). In addition, several methods for characterizing flexible systems in
solution using SAXS data have been reported; these include ensemble optimization
methods (Bernado et al. 2007; Schwieters and Clore 2007), a minimal ensemble
search (Pelikan et al. 2009), a basis-set supported SAXS (Yang et al. 2010), an
integrative modeling platform (Forster et al. 2008), a maximum-entropy refinement
(Rozycki et al. 2011), and maximum occurrence method, MaxOcc (Bertini et al.
2012). These approaches entail the generation of a large number of structures to
cover the accessible conformational space, from which a subset of conformers
is selected that fit the experimental SAXS data. The methods differ in the way
the starting conformational ensemble is generated and how the final ensemble is
selected from the pool. Extending such ensemble refinement protocols to include
NMR-derived distance and RDC restraints, in addition to SAXS data, in both, the
pool generation and the optimal ensemble selection, have proven successful for two-
domain proteins that possess significant inter-domain motions (Lemak et al. 2014).

An illustrative example of method integration, aimed at obtaining a more detailed
picture of a macromolecule in solution is our recent study on the structure and
dynamics of a domain-insertion protein (Fig. 11.3). In this case, we integrated
crystallographic, NMR and SAXS data with microsecond-scale atomistic molecular
dynamics to construct a structural model of the overall two-domain system.
In particular, NMR relaxation and paramagnetic relaxation enhancement (PRE)
experiments along with microsecond-scale MD simulations in explicit solvent
were carried out. Using this comprehensive integrated approach, we established
that the two domains in the protein have no fixed relative orientation, although
certain orientations are preferred over others (Debiec et al. 2018). In summary,
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Probability distributions of inter-domain orientations within the SAXS envelope

Fig. 11.3 Integration of NMR- or X-ray-derived domain structure information, NMR relaxation
data, SAXS data and long-time scale molecular dynamics simulations permits the characterization
of a probabilistic ensemble of the overall solution structure. The LysM domain is shown in blue, the
CVNH domain in red, the interdomain linkers in green, and the paramagnetic MTSL tag in yellow.
Structures were best fit to the CVNH domain coordinates. Solid contours represent 1 A3 bins in
the simulation that are occupied by a heavy atom in at least 1% of the ensemble, and transparent
contours represent bins occupied in at least 0.1% of the ensemble

the integrated use of NMR and SAXS provides a powerful means to describe the
solution behavior of biological macromolecules, as the combined data collected
with each method permits one to derive a more complete picture of a multi-
domain protein or multiprotein complex than can be provided by either technique
alone. Thus, when characterizing solution structures of biological systems, one
should consider obtaining a SAXS shape envelope into which high-resolution NMR
structures can be fitted.
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