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Part I
Introduction and Historical Background



Chapter 1
Overall Introduction and Rationale,
with View from Computational Biology

Haruki Nakamura

Abstract By integrating the experimental information given from the Hybrid/
Integrative methods to determine the structures of large macromolecular machines,
the static and dynamic molecular models in the atomic or semi-atomic resolution
have been built with the aid of bioinformatics and computer simulations. Here,
review of the recent progresses of such computational methods are made with
discussion for the future direction.

Keywords Hybrid/integrative methods · Computational biology · Structural
biology · X-ray · SAXS · NMR · Cryo-EM

1.1 Introduction

In recent years, the structures of large macromolecular machines in cells have been
determined by combining observations from multiple, complementary experimental
methods, such as X-ray crystallography, NMR spectroscopy, 3DEM (three-
dimensional Electron Microscopy), X-ray and Neutron small-angle scattering
(SAXS and SANS), FRET (Förster Resonance Energy Transfer), chemical
crosslinking, and many others. In addition, by integrating such experimental
information, the static and dynamic molecular models in the atomic or semi-atomic
resolution have been built with the aid of bioinformatics and computer simulations.
Currently, many structures determined by those so-called hybrid methods appear
in high-impact-factor journals, and their atomic models are being deposited in the
PDB (Protein Data Bank) (Berman et al. 2013, 2016) and the pilot site for the
hybrid methods, PDB-dev (https://pdb-dev.wwpdb.org/) (Burley et al. 2017) which
is managed by an international organization, the wwPDB (worldwide PDB: https://
wwpdb.org/) (Berman et al. 2003, 2007; Markley et al. 2008)
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In October 2014, a task force wwPDB workshop was held to discuss how struc-
tural models derived from the integration of hybrid methods should represented,
validated and archived. News about this workshop was published in Nature (Ewen
2014), and the proceedings of the workshop were published in Structure (Sali et al.
2015). On October 3, 2015, the wwPDB Symposium “Integrative Structural Biology
with Hybrid Methods” was held in Osaka, Japan.

This book will present the methods used to determine, validate, and archive
structural models of large biomolecular complexes and cellular machines. Recent
examples will be discussed along with current trends in molecular and cellular
structural biology. Most of the initially proposed authors were speakers at the
wwPDB symposium on October 3, 2015, and the book was first planned to serve
as an updated summary of that meeting. However, the progress in this field has been
much faster than what we planned first, and so we extended the Chapters covering
the latest developments, which, we are sure, should be useful as one of the book
series, Advances in Experimental Medicine and Biology.

Here, we review the recent progresses of such computational methods for several
roles in the Hybrid/Integrative methods: (i) Analysis of genome information to
obtain structural information at various levels, (ii) Integration of various methods to
build the most probable atomic or semi-atomic resolution models, and (iii) Analysis
of dynamic natures of complex structures. Finally, we discuss the future direction of
the Hybrid/Integrative methods with the aid of the computational biology. There are
other important issues, Validation of structures with the Hybrid/Integrative methods
and Archiving of structural models determined by Hybrid/Integrative methods.
Those will be described by other authors in this book, and we will not touch these
issues here.

1.2 Analysis of Genome Information to Obtain Structural
Information

There has been a long history to predict 3D protein structures from genome
information, including comparative or homology modeling for the homologous
proteins with sequence similarities larger than 30%, and de novo structural modeling
with sequence similarities less than 30% to any known structures. Many methods
have been developed and been matured during the blind contests, the Critical
Assessment of Techniques for Protein Structure Prediction (CASP), since 1994
(Moult et al. 2016). Another blind contest, the Critical Assessment of Predicted
Interactions (CAPRI), has also been established as the community-wide initiative
since 2001, in order to develop reliable methodologies to predict protein-protein
interactions and structures of protein assemblies (Wodak and Janin 2017).

In particular, by distinguishing true co-evolution couplings from the noisy
observation for the evolutionary sequence variation, accurate predictions of residue-
residue contacts have been made, and more reliable 3D protein structures are
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predicted (Marks et al. 2011). This approach to use co-evolution information with
the multiple sequence alignment for large family members has made great successes
in not only soluble proteins (Marks et al. 2011), but also membrane proteins (Hopf
et al. 2012) and even for protein complexes (Hopf et al. 2014). By combining with
the atomic structure refinement, more precise 3D atomic structures have been built
using metagenome sequence data as the genome wide analysis (Ovechinnikov et al.
2017). About this algorithm and method, Sanzo Miyazawa describes in details at
Chap. 9 of this book.

Recent Hi-C (high-resolution chromosome conformation capture) experiments
have revealed the chromatin organization in 3D (Lieberman-Aiden et al. 2009). In
particular, from the single-cell Hi-C technology, individual chromosomes are shown
to maintain domain organization at the megabase scale (Nagano et al. 2013), and 3D
structural models reveal a radial architecture of chromosomal compartments with
epigenome signature depending on the cell cycle (Nagano et al. 2017). It is also
suggested that patchiness of DNA methylation correlates the 3D chromatin structure
(Zhang et al. 2017). Those 3D chromatin structures have been constructed based on
the distance geometry algorithm, essentially the same one, which was developed in
the field of NMR structure determination described by John L. Markley (see Chap.
5) in this book. This field has just started to reveal many different dynamic chromatin
structures, but massive genome sequencing will soon give us more detailed view of
individual chromosomes at each cell-cycle and their relation to epigenetic signals.

1.3 Integration of Various Methods to Build the Atomic
or Semi-atomic Resolution Models

The most important role of computation in the Hybrid methods is to build atomic or
semi-atomic resolution models by integrating structure information obtained from
various experimental methods.

When the cryo-EM does not give data with the atomic resolution, the ordinary
way to make the atomic model is to fit the atomic structure already determined by X-
ray crystallography or NMR. For the fitting method of such atomic models, Takeshi
Kawabata describes a review in Chap. 14 including his own method of gmfit with
Gaussian mixed modeling (Kawabata 2008).

In many cases, it is necessary to modify the amino-acid sequences by the
comparative modeling mentioned in the above section. In addition, such atomic
structures, which are only part of the huge complex structures in many cases, were
determined in crystals or in solution, and so they may not completely fit the electron
density maps because of structural changes. Polymorphic property of the structures
captured by cryo-EM is also rather intrinsic. Thus, in order to solve those structural
multiplicity, flexible fitting methods of atomic structural models into microscopy
maps have been proposed using molecular dynamics (MD) simulations, which are
reviewed by Florence Tama in Chap. 13. Usually, a pseudo potential function is

http://dx.doi.org/10.1007/978-981-13-2200-6_9
http://dx.doi.org/10.1007/978-981-13-2200-6_5
http://dx.doi.org/10.1007/978-981-13-2200-6_14
http://dx.doi.org/10.1007/978-981-13-2200-6_13
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added to the conformation energy of the protein system, so as to fit the density
map given by the cryo-EM experiment with that synthetically simulated from all-
atom MD simulation (Orzechowski and Tama 2008). In particular, a program MDFF
developed by Klaus Schulten group has been frequently used (Trabuco et al. 2008;
Alvarez et al. 2017). Other approach to cryo-EM structure refinement is to integrate
the 13C chemical shifts from solution and solid-state NMR with MD simulation
(Perilla et al. 2017).

1.4 Analysis of Dynamic Natures of Complex Structures

The other important role of computation is to analyze the dynamic natures of
proteins. From the high-resolution maps by cryo-EM, it is now possible to directly
determine various atomic structures by 2D- and 3D-image classification without
using MD simulations (Zhao et al. 2015). However, such polymorphic structures
are still difficult to be captured.

The solution NMR method is able to observe the dynamic property directly, but it
is difficult to solve the structures having the molecular weights larger than 30,000 Da
in an ordinary way. Tang et al. propose a new method, so called EC-NMR method,
where the structural information measured by NMR is coupled with the co-evolution
information with the multiple sequence alignment mentioned above (Tang et al.
2015). Gaetano T Montelione introduces the method in Chap. 10.

Because Small angle scattering experiments by X-ray (SAXS) or Neutron
(SANS) are only available to give rough but dynamic structural image, MD
simulations are powerful tool to build dynamic protein structural models in solution
(Oroguchi and Ikeguchi 2011; Chen and Hub 2015). Mituhiro Ikeguchi describes the
recent progresses of the method in Chap. 15. SAXS is frequently used to confirm
the oligomeric state of protein systems. A hybrid NMR/SAXS approach integrated
by computation has also been reported (Rossi et al. 2015), which is introduced by
Angela M. Grogenborn in Chap. 11.

Finally, very large structural changes are observed by the intrinsically disordered
regions, which are now understood to be very abundant in nuclei and cytoplasm
of higher organism (Wright and Dyson 2015; Babu 2016). Because of their multi-
modal nature, NMR and computer simulations can capture their putative structures
as the ensemble. In particular, an enhanced structural sampling method is very
powerful method to capture the multi-modal conformations (Kasahara et al. 2018).
Recently, High-speed atomic force microscope (HS-AFM) can give us the images
of the intrinsic disordered regions (Miyagi et al. 2008), in addition to the dynamic
images of the actual movements of motor proteins and the rotational motion of F1-
ATPase (Ando 2014).

http://dx.doi.org/10.1007/978-981-13-2200-6_10
http://dx.doi.org/10.1007/978-981-13-2200-6_15
http://dx.doi.org/10.1007/978-981-13-2200-6_11
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1.5 Conclusion

As shown in Fig. 1.1, computational biology offers a crucial tool for the
Hybrid/Integrative methods, not only giving the initial putative models estimated
from genome information, but also integrating information observed by various
experiments, X-ray crystallography, NMR, cryo-EM, SAXS and so on. In particular,
when the space resolution of each method is not very high, an atomic or semi-
atomic resolution model can be built to satisfy the information given by the various
methods. The dynamic natures of the protein systems can be revealed by molecular
simulations. The role of bioinformatics and molecular simulation should become

Fig. 1.1 Roles of computational biology in Hybrid/Integrative methods and data archives.
Genomics by next-generation sequencer (NGS) produce huge information of genome sequences.
Chemical cross-link with mass spectroscopy (MS) and Förster Resonance Energy Transfer (FRET)
or any other biophysical measurements provide distance information among several particular
atoms or atom groups in a molecule or supra-molecule, as well as NMR observation. Three-
dimensional electron microscopy (3DEM) gives the volume map in a real space, and the atomic
structure can be obtained when high-resolution electron density map is observed. Small angle X-
ray scattering (SAXS) and that of neutron scattering (SANS) provide the shape information of
molecules in solution. Many different kinds of experimental information are integrated by various
methods of bioinformatics and molecular simulations. Raw experimental data are archived in the
public databases: BMRB for NMR data, EMDB for 3DEM data, SASBDB for SAXS and SANS
data, PDB-dev for distance data by FRET and other methods, and PDB for structure factors given
by crystallography. The final three-dimensional atomic models, which have often dynamic features,
are also archived by the wwPDB to PDB and PDB-dev
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much more crucial for understanding the mechanisms and functions of molecular
machines in cells.
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Chapter 2
Integrative/Hybrid Methods Structural
Biology: Role of Macromolecular
Crystallography

Stephen K. Burley

Abstract Macromolecular crystallography has been central to the emergence and
development of structural biology as a scientific discipline. Approximately 90%
of the more than 138,000 three-dimensional structures currently available in the
Protein Data Bank (PDB) archive, the single, global open access data resource
for macromolecular structure data, were determined using X-ray crystallography.
MX, the enormous variety of PDB structures of proteins, DNA, and RNA, and
computational models derived therefrom will be central to the growth of integrative
or hybrid (I/H) methods structural studies of macromolecular assemblies and other
complex biological systems.

Keywords X-ray crystallography · Macromolecular crystallography · MX ·
Protein crystallography · 3D structure · Protein · DNA · RNA · Protein data
Bank · PDB · Worldwide protein data Bank · wwPDB · Atomic coordinates ·
Structural biology · Integrative/hybrid methods · I/H methods

2.1 Introduction

Macromolecular crystallography or MX, also known as protein crystallography,
first yielded atomic-level three-dimensional (3D) structures of small proteins in the
1950s and 1960s following the pioneering efforts by J.D. Bernal (London, UK),
Dorothy Hodgkin (London, Oxford, UK), John Kendrew (Cambridge, UK), William
N. Lipscomb, Jr. (Cambridge, US), Max F. Perutz (Cambridge, UK), David C.
Phillips (London, Oxford, UK), Frederick M. Richards (New Haven, US), and their
co-workers (many of them pioneers in their own right and too numerous to name in
this chapter).
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In principle, the MX method is a simple one. The diffraction experiment is
nothing more than an analog calculation in 3D of a discretely sampled, continuous
Fourier transform of the shape of the electron rich portions of an ordered crystal
made up of one or more macromolecules; followed by a digital calculation of
a second Fourier transform; yielding a magnified 3D image of the electron rich
portions of crystal, which can be interpreted as a 3D atomic-level structure of a
macromolecule(s).

In practice, the experiment can be challenging, requiring highly purified prepa-
rations of biological macromolecules that will form a well-ordered 3D crystal;
an intense, highly collimated source of monochromatic X-rays; a sample stage
on which to position and eucentrically move the crystal within the X-ray beam;
an electronic detector that accurately measures the intensity of the resulting X-
ray diffraction pattern (i.e., directed spray of X-rays emerging from the crystal);
an effective strategy for recovering the phase information for each diffracted X-
ray beam that is sacrificed when the X-ray measurement are performed; a digital
computer; an expert software system augmented by skilled a human to generate the
3D atomic coordinates of the non-hydrogen atoms comprising the macromolecule(s)
that make up the crystal.

The very first X-ray structures of myoglobin, hemoglobin, lysozyme, car-
boxypeptidase A, ribonuclease S, and insulin literally took decades from the time
that diffraction quality crystals were initially grown, requiring 100 s of person years
of effort by large, multi-disciplinary teams. The situation was not much better in the
early 1980s, when a single protein crystallographic structure determination typically
required 20 person years. Today, it is not unusual for a 3D structure of a 50 kDa
protein to be determined at near atomic resolution in less than 1 month by a trained
individual, starting from a segment of double-stranded DNA that encodes the protein
of interest.

Given the challenges workers in the field of protein crystallography faced through
the decades of the 1950s and 1960s, what transpired in the summer of 1971
at Cold Spring Harbor Laboratory can be ascribed to enlightened self-interest.
The famous quote from Benjamin Franklin, “We must, indeed, all hang together
or, most assuredly, we shall all hang separately.” must have been top of mind.
Protein crystallographers “hung together” by establishing the Protein Data Bank
(PDB) as the first open access digital data resource in biology with just 7 X-ray
structures (Protein Data Bank 1971). Doing so accelerated scientific and technical
developments in the field, and the PDB now contains more than 138,000 structures
of proteins, DNA, and RNA determined by MX, nuclear magnetic resonance
spectroscopy (NMR), and electron microscopy (3DEM). Since 2003, the Worldwide
PDB (wwPDB, wwPDB.org) organization has managed the PDB archive and
ensured that PDB data are freely and publicly available to >1 million PDB Data
Consumers around the globe (Berman et al. 2003). Locally-funded, regional PDB
Data Centers in the US [RCSB Protein Data Bank, (Berman et al. 2000; Rose et al.
2017) and BioMagResBank (Ulrich et al. 2008)], Europe [Protein Data Bank in
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Europe, (Velankar et al. 2016)], and Asia [Protein Data Bank Japan, (Kinjo et al.
2017)] safeguard and disseminate PDB structures using a common data dictionary
(Fitzgerald et al. 2005) and a unified global system for data deposition-validation-
biocuration by >30,000 PDB Data Depositors (Young et al. 2017).

It is not possible to do justice to the scientific underpinnings (e.g., chemistry,
physics, mathematics, and statistics), the myriad technologies (X-ray sources and
detectors, beam line engineering, computer hardware, data collection and analysis
software, structure determination and refinement software, and molecular graphics
hardware and software), and the power of MX as an experimental tool in a single
book chapter or even an entire book. This chapter describes the roles that MX can
play in I/H methods structure determination. Two topics are covered in some detail,
including (i) MX Structure Data for I/H methods and (ii) Accessing Public-domain
MX Structure Data for use in I/H methods.

2.2 MX Structure Data for I/H Methods

MX structure data are used for I/H methods structure determination in two ways.
First, but typically in only the most favorable situations, the macromolecular

assembly of interest can be produced in sufficient amounts and with adequate purity
that it will yield 3D crystals suitable for 3D structure determination from the X-ray
diffraction experiment. As I/H methods target every larger experimental systems,
crystalline samples will be fewer and farther between, and ever more challenging to
work with. Rarely will they diffract strongly, or give diffraction data at high-enough
resolution to succumb to structure determination using a single method and produce
a 3D atomic level structure. When the method does work, the resulting structures
are typically of only modest resolution (i.e., lower than 4 Å).

As of early 2017, the PDB archive contained >120,000 X-ray structures, of which
779 were obtained at 4 Å resolution or lower with 543 falling between 4 and 5 Å
resolution (Fig. 2.1). The paucity of structures at very low resolution reflects the
difficulty of phasing the diffraction pattern in the absence of higher resolution data.
The lowest resolution MX structure in the PDB is that of Tropomyosin (PDB ID
2tma), obtained at 15 Å by Phillips and coworkers (Phillips 1986). Some of these
lower resolution PDB structures lack atomic coordinates for amino acid side chains,
treating the polypeptide chain as a polymer of Alanine residues.

Figure 2.2 illustrates the rate of addition of low-resolution X-ray structures to
the PDB archive from 1971–2017. It is remarkable that >70 new low-resolution
structures have been added to the archive each year since 2012. This acceleration
reflects both the growing interest in macromolecular systems that do not yield
high quality crystals and improvements in structure determination methods at lower
resolution (Karmali et al. 2009; Brunger et al. 2009; Dyda 2010; DiMaio et al. 2013;
Goh et al. 2016).
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Second, and more common, higher-resolution MX structures are used for I/H
methods structure determination in piecemeal fashion. Much of the time, the overall
size and shape of a macromolecular assembly can be determined by 3DEM or
lower-resolution MX approaches. Then individual MX (and NMR) structures of
components of the assembly can be positioned within the overall “envelope”, ideally
by docking secondary structural elements of the component structure (typically α–
helices) into recognizable features identified in the lower-resolution MX electron
map or the 3DEM mass density map. In the absence of an experimental structure
of one or more individual components, it is often possible to use homology models
computed from experimental structures of orthologous or paralogous proteins freely
available from the PDB archive. Complementary data from chemical-crosslinking
and fluorescence resonance energy transfer can also be used to refine placement of
component structures (or homology models) within the envelope. The outcome of
this more typical approach to I/H methods structure determination for a nuclear pore
complex is illustrated in Fig. 2.3. Comprehensive reviews of integrative structure
determination strategies have been published by Webb et al. (2018) and in Chaps. 4,
5, 6, 7, 8, 9, 10, 11 and 12 in Part 2 of this volume. At present, I/H methods structures
can be deposited to PDB-Dev (pdb-dev.wwpdb.org), a prototype deposition and
archiving system (Burley et al. 2017).

2.3 Accessing Public-Domain Experimental
and Computational Structure Data for I/H Methods

Experimental 3D structure data for biological macromolecules are made freely
available to all without limitations on usage by the Protein Data Bank (PDB).
Structure data are available from each of wwPDB partner websites [RCSB Protein
Data Bank (www.rcsb.org), Protein Data Bank Japan (www.pdbj.org), the Protein
Data Bank in Europe (www.pdbe.org)], which distribute identical archival data
together with complementary information from other data resources. The quality
of each incoming PDB structure is assessed at the time of deposition into the
archive and then re-assessed annually (versus the entire archive). wwPDB structure
validation reports for each structure are made available with the experimental
data provided by each wwPDB partner (Gore et al. 2017). Every PDB structure
is identified with a unique 4-character code (e.g., PDB 1vol). This code can
be used to download the desired structure directly from the wwPDB ftp site
(e.g., ftp://ftp.wwpdb.org/pub/pdb/data/structures/divided/mmCIF/vo/1vol.cif.gz
for 1vol).

Computed homology models of biological macromolecules are available from
various individual biodata resources. One of the most efficient ways to access
homology models is to use the Protein Model Portal (www.proteinmodelportal.org).
This resource provides access to homology models computed en masse by SWISS-
MODEL (swissmodel.expasy.org) and ModBase (modbase.compbio.ucsf.edu),

http://dx.doi.org/10.1007/978-981-13-2200-6_4
http://dx.doi.org/10.1007/978-981-13-2200-6_5
http://dx.doi.org/10.1007/978-981-13-2200-6_6
http://dx.doi.org/10.1007/978-981-13-2200-6_7
http://dx.doi.org/10.1007/978-981-13-2200-6_8
http://dx.doi.org/10.1007/978-981-13-2200-6_9
http://dx.doi.org/10.1007/978-981-13-2200-6_10
http://dx.doi.org/10.1007/978-981-13-2200-6_11
http://dx.doi.org/10.1007/978-981-13-2200-6_12
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Fig. 2.3 I/HM multi-scale
structural model of the
nuclear pore Nup84 complex
(Shi et al. 2014)

together with model validation metrics. Individually archived homology models
can be downloaded directly from the Model Archive (www.modelarchive.org) or
from the Protein Model Portal.
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Chapter 3
View from Nuclear Magnetic Resonance
Spectroscopy

John L. Markley

Abstract Nuclear magnetic resonance (NMR) spectroscopy is one of the three
major approaches for determining the structures of biological macromolecules.
Historically, NMR spectroscopy was number two after X-ray crystallography
in the rate of depositions to the Protein Data Bank (PDB). However, electron
cryomicroscopy (CryoEM) recently surpassed NMR in this regard. NMR frequently
is used in conjunction with X-ray or CryoEM in structure determinations. NMR
has advantages over the other structural approaches in studies of conformational
dynamics and interconverting conformational states of proteins and nucleic acids in
solution. NMR spectroscopy, itself, can be considered as collection of hybrid meth-
ods in that structure determinations rely on the results of several separate magnetic
resonance experiments that measure connectivities of magnetic-resonance-active
nuclei through covalent bonds or through space or determine relative orientations
of magnetic dipoles. NMR results frequently are combined with data from small-
angle X-ray scattering or chemical crosslinking in developing structural models.
NMR spectroscopy and CryoEM are particularly synergistic in that neither requires
crystallization.

Keywords NMR · Spectral assignment · Structure determination · Data
visualization

Unlike X-ray crystallography, where a set of diffraction data collected with a single
crystal can be sufficient to determine a structure, provided that the phase problem
can be solved, NMR structural studies always require the collection of data sets
from several different experiments from one sample, and frequently from multiple
samples (Marion 2013). In this regard, NMR spectroscopy is, in itself, a hybrid
method. Structures are determined through the combined analysis of results from a
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variety of NMR experiments. Structures derived from, or including, NMR data can
benefit from their combination with information from other approaches. A recent
review discusses the general derivation of structural information from a variety of
types of experimental measurements, including NMR spectroscopy (van Gunsteren
et al. 2016). Results from small angle X-ray scattering are frequently used now as
an adjunct to NMR data, either to constrain the overall shape of the molecule or
to position subunits, whose structures were determined by NMR, in an oligomeric
structure, and these approaches with proteins have been reviewed recently (Mertens
and Svergun 2017; Venditti et al. 2016; Prischi and Pastore 2016). RNA structures
determined from NMR data are also are benefitting from hybrid methods (Duss et
al. 2015; Schlundt et al. 2017; Cornilescu et al. 2016). NMR structures of subunits
or separately-folding fragments have been successfully incorporated into CryoEM
images to improve the overall resolution as reviewed in (Cuniasse et al. 2017). In
addition, NMR data can be used to phase crystallographic data (Zhang et al. 2014).

NMR spectroscopy can be carried out with samples in solution (solution NMR)
or in the solid state (ssNMR). Well-developed protocols have been developed for
determining solution NMR structures of proteins up to about 60 kDa (Cavanagh
et al. 2010), RNA molecules up to 100 kDa (Barnwal et al. 2017), and large protein-
RNA complexes (Yadav and Lukavsky 2016). Sparse structural and functional
information can be obtained with proteins as large as 900 kDa (Sprangers et al.
2007; Fiaux et al. 2002). Peaks from solution NMR broaden with increased with
molecular weight as a consequence of slower molecular tumbling and become less
well resolved as a consequence of the larger number of signals within the spectral
window. These problems can be overcome, in part, by collecting NMR spectra
in multiple dimensions, and/or by simplifying spectra by selective labeling with
2H, 13C, and/or 15N. Typically, uniform labeling with 13C and 15N is used with
proteins up to 20–25 kDa, and this labeling pattern is supplemented by 2H labeling
of carbon-bound hydrogens for proteins above 25 kDa (Gardner and Kay 1998).
Selective labeling of side-chain methyls of Ala, Ile, Leu, Met, Thr, and/or Val with –
13CH3 is a strategy used with still larger proteins (Tugarinov and Kay 2005). More
elaborate labeling patterns can be achieved by segmental labeling (Liu et al. 2009),
residue-selective labeling, alternate 13C-12C labeling (Takeuchi et al. 2010, 2011),
or incorporation of amino acids with tailored stereospecific labeling optimized
for NMR (Kainosho et al. 2006). Although the widths of ssNMR signals do not
suffer from molecular weight dependence, spectral resolution can be improved by
isotope labeling, such as fractional deuterium labeling or 13C labeling schemes that
minimize directly bound 13C-13C pairs.

Assessing the information content of NMR spectra requires that signals be
assigned to the individual nuclei (1H, 13C, 15N) that generate them. Considerable
progress has been made in simplifying this task in solution NMR through automated
spectral analysis combined with computer graphics tools that permit the visual-
ization of potential assignments along with the underlying data (Lee et al. 2016).
Similar tools for solid state NMR are under development. Structural information
comes from a variety of experimental parameters. The patterns of backbone and
13Cβ chemical shifts are fairly accurate predictors of secondary structure (α-helix
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or β-strand). 1H-1H NOEs report on short interproton distances up to 5–6 Å, and
residual dipolar couplings (RDCs) report on the directions of bond vectors.

Although, NMR spectra provide information about individual nuclei and their
interactions, the resulting structures are underdetermined because the number of
spectral parameters is always many fewer than those needed to specify atom
positions. To cope with this problem, NMR structural models are represented
as a family of conformers that are consistent with the available data and whose
differences represent the uncertainty in specifying atomic positions.
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Chapter 4
Complementary Use of Electron
Cryomicroscopy and X-Ray
Crystallography: Structural Studies
of Actin and Actomyosin Filaments

Takashi Fujii and Keiichi Namba

Abstract Visualization of macromolecular structures is essential for understanding
the mechanisms of biological functions because they are all determined by the
structure and dynamics of macromolecular complexes. Electron cryomicroscopy
(cryoEM) and image analysis has become a powerful tool for structural studies
because of recent technical developments in microscope optics, cryostage control,
image detection and the methods of sample preparation. In particular, the recent
development of CMOS-based direct electron detectors with high sensitivity, high
resolution and high frame rate has revolutionized the field of structural biology by
making near-atomic resolution structural analysis possible from small amounts of
solution samples. However, for some biological systems, it is still difficult to reach
high resolution due to somewhat flexible nature of the structure, and a comple-
mentary use of cryoEM with X-ray crystallography is essential and useful to gain
mechanistic understanding of the biological functions and mechanisms. We will
describe our strategy for the structural analyses of actin filament and actomyosin
rigor complex and the biological insights we gained from these structures.
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4.1 Introduction

Biological functions and activities that support the life of every biological organism
are diverse, and yet the basic mechanisms that determine and exert those biological
functions are highly shared by diverse organisms, from microorganisms such as
bacteria and yeast to multicellular organisms such as animals and plants. Even
the complex human brain functions are not the exception. The basic mechanisms
are highly shared because all these functions are designed and determined by
the structures of proteins and nucleic acids with complex three-dimensional (3D)
arrangements of so many atoms that comprise these molecules, with the number
ranging from a few to tens and hundreds of thousands. Moreover, their structures
are not solid unlike bulk materials of metals and ceramics but are very dynamic and
flexible so that they can function by actively utilizing thermal fluctuations. One of
the major challenges in life science is the elucidation of mechanisms that determine
and exert these extremely diverse functions by looking into the 3D structures and
dynamics of so many different biological macromolecules involved in those diverse
biological functions. We also need to look at the structures of macromolecules in
each of their functional states appearing in the entire process of their functional
cycles. Therefore the number of 3D structures we need to solve would be extremely
large, probably ranging at least from a few hundreds of thousands to a few million.

Thus, structural information of biological macromolecular machinery is essential
for understanding the mechanisms by which they function, and various methods
for structural analyses have been developed to obtain structural information at
highest possible resolution. We have been studying the structures and functions
of protein motor complexes, such as the bacterial flagellar motor and actomyosin,
to understand the mechanisms of force generation and highly efficient energy
conversion. We have developed various techniques in X-ray fiber diffraction, X-
ray crystallography and electron cryomicroscopy (cryoEM) and used them in a
complementary manner to build atomic models of the motor complexes by docking
crystal structures of component proteins into 3D density maps obtained by X-
ray fiber diffraction and/or cryoEM and refining the entire models against these
maps (Namba et al. 1985; Namba and Stubbs 1985, 1986; Samatey et al. 2001,
2004; Yonekura et al. 2003; Fujii et al. 2009, 2010; Gayathri et al. 2012; Fujii
and Namba 2017). Although cryoEM image analysis has become a powerful tool
for the structural analysis of macromolecular complexes by the recent introduction
of direct electron detecting CMOS cameras and is now capable of resolving the
structures at near atomic detail to allow de novo atomic model building as described
in the following section, there are still many cases where the resolution is limited
by the flexible and/or dynamic nature of the specimens, and a complementary use
of cryoEM for the entire complex and X-ray crystallography or NMR of component
molecules is necessary and useful to build the entire atomic model to study the
structure-function relationships in such cases. We will describe a few example cases
to demonstrate the usefulness of the method.
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4.2 Power of cryoEM Image Analysis in the Past and Present

CryoEM image analysis, especially single particle image analysis, is a potentially
powerful method because there is no need for sample crystallization that is essential
for X-ray crystallography and there is virtually no upper limit in the size of
molecular complexes unlike NMR. The structures of macromolecular complexes
can be directly visualized by cryoEM in various functional states. It would therefore
be desirable that cryoEM can visualize the structures of the macromolecular
complexes at atomic resolution. The 2017 Nobel Prize in Chemistry was awarded to
Jacques Dubochet (University of Lausanne, Switzerland), Joachim Frank (Columbia
University, USA), and Richard Henderson (MRC Laboratory of Molecular Biology,
UK), for their pioneering works in 1970s and 1980s in the development of cryoEM
image analysis techniques for the structural analysis of biological macromolecules.
By the development of transmission electron cryomicroscopes (cryoTEM) over
many years in 1980s and 90’s, especially those done in Japan, such as the
implementation of a liquid helium-cooled specimen stage to minimize the radiation
damage (Fujiyoshi et al. 1991) and a field emission electron gun to use a highly-
coherent electron beam (Mimori et al. 1995), as well as various improvements in
the method of image analysis, it became possible to achieve near atomic resolution
for 2D crystal structures of membrane proteins, such as bacteriorhodopsin and
aquaporin (Kimura et al. 1997; Mitsuoka et al. 1999; Murata et al. 2000) and
filamentous helical assemblies of proteins, such as the bacterial flagellar filament
(Yonekura et al. 2003). It was encouraging to see the polypeptide backbone folding
and large side chains of flagellin clearly resolved in the structure of the bacterial
flagellar filament at around 4 Å resolution analyzed from a set of filament images
corresponding to only 40,000 flagellin molecules. Since the image quality and signal
to noise ratio (S/N) of frozen-hydrated biological macromolecules embedded in
vitreous ice is quite poor due to an extremely low electron dose to avoid radiation
damage, a high cryo-protection factor by lowering the specimen temperature down
to 4 K by liquid helium gave us a substantial advantage for achieving unprecedented
resolution. However, it was by no means a high-throughput work partly because we
had to use photographic films as the image detector.

By further implementation of new technologies in cryoTEM in 2000s, such as the
CCD camera to evaluate the image quality immediately after recording by Fourier
transformation and in-column energy filter to eliminate inelastically scattered
electrons that form a high background noise, and working at a slightly elevated
specimen temperature to around 50 K to increase the electron conductivity of the ice
embedded specimen to reduce its charge up that tends to blur the cryoEM images,
the efficiency of high-quality image data collection was drastically improved, and
the image analysis by the computer became much faster by the improvement
in the software and semiconductor nanotechnologies. These improvements made
previously several years of works be done within a few weeks, and the visualization
of protein secondary structures became relatively easy and quick (Fujii et al. 2009;
Fujii et al. 2010; Gayathri et al. 2012), demonstrating a potential of achieving near
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atomic resolution within such a short period of time as far as the structure is well
ordered and stable, such as tobacco mosaic virus.

Then, at the end of 2013, two milestone papers were published by Yifan Cheng
and his colleagues on the structure of the TRPV1 receptor ion channel, a membrane
receptor protein that responds to heat and spiciness, solved at 3.4 Å resolution
by cryoEM image analysis of about 100,000 single particle images of the protein
picked up from about 1000 cryoEM images obtained from a small amount of
sample solution (Liao et al. 2013; Cao et al. 2013). They were involved in the
development of a CMOS-based direct electron detector camera and fully utilized
its capability to record images of 4 K × 4 K pixels at 400 frames per second
to carry out single electron counting to minimize the detection noise called the
Landau noise, which is an intrinsic noise of large distribution that any types of
energy accumulating detectors, such as film and CCD, suffer for individual electron
detection. They also devised a way to collect sharp high-quality cryoEM images
of proteins by movie-mode imaging and motion correction to minimize the image
blur caused by a mechanical drift of the specimen stage and the distortion of ice
film caused by electron irradiation (Li et al. 2013). Together with the development
of a user-friendly, yet sophisticated image analysis software package, RELION
(Scheres 2012; Kimanius et al. 2016), cryoEM image analysis has now become
a very powerful tool for structural biology, achieving near atomic resolution in
the structural analysis of many different macromolecular complexes including
membrane proteins to allow de novo atomic model building relatively easily.

However, there are still many cases where the resolution is limited by the flexible
and/or dynamic nature of the specimens, and in such cases a complementary use of
cryoEM for the entire complex and X-ray crystallography or NMR of component
molecules is necessary and useful to study the structure-function relationships. We
will describe our structural studies of the skeletal muscle F-actin and actomyosin
complex to demonstrate the usefulness of the complementary method.

4.3 Structural Study of F-Actin

F-actin is a helical assembly of actin, is an essential component of muscle fibers
for contraction and also plays crucial roles in various cellular processes as the
most abundant component and regulator of cytoskeletons by dynamic assembly
and disassembly processes (from G-actin to F-actin and vice versa), such as those
called lamellipodia and filopodia (Pollard and Borisy 2003; Carlier and Pantaloni
2007). While actin is a ubiquitous protein and is involved in the various important
biological functions and many crystal structures of actin were available over the
years since the first crystal structure in complex with DNase-I (Kabsch et al.
1990), the definitive high-resolution structure of F-actin remained unknown until
2010 (Fujii et al. 2010). Steady technical advances in cryoEM image analysis over
the years allowed near-atomic resolution structural analyses of many icosahedral
viruses and helical assembly of macromolecules, such as the bacterial flagellar
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filament, the tubular crystal of acetylcholine receptor and tobacco mosaic virus
(TMV) in 2000s (Yonekura et al. 2003; Miyazawa et al. 2003; Sachse et al. 2007).
But, it was possible to reach such high resolutions even by using photographic
films as image detectors simply because their particle sizes or diameters were large
enough to produce sufficiently high image contrast and S/N in their cryoEM images
of ice-embedded frozen-hydrated specimens that allows accurate alignment and
average of many particle images necessary to recover high-resolution structural
information hidden under the noise. Since F-actin is a relatively thin filament with
a flexible, twisted ribbon-like structure with the maximum diameter of only 10 nm,
which is far thinner than TMV (18 nm) or the flagellar filament (23 nm), the image
contrast of unstained, frozen-hydrated specimen is extremely low, making accurate
image alignment extremely difficult and thereby high-resolution structural analysis
elusive.

We used a cryoTEM (JEOL JEM-3200FSC) equipped with a field emission
electron gun, a liquid helium-cooled specimen stage, an in-column �-type energy
filter, and a CCD camera (TIPVS F415MP) to collect cryoEM images of F-actin.
We were able to obtain a remarkable gain (∼5 times) in image contrast by the
use of energy filtering, by controlling ice thickness, and by recording images at a
specimen temperature of 50 K instead of 4 K (Fujii et al. 2009). Such improvement
in image contrast allowed us to see the two-stranded helical features of F-actin
in raw cryoEM images even at relatively small defocus levels close to 1 μm
(Fig. 4.1). Image recording by a CCD camera made high-quality data collection
remarkably efficient. To avoid undesirable dumping of high-resolution contrast by
a poor modulation transfer function of the CCD camera, we used a relatively high
magnification of approximately 172,000× (0.87 Å/pixel). We collected 490 cryoEM
images manually in two days, picked up filament images and used a single particle
image analysis method but still utilized the helical symmetry to make the image
alignment as accurate as possible (Sachse et al. 2007; Fujii et al. 2009; Egelman

Fig. 4.1 CryoEM image of
F-actin in a frozen hydrated
state recorded by CCD under
a defocus value of 1500 nm.
Scale bar, 100 nm
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2000). Since the image analysis procedure was fully automated, it was completed
within 2 days to reconstruct the final 3D image, and the resolution was 6.6 Å (at the
Fourier shell correlation (FSC) = 0.143) (EMD-5168) (Fujii et al. 2010).

The resolution of the 3D map was high enough to clearly visualize the secondary
structures, such as α-helices, β-sheets and β-hairpins, and even some loops and the
extended N-terminal chain that had never been seen in the crystal structures clearly
showed up. So it was possible to build a complete atomic model of F-actin far more
reliably than before. It was debated over long time that F-actin must have an intrinsic
flexibility in its helical order and that is why the structures solved by cryoEM image
analysis were limited to low resolution, but the fact that such a high resolution was
achieved as described above by using over 90% of the image data we collected
indicates that the flexibility is not so high as the previous studies suggested (Galkin
et al. 2008).

To build an atomic model of F-actin, we employed a program FlexEM (Topf
et al. 2008), which refines the atomic model while fitting it into the EM density map
by simulated annealing molecular dynamics with stereochemical and non-bonded
interaction terms restrained. We used the crystal structure of uncomplexed actin
(PDB code: 1J6Z) (Otterbein et al. 2001) as an initial model and divided it into
four domains D1, D2, D3 and D4 to treat them as independent units because these
four domains have well-defined hydrophobic cores. In the initial stage of the fitting
process, we treated them as rigid bodies and allowed the joints of these domains to
be flexible, but residues 1–8, 39–56, 221–234 and 337–375 were outside the density
map. In the second stage, we allowed these residues to move flexibly to fit into the
map under stereochemical restraints and then applied the helical symmetry of F-
actin to this subunit model to build a complete F-actin model. We then minimized
the conformational energy further by FlexEM to remove intermolecular clashes of
atoms. The processes of the fitting and refinement are shown in Fig. 4.2, and the
final refined model in Fig. 4.3 (PDB: 3FMP) (Fujii et al. 2010). The conformation of
domains 1, 3 and 4 did not change so largely as indicated by the relatively small root-
mean-squares (rms) displacements of Cα atoms (domain 1: 0.3 Å; domain 3: 0.3 Å;
domain 4: 0.8 Å). This is consistent with the fact that these three domains have
stable conformations with well-defined hydrophobic cores and assures the reliability
of the atomic model as well as the high quality of the cryoEM map. Domain 2 was,
however, an exception. The 2-turn short α-helix (residues 40–48) at the tip of the D-
loop (the DNase I binding loop) in the actin crystal structure (Otterbein et al. 2001)
became an extended loop (residues 38–53), reaching the bottom pocket between
domains D1 and D4 of the above actin subunit (Fig. 4.3). Such a conformational
change had been predicted from its variable conformations in the crystal structures
of actin and its possible involvement in the axial intersubunit interactions (Oda
et al. 2009), but this D-loop conformation was unique, indicating that it is totally
dependent upon the molecule that it binds to.

Since the nature of conformational change from G-actin to F-actin is of immense
importance for biological implications for actin functions, we carefully compared
the F-actin structure with the crystal structure of G-actin. While the two major-
domains were twisted in the crystal structures, they became flat in the F-actin
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Fig. 4.2 Process of docking and refinement of actin atomic model in the cryoEM density map from
left to right. Four domains of actin are labeled D1, D2, D3 and D4. Left, G-actin crystal structure,
presented as a Cα ribbon diagram, is docked into the cryoEM density map as a rigid body. Each
domain is not well fitted to the density. Middle, each of the four domains is independently moved
and rotated as a rigid body to fit to the density map. Domain D2 is still not fitted well. Right, the
conformation of each domain is refined against the density map by flexible fitting

Fig. 4.3 CryoEM density
map of F-actin (EMD-5168)
with a fitted and refined
atomic model (PDB: 3MFP)
(Fujii et al. 2010). The model
is presented as a Cα ribbon
diagram colored in rainbow
from the N-terminus in blue
to the C-terminus in red.
Approximately seven
subunits of actin are shown.
Some amino acid residues are
labeled as a guild to follow
the chain
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model in a similar manner to the relative domain motions described previously
for the model that nicely reproduced X-ray fiber diffraction intensity data obtained
from a highly oriented liquid-crystalline sol specimen of F-actin (Oda et al. 2009).
However, the relative domain motions were more complex than those described
previously. Together with the conformational change of the D-loop, these changes
made the slightly bent domains 1–2 in G-actin significantly flatter in F-actin,
allowing the D-loop to reach and bind to the bottom pocket between domains D1
and D4 of the above actin subunit. This is how the axial intersubunit interactions
along the protofilament are made tight for F-actin polymerization as shown in Fig.
4.3. Including the interactions between protofilaments, the nature of intersubunit
interactions between actin subunits is mostly electrostatic or hydrophilic, and this
explains depolymerization of F-actin at concentrated salt solutions (Nagy and
Jencks 1965).

Actin polymerization is known to have a distinct polarity, showing fast polymer-
ization at the barbed end of F-actin while slow depolymerization from the pointed
end under certain conditions (Fujiwara et al. 2007). This is called treadmilling
and plays important roles in the formation of lamellipodia and filopodia for cell
motility and morphogenesis (Pollard and Borisy 2003; Carlier and Pantaloni 2007).
The conformational changes of actin between its monomeric G-actin form and
polymerized F-actin form explains how this asymmetry is achieved (Fig. 4.4). Actin

Fig. 4.4 Structural asymmetry of F-actin responsible for the difference in the assembly kinetics
at the pointed and barbed ends. (a) An actin subunit shown above is being added to the pointed
end of F-actin shown below. The flexible D-loop of actin at the pointed end is presented by dashed
line. The domain motion of adding actin occurs but its F-actin conformation cannot be stabilized,
as indicated by purple dashed arrow, due to the flexible D-loop of actin at the pointed end. (b) An
actin subunit shown below is being added to the barbed end of F-actin show above. Because the
bottom pocked of actin at the barbed end is well ordered and has a stable F-actin conformation
to act as the template for actin assembly, the D-loop of adding actin binds to the pocket and is
stabilized to make the entire adding actin conformation stable in the F-actin form after domain
motion, as indicated by green solid arrow
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at the barbed end is stably in the F-actin conformation, forming the bottom pocket
for the binding of actin subunit in the G form. The structure of the bottom pocket
acts as the template for the formation of the D-loop with the above mentioned
domain motions of adding actin to turn it into the F form, and this facilitates the
polymerization of actin. On the other hand, because actin at the pointed end has
domain D2 exposed to solution, the D-loop conformation cannot stabilized at all.
The exposed D-loop of domain D2 must be flexible and dynamic to make the
binding of adding actin rather difficult because adding actin also has to change its
conformation from the G to F form in order to bind to F-actin but no stable template
structure is available for these conformational changes to occur and be stabilized.
Thus, the asymmetry in the structure and conformational dynamics of actin at the
barbed and pointed ends of F-actin is responsible for the distinct difference in the
polymerization kinetics of actin at the both ends. The complementary use of cryoEM
and X-ray crystallography allowed us to gain deep insights into this biologically
important mechanism.

4.4 Structural Study of Skeletal Muscle Actomyosin Rigor
Complex

Muscle contraction occurs by mutual sliding of thick myosin filaments and thin
actin filaments that shortens sarcomeres, the contractile units that regularly repeat
along the entire muscle cells (Huxley 1969). The sliding force is generated via cyclic
interactions of myosin heads, which are periodically projecting out from the thick
filament towards surrounding thin actin filaments, with actin molecules of the thin
filaments. Myosin head is an ATPase, and its ATP binding and hydrolysis regulates
the cyclic association and dissociation of myosin with actin filament (Lymn and
Taylor 1971). Upon binding of MgATP, myosin hydrolyses ATP relatively quickly
but the hydrolysis products ADP and Pi stay in the nucleotide-binding pocket,
and therefore its ATPase cycle does not proceed until myosin head binds to actin
filament. Therefore, a conformational change of myosin head must occur upon
binding to actin filament, and this should be responsible for this actin-activated
ATPase, but structural information on the actomyosin rigor complex was limited
to reveal this mechanism. X-ray crystal structures of the head domains of various
myosins, such as myosin II, V and VI, in different nucleotide-binding states have
suggested that myosin undergoes conformational changes during ATPase cycle in its
lever arm domain to be in largely different angles within the plain of actin filament
axis and that such changes represent a power stroke that drives the unidirectional
movement of myosin against actin filament (Holmes et al. 2004; Sweeney and
Houdusse 2004). However, since those myosin head structures obtained in atomic
details were all in the absence of actin filament (Rayment et al. 1993; Dominguez
et al. 1998; Bauer et al. 2000; Houdusse et al. 2000; Coureux et al. 2003; Reubold
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et al. 2003, 2005; Ménétry et al. 2005, 2008; Yang et al. 2007), key piece of
information was still missing.

The structure of the actomyosin rigor complex had been analyzed by electron
cryomicroscopy (cryoEM) and image analysis (Holmes et al. 2003; Behrmann et al.
2012). However, the resolution and quality of the density maps were limited to
reveal the conformational changes in sufficient detail, and it was still not so clear
how ADP and Pi are released upon strong binding of myosin to actin filament
and how ATP binding to myosin causes its dissociation from actin filament. We
therefore solved the structure of actomyosin rigor complex of rabbit skeletal muscle
by cryoEM image analysis. We obtained a 3D density map at 5.2 Å resolution
(EMD-6664) and built an atomic model (PDB: 5H53) by using a method similar
to that we used for F-actin as described in the previous section (Fig. 4.5) (Fujii and
Namba 2017). We used the crystal structure of squid muscle myosin S1 fragment
in the rigor-like state (PDB: 3I5G) (Yang et al. 2007) and the cryoEM structure of
skeletal muscle F-actin (PDB: 3MFP) (Fujii et al. 2010) for docking and refinement.
We employed DireX (Schroder et al. 2007) and FlexEM (Topf et al. 2008) to refine
these models by flexible fitting while preserving stereochemistry. We carried out
this model fitting refinement carefully to avoid overfitting, by imposing a relatively
strong restraint to keep the conformations of individual domains with independent
hydrophobic cores unchanged as much as possible and trying not to fit individual
secondary structure elements separately. As a reliability measure of our model, the
rms deviations of Cα atoms for individual domains of myosin head of our rigor
model from those of a crystal rigor-like model (PDB: 3I5G) (Yang et al. 2007) were
calculated, and they were all with a range from 1.0 to 1.6 Å, which was comparable
to those between crystal structures of myosin in different conformations, assuring
that our model was refined without over fitting.

We then compared this structure with those of myosin in different nucleotide-
binding states solved by X-ray crystallography and found a distinctly large con-
formational change of myosin head that widely opens up the nucleotide-binding
pocket, even compared with the rigor-like structures of myosin head without
nucleotide in the pocket (Fig. 4.6). It was obvious that this conformational change
allows ADP and Pi to be quickly released from their binding sites upon myosin
binding to actin filament. Myosin has been called a backdoor enzyme (Yount et al.
2007) because Pi leaves before ADP (Geeves et al. 1984) and a possible pathway
for Pi release has been found only in the backside of the pocket in the myosin
crystal structures (Yang et al. 2007; Llinas et al. 2015). However, the structure of
actomyosin rigor state with such a widely open pocket (Fig. 4.6) suggests that Pi
is likely to be released also from the front side. Although it is not obvious why Pi
leaves before ADP, electrostatic repulsion by the negative charges of Pi or the way
the ADP moiety is tightly bound by myosin may be responsible for this.

Recent publications on the structures of actomyosin rigor complexes by cryoEM
image analysis revealed the structures of cytoplasmic myosins or smooth muscle
myosin strongly bound to actin filament (von der Ecken et al. 2016; Wulf et al. 2016;
Banerjee et al. 2017; Mentes et al. 2018). They all show a similar conformational
change of myosin head to those we observed for skeletal muscle myosin albeit in
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Fig. 4.5 CryoEM image and the reconstructed density map of actomyosin rigor complex (EMD-
6664) with the model of actin and myosin after docking and refinement (PDB: 5H53) (Fujii and
Namba 2017). The cryoEM image shows the typical arrowhead feature of the complex. About nine
subunits of actin and myosin head are presented. Ribbon models of actin are colored purple and
myosin in rainbow according to the sequence

much less extent, and those structures share the conformations with those of the
crystal rigor-like structures with much less open nucleotide binding pocket that does
not allow such a quick release of ADP and Pi as skeletal muscle myosin in the
rigor state. The rates of ATP hydrolysis cycle of cytoplasmic and smooth muscle
myosins are actually much slower than that of skeletal muscle myosin, and the same
is true for the speed of myosin movement along actin filament. It appears that the
structures of different types of myosins are optimally designed to move along actin
filament at different speeds required for their physiological functions, and the rate of
chemo-mechanical cycle is determined differently by their similar but distinct level
of conformational changes.

Structural comparison of our rigor model with an ATP bound post-rigor structure
(Rayment et al. 1993) revealed how ATP binding may trigger dissociation of myosin
from actin filament. We superposed myosin L50D domain (N473 – A593), which
contains the helix-loop-helix tightly attached to two neighboring actin molecules
along the protofilament (Fig. 4.7), to see what would occur in the actomyosin
interactions upon ATP binding. We used L50D for superposition because this
domain occupies the largest area of actomyosin interface. In the rigor structure, the
CM loop and loop 4 are nicely fitted on and tightly bound to actin surface (domains
D1 and D3, Fig. 4.7 top panel), but the post-rigor structure thus superimposed on
the rigor structure shows a serious steric clash of the CM loop with domain D1 of
actin (Fig. 4.7 middle panel). This clash is caused by U50D rotation nearly as a rigid
body by 21◦ around the long axis of myosin head and appears to be the main cause
of myosin dissociation from actin filament upon ATP binding. Assuming that L50D
and loop 2 stay bound to both actin subunits with hydrophobic and electrostatic
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Fig. 4.6 Comparison of myosin structures in the actomyosin rigor state and a post-rigor state. (a)
The post-rigor crystal structure of chicken muscle myosin (PDB: 2MYS) (Rayment et al. 1993)
and the actomyosin rigor complex (PDB: 5H53) (Fujii and Namba 2017), viewed nearly in the
axial direction of the filament from its barbed end. ATP is included in both models to indicate its
binding position. (b) The nucleotide-binding sites of the two models in solid surface representation
showing how widely the nucleotide-binding pocket is open when myosin head is bound strongly
to actin filament in the rigor state

interactions, respectively, this CM loop clash against actin would push the CM loop
back and cause a clockwise rotation of the entire motor domain by about 20◦ around
its long axis to avoid the clash, and this results in a significant reduction in the
interface area between myosin and two actin subunits to destabilize the actomyosin
interactions (Fig. 4.7 bottom panel). This model would represent a possible structure
of actomyosin in the weak binding state formed upon ATP binding, and this would
be the state of myosin ready to dissociate from actin filament.
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Fig. 4.7 Conformational changes of rigor myosin head upon ATP binding and its possible
consequence to form the weak binding state. Top panel shows the actomyosin rigor structure. The
middle panel shows the myosin structure upon ATP binding with its L50D helix-loop-helix and
loop 2 still attached to actin. The bottom shows myosin head after rotation to avoid the clash of
CM loop with actin where L50D helix-loop-helix and loop 2 still attached to actin. Left panels are
overviews, and the right panels are magnified. The N-terminal portion of loop 2 must be flexible
enough to allow myosin head rotation while the lysine-rich C-terminal portion stays attached to the
N-terminal region of actin to keep electrostatic interactions of the weak binding state. The crystal
structure of chicken muscle myosin in the post-rigor state (PDB: 2MYS) was used to build the
models shown in the middle and bottom panels by including loop 2 in different conformations to
accommodate different distances between actin D1 and myosin U50D
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A preferential binding of myosin to actin filament has been observed depending
on the direction of relative motion and/or force (Iwaki et al. 2009). The asymmetry
in the putative model of weakly bound actomyosin (Fig. 4.7, and schematically
depicted in Fig. 4.8) can explain how such directionally preferential binding can
be achieved. This structural asymmetry can also cause directionally preferential
release of myosin upon ATP binding from actin filament, and the probability of
dissociation is higher when actin filament moves forward to its pointed end than
when actin filament moves backward to its barbed end. So the unidirectional sliding
motions of myosin and actin filament could be achieved by just biasing their relative
Brownian motions within each sarcomere by this directionally preferential release
of myosin. This thermal-driven mechanism can explain why the sliding distance
of myosin and actin filament in sarcomere is longer than 60 nm per one ATP
hydrolysis cycle (Yanagida et al. 1985), which is much longer than the one predicted
by the power stroke of myosin lever arm, and how a single myosin head can go
through multiple steps of 5.3 nm along actin filament until myosin head strongly
binds to actin by release of ADP and Pi when myosin is forced to stay near actin
filament (Kitamura et al. 1999). These rather intriguing observations suggested
the presence and involvement of a biased Brownian motion in the actomyosin
motility mechanism, but how it can be achieved was elusive until we saw the
molecular structures in detail. Thus, the complementary use of cryoEM and X-ray
crystallography again played a very important role in revealing this biologically
important mechanism.

�
Fig. 4.8 Schematic diagram of actomyosin structure in the weak binding state, showing a possible
mechanism of preferential transition to the strong binding state in the backward movement of
actin filament (downward in this figure) and preferential release of myosin head from actin
filament in the forward movement of actin filament (upward in this figure). Clockwise rotation
of myosin by upward movement of actin filament (middle to bottom) can occur more easily than
counterclockwise rotation by downward movement (middle to top), because the bonds between
myosin and two actin subunits can be broken one after another by clockwise rotation, starting
from those on the tip of CM loop (middle to bottom) but the tip of CM loop becomes the center or
fulcrum of rotation by counterclockwise rotation and therefore many bonds between L50D and two
actin subunits have to be broken simultaneously (middle to top). This results in a longer lifetime of
the weak binding state, thereby a higher probability of transition to the strong binding state in the
backward (downward) movement of actin filament and also in a directionally preferential release
of myosin head in the forward movement of actin filament, causing a biased Brownian motion.
Blue arrows indicate the directions of actin filament movement and myosin rotation, and dashed
black arrows indicate the probabilities of transitions between the states by their sizes
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Fig. 4.8 (continued)
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Chapter 5
Current Solution NMR Techniques for
Structure-Function Studies of Proteins
and RNA Molecules

John L. Markley

Abstract We briefly review current technology for structure-function investiga-
tions of biological macromolecules in solution by nuclear magnetic resonance spec-
troscopy, which enable hybrid methods. An advantage of NMR is that biomolecules
can be studied at atomic resolution under near physiological conditions where they
are dynamically active. We outline stable isotope labeling strategies, NMR data col-
lection methodology, and procedures for data analysis leading to structure-function
information. We discuss issues related to NMR software and data deposition.

Keywords Dynamics · Stable isotope labeling · NMR data collection strategies ·
NMR observables · Spectral assignment · Structural restraints · NMR software
packages · Validation of NMR results · Functional studies · Data deposition

5.1 Introduction

This review focuses on recent developments in solution NMR. The growing field
of solid-state NMR, which has particular applicability to studies of membrane
proteins, fibrous proteins, and viruses, is not covered here: for reviews see: (Linser
2017; Molugu et al. 2017; Zhao et al. 2017). The advantages of solution NMR
spectroscopy for investigations of biological macromolecules are that it enables
atomic-level studies of their structure and dynamics in solution under a variety
of conditions (pH, temperature, pressure, and added ligands). NMR signals can be
resolved from residues in both ordered and disordered regions, and their observable
parameters (chemical shift, spin-spin couplings, dipolar couplings, relaxation and
cross-relaxation rates, etc.) provide structural and functional information. Solution
NMR spectroscopy gives a very different, but complementary, view of proteins
and nucleic acids than the static picture depicted by X-ray crystallography. Crystal
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Fig. 5.1 Time scales covered by (blue boxes) different NMR approaches in (red boxes) compari-
son with the rates of dynamic processes in proteins

packing forces tend to stabilize a single conformation, and the collection of X-ray
data a low temperatures damps out motions leading to higher structural resolution.
NMR experiments detect structural fluctuations over a time scale from 10−15 s
to minutes (Fig. 5.1) (Palmer et al. 2001). As a consequence, we know that
proteins and nucleic acids are dynamic and undergo structural transitions. Solvent-
exposed side chains are mobile, and the interiors of proteins undergo breathing
motions that enable rotations of the aromatic side chains of Tyr and Phe. Some
parts of a molecule or complex may be dynamically disordered. NMR is uniquely
capable of detecting conformational states with low populations and or following
transitions between states. These minor states may be functionally important in
catalysis or other functional properties. NMR can detect differences in chemical
properties of states, such as a different protonation or redox state. As many as
40% of proteins in the human proteome are predicted to be intrinsically disordered,
and many of these are known become ordered with they interact with binding
partners. NMR spectroscopy offers the most comprehensive way of investigating the
properties of disordered states and how regions become ordered as a consequence
of intermolecular interactions.

Solution NMR does have definite limitations: the size of molecules and com-
plexes limits the resolution of solution NMR signals as do dynamic processes that
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occur on an unfavorable time scale. In addition, as detailed below, macromolecules
need to labeled with stable isotopes and prepared in sufficient quantity (generally
>1 mg).

The usual workflow in NMR-based structure determination involves the prepa-
ration of suitably labeled samples, the collection of several types on NMR data,
analysis of these data to assign NMR observables to particular groups in the covalent
structure of the molecule and to derive secondary, tertiary, and possibly quaternary
structure. Finally, structures are validated for consistency with the experimental
data, and the structures and associated data are deposited in the Protein Data Bank
(PDB) (Berman et al. 2009) and BioMagResBank (BMRB) (Ulrich et al. 2008).
Structures determined by NMR represent a statistical ensemble of the dynamic
states in solution.

Many biomolecular NMR investigations do not have the generation of 3D coor-
dinates as their goal. They may go beyond structure to investigate thermodynamic or
kinetic properties of the molecule or complex, rates of conformational transitions,
or effects of ligand binding. Experimental data from such studies are archived at
BMRB.

5.2 Sample Preparation and Isotope Labeling

Genes coding for proteins are cloned or synthesized. Escherichia coli is usually the
first choice for protein production because of the large number of available cloning
vectors and specialized strains including auxotrophs (Hewitt and McDonnell 2004;
Markley et al. 2009). E. coli can be grown on inexpensive labeled precursors (13C-
labeled glucose or 15N-labeled ammonia). In addition, methods with E. coli support
perdeuteration and residue-selective labeling (Matthews 2004; Rajesh et al. 2003).
For proteins that cannot be produced from E. coli, Pichia pastoris (Pickford and
O’Leary 2004), baculovirus grown on insect cells (Kost et al. 2005), and cell-free
methods (Makino et al. 2014; Takeda and Kainosho 2012; Kigawa et al. 2007)
offer alternatives. The latter two methods require labeled amino acids rather than
inexpensive precursors.

Many types of labeled precursors are commercially available. For proteins up to
25 kDa, it is common to label uniformly with both 13C and 15N. This can be achieved
by growing E. coli on [13C6]-glucose as the sole carbon source and 15NH4Cl as
the sole nitrogen source. With larger proteins (65 kDa or higher), deuterated 13C
glucose [13C6 1,2,3,4,5,6,6-d7] is used as the sole carbon source and ammonium-
15N,d4 chloride as the nitrogen source for E. coli cells grown in D2O. The cells need
to become adapted to growth in heavy water. An alternative approach is to grow
the cells on an algal hydrolysate with the desired isotopic composition. Following
perdeuteration, it is customary to back-exchange the protein in H2O to replace 2H
on labile backbone and sidechain amides with 1H.

Feeding E. coli a mixture of glycerol-1-3-13C and glycerol-2-13C leads to rough
labeling of every other carbon in a in an amino acid with 13C. This labeling pattern



46 J. L. Markley

along with direct 13C detection has advantages with larger proteins and protein
complexes (Takeuchi et al. 2008).

Kainosho and co-workers have designed amino acids with optimal patterns of
2H, 13C, and 15N for protein NMR studies (Kainosho et al. 2006). These stereo-
array isotope labeled (SAIL) amino acids yield sharper and simpler spectra through
reduction in the number of 1H spins, spin-spin couplings, and spin diffusion
pathways.

Methyl-labeling (Tugarinov and Kay 2005) or incorporation of fluorine-labeled
amino acids (Sharaf and Gronenborn 2015) offer probes for NMR investigations of
proteins and complexes of 100 kDa or larger. However, they do not provide an easy
pathway for structure determination.

NMR structures of integral membrane proteins are challenging because they need
to be stabilized in a membrane-like environment (Rajesh et al. 2016). Detergent
micelles provide a solubilization mechanism a minimum increase in tumbling
time and thus line broadening, but may not support a native active conformation.
Detergent bicelles can be better at protein stabilization but lead to decreased
tumbling rates. A promising approach is to incorporate integral membrane proteins
into nanodiscs, discrete phospholipid mimetics modeled on high-density lipoprotein
particles (Denisov et al. 2004). Wagner and co-workers have developed covalently
circularized nanodiscs whose size can be tailored to a specific integral membrane
protein (Nasr et al. 2017). Moreover, because they are covalent circles, they enable
NMR data collection at higher temperatures where NMR signals are sharper.

5.3 NMR Data Collection

In order to resolve peak overlaps, macromolecular NMR data are collected as
n-dimensional spectra. Early 2D 1H-13C (Chan and Markley 1982) and 1H-15N
(Ortiz-Polo et al. 1986) studies of proteins utilized 13C- and 15N detection, respec-
tively. With advances in instrumentation, indirect 1H detection became the norm for
multinuclear NMR studies, because of the higher sensitivity of 1H sensitivity. More
recently, the direct detection 13C and 15N has been re-investigated and shown to be
advantageous for studies of larger proteins and nucleic acids. A suite of “protonless”
direct 13C-detected experiments has been devised for complete protein assignments
(Bermel et al. 2006). And direct 15N-detected experiments have been developed
for proteins (Takeuchi et al. 2010; Gal et al. 2011). A 15N-detected TROSY-HSQC
experiment shows promise as a way to study larger proteins without the need for
perdeuteration and back-exchange (Takeuchi et al. 2016; Takeuchi et al. 2015).
15N-detected 1H-15N correlation experiments of larger RNA molecules have shown
recent promise (Schnieders et al. 2017).

Advances in NMR instrumentation and data collection have led to increased
spectral sensitivity. Cryogenic probes achieve increased sensitivity by cooling
transmitter/receiver coils to liquid nitrogen or lower temperatures to reduce thermal
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noise (Kovacs et al. 2005). Higher field magnets increase sensitivity by increasing
equilibrium spin polarization. Data collection by Transverse Relaxation Optimized
Spectroscopy (TROSY) methods (Pervushin et al. 1998; Salzmann et al. 1998) leads
to increased sensitivity, particularly for larger macromolecules.

Despite these advances, NMR data collection requires time averaging, with the
amount of time required increasing geometrically with spectral dimensionality.
Recently, two approaches to higher sensitivity in less time have been developed that
take advantage of the sparsity of multidimensional NMR data: reduced dimensional-
ity (Eghbalnia and Markley 2017) and non-uniform sampling (Hyberts et al. 2011).
The general idea behind reduced dimensionality is illustrated by the collection of a
3D (1H, 13C, 15N) spectrum as a series of tilted 2D planes, where one dimension
is 1H and the other is a mixture of 13C and 15N frequencies which define the tilt
angle (Kupce and Freeman 2003). Because the peaks in 3D space are sparse, all
peaks can be sampled by a fewer number of tilted planes than sampled by a stack of
non-tilted planes. The reduced-dimensionality paradigm has been implemented in
different ways. For example, Automated Projection SpectroscopY (APSY) (Hiller
et al. 2008; Krahenbuhl et al. 2014) utilizes a pre-specified projection regime for
nD spectroscopy, whereas High-resolution Iterative Frequency Identification for
NMR (HIFI-NMR) uses a Bayesian updating procedure that tightly integrates data
acquisition with data processing and analysis to yield spectral assignment in real-
time (Eghbalnia et al. 2005a; Lee et al. 2013a, b). Non-uniform sampling and
spectral reconstruction are now standard on commercial NMR spectrometers, and
are widely used to accelerate data collection and reduce the data size of nD spectra.
Non-uniform sampling strategies, along with tools for spectral processing and signal
reconstruction, are still evolving and becoming more powerful; see (Billeter 2017)
and references therein.

5.4 NMR Observables Used in Structure Determination

Chemical shifts are the primary observables protein NMR spectroscopy. Once
assigned, they can be used in determining secondary structure (Eghbalnia et al.
2005b; Shen and Bax 2013), likely flexible or disordered regions (Berjanskii and
Wishart 2008), side chain mobility (Berjanskii and Wishart 2013), and possible 13C
chemical shift referencing errors (Wang et al. 2005). Chemical shifts can be used
in homology modeling (Shen and Bax 2015). In addition, assigned chemical shifts
can be used in conjunction with Rosetta software (CS-Rosetta) to determine three-
dimensional structures of small proteins (Shen et al. 2008).

The nuclear Overhauser effect (NOE), which is used to obtain structural
restraints, is the consequence of 1H-1H cross relaxation. Normally the effect can be
observed for pairs of protons that are within 5 Å of one another (Wüthrich 1986).
The mixing time (time during which cross-relaxation is allowed to build up) must be
kept short to minimize spin diffusion effects that degrade the accuracy of distance
measurements. The data can be collected as a 2D NOESY experiment, in which the
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1D 1H spectrum lies along the diagonal, and cross peaks occur at the intersection
of the chemical shifts of protons that are close to one another. With proteins labeled
with 13C and 15N, 3D NOESY-HSQC experiments allow the editing of the NOE
peaks by the chemical shifts of the 13C or 15N nuclei (X) to which the protons are
attached. These 3D spectra have two 1H dimension and one X dimension The 4D
C, N-edited NOESY experiment leads to separation of NOE cross peaks by the
chemical shifts of both 13C and 15N. The 4D spectrum has two 1H dimensions, a
13C dimension, and a 15N dimension. Sparse sampling is generally carried out to
reduce data collection to a reasonable time (Stanek et al. 2012).

Residual dipolar couplings (RDCs) are another important observable NMR
parameter. RDCs are determined from the difference in couplings observed in
a partially orienting (J + D) and non-orienting (isotropic) environment (J). A
variety of orientation media have been described including lipid bicelles (Metz
et al. 1995), liquid crystalline bicelles (Tjandra and Bax 1997a, b), rod-shaped
virus such as filamentous bacteriophage (Hansen et al. 1998; Clore et al. 1998),
and DNA nanotubes, which are compatible with detergents used to solubilize
membrane proteins (Douglas et al. 2007). Even small molecules, such as natural
products, can be oriented for RDC measurements (Gayathri et al. 2010). Recent
approaches for measuring RDCs include intensity modulation (McFeeters et al.
2005), direct 13C detection (Balayssac et al. 2006), and ARTSY (amide RDCs by
TROSY spectroscopy) (Fitzkee and Bax 2010). Software packages are available for
analyzing RDC data (Valafar and Prestegard 2004; Lorieau 2017; Schwieters et al.
2017).

Spin-spin couplings can be used as dihedral constraints, but their use has been
largely supplanted by chemical shift analysis. J-couplings that traverse hydrogen
bonds can be useful for detecting and quantifying hydrogen bonds (Cordier and
Grzesiek 1999; Cornilescu et al. 1999).

Larger proteins, membrane proteins, and partially disordered proteins are chal-
lenging as structural targets. The sparse NMR data obtainable for such systems
can be supplemented by the introduction of paramagnetic labels and by collecting
a data from a variety of NMR experiments. These approaches and associated
computational algorithms for determining structures from pseudocontact shifts have
been reviewed recently (Pilla et al. 2017a, b). A recent study used paramagnetic-
induced 19F relaxation enhancement (PRE) in conjunction with 19F labeling to
obtain structural constraints in a large protein (Matei and Gronenborn 2015).

5.5 Software for Data Analysis and Assignment

A large variety of software tools have been developed for biomolecular NMR
applications, and many of these have evolved through a progression of releases. The
NMRbox project (Maciejewski et al. 2017) has the goal of archiving these software
packages and of making them available for use from a virtual machine platform
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to enable the replication of experiments. A further goal is to enable the pipelining
of data from one software package to another while capturing relevant information
about the workflow. This ambitious project promises important benefits to the field.

NMR data are collected as a function of time (time domain) and need to be
transformed to the frequency domain to yield NMR spectra. Spectrometer manu-
facturers provide software for NMR data processing. An alternative is NMRpipe
(Delaglio et al. 1995), a freely available software package with many processing
features including the reconstruction of spectra from sparsely sampled NMR data.

Popular software packages for viewing, annotating, and analyzing spectra are
NMRView (Johnson 2004) and Sparky (Kneller and Kuntz 1993). The National
Magnetic Resonance Facility at Madison (NMRFAM) which has incorporated
Sparky into its software packages, took over the development of this package and
released an enhanced version named NMRFAM-SPARKY (Lee et al. 2015). These
programs have built-in peak picking capability, but external peak picking software
packages are available (Koradi et al. 1998; Shin et al. 2008).

Chemical shift assignments of small proteins are derived from combinations of
two-, three-, and possibly higher-dimensional NMR data sets. Peak assignments
can be carried out manually with assistance from spectral visualization packages,
or from assignment software. The Integrative NMR package (Lee et al. 2016),
combines this process by displaying assignments predicted from the probabilistic
PINE package (Bahrami et al. 2009) on spectra. The user can accept and refine the
position of the proposed assignment or negate the assignment with mouse clicks.

For proteins with known 3D structure, for example from X-ray crystallography,
software packages have been developed to assist the assignment of methyl signals
from NOE data: FLAMEnGO (Chao et al. 2011); MAGMA (Pritisanac et al. 2017).

5.6 Structure Determination

Structure derived from NMR data are always underdetermined; thus they are simply
models that are consistent with the available experimental data (Mackay et al.
2017). Widely used structure determination programs include CYANA (Güntert
2004) and Xplor-NIH (Schwieters et al. 2017). Recent software packages, such as
FLYA (Schmidt and Güntert 2012) and Integrative NMR (Lee et al. 2016) combine
peak assignments with protein structure determination. The latter package, which is
available as a virtual machine, incorporates NMRFAM-SPARKY (Lee et al. 2015)
for spectral visualization and annotation, with APES for peak picking (Shin et al.
2008), PINE for automated assignment (Bahrami et al. 2009), ARECA (Dashti
et al. 2016) for validation of peak assignments, TALOS-N for shift based torsion
angle restraints (Shen and Bax 2013), CS-Rosetta (Shen et al. 2008), for structure
determination from chemical shifts, AUDANA (Lee et al. 2016) and PONDEROSA-
C/S (Lee et al. 2014) for automated structure determination from NOE spectra, and
data visualization by NDP-PLOT and an enhanced mode of the PyMOL software
package (The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger,
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LLC.). A new software package, PINE-SPARKY.2 (Lee and Markley 2018, which
comes as a plug-in to NMRFAM-SPARKY, further integrates several of these tasks
and provides, in addition, easy-to-use visual analysis tools based on probability
theory (Lee and Markley 2018).

5.7 Hybrid Approaches with NMR

NMR structures have been used to solve the phase problem with X-ray diffraction
maps. One study provided evidence that Rosetta refinement of NMR structures
aided this process (Ramelot et al. 2009).

Assigned backbone NMR chemical shifts constitute a minimal data set that can
be combined with Rosetta to determine a 3D structure (Mao et al. 2014; Rosato et al.
2012; Lange et al. 2012). Protein structures can be determined by co-evolutionary
restraints alone (Ovchinnikov et al. 2017); however, the availability of sparse NMR
data yields a hybrid method for improving such structures (Tang et al. 2015). This
hybrid approach is described in detail in a separate Chap. 10 in this volume.

Small angle scattering (SAS) and NMR spectroscopy are useful combinations
as reviewed recently (Mertens and Svergun 2017). NMR RDC measurements can
be combined with SAXS data to characterize conformational ensembles (Venditti
et al. 2016). One approach is to build NMR structures into SAXS envelopes as
shown recently with gammaD-crystallin (Whitley et al. 2017) and NFU1 (Cai et
al. 2016). SAS restraints have proven useful in refining NMR structures of RNA
molecules (Cornilescu et al. 2016; Cantero-Camacho et al. 2017). The combination
of Cryo-EM and NMR data has been reviewed recently (Cuniasse et al. 2017).
One example is the refinement of the Cryo-EM structure of HIV-1 capsid protein
with NMR data and MD simulations (Perilla et al. 2017). The integration of data
from a variety of techniques, including NMR, is challenging. A promising approach
involves Bayesian inferential structure determination (Habeck 2017).

5.8 Validation of NMR Data

The Worldwide PDB sponsored an NMR Validation Task Force charged with
recommending methods for validating NMR data deposited in the PDB archive.
The initial report of this Task Force (Montelione et al. 2013) identified three
phases for validation: (Phase 1) validation by methods that are available by
existing software that has been well documented, (Phase 2) validation by available
methods that require further review, and (Phase 3) validation by methods that
require development. The panel recommended immediate implementation of Phase
1 methods as part of the PDB validation report. These Reports should include
four components: (1) a report validating the completeness and global referencing
of chemical shift data, independent of 3D structure; (2) analysis of “well-defined”

http://dx.doi.org/10.1007/978-981-13-2200-6_10
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versus “ill-defined” regions; (3) a knowledgebased model validation report; and (4)
a restraint-based model-versus-data validation report, comparing each member of
the ensemble of NMR models to the available NMR restraints. To date items 1
and 3 have been implemented as part of the OneDep system. Item 2 should be
implemented soon, and software for implementing item 4 is under development at
BMRB.

5.9 Use of NMR for Dynamics and Functional Studies

Although 3D structures of proteins can be determined by NMR spectroscopy, a
major strength of NMR is its ability to investigate a variety of functional properties
in solution (Barrett et al. 2013). NMR is ideal for detecting protein dynamics
(Vallurupalli et al. 2017), functionally dynamic states (Kay 2016; Rosenzweig
and Kay 2016), and excited states that have a low population (Sekhar and Kay
2013). NMR can be used to determine complex protein energy landscapes (Khirich
and Loria 2015) and functional properties such as pKa values of individual sites
in proteins, allostery in enzyme catalysis (Lisi and Loria 2017), protein-ligand
interactions, and protein-protein interactions (Lipchock and Loria 2009). A recent
review discusses these applications with regard to membrane proteins (Liang and
Tamm 2016). The monitoring of hydrogen exchange by fast pressure jump NMR is
opening new approaches to studying conformational changes in proteins including
protein folding (Alderson et al. 2017).

5.10 Data Handling and Deposition

In 1996, BMRB converted its archive from a restrictive format akin to the old
PDB format, to NMR-STAR (Ulrich et al. 1996). STAR is related to the CIF
format adopted earlier by small-molecule crystallographers (Hall et al. 1991).
STAR (Hall 1991; Hall and Cook 1995; Hall and Spadaccini 1994) differs from
CIF by supporting a “save frame” architecture the enables a tabular format. This
feature enables NMR-STAR of capture information pertaining to unique entities
(molecules, samples, experimental procedures, sets of results, etc.) and to link
these entities in a relatively efficient manner. This greatly reduces the number of
redundant data tags needed within a single file. Because of its relation to the flat
format CIF, NMR-STAR is easily converted to the mmCIF (PDBx) format used by
the Protein Data Bank (Fitzgerald et al. 2005).

NMR-STAR is defined by a dictionary that evolves as new experimental methods
are developed. BMRB has been working with the biomolecular NMR community
to expand NMR-STAR to handle a wide range of NMR experiments and associ-
ated hybrid methods. Recent developments include ways of dealing with sparse
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sampling and reduced dimensionality NMR data as well as data from NMR-based
metabolomics studies.

In 2015, a group of NMR software developers, in cooperation with the World-
wide Protein Data Bank, proposed an NMR Exchange Format (NEF) as a stream-
lined representation of NMR data in STAR format (Gutmanas et al. 2015). The idea
was that by adopting NEF, different software packages could more readily exchange
data. BMRB in its latest version of the NMR-STAR dictionary adopted some of
the features of NEF and produced NMR-STAR tags for each of the NEF STAR
tags. This enabled BMRB to develop software to convert NEF to NMR-STAR. The
wwPDB is accepting the deposition of NMR restraint data in NEF as well as in
NMR-STAR format. The OneDep system (Young et al. 2017) will convert NEF to
NMR-STAR prior to archiving the data.
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Chapter 6
The PA Tag: A Versatile Peptide Tagging
System in the Era of Integrative
Structural Biology

Zuben P. Brown and Junichi Takagi

Abstract We have recently developed a novel protein tagging system based on
the high affinity interaction between an antibody NZ-1 and its antigen PA peptide,
a dodecapeptide that forms a β-turn in the binding pocket of NZ-1. This unique
conformation allows for the PA peptide to be inserted into turn-forming loops
within a folded protein domain and the system has been variously used in general
applications including protein purification, Western blotting and flow cytometry, or
in more specialized applications such as reporting protein conformational change,
and identifying subunits of macromolecular complexes with electron microscopy.
Thus the small and “portable” nature of the PA tag system offers a versatile and
powerful tool that can be implemented in various aspects of integrative structural
biology.

Keywords Protein tagging · Affinity purification · Monoclonal antibody ·
Peptide insertion · EM label

6.1 Introduction

There is a growing demand for the structural and functional characterization of
biological phenomena at the molecular level. These phenomena may involve large
networks of complex biomolecules interacting at varying spatial and temporal
frames, and so it is becoming increasingly important to approach these biological
questions with multiple methods and techniques to successfully elucidate their
structural basis at the atomic level. Since most structural methods require purified
proteins reconstituted in an artificial system, obtaining pure and high-quality protein
samples is a key determinant for the success of structural biology projects. However,
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large macromolecular complexes are generally unstable and/or difficult to produce
in a recombinant manner, therefore, it is crucial to employ highly efficient systems
for the production and purification of target proteins. With this in mind, we have
developed multiple affinity tagging systems of our own (Nogi et al. 2008; Sangawa
et al. 2013; Tabata et al. 2010) and applied them to structural biology projects that
involve purification of high-value target proteins (Kato et al. 2012; Kitago et al.
2015; Morita et al. 2016; Nagae et al. 2008; Nishimasu et al. 2011; Nogi et al. 2010).
In particular, the recently-developed PA tag system proves to outperform many
existing peptide-based immunoaffinity purification systems because of its universal
applicability, speed, and cost-efficiency (Fujii et al. 2014). More importantly, a
unique character of the PA tag system revealed by the structural analysis of
the peptide-antibody complex was exploited to allow its use in various labeling
applications that had not been possible with conventional peptide-based tag systems
(Fujii et al. 2016a). In this chapter, we will explain how this unique antibody-epitope
system can greatly expand the repertoire of tools available for investigating the
structure and function of proteins, and outline some areas that may see its utility
in solving difficult questions in integrative structural biology.

6.2 Protein Purification and Biochemical Analyses

6.2.1 Overview of Tag-Based Affinity Purification Systems

As most target proteins subjected to structural analysis nowadays are produced
recombinantly rather than purified from natural sources, it is a common practice
to express the proteins as a fusion with certain unnatural polypeptides that function
as a purification handle, collectively called affinity tags. The size of the tag moiety
can range from less than 10 residues (e.g., poly-His tag) to more than 50 kDa (e.g.,
Fc tag), but they all must be capable of binding to a specific purification matrix to
allow preferential capture of the target protein compared with other impurities (a
detailed review of the various techniques in (Terpe 2003).

In an effective affinity purification system, the interaction between the tag and
the matrix needs to show a number of properties including: high specificity to
reduce contamination from unwanted molecules, high affinity to achieve complete
capture of the tagged protein from the dilute sample, slow dissociation kinetics
to withstand extensive washing steps, and availability of elution conditions that
can achieve complete removal of the bound proteins from the matrix while being
chemically harmless and cost efficient. In addition, it is very important that the tag
is attached in such a way to not impair the structural and functional integrity of
both the tag itself and the target protein. The last property is usually ensured by the
placement of the tag moiety at either the N- or C-terminal of the protein, in order to
maximize the separation between the tag and unaltered portion of the polypeptide
chain. Naturally, no ‘perfect’ tagging system suitable for all experiments exists, and
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Table 6.1 Selected list of epitope tag systems

Name sequence Affinity (Kd)
Elution
conditionb Antibody References

FLAG DYKDDDDK 28 nMa Low pH, EDTA,
peptide

M2 Hopp et al. (1988)

Myc EQKLISEEDL 2.2 nM Low pH 9E10 Evan et al. (1985)
HA YPYDVPDYA 1.6 nM Peptide 12CA5 Field et al. (1988)
PA GVAMPGAEDDVV 0.4 nM MgCl2+, peptide NZ-1 Fujii et al. (2014)
TARGET 5x(YPGQ)V 10 nM Propylene glycol,

peptide
P20.1 Tabata et al. (2010)

MAP GDGMVPPGIEDK 3.7 nM Peptide PMab-1 Fujii et al. (2016b)
AGIA EEAAGIARP 4.9 nM Peptide Ra48 Yano et al. (2016)
CP5 GQHVT 7.5 nM Peptide Ra62 Takeda et al. (2017)
RAP DMVNPGLRDRIE 9.7 nM Peptide PMab-2 Fujii et al. (2017)

aReported by Fuji and coworkers (2014). All other values are from the respective reference
b“peptide” refers to the competitive elution with a solution containing free epitope peptide

the ideal combination of purification tag and the target protein will depend on the
intended experimental purpose and must be empirically determined.

Many purification systems have been developed including those based on metal-
chelate interaction between Ni-bearing resin and poly-histidine (Sassenfeld and
Brewer 1984), maltose binding protein binding to amylose resin (Maina et al.
1988), glutathione S-transferase binding to glutathione-resin (Smith and Johnson
1988), calmodulin binding peptide binding to calmodulin (Stofkohahn et al. 1992),
or Strep-tag binding to streptavidin (Schmidt and Skerra 2007). Anti-peptide
antibodies bound to an inert matrix offer another attractive set of protein purification
strategies given the high affinity and specificity of antibodies, and the relatively
small size of their epitopes. Several popular epitope-based purification systems are
in use that involve the fusion with peptides such as FLAG (Hopp et al. 1988),
HA (Field et al. 1988), and Myc (Evan et al. 1985) that can be captured by
their respective antibodies. Epitope tag systems have a range of affinities, epitope
sizes, chemical properties, viable cell expression systems and elution conditions
(Table 6.1) and so the appropriate tag and affinity matrix needs to be selected based
on experimental constraints. Accordingly, a great deal of research to develop new
and potentially better-performing purification systems is still being underway (Yano
et al. 2016; Fujii et al. 2016b).

6.2.2 Development of the PA Tag System

We recently reported the development of a novel epitope tag purification system
based on the high affinity interaction between the NZ-1 antibody and a dodecapep-
tide (GVAMPGAEDDVV) called PA tag (Fujii et al. 2014). NZ-1 was established
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during the search for anti-cancer antibodies as an inhibitor of platelet aggregation
by its strong binding to the PLAG domain of podoplanin, a type I transmembrane
protein that is over-expressed in cancer cells (Kato et al. 2006). As NZ-1 recognized
not only the native podoplanin protein but also a synthetic peptide derived from the
PLAG domain, we decided to see if it can be used as an anti-tag antibody.

During the initial characterization of the NZ-1 interaction with the epitope
peptide, it showed a binding affinity that was orders of magnitude higher than
popular and commercially available anti-tag antibodies including M2 (anti-FLAG),
9E10 (anti-Myc), or 4B2(anti-HA) when measured using Biolayer interferometry
(Fig. 6.1a). More importantly, this high affinity was due to the very slow dissociation
of antibody-peptide interaction, as evident from the near absence of the signal
decline during the dissociation phase (i.e., time point after 120 sec in Fig. 6.1a). This
property is highly desirable for an affinity tag system, because it allows for extensive
washing steps to reduce the level of contamination from nonspecific binding. In fact,
we successfully purified recombinant human epidermal growth factor receptor from
the total cell lysate without contaminating proteins by fusing podoplanin derived
dodecapeptide to the C-terminal and capturing the protein with NZ-1-immobilized
Sepharose (Fig. 6.1b). Therefore, it became clear that NZ-1 can be implemented
in a very efficient affinity purification system, and we designated the epitope dode-
capeptide as PA tag. PA tag can be used in applications typical for any peptide-based
tag systems, such as Western blotting, flow cytometry, and immunoprecipitation
(Fujii et al. 2014). However, the greatest advantage of the PA tag over other existing
systems is its ability to achieve complete affinity purification of the target protein
in just one step, even from a very dilute and heavily contaminated crude material
(Fig. 6.1b). Many structural biologists would agree that it is essential to use freshly
prepared proteins to produce well-diffracting crystals or obtain high quality cryo-
EM images. Since PA-tagged proteins purified by immobilized NZ-1 generally
require less time during sample preparation compared to other technologies, we
believe that the use of PA tag system will increase the success rate of challenging
structural analyses, as our group has already demonstrated with numerous examples
(Kitago et al. 2015; Arimori et al. 2017; Matoba et al. 2017; Matsunaga et al. 2016;
Hirai et al. 2017). Another advantage of this system is that the NZ-1 resin can be
regenerated by washing with non-denaturing and inexpensive buffer (3 M MgCl)
and allowing for repeated uses without the loss in binding capacity, significantly
reducing the running costs of experiments (Fujii et al. 2014).

6.2.3 Crystal Structure of PA Peptide Bound to NZ-1 Fab

The X-ray crystal structure of the NZ-1 fragment antigen binding (Fab) in both
apo and PA peptide-bound forms was determined to better understand the high
affinity interaction. High resolution crystal structures were obtained for NZ-1 Fab
apo form at 1.65 Å and PA peptide-bound form at 1.70 Å (Fujii et al. 2016a). Upon
comparison between the two structures, it became immediately clear that they are
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Fig. 6.1 High affinity and specificity of PA tag/NZ-1 system. (a) Binding affinities of various anti-
tag antibodies against their epitope tags as measured by biolayer interferometry. NZ-1 (anti-PA),
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essentially identical, indicating that there is very small conformational change of
the antibody before and after the peptide binding. Typically, the complementary
determining region (CDR) of an antibody undergoes significant conformational
changes upon antigen binding, often showing the “induced-fit” type of ligand
recognition mode. However, the total RMSD for the CDR region between apo
and bound structures was only 0.466 Å. Furthermore, several water molecules that
participate in the hydrogen bonding network to stabilize the bound PA peptide were
already present in the apo form. The small conformational change between apo
and bound states, as well as the presence of water molecules that mediate antigen
binding in the absence of the peptide indicate that the binding pocket of NZ-1 is
preformed or ‘primed’ for antigen recognition before the encounter, which could
contribute to the high affinity of NZ-1 as there would be a very low entropic cost
that NZ-1 needs to pay during a binding event.

The overall structure of the binding pocket may also contribute to the high affinity
of NZ-1 to PA peptide as the heavy and light chains of NZ-1 form a deep cleft that
buries the PA peptide and covers over 1200 Å2 of the total solvent-accessible surface
area (ASA) (Fig. 6.2a). Although this value is not particularly high when compared
to other known protein-peptide interaction surfaces (Chen et al. 2013), there are
many hydrogen bonds and salt bridges formed across the interface together with
numerous van der Waals contacts and a high shape complementarity all of which
likely accounts for the large enthalpic gain upon complex formation.

The final component that may explain the high binding affinity of NZ-1 and
PA peptide compared with other common epitope tag systems is the secondary
structure of the PA peptide itself. Prior to the crystal structure being available, it
was demonstrated using alanine scanning experiments that the central 7 residues of
the PA peptide (shown in bold GVAMPGAEDDVV) were critical for recognition
by NZ-1 (Fujii et al. 2014). This was confirmed by the X-ray structure as these
amino acids were in direct contact with the antibody (Fig. 6.2a). Furthermore, the
central “MPGA” motif formed a type II β-turn in the binding pocket, which is
a commonly observed conformation for Pro-Gly sequence-containing peptides in
solution (Guruprasad and Rajkumar 2000). This suggests that the PA peptide is also
‘primed’ for recognition by the NZ-1 CDR, giving another entropic advantage to
the interaction.

�
Fig. 6.1 (continued) M2 (anti-FLAG), 4B2 (anti-HA) or 9E10 (anti-Myc) antibodies were
immobilized and serial dilutions of epitope tag attached to T4 lysozyme protein were tested.
Equilibration (0–60s), association (60–120 s) and dissociation (120–240 s) stages are shown. (b)
One-step purification of human EGFR C-terminally tagged with PA tag from total cell lysate
using NZ-1 immobilized Sepharose. Purified EGF is marked with an arrow. (Reproduced after
modifications from Fujii et al. 2014)
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Fig. 6.2 Unique mode of PA
tag recognition by NZ-1. (a)
X-ray crystal structure of PA
peptide in the binding pocket
of NZ-1 Fab (PDB ID: 4yo0).
Peptide terminals, and both
central proline and glycine
residues that form the type II
β-turn characteristic of the PA
peptide are labeled. (b)
Schematic comparison
between the
peptide-recognition modes of
typical anti-peptide
antibodies and NZ-1

6.2.4 PA Tag as a “Mobile Epitope”

The structural analysis of the interaction between NZ-1 and PA peptide (described
above) unraveled the structural causes for the extremely high affinity and showed
that it involved multiple factors with favorable entropic and enthalpic energy terms.
Although this alone was interesting information, we realized that the structure had
a far more important implication regarding its utility as an epitope tag. In the NZ-
1 binding pocket, the tip of the Pro-Gly β-turn of the PA peptide is inserted into
the groove between the heavy and light chains (Fig. 6.2a). As a result, both the N-,
and C-terminal portions of the peptide are not involved in binding recognition, and,
importantly, point away from the antibody while being separated with a distance of
∼10 Å. This arrangement is rather unique, because most high affinity anti-peptide
antibodies recognize relatively extended conformations of linear peptide within their
antigen recognition groove to maximize the interacting surface (Fig. 6.2b). The
recognition topology of NZ-1 suggests that the PA peptide could potentially remain
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a viable epitope for NZ-1 even when constrained by neighboring residues; i.e., when
inserted into the middle of a folded protein domain. The lack of direct interaction
between the peripheral residues of the PA tag and NZ-1 also raise a possibility that
the central segment of the PA tag may assume ideal conformation regardless of the
flanking structures. This is fundamentally different from typical peptide tags, which
are usually placed at either end of the target polypeptide because conformational
flexibility and accessibility are generally the highest at these locations to ensure the
full reactivity with a cognate antibody.

Many anti-peptide antibodies are generated by immunizing animals with syn-
thetic peptides with a sequence that matches a certain segment of the original target
protein. Such antibodies do not always recognize the native target antigen protein
efficiently, because the in situ conformation of the peptide can be very different
from that in solution (Dyson et al. 1988), leading to weak or no binding to the
target epitope in the native protein (Hancock and O’Reilly 2005). For the very
same reason, a peptide tag inserted into a topologically constrained protein domain
may suffer from lower binding affinity with its anti-tag antibody due to unwanted
conformational changes of the reactive epitope. While a systematic review of the
reactivity of anti-tag antibodies toward peptide tags inserted into folded domains
has not been done, our own investigation revealed that some common epitope
tags (such as FLAG and Myc) lose reactivity to their antibody when inserted into
these domains (see later section), presumably due to the inability of assuming the
desired conformation in the context of the inserted topology. In order to be able to
function in an “inserted” form, tag peptides need to be flanked by additional linker
sequences (Facey and Kuhn 2003; Kendall and Senogles 2006) or strategically
placed in preexisting long loop regions (Dinculescu et al. 2002; Morlacchi et al.
2012). Therefore, if the PA tag is universally “insertion-compatible” without the
need for the linker optimization, it will have a high utility in a variety of research
areas.

In order to test the insertion compatibility of the PA tag, we chose a platelet
adhesion receptor αIIbβ3 integrin as the base protein. Integrins are a structurally
and functionally diverse group of cell adhesion receptors made up of 18 α- and 8
β-subunits to form 24 non-covalent heterodimers (Takagi and Springer 2002). They
have a well characterized biology and undergo a distinct conformational change
upon activation that involves an extension of the subunits from a bent to an extended
conformation (Takagi and Springer 2002). Importantly, the extracellular portion of
the αβ-heterodimer can be reconstituted as a soluble recombinant protein using
an established design strategy (Takagi et al. 2002). The αIIb subunit has a large
extracellular region composed of four β-rich domains with multiple loops (Zhu et al.
2008), and is suitable for systematically investigating the insertion of the PA tag
into loop regions (Fig. 6.3a). When the PA tag dodecapeptide was inserted in the
middle of 8 selected loops of the αIIb subunit and co-expressed with the β3 subunit,
most mutant integrins were efficiency expressed and secreted as in the case of the
wild type version (Fig. 6.3b), indicating that the insertion did not cause serious
structural disturbance. Furthermore, all these “PA-inserted” integrins were well
recognized by NZ-1, suggesting that the native epitope structure was maintained



6 The PA Tag: A Versatile Peptide Tagging System in the Era of Integrative. . . 67

Fig. 6.3 Insertion
compatibility of PA tag. (a)
Crystal structure of αIIbβ3
integrin in bent conformation
(PDB ID: 3FCS) showing
insertion sites for PA tag
(cyan) in the α-subunit (red).
(b) Immunoprecipitation data
showing the reactivity of
NZ-1 to the PA tag when
inserted into the indicated
location. 7E3 antibody
(anti-β3) was used to confirm
the correct expression and
formation of the αIIbβ3
integrin heterodimer.
(Reproduced after
modifications from (Fujii
et al. 2016a)

(Fig. 6.3b). We confirmed that this insertion compatibility is highly unique to
PA/NZ-1 interaction, because the identically constructed FLAG (DYKDDDDK)
or Myc (EQKLISEEDL) tag-inserted integrin constructs completely lost reactivity
with their antibodies (M2 and 9E10, respectively). It is surprising that PA tag can be
successfully inserted into loops with varying base distances ranging from only 5 Å
(between neighboring strands) to more than 15 Å (inter-sheet loops) (Fig. 6.3a). This
supports our prediction that the NZ-1 recognition mode is insensitive to the flanking
structures of PA tag, and the tag terminals are highly ‘adjustable’ and protect the
epitope from a wide range of topological variability.

In addition to the αIIbβ3 integrin, we have also inserted PA tag into various
loops of other membrane and soluble proteins and succeeded in purifying them
(manuscripts in preparation). Although the insertion design has to be empirically
determined for each case, we are confident that functionally active PA tag can be
inserted into most folded domains. The question then becomes for what type of
experimental applications will the insertion capability of PA tag becomes critically
important? One obvious case is when the terminal regions of a target protein are not
available for tagging, due to their inaccessibility in the native structure, or if they
directly participate in a functionally important domain such as an active site. The N-
terminal myristoylation motif and the C-terminal PDZ motif are examples of amino
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Fig. 6.4 Examples for utility of “portable” epitope system. (a) The PA peptide can be inserted into
a central region of the polypeptide chain allowing antibody binding in cases where the terminal
regions are unavailable due to its proximity with active site (depicted by magenta eyelash) or
burial in the protein interior. (b) Antibody binding can be used as a conformational reporter in
cases where the PA-tagged site alternates between hidden and exposed due to structural changes
in the target protein. (c) In multi-module proteins, domain identity may be unclear during EM if
there is no prior information about the domain architecture. Insertion of PA tag into target domains
followed by labeling with NZ-1 Fab enables domain localization via differential EM imaging

acid sequence at the terminals that cannot be changed, and so alternative tagging
strategies, such as insertions into central domain loops, are needed to preserve
native-like structure and function. (Fig. 6.4a). We have already applied this strategy
in the purification of neuroguidance factor semaphorin 3A which requires intact
N- and C-termini to exhibit full biological activity (Fujii et al. 2016a), and for the
adeno-associated virus capsid protein VP3 whose terminals are buried in the capsid
(unpublished results).
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6.2.5 Monitioring and Controling Conformational Change

With careful design the PA tag can be inserted into the exposed loops of a target
protein, acting as a ‘portable’ epitope, allowing the PA/NZ-1 pair to be used as
a site-specific labeling system. One obvious use of such a system would be the
monitoring of conformational change in flexible proteins. Proteins that undergo
large conformational shifts resulting in the exposure of certain epitopes can be
monitored by the change in binding of specific antibodies against them (Dennison
et al. 2014; Humphries et al. 2003; Irannejad et al. 2013; Walker et al. 2004).

However, such special ‘conformation reporter’ antibodies are essentially only
obtained by chance, and are not available for many proteins despite the obvious
experimental applications that single molecule reporting can have. Several attempts
have been made to fill this experimental niche by designing reporters based on
small chromophore-bearing proteins such as GFP or cutinase as such conformation
monitoring tags (Calleja et al. 2003; Bonasio et al. 2007), but they have not become
widely used due to the potential structural and functional disturbances caused by
their insertion. The PA peptide has two distinct advantages compared with other
conformational reporting strategies. First, it is recognized by a single high affinity
antibody (NZ-1) and so does not require any search of epitope-paratope space
for antibodies that target a particular location, rather, the PA tag can be inserted
into various locations enabling the identification of the tagging site with maximum
reporting power (Fig. 6.4b). Second, the PA peptide is only 12 residues and so with
rational design has minimal effect on the global architecture of the target protein
after insertion. By embedding the epitope in a location that alternates between
exposed and hidden depending on some structural and functional changes NZ-1
binding can be used as a conformational monitor (Fig. 6.4b). The integrins are
known to undergo a major structural change on the cell surface during activation
(Takagi et al. 2002), which makes it a perfect candidate for demonstrating the utility
of PA tag and NZ-1 as conformational reporters. Among the 8 PA insertion positions
tested in the αIIb subunit, the Calf1_EF site is located inside the subdomain
interface and hence unavailable for NZ-1 antibody binding when integrin is inactive
(Fig. 6.3a). However, during activation integrin takes on an extended conformation
and so the Calf1_EF insertion is predicted to be exposed. In line with our prediction,
when we expressed Calf1_EF integrin on the cell surface we saw an increase in NZ-
1 binding upon cellular activation. Similar results were obtained when PA tag was
inserted into different integrin subunits (mouse β1) (Fujii et al. 2016a), indicating
the broad applicability of this strategy.

In general, antibodies used for monitoring structural changes are also capable
of affecting the equilibrium of functional states, because upon binding they may
block a return to previous conformations and hence alter the structural equilibrium.
In fact, binding of NZ-1 to the Calf1_EF mutant integrin upregulates ligand binding
by locking the receptor in an activated state (Fujii et al. 2016a). This is another
area where the PA/NZ-1 system has many potential experimental applications. For
example, the PA tag can be strategically placed in a surface-exposed loop region of
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some protein with motile function (e.g., a motor protein) where the tag alone does
not affect the function, but binding of ∼50 kDa NZ-1 Fab fragment onto the epitope
physically inactivates the protein by enforcing a uniform conformation, which at
the same time gives an ideal condition for the static structural analysis. Here, the
important advantage of the PA tag/ NZ-1 system is the less invasive nature of the
tag itself due to the small size, and the ability to achieve controlled ‘activation’ of
the tag by labeling it with a large obstacle (i.e., NZ-1 Fab). We further exploited this
property to expand the utility of the PA tag in another area of structural biology:
electron microscopy.

6.3 Protein Labeling in EM Studies

6.3.1 Demands for EM Labeling Technologies

For large proteins, electron microscopy (EM) is becoming a highly popular method
and EM-derived structures are routinely reaching atomic resolution in some cases
within as little as 24 hours (Forsberg et al. 2017). On the other hand, EM analysis
of small, flexible, or conformationally diverse proteins is more difficult and so
reaching atomic resolution may not be possible. In these experiments, they may
only yield intermediate resolution maps (typically >20 Å). While these resolutions
do not allow for the precise localization of amino acids, intermediate resolutions
still give valuable global architectural and mechanistic information that is useful
in understanding the function and structure of proteins, particularly when inte-
grated with other sources of structural information (such as X-ray crystallography)
(Matoba et al. 2017). Under these resolutions, however, the identity of the subunits
or domains may be unclear, and so methods are required that can unambiguously
identify them in the density map. One strategy is to use EM labeling techniques
which utilize genetic manipulation of the target protein with insertions of extra
polypeptides or deletions at a region of interest. The difference(s) between EM
images (or 3D densities) of wild type and the mutant allows for the recognition
of the altered density features as the site of modification and hence its identification.

The criteria for an ideal EM labeling method may include (1) the smallest possi-
ble genetic modification to the target complex to reduce the potential for unwanted
structural alterations; (2) availability of the labeling agents with high specificity,
high affinity, and an easily recognizable feature under EM; (3) a simple and efficient
labeling step to ensure high occupancy without causing artificial conformational
changes; and (4) temporal control over the ‘activation’ of the visualization label (c.f.,
genetically encoded constitutively visible tags). In the following section, we will
outline some of the available techniques that will illustrate the basic EM labeling
principles and discuss the use of PA tag and NZ-1 as a novel EM label method.
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6.3.2 Presently Available EM Tags and Labeling Strategies

An early and demonstrative example of EM labeling is the identification of two
toxin recognition sites in the acetycholine receptor (AChR) by comparing averaged
images of the unbound and bound proteins (Zingsheim et al. 1982). It was possible
to identify the α-subunits of the AChR by the additional densities that were present
when the protein was in complex with the snake α-neurotoxin, which binds nearly
irreversibly to the α-subunit. In order for this kind of analysis to be successful, two
conditions have to be met; first, ligands such as an antibody or natural ligand (e.g.,
snake-derived neurotoxin) must be available, and second, the affinity and specificity
of the ligand is high enough, with the location of the binding known to some extent.
The second condition is particularly important, because partial (i.e., non-saturated)
or non-specific binding would generate structural noise and results in many sub-
populations during the EM image analysis, eventually leading to the unsuccessful
identification of the binding locations.

In cases where ligands are not available or they bind with a low affinity, a deletion
of subunits and/or domains followed by comparison between these mutants with the
wild type complex can offer an alternative route for subunit/domain identification.
In these cases, the missing density will show the location of the deleted subunit.
The use of mutants that lack various components has been used quite successfully
to determine the molecular architecture of complex cellular machineries such as
cilia and flagella (Bui et al. 2008; Heuser et al. 2012; Heuser et al. 2009; Pigino
et al. 2011). However, generalized application of this technique may be limited, as
it is unreasonable to expect that such a range of mutants will be available for all
target macromolecular complexes, and, if the mutation is in a structurally important
location then its removal will prevent the correct structure being observed.

Another more direct strategy to mark and visualize particular sites within a target
protein is to make recombinant proteins that incorporate an additional domain onto
the site of interest. Various domain-incorporation labels have been developed, such
as metallothionein tags that use heavy metal clusters to improve the EM contrast
(Mercogliano and Derosier 2007; Nishino et al. 2007). However, many of these large
tags are only tested in the ‘terminal fusion’ condition, and their applicability to a
non-terminal marking (i.e., domain insertion) is not established. Internal placement
of domain labels have been reported by utilizing some relatively small proteins such
as GFP, taking advantage of the close spacing between the C-, and N-terminals that
is compatible with insertion topology (Ciferri et al. 2012; Ciferri et al. 2015). As in
the case of the domain deletion strategy, permanently attached labels may interfere
with correct complex formation or execution of the function by the target protein,
leaving uncertainty as to whether the obtained structure is authentic.

Labeling systems that are assembled at a later stage give temporal control over
when to ‘activate’ the binding signal, and so can overcome some of the problems
associated with genetically encoded tags or deletion-based strategies. The DID tag is
based on yeast dynein light chain-interacting domain, and is assembled after protein
expression upon addition of the appropriate binding partners (Flemming et al. 2010).
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This tag is relatively small (∼80 residues) and so is less likely to interfere with
complex formation or folding, and can be visualized as a highly conspicuous feature
after the label assembly. However, it must be placed at the terminal region of a
protein, potentially limiting its utility. Antibody-based labeling is another way to
realize positional mapping of proteins that can be ‘switched on’ at the desired time,
and has been demonstrated with various monoclonal antibodies (Boisset et al. 1995;
Boisset et al. 1993; Prasad et al. 1990). As production of good labeling antibodies
against each target protein demands various resources and may not be possible in
some cases (see sect. 2.4), the only reasonable option is to use epitope tags and their
cognate antibodies. As mentioned earlier, however, such applications are frequently
limited to the labeling of terminal regions of proteins (Buchel et al. 2001; Kelly
et al. 2010).

6.3.3 PA Tag as an EM Label

As described in the earlier section, PA tag is small (12 residues) and can be placed
in a variety of locations including in the middle of folded domains, constituting a
highly unique ‘portable’ tagging system. Furthermore, the anti-PA tag antibody NZ-
1 has very high affinity with extremely slow dissociation kinetics. All these features
point to the possibility that the PA tag/NZ-1 may be the perfect tool to realize EM
domain labeling (Fig. 6.4c).

To test this, we used the PA-inserted integrin constructs (Brown et al. 2017).
In negative-stain EM, the soluble ectodomain fragment of αIIbβ3 integrin revealed
particles with a flattened ring-like shapes made by two thin legs connected at both
ends (Fig. 6.5, wild type), in agreement with the previously published integrin EM

Fig. 6.5 Inserted PA tag can be visualized by NZ-1 Fab under negative stain EM. Representative
2D averages for wild type or PA-inserted αIIbβ3 integrin mutants are shown in the upper panels.
Bound NZ-1 Fab is marked with a black arrowhead. Below each class average are shown predicted
structures of αIIbβ3 integrin in the extended conformation, with the NZ-1 Fab binding simulated.
The αIIb subunit is shown in red, β3 subunit in blue, and the heavy and light chains of NZ-1 Fab
are in wheat and pale green, respectively. (Reproduced after modifications from Brown et al. 2017)
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structures (Takagi et al. 2002). The major 2D class averages exhibited excellent
agreement with the atomic model of the αIIbβ3 integrin created from the crystal
structure (PDB ID: 3FCS) (Zhu et al. 2008). Particularly, the density profile of the
αIIb subunit was remarkably good in its detail, where all four domains (β-propeller,
thigh, calf-1, and calf-2) could be resolved in most of the class averages. We chose
three PA-insertion mutants (W2, Calf1_XZ, and Calf1_EF) and incubated them
with an excess amount of NZ-1 Fab fragment. As expected, all mutants formed
a very stable complex with NZ-1 Fab that could be isolated using size exclusion
chromatography with no signs of dissociation. Upon negative staining and TEM
observation, these mutant integrins exhibited structures identical to that of wild type
integrin, except for the extra densities corresponding to the bound Fab (Fig. 6.5).
The locations of the Fab densities were in perfect agreement with the that of PA tag
insertion in each mutant, indicating that successful domain labeling was achieved.
Importantly, a great majority (50–90 percent) of the integrin particles in the TEM
images had clear density of bound Fab (Brown et al. 2017). This high prevalence is
remarkable considering multiple factors including a chemical condition of negative
staining that may facilitate Fab dissociation, potential invisibility of bound Fab
due to projection overlap, and heterogeneous nature of the Fab-integrin orientation
leading to the disappearance after image averaging. Since this method is applicable
to a protein like integrin that is so small and have a highly polymorphic nature, we
believe that PA tag insertion followed by NZ-1 Fab labeling should be considered
as a useful and generally applicable method for EM domain mapping. In fact, this
method was successfully applied to a recent cryo-EM analysis of yeast group II
chaperonin TRiC/CCT complex made up with eight homologous but distinct sub-
units, allowing the unambiguous identification of each subunit which had been diffi-
cult due to the dynamic nature and the inherent pseudosymmetry (Wang et al. 2018).

6.4 Concluding Remarks

The discovery of the NZ-1 antibody and the subsequent structural characterization
of its complex with the high affinity ligand peptide PA tag has allowed for the
development of unique protein tagging system that has its utility in (1) protein
purification, (2) sensitive immunodetection with Western blotting, flow cytometry,
and immunoprecipitation, (3) analyzing and manipulating receptor conformation on
cell surface, and (4) EM domain labeling. Given the useful properties of the PA-
tag/NZ-1 system with its high affinity interaction and portable epitope functionality,
we suspect that there are other applications within the structural biology field for
this epitope-paratope system. For example, crystallization chaperoning is attracting
much attention as a promising way to increase the likelihood of obtaining well-
ordered crystals of biologically important and difficult targets for structural studies
(Koide 2009). If NZ-1 Fab bound to the inserted PA tag can provide sufficient sur-
face for the lattice contacts and promote crystallization, it will help crystallize, and
hence solve structure of, proteins for which no antibodies or other binders/ligands
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are available. PA-tag/NZ-1 may also have applications in cryo-EM where antibodies
have been used to increase the mass of target proteins to improve image alignment,
again PA-tag/NZ-1 offers a ready-made antibody system in cases where other high
affinity antibodies are unavailable. The demonstrated utility of the PA tag system
when used individually or in combination with other techniques can contribute
greatly to the structural studies of difficult target proteins, and help solve important
biological questions within the integrative structural biology field.
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Chapter 7
Small Angle Scattering and Structural
Biology: Data Quality and Model
Validation

Jill Trewhella

Abstract This chapter provides a brief review of the current state-of-the-art in
small-angle scattering (SAS) from biomolecules in solution in regard to: (1) sample
preparation and instrumentation, (2) data reduction and analysis, and (3) three-
dimensional structural modelling and validation. In this context, areas of ongoing
research in regard to the interpretation of SAS data will be discussed with a
particular focus on structural modelling using computational methods and data
from different experimental techniques, including SAS (hybrid methods). Finally,
progress made in establishing community accepted publication guidelines and a
standard reporting framework that includes SAS data deposition in a public data
bank will be described. Importantly, SAS data with associated meta-data can now
be held in a format that supports exchange between data archives and seamless
interoperability with the world-wide Protein Data Bank (wwPDB). Biomolecular
SAS is thus well positioned to contribute to an envisioned federation of data archives
in support of hybrid structural biology.

Keywords Small-angle scattering · SAXS · SANS · Biomolecular structure ·
Protein structure · Modelling · Data archive · Publication guidelines

7.1 Introduction

The potential for small-angle scattering (SAS) applications in structural biology was
foreseen early in the development of the field. In their 1955 monograph Guinier
and Fournet (1955) observed that, unlike synthetic polymers, biomolecules fold
into well-defined structures that can meet the stringent requirements of purity and
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mono-dispersity necessary for accurate structural interpretation of solution SAS
data. More than 60 years hence, it seems likely that the current level of activity
in biomolecular SAS with sophisticated structural modelling for interpretation of
data would exceed even the imagination of these pioneers.

The last decade has seen unprecedented advances in synchrotron and neutron
sources with specialized beam-lines supporting biomolecular SAS, in commercial
SAS instrumentation, in desk-top computing power, and in user-friendly SAS data
analysis and modelling programs designed for the expert and non-expert alike.
There also have been advances in the tools of molecular biology, biochemistry
and sample characterization that have made possible solution SAS studies of
increasingly challenging biomolecular complexes and assemblies that represent
today’s structural biology frontier. The result has been a steady rise in publications
of biomolecular SAS studies, with a more than four-fold increase in annual totals
over a dozen years to reach ∼500 publications in 2016 (Franke et al. 2017).

The SAS intensity profile (generally expressed as I(q) vs q; where q = 4πsinθ
λ

, 2θ

is the scattering angle and λ the wavelength of the radiation) contains information
related to the shape of a scattering object and the distribution of scattering density
within that shape. The intensity of the scattering signal is proportional to the square
of the mean scattering density difference between the particle and its solvent (i.e. its
“contrast”) and the square of its volume (V). For biomolecules tumbling in solution,
their random orientations result in rotational averaging of the scattering signal. As a
result, all directional information is lost and the Fourier transform of I(q) vs q gives
only the distribution of the pair-wise distances between scattering centers (atoms)
within the biomolecule weighted by the product of their scattering powers relative
to the solvent. Further, a solution SAS experiment measures the time and ensemble
average of the scattering particles present. If the solution contains a mixture of
different sized biomolecules, or there is an ensemble of conformers or flexibility,
the measured profile represents the population weighted average of the structures
present over the measurement period. For general biomolecular SAS reviews see
(Jacques and Trewhella 2010; Koch et al. 2003; Rambo and Tainer 2010); for a
comprehensive modern text on the subject see (Svergun et al. 2013).

An important goal for the structural biologist is an accurate and as precise as
possible three-dimensional (3D) model of a biomolecule or biomolecular complex
or assembly that informs our understanding of biological function. For a mono-
disperse solution of essentially identical particles, the SAS profile yields accurate
and precise parameters related to particle’s size, shape, and internal structure; for
example, radius of gyration (Rg) to within a few 10th’s of an Å, and volume (V)
or molecular mass (M) to within 5–10%). The Fourier transform of I(q) yields the
pair-wise atomic distance distribution, P(r) vs r, which is zero at r = 0 and at the
maximum dimension (dmax) of the particle and provides further information on the
scattering density distribution within the particle boundary.

Small-angle X-ray scattering (SAXS) is widely used for biomolecular analysis,
with high intensity sources providing vast amounts of high precision data sets.
Neutrons are more difficult to come by, but small-angle neutron scattering (SANS)
with deuterium substitution and contrast variation enables structural analysis of
individual components within complexes. In either case the SAS experiment is
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conceptually simple, but technically demanding in terms of both sample preparation
and instrumentation. The one-dimensional (1D) nature of the structural information
encoded in the SAS profile and the averaging over the ensemble of structures present
in the sample make it vulnerable to overfitting, over-interpretation, and even mis-
interpretation. Nevertheless, with appropriate sample and data quality checks the
SAS profile or SAS derived structural parameters can provide powerful restraints for
3D structural modelling, most especially when combined with complementary data
(Trewhella 2016). The growth in biomolecular SAS, with an increasingly diverse
community of users of the technique and increased focus on it as a contributor to
hybrid/integrative structural modelling, made it imperative to establish a community
agreed reporting framework for the field.

This chapter will present a brief outline of the current state of the art for
SAS experiment and interpretation, significant issues regarding data interpretation
that are the subject of ongoing research, and work that has been facilitated by
the Commissions of the International Union of Crystallography (IUCr) and the
world-wide Protein Data Bank (wwPDB) SAS validation task force (SASvtf) to
establish a community agreed reporting framework for biomolecular SAS and tools
for assessing data quality and model validation (Trewhella et al. 2017).

7.2 Current State of the Art

7.2.1 Sample Preparation and Instrumentation

To interpret solution SAS data accurately in terms of a 3D model, it is essential
to demonstrate the SAS profile represents the form factor that encodes for the
shape and scattering density distribution of the particle of interest. The samples
must be highly pure and contain identical particles with respect to the resolution of
the data (typically 10’s of Å). Measurements of the sample plus an exact solvent
blank are required in order to be able to accurately subtract the solvent contribution
to the scattering. The subtracted SAS profile must represent the scattering from
particles in the infinite dilution regime; that is free of aggregates (i.e. mono-disperse)
and of inter-particle distance correlations. The dependence of the scattering signal
on the square of the volume of the scattering particle means that small amounts
of aggregation or oligomerization will measurably impact the SAS profile and
the derived structural parameters will be too large. Distance correlations between
particles that might arise from Columbic repulsion will give rise to a structure factor
contribution to the scattering that suppresses the lowest-angle data and the derived
structural parameters will be too small. Early reviews promoting the power of
biomolecular SAS would often boast of the lack of need to crystallize or isotopically
label the target of interest, as required for crystallography or NMR. In reality,
crystallization can be a final purification step that rids a sample of impurities that
would interfere with a SAS measurement and, unlike SAS, NMR is not sensitive to
small amounts of large impurities or aggregates.
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Thus, the requirements for purity and mono-dispersity for SAS are most stringent
and have been a major limitation for accurate and precise measurement of the
SAS profile for many, if not the majority, of high priority targets for structural
biology research. As a result, success of the SAS experiment has always been
highly dependent on the solubility of the target and the capacity to tune solvent
conditions to find an optimal set where the measured SAS profile is in the
infinite dilution regime. In some cases, measurement of a concentration series
and point-by-point linear extrapolation of the SAS profiles to infinite dilution can
remove concentration-dependent effects such as inter-particle distance correlations.
Preparing for a biomolecular SAS experiment aimed at deriving 3D structural
parameters thus involves first assessing samples for any concentration dependence
to the SAS data that would be diagnostic of non-specific aggregation or inter-
particle correlations. As needed, solution conditions might be adjusted (e.g. pH
and/or ionic strength/species) or it may be determined that a concentration series
and extrapolation to infinite dilution is required to obtain the desired form factor.

The past decade has seen a significant increase in the number of vendors offering
laboratory-based SAXS systems that can be of high value for training, and can
also provide high quality data locally and aid in evaluating samples in preparation
for experiments at synchrotrons or neutron scattering facilities where access is
limited and time restricted. In this same period, there has been a proliferation of
SAXS beam-lines at synchrotron facilities world-wide, many dedicated solely to
biological applications, with X-ray beam intensities and robotics that enable rapid
measurement of samples (10’s of milliseconds to seconds) using very small amounts
of material (mg and smaller quantities) (e.g. Hura et al. 2009; Blanchet et al.
2015; Round et al. 2015). There have also been substantial developments of in-line
purification and characterization capabilities at many synchrotron beamlines. Size
exclusion chromatography (SEC) has proven especially powerful in combination
with SAXS (Brennich et al. 2017; David and Perez 2009; Graewert et al. 2015;
Mathew et al. 2004; Blanchet et al. 2015; Ryan et al. 2017).

The SEC-SAXS set up provides for separation of contaminants and/or aggre-
gates in a sample or of species in polydisperse mixtures immediately prior to
SAXS measurement. It is thus especially helpful for samples that are subject to
time-dependent aggregation. SEC-SAXS also aids in obtaining precise solvent
subtraction, as the solvent measurement is made on the sample free column flow
through, and potentially also measures a useful range of sample concentrations as
the sample elutes from the SEC column. The statistical quality of the data is limited
by sample dilution on the column and the speed with which it elutes. The speed
of the SEC-SAXS experiment overall is limited by the time for sample to traverses
the column. Taking full advantage of the brightness of the synchrotron source and
by judicious choice of columns, one can complete a SEC-SAXS experiment in less
than 10 minutes and obtain good quality data with sample loadings of a few 10ths
of mg (e.g. 100 of μL of 5 mg mL−1 of a 20 kDa protein (Ryan et al. 2017)).
Elimination or reduction of void volumes in the SEC-SAXS setup can reduce
sample dilution and facilitates accurate correlation of UV measurements with SAXS
data measurement for concentration determination of the biomolecular solute (Ryan
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et al. 2017). This allows for calculation of its molecular mass M from I(0), which is
a primary validation parameter demonstrating that the scattering is from the particle
of interest.

With SANS and selective deuteration the individual subunits of complexes or
assemblies can be distinguished in contrast variation experiments (Gabel 2015;
Jacques and Trewhella 2010; Whitten and Trewhella 2009; Whitten et al. 2008;
Zaccai et al. 2016; Zaccai and Jacrot 1983). However, neutron sources are many
orders of magnitude less bright than even laboratory X-ray sources, and thus
sample sizes (typically 100’s of μL at mg/mL concentrations) and exposure times
(minutes to hours) historically have been a significant limitation. Also, neutron
sources require a reactor or particle accelerator, and there are many fewer neutron
scattering facilities compared to synchrotrons. Even so, the power of the contrast
variation experiment with deuterium labelling, combined with the fact that neutrons
are non-ionizing and hence less damaging than X-rays, has stimulated significant
developments in SANS applications in structural biology. There is now a SEC-
SANS capability at the Institut Laue-Langevin (on beam-line D22), where datasets
can be acquired with exposure times that can be less than a minute and on
relative small sample volumes (Jordan et al. 2016). In addition it is now possible
to selectively perdeuterate individual domains within multi-domain proteins using
sortase (Sonntag et al. 2017). In their elegant study of the three RNA recognition
motif (RRM) domains in the RNA binding protein TIA-1, Sonntag et al. were able to
precisely define relative domain arrangements using a segmental labelling strategy
with SANS and contrast variation. This capability opens new possibilities for
studying multi-domain proteins in solution and monitoring domain rearrangements,
for example upon ligand binding or changes in physiological solution conditions.

7.2.2 Data Reduction and Error Propagation

Solution SAS data are recorded as counts on a detector, which is often two-
dimensional (2D) and records an isotropic scattering pattern that is generally
circularly averaged to maximize counts in the 1D intensity profile, I(q) vs q.
Depending on the details of the instrument, corrections may be applied to account
for detector non-linearity and sensitivity, and approaches to error propagation will
vary based on detector characteristics (e.g. detectors may count individual X-rays
or neutrons, or may be proportional counters). Accurate solvent subtraction to
obtain I(q) vs q for the particle of interest requires precise normalization of the
scattered intensity to constant counts on sample and solvent blank, which today
can be better than 0.1%. Practice has been that data may or may not be placed on
an absolute scale (in units of cm−1). Absolute scaling provides the opportunity to
directly compare the results from different instruments, including X-ray and neutron
instruments, and also allows for determination of M for the scattering particle
from I(0) without reference to another protein, as was historically done but which
introduces unnecessary additional errors.
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Each of the details of data reduction to I(q) vs q, solvent subtraction and
error propagation are often invisible to the experimenter, especially with the high
levels of automation on SAS beam-lines today. These details, however, can have
significant implications for the accuracy of intensities that can impact the derived
structural parameters, and on the accuracy of propagated errors that affect the most
commonly used model validation parameter, χ2 (see Sect. 7.2.4). It is therefore
important for beam-line scientists to provide details of their data acquisition and
reduction protocols to experimenters in a format that makes complete recording
and reporting of the experimental parameters easy. Auto-processing pipelines for
data reduction to I(q) vs q also cannot substitute entirely for user engagement in
validating their final solvent subtracted SAS profiles are accurate and suitable for
structural interpretation.

An informal group of SAS instrument scientists and experimenters, who have
adopted the acronym canSAS (collective action for nomadic Small Angle Scatterers,
http://www.cansas.org/), works cooperatively to provide the SAS user community
with shared tools and information. Their Reproducibility and Reliability working
group supports round-robin measurements for calibration and comparison of results
at different SAXS and SANS beam-lines. This working group is also considering
the handling of different sources of error in SAS data, including systematic and
statistical errors. This kind of volunteer community effort to address reproducibility
and reliability and to establish standard data formats is important as the SAS field
matures. Increased transparency and standardization in data reduction and error
propagation protocols are essential for SAS researchers to be able to adequately
report their results and archive data in a form that can support hybrid methods struc-
tural biology (see 7.4.2). Significant ongoing effort is required, particularly among
instrument scientists and programmers at synchrotron and neutron beamlines, to
achieve these important goals.

7.2.3 Data Analysis and Validation

There are a number of basic analyses of SAS data that are essential for data
validation. These include Guinier (Guinier 1939) and P(r) analyses (Glatter 1977)
and determination of V for the scattering particle using the Porod approximation
(VP) (Porod 1951) which should be compared with the M determination from I(0).
In addition, the SAS profile must be assessed for indications of the degree of
foldedness or flexibility using the Kratky (Kratky 1982) or dimensionless Kratky
(Bizien et al. 2016; Durand et al. 2010) plots, or Porod-Debey plots (Rambo and
Tainer 2011). Each of these analyses for assessing flexibility is critically dependent
on accurate solvent subtraction, which as noted above hinges on having an exact
solvent blank and accurate normalization of sample and solvent measurements to
constant counts on sample.

For illustration purposes, these basic analyses are presented in Fig. 7.1 with
derived structural parameters in Table 7.1 for an example protein: the intra-cellular

http://www.cansas.org/
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Table 7.1 Derived structural parameters for calmodulin example

Guinier analysis
I(0) (cm−1) 0.0554 ± 0.00008
Rg (Å) 21.74 ± 0.06
qmin (Å−1) 0.007
qRg max (qmin = 0.0066 Å−1) 1.3
Coefficient of correlation, R2 0.999
M from I(0)a (ratio to predicted) 21944 (1.31)
P(r) analysis
I(0) (cm−1) 0.0533 ± 0.00006
Rg (Å) 22.2 ± 0.06
dmax (Å) 72
q range (Å−1) 0.0074-0.3104
χ2 (total estimate from GNOM) 0.855 (0.91)
M from I(0) (ratio to predicted value) 21,718 (1.29)
Porod Volume (Å−3) (ratio Vp/calculated M) 25,200 (1.5)
V, M using the Fischer methodb (ratio of M to expected) 21,550,17.7 (1.05)

aM = I (0)NA

C�ρ2
M

where ΔρM = ϑ and ϑ is the partial specific volume of CaM and Δρ the scattering

density difference between the solvent and CaM (Orthaber et al. 2000). C was calculated using
a calculated extinction coefficient of 0.178 (for A280 0.1% w/v, 1 cm) (Gasteiger et al. 2005), ϑ

and Δρ were calculated using MULCh (Whitten et al. 2008) based on volumes of the chemical
constituents of CaM and its solvent (25 mM MOPS, 250 mM NaCl, 50 mM KCl, 2 mM TCEP,
0.1% NaN3, pH 7.5)
bFisher et al. (2009)

Ca2+-receptor calmodulin (CaM), a 16.842 kDa calcium-binding protein (human
isoform, Uniprot sequence P62155 (2–149)). The data are drawn from the example
set described in full in (Trewhella et al. 2017), an open access article for which
the CaM data are publicy available under the uniform resource identifier https://
creativecommons.org/licenses/by/2.0/uk/legalcode. The data are also deposited in
the SAS Biological Data Base (SASBDB) (deposition identifier SASDCQ2). The
SAS intensity scale covers several orders of magnitude and so the I(q) vs q profile is
presented as a log-linear plot (Fig. 7.1a). As expected for a monodisperse solution
the Guinier plot (Fig. 7.1b) is linear and yields an Rg value consistent with previous
observations (Heidorn and Trewhella 1988). The M value calculated from VP using
ATSAS (Franke et al. 2017) or the Fischer method (Fischer et al. 2009) agrees with
the expected value from chemical composition, while the value of M derived from
I(0) (Orthaber et al. 2000) is ∼30% high. This latter high value can be attributed
to the relatively large errors in the CaM concentration determination from UV
measurement for non-tryptophan containing proteins that have very small extinction
coefficients, and in partial specific volumes calculated from the volumes of chemical
constituents for small proteins (<20 kDa). Determining M directly from the SAS
profile using the different available methods, and understanding the origin of any
observed differences is one important validation step to demonstrate the scattering

https://creativecommons.org/licenses/by/2.0/uk/legalcode
https://creativecommons.org/licenses/by/2.0/uk/legalcode
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Fig. 7.1 SAXS data for CaM. (a) Log-linear plot of solvent subtracted I(q) vs q, on an absolute
scale and normalized to unit CaM concentration in mg mL−1. (b) Guinier plot for the data in a
with the linear fit (yellow line) (filled symbols indicate the Guinier region, qRg < 1.3). (c)P(r) vs r
calculated as the indirect transform of the data in a using GNOM (as implemented in ATSAS 2.8.0
(Franke et al. 2017)). (d) Dimensionless Kratky plot

represents the form factor of the particle of interest. The crystal structure of CaM
shows two globular domains connected by an extended α-helix, while solution
SAXS data previously showed that the globular domains were on average closer
together than the crystal structure (Heidorn and Trewhella 1988). Subsequent NMR
relaxation experiments revealed a 4-residue region in the helix connecting the two
domains to be highly mobile (Barbato et al. 1992). Consistent with these results
the P(r) function (Fig. 7.1c) is well behaved, approaching zero smoothly at r = 0
and 77 Å (dmax) with a maximum at ∼20 Å and a shoulder at ∼45 Å consisted
with a two-lobed elongated CaM structure. The dimensionless Kratky plot (Fig.
7.1d) shows a somewhat higher maximum than the usual 1.1 that is also shifted to
qRg = 2 from the usual 1.75 value (Durand et al. 2010) with a shallow oscillation
between 2.5 and 3.5 in qRg reflecting the two-lobed elongated structure. Flexibility
arising from mobile residues in the helix connecting the two domains is indicated
by the increase in intensity for qRg > 6.

The availability of easy to use SAXS and SANS data interpretation tools,
including those facilitating the basic analyses described above in addition to 3D
structural modelling, has helped grow structural biology SAS applications. A
number of excellent program suites are freely available and well-documented. For
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example, the BIOISIS web site (http://www.bioisis.net/welcome) offers scÅtter, a
JAVA-based application for basic analysis of SAXS datasets along with tutorial
material aimed at new and general users of biological SAXS. The much cited
and broadly used ATSAS data acquisition and analysis package (Franke et al.
2017) provides a comprehensive set of SAXS- and SANS-data interpretation tools,
including an extensive suite of 3D modeling programs, which are freely available to
academic researchers. The US-SOMO suite of programs (http://www.sas.uthscsa.
edu/index.php) includes SAXS and SANS modules to compute various hydrody-
namic parameters and SAS profiles from biomolecular models, and an HPLC-SAXS
module (Brookes et al. 2016) to deconvolve multiple species in the SEC-SAS
profile for analysis of separated components. The MULCh suite of programs
(available for download and as a web-based tool at http://smb-research.smb.usyd.
edu.au/NCVWeb/index.jsp (Whitten et al. 2008)) is available to aid in planning and
interpreting a SANS contrast variation series where a complex of biomolecular
components having different mean scattering densities is measured in a series
of solvents with different levels of deuteration. MULCh includes three modules:
Contrast calculates the dependence of I(0) on contrast for X-rays and neutrons for a
given solvent composition and/or deuteration levels in the biomolecular components
and solvent; Rg performs Stuhrmann and parallel axis theorem analyses that give the
Rg values and separation distances for components having different mean scattering
contrasts in the complex; Compost extracts component scattering functions that
contain the shape information for individual components and a cross term that
encodes information about their dispositions (Compost module).

7.2.4 3D Structural Modelling and Model Validation

With the basic analyses and data validation steps completed so that the SAS data
can be judged suitable for 3D structural modelling, a SAS modelling strategy can be
chosen: e.g. bead modelling to obtain basic shape information, rigid body modelling
where domain of subunit structures are known and their positions and dispositions
are optimized to fit the SAS profile(s), ensemble or multi-state modelling. The
majority of 3D SAS modelling programs, optimize the model fit by minimizing,
in some form, χ2 where:

χ2 = 1

N − 1

N∑

i=1

[
Iexp (qi) − cImod (qi)

σ (qi)

]2

(7.1)

and N is the number of data points, Iexp(qi) and Imod(qi) are the experimental and
model intensities with c an adjustable scaling constant, and σ (qi) the experimental
errors. Assuming the errors have been accurately propagated from Poisson counting
statistics and there are no systematic errors, a model that fits the data will have a
χ2value near 1. In practice, reported χ2 values for model fits can be anything from

http://www.bioisis.net/welcome
http://www.sas.uthscsa.edu/index.php
http://www.sas.uthscsa.edu/index.php
http://smb-research.smb.usyd.edu.au/NCVWeb/index.jsp
http://smb-research.smb.usyd.edu.au/NCVWeb/index.jsp
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a few tenths to 10’s in magnitude as a result of the σ (qi) in the denominator of Eq.
7.1 combined with substantial over or underestimation of the propagated counting
statistics. In addition, as a global fit parameter over a rapidly decreasing intensity
profile where the relative errors increase markedly with increasing q, the minimized
χ2 value can mask significant systematic mis-fit in important q-regions, e.g. the
mid-q region that is most sensitive to domain dispositions. As a result while χ2

is useful for comparing model fits to the same data set, it is rendered essentially
meaningless for comparing the model fits for different data sets and it is essential to
use additional measures to validate a model.

A simple and straightforward way to assess the quality of a model fit to a SAS
profile is an error weighted residual plot. This plot will highlight any regions of
systematic mis-fit, and the error weighting prevents the plot being dominated by
areas of weaker scattering and high errors.

The CaM example provides an illustration of model fitting to SAS data using
a simple uniform scattering density bead model or rigid-body modelling (Figs. 7.2
and 7.3) (data and models from (Trewhella et al. 2017) an open access article for
which the CaM data and models are publicy available under the uniform resource
identifier https://creativecommons.org/licenses/by/2.0/uk/legalcode and deposited
in the SAS Biological Data Base (SASBDB) (deposition identifier SASDCQ2).
Rigid body modelling used the CaM domains from the crystal structure with
or without the flexible linker connecting them as identified by NMR relaxation
measurements. The different CaM model fits are shown superimposed on the
standard log-linear plot of the SAS data (Fig. 7.2a) and it is immediately evident
that the error weighted residual difference plot (Fig. 7.2b) highlights much more
clearly differences between models and data. The wave-like systematic deviation in
the mid-q region for the crystal structure fit is diagnostic of the fact that the average
dispositions of the globular domains are not consistent with the crystal structure.
Superposition of the crystal structure onto the bead-model shows significant parts of
the crystal structure extending beyond its limits (Fig. 7.2c, left). Adding the flexible
linker connecting the domains, the multi-state modelling program MultiFoXS can
fit the SAS profile much better with either a 1-state or 2-state model (Fig. 7.2c, d,
respectively), the latter having the lowest χ2 value. The one state model is a better
overall fit within the bead model envelop (Fig. 7.2c, right). Table 7.2 summarizes
the CaM modeling parameters and χ2 values, which for the best model fits are near
1 as expected for propagated counting statistics.

To address the cases where the errors are not true Poisson counting statistics,
Franke et al. (2015) have developed an approach to model validation that does not
depend on the magnitude of the specified errors. Their approach uses an all data
point variance and covariance correlation matrix (or Correlation Map, CorMap) with
a probability assessment for data-model fits. In simple terms the method assigns a
probability in the form of a P-value (based on a 1-tailed Schilling test) for finding
the longest string of experimental data points that lie systematically above (+1)
or below (−1) the model profile. The P-value lies between 0–1 and a significance
threshold, α, is chosen below which the model fit is judged to show systematic
deviation from experiment. As implemented in the most recent ATSAS package

https://creativecommons.org/licenses/by/2.0/uk/legalcode
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(Franke et al. 2017), CorMap assigns significance to α-values in the typical range
statisticians use to indicate significant deviation, 0.01–0.05. The program generates
a 2D plot with X and Y axes running from qmin – qmax and qmax – qmin and assigns
the point to be black (−1) or white (+1) depending on whether it is above or below
the model fit. The largest region of difference is identified by green, yellow or red;
red indicates the P-value is <0.01, yellow is for 0.01 < P < 0.05 and green for
P > 0.05. The higher the P-value, the more uniformly gray the correlation map
appears as the white +1 and black −1 areas become small.

Correlation maps for the CaM models of Fig. 7.2 are illustrated in Fig. 7.3 and the
corresponding P-values are given in Table 7.2. The poor fit of the crystal structure is
boldly evident in the large red region that indicates a long stretch of 95 points (of a
total of 390) that fall one side of the model profile (Fig. 7.2a), while the bead model

Fig. 7.2 SAXS modelling results for CaM. (a) Log-linear plot of the solvent subtracted I(q) vs
q profile (black squares) with model profiles calculated for the crystal structure of CaM (red
squares) using CRYSOL with default parameters and PDB coordinates 1CLL, and for 1- and 2-state
CaM models described in Table 7.2 (magenta and cyan, respectively) calculated using MultiFoXS
(Schneidman-Duhovny et al. 2016) and assuming residues 77–81 are flexible. (b) Error-weighted

residual plot for the models in a and using the same color key; �
σ

= Iexp(qi )−cImod (qi )

σ (qi )
)

where Iexp(qi) and Imod(qi) are the experimental and model data points respectively, σ (qi) are
the experimental errors and c a scaling constant. (c) Gray spheres represent the bead model
for CaM (calculated using DAMMIN and the P(r) profile in Fig. 7.1c) superimposed with
cartoon representations of the crystal structure (left) and the 1-state model from a. (d) Cartoon
representations of the 2-state CaM model. DAMMIN and CRYSOL programs used were as
implemented in ATSAS 2.8.0 (Franke et al. 2017). PyMOL was used to generate images in figures
c and d
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Table 7.2 Model fitting parameters for calmodulin example

Shape model fitting
Program and parameters DAMMIN (default parameters)
q range for fitting (Å−1) 0.007–0.310
Symmetry, anisotropy assumptions P1
χ2, CorMap P values, constant
adjustment to intensities

0.844, 0.53,
1.877 × 10−4

Atomistic model fitting
From a single coordinate file

Program and parameters CRYSOLa (default parameters, constant
subtraction allowed)

Structure coordinates PDB:1CLL+b

q-range for all modelling 0.007–0.310
χ2 , P-value 12.62, 0.00
Predicted Rg (Å) 22.11
Vol (Å), Ra (Å), Dro (e/ Å) 22012, 1.40, 0.055

Multi-state/ensemble modelling

Program and parameters MultiFoXSc(10,000 models in starting set)
Starting coordinates PDB:1CLL+
Flexible residues 1–3 (ADQ), 77–87 (KDTDS)
Number of states 1

χ2, CorMap P values 0.85, 0.31
c1,c2 1.05, 0.99
Rg values of each state (Å) 21.03
Weights, wn, 1

Number of states 2
χ2, CorMap P values 0.79, 0.79
c1,c2 1.02, 1.50
Rg values of each state (Å) 22.32, 19.47
Weights, wn, 0.70, 0.30

Number of states 3
χ2, CorMap P values 0.79, 0.79
c1,c2 1.02, 1.52
Rg values of each state (Å) 22.32, 30.25, 19.00
Weights, wn, 0.68, 0.13, 0.18

aIn CRYSOL the adjustable parameters are excluded volume (Vol in Å3), optimal atomic radius
(Ra in Å) and Dro (optimal contrast of the hydration shell e/Å3)
bPDB:1CLL+ is PDB:1CLL plus the missing ADQ at the N-terminal and C-terminal K missing
in the crystal structure
cMultiFoXS uses FoXS to calculate model profiles with c1 and c2 are the same for all states in a
set, the scale factor c is then optimized for each state and a relative weight wn for each state n is
output. The parameters c1 and c2 form FoXS the adjustable parameters c1 and c2 are adjustments
for excluded volume and hydration density. c1 can vary by 5% (0.95–1.05) and the maximum
hydration adjustment c2 = 4.0 corresponds to ∼0.388 electrons/Å3 (compared to bulk solvent
density ρ = 0.334 electrons/Å3.)
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Fig. 7.3 2D correlation maps for SAXS data and CaM models. Models are those in Fig. 7.2.
(a) Crystal structure of CaM. (b) Bead model for CaM. (c and d) 1- and 2-state CaM models,
respectively. Red or green highlights the longest contiguous set of data points lying one side of
the model profile. Red indicates the associated P-value is <0.01 and below the threshold set for
a random distribution of points about the model profile. Green indicates the associated P-value
is >0.05 and above the threshold. CorMaps were calculated using the implementation in ATSAS
2.8.0. (Franke et al. 2017)

(Fig. 7.2b) and 1- and 2-state models (Fig. 7.2c, d, respectively) each have P-values
above the 0.05 threshold. The 2-state model has the highest P-values (0.85 with just
8 contiguous points falling on one side of the model fit). Comparing the P- and χ2-
values in Table 7.2 there is the expected strong negative correlation (the higher the
P-value, the lower χ2), but with significantly greater model discrimination in the P-
values. The CorMap analysis is relatively new and experience is needed for it to gain
full understanding and broad acceptance. With a smooth model profile, it is possible
for a set of contiguous data points to fall very slightly to one side of the model fit
and the setting the threshold thus remains somewhat contentious. The significance
of a range of P-values above the threshold for a given data set is not yet calibrated.
Nevertheless, CorMap is a very useful complement to χ2 and the error weighted
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residual plot as it provides a quantitative assessment of the quality of a SAS model
fit that is independent of the magnitude of the propagated statistical errors.

7.3 Areas for Further Research

An important area of ongoing research in relation to 3D structural modelling of
SAS data is predicting I(q) v q from a set of atomic coordinates. A significant
complication for this calculation arises from the hydration layer surrounding the
biomolecule of interest. For SAXS and for SANS measurements in H2O the
hydration layer contributes significantly to the scattering (Zhang et al. 2012; Kim
and Gabel 2015). The effects are largest for SAXS, where the scattering contrast of
the hydration layer for a biomolecule in a typical aqueous solvent is similar to that
of the protein, thus making the protein appear larger than the atomic coordinates
alone would predict. There are a number of approaches to modelling the hydration
layer using a uniform density layer approximation or explicit water models (e.g.
as implemented in CRYSOL and CRYSON (Svergun et al. 1995; Svergun et al.
1998), FoXS (Schneidman-Duhovny et al. 2013), AQUASAXS (Poitevin et al. 2011)),
and AXES (Grishaev et al. 2010), pepsi-SAXS (Grudinin et al. 2017)). All of the
approaches one way or another effectively add free parameters when fitting the
model to experimental data. A number of the developers of these methods have
done comparisons of different approaches, however there is no systematic study
using high quality experimental data from a set of representative, well-characterized
biomolecular systems that could serve for benchmarking. In a recent study, Kim
et al. combined SAXS and SANS measurements on mutants of green-fluorescent
protein having highly variable net charge to provide evidence of density modifi-
cations in the hydration layer that result from the residue-specific attraction of ions
from the bulk solvent in combination with structural rearrangements in their vicinity
(Kim et al. 2016). Clearly, additional experimental data is needed to fully explore the
parameters that affect the hydration layers surrounding biomolecules in solution and
their contribution to the total scattering. A comprehensive bench-marking study of
the different methods is called for. A potentially fruitful project would be to compare
different approaches using an agreed set of exemplar experimental SAS data for
a starting set of relatively rigid proteins where high resolution crystal structure
coordinates are available. A range of solution conditions would need to be evaluated.
A more challenging problem would be to consider highly charged poly-nucleotides
and the effects on the scattering profile of the ion cloud they can attract.

Outstanding questions of ongoing research in regard to SAS contributions to
hybrid atomistic modelling are a part of the more general questions regarding
determining and reporting model uncertainty, accuracy and precision, and how to
ascertain that the conformational search space is adequately sampled within the
context of the specific set of spatial constraints used (Schneidman-Duhovny et al.
2014). With regard to SAS data, multiple 3D models can fit the same 1D SAS data
set. Typically, the question of uniqueness of the model solution has been handled by
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performing multiple optimizations of either ab inito bead or rigid-body modelling
against a SAS profile, or profiles in the case of contrast variation data sets. A cluster
analysis can then be used to discriminate potential classes of models and provide
some measure of model ambiguity and uncertainty.

If there is an ensemble of conformers present or flexibility, the measured
profile represents the population weighted average structure over the measurement
period. There are a multitude of multi-domain proteins with flexible linkers and/or
hinges that are important for to their biological function (e.g. in enzyme catalysis
(Henzler-Wildman et al. 2007; Kim et al. 2015), DNA damage signaling and
repair (Perry et al. 2010), DNA binding and allosteric signaling (Taraban et al.
2008), mechanical properties in the giant protein muscle protein titin (Improta et
al. 1998; Kruger and Kotter 2016), target recognition by CaM (Tidow and Nissen
2013), ubiquitin-mediated regulatory mechanisms (Berndsen and Wolberger 2014;
Hershko and Ciechanover 1998). The flexible linkers generally are a challenge for
crystallization, and in the crystal form information regarding the solution ensemble
is lost. These multi-domain proteins are also most often too large for NMR solution
structure techniques and present ambiguous results for microscopy techniques.
Given their abundance and the difficulty in characterizing them, ensemble or multi-
state modelling against SAS data has been an increasingly popular choice (see
reviews (Hammel 2012; Kikhney and Svergun 2015; Rambo and Tainer 2010).
However, the problems arising from the limited information content of the SAS
profile are many times amplified with the ensemble model. An ensemble model will
have many more degrees of freedom than a single 3D model. As a result, ensemble
modelling against a SAS profile is much more vulnerable to over-fitting and over-
interpretation, even with limits to the conformational space to be sampled within
a set of restraints (e.g. knowledge of domain structures, specific flexible regions,
contact information from NMR, cross-linking or FRET measurements, etc.).

There are many different approaches to multi-state/ensemble modelling against
SAS data, the majority of which optimize by minimizing χ2 (e.g. Ensemble
Optimization Method EOM (Bernado et al. 2007; Tria et al. 2015), MultiFOXS
(Schneidman-Duhovny et al. 2016), and BILBOMD (Pelikan et al. 2009)), ASTER-
OIDS (Huang et al. 2014), ENSEMBLE (Krzeminski et al. 2013)). Different
underlying philosophies are evident in the different methods: e.g. finding the
minimal ensemble that fits the data (as in MultiFoXS or BILBOMD), or assuming
that flexible regions will sample a continuous distribution of flexible conformations
(as in EOM). Other method developers have employed specific strategies to
avoid overfitting, e.g. SES (Berlin et al. 2013) uses a linear least squares with a
regularization term to obtain a sparse ensemble of conformations, EROS uses a
maximum entropy principle as guiding principle to avoid overfitting (Rozycki et al.
2011), BSS-SAXS (Antonov et al. 2016) uses a probabilistic model with Bayesian
ensemble inference to model intrinsically ordered proteins. Bayesian methods have
seen a recent surge in popularity for ensemble modelling, their appeal being that
they seek to limit the solution to the number of conformers that are justified given
the model evidence (Potrzebowski et al. in press). Ongoing research for modelling
conformational ensembles requires the collaboration of computational, theoretical
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and experimental scientists to consider how much data, what kinds of data, what
kinds of representations, what theory and what computational methods need to come
together to make progress.

7.4 Standards and Publication Guidelines

The increased utilisation of SAS data in hybrid structural modelling to study com-
plexes and assemblies (reviewed in (Schneidman-Duhovny et al. 2012; Vestergaard
2016; Mertens and Svergun 2017; Trewhella 2016)) combined with sophisticated
software tools designed to be easy to use by non-expert modellers and SAS
experimenters makes it imperative to have clear and agreed publication practices
with a standard reporting framework and archiving of data in an accessible,
searchable data bank.

7.4.1 Establishing Guidelines Through Community
Engagement

Standardization in any field justifiably raises community concerns that there may be
unintended consequences that restrict opportunities for publishing. There is also
the concern that standards will be too narrow, unreasonable or even misguided.
To overcome these natural concerns, there must be ample opportunity for broad
community engagement in the process of first developing publication guidelines
that can become embedded as standard practice and evolve as the field advances.

The process for developing publication guidelines requires a commitment to two
way communication, structured planning, and formal reporting of progress in open
access articles. Most importantly there must be leadership from experts across the
international community, including providers and developers of instrumentation and
analysis tools. Finally, time must be allowed to embed new practices and obtain the
resources required to support new norms.

The biomolecular small-angle scattering community has been working toward
the establishment of publication guidelines for more than a decade. Supporting the
process have been the IUCr through its Commissions for Small-Angle Scattering
(CSAS) and Journals (JSAS) and the wwPDB through the establishment of the
SASvtf. The meetings of the IUCr Congress and Assembly, as well as the triennial
SAS meetings (most recently SAS2012 in Sydney, Australia, SAS2015 in Berlin
Germany, and SAS2018 in Traverse City, USA), provided excellent opportunities
to report on and ask for community input into the developing recommendations
of the CSAS and SASvtf. Commentary pieces made the case for the importance
of a community agreed reporting framework for biomolecular SAS (e.g. (Jacques
et al. 2012)) and there were interim reports outlining preliminary recommended
guidelines (Jacques et al. 2012; Trewhella et al. 2013).
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Most recently, 22 leading SAS experimenters, instrument scientists, SAS anal-
ysis program developers as well as experts in crystallography and NMR from
around the world, came together to develop a consensus set publication guidelines
for biomolecular SAS (Trewhella et al. 2017). The guidelines provide a detailed
reporting framework that enables readers to “independently assess the quality of the
data and the basis for any interpretations presented.” Further, the recommendations
were developed to explicitly satisfy recommendation 4 of the 2013 SASvtf report
that community agreed “criteria [were] needed for the assessment of the quality of
deposited data and the accuracy of SAS-derived models, and the extent to which
a given model fits the SAS data” (Trewhella et al. 2013). The 2017 guidelines
are comprehensive and include recommendations regarding: sample details; data
acquisition and reduction; data presentation, analysis and validation; and structure
modelling. The reporting guidelines are then applied to a set of example including
the CaM example discussed above, where a subset of the reporting framework is
used to illustrate essential steps required before choosing a modelling strategy and
then approaches to model validation.

7.4.2 Archiving SAS Data and Hybrid Models

Recommendations 1–3 of the SASvtf report (Trewhella et al. 2013) concerned
(1) making SAS data available in a standard format via a searchable and freely
accessible archive, (2) developing a dictionary of terms for collecting and managing
SAS data, and (3) providing options for depositing SAS-derived models along
with specific information on uniqueness and uncertainly, and the protocol used to
obtain it.

A SAS data archive requires a standard dictionary of terms with precise
definitions enabling the collection and management SAS data. The sasCIF, first
established in 2000 (Malfois and Svergun 2000), is an extension of the widely
used IUCr Crystallographic Information Framework (CIF). In response to the
recommendations of the SASvtf, the sasCIF was further developed and extended
as a dictionary that would include experimental information, results and models,
including relevant metadata for SAS data analysis and for deposition into a database
(Kachala et al. 2016). Importantly, the CIF format is infinitely extensible and
as such the sasCIF can be updated to include new terms and definitions, for
example from the 2017 guidelines and any future recommended additions. A set
of processing tools for sasCIF files has also been developed and made available as
standalone open-source programs and integrated into the SAS Biological Data Bank
(SASBDB) (https://www.sasbdb.org/ (Valentini et al. 2015)). These tools enable
the export and import of data entries as sasCIF files, thus enabling potential data
exchange between SAS databases, e.g. between the SASBDB and the data and
models held in BIOISIS http://www.bioisis.net/welcome).

https://www.sasbdb.org/
http://www.bioisis.net/welcome
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Recommendations 5 and 6 from the SASvtf report (Trewhella et al. 2013) were
that: 5) with the increasing diversity of structural biology data and models being
generated, archiving options for models derived from diverse data will be required;
and 6) thought leaders from the various structural biology disciplines should jointly
define what to archive in the PDB and what complementary archives might be
needed (taking into account both scientific needs and funding). In response to
these recommendations the Integrative/Hybrid Methods (I/HM) workshop was held
in Hinxton (United Kingdom) in October of 2014, bringing together 38 leading
structural biologists who came to five consensus recommendations (Sali et al.
2015). These recommendations focused on the importance of being able to archive
hybrid/integrative models with complete data and meta-data, a necessarily broader
capacity for varied model representations, the importance of providing information
regarding what is likely to be variable uncertainty in a given model, agreed model
validation tools, and establishing standards for publication of hybrid models. Of
particular relevance to the work done to develop the sasCIF, the recommendations
included that a “federation of model and data archives should be created” to support
the archiving of models derived from hybrid data sets. The sasCIF enables seamless
data exchange and interoperation with such a federated system that includes
wwPDB. The SAS community is thus well placed to participate in and support this
vision for integrative/hybrid methods.

A small but significant step toward the envisioned federated system is a col-
laborative project between the wwPDB European partner (PDBe) and SASBDB
to establish a protocol in the wwPDB OneDep system for hybrid NMR/SAXS
structure depositions where the SAS data and meta data are held in the SASBDB
and the models in the wwPDB. The co-refinement of SAXS and NMR data
is a notable example of hybrid structural modelling. The short-range distance
and orientational restraints from NMR combined with the long range distance
and translational restraints from SAXS have proven a powerful combination for
substantially improving the accuracy of solution NMR structures (Grishaev et al.
2010; Grishaev et al. 2008; Grishaev et al. 2005; Schwieters and Clore 2014; Madl
et al. 2011). The combination of SANS and NMR data with crystal structures
has been especially powerful in structural modelling of protein RNA assemblies
(Lapinaite et al. 2013; Hennig et al. 2014; Gabel 2015). Providing public access
to the complete experimental data sets with associated meta-data is essential to
the future of hybrid methods structural studies. For the relatively small sized
NMR/SAXS structures, many have been deposited in the PDB, but to date the SAXS
data were either not included, or included in an ad hoc way that makes them difficult
to find. A OneDep protocol for hybrid NMR/SAXS structure depositions linked with
SASBDB addresses this definciency.

Addressing the more ambitious hybrid/integrative structural biology challenge
of large complexes and assemblies requires bringing together many more disparate
data types, new computational methods, visualization tools and yet to be understood
tools for model validation. The work done by the biomolecular SAS community to
agree publication guidelines with data quality and model validation tools means
we are well positioned to participate in this larger vision as part of the wwPDB-
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led project that is now developing a prototype model archive system for large-scale
structures determined by hybrid methods (Burley et al. 2017).

7.5 Conclusion

The SAS experiment is conceptually simple and yet technical demanding. Further-
more, the limited information content in the data can lead to over-interpretation
and even mis-interpretation. In many ways, SAS can be most powerful by itself in
proving a model inadequate or incomplete (as in comparing the solution and crystal
structures for our CaM example). Otherwise, it can be a very powerful restraint in
3D structural modelling when combined with sufficient complementary data. In all
applications, SAS data validation requires information beyond what is contained
within the scattering profile itself, and validation of the optimal model profile fit
and evaluation of model uncertainty and uniqueness require multiple approaches,
and even new research.

The kinds of cooperative, volunteer efforts as exemplified by the canSAS
working groups, the IUCr CSAS and the wwPDB SASvtf are critically important
as the biomolecular SAS field continues to mature and embed standard practices
with regard to data and model validation. It is in some ways a fortunate confluence
of events and timing that has led to the current state where biomolecular SAS is
positioned with many of the tools and guidelines in place to be able to contribute to
the developments in hybrid structure determination. This readiness is a reflection of
much work and concerted efforts over more than a decade.
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Chapter 8
Structural Investigation of Proteins
and Protein Complexes by Chemical
Cross-Linking/Mass Spectrometry

Christine Piotrowski and Andrea Sinz

Abstract During the last two decades, cross-linking combined with mass spec-
trometry (MS) has evolved as a valuable tool to gain structural insights into
proteins and protein assemblies. Structural information is obtained by introducing
covalent connections between amino acids that are in spatial proximity in proteins
and protein complexes. The distance constraints imposed by the cross-linking
reagent provide information on the three-dimensional arrangement of the covalently
connected amino acid residues and serve as basis for de-novo or homology modeling
approaches. As cross-linking/MS allows investigating protein 3D-structures and
protein-protein interactions not only in-vitro, but also in-vivo, it is especially appeal-
ing for studying protein systems in their native environment. In this chapter, we
describe the principles of cross-linking/MS and illustrate its value for investigating
protein 3D-structures and for unraveling protein interaction networks.

Keywords Cross-linking · Mass spectrometry · Protein 3D-structure ·
Protein-protein interactions

8.1 Introduction

Proteins play pivotal roles in all biological processes. As the structure of a protein
dictates its function, investigating the 3D-structure of a protein and clarifying its
interactions with other proteins is one of the most important tasks to elucidate
biological processes. While the 3D-structural analysis of proteins is commonly
achieved by nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallogra-
phy, and cryo-electron microscopy (cryo-EM), protein-protein interactions might be
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identified by co-immunoprecipitation or Förster resonance energy transfer (FRET)
(Operana and Tukey 2007).

To date, NMR and X-ray crystallography are still the dominating techniques to
determine high-resolution protein structures as is indicated by the large number of
structures available in the PDB (∼120,000 structures obtained by X-ray crystallog-
raphy versus ∼12,000 structures obtained by NMR spectroscopy). Limitations of
both high-resolution techniques, however, persist in the investigation of very large
and transient protein complexes as well as membrane proteins. Cryo-EM overcomes
some of these limitations as structural analysis can be performed at rather low
protein concentrations (less than 1 μM) and highly complex protein assemblies can
be targeted (Li et al. 2013).

Cross-linking/MS is an approach that complements the high-resolution 3D-
structural techniques and has emerged as promising tool for the structural inves-
tigation of proteins and protein complexes in the last years (Young et al. 2000).
Especially the combination of cryo-EM with cross-linking-MS has proven beneficial
to provide insights into large protein assemblies (Greber et al. 2014; Weisz et al.
2017; Benda et al. 2014) that cannot be obtained by X-ray crystallography or NMR
spectroscopy.

Cross-linking/MS relies on introducing covalent connections between functional
groups of amino acid side chains by a chemical reagent. This cross-linker possesses
a defined length and connects only these amino acids that are in the appropriate
distance to be cross-linked. Usually, the analysis of the cross-linked amino acids
is performed in a classical proteomics “bottom-up” approach where the cross-
linked protein(s) are enzymatically digested and the peptide mixtures are analyzed
by liquid chromatography tandem mass spectrometry (LC/MS/MS). This highly
sensitive method allows examining as low as femto- to attomole amounts of
proteins. The distance constraints that are derived from the cross-linked amino acids
are subsequently employed for de-novo or homology modeling approaches (Leitner
et al. 2016; Rappsilber 2011; Sinz 2014; Walzthoeni et al. 2013; Politis et al. 2014).

Importantly, the cross-linking/MS approach is not only applicable to the 3D-
structural analysis of purified proteins, but it also allows elucidating protein-protein
interaction networks (Häupl et al. 2016; Schweppe et al. 2017). Protein-protein
interaction studies are often based on an affinity enrichment of a tagged bait protein
to a specific matrix (Puig et al. 2001; Gavin et al. 2002), together with its interaction
partners. Here, the washing procedure applied to remove non-interacting proteins
is a crucial step, which however harbors the risk of losing transiently or weakly
bound protein interaction partners. Due to the covalent fixation of proteins in the
cross-linking/MS approach, the loss of weakly bound proteins during the washing
procedure is circumvented.

In this chapter, we give an introduction into the principles of cross-linking/MS
and present examples for successful applications of this approach to derive 3D-
structural information of proteins and to identify protein interaction networks.
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8.2 The Cross-Linking/MS Strategy

Once the 3D-structure of a protein or protein complex is covalently fixed by a cross-
linking reagent in-vitro or in-vivo, the identification of the cross-linked amino acids
will ultimately give insights into the spatial organization of the protein system under
investigation. After the cross-linking reaction, the reaction mixture is analyzed by
one-dimensional gel electrophoresis (SDS-PAGE) to visualize the result of the
cross-linking reaction and to eventually optimize the reaction conditions (Sinz
2006; Rappsilber 2011) (Fig. 8.1). As mentioned above, the analysis of the cross-
linked amino acids is commonly achieved by a “bottom-up” approach, including
enzymatic digestion and LC/electrospray ionization (ESI)-MS/MS analysis of the
resulting peptide mixture. Proteolysis is realized either by in-gel or in-solution
digestion. Applying the in-gel approach, the band containing the protein or protein
complex of interest is excised and digested within the gel. Alternatively, proteolytic
cleavage can be carried out directly in-solution without previous separation of the
proteins. The resulting peptide mixture is highly complex as it not only contains

Fig. 8.1 Cross-linking/MS workflow. A protein or protein complex is stabilized by introducing
a covalent bond with a cross-linking reagent. Separation of the cross-linked protein(s) by SDS-
PAGE is followed by enzymatic in-gel or in-solution digestion, resulting in a peptide mixture
containing cross-linked and non-cross-linked (linear) peptides. Applying the peptide mixture to MS
analysis enables the identification of cross-linked peptides by customized software tools that match
MS/MS spectra to potential cross-linking candidates. The cross-links identified provide distance
information for modeling protein 3D-structures or for identifying protein interaction partners
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non-cross-linked, i.e., linear, and cross-linked peptides of the target proteins, but
also peptides of possible contaminants or the protease used for digestion. In
subsequent LC/MS/MS analysis, mass spectra and fragment ion mass spectra are
recorded, followed by the identification of cross-linked peptides by specific software
tools, such as xQuest (Rinner et al. 2008), pLink (Yang et al. 2012), StavroX (Götze
et al. 2012a) or Kojak (Hoopmann et al. 2015), that automatically match MS/MS
spectra of cross-linked peptides to cross-linking candidates. The cross-links deliver
(i) distance information for 3D-structural computational modeling and (ii) insights
into the identity of protein interaction partners and protein-protein interaction sites.

8.3 Experimental Design of the Cross-Linking/MS Workflow

8.3.1 Cross-Linker Design and Reactivity

The commonly used cross-linkers comprise two reactive head groups that are
separated by a spacer with a defined length (Sinz 2006). The spacer determines
the distance between the amino acids to be covalently connected and as such serves
as “molecular ruler” within a protein or protein complex. Cross-linking reagents are
categorized into homobifunctional cross-linkers, comprising identical head groups,
or heterobifunctional cross-linkers with non-identical reactive sites (Table 8.1). The
most frequently employed reactive groups are N-hydroxysuccinimidyl (NHS) esters
targeting primary amines in lysines and protein N-termini. For NHS esters, an
additional reactivity for hydroxy groups in serines, threonines, and tyrosines has
been observed (Mädler et al. 2009; Kalkhof and Sinz 2008). Heterobifunctional
linkers often contain NHS esters as one of the reactive groups (Hermanson 1996).
The second reactive site can be a maleimide, targeting cysteine residues, or a
photo-reactive group, such as diazirines or benzophenones. Photo-reactive moieties
react in a non-specific manner, potentially connecting all 20 amino acids that
are in spatial proximity. For diazirines, a preference for acidic amino acids was
observed (Ziemianowicz et al. 2017; Jumper et al. 2012; Iacobucci et al. 2018),
while benzophenones target mostly methionines (Wittelsberger et al. 2006). Cross-
linking of acidic amino acids is still a challenging task at experimental conditions
that do not interfere with the native protein structure. Hydrazines react with
aspartic and glutamic acid residues as well as with the C-terminus of proteins upon
activation with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (Novak and
Kruppa 2008) or 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chlo-
ride (DMTMM) (Leitner et al. 2014a). The activated acidic amino acid might then
also react with primary amines of lysines and the N-terminus, forming a direct
connection between a carboxylic acid and an amine group (Schwarz et al. 2016).

In addition to the cross-linking reagents that are externally introduced (Table 8.1)
photo-reactive, unnatural amino acids are available that are directly incorporated
into proteins (Suchanek et al. 2005; Piotrowski et al. 2015). These photo-reactive
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Table 8.1 Functional groups in cross-linking reagents

Reactive group Targeted amino acid(s)

N-hydroxysuccimidyl (NHS) ester Lysine, N-terminus, serine,
threonine, tyrosine X = NH, O

Maleimide Cysteine

Diazirine All amino acids, N- and
C-terminus, acidic residues
(aspartate, glutamate)
preferred X = CH2, NH, O
or S

Benzophenone All amino acids, N- and
C-terminus, methionine
preferred

Hydrazine Acidic amino acids (aspartate,
glutamate), C-terminus

An overview of commercially available cross-linking reagents is provided at https://www.
thermofisher.com/de/en/home/life-science/protein-biology/protein-labeling-crosslinking/protein-
crosslinking.html

amino acid analogues contain photo-reactive groups, such as benzophenones or
diazirines, and they are incorporated into proteins during the translation process
in living cells. In general, two strategies are applied, where the photo-reactive
amino acids are incorporated into the protein(s) either in a site-specific or a non-
directed fashion. The site-specific incorporation of the photo-reactive amino acid
makes use of the amber stop codon that is placed at the desired position in the
DNA. The amber stop codon encodes for the photo-reactive amino acid, e.g.
para-benzoylphenylalanin (Bpa) (Ryu and Schultz 2006; Schwarz et al. 2016).
To incorporate the photo-reactive amino acid, a specific transfer RNA (tRNA) is
needed, which is encoded by an additional plasmid to be transformed or transfected
into the cell. The tRNA binds the photo-reactive amino acid and incorporates it into
the protein at the amber stop codon position. The major advantage of this approach
is that the cross-linking reaction will specifically take place at the desired position

https://www.thermofisher.com/de/en/home/life-science/protein-biology/protein-labeling-crosslinking/protein-crosslinking.html
https://www.thermofisher.com/de/en/home/life-science/protein-biology/protein-labeling-crosslinking/protein-crosslinking.html
https://www.thermofisher.com/de/en/home/life-science/protein-biology/protein-labeling-crosslinking/protein-crosslinking.html


106 C. Piotrowski and A. Sinz

within the Bpa-labeled protein. On the other hand, the non-directed incorporation
of the photo-reactive amino acid exploits the translation machinery of the cell to
incorporate photo-reactive amino acids. As such, photo-methionine (photo-Met)
or photo-leucine (photo-Leu) can be incorporated into proteins by the respective
tRNAs for methionine and leucine (Suchanek et al. 2005; Piotrowski et al. 2015;
Lössl et al. 2014; Häupl et al. 2017; Iacobucci et al. 2013). Efficient incorporation
of photo-Met into proteins has been shown for different cell types (E. coli, HEK
293 and HeLa cells) with incorporation rates of 30–35% (Piotrowski et al. 2015). A
detailed protocol of a cross-linking approach using the complementary cross-linking
principles of BS2G and photo-reactive amino acids is provided in (Lössl and Sinz
2016).

8.3.2 Identification of Cross-Linked Peptides

As shown in the cross-linking/MS workflow, cross-linked peptides are generated by
enzymatic cleavage of the cross-linked proteins by a specific protease (Fig. 8.1).
The most prominent protease is trypsin that cleaves proteins C-terminally to basic
amino acids (lysine and arginine residues). Cross-linking/MS however differs from
the usual proteomics workflow as the use of one single protease is in some cases
not sufficient. As two peptides are covalently connected, high molecular weight
products are generated exceeding the optimal range of peptide MS detection.
Applying a protease additionally to trypsin, such as GluC (cleaving C-terminally
to glutamate and aspartate residues), will decrease the molecular weight of cross-
linked peptides (Piotrowski et al. 2015). Another approach to generate peptides with
lower molecular weight is to conduct proteolysis by an unspecific protease, such as
proteinase K (Petrotchenko et al. 2012).

In general, cross-linked peptides are categorized into three different classes as
type 0, type 1, and type 2 cross-links (Table 8.2) (Schilling et al. 2003). Type
0 (“dead-end” or “mono-link”) describes a peptide, in which one amino acid is
modified by a cross-linker reagent. Here, only one reactive group of the cross-
linker has reacted with an amino acid, while the other one has been hydrolyzed
or has reacted with the reagent that was used for quenching the cross-linking
reaction. “Dead-end” cross-links can deliver insights into the solvent-accessible
surface of specific amino acids and as such, give information on the overall
topology of the protein under investigation. Type 1 (intrapeptide or “loop-link”)
describes the connection of two neighboring amino acids within one peptide. Only

Table 8.2 Nomenclature of cross-linked peptides

Type 0 Type 1 Type 2

“Dead-end”, “mono-link” Intrapeptide (“loop”-link) Interpeptide



8 Structural Investigation of Proteins by Cross-linking/MS 107

limited information on the protein’s tertiary structure is provided by these cross-
links. Type 2 (interpeptide) cross-links connect two peptides originating from one
protein or interacting proteins. This class represents the most valuable cross-linked
products that yield information on the structural proximity of specific amino acid
residues and allow deducing 3D-structural information. According to the systematic
nomenclature provided by Schilling et al., the higher molecular weight peptide is
termed “α-peptide” whereas the peptide with the lower molecular weight is referred
to as “ß-peptide” (Schilling et al. 2003).

The number of software tools for identifying cross-linked peptides from MS
data is steadily increasing and not easy to review. Table 8.3 provides an overview
comprising several of the so far developed software applications. The general
workflow of these software tools includes an in-silico digestion of proteins. Subse-
quently, potential cross-link candidates are automatically compared to the recorded
MS/MS spectra and matching cross-link candidates are reported. In addition to
the software tools available for cross-link identification, an increasing number
of software applications is available to further examine the cross-links, such as
xVis (Grimm et al. 2015) or Xlink-DB (Zheng et al. 2013). These applications
provide a visualization of the identified cross-links either in a schematic fashion

Table 8.3 Selected software tools for identifying cross-linked peptides

Software References

CLPM Tang et al. (2005)
Crux McIlwain et al. (2014)
DXMSMS Petrotchenko et al. (2014)
ECL/ECL2 Yu et al. (2016, 2017)
FINDX Soderberg et al. (2012)
Kojak Hoopmann et al. (2015)
MassAI (CrossWork) Rasmussen et al. (2011)
MassMatrix Xu et al. (2008)
MassSpecStudio Sarpe et al. (2016)
MS-bridge (included in USCF prospector) http://prospector.ucsf.edu
PeptideMap Fenyo (1997)
pLink Yang et al. (2012)
Pro-cross-link Gao et al. (2006)
ProteinXXX (included in GPMAW) Nielsen et al. (2007)
SIM-XL Lima et al. (2015)
StavroX/MeroX Götze et al. (2012b, 2015)
Xi Fischer et al. (2013) and Giese et al. (2016b)
Xilmass Yilmaz et al. (2016)
Xlink analyzer Kosinski et al. (2015)
Xlink-identifier Du et al. (2011)
XlinkX/XlinkX 2.0 Liu et al. (2015) and Liu et al. (2017)
XLPM Jaiswal et al. (2014)
xComb Panchaud et al. (2010)
xQuest Rinner et al. (2008)

http://prospector.ucsf.edu
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or by mapping them into published PDB structures. Also, there are software tools
available for quantifying cross-linked peptides, e.g. xTract (Walzthoeni et al. 2015)
or XiQ (Fischer et al. 2013).

8.3.3 Facilitated Analysis of Cross-Linked Products

The identification of cross-linked products is still challenging due to their low
abundance in the peptide mixtures generated after enzymatic digestion (Fig. 8.1).
Specifically, we see two main difficulties: (i) Cross-linked peptides might be missed
during MS analysis, (ii) false-positive identifications of cross-links might occur due
to their great variability. To overcome these problems, sample complexity can be
reduced or cross-linked products can be enriched. Alternatively, cross-linkers carry
an isotope signature (usually by introducing deuterium atoms) or create specific
fragment ion patterns during MS/MS experiments for automated data analysis.

Strong cation exchange (SCX) and size-exclusion chromatography (SEC) are
the methods of choice to enrich cross-linked peptides (Leitner et al. 2010, 2014b;
Schmidt and Sinz 2017). Also, an affinity enrichment of cross-linked products is
based on a biotin tag that specifically binds to avidin. Biotin is either incorporated
in the cross-linking reagent (Tang and Bruce 2010) or is introduced after the cross-
linking reaction by click chemistry (Nury et al. 2015). In order to utilize SCX
enrichment of cross-linked peptides, enzymatic cleavage has to be performed with a
protease cleaving C-terminally to basic amino acids, such as trypsin. Consequently,
every peptide carries a positive charge at the C-terminus that can be utilized for
SCX enrichment. As cross-linked products are composed of two peptides, they
accommodate a higher number of positive charges than linear peptides. Thus, the
cross-linked peptides can be enriched by SCX (Leitner et al. 2010; Fritzsche et al.
2012; Schmidt and Sinz 2017; Tinnefeld et al. 2017). As cross-linked peptides
usually possess higher molecular weights than non-cross-linked peptides, they can
also be enrichment by SEC (Herzog et al. 2012; Rampler et al. 2015). A major
advantage of SEC is its applicability for all peptide mixtures, independent of the
protease used for digestion, but on the other hand, low-molecular weight cross-
linked peptides might get lost during SEC enrichment.

For an unambiguous identification of cross-linked products, cross-linking
reagents with unique characteristics have been designed. The first class of
cross-linkers contains isotope labels, in most cases deuterium atoms, such as
bis(sulfosuccinimidyl)suberate (BS3) D0/D4 (Fig. 8.2a) (Müller et al. 2001; Schmidt
et al. 2005). The deuterated and non-deuterated version of the cross-linker are mixed
in a 1:1 ratio and added to the protein solution. Hence, every cross-linked product is
visible in mass spectra as a specific doublet of signals. Both species generate nearly
identical MS/MS spectra, but differ in the fragment ions containing the deuterated
or non-deuterated cross-linker. Acquiring MS/MS spectra from both isotope species
helps in unambiguously identifying cross-linked peptides as two spectra with the
specific mass shift are only obtained for cross-linked products, but not for linear
peptides.
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Fig. 8.2 Strategies to facilitate the analysis of cross-linked peptides. Structures of respective
cross-linkers are presented in the upper panel. Specific cleavage sites of the cross-linkers upon
collisional activation inside the mass spectrometer are indicated. The middle panel (MS) displays
how the cross-linked peptides appear in the mass spectrum, while the lower panel (MS/MS)
shows characteristics of the cross-linked products in fragment ion mass spectra. (a) For the
isotope-labeled cross-linker BS3(D0/D4), two signals are detected in the mass spectrum for one
cross-linked peptide pair differing by the isotope label (4 amu). Subsequently, two MS/MS spectra
for one cross-linked peptide pair are recorded, black – BS3D0; bold – BS3D4. (b) For the MS-
cleavable cross-linker DSBU, characteristic fragment ion signatures of the linker (two doublets)
are visible in MS/MS spectra. (c) PIR cross-linkers exhibit characteristic fragment ions (dashed
line) and peptides modified with cross-linker fragments (bold lines) in MS/MS spectra

A highly attractive approach that is currently gaining more and more importance
is employing cross-linkers with an MS-cleavable moiety (Sinz 2017). The cross-
linker is cleaved during collisional activation in the gas phase inside the mass
spectrometer resulting in specific fragment ions that contain parts of the cross-
linker. In Fig. 8.2b, the MS-cleavable cross-linker disuccinimidyl dibutyric urea
(DSBU, formerly BuUrBu) is presented. DSBU comprises two NHS esters as
reactive sites and a cleavable urea moiety (Müller et al. 2010). After fragmentation
of the linker, two doublet signals are visible for each interpeptide (type 2) cross-
linked product in the MS/MS spectrum. These doublets result from cleavage of
one of the two NH–CO bonds of the urea moiety. Thus, two pairs of asymmetric
fragments are generated, exhibiting a specific mass difference of 25.979 amu that
allows an unambiguous identification of a cross-linked product.

There are other MS-cleavable cross-linkers available that generate characteristic
fragment ions, such as a class of reagents termed “protein interaction reporters
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(PIR)” (Fig. 8.2c) (Tang and Bruce 2010). PIR cross-linkers comprise two cleavage
sites releasing a specific part of the cross-linker after collisional activation inside
the mass spectrometer. This specific fragment ion as well as peptides containing the
remaining fragment of the cross-linker are present in every MS/MS spectrum of a
cross-linked product and allow its unambiguous assignment.

8.4 Structural Investigation of Purified Proteins and Large
Protein Assemblies

As outlined above, the distance constraints derived from the cross-linked amino
acids serve as basis for a computational modeling of purified proteins or protein
complexes. The distance constraints are provided as Cα-Cα or Cβ-Cβ distances
and defined by the length of the side chains of the cross-linked residues plus the
cross-linker spacer length (Merkley et al. 2014; Hofmann et al. 2015). In principle,
two strategies are employed to implement these constraints into the modeling
process: (i) modeling of protein structures using the cross-linking distances as
input, (ii) filtering the theoretical models by the experimentally determined cross-
linking distances. A number of different software tools are available for modeling
protein structures, such as ROSETTA (Kaufmann et al. 2010), I-TASSER (Zhang
2009), PEP-FOLD (Maupetit et al. 2009) or Abalone (http://www.biomolecular-
modeling.com/Abalone/index.html). The optimal cross-linker spacer lengths for
protein modeling have been evaluated by combining and analyzing simulated and
experimentally observed cross-linking constraints for various proteins (Hofmann et
al. 2015). A specific equation was developed to predict the ideal spacer length in
correlation to the size of the targeted protein. As a result, the optimal spacer length
of a cross-linker to study the 35-kDa human phosphatase activator protein (PDB-ID:
2IXM) was determined to be 12.5 Å (Hofmann et al. 2015).

The investigation of a purified protein aims at elucidating its tertiary structure
and the assembly state of eventually present oligomeric forms. Furthermore, newly
developed cross-linking reagents are usually evaluated using small proteins, such
as myoglobin, human serum albumin or bovine serum albumin (Brodie et al. 2017;
Belsom et al. 2016, 2017; Giese et al. 2016a; Iacobucci et al. 2017). Small proteins,
such as myoglobin and the FK506 binding protein (FKBP), have also been used for
studying the impact of cross-linking applied to structural modeling with a discrete
molecular dynamics (DMD) simulation based on cross-linking constraints (Brodie
et al. 2017). Five short-range cross-linkers with various functional groups targeting
different amino acids were employed to derive distance constraints of both proteins.
The cross-linking data obtained were subsequently used as input for the DMD.
Clustering of the generated models identified three clusters for FKBP and two
for myoglobin. Representative model structures of each cluster were similar to the
known PDB structures (Fig. 8.3a), underlining the strength of the cross-linking/MS
approach to obtain native-like conformations.

http://www.biomolecular-modeling.com/Abalone/index.html
http://www.biomolecular-modeling.com/Abalone/index.html
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Fig. 8.3 Structural investigation of single proteins and a large protein complex. (a) Comparison of
cross-link-based modeled structures to available PDB structures of FK506 binding protein (FKBP)
and myoglobin. The best scored structures of the largest clusters are superimposed with the PDB
structures (dark grey). Figure is adapted with permission from (Brodie et al. 2017). (b) Structure of
Psb28 docked to the RC47 subcomplex of the photosystem II of the cyanobacterium Synechocystis
sp. (Figure is adapted with permission from Weisz et al. 2017)

Applying cross-linking to large protein complexes illustrates that the size of
the complexes of interest is unrestricted for cross-linking/MS approaches, while
NMR or X-ray crystallography are limited in protein size by sample preparation and
data acquisition. Cross-linking/MS is able to deliver structural information on small
protein assemblies, such as nidogen-1/laminin γ1 (Lössl et al. 2014) or chaperone
Hsc70/α-synuclein complexes (Nury et al. 2015), but also on large protein systems,
such as the mammalian mitochondrial ribosome (Greber et al. 2014) or the ribosome
post-recycling complex (Kiosze-Becker et al. 2016).

To simplify the study of protein-protein interactions, representative peptides
can be employed that harbor known interaction sites, as predicted by preceding
biochemical studies or computational approaches. As an example, Munc13 peptides
containing the respective calmodulin (CaM) binding site were synthesized to
investigate presynaptic CaM/Munc13 complexes (Dimova et al. 2009; Lipstein et
al. 2012). For this, the unnatural photo-reactive amino acid Bpa was incorporated
during peptide synthesis into Munc13 peptides and the peptides were applied for
photo-cross-linking experiments. Additionally, the heterobifunctional cross-linker
N-succinimidyl-p-benzoyldihydrocinnamate (SBC), containing a NHS ester and a
benzophenone group, as well as BS3 and bis(sulfosuccinimidyl)-2,2,4,4-glutarate
(BS2G) were applied to obtain complementary cross-linking data on the interaction
between CaM and Munc13 peptides. The cross-linking constraints were then
subjected to computational modeling of the CaM/Munc13 peptide complexes using
the PatchDock and ROSETTADock software applications. The resulting structures
revealed all Munc13 isoforms to bind similarly to CaM, indicating a common CaM-
binding motif of all four Munc13 isoforms (Dimova et al. 2009; Lipstein et al. 2012).

Photosystem II intermediate complexes from cyanobacterium Synechocystis sp
present an impressive example for applying cross-linking/MS to large protein
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assemblies (Weisz et al. 2017). To study the interaction of the cytoplasmic pho-
tosystem II protein Psb28 with the membrane bound photosystem II component,
complete photosystem II was purified from Synechocystis sp. Structural analysis
was carried out with the homobifunctional, amine-reactive cross-linking reagent
BS3 (D0/D12). The cross-linking data revealed an interaction of Psb28 with
cytochrome b559, PsbE, and PsbF subunits of the photosystem II included in the
RC47 subcomplex. Subsequent docking of Psb28 to the RC47 subcomplex of the
photosystem II, which is known to interact with Psb28, was performed with the
DOT 2.0 docking software. The resulting structures were validated by comparing
the cross-linking data with the generated models. The final model of the protein
complex is displayed in Fig. 8.3b, showing that Psb28 is interacting with PsbE and
PsbF of the RC47 subcomplex as confirmed by the cross-linking data.

Currently, the majority of cross-linking studies is performed in-vitro as these
studies allow a specific targeting of the proteins of interest. Deriving structural
information on protein and protein complexes in-vivo is still a daunting task due
to the enormous complexity of cellular samples. In many studies, cross-linking
experiments are combined with immunoblotting. Examples include studies of the
COX-2/mPGES complex and TS3-regulating proteins LcrG and LcrV (Henderson
and Nilles 2017) as well as investigating the assembly state of α-synuclein (Corbille
et al. 2016). The analysis of α-synuclein assemblies in living cells was performed by
disuccinimidylglutarate (DSG) and dithiobis(succinimidyl)propionate (DSP). Both
cross-linkers are NHS esters targeting amine groups in proteins, but they differ in
spacer length. Additionally, the cross-linker DSP contains a disulfide bond that
can be cleaved under reducing conditions (Corbille et al. 2016). Cross-linking
was induced by adding the cross-linkers directly to the cell suspension, followed
by disruption of the cells. Analysis of the complexes was then performed by
immunoblotting using an anti-α-synuclein antibody revealing the presence of α-
synuclein dimers and pentamers in the cells. This result was verified by the cleavable
DSP cross-linker as the pentamer disappeared after reduction of the disulfide bond
in DSP.

8.5 Identification of Protein-Protein Interaction Networks

The identification of protein-protein interaction networks is the key to understanding
biological processes and cross-linking/MS can make here major contributions by
identifying interacting proteins as well as defining their interaction sites. Often, the
result of the cross-linking reaction is monitored via SDS-PAGE or immunoblotting,
giving insights only into these interaction partners for which antibodies are available
(Hetu et al. 2008; Maadi et al. 2017; Henderson and Nilles 2017). The combination
of cross-linking with MS will give more detailed insights, giving a more compre-
hensive picture on protein interaction networks.

In-vitro MS based procedures usually include an affinity-based identification of
protein interaction partners. The starting point for these studies is the immobilization
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Fig. 8.4 Elucidation of protein-protein interaction networks. (a) The immobilized bait protein
is incubated with a cell lysate, followed by a washing procedure to remove the non-binding
proteins. LC/MS/MS analysis identifies the interacting proteins. Upper panel: common affinity-
based strategy, lower panel: cross-linking-based strategy. (b) Identified interaction partners of
protein kinase D2 applying BS2G to capture interacting proteins by the strategy presented in a)
lower panel. Figure is adapted with permission from (Häupl et al. 2016). (c) Workflow for the
identification of protein-protein interaction network from murine mitochondria. Circles display
proteins, lines indicate cross-links. The color depth of each dot is proportional to the frequency
of the respective protein within the eleven samples. (Figure is adapted with permission from
Schweppe et al. 2017)

of a bait protein on a matrix, followed by incubation with cell lysates or cellular
fractions. Several washing steps are performed to remove non-interacting proteins,
followed by enzymatic digestion to identify protein binding partners (Fig. 8.4a,
upper panel). Unfortunately, the washing procedure can prevent the detection of
weakly or transiently bound protein-protein interaction. Applying a cross-linking
reagent for a covalent fixation of interacting proteins prior to the washing procedure
prevents losing potential protein binding partners (Fig. 8.4a, lower panel). After-
wards, the enriched interacting proteins are enzymatically digested and analyzed
by LC/MS/MS. Cross-linked peptides as well as non-cross-linked peptides are used
to identify the interaction partners. Non-cross-linked peptides identify the binding
proteins, while cross-linked peptides additionally yield information on the protein
interfaces.
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A combined affinity purification cross-linking/MS strategy was applied to
identify partners of protein kinase D2 (PKD2) from Golgi preparations and whole
cell lysates. For these studies, the external cross-linker BS2G (D0/D4) as well
as the unnatural amino acids, photo-Leu and photo-Met, incorporated into pro-
teins during translation in HeLa cells, were applied (Häupl et al. 2016, 2017).
To investigate PKD2 interaction partners, glutathione-S-tranferase (GST)-tagged
PKD2 was immobilized on GSH sepharose beads and incubated with cell lysate
or a Golgi preparation. PKD2-interacting proteins were covalently bound by adding
the amine-reactive cross-linker BS2G (D0/D4) to the reaction mixture or by inducing
photo-cross-linking of the unnatural amino acids by UV-A irradiation. LC/MS/MS
analysis allowed identifying the covalently fixed PKD2 interaction partners. The
results obtained by the BS2G cross-linking are illustrated in Fig. 8.4b (Häupl et
al. 2016). With the photo-reactive amino acids, similar PKD2 interaction partners
were identified, but the complementary reactivity and shorter spacer length of
the photo-reactive amino revealed additional interacting proteins (Häupl et al.
2017). A similar approach, exclusively based on BS2G (D0/D4), was employed for
investigating protein interaction partners of tissue-type plasminogen activator (t-
PA), an established tumor marker in various cancers (Bosse et al. 2016). Proteins
secreted by erlotinib-sensitive (PC9) and erlotinib-resistant (PC9ER) non-small
cell lung cancer (NSCLC) cells were investigated, indicating differences of t-PA
interacting proteins between erlotinib-sensitive and -resistant cells.

To enable protein interaction partner studies in-vivo, cross-linking reagents are
added to cell cultures or cell suspensions, which are crossing the cell membrane
to react with target proteins within the cell (Weisbrod et al. 2013; de Jong
et al. 2017). In case of photo-reactive amino acid incorporation, the reactive
groups enabling cross-linking reactions are already incorporated during cell growth.
Desired cross-linking is afterwards induced by exposure of the cells to UV-A light
(Yang et al. 2016a). Subsequent proteolysis of whole cells or cell lysates results
in enormously complex peptide mixtures that hamper a thorough identification
of cross-linked peptides. Consequently, an enrichment of cross-linked peptides
is mandatory before performing LC/MS/MS analyses. Affinity strategies can be
applied if the protein of interest contains a tag for the specific isolation of the
desired protein complexes (Walker-Gray et al. 2017). Alternatively, the biotin label
is contained in the cross-linker. As described above, the biotin label can either be
incorporated in the cross-linker itself (Tang and Bruce 2010; Tan et al. 2016; Yang
et al. 2016b) or it is added after to the cross-linking reaction by a click-reaction
(Nury et al. 2015). The latter approach is based on orthogonal chemistry strategies
developed for proteomic analyses (Speers and Cravatt 2005; Weerapana et al. 2007).

Abovementioned PIR cross-linkers (Fig. 8.2c) have been used for in-vivo studies
identifying protein-protein interactions in mitochondria – cell organelles that are
comprised of more than 1000 proteins (Schweppe et al. 2017). Cross-linking
experiments were conducted on active mitochondria isolated from mouse heart and
allowed the identification of protein interaction partners as well as the 3D-structural
investigation of the respective protein complexes. The PIR cross-linker used for
this study was membrane-permeable, and comprised two NHS esters as reactive
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head groups as well as a biotin group for an enrichment of cross-links (Fig. 8.4c).
After the cross-linking reaction, mitochondria were disrupted and the proteins were
enzymatically digested. Cross-linked peptides were first fractionated by SCX and
further enriched by affinity chromatography. Subsequent LC/MS/MS analysis by
identified 327 proteins and 2427 cross-linked peptides, which additionally allowed
gaining insights into the 3D-structures of selected protein complexes.

8.6 Conclusion

Cross-linking/MS has matured as a valuable technique in structural biology that
complements existing techniques, such as X-ray crystallography, NMR spec-
troscopy, and cryo-EM. The major applications of the cross-linking/MS approach
are to derive 3D-structural information of purified proteins and protein complexes,
providing distance information for computational modeling studies, and to elucidate
protein-protein interaction networks from cell lysates or even in intact cells.
Although cross-linking of proteins in-vivo is still a challenging task, innovative
approaches have been developed and are continuously being improved. A compre-
hensive analysis of protein-protein interaction networks in the cellular environment
has become feasible.
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Chapter 9
Prediction of Structures and Interactions
from Genome Information

Sanzo Miyazawa

Abstract Predicting three dimensional residue-residue contacts from evolution-
ary information in protein sequences was attempted already in the early 1990s.
However, contact prediction accuracies of methods evaluated in CASP experiments
before CASP11 remained quite low, typically with <20% true positives. Recently,
contact prediction has been significantly improved to the level that an accurate three
dimensional model of a large protein can be generated on the basis of predicted
contacts. This improvement was attained by disentangling direct from indirect
correlations in amino acid covariations or cosubstitutions between sites in protein
evolution. Here, we review statistical methods for extracting causative correlations
and various approaches to describe protein structure, complex, and flexibility based
on predicted contacts.

Keywords Contact prediction · Direct coupling · Amino acid covariation ·
Amino acid cosubstitution · Partial correlation · Maximum entropy model ·
Inverse Potts model · Markov random field · Boltzmann machine · Deep neural
network

9.1 Introduction

The evolutionary history of protein sequences is a valuable source of information
in many fields of science not only in evolutionary biology but even to understand
protein structures. Residue-residue interactions that fold a protein into a unique
three-dimensional (3D) structure and make it play a specific function impose struc-
tural and functional constraints in varying degrees on each amino acid. Selective
constraints on amino acids are recorded in amino acid orders in homologous protein
sequences and also in the evolutionary trace of amino acid substitutions. Negative
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Fig. 9.1 Amino acids at sites
i and j in a MSA are shown
with a phylogenetic tree.
Causative correlations
between sites in protein
evolution are extracted from
the MSA or phylogenetic
tree, and utilized to infer
close residue pairs

effects caused by mutations at one site must be compensated by successive muta-
tions at other sites (Yanovsky et al. 1964; Fitch and Markowitz 1970; Maisnier-Patin
and Andersson 2004), causing covariations/cosubstitutions/coevolution between
sites (Tufféry and Darlu 2000; Fleishman et al. 2004; Dutheil et al. 2005; Dutheil
and Galtier 2007), otherwise most negative mutants will be eliminated from a
gene pool and never reach fixation in population. Such structural and functional
constraints arise from interactions between sites mostly in close spatial proximity.
Thus, it has been suggested and also shown that the types of amino acids (Lapedes
et al. 1999, 2002, 2012; Russ et al. 2005; Skerker et al. 2008; Burger and van
Nimwegen 2008; Weigt et al. 2009; Halabi et al. 2009; Burger and van Nimwegen
2010; Morcos et al. 2011; Marks et al. 2011) and amino acid substitutions (Altschuh
et al. 1988; Göbel et al. 1994; Shindyalov et al. 1994; Pollock and Taylor 1997;
Pollock et al. 1999; Atchley et al. 2000; Fariselli et al. 2001; Fodor and Aldrich
2004; Fleishman et al. 2004; Dutheil et al. 2005; Martin et al. 2005; Fares and
Travers 2006; Doron-Faigenboim and Pupko 2007; Dutheil and Galtier 2007; Dunn
et al. 2008; Poon et al. 2008; Dutheil 2012; Gulyás-Kovács 2012) are correlated
between sites that are close in a protein 3D structure. However, until CASP11,
contact prediction accuracy remained quite low, typically with ≤20% true positives
for top-L/5 long-range contacts in free modeling targets (Kosciolek and Jones
2016); L denotes protein length. Recently contact prediction has been significantly
improved to the level that an accurate three dimensional model of a large protein
(�250 residues) can be generated on the basis of predicted contacts (Moult et al.
2016). These improvements were attained primarily by disentangling direct from
indirect correlations in amino acid covariations or cosubstitutions between sites in
protein evolution, and secondarily by reducing phylogenetic biases in a multiple
sequence alignment (MSA) or removing them on the basis of a phylogenetic tree;
see Fig. 9.1.

Here, we review statistical methods for extracting causative correlations in amino
acid covariations/cosubstitutions between sites, and various approaches to describe
protein structure, complex and flexibility based on predicted contacts. Mathematical
formulation of each statistical method is concisely described in the unified manner
in an appendix, the full version of which will be found in the article (Miyazawa
2017a) submitted to arXiv.
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9.2 Statistical Methods to Extract Causative Interactions
Between Sites

The primary task to develop a robust method toward contact prediction is to
detect causative correlations, which reflect evolutionary constraints, in amino acid
covariations between sites in a multiple sequence alignment (MSA) or in amino acid
cosubstitutions between sites in branches of a phylogenetic tree; see Table 9.1. The
former was called direct coupling analysis (DCA) (Morcos et al. 2011).

Table 9.1 Statistical methods for disentangling direct from indirect correlations between sites

Category

Method name Method/algorithm

(A) Direct coupling analysis of amino acid covariations between sites in a MSA

Boltzmann machine Markov chain Monte Carlo to calculate marginal
probabilities and gradient descent to estimate fields
and couplings

CMI (Lapedes et al. 2012) Boltzmann machine to estimate conditional mutual
information

mpDCA (Weigt et al. 2009) Message-passing algorithm to estimate marginal
probabilities and gradient descent to estimate fields
and couplings

mfDCA (Morcos et al. 2011; Marks
et al. 2011)

Mean field approximation to estimate the partition
function

PSICOV (Jones et al. 2012) Graphical lasso (Gaussian approximation with an
exponential prior) with a shrinkage method for a
covariance matrix

GaussDCA (Baldassi et al. 2014) A multivariate Gaussian model with a normal-
inverse-Wishart prior

plmDCA (Ekeberg et al. 2013,
2014)

Pseudo-likelihood maximization with Gaussian pri-
ors (�2 regularizers)

GREMLIN (Balakrishnan et al.
2011; Kamisetty et al. 2013)

Pseudo-likelihood maximization with �1 regulariza-
tion terms (Balakrishnan et al. 2011) or with Gaus-
sian priors (Kamisetty et al. 2013) which depend on
site pair

ACE (Cocco and Monasson 2011,
2012; Barton et al. 2016)

Adaptive cluster expansion of cross-entropy with
Gaussian priors

Persistent VI & Fadeout Variational inference with sparsity-inducing prior,
horseshoe (Ingraham and Marks 2016)

Sutto et al. (2015) Boltzmann machine with �2 regularization terms

DI (Taylor and Sadowski 2011) Partial correlation of normalized mutual informations
between sites

(B) Partial correlation analysis of amino acid cosubstitutions between sites in a phylogenetic tree

pcSV (Miyazawa 2013) Partial correlation coefficients of coevolutionary sub-
stitutions between sites within branches in a phyloge-
netic tree
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9.2.1 Direct Coupling Analysis for Amino Acid Covariations
Between Sites in a Multiple Sequence Alignment

The direct coupling analysis is based on the maximum entropy model for the
distribution of protein sequences, which satisfies the observed statistics in a MSA.

9.2.1.1 Maximum Entropy Model for the Distribution of Protein
Sequences

Let us consider probability distributions P(σ) of amino acid sequences, σ ≡
(σ1, . . . , σL)T with σi ∈ {amino acids, deletion}, single-site and two-site marginal
probabilities of which are equal to a given frequency Pi(ak) of amino acid ak at
each site i and a given frequency Pij (ak, al) of amino acid pair (ak, al) for site pair
(i, j), respectively.

P(σi = ak) ≡
∑

σ

P(σ)δσi ak
= Pi(ak) (9.1)

P(σi = ak, σj = al) ≡
∑

σ

P(σ)δσi ak
δσj al

= Pij (ak, al) (9.2)

where ak ∈ {amino acids, deletion}, k = 1, . . . , q, q ≡ |{amino acids, deletion}| =
21, i, j = 1, . . . , L, and δσi ak

is the Kronecker delta. The distribution PME with the
maximum entropy is

PME(σ|h, J ) (9.3)

= arg max
P(σ)

[−
∑

σ

P(σ) log P(σ) + λ(
∑

σ

P(σ) − 1)

+
∑

i

[hi(ak)(
∑

σ

P(σ)δσi ak
− Pi(ak))]

+
∑

i

∑

j>i

[Jij (ak, al)(
∑

σ

P(σ)δσi ak
δσj al

− Pij (ak, al))]] = 1

Z
e−HPotts(σ|h,J )

(9.4)

where λ, hi(ak), and Jij (ak, al) are Lagrange multipliers, and a Hamiltonian HPotts,
which is called that of the Potts model for q > 2 (or the Ising model for q = 2), and
a partition function Z are defined as

−HPotts(σ|h, J ) =
∑

i

hi(σi ) +
∑

i<j

Jij (σi , σj ), Z =
∑

σ

e−HPotts(σ|h,J ) (9.5)

where hi(ak) and Jij (ak, al) are interaction potentials called fields and couplings.
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Although pairwise frequencies Pij (ak, al) reflect not only direct but indirect
correlations in amino acid covariations between sites, couplings Jij (ak, al) reflect
causative correlations only. Thus, it is essential to estimate fields and couplings from
marginal probabilities. This model is called the inverse Potts model.

9.2.1.2 Log-Likelihood and Log-Posterior-Probability

Log-posterior-probability and log-likelihood for the Potts model are

log Ppost(h, J |{σ}) ∝ �Potts({Pi}, {Pij }|h, J ) + log P0(h, J ) (9.6)

�Potts({Pi}, {Pij }|h, J ) = B
∑

σ

Pobs(σ) log PME(σ|h, J ) (9.7)

where Pobs(≡ ∑B
τ=1 δσστ/B) is the observed distribution of σ specified with

{Pi(ak)} and {Pij (ak, al)}, and B is the number of instances; sequences στ are
assumed here to be independently and identically distributed samples in sequence
space. P0(h, J ) is a prior probability of (h, J ).

Let us define cross entropy (Cocco and Monasson 2012) as the negative log-
posterior-probability per instance.

S0(h, J |{Pi}, {Pij }) ∝ −(log Ppost(h, J |{σ}))/B
≡ SPotts(h, J |{Pi}, {Pij }) + R(h, J ) (9.8)

where the cross entropy SPotts, which is the negative log-likelihood per instance for
the Potts model, and the negative log-prior per instance R are defined as follows.

SPotts(h, J |{Pi}, {Pij }) ≡ −�Potts({Pi}, {Pij }|h, J )/B (9.9)

= log Z(h, J ) −
∑

i

∑

k

hi(ak)Pi(ak) −
∑

i

∑

k

∑

j>i

∑

l

Jij (ak, al)Pij (ak, al)

(9.10)

R(h, J ) ≡ − log(P0(h, J ))/B (9.11)

The maximum likelihood estimates of h and J , which minimize the cross entropy
with R = 0, satisfy the following equations.

∂ log Z(h, J )

∂hi(ak)
= Pi(ak),

∂ log Z(h, J )

∂Jij (ak, al)
= Pij (ak, al) (9.12)

It is, however, hardly tractable to computationally evaluate the partition function
Z(h, J ) for any reasonable system size as a function of h and J . Thus, approximate
maximization of the log-likelihood or minimization of the cross entropy is needed
to estimate h and J .
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The minimum of the cross entropy with R = 0 for the Potts model is just the
Legendre transform of log Z(h, J ) from (h, J ) to ({Pi}, {Pij }), (Eq. 9.10), and is
equal to the entropy of the Potts model satisfying Eqs. 9.1 and 9.2;

SPotts({Pi}, {Pij }) ≡ min
h,J

SPotts(h, J |{Pi}, {Pij }) =
∑

σ

−P(σ) log P(σ) (9.13)

The cross entropy SPotts(h, J |{Pi}, {Pij }) in Eq. 9.10 is invariant under a certain
transformation of fields and couplings, Jij (ak, al) → Jij (ak, al) − J 1

ij (ak) −
J 1

j i(al)+J 0
ij , hi(ak) → hi(ak)−h0

i +∑
j �=i J 1

ij (ak) for any J 1
ij (ak), J 0

ij and h0
i . This

gauge-invariance reduces the number of independent variables in the Potts model to
(q − 1)L fields and (q − 1)L × (q − 1)L couplings.

A prior P0(h, J ) yields regularization terms for h and J (Cocco and Monasson
2012). If a Gaussian distribution is employed for the prior, then it will yield �2 norm
regularization terms. �1 norm regularization corresponds to the case of exponential
priors. Given marginal probabilities, the estimates of fields and couplings are those
minimizing the cross entropy.

(h, J ) = arg min
(h,J )

S0(h, J |{Pi}, {Pij }), S0({Pi}, {Pij }) ≡ min
(h,J )

S0(h, J |{Pi}, {Pij })
(9.14)

Since S0({Pi}, {Pij }) is the Legendre transform of (log Z(h, j) + R(h, J )) from
(h, J ) to ({Pi}, {Pij }), these optimum h and J can also be calculated from

hi(ak) = −∂S0({Pi}, {Pij })
∂Pi(ak)

, Jij (ak, al) = −∂S0({Pi}, {Pij })
∂Pij (ak, al)

(9.15)

In most methods for contact prediction, residue pairs are predicted as contacts in
the decreasing order of score (Sij ) calculated from fields {Jij (ak, al)|1 ≤ k, l < q};
see Eq. 9.47.

9.2.1.3 Inverse Potts Model

The problem of inferring interactions from observations of instances has been
studied as inverse statistical mechanics, particularly inverse Potts model for Eq. 9.4,
in the filed of statistical physics, as a Markov random field, Markov network or
undirected graphical model in the domain of physics, statistics and information
science, and as Boltzmann machine in the field of machine learning.

The maximum-entropy approach to the prediction of residue-residue contacts
toward protein structure prediction from residue covariation pattems was first
described in 2002 by Lapedes and collaborators (Giraud et al. 1999; Lapedes
et al. 1999, 2002, 2012). They estimated conditional mutual information (CMI),
which was employed as a score for residue-residue contacts, for each site pair by
Boltzmann leaning with Monte Carlo importance sampling to calculate equilibrium
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averages and gradient descent to minimize the cross entropy and successfully
predicted contacts for 11 small proteins.

Calculating marginal probabilities for given fields and couplings by Monte Carlo
simulations in Boltzmann machine is very computationally intensive. To reduce
a computational load, the message passing algorithm, which is exact for a tree
topology of couplings but approximate for the present model, is employed instead
in mpDCA (Weigt et al. 2009). Because even the message passing algorithm is
too slow to be applied to a large-scale analysis across many protein families, the
mean field approximation is employed in mfDCA (Morcos et al. 2011; Marks et al.
2011); JMF = −C−1, where Cij (ak, al) ≡ Pij (ak, al)−Pi(ak)Pi(al). In the mean
field approximation, a bottleneck in computation is the calculation of the inverse
of a covariance matrix C that is a (q − 1)L × (q − 1)L matrix. In the mean
field approximation, a prior distribution in Eq. 9.11 is ignored and pseudocount is
employed instead of regularization terms to make the covariance matrix invertible.

The Gaussian approximation (a continuous multivariate Gaussian model) for the
probability distribution of sequences is employed together with an exponential prior
(an �1 regularization term) in PSICOV (Jones et al. 2012), and with a normal-
inverse-Wishart (NIW) prior, which is a conjugate distribution of the multivariate
Gaussian, in GaussDCA (Baldassi et al. 2014). The use of NIW prior has a merit
that fields and couplings can be analytically formulated; see Eqs. 9.30 and 9.31.

All methods based on the Gaussian approximation employ the analytical formula
for couplings, J � −C−1 = −�, which are essentially as same as the mean field
approximation with a difference that the covariance matrix (C) or precision matrix
(�) is differently estimated based on the various priors. The mean field and Gaus-
sian approximations may be appropriate to systems of dense and weak couplings
but questionable for sparse and strong couplings that is the characteristic of residue-
residue contact networks. Although the mean field and Gaussian approximations
successfully predict residue-residue contacts in proteins, it has been shown (Barton
et al. 2016; Cocco et al. 2017) that they do not give the accurate estimates of fields
and couplings in proteins.

A pseudo-likelihood with Gaussian priors (�2 regularization terms) is maximized
to estimate fields and couplings in plmDCA (Ekeberg et al. 2013, 2014) for the
Potts model with sparse interactions as well as reducing computational time; see
Eq. 9.38 for the symmetric plmDCA and Eq. 9.41 for the asymmetric plmDCA. The
asymmetric plmDCA method (Ekeberg et al. 2014) requires less computational time
and fits particularly with parallel computing.

GREMLIN (Kamisetty et al. 2013) employs together with pseudo-likelihood
Gaussian priors that depend on site pair, although its earlier version (Balakrishnan
et al. 2011) employed �1 regularizers, which may be more appropriate to systems of
sparse couplings. The �1 regularizers appear to learn parameters that are closer to
their true strength, but the �2 regularizers appear to be as good as the �1 regularizers
for the task of contact prediction that requires the relative ranking of the interactions
and not their actual values (Kamisetty et al. 2013).

One of approaches to surpass the pseudo-likelihood approximation for systems
of sparse couplings may be the adaptive cluster expansion (ACE) of cross
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entropy (Cocco and Monasson 2011, 2012; Barton et al. 2016), in which cross
entropy is approximately minimized by taking account of only site clusters
the incremental entropy (cluster entropy) of which by adding one more site is
significant. In this method (Barton et al. 2016), a Boltzmann machine is employed
to refine fields and couplings and also to calculate model correlations such as
single-site and pairwise amino acid frequencies under given fields and couplings.
The results of the Boltzmann machine for both biological and artificial models
showed that ACE outperforms plmDCA in recovering single-site marginals (amino
acid frequencies at each site) and the distribution of the total dimensionless
energies (HPotts(σ)) (Barton et al. 2016); those models were a lattice protein,
trypsin inhibitor, HIV p7 nucleocapsid protein, multi-electrode recording of cortical
neurons, and Potts models on Eridös-Rényi random graphs. More importantly ACE
could accurately recover the true fields h and couplings J corresponding to Potts
states with Pi(ak) ≥ 0.05 for Potts models (L = 50) on Eridös-Rényi random
graphs (Barton et al. 2016). On the other hand, plmDCA gave accurate estimates
of couplings at weak regularization for well sampled single-site probabilities, but
less accurate fields. Also, plmDCA yielded less well inferred fields and couplings
for single-site and two-site probabilities not well sampled, indicating that not
well populated states should be merged. As a result, the distribution of the total
energies (Barton et al. 2016) and the distribution of mutations with respect to
the consensus sequence were not well reproduced (Cocco et al. 2017). Similarly,
the mean field approximation could not reproduce two-site marginals and even
single-site marginals (Cocco et al. 2017) and the Gaussian approximation could
not well reproduce the distribution of mutations with respect to the consensus
sequence (Barton et al. 2016).

However, the less reproducibility of couplings does not necessarily indicate
the less predictability of residue-residue contacts, probably because in contact
prediction the relative ranking of scores (Eq. 9.47) based on couplings is more
important than their actual values. ACE with the optimum regularization strength
with respect to the reproducibility of fields and couplings showed less accurate
contact prediction than plmDCA and mfDCA. For ACE to show comparable
performance of contact prediction with plmDCA, regularization strength had to be
increased from γ = 2/B = 10−3 to γ = 1 for Trypsin inhibitor, making couplings
strongly damped and then the generative properties of inferred models lost (Barton
et al. 2016) (Table 9.2).

9.2.2 Partial Correlation of Amino Acid Cosubstitutions
Between Sites at Each Branch of a Phylogenetic Tree

In the DCA analyses on residue covariations between sites in a multiple sequence
alignment (MSA), phylogenetic biases, which are sequence biases due to phyloge-
netic relations between species, in the MSA must be removed as well as indirect
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Table 9.2 Free softwares/servers for the direct coupling analysis

Name Methods URL

EVcouplings (Marks et al. 2011) mfDCA http://evfold.org

EVcouplings,
plmc (Toth-Petroczy et al. 2016;
Weinreb et al. 2016)

mf/plmDCA https://github.com/debbiemarkslab

DCA (Morcos et al. 2011;
Marks et al. 2011)

mfDCA http://dca.rice.edu/portal/dca/home

GaussDCA (Baldassi et al.
2014)

GaussDCA http://areeweb.polito.it/ricerca/cmp/code

FreeContact (Kaján et al. 2014) mfDCA, PSICONV http://rostlab.org/owiki/index.php/
FreeContact

plmDCA (Ekeberg et al. 2013,
2014)

plmDCA http://plmdca.csc.kth.se/
https://github.com/pagnani/plmDCA

CCMpred (Seemayer et al.
2014)

plmDCA Performance-optimized software
https://github.com/soedinglab/ccmpred

GREMLIN (Balakrishnan et al.
2011; Kamisetty et al. 2013)

GREMLIN http://gremlin.bakerlab.org/

ACE (Cocco and Monasson
2011, 2012; Barton et al. 2016)

ACE https://github.com/johnbarton/ACE

Persistent-vi (Ingraham and
Marks 2016)

Persistent VI https://github.com/debbiemarkslab

correlations between sites, but instead are reduced by taking weighted averages
over homologous sequences in the calculation of single and pairwise frequencies
of amino acids.

Needless to say, it is supposed that observed pattems of covariation were caused
by molecular coevolution between sites. Whatever caused covariations found in the
MSA, it has been confirmed that they can be utilized to predict residue pairs in
close proximity in a three dimensional structure. Talavera et al. (2015) claimed,
however, that covarying substitutions were mostly found on different branches of
the phylogenetic tree, indicating that they might or might not be attributable to
coevolution.

In order to remove phylogenetic biases and also to respond to such a claim above,
it is meaningful to study covarying substitutions between sites in a phylogenetic
tree-dependent manner. Such an alternative approach was taken to infer coevolving
site pairs from direct correlations between sites in concurrent and compensatory
substitutions within the same branches of a phylogenetic tree (Miyazawa 2013).
In this method, substitution probability and mean changes of physico-chemical
properties of side chain accompanied by amino acid substitutions at each site in
each branch of the tree are estimated with the likelihood of each substitution to
detect concurrent and compensatory substitutions. Then, partial correlation coeffi-
cients of the vectors of their characteristic changes accompanied by substitutions,
substitution probability and mean changes of physico-chemical properties, along
branches between sites are calculated to extract direct correlations in coevolutionary

http://evfold.org
https://github.com/debbiemarkslab
http://dca.rice.edu/portal/dca/home
http://areeweb.polito.it/ricerca/cmp/code
http://rostlab.org/owiki/index.php/FreeContact
http://rostlab.org/owiki/index.php/FreeContact
http://plmdca.csc.kth.se/
https://github.com/pagnani/plmDCA
https://github.com/soedinglab/ccmpred
http://gremlin.bakerlab.org/
https://github.com/johnbarton/ACE
https://github.com/debbiemarkslab
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substitutions and employed as a score for residue-residue contact. The accuracy of
contact prediction by this method was comparable with that by mfDCA (Miyazawa
2013). This method, however, has a drawback to be computationally intensive,
because an optimum phylogenetic tree must be estimated.

9.3 Machine Learning Methods to Augment the Contact
Prediction Accuracy Based on Amino Acid Coevolution

All the DCA methods such as mfDCA, plmDCA, GREMLIN, and PSICOV predict
significantly nonoverlapping sets of contacts (Jones et al. 2015; Kosciolek and Jones
2016; Wuyun et al. 2016). Then, increasing prediction accuracy by combining
their predictions together with other sequence/structure information have been
attempted (Skwark et al. 2013, 2014, 2016; Kosciolek and Jones 2014, 2016; Jones
et al. 2015; Wang et al. 2017; Shendure and Ji 2017); see Table 9.3.

PconsC (Skwark et al. 2013) combines the predictions of PSICOV and plmDCA
into a machine learning method, random forests, and employs alignments with
HHblits (Remmert et al. 2012) and jackHMMer (Johnson et al. 2010) at four
different e-value cut-offs. Five-layer neural network is employed instead of random
forests in PconsC2 (Skwark et al. 2014), and plmDCA and GaussDCA are employed
in PconsC3 (Skwark et al. 2016). A receptive field consisting of 11 × 11 predicted
contacts around each residue pair is taken into account in each layer except the first
one.

Table 9.3 Machine learning methods that combine predicted direct couplings with other
sequence/structure information

Name Basic method Post-processing

PconsC3
(Skwark et al. 2016)

plmDCA, GaussDCA 5 layer DNN; http://c3.pcons.net.
PconsC (Skwark et al. 2013), PconsC2 (Skwark
et al. 2014)

MetaPSICOV
(Kosciolek and Jones
2014, 2016; Jones
et al. 2015)

PSICOV, mfDCA,
GREMLIN/CCMpred

A two stage neural network predictor; CONSIP2
pipeline
http://bioinf.cs.ucl.ac.uk/MetaPSICOV

RaptorX
(Wang et al. 2017)

CCMpred Ultra-deep learning model consisting of 1- and
2-dimensional convolutional residual neural
networks
http://raptorx.uchicago.edu/ContactMap/

iFold (CASP12 2017) Deep neural network (DNN)

EPSILON-CP PSICOV, GREMLIN,
mfDCA, CCMpred,
GaussDCA

4 hidden layer neural network with
400-200-200-50 neurons (Shendure and Ji 2017)

http://c3.pcons.net
http://bioinf.cs.ucl.ac.uk/MetaPSICOV
http://raptorx.uchicago.edu/ContactMap/
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MetaPSICOV (Jones et al. 2015; Kosciolek and Jones 2016) combines the
predictions of PSICOV, mfDCA, and CCMpred/GREMLIN into the first stage of
a two-stage neural network predictor together with a well-established “classic”
machine learning contact predictor, which utilizes many features such as amino acid
profiles, predicted secondary structure and solvent accessibility along with sequence
separation predicted, as an additional source of information for a little depth of
MSAs. The second stage analyses the output of the first stage to eliminate outliers
and to fill in the gaps in the contact map. On a set of 40 target domains with a
median family size of around 40 effective sequences in CASPII, CONSIP2 server
achieved an average top-L/5 long-range contact precision of 27% (Kosciolek and
Jones 2016).

Wang et al. (2017) have also shown that a ultra-deep neural network (RaptorX)
can significantly improve contact prediction based on amino acid coevolution. They
have modeled short-range and long-range correlations in sequential and structural
features with respect to complex sequence-structure relationships in proteins by one-
dimensional and two-dimensional deep neural networks (DNN), respectively. Both
the DNNs are convolutional residual neural networks. The 1D DNN performs con-
volutional transformations, with respect to residue position, of sequential features
such as position-dependent scoring matrix, predicted 3-state secondary structure and
3-state solvent accessibility. The 2D DNN does 2D convolutional transformations
of pairwise features such as coevolutional information calculated by CCMpred,
mutual information, pairwise contact potentials as well as the output of the 1D
DNN converted by a similar operation to outer product. Residual neural networks
are employed because they can pass both linear and nonlinear informations from
initial input to final output, making their training relatively easy.

9.4 Performance of Contact Prediction

New statistical methods based on the direct coupling analysis are confirmed in
various benchmarking studies (Moult et al. 2016; CASP12 2017; Kamisetty et al.
2013; Wuyun et al. 2016) to show remarkable accuracy of contact prediction,
although deep, stable alignments are required. They can more accurately detect
a higher number of contacts between residues, which are very distant along
sequence (Morcos et al. 2011). The top-scoring residue couplings are not only
sufficiently accurate but also well-distributed to define the 3D protein fold with
remarkable accuracy (Marks et al. 2011); this observation was quantified by
computing, from sequence alone, all-atom 3D structures of 15 test proteins from
different fold classes, ranging in size from 50 to 260 residues, including a G-protein
coupled receptor. The contact prediction performs relatively better on β proteins
than on α proteins (Miyazawa 2013). These initial findings on a limited number of
proteins were confirmed as a general trend in a large-scale comparative assessment
of contact prediction methods (Wuyun et al. 2016; Adhikari et al. 2016).
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In CASP12, RaptorX performed the best in terms of F1 score for top L/2 long-
and medium-range contacts of 38 free-modeling (FM) targets; the total F1 score
of RaptorX was better by about 7.6% and 10.0% than the second and third best
servers, iFold_1 and the revised MetaPSICOV, respectively (Wang et al. 2017;
CASP12 2017). Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and
398 membrane proteins, the average top L(L/10) long-range prediction accuracies
of RaptorX are 0.47(0.77) in comparison with 0.30(0.59) for MetaPSICOV and
0.21(0.47) for CCMpred (Wang et al. 2017; CASP12 2017).

9.4.1 MSA Dependence of Contact Prediction Accuracy

In the direct-coupling-based methods, the accuracy of predicted contacts depends on
the depth (Miyazawa 2013; Kamisetty et al. 2013; Wuyun et al. 2016) and quality
of multiple sequence alignment (MSA) for a target. 5 × L (protein length) aligned
sequences may be desirable for accurate contact predictions (Kamisetty et al. 2013),
although attempts to improve prediction methods for fewer aligned sequences have
been made (Skwark et al. 2013, 2014, 2016; Wang et al. 2017). PconsC3 can be used
for families with as little as 100 effective sequence members (Skwark et al. 2016).
Also, RaptorX (Wang et al. 2017) attained top- L/2-accuracy >0.3 for long-rang
contacts even by using MSAs with 20 effective sequence members.

Deepest MSAs including a target sequence were built with various values of
E-value cutoff (Skwark et al. 2013) and coverage parameters (Jones et al. 2015;
Kosciolek and Jones 2016) in sequence search and alignment programs based on
the hidden Markov models such as HHblits and jackHMMer. Although prediction
performance tends to increase in general as alignment depth is deeper (Miyazawa
2013), it was reported (Kosciolek and Jones 2016) that in the case of transmembrane
domains, building too deep alignments could result in unrelated sequences or
drifted domains being included. To increase alignment quality, E-value and coverage
parameters may be carefully tuned for each alignment (Kosciolek and Jones
2016). In the case of alignments that might contain regions of partial matches,
a too stringent sequence coverage requirement could result in missing related
sequences. On the other hand, a too permissive sequence coverage requirement
could pick up unrelated sequences, permitting many partial matches. A trade-off
is required between the effective number of sequences and sequence coverage, and
an appropriate E-value must be chosen not to much decrease both alignment depth
and sequence coverage (Hopf et al. 2012).

9.5 Contact-Guided de novo Protein Structure Prediction

It is a primary obstacle to de novo structure prediction that current methods and
computers cannot make it feasible to adequately sample the vast conformational
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space a protein might take in the precess of folding into the native structure (Kim
et al. 2009). Thus, it is critical whether residue-residue proximities inferred with
direct coupling analysis can provide sufficient information to reduce a huge search
space for a protein fold, without any known 3D structural information of the protein.

Algorithms are needed to fold proteins into native folds based on contact
information; see Table 9.4. Distance geometry generation (Havel et al. 1983; Braun
and Go 1985) of 3D structures, which may be followed by energy minimization and
molecular dynamics, will be just the primary one. In EVfold (Marks et al. 2011),
contacts inferred by direct coupling analysis and predicted secondary structure
information are translated into a set of distance constraints for the use of a distance
geometry algorithm in the Crystallography and NMR System (CNS) (Brünger
2007). It was confirmed that the evolutionary inferred contacts can sufficiently
reduce a search space in the structure predictions of 15 test proteins from different
fold classes (Marks et al. 2011), and of 11 unknown and 23 known transmembrane
protein structures (Hopf et al. 2012). Because distance constraints from predicted
contacts may be partial in a protein sequence, they should be embedded into ab
initio structure prediction methods.

Table 9.4 Contact-guided de novo protein structure prediction methods and servers

Name Contact prediction

EVfold (Marks et al. 2011,
2012)/EVfold_membrane
(Hopf et al. 2012)

mfDCA/plmDCA Using distance geometry
algorithm (Havel et al. 1983) and
simulated annealing of CNS
(Brünger 2007); http://evfold.org/

DCA-fold (Sufkowska et al.
2012)

mfDCA Simulated annealing using a
coarse-grained molecular dynamics
for a Cα model

FRAGFOLD/FILM3 MetaPSICOV Combining fragment-based folding
algorithm (Jones et al. 2005) with
PSICOV (Kosciolek and Jones 2014)
and with MetaPSICOV (Jones et al.
2015).

FILM3 (Nugent and Jones 2012) is
employed instead of
FRAGFOLD (Jones 2001) for
transmembrane proteins.

CONFOLD (Adhikari et al.
2015)

EVFOLD/FRAGFOLD
(PSIPRED for 2nd
structures)

Two-stage contact-guided de novo
protein folding, using distance
geometry simulated annealing
protocol in a revised CNS v1.3.

http://protein.rnet.missouri.edu/
confold/

Rosetta (Kim et al. 2004;
Ovchinnikov et al. 2016)

GREMLIN Fragment assembly

http://evfold.org/
http://protein.rnet.missouri.edu/confold/
http://protein.rnet.missouri.edu/confold/
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Sulkowska et al. also showed that a simple hybrid method, called DCA-fold,
integrating mfDCA-predicted contacts with an accurate knowledge of secondary
structure is sufficient to fold proteins in the range of 1–3 Å resolution (Sufkowska
et al. 2012). In this study, simulated annealing using a coarse-grained molecular
dynamics model was employed for a Cα chain model, in which Cαs interact with
each other with a contact potential approximated by a Gaussian function and a
torsional potential depending on Cα dihedral angles at each position.

Adhikari et al. (2015) studied a way to effectively encode secondary structure
information into distance and dihedral angle constrains that complement long-range
contact constraints, and revised the CNS v1.3 to effectively use secondary structure
constraints together with predicted long-range constraints; CONFOLD (Adhikari
et al. 2015) consists of two stages. In the first stage secondary structure information
is converted into distance, dihedral angle, and hydrogen bond constraints, and then
best models are selected by executing the distance geometry simulated annealing.
In the second stage self-conflicting contacts in the best structure predicted in the
first stage are removed, constrains based on the secondary structures are refined,
and again the distance geometry simulated annealing is executed.

Baker group (Ovchinnikov et al. 2016) embedded contact constraints predicted
by GREMLIN (Kamisetty et al. 2013) as sigmoidal constraints to overcome noise
in the Rosetta (Kim et al. 2004) conformational sampling and refinement. They
found that model accuracy will be generally improved, if more than 3 L (protein
length) sequences are available, and that large topologically complex proteins can
be modeled with close to atomic-level accuracy without knowledge of homologous
structures, if there are enough homologous sequences available.

On the other hand, a fragment-based folding algorithm FRAGFOLD was com-
bined with PSICOV (Kosciolek and Jones 2014) and with MetaPSICOV (Jones
et al. 2015; Kosciolek and Jones 2016); In this approach, predicted contacts are
converted into additional energy terms for FRAGFOLD in addition to the pairwise
potentials of mean force and solvation (Jones et al. 2015; Kosciolek and Jones
2016). FILM3 (Nugent and Jones 2012), with constraints based on predicted
contacts and ones approximating Z-coordinate values within the lipid membrane,
is employed instead of FRAGFOLD for transmembrane proteins.

RaptorX (Wang et al. 2017) employed the CNS suite (Brünger 2007) to generate
3D models from predicted contacts and secondary structure converted to distance,
angle and h-bond restraints, and could yield TMscore >0.6 for 203 of 579 test
proteins, while using MetaPSICOV and CCMpred could do so for 79 and 62,
respectively.
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9.5.1 How Many Predicted Contacts Should Be Used to Build
3D Models?

The number of feasible contacts surrounding a residue in a protein is about 6.3
(Miyazawa and Jernigan 1996), which corresponds to the maximum number of
contacts per a protein, 6.3L/2, where L denotes protein length. However, more than
50% of known 3D structures in the PDB have less than 2L contacts, and in the test
on 15 proteins in EVfold benchmark set, less than 1.6L predicted contacts yielded
best results (Adhikari et al. 2015). In the original EVfold, the optimal number
of evolutionary constraints was in the order of 0.5L to 0.7L (Hopf et al. 2012).
Because prediction accuracy tends to decrease as the rank of contact score increases,
and different proteins need different numbers of predicted contacts to be folded
well, protein folds were generated with a wide range of the number of predicted
contacts, and then best folds were selected; from 30 to L in EVfold (Hopf et al.
2012), and from 0.4L to 2.2L in CONFOLD (Adhikari et al. 2015). In RaptorX, the
top 2L predicted contacts irrespective of site separation were converted to distance
restraints (Wang et al. 2017). On the other hand, Jones group reported (Kosciolek
and Jones 2014) that artificially truncating the list of predicted contacts was likely
to remove useful information to fold a protein with FRAGFOLD and PSICOV, in
which the weight of a given predicted contact is determined by its positive predictive
value.

9.6 Evolutionary Direct Couplings Between Residues Not
Contacting in a Protein 3D Structure

Needless to say, evolutionary constraints do not only originate in intra-molecular
contacts but also result from inter-molecular contacts/interactions. Even in the case
of intra-molecular contacts, if there are structural variations including ones due to
conformational changes in a protein family, evolutionary constraints will reflect
the alternative conformations (Morcos et al. 2011; Hopf et al. 2012; Anishchenko
et al. 2013). Also, intra-molecular residue couplings may contain useful information
of ligand-mediated residue couplings (Morcos et al. 2011; Ovchinnikov et al.
2016). On the other hand, inter-molecular contacts may allow us to predict protein
complexes, and are useful to build protein-protein interaction networks at a residue
level.

9.6.1 Structural Variation Including Conformational Changes

MSA contains information on all members of the protein family, and direct
couplings between residues estimated from the MSA reflect the structures of all
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members. It was shown (Anishchenko et al. 2013) that 74% of top L/2 direct
couplings residue pairs that are more than 5 Å apart in the target structures of 3883
proteins are less than 5 Å apart in at least one homolog structure.

Conformational change is an interesting case of structural variation. Many pro-
teins adopt different conformations as part of their functions (Tokuriki and Tawfik
2009), indicating that protein flexibility is as important as structure on biological
function. Protein flexibility around the energy minimum can be studied by sampling
around the native structure in normal mode/principal component analysis, coarse-
grained elastic network model, and short-timescale MD simulations. However,
distant conformers that require large conformational transitions are difficult to
predict. If conformational changes are essential on protein functions, evolutionary
constraints will reflect the multiple conformations. Toth-Petroczy et al. (2016)
showed that coevolutionary information may reveal alternative structural states of
disorderd regions.

Morcos et al. (2011) found that some of top predicted contacts in the response-
regulator DNA-binding domain family (GerE, PF00196) conflict with the structure
(PDB ID 3C3W) of the full-length response-regulator DosR of M. tuberculosis, but
are compatible with the structure (PDB ID 1JE8) of DNA-binding domain of E. coli
NarL.

Sutto et al. (2015) combined coevolutionary data and molecular dynamics
simulations to study protein conformational heterogeneity; the Boltzmann-learning
algorithm with �2 regularization terms was employed to extract direct couplings
between sites in homologous protein sequences, and a set of conformations con-
sistent with the observed residue couplings were generated by exhaustive sampling
simulations based on a coarse-grained protein model. Although the most represen-
tative structure was consistent with the experimental fold, the various regions of the
sequence showed different stability, indicating conformational changes (Sutto et al.
2015).

Sfriso et al. (2016) made an automated pipeline based on discrete molecular
dynamics guided by predicted contacts for the systematic identification of functional
conformations in proteins, and identified alternative conformers in 70 of 92 proteins
in a validation set of proteins in PDB; various conformational transitions are relevant
to those conformers, such as open-closed, rotation, rotation-closed, concerted, and
miscellanea of complex motions.

9.6.2 Homo-Oligomer Contacts

Intra-molecular contacts that conflict with the native fold may indicate homo-
oligomer contacts (Anishchenko et al. 2013). Such a case was confirmed for
homo-oligomer contacts in the ATPase domain of nitrogen regulatory protein C-
like sigma-54 dependent transcriptional activators (Morcos et al. 2011) and between
transmembrane helices (Hopf et al. 2012). It was pointed out (Hopf et al. 2012) that



9 Prediction of Structures and Interactions from Genome Information 139

the identification of evolutionary couplings due to homo-oligomerization is not only
meaningful in itself but also useful because their removal improves the accuracy of
the structure prediction for the monomer.

9.6.3 Residue Couplings Mediated by Binding to a Third Agent

Direct couplings between residues found by the DCA analysis can be medi-
ated (Morcos et al. 2011) by their interactions with a third agent, i.e., ligands,
substrates, RNA, DNA, and other metabolites. This indicates that binding sites with
such a agent may be found as residue sites directly coupled but not in contact.

If interactions with a third agent requires too specific residue type at a certain
site, then the residue type will be well conserved at the binding sites. This often
occurs, and has been utilized to identify binding sites. However, the interactions for
binding are less specific but certainly restricted, direct couplings between residues
around the binding sites may occurs.

Hopf et al. (2012) devised a total evolutionary coupling score, which is defined
as EC values summed over all high-ranking pairs involving a given residue and
normalized by their average over all high-ranking pairs, and showed that residues
with high total coupling scores line substrate-binding sites and affect signaling or
transport in transmembrane proteins, Adrb2 and Opsd.

9.7 Heterogeneous Protein-Protein Contacts

An application of the direct coupling analysis to predict the structures of protein
complexes is straightforward. In place of a MSA of a single protein family, a single
MSA that is built by concatenating the multiple MSAs of multiple protein families
every species can be employed to extract direct couplings between sites of different
proteins by removing indirect intra- and inter-protein couplings (Pazos et al. 1997;
Skerker et al. 2008; Weigt et al. 2009; Hopf et al. 2012).

A critical requirement for sequences to be concatenated is, however, that
respective sets of the protein sequences must have the same evolutionary history
to coevolve. In other words, phylogenetic trees built from the respective sets of
sequences employed for the protein families must have at least the same topology.
One way to build a set of cognate pairs of protein sequences is to employ
orthologous sequences for each protein family, the phylogenetic tree of which
coincides with that of species. Thus, a genome-wide analysis of finding protein-
protein interactions based on protein sequences is not so simple.

Weigt et al. (2009) successfully applied the direct coupling analysis to the
bacterial two-component signal transduction system consisting of sensor kinase
(SK) and response regulator (RR), which are believed (Skerker et al. 2008) to
interact specifically with each other in most cases and often revealed by adjacency
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in chromosomal location. This analysis is based on the fact that in prokaryotes
cognate pairs are often encoded in the same operon. Genome-sequencing projects
have revealed that most organisms contain large expansions of a relatively small
number of signaling families (Skerker et al. 2008). However, it is not as simple as in
prokaryotes to build a set of cognate pairs of those protein sequences in eukaryotes.

Hopf et al. (2014) developed a contact score, EVcomplex, for every inter-
protein residue pair based on the overall inter-protein EC score distributions,
evaluated its performance in blinded tests on 76 complexes of known 3D structure,
predicted protein-protein contacts in 32 complexes of unknown structure, and then
demonstrated how evolutionary direct couplings can be used to distinguish between
interacting and non-interacting protein pairs in a large complex. In their analysis,
protein sequence pairs that are encoded close on E. coli genome were employed to
reduce incorrect protein pairings.

9.8 Discussion

Determination of protein structure is essential to understand protein function.
However, despite significant effort to explore unknown folds in the protein structural
space, protein structures determined by experiment are far less than known protein
families. Only about 41–42% of the Pfam families (Finn et al. 2016) (Pfam-
A release 31.0, 16712 families) include at least one member whose structure is
known. The number and also the size of protein families will further grow as
genome/metagenome sequencing projects proceed with next-generation sequencing
technologies. Thus, accurate de novo prediction of three-dimensional structure is
desirable to catch up with the high growing speed of protein families with unknown
folds. Coevolutionary information can be used to predict not only proteins but
also RNAs (Weinreb et al. 2016) and those complexes, together with experimental
informations such as X-ray, NMR, SAS, FRET, crosslinking, Cryo-EM, and others.

Here, statistical methods for disentangling direct from indirect couplings
between sites with respect to evolutionary variations/substitutions of amino acids
in homologous proteins have been briefly reviewed. Dramatic improvements on
contact prediction and successful 3D de novo predictions based on predicted
contacts are described in details in the recent reports of CASP-11 (Moult et al. 2016)
and CASP-12 meetings (CASP12 2017). Machine learning methods, particularly
deep neural network (DNN) such as MetaPSICOV, iFold, and RaptorX, have
shown to significantly augment contact prediction accuracy based on coevolutionary
information. However, the present state-of-the-art DNN methods are, at least at the
very moment, not powerful enough to extract coevolutionary information directly
from homologous sequences. It was reported that without coevolutionary strength
produced by CCMpred the top L/10 long-range prediction accuracy of RaptorX
might drop by 0.15 for soluble proteins and more for membrane proteins (Wang
et al. 2017), indicating that the direct coupling analysis is still essential for contact
prediction.
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The primary requirement for the direct coupling analysis is a high quality
deep alignment. However, genome/metagenome sequencing projects provide more
genetic variations from which more accurate and more comprehensive information
on evolutionary constraints can be extracted. One of problems is that species being
sequenced may be strongly biased to prokaryotes, making it hard to analyze eukary-
otic proteins based on coevolutionary substitutions. Experiments of vitro evolution
may be useful to provide sequence variations for eukaryotic proteins (Ovchinnikov
et al. 2016).

For a large-scale of protein structure prediction, computationally intensive meth-
ods such as the ACE and Boltzmann machine (MCMC and mpDCA) can hardly
be employed. The Gaussian approximation with a normal-inverse-Wishart prior, the
Gaussian approximations with other priors (PSICOV) and mean field approximation
(mfDCA) are fast enough but their performance of contact prediction tends to
be compared unfavorably with the pseudo-likelihood approximation (plmDCA),
indicating that they may be inappropriate for proteins with sparse couplings.

The accurate estimates of fields and couplings are very informative in evaluating
the effects (�HPotts) of mutations (Hopf et al. 2017), identifying protein family
members and also studying folding mechanisms (Morcos et al. 2014; Jacquin et al.
2016) and protein evolution (Miyazawa 2017b). It should be also examined whether
the distribution of dimensionless energies (HPotts) over homologous proteins can be
well reproduced. Accuracy of estimates of fields and couplings and the distribution
of dimensionless energies depends on regularization parameters or the ratio of
pseudocount (Barton et al. 2016; Miyazawa 2017b), and therefore they should be
optimized. It was also pointed out that group L1 regularization performs better
than L2 for the maximum pseudolikelihood method (Ingraham and Marks 2016).
The ACE algorithm, which can be applied only for systems of sparse couplings,
may be more favorable with respect to computational load for the estimation of
fields and couplings than Boltzmann learning with Monte Carlo simulation or
with message passing. However, both the methods are computationally intensive.
Recently, another approach consisting of two methods named persistent-vi and
Fadeout, in which the posterior probability density with horseshoe prior is approx-
imately estimated by using variational inference and noncentered parameterization
for such a sparsity-inducing prior, has shown to perform better with twofold
cpu time than the maximum pseudolikelihood method with L2 and group L1
regularizations (Ingraham and Marks 2016).

The remarkable advances of sequencing technologies and also statistical methods
are likely to bring many targets within range of the present approach in the near
future, and have a potential to transform the field (Moult et al. 2016).

Appendix

An appendix described in full will be found in the article (Miyazawa 2017a)
submitted to the arXiv.
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Inverse Potts Model

A Gauge Employed for hi(ak) and Jij (ak, al)

Unless specified, a following gauge is employed; we call it q-gauge, here.

hi(aq) = Jij (ak, aq) = Jij (aq, al) = 0 (9.16)

In this gauge, the amino acid aq is the reference state for fields and couplings,
and Pi(aq), Pij (ak, aq) = Pji(aq, ak), and Pij (aq, aq) are regarded as dependent
variables. Common choices for the reference state aq are the most common
(consensus) state at each site. Any gauge can be transformed to another by the
following transformation.

J I
ij (ak, al) ≡ Jij (ak, al) − Jij (·, al) − Jij (ak, ·) + Jij (·, ·) (9.17)

hI
i (ak) ≡ hi(ak) − hi(·) +

∑

j �=i

(Jij (ak, ·) − Jij (·, ·)) (9.18)

where “·” denotes the reference state, which may be aq for each site (q-gauge) or
the average over all states (Ising gauge).

Boltzmann Machine

Fields hi(ak) and couplings Jij (ak, al) are estimated by iterating the following 2-
step procedures.

1. For a given set of hi and Jij (ak, al), marginal probabilities, P MC(σi = ak) and
P MC(σi = ak, σi = al), are estimated by a Markov chain Monte Carlo method
(the Metropolis-Hastings algorithm (Metropolis et al. 1953)) or by any other
method (for example, the message passing algorithm (Weigt et al. 2009)).

2. Then, hi and Jij (ak, al) are updated according to the gradient of negative log-
posterior-probability per instance, ∂S0/∂hi(ak) or ∂S0/∂Jij (ak, al), multiplied
by a parameter-specific weight factor (Barton et al. 2016), wi(ak) or wij (ak, al);
see Eqs. 9.8 and 9.12.

�hi(ak) = −(P MC(σi = ak) + ∂R

∂hi(ak)
− Pi(ak)) · wi(ak) (9.19)

�Jij (ak, al) = −(P MC(σi = ak, σi = al) + ∂R

∂Jij (ak, al)

− Pij (ak, al)) · wij (ak, al) (9.20)
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where weights are also updated as wi(ak) ← f (wi(ak)) and wij (ak, al) ←
f (wij (ak, al)) according to the RPROP (Riedmiller and Braun 1993) algorithm;
the function f (w) is defined as

f (w) ≡
{

max(w · s−, wmin) if the gradient changes its sign,

min(w · s+, wmax) otherwise
(9.21)

wmin = 10−3, wmax = 10, s− = 0.5, and s+ = 1.9 < 1/s− were
employed (Barton et al. 2016). After updated, hi(ak) and Jij (ak, al) may be
modified to satisfy a given gauge.

The Boltzmann machine has a merit that model correlations are calculated.

Gaussian Approximation for P(σ) with a Normal-Inverse-Wishart Prior

The normal-inverse-Wishart distribution (NIW) is the product of the multivariate
normal distribution (N ) and the inverse-Wishart distribution (W−1), which are
the conjugate priors for the mean vector and for the covariance matrix of a
multivariate Gaussian distribution, respectively. The NIW is employed as a prior
in GaussDCA (Baldassi et al. 2014), in which the sequence distribution P(σ)

is approximated as a Gaussian distribution. In this approximation, the q-gauge
is used, and Pi(aq), Pij (ak, aq) = Pji(aq, ak), and Pij (aq, aq) are regarded as
dependent variables; see section “A Gauge Employed for hi(ak) and Jij (ak, al)”; in
GaussDCA, deletion is excluded from independent variables.

The posterior distribution for the NIW is also a NIW. Thus, the cross entropy S0
can be represented as

S0(μ, �|{Pi}, {Pij })= −1

B
log[

B∏

τ=1

N ({δστ
i ak

}|μ, �)N (μ|μ0, �/κ)W−1(�|�, ν)]
(9.22)

= −1

B
log[N (μ|μB,�/κB)W−1(�|�B, νB) (9.23)

(det(2π�))−B/2(
κ

κB
)dim �/2 (det(�/2))ν/2

(det(�B/2))ν
B/2

�dim �(νB/2)

�dim �(ν/2)
(det �)−(ν−νB)2]

(9.24)

where �dim �(ν/2) is the multivariate � function, μ is the mean vector, and dim �

is the dimension of covariance matrix �, dim � = (q − 1)L excluding deletion in
GaussDCA. The normal and NIW distributions are defined as follows.

N (μ|μ0, �) ≡ (det(2π�))−1/2 exp(− (μ − μ0)T �−1(μ − μ0)

2
) (9.25)
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W−1(�|�, ν) ≡ (det(�/2))ν/2

�dim �(ν/2)
(det �)−(ν+dim �+1)/2 exp(−1

2
Tr��−1) (9.26)

Parameters μB , κB , νB , and �B satisfy

μB
i (ak) = (κμ0

i (ak) + BPi(ak))/(κ + B) , κB = κ + B , νB = ν + B

(9.27)

�B
ij (ak, al) = �ij (ak, al) + BCij (ak, al)

+ κB

κ + B
[(Pi(ak) − μ0

i (ak))(Pj (al) − μ0
j (al))] (9.28)

where the � and ν are the scale matrix and the degree of freedom, respectively,
shaping the inverse-Wishart distribution, and C is the given covariance matrix;
Cij (ak, al) ≡ Pij (ak, al) − Pi(ak)Pi(al). The mean values of μ and � under NW
posterior are μB and �B/(νB − dim � − 1), and their mode values are μB and
�B/(νB +dim � +1), which minimize the cross entropy or maximize the posterior
probability. The covariance matrix � can be estimated to be the exactly same value
by adjusting the value of ν, whichever the mean posterior or the maximum posterior
is employed for the estimation of �. In GaussDCA, the mean posterior estimate
was employed but here the maximum posterior estimate is employed according to
the present formalism.

(μ, �) = arg min
(μ,�)

S0(μ, �|{Pi}, {Pij }) = (μB,�B/(νB + dim � + 1)) (9.29)

According to GaussDCA, ν is chosen in such a way that σij (ak, al) is nearly
equal to the covariance matrix corrected by pseudocount; ν = κ +dim � +1 for the
mean posterior estimate in GaussDCA, but ν = κ − dim � − 1 for the maximum
posterior estimate here.

From Eq. 9.15, the estimates of couplings and fields are calculated.

J NIW
ij (ak, al) = −∂S0({Pi}, {Pij })

∂Pij (ak, al)
= − (κ + B + 1)

κ + B
(�−1)ij (ak, al) (9.30)

Because the number of instances is far greater than 1 (B � 1), these estimates of
couplings are practically equal to the estimates (J MF = −�−1) in the mean field
approximation, which was employed in GaussDCA (Baldassi et al. 2014).

hNIW
i (ak) = −

∑

j �=i

∑

l

J NIW
ij (ak, al)Pj (al) − (κ + B + 1)

κ + B

∑

j

∑

l �=q

(�−1)ij (ak, al)

[δij

δkl − 2Pi(al)

2
+ κB

κ + B
(Pj (al) − μ0

j (al))] (9.31)
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The (hNIW
i (ak) − hNIW

i (aq)) does not converge to log Pi(ak)/Pi(aq) as J NIW → 0
but hMF

i (ak) − hMF
i (aq) does; in other words, the mean field approximation gives

a better h for the limiting case of no couplings than the present approximation.
Barton et al. (2016) reported that the Gaussian approximation generally gave a better
generative model than the mean field approximation.

In GaussDCA (Baldassi et al. 2014), μ0 and �/κ were chosen to be as
uninformative as possible, i.e., mean and covariance for a uniform distribution.

μ0
i (ak) = 1/q,

�ij (ak, al)

κ
= δij

q
(δkl − 1

q
) (9.32)

Pseudo-likelihood Approximation

Symmetric Pseudo-likelihood Maximization

The probability of an instance στ is approximated as follows by the product of
conditional probabilities of observing στ

i under the given observations στ
j �=i of all

other sites.

P(στ) ≈
∏

i

P (σi = στ
i |{σj �=i = στ

j }) (9.33)

Then, cross entropy is approximated as

S0(h, J |{Pi}, {Pij }) ≈ SPLM
0 (h, J |{Pi}, {Pij }) ≡

∑

i

S0,i (h, J |{Pi}, {Pij })
(9.34)

S0,i (h, J |{Pi}, {Pij }) ≡ −1

B

∑

τ

�i(σi = στ
i |{σj �=i = στ

j }, h, J ) + Ri(h, J )

(9.35)

where conditional log-likelihoods and �2 norm regularization terms employed in
Ekeberg et al. (2013) are

�i(σi = στ
i |{σj �=i = στ

j }, h, J ) = log[ exp(hi(σ
τ
i ) + ∑

j �=i Jij (σ
τ
i , σ

τ
j ))∑

k exp(hi(ak) + ∑
j �=i Jij (ak, σ

τ
j ))

]
(9.36)

Ri(h, J ) ≡ γh

∑

k

hi(ak)
2 + γJ

2

∑

k

∑

j �=i

∑

l

Jij (ak, al)
2 (9.37)
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The optimum fields and couplings in this approximation are estimated by minimiz-
ing the pseudo-cross-entropy, SPLM

0 .

(hPLM, J PLM) = arg min
h,J

SPLM
0 (h, J |{Pi}, {Pij }) (9.38)

Equation 9.38 is not invariant under gauge transformation; the �2 norm reg-
ularization terms in Eq. 9.38 favors only a specific gauge that corresponds to
γJ

∑
l Jij (ak, al) = γhhi(ak), γJ

∑
k Jij (ak, al) = γhhj (al), and

∑
k hi(ak) = 0

for all i, j (> i), k and l (Ekeberg et al. 2013). γJ = γh = 0.01 that is relatively
a large value independent of B was employed in Ekeberg et al. (2013). γh = 0.01
but γJ = q(L − 1)γh were employed in Hopf et al. (2017), in which gapped sites
in each sequence were excluded in the calculation of the Hamiltonian H(σ), and
therefore q = 20.

GREMLIN (Kamisetty et al. 2013) employs Gaussian prior probabilities that
depend on site pairs.

Ri(h, J ) ≡ γh

∑

k

hi(ak)
2 +

∑

k

∑

j �=i

γij

2

∑

l

Jij (ak, al)
2 (9.39)

γij ≡ γc(1 − γp log(P 0
ij )) (9.40)

where P 0
ij is the prior probability of site pair (i, j) being in contact.

Asymmetric Pseudo-likelihood Maximization

To speed up the minimization of S0, a further approximation, in which S0,i is
separately minimized, is employed (Ekeberg et al. 2014), and fields and couplings
are estimated as follows.

J PLM
ij (ak, al) � 1

2
(J ∗

ij (ak, al) + J ∗
j i(al, ak)) (9.41)

(hPLM
i , J ∗

i ) = arg min
hi ,Ji

S0,i (h, J |{Pi}, {Pij }) (9.42)

It is appropriate to transform h and J estimated above into a some specific gauge
such as the Ising gauge.

ACE (Adaptive Cluster Expansion) of Cross-Entropy for Sparse Markov
Random Field

The cross entropy S0({hi, Jij }|{Pi}, {Pij }, i, j ∈ �) of a cluster of sites �, which
is defined as the negative log-likelihood per instance in Eq. 9.14, is approximately
minimized by taking account of sets Lk(t) of only significant clusters consisting of
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k sites, the incremental entropy (cluster cross entropy) �S� of which is significant
(|�S�| > t) (Cocco and Monasson 2011, 2012; Barton et al. 2016).

S0({Pi, Pij |i, j ∈ �}) �
|�|∑

l=1

,
∑

�′∈Ll(t),�
′⊂�

�S0({Pi, Pij |i, j ∈ �′}) (9.43)

�S0({Pi, Pij |i, j ∈ �}) ≡ S0({Pi, Pij |i, j ∈ �}) −
∑

�′⊂�

�S0({Pi, Pij |i, j ∈ �′})

(9.44)

=
∑

�′⊆�

(−1)|�|−|�′| S0({Pi, Pij |i, j ∈ �′}) (9.45)

Lk+1(t) is constructed from Lk(t) by adding a cluster � consisting of (k+1) sites in
a lax case provided that any pair of size k clusters �1, �2 ∈ Lk(t) and �1 ∪ �2 = �

or in a strict case if �′ ∈ Lk(t) for ∀�′ such that �′ ⊂ � and |�′| = k. Thus,
Eq. 9.43 yields sparse solutions. The cross entropies S0({Pi, Pij |i, j ∈ �′}) for the
small size of clusters are estimated by minimizing S0({hi, Jij }|{Pi, Pij }, i, j ∈ �′)
with respect to fields and couplings. Starting from a large value of the threshold t

(typically t = 1), the cross-entropy S0({Pi, Pij }|i, j ∈ {1, . . . , N}) is calculated
by gradually decreasing t until its value converges. Convergence of the algorithm
may also be more difficult for alignments of long proteins or those with very strong
interactions. In such cases, strong regularization may be employed.

The following regularization terms of �2 norm are employed in ACE (Barton
et al. 2016), and so Eq. 9.43 is not invariant under gauge transformation.

− 1

B
log P0(h, J |i, j ∈ �) = γh

∑

i∈�

∑

k

hi(ak)
2+γJ

∑

i∈�

∑

k

∑

J>i,j∈�

∑

l

Jij (ak, al)
2

(9.46)
γh = γJ ∝ 1/B was employed (Barton et al. 2016).

The compression of the number of Potts states, qi ≤ q, at each site can be
taken into account. All infrequently observed states or states that insignificantly
contribute to site entropy can be treated as the same state, and a complete model can
be recovered (Barton et al. 2016) by setting hi(ak) = hi(ak′)+ log(Pi(ak)/P

′
i (ak′)),

and Jij (ak, al) = J ′
ij (ak′ , al′), where “′” denotes a corresponding aggregated state

and a potential.
Starting from the output set of the fields hi(ak) and couplings Jij (ak, al) obtained

from the cluster expansion of the cross-entropy, a Boltzmann machine is trained
with Pi(ak) and Pij (ak) by the RPROP algorithm (Riedmiller and Braun 1993)
to refine the parameter values of hi and Jij (ak, al) (Barton et al. 2016); see
section “Boltzmann Machine”. This post-processing is also useful because model
correlations are calculated.

An appropriate value of the regularization parameter for trypsin inhibitor were
much larger (γ = 1) for contact prediction than those (γ = 2/B = 10−3) for
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recovering true fields and couplings (Barton et al. 2016), probably because the task
of contact prediction requires the relative ranking of interactions rather than their
actual values.

Scoring Methods for Contact Prediction

Corrected Frobenius Norm (L22 Matrix Norm), SCFN
ij

For scoring, plmDCA (Ekeberg et al. 2013, 2014) employs the corrected Frobenius
norm of J I

ij transformed in the Ising gauge, in which J I
ij does not contain anything

that could have been explained by fields hi and hj ; J I
ij (ak, al) ≡ Jij (ak, al) −

Jij (·, al) − Jij (ak, ·) + Jij (·, ·) where Jij (·, al) = Jji(al, ·) ≡ ∑q

k=1 Jij (ak, al)/q.

SCFN
ij ≡ SFN

ij − SFN·j SFN
i· /SFN·· , SFN

ij ≡
√ ∑

κ �=gap

∑

l �=gap

J I
ij (ak, al)2 (9.47)

where “·” denotes average over the indicated variable. This CFN score with the gap
state excluded in Eq. 9.47 performs better (Ekeberg et al. 2014; Baldassi et al. 2014)
than both scores of FN and DI/EC (Weigt et al. 2009; Morcos et al. 2011; Marks
et al. 2011; Hopf et al. 2012).
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Chapter 10
A Hybrid Approach for Protein Structure
Determination Combining Sparse NMR
with Evolutionary Coupling
Sequence Data

Yuanpeng Janet Huang, Kelly P. Brock, Chris Sander, Debora S. Marks,
and Gaetano T. Montelione

Abstract While 3D structure determination of small (<15 kDa) proteins by solution
NMR is largely automated and routine, structural analysis of larger proteins is
more challenging. An emerging hybrid strategy for modeling protein structures
combines sparse NMR data that can be obtained for larger proteins with sequence
co-variation data, called evolutionary couplings (ECs), obtained from multiple
sequence alignments of protein families. This hybrid “EC-NMR” method can be
used to accurately model larger (15–60 kDa) proteins, and more rapidly determine
structures of smaller (5–15 kDa) proteins using only backbone NMR data. The
resulting structures have accuracies relative to reference structures comparable to
those obtained with full backbone and sidechain NMR resonance assignments.
The requirement that evolutionary couplings (ECs) are consistent with NMR data
recorded on a specific member of a protein family, under specific conditions,
potentially also allows identification of ECs that reflect alternative allosteric or
excited states of the protein structure.
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10.1 Introduction

Solution-state NMR can generally provide accurate three-dimensional (3D) struc-
tures of small (MW <∼15 kDa) proteins (Mao et al. 2011, 2014). However,
for larger proteins the efficient transverse spin relaxation of the 1H-1H network
results in broad NMR line widths, preventing collection of sufficient data to allow
structural analysis. Perdeuteration and selective reprotonation (i.e. replacement of
most 1H atoms with 2H) decreases transverse relaxation rates of the remaining 1H,
15N, and 13C nuclei, increasing the sensitivity and feasibility of NMR for larger
proteins (Gardner et al. 1997). However, perdeuteration also reduces the number
of 1H’s providing 1H-1H NOEs, and generally excludes most sidechain protons,
providing much fewer structural restraints. This incompleteness of NOE data can
be compensated to some degree using conformational restraints based on chemical
shift and orientation restraints from residual dipolar coupling (RDC) data. Although
protein structure models based on such “sparse NMR data” can be improved using
advanced knowledge-based molecular modeling methods (Raman et al. 2010; Lange
et al. 2012; Sgourakis et al. 2014), the resulting structures are generally less accurate
and precise than those obtained for smaller, fully-protonated proteins with complete
sidechain resonance assignments.

It has long been a goal of bioinformatics research to use sequence co-variation
to provide information about residue pair contacts, which could enable protein
structure prediction and modeling (Gobel et al. 1994; Neher 1994; Taylor and
Hatrick 1994; Shindyalov et al. 1994; Thomas et al. 1996). Historically, a key
challenge was created by transitive correlations, or relay effects; i.e., to distinguish
A-B covariation due to A->B interactions from A-C covariation due to relayed
A->B->C interactions. Recently, methods have been developed using maximum
entropy global statistical models and maximum likelihood parameter inference
that distinguish direct evolutionary couplings from transitive correlations, allowing
reliable analysis of evolutionary residue-residue couplings from multiple alignments
of structurally related protein sequences (Lapedes et al. 2002; Morcos et al.
2011; Marks et al. 2011; Sulkowska et al. 2012; Kamisetty et al. 2013). Such
evolutionary couplings (ECs), derived from evolutionary-correlated mutations, can
provide accurate information about residue pair contacts in the 3D structures of
proteins and protein complexes (Morcos et al. 2011; Marks et al. 2011, 2012;
Sulkowska et al. 2012; Hopf et al. 2012, 2014; Kamisetty et al. 2013; Michel et al.
2014; Ovchinnikov et al. 2014, 2016, 2017; Anishchenko et al. 2017; Simkovic
et al. 2017). Most often, the highest scoring evolutionary couplings are between
residues that indeed contact one another in the 3D structure. These contacts can
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then be used, together with molecular dynamics, knowledge-based, and/or energy
minimization methods to model the native structure of the protein, with often correct
identification of the protein fold (Marks et al. 2011; Sulkowska et al. 2012; Hopf et
al. 2012; Sheridan et al. 2015; Ovchinnikov et al. 2015, 2016, 2017). Importantly,
high-confidence ECs may also reflect protein-protein interactions (Hopf et al. 2014;
Cheng et al. 2014; Ovchinnikov et al. 2014; dos Santos et al. 2015; Toth-Petroczy
et al. 2016), alternative conformational or allosteric states (Morcos et al. 2013;
Toth-Petroczy et al. 2016), and/or more subtle features of the protein structure and
dynamics.

While a breakthrough in the area of computational protein folding and protein
structure prediction, the modeling of 3D structures from evolutionary couplings
has a number of limitations. ECs provide information on residue-residue contacts
present in many of the 3D structures of the proteins across the multiple sequence
alignment (i.e., across the iso-structural protein subfamily or family), and may
not accurately reflect the specific structural details of the particular protein under
investigation. More specifically, there may be “structural drift” across the protein
family, and sequence co-variation across distantly related members of the family
may be inconsistent with the structure of the subject protein (Tang et al. 2015).
In addition, even when there is extensive sequence information, residue-residue
contacts indicated by high-ranked ECs may not be consistent with the native struc-
ture under investigation, but rather reflect important but confounding effects, such
as conformational alternatives, allosteric networks, excited-state conformations,
homo-oligomerization, and/or indirect residue interactions via substrates or binding
partners. They may also result from simple false positives in the parameter inference
computation, especially when insufficiently diverse sequences are available. As a
result, EC-derived models of proteins may differ in detail from the predominant
native structure.

Residue contact information derived from sparse NMR data or from evolutionary
couplings can provide highly complementary information. This creates the oppor-
tunity to combine the two for more reliable structure determination than can be
achieved using either data type alone (Tang et al. 2015). Sparse NMR contact
information is incomplete and often ambiguous in its assignment to specific 1H-1H
interactions. Nonetheless, all (or most) of the NOE, chemical shift, and RDC data
should be consistent with the 3D structure model(s), across the ensemble at finite
temperature. EC-based contacts can complement this spectroscopic information to
provide more complete contact information, and more accurate models, but poten-
tially include interactions that are not consistent with the predominant structure
of the subject protein under the conditions that the NMR data is acquired. The
requirement that the overall structure be consistent with all of the experimental
NMR data, however, provides “hard” constraints on the interpretation of ECs,
allowing identification and removal of proposed residue pair contacts that are
inconsistent with the dominant structure present under the solution conditions under
investigation (Tang et al. 2015).
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10.2 The EC-NMR Algorithm

The general EC-NMR method, as described by Tang et al. (2015) is outlined in
Fig. 10.1. The overall process can be divided into three sub processes. Step 1
provides a ranked list of direct evolutionary couplings (ECs) from multiple sequence
alignments using either maximum entropy or pseudo likelihood models of the
protein sequence, constrained by the statistics of the multiple sequence alignment,
that have been developed to distinguish direct from transitive couplings (Morcos et
al. 2011; Marks et al. 2011; Jones et al. 2012; Ekeberg et al. 2013; Kamisetty et al.
2013). In generating the multiple sequence alignment, it is important to carefully
choose an appropriate range of evolutionary neighbors: not too many, so as to

Fig. 10.1 3D structure determination by the hybrid EC-NMR method. The hybrid EC-NMR
strategy combines Evolutionary Coupling (EC) information from protein sequences with sparse
experimental nuclear magnetic resonance (NMR) data
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optimize specificity of structural constraints to the target of interest, and not too
few, so as to retrieve as many sequences as possible at maximum sequence diversity
and thus reduce sampling bias. In our published implementation of EC-NMR, the
interaction parameters in the model, i.e., the evolutionary residue-reside couplings,
were computed using pseudo-likelihood maximization in the computer program
plmc, part of the Evcouplings software suite (Ekeberg 2013; https://github.com/
debbiemarkslab/plmc).

In Step 2, sparse NMR data is collected using uniformly 13C,15N-enriched and/or
2H,13C,15N-enriched protein samples prepared with 1H-13C labeling of sidechain
Leu, Val, and Ile(δ1) methyl groups (Gardner et al. 1997; Rosen et al. 1996; Tugari-
nov et al. 2006), providing backbone 1HN, 13C, and 15N, as well as sidechain amide
1HN-15N and some methyl 13CH3 resonance assignments. Backbone resonance
assignments are determined, and backbone dihedral angle restraints are defined
from 13Cα and 13Cβ chemical shift data using the program TALOS-N (Shen and
Bax 2015). Unassigned NOESY peak lists are then generated from simultaneous
3D 15N,13C-NOESY spectra, and, in some cases, 15N-1H residual dipolar coupling
(RDC) data are measured using one or more RDC alignment media. Such sparse
NMR data can generally be obtained for perdeuterated proteins with molecular
weights as large as 40–70 kDa (Hiller et al. 2008; Raman et al. 2010; Lange et al.
2012), and have been used to determine chain folds for proteins as large as 82 kDa
(Tugarinov et al. 2005; Grishaev et al. 2008).

Step 3 identifies and iteratively refines distance restraints using both sources of
information simultaneously, and determines a small set of accurate 3D structures.
Chemical shift, NOESY peak list, EC, and RDC data are interpreted together to
determine NOESY cross peak assignments, rule out ECs that are inconsistent with
the NMR data, and to generate initial 3D models of the protein. This automated
combined analysis of NMR and EC data is implemented in the NOESY assignment
program ASDP (Huang et al. 2006). Intermediate 3D structures are generated
from these combined NMR and evolutionary distance restraints using the program
CYANA (Hermann et al. 2002). The resulting residue-pair contacts, derived by
the combined analysis of EC and NMR data, are then deconvoluted into atom-
specific distance restraints, which are used to refine the protein structure using
restrained energy minimization. In the published implementation (Tang et al. 2015),
the refinement step used a specific restrained energy minimization and knowledge-
based modeling protocol with the program Rosetta, described by Mao et al. (2014),
but alternative energy refinement protocols could also be used.

10.3 EC-NMR Results

Tang et al. (2015) tested the overall performance of the EC-NMR method using
experimental chemical shift, NOESY peak list, and RDC data for 8 proteins ranging
in size from 6 to 41 kDa These data were obtained from the archives of the
Northeast Structural Genomics Consortium (www.nesg.org) (Everett et al. 2016).

https://github.com/debbiemarkslab/plmc
https://github.com/debbiemarkslab/plmc
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The resulting EC-NMR structures were compared with “reference structures”,
which have been determined either by X-ray crystallography or by NMR using
essentially complete backbone and sidechain resonance assignments. These EC-
NMR structures were observed to have accurate backbone and all-heavy-atom
positions; i.e. < 2 Å backbone atom positional root mean square deviations
(RMSDs) and < 3 Å all-heavy atom RMSDs relative to the reference structure, in
6/8 proteins. The remaining two proteins studied, human p21 H-R as and maltose
binding protein had no or limited RDC data, respectively, but were nevertheless
reasonably accurate; both protein structures had backbone RMSDs < 2.8 Å and all-
heavy-atom RMSDs < 3.6 Å relative to the corresponding X-ray crystal structures
(Tang et al. 2015).

For this monograph, we re-determined five of the EC-NMR structures reported
by Tang et al. (2015) using the same archived NMR data, but an updated database
of protein sequences, downloaded in April 2017. These five proteins and the NMR
data used for this study are summarized in Table 10.1. For the four smaller protein
targets, with molecular weights of 6 to 15 kDa, the NMR data include only HN-
HN NOE data, along with restraints on backbone dihedral angles computed from
Cα/Cβ chemical shifts using Talos-N (Shen and Bax 2015). For two of these four
proteins, 15N-1H RDCs were measured using two different molecular alignment
conditions, for a third 15N-1H RDCs were measured using only one alignment
condition, and for the fourth no RDC data are available. These four EC-NMR
structures were compared with NMR structures determined with complete sidechain
proton assignments and much more extensive NOESY data. The results of these EC-
NMR calculations are shown in Fig. 10.2.

These four EC-NMR 3D structures were assessed based on (i) accuracy of atomic
positions (Table 10.2) and (ii) accuracy of sidechain χ1 rotamer states for well-
defined (i.e. converged), buried (i.e., not on the protein surface) side chains (Table
10.3). In each case, the representative structure from the NMR ensemble (either
the EC-NMR ensemble or the reference NMR structure ensemble) was selected
as the medoid conformer of the ensembles, as described elsewhere (Montelione et
al. 2013; Tejero et al. 2013). The backbone RMSD’s between EC-NMR structures
ranges from 1.5 to 1.8 Å, while the RMSD’s for all C, N, O and S atoms (both
backbone and sidechain) range from 2.4 to 2.9 Å (Table 10.2). The χ1 values of
well-defined buried sidechains (17–38 sidechains in the 4 structures), compared
for all conformers in the EC-NMR ensemble with all conformers in the reference
ensemble, also agree in 73–85% of pair-wise comparisons (Table 10.3). Similar
results were observed for the corresponding earlier EC-NMR structures of these
same proteins reported by Tang et al. (2015). In both studies, the EC-NMR
structures are significantly more accurate than models generated using either the
EC or sparse NMR data alone. Remarkably, these EC-NMR structures determined
using only HN-HN NOE data together with ECs have accuracies that compare with
high quality NMR structures determined with complete backbone and sidechain
resonance assignments, suggesting that when good quality ECs are available for
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Fig. 10.2 EC-NMR structures determined using only HN-HN NOESY data superimposed on
reference conventional NMR structures. The representative structure from the ensemble of con-
formers generated by the EC-NMR method (green) is superimposed on a representative structure
from reference NMR structure ensemble. For each protein, the left image is a superimposition
of backbone atoms, and the right image a superimposition of backbone and well-defined core
sidechain atoms

small (<15 kDa) proteins, it may only be necessary to complete the majority of
backbone resonance assignments in order to determine a high-quality solution NMR
structure.

As a fifth illustrative example, we also reanalyzed the EC-NMR structure of the
41 kDa E. coli maltose binding protein (MBP) bound to beta-cyclodextrin. The
experimental NMR data for MBP include HN-HN NOE data, as well as Ile(δ1),
Leu, and Val methyl proton assignments, providing also Me-Me and HN-Me NOEs,
along with restraints on backbone dihedral angles computed from Cα/Cβ chemical
shifts using Talos-N (Shen and Bax 2015). These results (Fig. 10.3) demonstrate
high-quality EC-NMR structures are produced, with backbone RMSD’s to the
corresponding X-ray crystal structure of 2.5 Å for backbone atoms, and 3.2 Å for
all C, N, O and S atoms (both backbone and sidechain). MBP is a two-domain
protein, and the relative orientation of domains depends on which sugars are bound;
the “open form” being preferred when bound to beta-cyclodextrin (Evenas et al.
2001). Considered separately, the two individual domains of MBP in the EC-NMR
structure of the two-domain protein are even more accurate when compared to the
reference X-ray crystal structure (N-terminal domain/C-terminal domain backbone
RMSD 1.8 Å / 1.7 Å, all-heavy-atom RMSD 2.7 Å / 2.6 Å; Table 10.2) than is
apparent from rigid body superimposition for the entire protein.
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Table 10.3 Assessment of the accuracy of well-defined, buried side chain χ1 dihedral angles

Protein NMR data set
Reference NMR
structure

Number of buried, well-defined
sidechainsa

χ1 rotamer
agreement (%)

A9CJD6_AGRT5 2K2P 20 84
Q6D6V0_ERWCT 2K5N 17 75
Q9ZV63_ARATH 2KAN 21 73
Q1LD49_RALME 2LCG 38 85

aSide chains that are buried (average SASA < 40Å2 in the NMR structures) and well-defined (χ1
angle S.D. < 30 degrees in the NMR ensemble)

Maltose binding protein

NMR
Structure

Number of
buried, well-
defined, side
chainsa

χ1 rotamer
agreement
(%)

Number of
common
buried,
well-defined
sidechainsa

χ1 rotamer
agreement
(%)

RMSD to X-ray
crystal structureb

Full-length / NTD /
CTD (Å)

2D21 105 76 15 57 5.4 / 1.6 / 1.5
1EZP 33 26 15 23 3.3 / 2.8 / 2.6
2MV0 80 75 15 60 4.7 / 2.0 / 3.7
EC-NMR 102 73 15 57 2.5 / 1.8 / 1.7

aSide chains that are buried (SASA < 40 Å2 in the X-ray structure) and well-defined (χ1 angle
S.D. < 30 degrees in the NMR ensemble)
bThe reference X-ray crystal structure is PDB ID 1DMB

We also compared the accuracy of the EC-NMR structure of MBP relative to
previously published NMR structures determined with more extensive sidechain
assignments (Table 10.3). The core sidechains of the EC-NMR structure are
significantly more accurate than PDB ID 1EZP, determined using similar sparse
NMR data together with 5 kinds of RDC data (Mueller et al. 2000). The core
sidechain accuracy of the EC-NMR structure is similar to that of the solution
NMR structure PDB ID 2D21, which was determined using extensive side chain
resonance assignments provided by the sophisticated and expensive stereo-arrayed
isotope labeling (SAIL) method (Kainosho et al. 2006). Based on RMSD relative
to the X-ray crystal structure of beta-cyclodextrin-bound MBP, the overall structure
of the EC-NMR models are more accurate than any previously published NMR
structures. Similar results for MBP were also reported by Tang et al. (2015). Hence,
we conclude that the EC-NMR method of Tang et al. (2015) can deliver structures
with accurate backbone and core side chain atomic positions for larger (∼40 kDa,
or larger) proteins, with accuracy comparable or better than models obtained with
sophisticated side chain labeling methods.
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Fig. 10.3 EC-NMR structure of E. coli maltose binding protein superimposed on the reference
X-ray crystal structure. The top horizontal panels illustrate EC-NMR analysis process using sparse
NMR data. Red contacts – initial EC residue-pair contacts. Blue contacts – contacts indicated
by unambiguous NOESY peak assignments obtained by the ASDP program (Huang et al. 2006).
Green contacts – final residue pair contacts resulting from simultaneous analysis of EC and NMR
data. Grey contacts – contacts in the reference X-ray crystal structure. Box plots – RMSD to
reference structures for backbone atoms of structures generated with EC data alone (red), sparse
NMR data alone (blue), and the hybrid EC-NMR method (green). Superimposed backbone and
core sidechain structures are for full length MBP, and for the individual N-terminal domain (NTD)
and C-terminal domain (CTD) in the full-length EC-NMR structure. Green ribbon structures – final
EC-NMR structure of MBP. Grey ribbons – reference X-ray crystal structure.
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10.4 Sensitivity to Numbers of Sequence Homologs
in Multiple Sequence Alignment

A prerequisite for the EC-NMR approach is extensive, diverse sequence data,
required to obtain accurate co-evolutionary couplings between the residues (Marks
et al. 2011; Hopf et al. 2012; Kamisetty et al. 2013). Recent experience suggests that
more than 2*L non-redundant sequences (Neff) are generally required for confident
predictions of overall protein fold from EC’s alone, where L is the length of the
target sequence (Marks et al. 2012; Michel et al. 2014; Ovchinnikov et al. 2014;
Hopf et al. 2014; Kamisetty et al. 2013; Ovchinnikov et al. 2017). For a target
protein that is 200 residues long, this typically requires on the order of 5000
sequences, before removal of redundancy, in an initial multiple sequence alignment
of a family of structurally homologous proteins as inferred using standard sequence
similarity methods with, if in doubt, a fairly conservative cutoff in sequence
similarity, equivalent to typically not less than about 20–30% identical residues
fairly evenly distributed over the entire length of the protein (Sander and Schneider
1991).

For EC-NMR, our goal is to obtain models with accuracies comparable to
high-quality NMR structures; i.e. backbone positional root mean square deviations
(RMSD’s) relative to reference structures < 2.5 Å and accurate core sidechain
packing. Tang et al. (2015) analyzed a series of multiple sequence alignments,
testing the number of sequences from Neff/L ∼150 down to Neff/L < 0.1. In that
analysis, using this implementation of the EC-NMR method and good quality NMR
data for a perdeuterated, Ile(δ1), Leu and Val 13CH3 methyl labeled protein, the
cutoff point for accurate modeling (< 2.5 Å backbone RMSD) was estimated to be
Neff/L ∼5, with little improvement in structural accuracy for higher values of Neff /
L (see Fig. 4 of Tang et al. 2015).

For the five EC-NMR structures described above, the number of non-redundant
sequences Neff ranged from ∼7100 to ∼44,000 sequences (Table 10.2), with Neff
/ L ranging from 113 to 241 sequences / residue. In order to assess the impact of
the growth of the sequence databases over the last few years, we also compared
these five EC-NMR structures, determined with protein sequence data available in
April 2017, with the corresponding structures described by Tang et al. (2015), using
protein sequence data downloaded in August 2013 (Table 10.2). Between these
dates, the number of non-redundant sequences available for each of these five pro-
teins increased significantly; by about 10% (for A. thaliana Ubiquitin-like domain
Q9ZV63_ARATH) to 12-fold (for R. metallidurans Rmet5065 Q1LD49_RALME).
This observation is consistent with our estimate that the size of the relevant sequence
databases is doubling every 2–3 years (Tang et al. 2015), and that many proteins
which cannot yet be reliably studied using the EC-NMR method will become
amenable as the sequence data base grows. However, as these targets already had
high Neff/L using the 2013 sequence databases (ranging from 20 to 174 non-
redundant sequences per residue), despite this increase in sequence data, with
the available protein NMR data there was little or no improvements in structural
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accuracy (Table 10.2). This is consistent with the conclusions of Tang et al. (2015),
that good EC-NMR models can be produced with Neff/L as low as 5 sequences /
residue, with little improvement for higher values of Neff/L. However, this cutoff
depends also on the quality of sparse NMR data that is available.

10.5 Conclusions and Future Prospects

Evolutionary information and sparse NMR data, used together with knowledge-
based modeling, are highly complementary for protein structure determination. The
EC-NMR approach improves the accuracy of models generated by EC data alone,
by requiring that EC-based contacts are consistent with experimental NMR data
collected for one member of the protein family under specific conditions. This
requirement eliminates important, but confounding, EC-derived contact restraints
that may arise from structural drift across the protein family, and allosteric networks
and/or excited states which may also be detected as evolutionary co-variation.
More specifically, the experimentally reliable, but ambiguous, contact information
of sparse NOESY peak list data, together with orientation restraints from RDC
data and backbone dihedral restraints from chemical shift data, can rule out ECs
that are not relevant to the structure of the specific target protein. Simultaneously,
ECs complement the sparse NOESY and RDC data that can be obtained on
largely perdeuterated protein samples, a requirement for studies of larger proteins
and membrane proteins reconstituted in micelles or nano disks. In this way,
complementarity EC and NMR data provide much more complete and accurate
residue contact information than can be obtained from either method alone.

The EC-NMR method outlined in this monograph is largely automated, and
provides high-quality 3D structures with accurate backbone and core sidechain
conformations (Tang et al. 2015). For small proteins and domains up to 150
residues (<∼15 kDa) with extensive sequence information, EC-NMR is a new,
powerful, and efficient approach for protein structure determination using only
backbone NMR data. For larger proteins, up to 400–500 residues (40–60 kDa,
or larger), for which extensive side chain resonance assignment is challenging if not
prohibitive, ECs can be combined with sparse NMR data obtained on perdeuterated
protein samples to provide structures that are more accurate and complete than
those obtained using such NMR data alone. In the method outlined here, ECs
are combined with NMR data to determine both small and larger soluble protein
structures, but the same approach should be applicable to membrane proteins (Hopf
et al. 2012; Ovchinnikov et al. 2017), for solid-state NMR data, and for RNA
structure determination (Weinreb et al. 2016). This advance significantly expands
the range of biomolecules for which accurate structures can be determined using
either evolutionary coupling analysis or NMR spectroscopy data alone.

The EC-NMR method requires large multiple sequence alignments, which
are only currently available for a fraction of known proteins. However, as the
sequence databases continue to grow, more proteins will be amenable to this
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approach. Fortunately, combining ECs together with sparse NMR data reduces the
requirements for the amount and diversity of sequence information.

In this work, we used a simple restrained energy minimization protocol of
Rosetta in the final refinement step (Mao et al. 2014). This protocol improves
both backbone and sidechain structure accuracy. It is advantageous because is it
relatively fast, and can be implemented with limited computer resources. However,
the resolution adapted recombination protocol (RASREC) developed by Lange and
Baker (Raman et al. 2010; Lange and Baker 2012) has significant advantages for
generating accurate structures of proteins from sparse NMR data (Raman et al.
2010; Lange et al. 2012). The RASREC protocol has also been used successfully for
modeling protein structures for EC data (Braun et al. 2015). While it is much more
computationally demanding, currently limiting its broad application, the RASREC
protocol has the potential to provide more accurate EC-NMR structures with less
complete and/or more noisy EC and sparse NMR data.

The EC-NMR method also allows identification of ECs which are not consistent
with the NMR data collected for the target protein under specific conditions. While
these are “false positives” relative to the modeling of this particular state of the
protein, ECs with strong signals and high reliability that are not consistent with
this particular state of the protein structure can provide information on alternative
conformations accessible to the protein, excited states, and potentially provide
information on allosteric networks. Further investigations of the combined use of
ECs and NMR data to characterize the multiple conformational states of proteins
and their energy landscapes is an exciting emerging area which can be explored
using these powerful hybrid methods.
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Chapter 11
Harnessing the Combined Power
of SAXS and NMR

A. M. Gronenborn

Abstract Single types of methodologies are no longer sufficient to adequately
describe complex biological structures. As a result, integrated approaches that
combine complementary data are being developed. This chapter describes the
integration of nuclear magnetic resonance and small-angle scattering approaches
to characterize solution structures of multi-domain proteins.

Keywords Integrated structural biology · Multi-domain proteins · NMR ·
SAXS · Molecular dynamics simulations

A major challenge for structural biology is providing a mechanistic understanding
of the plethora of functions and associated conformational changes performed by
macromolecular and supramolecular complexes that underlie cell biology. Obtain-
ing structures of such assemblies is a necessary prerequisite, and the rich data that
they provide will open up new opportunities in the biomedical, biotechnological,
and pharmacological arenas.

In order to investigate and adequately describe multifaceted biological systems,
single types of methodologies are no longer sufficient: researchers are turning
more and more to integrated approaches, using complementary structural data. The
complexity of biological phenomena, linked to the inherent partiality of any rep-
resentation, requires the pursuit of multiple methods and models. As is universally
appreciated, individual types of structural data are limited in scope, accuracy and
generality, and any inherent shortcomings can be overcome or minimized using
complementary information in an integrative fashion.

In addition to the traditional structural biology techniques of X-ray crystallogra-
phy, nuclear magnetic resonance (NMR) and electron microscopy (EM), additional
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methods are increasingly used, alone and in combination, with traditional methods
to generate structural information. These include mass spectrometry of crosslinked
complexes (Cohen and Chait 2001) and native complexes (Mehmood et al. 2015),
synchrotron radiation circular dichroism spectroscopy (Cowieson et al. 2008),
electron paramagnetic resonance spectroscopy (EPR) combined with site-directed
spin labelling (Hubbell et al. 2000), Small-Angle Scattering (SAXS) (Lipfert
and Doniach 2007), and computational docking with sparse distance restraints
(Schneidman-Duhovny et al. 2012).

Although the integration of all structural methodologies with cell biology,
biochemistry and computational approaches has made major strides over the last
few years, the current chapter focusses specifically on the integration of NMR and
SAXS for structural biology, emphasizing their remarkable complementarity.

NMR has unique capabilities for studying structure and dynamics of
biomolecules at the atomic level. Structural characterization of a protein or any other
biological macromolecule by NMR in solution invariably describes a distribution of
interconverting conformers, in contrast to most structural descriptions from X-ray
crystallography, cryo EM or solid-state magic-angle spinning NMR. Solution NMR
ensembles encompass conformational families that range from a narrow distribution
for well-folded, globular proteins or domains to a wide distribution for unfolded or
partially folded polypeptide ensembles.

In contrast to the atomic-level information available by NMR, SAXS affords low
resolution information but furnishes important data on the global size and shape of
a particle in solution, ideally complementing the NMR-derived data. Or, in other
words, SAXS provides an overall picture of the 3D space occupied by all coexisting
conformers, while high resolution NMR describes the details of the conformational
landscape at the atomic level. Several excellent reviews describing the general use
of SAXS for biomolecules in solution have been published, covering a number of
different aspects of the technique (Guinier and Fournet 1955; Doniach 2001; Koch
et al. 2003; Putnam et al. 2007; Svergun and Koch 2003; Doniach and Lipfert
2012). Furthermore, a focused review on the use of SAXS to derive global shape
information of folded RNA molecules is also available (Bhandari et al. 2016).

Like all structural techniques, NMR and SAXS each have advantages and
disadvantages, as well as unique strengths and shortcomings. For example, SAXS is
not limited by the molecular size of the particle under investigation (Graewert and
Svergun 2013; Grant et al. 2011; Hura et al. 2009; Jeffries and Trewhella 2013;
Martel et al. 2012) and can describe the contours of molecules with molecular
masses of a few hundred kDa, a size too large for atomic level structure determi-
nation by solution NMR. Solution NMR, on the other hand, can provide detailed
information about the atomic structure and dynamics of molecules, even for rare
conformational sub-states (Sekhar and Kay 2013). However, both techniques are
affected by potentially confounding factors to different degrees. While both methods
ideally require monodispersity of the dissolved molecules, SAXS data quality
is exquisitely sensitive to aggregation, and even a very small percentage (∼1%)
of aggregated species can compromise the data analysis. In contrast, such small
amounts of aggregates would not be observed by solution NMR and the presence
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of very large aggregates does not interfere with structural characterization of the
smaller major component. For both SAXS and NMR, an additional complexity
arises from conformational averaging on different timescales, reflecting the presence
of local as well as global motions, which are important inherent properties of
proteins (Henzler-Wildman and Kern 2007). Therefore, it is desirable to combine
orthogonal techniques, which provide a more comprehensive description of the
structure and dynamics than any individual method alone. In this regard, it is
noteworthy that SAXS and NMR measurements can be performed on the same
solution, ideally lending themselves to be used in an integrative fashion.

Given their complementarity, the integrated use of NMR and SAXS provides a
powerful means to more completely describe the solution behavior of biological
macromolecules, filling-in gaps or inherent imprecisions in the data extracted by
either technique alone. Thus, when characterizing solution structures and architec-
tures, it is desirable to obtain a SAXS shape envelope into which high resolution
structures can be fitted, thus allowing the overall architecture of a multi-domain
protein or multiprotein complex to be visualized.

NMR is an effective method for determining protein structure in solution at
atomic resolution and has been routinely used for over 25 years (Fig. 11.1).
However, for multi-domain proteins, even if a large number of distance-, angle-
and chemical shift restraints are available, the relative orientations of individual
domains are difficult to ascertain, given the predominantly local nature of the NMR-
derived constraints. This limitation can be overcome, to some degree, by using
extensive sets of residual dipolar couplings (RDCs). RDCs can be measured in
solution NMR spectra, if molecules experience weak alignment in the magnetic
field, either caused by the molecule’s own magnetic susceptibility anisotropy or
by employing very dilute liquid crystalline media (Tjandra and Bax 1997). These
couplings contain information about the orientation of the associated inter-nuclear
vector, relative to the molecular susceptibility anisotropy tensor and, therefore,
provide angular restraints for structure calculations. Addition of RDC-derived
restraints to conventional structure determination algorithms results in remarkable
improvements, both locally as well as globally.

Algorithms for determining NMR structures aim to locate the global minimum
of a target function containing terms for covalent geometry, non-bonded contacts,
and the experimentally derived distance and angular restraints. The most important
geometric information is provided by the nuclear Overhauser effect (NOE), which
is translated into distances between proton pairs separated by <6 Å. Despite
their short-range nature, these distances are highly conformationally restrictive,
especially if they involve atoms that belong to units (amino acids or nucleotides) that
are far apart in the linear sequence. Other experimental NMR restraints that provide
short range structural information are three-bond coupling constants and secondary
1H and 13C chemical shifts. Three-bond coupling constants (3J) are related to
torsion angles by the Karplus equation (Karplus 1963), with the 3JHNa coupling
providing direct information about the phi backbone torsion angle. In a similar
way, the empirical correlation between a protein’s backbone conformation (phi/psi
angles) and the difference in 13Ca and 13Cb chemical shifts from random coil values
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Fig. 11.1 Schematic illustration of NMR-provided information. 2D spectrum (middle), NOESY
data and distances (left), chemical shift-derived phi, psi angles (top), J coupling-derived dihedral
angles and RDC-derived orientational restraints (right), are all combined to determine an atomic
model (bottom)

are used in NMR structure determination. 1H chemical shifts are primarily used for
refinement purposes, although recent advances in the ab initio calculation of proton
shifts hold great promise for their routine use in NMR structure determination. In
addition to these originally used parameters, paramagnetic relaxation enhancements
(PREs) (Gillespie and Shortle 1997) and pseudocontact shifts (PCS) (Bertini and
Luchinat 1999) augment the arsenal of geometric restraints that can be obtained by
NMR.

SAXS data are measured as scattering signal intensity at a given value of q, where
q = 4πsin θ/λ, with 2θ the scattering angle and λ the X-ray wavelength. Several
program suites are available for processing SAXS data (e.g., PRIMUS, Scatter)
(Rambo). The SAXS scattering profile (Fig. 11.2) at very small scattering angles
(low q region) is frequently analyzed using the Guinier approximation, since the
data for q close to zero vary linearly with q (Guinier and Fournet 1955). Thus,
plotting the scattering intensity as ln I(q) vs q2 results in a straight line with the
slope equal to – Rg

2/3 and the vertical intercept equal to the natural log of the zero-
angle scattering intensity I(0). In this manner, the radius of gyration, Rg, i.e. the
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Fig. 11.2 Schematic illustration of SAXS data and analysis. (a) Scattering pattern (top), an
experimental scattering intensity profile with fit (middle), and a low-resolution dummy bead model
(bottom). (b) A theoretical scattering intensity profile (middle) and the various basic methods for
analysis of SAXS data

average root-mean-square distance from the center of density in the molecule can
be extracted. Using the Guinier plots for the estimation of Rg, the maximum q
that is acceptable to include in the fit is 1.3/Rg. The extrapolated intensity at zero
scattering angle, I(0), is proportional to the electron density contrast between the
scattering entity and the buffer and can be used to determine the molecular mass
of the molecule (Fischer et al. 2010; Mylonas and Svergun 2007). Plotting I(0) vs
concentration yields a straight line, unless large scale conformational averaging is
present. Indeed, for highly flexible systems, the electron density contrast between
the solute and the solvent is difficult to discern, rendering accurate determination of
the volume and molecular weight values difficult.

Conformational flexibility or large amplitude motions in a molecule can be
discerned from analysis of the scattering data using Kratky plots in which the
scattering data is transformed as q2*I(q) vs q (Fig. 11.2b) (Glatter and Kratky
1982). Kratky plots for well-ordered globular, disordered and highly flexible, as
well as partially ordered entities exhibit characteristic features (Hammel 2012;
Kikhney and Svergun 2015; Rambo and Tainer 2011) that can be used for an initial
characterization of the system under investigation.
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The most powerful means for analyzing SAXS data consists of Fourier trans-
forming the scattering intensity I(q) into a pair-distance distribution function P(r)
(Fig. 11.2b). This function represents a continuous r2-weighted histogram of all
electron-pair distances in the molecule (Glatter 1977). The P(r) function permits
assessment of the overall quality of SAXS data analysis, since Rg and I(0) can be
extracted directly from the P(r) function by integrating the function over all values
of r. Calculating Rg and I(0) directly from P(r) uses all of the experimental data
in real space, compared to solely using the linearly approximated points from the
Guinier plot in the low-q region.

SAXS data together with RDC data, initially, were used to successfully refine
known solution NMR structures of single-chain proteins with simulated annealing
(SA) protocols (Grishaev et al. 2005; Lee et al. 2007). The power of combining
SAXS and NMR, however, is most evident for multi-domain proteins, in which
individual domains are connected by flexible linkers (Hennig and Sattler 2014). For
example, it is possible to determine global architectures of complexes, employing
experimental SAXS and RDC data in conjunction with solution NMR-derived
component structures, as shown by us and others (Wang et al. 2009; Ellis et al.
2009). A very instructive and comprehensive review on the integration of SAXS and
NMR for the analysis of the structural dynamics of modular multi-domain proteins,
using DNA replication proteins as examples, was published recently (Thompson
et al. 2017). In addition, several methods for characterizing flexible systems in
solution using SAXS data have been reported; these include ensemble optimization
methods (Bernado et al. 2007; Schwieters and Clore 2007), a minimal ensemble
search (Pelikan et al. 2009), a basis-set supported SAXS (Yang et al. 2010), an
integrative modeling platform (Forster et al. 2008), a maximum-entropy refinement
(Rozycki et al. 2011), and maximum occurrence method, MaxOcc (Bertini et al.
2012). These approaches entail the generation of a large number of structures to
cover the accessible conformational space, from which a subset of conformers
is selected that fit the experimental SAXS data. The methods differ in the way
the starting conformational ensemble is generated and how the final ensemble is
selected from the pool. Extending such ensemble refinement protocols to include
NMR-derived distance and RDC restraints, in addition to SAXS data, in both, the
pool generation and the optimal ensemble selection, have proven successful for two-
domain proteins that possess significant inter-domain motions (Lemak et al. 2014).

An illustrative example of method integration, aimed at obtaining a more detailed
picture of a macromolecule in solution is our recent study on the structure and
dynamics of a domain-insertion protein (Fig. 11.3). In this case, we integrated
crystallographic, NMR and SAXS data with microsecond-scale atomistic molecular
dynamics to construct a structural model of the overall two-domain system.
In particular, NMR relaxation and paramagnetic relaxation enhancement (PRE)
experiments along with microsecond-scale MD simulations in explicit solvent
were carried out. Using this comprehensive integrated approach, we established
that the two domains in the protein have no fixed relative orientation, although
certain orientations are preferred over others (Debiec et al. 2018). In summary,
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Fig. 11.3 Integration of NMR- or X-ray-derived domain structure information, NMR relaxation
data, SAXS data and long-time scale molecular dynamics simulations permits the characterization
of a probabilistic ensemble of the overall solution structure. The LysM domain is shown in blue, the
CVNH domain in red, the interdomain linkers in green, and the paramagnetic MTSL tag in yellow.
Structures were best fit to the CVNH domain coordinates. Solid contours represent 1 Å3 bins in
the simulation that are occupied by a heavy atom in at least 1% of the ensemble, and transparent
contours represent bins occupied in at least 0.1% of the ensemble

the integrated use of NMR and SAXS provides a powerful means to describe the
solution behavior of biological macromolecules, as the combined data collected
with each method permits one to derive a more complete picture of a multi-
domain protein or multiprotein complex than can be provided by either technique
alone. Thus, when characterizing solution structures of biological systems, one
should consider obtaining a SAXS shape envelope into which high-resolution NMR
structures can be fitted.
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Chapter 12
2DHybrid Analysis

Atsushi Matsumoto and Kenji Iwasaki

Abstract We have developed an approach termed ‘2D hybrid analysis’ for building
three-dimensional (3D) structures from electron microscopy (EM) images of bio-
logical molecules. The key advantage is that it is applicable to flexible molecules,
which are difficult to analyze by the approach in which 3DEM maps are recon-
structed. In the proposed approach, a large number of atomic models with different
conformations are first built by computer simulation. Then, simulated EM images
are produced from each atomic model. Finally, these images are compared with
an experimental EM image to identify the best-fitting atomic model. Two kinds of
models are used to simulate the EM images: the negative-stain model and the simple
projection model. Although the former is more realistic, the latter permits faster
computation. We applied this approach to the averaged EM images of integrin.
Although many of these were reproduced well by the best-fitting atomic models,
others did not closely resemble any of the simulated EM images. However, the
latter group were well reproduced by averaging multiple simulated EM images
originating from atomic models with rather different conformations or orientations.
This indicated that our approach is capable of detecting mixtures of conformations
in the averaged EM images, which should assist in their correct interpretation.
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12.1 Introduction

In this chapter, we describe a computational approach termed ‘2D hybrid analysis’,
which we recently developed for building three-dimensional (3D) structural models
of biological macromolecules by analyzing negative-stain EM images (Matsumoto
et al. 2017). An application of this approach to the averaged EM images of integrin
is also discussed.

A ‘3D hybrid approach’ involving cryo-electron microscopy and X-ray crys-
tallography has been widely and successfully applied in revealing the complete
structure of protein complexes that are difficult to crystallize (Schroder 2015), and
in obtaining information about large-scale conformational changes in biological
macromolecules (Villa and Lasker 2014). In this approach, single-particle analysis
is used to reconstruct a three-dimensional Coulomb potential map (or 3DEM
map). Despite the successful application of this hybrid approach, the reconstruction
is not easy. In fact, it is often very difficult to reconstruct a 3DEM map of a
flexible molecule. Additionally, multiple 3DEM maps are necessary for analyzing
conformational changes in proteins, and consequently an enormous number of EM
images and substantial computational resources for image analysis are necessary for
reconstructing these multiple 3DEM maps. It would therefore be desirable to build
3D structures of macromolecules more easily and more swiftly, without having to
reconstruct 3DEM maps. The 2D hybrid analysis approach was developed to satisfy
these demands.

In 2D hybrid analysis, many atomic models with different conformations are
first prepared. Then, simulated EM images are produced from each atomic model.
Finally, these images are compared with experimental EM images to identify the
best-fitting atomic model. At present, we use two different kinds of simulated EM
image: the simple projection model and the negative-stain model. Previously, we
used only the simple projection model, where each atom is projected as a point
or a filled circle, and we analyzed the EM images of ‘giant’ cadherins to build
3D models successfully (Tsukasaki et al. 2014). However, when we analyzed the
EM images of integrin in a similar way, we encountered problems when similar
simulated EM images were obtained from atomic models that were rather different
in terms of the conformations and orientations (Fig. 12.1). Cadherin typically
exhibits a linear string-like topology, whereas integrin has a compact form. Possibly,
then, this compactness required more-accurate simulated EM images. We therefore
introduced the negative-stain model (Burgess et al. 1997). As shown in Fig. 12.1e,
f, this model was clearly able to differentiate between the two atomic models.

The 2D hybrid analysis approach was developed to build an atomic model from
each EM image, i.e., one atomic model from one image. However, during the
application of this approach to averaged EM images, we often noticed that the EM
image could not be reproduced well from a single atomic model. Instead, the EM
image was reproduced well by combining multiple simulated EM images produced
from atomic models with different conformations and orientations. This indicated
that the conformations and orientations were intertwined in the averaging process
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Fig. 12.1 Example of a case in which atomic models with different conformations and orientations
give similar simple projections.(a, b) Atomic models of integrins represented by sphere models
contacting the supporting films, represented by the green rectangles. The arrows represent the axes
of the coordinate system. These models are projected along the negative direction of the z-axis.
(c, d) Simple projection models of (a) and (b), respectively. (e, f) Negative-stain models of (a) and
(b), respectively. The stain thickness h was set to 30 Å in both cases. (Matsumoto et al. 2017)

(Marabini and Carazo 1994); that is, the molecules with different conformations
and orientations generated similar raw images that were difficult to differentiate,
and were therefore used for making an averaged EM image. Noise in the raw images
would have exacerbated the difficulty in differentiating these images. The successful
reproduction of such averaged EM images indicated that our approach is capable of
detecting mixtures of conformations in the EM images, which should assist in the
correct interpretation of EM images.

12.2 Methodological Overview

12.2.1 Overview of the Computation

In our computational approach, we first built many atomic models with different
conformations by deforming the X-ray crystal structure or the modeled structure
through a computational approach. For the integrin, we used the normal-mode
analysis of the elastic network model (ENM) (Bahar et al. 1997; Tama and Brooks
2005; Tirion 1996). Then, each atomic model was projected in a variety of directions
to produce the simulated EM images, which were compared with the experimental
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EM images to select the best-fitting atomic model. Two kinds of models were used
as the simulated EM images: the negative-stain model and the simple projection
model. The former model is more realistic, but building it requires a longer
computational time. Consequently, the latter model was used to narrow down the
candidate atomic models in a shorter computational time.

12.2.2 Construction of the Elastic Network Model

The ENM is composed of points with masses that are connected by springs. Each
amino acid residue is represented by a single point located at the position of the
Cα atom, and whose mass is the same as the total mass of the residue. The initial
conformation of the ENM was built from the X-ray crystal structure [PDB ID: 3IJE
for integrin (Xiong et al. 2001)]. We connected the representative points of two
amino acid residues by a spring with the same spring constant when one of the
following two conditions was satisfied (Matsumoto et al. 2008): (1) the minimum
interatomic distance between the two amino acid residues is less than the threshold
value dc, which is set to 3.3 Å for integrin; and (2) the two amino acid residues are
on the same chain, and the inter-residue distance is less than or equal to 3; that is, if
the residue number of one of the amino acid residues is m, that of the other is m ± 1,
m ± 2, or m ± 3.

12.2.3 Deformation of Atomic Models

We then built many different atomic models by deforming the X-ray crystal structure
along the lowest-frequency normal modes. The atomic model rk, which is the 3 N-
dimensional vector describing the positions of the N representative points, deformed
along the kth lowest-frequency normal mode of the X-ray crystal structure r0 is
described as follows:

rk (ak) = r0 + akuk,

where uk is the kth lowest-frequency normal-mode vector of the X-ray crystal
structure and ak is the magnitude of the deformation. However, in building models
with large deformations, it is inappropriate to use this equation because linear
movements of atoms often destroy the structure when ak is large. Instead, we
apply the normal-mode analysis and the small deformation in an iterative manner
(Matsumoto and Ishida 2009; Matsumoto et al. 2008; Miyashita et al. 2003) to the
X-ray crystal structure, as follows:

rk(n) = r0 + a0
ku0

k + a1
ku1

k + · · · + an−1
k un−1

k ,
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where rk (n) is the atomic model deformed iteratively n times along the kth lowest-
frequency normal mode and un

k is the normal-mode vector for rk (n) (| un
k | = 1).

In each iteration, the model is deformed so that the RMSD of rk (n) from rk (n – 1)
is 1 Å; i.e., a0

k = a1
k = · · · = an−1

k = √
N . In describing models deformed in the

opposite direction, we use negative integers n. For example, rk(−1)(= r0 − a0
ku0

k)
is the model deformed in the opposite direction with respect to rk(1)(= r0 + a0

ku0
k).

By using this iterative approach, we constructed a library of deformed atomic
models as follows. First, the X-ray crystal structure was deformed iteratively along
the first-lowest-frequency normal mode, and a series of deformed atomic models
r1(n1) (n1 = 0, ±1, ±2, ±3, . . . ) were built. Next, each atomic model r1(n1)
was deformed iteratively along the second-lowest-frequency normal modes, and
series of atomic models r12(n1, n2) (n2 = 0, ±1, ±2, ±3, . . . ) were built, where
r12(n1, 0) = r1(n1). By repeating this process for other normal modes, a library of
deformed atomic models was built.

12.2.4 The Simple Projection Model

From the numerous deformed atomic models, we selected the model that best
reproduced the EM image. To achieve this selection, we built simulated models
of EM images from each atomic model. We built two kinds of model: a simple
projection model and a negative-stain model. Although the latter was more realistic,
building it required a much longer computational time. Therefore, the simple
projection model was used to narrow down the number of candidates, and the
negative-stain model was used to make the final selection.

We will now describe the simple projection model. We start from a deformed
atomic model made of representative points. Each representative point is replaced
by a sphere of uniform density and a radius of 3 Å to build the sphere model
(Fig. 12.2a). The grid points within the spheres are projected onto the xy plane to
produce a simple projection model. We define the simple projection model ρ1(i, j)
by the number of points projected into a pixel (i, j)(i = 1, 2, 3, . . . , imax) (j = 1, 2,
3, . . . , jmax). Here, we assume that the pixel (i,j) corresponds to the square described
by p(i − 1) ≤ x < pi and p(j − 1) ≤ y < pj, where p is the pixel size determined
experimentally.

To compare the experimental EM image I(i, j) and the simple projection model
ρ1(i, j), we first replace I(i, j) with I1(i, j) (=I(i, j) − < I(i, j)>), where < . . . > denotes
the average, to remove the background intensity. If I(i, j) is less than <I(i, j)>, I1(i, j)
is set to zero. Then, to quantify the similarity between I1(i, j) and ρ1(i, j), we define
the score by using the normalized cross-correlation (NCC) as follows:

Sc1 =
∑

i,j

ρ1 (i, j) I1 (i, j) /

√∑

i,j

ρ1(i, j)2
∑

i,j

I1(i, j)2.



186 A. Matsumoto and K. Iwasaki

Fig. 12.2 Illustrations
explaining how the simulated
EM images are produced. (a)
A sphere model on the
supporting film, where each
representative point is shown
by a sphere. (b) An
excluded-volume model. (c)
The simulated negative stains
cover the excluded-volume
model in (b). (d)
Cross-section of (c). The
excluded-volume model in
(b) is drawn within the
volume of the simulated
negative stains

Maximizing this score is equivalent to minimizing the difference between the two
images,

∑
(I1(i, j) − cρ1(i, j))2, where c is a constant.

To maximize the score, we apply rotational and translational manipulations
to each atomic model. By the manipulations, each representative point ra

(a = 1, 2, 3, . . . , N) is moved to a new position r′
a (=tRra + s), where R is

the rotation matrix and s is the translational vector. We assume s=t(pkx, pky, 0) (kx,
ky = 0, ± 1, ± 2, ± 3, . . . ) for faster computations.

To sample the entire range of orientations of the atomic model as evenly as
possible, we prepared more than 230,000 rotation matrices in advance, as follows.
The rotation matrix R is described as (e1, e2, e3), where e1,e2, and e3 are unit column
vectors that satisfy the equation e1 × e2 = e3. We first selected 2562 different
directions for e3. These directions were obtained as position vectors of the apexes
of the icosahedron-based geodesic sphere (Sadourny et al. 1968), whose center is
at the origin. The angle between neighboring vectors is about 4◦. Then, vectors e1
orthogonal to each e3 were computed at 4◦ intervals. Finally, e2 was obtained as
e3 × e1.

12.2.5 Contacts with Support Film

The EM images analyzed here were obtained by the negative-staining method, and
the molecules were assumed to contact the supporting film in a stable manner.
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We utilized this assumption in reducing the number of computations. To measure
the stability of the contact between the molecules and the film, we define the contact
area as follows. We assume that the supporting film is on the xy plane and that the
top (the representative point with the maximum z-coordinate) or the bottom (the
representative point with the minimum z-coordinate) of the atomic model is on
the film. We regard representative points within 10 Å of the xy plane as being in
contact with the plane. We define the contact area S as the area of the minimum
convex polygon that include all the contacting points projected onto the xy plane.
The contact area S is dependent on the orientation, and the largest one is defined
as Smax for each atomic model. The ratio S/Smax is then used as the measure of the
stability of the contact.

12.2.6 The Negative-Stain Model

In some cases, several atomic models with quite different conformations and
orientations give rise to similar simple projection models (Fig. 12.1). To differentiate
between these atomic models, we used a more-realistic projection model, i.e.,
the negative-stain model. To produce the negative-stain model, we followed the
approach proposed by Burgess et al. (1997). First, low-pass filtering (with a cut-
off frequency ν1) and thresholding are applied to the volume occupied by the sphere
model (Fig. 12.2a) that is used to produce the simple projection model, in order
to build an excluded-volume model (Fig. 12.2b). Then, the volume within h Å of
the support film is added to this excluded volume. Note that the atomic model
contacts the support film. Again, low-pass filtering (with a cut-off frequency ν2) and
thresholding are applied to this volume to obtain a new volume (Fig. 12.2c, d), from
which the excluded volume of the atomic model is removed to acquire the volume
of the simulated negative stain. The grid points within the volume are projected onto
the xy plane to produce the negative-stain model. The number of points projected
into a pixel (i, j) is counted as ρN(i, j). We assume that the intensity of the incident
electron beam decays exponentially with an increase in the thickness of the negative
stain. Thus, the negative-stain model ρ2(i, j) is described as exp(−cdρN(i, j)), where
cd is a coefficient (>0). Because cdρN << 1 is expected, ρ2(i, j) is approximately
equal to 1 − cdρN .

Note that the cut-off frequencies ν1 and ν2 are kept constant during the entire
series of computations, but these might be dependent on the kind of negative stain
that is used (uranyl acetate was used for integrin). Consequently, they must be
optimized before performing the search. In the case of integrin, we optimized them
so that the EM images of integrin in Ca2+solution were reproduced well on average
by the X-ray crystal structure. On the other hand, the thickness h is optimized for
each EM image.

To quantify the similarity between the experimental EM image I(i, j) and the
negative-stain model ρ2(i, j), we define a score by using zero-means normal cross-
correlation(ZNCC) as follows:
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Sc2 =
∑

i,j

(ρ2 (i, j) − 〈ρ2〉) (I (i, j) − 〈I〉) /

√∑

i,j

(ρ2 (i, j) − 〈ρ2〉)2
∑

i,j

(I (i, j) − 〈I〉)2.

Because ZNCC remains unaffected by the addition of a constant and multipli-
cation with a positive constant, ρ2(i, j) in the above equation can be replaced by
−ρN(i, j).

12.2.7 Strategy for Selecting the Best-Fitting Atomic Model

In the 2D hybrid analysis, two kinds of simulated models of EM images—the simple
projection model and the negative-stain model—are built from each atomic model
to select the best-fitting atomic model. We define the best-fitting atomic model as the
one that produces the negative-stain model that is most similar to an experimental
EM image, because the negative-stain model is more realistic than the simple
projection model. However, because it is time consuming to build the negative-stain
model, the simple projection model is also used to achieve faster computations in
the following way.

1. By using the simple projection model, all the orientations of each atomic model
are searched to compute Sc1 values.

2. The orientations with the local maxima of Sc1 are identified.
3. Negative-stain models are built for the orientations near the local and global

maxima of Sc1, apart from those with a small contact area.
4. The highest value of Sc2 is identified and used for comparison with other atomic

models with different conformations to identify the best-fitting atomic model.

This strategy was developed by comparing the simple projection model and the
negative-stain model in detail. For comparison, we built both of these models from
the X-ray crystal structure of integrin in all possible orientations and we calculated
the scores for the experimental EM images of clasped integrins in Ca2+ solution
(Takagi et al. 2002) that had conformations similar to the X-ray crystal structure. By
means of this comparison, we found that the global maxima of the two simulated
models were not always observed in the same orientation. However, even when
the two maxima were not in the same orientation, the global maximum of Sc2 was
always observed near one of the local maxima of Sc1. Therefore, we can find the
global maximum of Sc2 by searching the orientations around the local and global
maxima of Sc1. In this way, we can reduce the number of computations for Sc2, each
of which requires a much longer time than the corresponding computation for Sc1.

In addition, we computed the contact areas of the X-ray crystal structure in
all possible orientations, and we observed that the atomic models had relatively
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large contact areas when they had maximum values of Sc2. On the basis of
this observation, we assume that the molecules contact the supporting film with
relatively large contact areas. This also helps to reduce the number of computations
by limiting the number of orientations of the atomic models.

12.2.8 Expression and Purification of Integrins

Soluble integrin heterodimers were constructed by using a previously described
strategy (Takagi et al. 2001). Briefly, expression constructs for the α-subunits
contained the extracellular portion of the α-chain (residues 1–960 for αV) followed
by a 30-residue ACID-Cys peptide. Constructs for the β-subunits contained the
extracellular portion of each β-chain (residues 1–691 for β3) followed by a tobacco
etch virus (TEV) protease-recognition sequence, a 30-residue BASE-Cys peptide,
and a hexahistidine tag. When combined, the C-terminal ACID-Cys and BASE-
Cys segments formed an intersubunit disulfide-bridged α-helical coiled coil (called
a ‘clasp’), which could be released by treatment with TEV protease (Takagi et al.
2002). Combinations of the α and β constructs were co-transfected into CHO Lec
3.2.8.1 cells to establish stable cell lines. Recombinant integrins were purified from
the culture supernatants by immunoaffinity chromatography using anti-coiled-coil
antibody 2H11 (Chang et al. 1994), followed by gel filtration on a Superdex 200 HR
column (1.6 × 60 cm, Pharmacia) equilibrated with 20 mM Tris, 150 mM NaCl,
pH 7.5 (TBS) containing 1 mM CaCl2 and 1 mM MgCl2. The peak fraction was
concentrated to 1 mg/ml and stored at −80 ◦C until used.

12.2.9 Electron Microscopy and Image Processing

Approximately 10 μg of each purified integrin was subjected to an additional gel-
filtration process on a Superdex 200 HR column equilibrated with 50 mM Tris, 150
mM NaCl, pH 7.5, containing 5 mM CaCl2 or 1 mM MnCl2. After gel filtration, the
samples were immediately absorbed onto glow-discharged carbon-coated copper
grids. Samples were negatively stained with 2.5% (w/v) uranyl acetate and examined
under an electron microscope (H9500SD, Hitachi, Japan) operated at 200 kV with
a nominal magnification of ×80,000. Images were recorded on a 2048 × 2048
CCD camera (TVIPS, Gauting, Germany). Single-particle EM analysis, including
particle selection and 2D classification and averaging, was performed by using the
EMAN suite (Ludtke et al. 1999) and IMAGIC program (van Heel et al. 1996).
Particles were selected from individual frames (with an effective pixel size of
0.21 nm) by using the Boxer program in the EMAN suite. The particle images were
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rotationally and translationally aligned by a multi reference alignment procedure,
and subjected to multivariate statistical analysis by specifying 20 classes using the
IMAGIC program.

12.3 Application of the 2D Hybrid Analysis

12.3.1 Electron Microscopyimages of Integrins in Ca2+
Solution

We applied the 2D hybrid analysis to 20 EM images of integrin in Ca2+ solution
and we obtained the best-fitting atomic model for each EM image. As shown in
Table 12.1, the scores for the best-fitting atomic models (Sc2

max) were generally
high, suggesting that the models reproduced the EM images well. Actually, the X-
ray crystal structure without deformation fitted well to many of the EM images,
as indicated by the scores (Sc2

0). In such cases, the best-fitting models were not

Table 12.1 Summary of the
analysis of EM images for
integrins in Ca2+ solution by
using the X-ray crystal
structure and the best-fitting
atomic models

Name Sc2
0 Sc2

max �Sc2
0(%)a RMSD(Å)b

Ca-001 0.823 0.840 2.0 19.8
Ca-002 0.861 0.868 0.9 14.7
Ca-003 0.888 0.925 4.2 6.1
Ca-004 0.884 0.901 1.9 9.4
Ca-005 0.867 0.881 1.6 7.8
Ca-006 0.923 0.933 1.2 4.3
Ca-007 0.865 0.870 0.6 2.3
Ca-008 0.802 0.887 10.6 9.2
Ca-009 0.866 0.892 2.9 5.0
Ca-010 0.909 0.931 2.5 6.4
Ca-011 0.833 0.902 8.3 8.2
Ca-012 0.863 0.881 2.1 11.3
Ca-013 0.833 0.835 0.3 2.0
Ca-014 0.797 0.908 13.8 15.4
Ca-015 0.917 0.924 0.7 4.1
Ca-016 0.883 0.903 2.3 7.4
Ca-017 0.871 0.878 0.7 3.0
Ca-018 0.824 0.859 4.2 4.7
Ca-019 0.854 0.899 5.3 8.8
Ca-020 0.812 0.912 12.4 13.4

Matsumoto et al. (2017)
a(Sc2

max − Sc2
0)/Sc2

0. Values larger than 10 appear in
boldface
bRMSD of best-fitting atomic model from X-ray crystal
structure
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Fig. 12.3 Contour maps of Sc2 scores for three EM images, (a) for Ca-006, (b) for Ca-020, and
(c) for Ca-002 in Fig. 12.5 plotted as a function of the index numbers n1 and n2 for deformed
atomic models r12 (n1,n2). The origin (0,0) corresponds to the X-ray crystal structure. The contour
lines are drawn at intervals of 0.01, starting from the maximum scores. The peaks are indicated by
crosses. (Matsumoto et al. 2017)

too different from the X-ray crystal structure, as indicated by the small root-
mean-square deviation (RMSD). Corresponding to small values of the RMSD, the
increments in the scores from those of the X-ray crystal structure (Sc2

0) were
generally not very large (the average increments were 4%). However, there were
cases in which the increments were more than 10% (written as bold numerals in
Table 12.1). In such cases, the RMSDs were relatively large, and the X-ray crystal
structure often incorrectly fitted the EM images (data not shown), indicating that the
fitting was sensitive to conformational changes in the atomic model.

To examine how fitting was dependent on the conformation, we computed the
Sc2 scores for a range of atomic models r12(n1, n2), built by deforming the X-ray
crystal structure along the two lowest-frequency normal modes. These are shown as
contour maps in Fig. 12.3.
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For about half of the EM images, we obtained contour maps with a single peak
surrounded by crowded contour lines (see Fig. 12.3a, b), suggesting that the score
decreased rapidly as the conformation deviated from the peak. Figure 12.3a shows
the contour map for an EM image that was reproduced quite well by the X-ray
crystal structure, whereas Fig. 12.3b shows the contour map for an image that was
reproduced well only by atomic models that differed markedly from the crystal
structure. Clearly, the peak was closer to the origin in Fig. 12.3a than in Fig. 12.3b,
where the origin corresponded to the X-ray crystal structure. This result therefore
shows that it is important to use an appropriate atomic model to achieve a good fit.
In other words, this result shows that it is possible to identify a unique atomic model
by the proposed 2D hybrid analysis approach.

12.3.2 Improperly Averaged Electron Microscopyimages

For the remaining EM images, multiple peaks appeared to be present in the contour
maps (Fig. 12.3c), indicating that many conformations fitted well. The EM images
studied here were averaged images and, in principle, the averaging should have
been performed by using raw images of molecules with the same conformation and
orientation. However, this is actually a difficult task, as described in the introduction.

This contour map suggests that raw images of molecules with relatively large
differences in conformations or orientations were averaged. Indeed, Fig. 12.4
demonstrates how the averaging of the various negative-stain models reproduced
the EM image quite well. The contour map in Fig. 12.3c is for the EM image shown
in Fig. 12.4a. The negative-stain model built from the best-fitting model to this
image is shown in the upper left-hand corner of Fig. 12.4c, and is not very similar
to the EM image. Other models in Fig. 12.4c were built from the conformations
that corresponded to peaks in the contour map. Actually, the peaks were selected
not only from r12(n1, n2), but also from the entire range of conformations. By
combining these negative-stain models with the different weights (cp), we were
able to obtain the combined (averaged) negative-stain model (Fig. 12.4b), which
appeared more similar to the EM image than did any negative-stain model of the
peak conformations.

We performed the same analysis on other EM images of integrins in Ca2+
solution; the results are summarized in Table 12.2, and the combined negative-stain
models are shown in Fig. 12.5. There were several cases in which relatively large
increments of the score (�Sc2) resulting from combinations of the negative-stain
models were observed (written as bold numerals in Table 12.2). In such cases, a
number of peak conformations were observed, although many of them made only a
small contribution (small cp values), as indicated by the numerals in parentheses.
Actually, each averaged EM image was reproduced relatively well by a much
smaller number of negative-stain models. In Table 12.2, the minimum number of
negative-stain models required to achieve 99% of Sc2

multi is listed as n99
c for each

EM image. This number correlated well with �Sc2.
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Fig. 12.4 Demonstration of how a combination of negative-stainmodels closely reproduced an
EM image. (a) EM image of integrin in Ca2+ solution (Ca-002 in Fig. 12.5). (b) Combined
negative-stain model. (c) Negative-stain models of peak conformations used to build the model
in (b). Only those models with weighting factor cp>0.1 are shown. Values of Sc2 and cp are given
beneath each negative-stain model in (b) and (c). (Matsumoto et al. 2017)

Fig. 12.5 Combined negative-stain models for reproducing experimental EM images of integrin
in Ca2+ solution. The experimental EM image is shown above each model for comparison. A label
for each EM image is also given. (Matsumoto et al. 2017)
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Table 12.2 Summary of
combinatorial analyses of EM
images for integrins in Ca2+
solution

Name Sc2
multi �Sc2(%)a Number of peaksb n99

c

Ca-001 0.894 6.4 42 (9) 4
Ca-002 0.912 5.0 50 (7) 2
Ca-003 0.931 0.6 8 (8) 1
Ca-004 0.937 4.0 116 (6) 4
Ca-005 0.932 5.8 45 (6) 3
Ca-006 0.947 1.5 15 (10) 2
Ca-007 0.912 4.8 59 (6) 3
Ca-008 0.910 2.6 5 (4) 2
Ca-009 0.930 4.3 45 (4) 3
Ca-010 0.944 1.4 15 (10) 2
Ca-011 0.925 2.5 13 (12) 3
Ca-012 0.917 4.0 46 (6) 3
Ca-013 0.864 3.5 77 (5) 3
Ca-014 0.912 0.4 4 (3) 1
Ca-015 0.934 1.1 19 (14) 2
Ca-016 0.933 3.3 18 (10) 3
Ca-017 0.916 4.4 47 (4) 4
Ca-018 0.883 2.8 7 (7) 3
Ca-019 0.913 1.6 15 (13) 2
Ca-020 0.921 1.0 10 (8) 2

Matsumoto et al. (2017)
a(Sc2

multi − Sc2
max)/Sc2

max × 100, where Sc2
max is listed in

Table 12.1. Values of 4 or more appear in boldface
bThe number of peaks whose coefficients (cp) were larger
than 0.01 is given in parentheses

Note that our result differed from that of the so-called ‘Einstein-from-noise’
(Henderson 2013; van Heel 2013), which describes how any image can be repro-
duced by averaging many noise images. This phenomenon occurs because noise
images are uncorrelated to each other. Thus, the more noise images we use, the
better the averaged images we get. On the other hand, the negative-stain models of
the peak conformations were strongly correlated to each other, because they were
similar to the targeted EM image. Furthermore, we needed to combine only a few
images at most to reproduce the averaged EM images well, and further increments
in the number of images produced little improvement (data not shown).

12.4 Concluding Remarks

We have developed an approach for building atomic models that reproduce the
EM images of proteins. In this approach, many atomic models with different
conformations are initially prepared. These are obtained by performing a computer
simulation using the X-ray crystal structure or the modeled structure as the initial
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model. For integrin, we performed a normal-mode analysis of the elastic network
model. However, other computational methods can also be employed. The use of
finer simulations, such as all-atom molecular dynamics simulations, should increase
the reliability of the results. Simulated EM images are then produced from each
atomic model and these are compared with the experimental EM images to select the
best-fitting atomic model. We use two kinds of models as the simulated EM images:
the negative-stain model and the simple projection model. The former model is
more realistic, but building it requires a longer computational time. Therefore, the
latter model is used to produce a series of candidate atomic models in a shorter
computational time.

The use of the negative-stain model enables us to analyze the averaged EM
images in detail. Originally, we intended to use the 2D hybrid analysis to find the
best-fitting atomic model for each EM image, i.e., one atomic model for one image.
However, we often encountered cases where an averaged EM image could not be
reproduced by a single atomic model. Instead, it was reproduced well when we
combined multiple negative-stain models produced from atomic models with rather
different conformations. This indicates that great care must be taken in interpreting
an averaged EM image, because two or more different conformations might be
mixed in the image. Also, it indicates that our proposed approach can detect such
mixtures.
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Chapter 13
Hybrid Methods for Macromolecular
Modeling by Molecular Mechanics
Simulations with Experimental Data

Osamu Miyashita and Florence Tama

Abstract Hybrid approaches for the modeling of macromolecular complexes that
combine computational molecular mechanics simulations with experimental data
are discussed. Experimental data for biological molecular structures are often
low-resolution, and thus, do not contain enough information to determine the
atomic positions of molecules. This is especially true when the dynamics of large
macromolecules are the focus of the study. However, computational modeling can
complement missing information. Significant increase in computational power, as
well as the development of new modeling algorithms allow us to model structures
of biological macromolecules reliably, using experimental data as references. We
review the basics of molecular mechanics approaches, such as atomic model force
field, and coarse-grained models, molecular dynamics simulation and normal mode
analysis and describe how they could be used for flexible fitting hybrid modeling
with experimental data, especially from cryo-EM and SAXS.

Keywords Cryo-EM · SAXS · Normal mode analysis · Molecular dynamics
simulations · Coarse-grained models · Fitting · Modeling

13.1 Hybrid Approach for Structure Modeling from Low
Resolution, Low Information Experimental Data

Three-dimensional structures of biomolecules provide critical information to elu-
cidate their mechanism. X-ray crystallography has been the major approach that
provides the detailed atomic resolution structural information of the molecules
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(Garman 2014). However, the fundamental requirement for this approach – crys-
tallization of the molecular complexes – often makes its application to large
dynamic systems a significant challenge. Thus, complementary information from
other experiments is important (Lander et al. 2012). However, such information
is typically low-resolution, i.e., atomic details cannot be directly obtained from the
data itself. For example, spectroscopy experiments do provide temporal information,
but often only for specific parts of the system. Small angle X-ray scattering (SAXS)
provides information of structures in solvent condition near native environment, but
only as a one-dimensional profile related to the distribution of atom-pair distances
(see another Chapter). Cryo-electron microscopy (EM) has been garnering attention
due to the technological advances, which allow the 3D model reconstruction of large
macromolecules at near atomic level resolution (Frank 2017). Still, the resolution is
typically not high enough for ab initio structure modeling. There is great potential
for EM technology to improve and raise the resolution limit (see another Chapter).
However, since an advantage of the EM method is to capture functional states
and dynamics of biomolecules, certain fractions of the resulting data will continue
to be low-resolution due to heterogeneity. Moreover, the experimental data from
cryo-EM is a collection of 2D snapshots of single particles, which can potentially
provide a wealth of information about the structural heterogeneity in conformational
ensembles related to function. Lastly, X-ray free electron laser (XFEL) is an exciting
new development. Using its extremely bright X-ray pulse, biomolecular complexes
can be observed without the need for the samples to be crystallized (Gallagher-Jones
et al. 2016; Barty 2016; Miyashita and Joti 2017; Miao et al. 2015). While XFEL
is still in the development phase in terms of both experimental and computational
techniques, the field is advancing and more results are being reported.

Hybrid approaches aim to combine multiple experimental data at a variety of
resolutions and details to obtain a comprehensive picture of biological molecules’
structure and dynamics in order to reveal the mechanistic details of their functions
(Lander et al. 2012). Computation is an essential part of this process. Biological
molecules have complex structures and it is difficult to predict their expected
conformational transitions by mere visual inspection. Computational models that
define the mechanical property of the structures based on chemistry, physics and
numerical algorithms to predict natural motions are essential for accurate modeling.
Mathematical descriptions need to be established to integrate multiple experimental
data into the modeling procedures. In this chapter, we will review the approaches
for flexible fitting, where a known crystal or modeled structure is used as the starting
point and to create new model structures that are consistent with experimental data
utilizing molecular mechanics simulations of conformational transitions. We will
focus on cases where the structural components are already assembled. Methods to
assemble the biomolecular complexes from subcomponents based on experimental
data are discussed in other chapters.
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Fig. 13.1 An example of
MD based flexible fitting. An
X-ray structure of elongation
factor 2 (EF2) is not in
agreement with EM map.
Using MD based flexible
fitting, the conformational
change of EF2 was simulated
to construct a structural
model that agrees with the
EM map (Miyashita et al.
2017). (Image created by
VMD Humphrey et al. 1996)

13.2 Why Flexible Fittings?

Cryo-EM is becoming an important tool for structural biology. It does not require
samples to be crystalized. The resolution of the results from cryo-EM used to
be relatively low (∼10 Å), but it was still very informative for studying large
macromolecules that are beyond the reach of X-ray crystallography. Recent tech-
nological advances as well as development of software that sort out the noise and
conformational heterogeneity in the data extended the limit of cryo-EM, and now
the method provides atomic level resolutions (discussed in another Chapter in this
book).

Yet, achieving atomic resolutions is not the only goal of cryo-EM studies. When
functionally important dynamics of macromolecular complexes are studied, even
low-resolution maps are valuable, since it may provide crucial information to con-
struct hypotheses of mechanisms related to function. Indeed, Cryo-EM experiments
can often capture more functional conformations than X-ray crystallography (for
example (Unverdorben et al. 2014)). The flexible fitting approach is most useful
in such a context. In cases where detailed atomic structure of one conformation is
available from X-ray crystallography or modeling, while cryo-EM data provides
information on other functional, details of the new conformational states can be
modeled using flexible fitting approaches (Fig. 13.1).

13.3 Strategy Used for Flexible Fitting

The conceptually simplest form of the flexible fitting approach would be – (1)
to generate a large number of models that are mechanistically and biochemically
sound, and then (2) among these, to select the structures that are in agreement with
available experimental data. Here, efficiency to generate candidate structures, or
sampling efficiency, is a critical part of the algorithm, since the targets of hybrid
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modeling tend to be large macromolecular complexes. Therefore, the commonly
used algorithms employ (3) various techniques to focus the sampling to conforma-
tions that agree well with experimental data set. We discuss such algorithms in the
following section.

13.4 Algorithms to Generate Candidate Structures

In this section, we will describe algorithms to generate candidate structures that
are chemically sound and biochemically meaningful. A widely known approach for
such conformational sampling is molecular dynamics (MD) simulation (Perilla et al.
2015). In MD, a set of equations and parameters to describe the energetics of molec-
ular structures (usually via classical mechanics) are defined based on theoretical
considerations and calibrations to reproduce experimental data. The major part of
such potential energy function consists of the energetic terms, such as covalent bond
energy, Ubond, angle energy to keep correct angles between two covalent bonds,
Uangle, dihedral term to reproduce commonly observed dihedral angles, Udihedral. In
addition, non-bonded interactions such as electrostatic interaction between atomic
charges, Uelec, and repulsive and weakly attractive vdw interactions, Uvdw, are also
considered (Fig. 13.2b). Thus, the total energy is defined as:

Umol = Ubond + Uangle + Udihedral + Uelec + Uvdw

Note that these are all functions of atomic coordinates, x, as Umol(x). Several sets
of equations and parameters have been historically developed and each parameter set
(also called “force field”) uses slightly different equations and other modifications
to the potential energy functions (Case et al. 2005; Huang et al. 2017). With this
function, forces on each atom resulting from interactions are calculated as,

Fig. 13.2 EF2 shown in different models (a) Ribbon model. (b) All-atom model; hydrogen atoms
are not shown. For MD simulations, solvent molecules are added. (c) Cα model. In this model,
only Cα atoms are considered and pseud-bonds and angles are used to approximately simulate the
dynamics of protein molecules. (d) Elastic network model. All pairwise atomic interactions are
approximated as springs
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F = –dUmol (x) /dx

where the motions of atoms are estimated using simple Newton equation. However,
this can be done only in an incremental manner (stepwise numerical integration),
and one step typically advances the motions of the atoms by just 1–2 femto-
second, requiring extensive computational time to obtain large scale conformational
changes. Yet, it is probably the most reliable method that can generate the structures
that are physicochemically valid.

Here, sampling inefficiency poses as a critical issue. Even though each structure
is accurate, if the MD fails to sample the structures that are represented by the
experimental data, it does not serve the purpose of molecular modeling. A variety
of techniques have been proposed to enhance the sampling efficiency and those are
also incorporated into the applications for modeling.

One approach to speed up conformational sampling is MD simulation with
coarse-grained models (Saunders and Voth 2013; Takada et al. 2015). In these
models, not all the atoms in the system are explicitly considered in the simulation;
some groups of atoms are combined and represented as one pseudo-atom; for
example, one residue can be represented by one pseudo-atom (Fig. 13.2c). In
addition, solvent molecules are not usually considered. Standard all-atom MD
simulation requires water molecules to be explicitly included, since the current
force fields are not designed to run simulations in vacuum. Simply not considering
water molecules in coarse-grained models significantly reduces the number of force
calculations and speeds up the MD simulations. Obviously, this approach cannot
produce atomic level detailed structural models as the end results; however, it is
often useful since experimental data itself may not have enough information to
support the atomic level details.

Even further coarse-graining has been employed for flexible fitting. One such
approach is through elastic network models (Tirion 1996). In elastic network
models, atomic details are completely discarded – the molecular structure is
represented by a group of pseudo-atoms, each representing a few to several atoms,
and interactions between these pseudo-atoms are modeled by simple harmonic
potential. Although some variations exist, in its original form, all pseudo-atoms are
treated equally and all harmonic potentials are defined so that its energy minimum
conformation is its original structure.

U =
∑

i,j,rij <R

1

2
k
(
rij − r0

ij

)2

where R is a cutoff parameter and interactions are defined only for the atomic pairs
that are within the cutoff. In other words, the molecular complex is considered as an
“elastic” object that could deform. Despite its simplicity, it has been shown that such
potential function is sufficient to simulate large scale conformational transitions
(Tama and Sanejouand 2001).
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Dynamics of the molecule is then simulated typically using normal mode
analysis with this potential (Tirion 1996; Tama and Sanejouand 2001; Mahajan and
Sanejouand 2015). In normal mode analysis, the potential energy surface around
the original structure is examined, and dynamics is represented as a combination of
normal mode coordinate, q, associated with normal mode vectors, al.

xn (q) =
M∑

l=1

an
l ql + xn

0

where al = {
an
l

}
, q = {ql} and x0

n represents the original coordinate of atom n. With
this equation, the motions of the atoms are represented as a set of collective motions
represented as normal modes. Normal modes, al, are usually sorted in the way that
l = 1 corresponds to the lowest frequency mode, i.e., most flexible conformational
changes, and then higher l for higher frequency modes. M is a parameter to choose
how many normal modes are used to represents the motions and typically 10 lowest
frequency modes are sufficient to describe important motions of proteins. In contrast
to MD simulations, this is computationally efficient, and thus it was used in several
important large systems for flexible fitting (Tama et al. 2003). Computations could
further be accelerated by segmenting the structure into rigid body blocks of such as
residues or domains (Tama et al. 2000) (Fig. 13.3).

With recent increase in computational power, the advantage of such simplicity is
lessened, but it is still valuable because it can be defined for almost any system
quickly, regardless of chain connectivity or missing residues. Often the original
structures have missing residues and structural components, due to the large size
of the system often studied in cryo-EM, and the preparation of all atom force fields
are often not a simple task for such large systems.

Furthermore, this model can be applied to molecular systems with no atomic
model. For example, it can be applied to the 3D volume map from EM reconstruc-
tions (Tama et al. 2002; Jin et al. 2014). Inside the continuous 3D map, a set of
pseudo-atoms can be placed so that they represent the density of the volume as
closely as possible. Then normal mode analysis with elastic network model can be
applied to simulate expected dynamics purely based on the shape of the system.
This approach has been used to analyze the conformational variations from single
EM dataset, by generating variations of 3D models from a tentative, averaged, map
(see following Section).

There are also other approaches to generate structural models using simplified
potentials. DireX uses an elastic network model with iteratively updated distance
restraint and random walk displacements to generate fitted structures (Schröder
et al. 2007). YUP.SCX also uses a pair-wise distance potential, which are atom
independent but more complex than the elastic network model. Structures are then
deformed to fit the experimental data using simulated annealing optimization (Tan
et al. 2008).
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Fig. 13.3 Examples of normal mode analysis. (a) Two structures represent the conformational
change represented by the lowest frequency (softest) mode of EF2. (b) The second lowest
frequency mode. The molecule is rotated to show the motions. Calculations using ElNemo (Suhre
and Sanejouand 2004). (c) An example of conformational change of EF2 simulated using iterative
NMA (Miyashita et al. 2003). (Images by Chimera Pettersen et al. 2004)

13.5 Quantification of Structure-Data Agreement

The goal of flexible fitting approach based on dynamics simulations is to identify
structures that agree with experimental data and propose them as possible models
for further investigation. In other chapters, a variety of experimental techniques to
study biological structures are discussed.

For the modeling purpose, one essential requirement is that experimental data
can be computationally simulated from a given model, at least approximately. This
is not always trivial. Experimental data that describes some distance information
between some atom groups, such as FRET or cross-linking, have often been used
in MD simulations. Generally, it is rather straightforward to apply a constraint to
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an MD simulation so that the distances between defined atom groups stay within a
certain range. However, exact distances are not obtainable from experimental data
and the data may represent the average distance between various conformations.
Such uncertainty needs to be taken into account for the modeling.

In another example, SAXS profile contains information regarding the atomic-
pair distances, but reported profiles are the difference between the one of proteins
in solution and the one of pure solvent (Kikhney and Svergun 2015). Thus,
the algorithms to simulate SAXS profile from protein structures need to model
the scattering from solvent atoms implicitly (Svergun et al. 1995; Nguyen et al.
2014). Alternatively, large scale MD simulations with solvent molecules need to be
performed (Merzel and Smith 2002; Oroguchi and Ikeguchi 2011). As such, some
experimental data are not easy to incorporate into the modeling (H/D exchange data
as another example).

In addition, some experimental data are not easy to be implemented into MD
based flexible fitting approaches. Randomly generating a large number of structures
and then finding ones that agree with experimental data is possible but not an
efficient approach. Especially for large macromolecular complexes where hybrid
approaches are often employed, the sampling could be a serious issue. Thus,
the more efficient approach is to guide the conformational changes toward the
structures that agree with experimental data. A common approach is the use of
biasing potential, Ubias, which is included in MD simulation as an additional virtual
potential energy:

U (x) = Umol (x) + Ubias (x)

By adjusting such virtual forces, conformations that agree with experimental data
could be generated. To implement this approach to MD simulation, we need to
calculate derivatives of the scoring function as function of atomic coordinates or
collective coordinates, such as normal modes. Not only for MD, but also for other
optimization techniques, derivatives can make the computation significantly faster.
However, such derivatives are difficult to calculate for the scoring functions with
some experimental data.

There are also various approaches that employ Monte-Carlo type algorithms
instead of MD. These algorithms focus on the generation of energetically accessible
conformations rather than dynamics simulations. Choices of trial moves are not
straightforward, but several algorithms have been successfully applied to generate
fitted conformations efficiently. Such techniques are described in other chapters.

We will focus on MD based flexible fitting using 3D maps from cryo-EM.
We will also briefly discuss the flexible fitting algorithms against SAXS data. In
addition, multiple experimental data can be simultaneously used for modeling of
complex systems (Fritz et al. 2013).
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13.6 Flexible Fitting Against EM Data Using Elastic
Network Normal Mode Analysis

In an early work, normal mode analysis with elastic network models was used to
perform flexible fitting for large molecular complexes (Tama et al. 2004). Elastic
network models could be applied to the systems at virtually any size even with
limited computational resources, by adjusting the level of coarse-graining, i.e., the
size of atom groups each pseudo-atom represents. The simple form of the potential
energy function allows computations quickly performed using analytical equations.
The similarity score between the model and experimental map, ρexp, is defined as a
conventional correlation coefficient,

CC =
√∑N

i ρsim(i)ρexp(i)
√∑N

i ρsim(i)2
√∑N

i ρexp(i)
2

(13.1)

where, ρ(i) is the density value of voxel i, and N is the number of voxels in the map.
CC approaches 1 when the simulated map and experimental data are in agreement.
Electron density map from the atomic model, ρsim, is generated using Gaussian
kernels, g, placed on atom positions:

ρsim(i) =
N∑

n=1

∫

V (i)

g
(
x, y, z; xn, yn, zn

)
dxdydz

g
(
x, y, z; xn, yn, zn

) = exp

[
− 3

2σ 2

{(
x − xn

)2 + (
y − yn

)2 + (
z − zn

)2
}]

where xn = (xn, yn, zn) is the position of nth (pseudo-) atom. σ is a parameter
that adjusts the width of Gaussians and is selected based on the resolution of
the target experimental map. With these definitions, correlation coefficient is an
analytical function of atomic coordinates and thus it derivatives can be calculated
using analytical equations, allowing optimization with efficient algorithms:

CC(q) =
M∑

l=1

Flql + CC(0)

where Fl = ∂CC/∂ql is the derivative of CC by normal mode coordinate ql.
This equation can be used to estimate the increase in correlation coefficient
that can be expected by deforming the structure following a given normal mode
vector. Typically, 10 normal modes are sufficient to represent expected large scale
conformational transitions. Using the derivative values, a structure can be deformed
so that the correlation coefficient is maximally increased by a small amount of
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conformational deformations. Here, structure optimization is performed iteratively;
normal mode analysis describes the conformational changes as “linear vectors”
that represent the motion of atoms, but actual motions in biological molecules are
quite nonlinear, including hinge bending motions, rotations and twisting motions.
By performing normal mode analysis iteratively, such nonlinear motions could be
simulated with reasonable accuracy (Miyashita et al. 2003). Typically, less than
a hundred iteration steps were sufficient to reach the convergence. The program
to perform such flexible fitting can be obtained as the original source code,
NMFF (https://mmtsb.org/software/nmff.html). In a package, NORMA, normal
mode based flexible fitting was implemented using an optimization routine (Suhre
et al. 2006). Another new package, iMODFit, uses normal mode analysis with
internal coordinates and the Monte-Carlo procedure to sample conformations
(Lopéz-Blanco and Chacón 2013).

In a study describing early adaptation of flexible fitting, NMFF was used to
perform flexible fitting of a homology-based atomic model of SecYEG dimer
structure into the E. coli protein conducting channel (PCC) electron microscopy
densities (Mitra et al. 2005). Prior to this study, two possible arrangements of the
dimer, namely “front-to-front” and “back-to-back”, were being discussed. A model
with higher correlation coefficient was obtained by NMFF when the front-to-front
initial structure was used than when back-to-back structure was used, suggesting
that a front-to-front arrangement of two SecYEG complexes in the PCC is more
favorable, and supports channel formation by the opening of two linked SecY halves
during polypeptide translocation.

In a more recent study, cryo-EM single particle analysis was used to obtain the
structure of a macromolecular complex of transcription factor IID with IIA and core
promoter DNA. The map was at sub-nanometer resolution and multiple levels of
computational modeling were performed to construct atomic models. The system
consists of a large number of subunits, and available crystal structures as well as
homology models were first fitted into the map as rigid bodies. When the rigid body
fitting was found to be poor, indicating some conformational changes, iMODfit was
used for flexible fitting (Louder et al. 2016).

13.7 Flexible Fitting with Molecular Dynamics

Although, there are several advantages in the fitting algorithm with elastic network
models, it suffers from a limitation that it cannot fully describe nonlinear conforma-
tional dynamics and motion such as domain association and dissociation due to its
simple energy function. For this, molecular dynamics method with more atomistic
detail becomes necessary.

As described above, in MD, conformations of a system are explored following
the molecular mechanics force field, which could be all-atom models or coarse-
grained models, defined as a potential energy function, Umol. The conformations
of the molecules are guided towards structures that have better agreement with the

https://mmtsb.org/software/nmff.html
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electron density maps using “biasing potentials”. For cryo-EM data analysis, a 3D
volume map is used to define such a biasing potential, UEM, and include in the
potential energy as

U = Umol + UEM

Although, the definition of the biasing potential is different among different
algorithms, in general, it has lower values when the fitness of the model to the
experimental data is higher (better), so that during the course of an MD simulation,
the conformation is naturally guided into conformations that agree better with
experiments. To be used within the algorithm of MD simulation, the biasing
potential, UEM, needs to be derivable by the atomic coordinate, which limits
the possible functional form. One approach is to use the correlation coefficient
described in the previous Section, Eq. 13.1, as:

UEM = −kCC

Where k is a force constant parameter, which controls the strength of biasing
force, making the high correlation translate to lower energy potential. This type of
biasing potential has been implemented using Amber (Orzechowski and Tama 2008)
and later Gromacs (Whitford et al. 2011).

In another implementation, the biasing potential is defined as a potential field, in
which all atoms are pulled toward the regions where electron density is high in the
3D map (Trabuco et al. 2008).

UEM =
N∑

n=1

wnVEM (rn) (13.2)

VEM =
{

ξ
[
1 − �(rn)−�thr

�max−�thr

]
if �(rn) ≥ �thr

ξ if �(rn) ≤ �thr

where �(r) is the potential converted from EM map. �max is the maximum value in
the map, and �thr is the threshold value to remove background. wn is the weighting
factor, which is set to the atomic mass. ξ is the scaling factor that controls the
biasing strength. With this biasing potential, the authors also incorporated restrain
potentials, USS, to conserve the secondary structure of the molecules. This appears
to be a requirement to prevent over-fitting in such a potential based approach,
although it is not the case for the correlation based biasing potential. This approach
is implemented in NAMD (Phillips et al. 2005). In both the approaches, the potential
gradient can be calculated analytically.

Choice of the force constant, i.e., biasing strength, is not straightforward, and
is system dependent. It needs to be sufficiently large to guide the conformation to
well-fitted models with sufficient efficiency. On the other hand, a too strong bias
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forcefully deforms the structures and leads to the models with unrealistic distortions.
Such issues are especially serious for the fitting against the experimental data.
In the experimental data, due to noise and unavoidable errors in reconstruction,
the final electron density map is not exactly the electron density that is expected
from atomic positions of single structure. In other words, correlation coefficient can
never be 1 (maximum) against experimental data, and furthermore, there may be
conformations that can have high correlation to the experimental data, but which
are structurally unreasonable. In addition, the fitting procedures with MD are not
deterministic. Except for the fittings with very simple conformational transitions,
the resulting model can vary from one fitting run to the next, and multiple fitting
trials need to be performed. It has been shown that “consensus” fitting can increase
reliability of the fitting, i.e., flexible fittings are performed using many different
types of fitting approaches and agreement (consensus) between the resulting models
can be used as an indicator for the reliability of the models (Ahmed and Tama
2013). In an approach using replica exchange algorithms, different combinations of
adjustable force constant parameters are used to run multiple (replica) simulations
to increase the reliability of the fitting procedure (Fig. 13.1) (Miyashita et al. 2017).

Another issue for MD based flexible fitting is sampling efficiency. This is more
critical for recent higher resolution EM maps, because high-resolution maps create a
rugged energy surface for the fitting processes. A variety of approaches/algorithms
have been developed to increase the sampling efficiency of MD simulations, and
these can also be employed in flexible fitting. Temperature accelerated MD has
been shown to increase the speed of fitting (Vashisth et al. 2012). To overcome
the issues of conformational search for high-resolution maps, map resolution can be
adjusted during MD simulation (Singharoy et al. 2016). Langevin dynamics method
that guides the system toward the fitted model was also proposed (Wu et al. 2013).

MD based flexible fitting approaches have been applied to a large number
of systems. Among those, the ribosome complex is a particularly important
and challenging system to study, with a complex structure that undergoes large
conformational transitions. Atomic structural models of the E. coli ribosome were
constructed with MDFF using EM maps of two functional states at 9 and 6.7 Å
resolutions (Trabuco et al. 2008). Dynamics was simulated using the CHARMM27
force field and the potential field, Eq. 13.2, was used for flexible fitting. To construct
a ternary complex with several ligands, multiple steps of rigid-body fitting and
flexible fittings were performed. MDfit was also used to study the transfer RNA
movement through the ribosome and a model of the head-swivel transition was
constructed (Whitford et al. 2011). In this study, an all-atom structure based model
was employed to simulate the dynamics of the ribosome complex (Whitford et al.
2009). Models for intermediate states were proposed using available X-ray structure
and cryo-EM maps at ∼7 Å resolution. Recent reviews cover other applications
of MD based flexible fitting (McGreevy et al. 2016; Xu et al. 2015; Kim and
Sanbonmatsu 2017).
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13.8 Dynamics Extraction from 2D Image Set

One aim of hybrid approaches in structural biology is to obtain information beyond
structure, on dynamics. In this regard, in many approaches, obtained structural
information represents the “averaged” structure of an ensemble and not those of
single particles within. The raw data from electron microscopy are 2D images
capturing snapshots of single particles. During the 3D reconstruction, the data
are averaged and assembled into 3D model. During this procedure, information
regarding variations of the conformations may be lost. New approaches can identify
“classes” of images each representing a different conformation. This requires that
the number of classes to be set before the analysis and then the conformational states
are divided into distinctive conformations. However, there is a risk of introduction
of artifact in this procedure. Intuitively, conformational transitions are continuous
process and not jumps between distinct conformations. It is not obvious what
happens to the images that represent such intermediate structures between the
defined conformational states in such classification procedures. Therefore, if 2D
images are directly analyzed, additional information on conformational dynamics
could be obtained.

New fitting approaches have been explored to analyze 2D images directly
for obtaining information regarding conformational ensemble represented in the
sample. In one such approach, 3D density map is first generated using conventional
technique, i.e., using all data to construct one (average) conformation. Then possible
conformational variations are predicted from the 3D map using above mentioned
elastic network model with normal mode analysis. The structure can then be
optimized to fit to a 2D image. For each image in the dataset, such analysis is
performed to estimate a possible conformation that each 2D image may represents.
The results represent the ensemble of conformations represented in the dataset, from
which conformational dynamics of the system can be studied (Jin et al. 2014).

In another study, 2D images were analyzed using a dimensionality reduction
technique to obtain the information on how 2D image set represent conformational
ensemble space (Dashti et al. 2014). This approach relies on a simple concept that
if two conformations are similar, the projection images of these should also be
similar. Thus, by measuring similarities between 2D images and identifying the
connectivity of similar image pairs, 2D images can be mapped on to a manifold (a
multidimensional surface defined by reaction coordinates). This technique was used
to analyze data from a ribosome sample that contained a mixture of conformational
states in order to obtain conformational ensemble free energy surface instead of a
few discrete conformations.
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13.9 Flexible Fitting with SAXS Data

Flexible fitting is applicable to various experimental data. Particularly, information
from small-angle X-ray scattering (SAXS) has similarity to the ones from EM
experiments. The data from SAXS provides information about the atomic positions,
but not their individual coordinates. In solution, target molecules are in random
orientation and the resulting scattering data is spherically averaged. Thus, it cannot
provide information on individual coordinates of the atoms, but it provides infor-
mation about the relative positions of all the pairs of atoms. It is still sufficient to
provide information on overall shapes, such as radius of gyration, and approximate
shapes could be proposed through computational modeling (Liu et al. 2012; Putnam
et al. 2007).

Several approaches for flexible fitting against SAXS experimental data have been
developed. These approaches are similar to the flexible fitting to EM density maps
in concept; however, a significant challenge of the SAXS data analysis is the low
amount of information available for atomic modeling. The SAXS experimentals
provide a one-dimensional curve as a function of q value, which is a function of
scattering angle, and the number of independent data points is limited to 10–30 (Hub
2017; Rambo and Tainer 2013). This is significantly less than the information in 3D
EM maps, and poses challenges to flexible fitting, leading to the over interpretation
of the data. Yet, SAXS enables studies on the structure and dynamics of biological
molecules in solution near native state and, by combining SAXS profiles with
flexible fitting, it could provide a wealth of information (see a previous chapter).

To avoid over-fitting, one can limit the allowed flexibility during conformational
modeling. Normal mode analysis would be an ideal approach in this aspect, since
only a small number of modes need to be considered for structure optimiza-
tion (Gorba et al. 2008). However, it cannot describe complex conformational
changes, and for this MD based approaches are required. Significant flexibility
of the molecules could lead to over-fitting problems, where a large number of
conformations could equally fit the experimental data. In an approach, domains
were treated as rigid bodies and only domain connections were allowed to move
(Pelikan et al. 2009). In many approaches, MD is used to generate a large
number of conformations and each snapshot is compared against the data. In some
studies, a few snapshots are identified and proposed as the models to explain the
experimental data. However, SAXS data reflects solution ensemble in principle, and
thus ensembles of conformations are often discussed to annotate such data (Tria
et al. 2015). Recently, an approach to perform biasing MD simulations using SAXS
profile has been proposed for more efficient sampling (Chen and Hub 2015).

Assessment of the agreement between a model and SAXS profile is not a simple
task. SAXS profile contains information about the distances between all the pairs
of the atoms in the sample, which include solute as well as the solvent atoms. The
difference from the SAXS profile of pure solvent (contrast) is used for analysis.
Here, the distribution of solvent molecules that are bound to solute molecule is
different from that of bulk solvent. This needs to be considered for the simulation of
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SAXS profile from the molecule. Such issue would also exist in the flexible fitting to
EM maps, but SAXS is often used to study smaller molecules and these correction
becomes more important. Many algorithms use some models to implicitly simulate
such effects from the structure of the solute. Recently, MD simulations with explicit
solvent is also used to simulate the distributions of the bound water molecules,
which are then used to calculate theoretical SAXS profiles (for detailed discussions,
please see (Hub 2017)).

Here we mention a couple of recent studies that combined MD and SAXS data
as examples of such approaches. In a study by Anami et al., solution conformations
of Vitamin D receptor ligand-binding domain were proposed using a hybrid method
combining SAXS and MD (Anami et al. 2016). Experimental SAXS profiles of
the apo and antagonist bound states were not consistent with the profile simulated
from a crystal structure. Therefore, they performed a series of MD simulations from
which SAXS profiles were calculated from the snapshots using CRYSOL (Svergun
et al. 1995). Then the conformations that were consistent with the experimental
SAXS profiles were identified as the models of apo and antagonist bound solution
structures.

In another study, Holdbrook et al. revealed the molecular mechanisms of
Skp chaperone using microsecond time-scale MD with SAXS and NMR data
(Holdbrook et al. 2017). Skp chaperone can adapt to differently sized clients, but
its molecular mechanisms were not known. The X-ray crystal structure was again
not consistent with SAXS data. MD simulation revealed significant flexibility in
the molecule and thus the SAXS profiles calculated from individual conformations
in the trajectories showed variation and no single structure could describe the
experimental SAXS data. Good agreement with the experimental data was obtained
by considering an ensemble of conformations that include “extreme open” and
“extreme close” conformations, which lead to the conclusion that the remarkably
flexible conformations allow the Skp chaperone to accommodate client molecules
of different sizes.

13.10 Summary and Conclusions

In this chapter, we discussed flexible fitting approaches based on MD simulations.
Structural information is critical for revealing the molecular mechanism of func-
tions. However, for many large and flexible macromolecules, X-ray crystallography
is quite challenging and other experimental techniques are employed. Experimental
data from such techniques are often low in resolution, unable to provide atomic
models. Flexible fitting techniques are particularly useful when a detailed structure,
from crystallography or homology modeling, exists, but other experimental data
suggests functionally relevant alternative conformations. MD simulation can be
used to reveal the intrinsic dynamics of the molecules and to find the conforma-
tional transitions that can elucidate observations from low-resolution experimental
data. We reviewed the details of molecular mechanics simulations at different
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coarse-grained levels and the algorithms to explore the conformations that are
consistent with experimental data, particularly from EM and SAXS. Importance
of hybrid/integrative approaches for structural biology will continue in order to
increase to study more complex macromolecular functions. Thus, computational
algorithms that incorporate efficient sampling and multiple experimental data as
well as the protocols for reliability and quality assessment need to be further
developed.
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Unverdorben P, Beck F, Śledź P, Schweitzer A, Pfeifer G, Plitzko JM, Baumeister W, Förster F
(2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of
the 26S proteasome. Proc Natl Acad Sci U S A 111:5544–5549

Vashisth H, Skiniotis G, Brooks CL (2012) Using enhanced sampling and structural restraints to
refine atomic structures into low-resolution electron microscopy maps. Structure 20:1453–1462

Whitford PC, Noel JK, Gosavi S, Schug A, Sanbonmatsu KY, Onuchic JN (2009) An all-
atom structure-based potential for proteins: bridging minimal models with all-atom empirical
forcefields. Proteins 75:430–441



13 Hybrid Methods for Macromolecular Modeling by Molecular Mechanics. . . 217

Whitford PC, Ahmed A, Yu Y, Hennelly SP, Tama F, Spahn CMT, Onuchic JN, Sanbonmatsu
KY (2011) Excited states of ribosome translocation revealed through integrative molecular
modeling. Proc Natl Acad Sci U S A 108:18943–18948

Wu X, Subramaniam S, Case DA, Wu KW, Brooks BR (2013) Targeted conformational search
with map-restrained self-guided Langevin dynamics: application to flexible fitting into electron
microscopic density maps. J Struct Biol 183:429–440

Xu X, Yan C, Wohlhueter R, Ivanov I (2015) Integrative Modeling of Macromolecular Assemblies
from Low to Near-Atomic Resolution. Comput Struct Biotechnol J 13:492–503



Chapter 14
Rigid-Body Fitting of Atomic Models
on 3D Density Maps of Electron
Microscopy

Takeshi Kawabata

Abstract Cryo electron microscopy has revolutionarily evolved for the determina-
tion of the 3D structure of macromolecular complexes. The modeling procedures
on the 3D density maps of electron microscopy are roughly classified into three
categories: fitting, de novo modeling and refinement. The registered atomic models
from the maps have mostly been hand-built and auto-refined. Several programs
aiming at automatic modeling have also been developed using various kinds of
molecular representations. Among these three classes of the modeling procedures,
the rigid body fitting is reviewed here, because it is the most basic modeling process
applied before the other steps. The fitting problems are classified as the fittings
of single subunit or multiple subunits, and the fittings on global or local parts
of maps. A higher resolution map enables more local fitting. Various molecular
representations have been employed in the fitting programs. A point and digital
image models are generally used to represent molecules, but new representations,
such as the Gaussian mixture model, have been applied recently.

Keywords Electron microscopy · Gaussian mixture model · EM algorithm

14.1 Introduction

The structures of very large macromolecular machines are being determined by
combining observations from complementary experimental methods, including
X-ray crystallography, NMR spectroscopy, 3D electron microscopy, small-angle
scattering, cross-linking, and many others. Among them, cryo electron microscopy
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single

multiple

global local

a b

c d

Fig. 14.1 Schematic views of various types of fitting problems. Gray shapes are density maps of
the assembly of the subunits. Red, green and blue shapes are subunits. (a) A single and global
problem. (b) A single and local problem. (c) A multiple and global problem. (d) A multiple and
local problem

has rapidly evolved recently, and its resolution has been remarkably improved (Bai
et al. 2015). Low resolution 3D maps (>10 Å) require other structural information
to build 3D atomic models, such as atomic models of subunits determined by other
methods, while the high resolution maps (better than about 3.5 Å) can enable us to
build an de novo atomic model, at least partially (Dimaio and Chiu 2016).

The modeling procedures on an EM density map are roughly classified into
three categories. (1) Fitting: fit the atomic model of the subunit obtained from
other experimental methods (X-ray or NMR) or computational prediction methods
(homology modeling or ab initio modeling).The fitting is further classified as either
rigid-body fitting or flexible fitting. (2) De novo modeling: model an atomic structure
on the given map without using any pre-determined atomic models. (3) Refinement:
small modifications of the conformation of the atomic model given by the fitting or
de novo modeling.

Among the three modeling procedures, this review mainly focuses on the
rigid-body fitting procedure, because it is the first procedure preceding any other
processes. For example, flexible fitting requires an initial model often obtained
by rigid-body fitting, de novo modeling becomes easy if a reference structure is
available and rigidly fitted on the map. This chapter is organized as follows. First,
the modeling software is surveyed from the statistics of the EMDB database and the
journal Nature. Second, the fitting calculations are characterized by the types of -
problems (global -local, single-multiple). Third, several molecular representations
are summarized for the fitting. Finally, the representative fitting programs, including
the methods using Gaussian mixture model, are described.
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14.2 Statistics of Modeling Software

The statistics of the modeling software are described as follows. The EMDB
database contains more than five thousand 3D density maps of electron microscopy,
and each of the maps has an annotation of the software used for fitting the atomic
models into the maps (Lawson et al. 2016).The frequently used software programs
are summarized in Table 14.1. The statistics for the four classes of map resolutions
are summarized in Table 14.2: “high” (less than or equal to 3.5 Å), “medium-high”
(from 3.5 Å to 5.0 Å), “medium”(from 5.0 Å to 10 Å), and “low” (more than
10 Å). The fitting software annotations often include refinement programs, such
as PHENIX and REFMAC. Note that the annotations have not been mandatory, and
thus thousands of maps with atomic models lack descriptions of the fitting (“N.A.”
in Table 14.2). Furthermore, all of the entries deposited in 2017 lack descriptions of
the fitting software, because the EMDB may have decided not to include them. To
compensate for the absence of software information for the latest EMDB entries,
all of the cryo electron microscopy article published in Nature in 2017 were
inspected (Table 14.3). More than half of the articles are classified as “medium
high” resolution (from 3.5 Å to 5.0 Å), because biologically important complexes
published in Nature are often unstable and too flexible for high resolution. Most of
the de novo modeled structures consist of trans-membrane helices.

These statistics provide us useful information about the trends of the modeling
methods. These tables can be summarized as follows. For maps with low and
medium resolution (>5 Å), the fitting calculations are primarily done with UCSF
Chimera, Situs or COOT, and refined mainly by MDFF. In contrast, for the “high”
or “medium-high” resolution maps (<=5.0 Å), the de novo modeling plays an
important role. The program COOT is primarily used for the de novo building, and
the refinement is mainly accomplished by PHENIX in real space, REFMAC and
Rosetta. The UCSF Chimera program is also frequently used for the fitting, even for
“high” and “medium high” resolution maps. For high and medium-high resolution
EM maps, X-ray crystallography tools, such as COOT, O, RefMac, Phenix and CNS,
have been used for modeling and refinement.

Considering the fact that UCSF Chimera and Coot are interactive graphical
software supporting manual fitting and modeling, the main trend for modeling on the
cryo-EM map is hand-built and auto-refined. For lower resolution, manual fitting
is performed with UCSF Chimera, and refined by MDFF. For higher resolution,
manual de novo modeling is accomplished with Coot, and refined mainly by
PHENIX.

However, more automatic tools are necessary for objective and efficient mod-
eling. Especially, hybrid modeling with various experimental techniques often
requires automatic and objective modeling. The previous summaries in Tables
14.1, 14.2 and 14.3 are only for the models submitted to the PDB, based on the
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Table 14.2 Frequently used fitting software for the EMDB database, summarized for three
different resolution ranges. The entries deposited up through 2016 are considered

High
(reso<=3.5 Å)

Medium high
(3.5 Å < reso<=5 Å)

Medium
(5 Å < reso<=10 Å)

Low
(10 Å < reso)

N.A.a 163 N.A.a 323 N.A.a 248 UCSF CHIMERA 383
UCSF CHIMERA 16 UCSF CHIMERA 78 UCSF CHIMERA 233 N.A.a 148
COOT 15 COOT 34 MDFF 59 SITUS 83
ROSETTA 6 REFMAC 14 SITUS 30 URO 36
PHENIX 6 MDFF 11 FLEX-EM 24 MDFF 35
EMFIT 2 PHENIX 10 COOT 23 EMFIT 32
URO 1 ROSETTA 6 URO 15 O 23
O 1 SPDBV 6 DIREX 11 GAP 11
MDFF 1 CNS 3 CNS 9 FLEX-EM 10
REFMAC 1 EMFIT 3 PHENIX 8 MOLREP 9

SITUS 3 O 8 VEDA 8
aNumber of EMDB entries with fitted PDB ID, but no fitting software is described

Table 14.3 Frequently used modeling software in 34Cryo-EM articles published in Nature from
2017/01/05 to 2017/12/21

Rigid-body fitting De novo modeling Refinement

UCSF CHIMERA 18 COOT 17 PHENIX (real_space) 24
COOT 3 Gorgon 1 RefMAC 10
ROSETTA 1 O 1 COOT 6
SITUS 1 Rosetta 1 MDFF 4

The 34articles were classified by the minimum resolution value, as follows; “high”: 11 articles,
“medium high”:20 articles, “medium”:2 articles, and “low”:1 articles

EM density map. In contrast, the models generated by a combination of several
experimental techniques are not registered in the PDB. 13 of them are registered
in PDB-Dev database (Burley et al. 2017) at this time (June 19, 2018). Among the
13, seven models are built on the 3D EM density map of low resolution, with the
help of chemical cross-linking data. Six models were constructed by the Integrative
Modeling Platform (IMP) program package (Russel et al. 2012), one model was
built by the HADDOCK-EM (van Zundert et al. 2015).

The programs for the rigid-body fitting are mainly reviewed in this chapter,
because the rigid-body fitting is required for all resolution ranges. Even for high
resolution maps, the fitting of subunit X-ray structures or homology models is often
useful as an initial model for de novo building. Several free programs used for the
fitting calculations are reviewed. For excellent overviews of de novo modeling and
refinement methods, the reviews by DiMaio and Chiu (2016) and Cassidy et al.
(2017) are recommended.
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14.3 Type of Fitting Problem

The rigid body fitting problem is classified by several points (Fig. 14.1). The first
point is the number of subunits to be fitted on the map. Fitting only one subunit
on the map is called the single subunit fitting problem, whereas the fitting of more
than one subunit is called the multiple subunit fitting problem. Another point is the
locality of the map to be fitted by the subunits. The fitting of one or multiple subunits
on the entire region of the given map is called as a global fitting problem, whereas
the fitting on part of the given map, is called a local fitting problem.

In view of the computation costs, the single fitting problem is much easier than
the multiple problem. An exhaustive search is often possible for the single problem,
if the six degrees of freedom are properly discretized. The single global problem is
also solved by the principal-axes transformations (Pintilie et al. 2010; Suzuki et al.
2016). When the number of subunits becomes large (such as >10), the computation
cost for the search increases exponentially.

The locality (local or global) of the problem often determines the required
resolution. Solving the local problem often requires a better resolution map than the
global problem. This situation is easy to understand by using the tangram puzzle, as
an example.

The tangram is a tiling puzzle where seven flat pieces can be assembled in
different ways to produce a target geometric shape (“silhouette puzzle”). These
seven flat pieces are cut from a square, and thus they share edges with the same
length and corners with the same angle. Since the 19-th century, many tangram
books containing hundreds of problems (“silhouettes”), most of which have familiar
shapes, such as birds, animals, people, houses and letters, have been published.
An example of the “bird” tangram puzzles is shown in Fig. 14.2a. It is fun and
challenging to assemble the seven pieces onto the given target shape. The tangram

7 subunits ComplexAnswer

a b

c d

Complex Answer1 subunit

Fig. 14.2 Schematic views of the fitting problem using the tangram and the detailed tangram
puzzle. Black shapes are density maps of the assembly of the subunits. Shapes with other colors are
subunits. (a) A multiple and global problem of the tangram puzzle. (b) A single and local problem
of the tangram puzzle. (c) A multiple and global problem of the detailed tangram puzzle. (d) A
single and local problem of the detailed tangram puzzle
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puzzle is similar to the global and multiple fitting problems. The seven flat pieces
correspond to atomic models of subunits, and the target shape corresponds to a
density map of the assembly of the subunits. Apparently, all seven pieces are
required to solve the tangram puzzle. Putting only one piece on the target is
often difficult, because many candidate positions are found with equally good
fitness. In other words, solving a single and local tangram is almost impossible
(Fig. 14.2b).This situation is similar to modeling on a low-resolution map.

For an analogy of a higher resolution map, we have invented a new “detailed”
tangram with more geometric details, as shown in Fig. 14.2c. Each piece has
a characteristic additional fragment, and looks more like a piece from a jigsaw
puzzles. In contrast to the standard tangram, we can easily determine the position
of a piece on the detailed tangram shape, even if only one piece is available
(Fig. 14.2d), although the new puzzle is too easy to solve for our entertainment.
The original and detailed tangrams correspond to density maps with low and high
resolutions, respectively.

The tangram examples shown in Fig. 14.2a, b suggest that all of the subunits
are necessary for assembling subunits on a low resolution map. However, in
most cases of low resolution maps, some of the subunit atomic structure are not
available. To compensate for the missing structures, additional information about the
configuration is often needed. That approach is called “hybrid integrative modeling”
(Alber et al. 2008). In contrast, a higher resolution map allows us to fit the subunits
locally. Correct local fittings lead to the correct multiple fittings; if single local
fittings are solved correctly for all of the available subunit atomic models, then a
multiple fitting problem can be also solved simply by assembling the solutions of
the single local fittings. The de novo modeling is regarded as a type of local fitting,
in which small fragments of secondary structure or polypeptide are fitted into a
segmented local region of the map, using the stereo-chemical information.

14.4 Molecular Shape Representation

The algorithm of the fitting calculation strongly depends on the representation of the
subunit atomic models and the density map. Typical representations of the molecule
are shown in Fig. 14.3. A subunit atomic model is often considered as a set of
spheres with a van der Waals radius (input ATOM in Fig. 14.3), and a density map
of the complex is represented by a 3D digital image (input DIGIMG in Fig. 14.3).
To enhance the computation speed, a more coarse-grained representation is often
used for the fitting.

A point model (ATMPNT or PNT in Fig. 14.3) is often employed for the fitting
due to its simplicity, and it includes a set of 3D points to represent an atomic
structure or a density map. Many types of the point models have been proposed,
with various levels of coarse-graining and different algorithms. The point model
is also called the vector quantization model (Wriggers et al. 1998), beads model
(Webb et al. 2018), and pseudo atomic model (Jonić and Sorzano 2016). The finest
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Fig. 14.3 Molecular representations for a density map of complex and atomic models of subunits.
DIGIMG: 3D digital image model. Note that they are shown as 2D images for simplicity. PNT
3D points model, GMM Gaussian mixture model, ATMPNT 3D points model for atomic centers,
ATOM van der Waals atomic spheres model

representation of this model is the 3D points of atomic centers for the atomic spheres
(“ATMPNT” model in Fig. 14.3), ignoring the radii of the atoms. The “Fit-in-
map” function in UCSF Chimera employs this representation (Goddard et al. 2007).
Lower number of 3D points are also used for more coarse-grained representations.
The SITUS package has several programs utilizing the vector quantization method
to generate a given number of 3D points (Wriggers et al. 1998).The IMP package
employs many types of “beads” models, which are essentially point models. It
uses various levels of granularity, such as 1-residue beads or 10-residue beads.
The advantage of the point model is that the fitting program can be solved by the
discrete problem: matching the 3D points (Wriggers et al. 1998; Zhang et al. 2010;
Pandurangan et al. 2015).A gradient-based fitting is also available for the point
model. UCSF Chimera uses the gradient of the sum of the densities of the centers
of atoms. If the point model is regarded as a set of isotropic Gaussian functions,
then it can reproduce an approximated density map, and the correlation coefficient
between the given map and subunit point models can be calculated.

The Gaussian mixture model (GMM) is a set of anisotropic Gaussian functions,
and thus it represents the original density better than the point model. We will
discuss GMM in a separated section.

For representing atomic models, 3D digital image representation is also applied
(DIGIMG in Fig. 14.3), such as by the program colores in the Situs program
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package. It has the advantage of uniform granularity, because both digital images
have the same voxel width and resolution. In addition, the fast Fourier transfer (FFT)
algorithm enhances the computation speed to calculate the cross correlations with
all of the translations.

14.5 Tools and Programs for Rigid Body Fitting

This section describes several programs for rigid-body fitting.

14.5.1 UCSF Chimera

UCSF Chimera is one of the most popular graphic programs, and also provides
both manual and automatic tools to manipulate atomic models and density maps
(Pettersen et al. 2004). For the fitting an atomic model into a density map, Chimera
provides a well-balanced approach between manual and automatic fittings. The
manual fitting is accomplished with the help of the “Model” window. The automatic
fitting tool “Fit in map” provides a quick gradient-based local optimization (steepest
ascent method) of the atomic model. The atomic point model is employed for a
subunit (ATMPNT in Fig. 14.3), whereas the complex is represented by the original
digital image (DIGIMG in Fig. 14.3). The program maximizes the sum of densities
on the centers of atoms using trilinear interpolation of the given map (Goddard et al.
2007). This tool is well-designed to iterate manual fitting and automatic refinement.
One click of the “Fit in map” button moves the subunit by less than its diameter,
and rotates it less than 90 degrees. Chimera also has the powerful segmentation
tool “Segment Map”, and has a “Fit to Segments” tool, which is useful for fitting a
model into part of the given map (Pintilie et al. 2010). The fitting function in UCSF
Chimera is designed to solve the single local fitting problem. Fitting the multiple
subunits can be performed by repeating the “Fit in map” of each single subunit.

The next generation software UCSF ChimeraX is now being developed, and its
alpha release is available (Goddard et al. 2018). ChimeraX is designed to visualize
CIF files of integrative hybrid modeling (IHM), provided by the PDB-Dev site
(Burley et al. 2017).

14.5.2 Situs

The Situs program package, which was first released in 1998 (Wriggers 2012), is
still widely used for rigid-body fitting against medium and low resolution maps.
The source codes of the programs are written in C and C++, and are easy to
compile and install in a Unix environment. Although it does not have a graphical
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interface, its usage by command lines is simply designed and straightforward to
use. Its computation speed is reasonably fast on standard desktop computers.

Among the many programs in the Situs package, the program colores is the most
popular program for rigid-body fitting (Chacón and Wriggers 2002). It provides
single local fitting using an exhaustive lattice-based search enhanced by the FFT
and the off-lattice refinement. An atomic model of the subunit is changed to the
density map in a digital image representation (DIGIMG in Fig. 14.3), and then
two digital images are superimposed with translation to calculate the overlap. The
computation of the optimal translation to maximize the overlap is accelerated in
reciprocal space by the FFT algorithm, in which O(N6) becomes O(N3logN3), where
N3 is the number of grid points. The optimal rotation is exhaustively searched with
a given granularity (20∼30 degrees). The off-lattice refinement is then performed,
using the gradient-based local optimization (Powell’s method).

Fitting tools, quanpdb, quanvol and matchpt, which use the vector quantization
(VQ) method, are also included in the package. The VQ converts an atomic model or
a density map into a set of representative 3D points (PNT model in Fig. 14.3).Fitting
of a subunit atomic model into a map can be achieved by discrete point matching.

The Situs package is mainly designed to solve the single and local fitting
problem. If a conformation of multiple subunits is provided by manual inspection
or assembling the pose candidates generated by the single-subunit fitting for
each subunit, it can be refined by the program collage. For the symmetric homo
multimer, simply assembling the pose candidates of a single subunit can generate
the conformation of the multimer.

14.5.3 Integrative Modeling Platform (IMP)

The integrative modeling platform (IMP) is the program package for modeling large
macromolecular assemblies by integrating diverse experimental data, from not only
electron microscopy, but also chemical crosslinking, FLET and SAXS (Russel et al.
2012).It employs several molecular representations: GMM, digital image, and point
models, and various sampling algorithms with many types of spatial restraints. Most
of the functions in IMP are provided as the Python module, called Python Modeling
Interface (PMI), and the user writes a Python script with the header “import IMP”
to use the full functions of the IMP package.

Some of the functions of IMP can be used as command-line tools. One of the
command line tools is the program multifit, which is for fitting multiple subunits
onto a density map (Lasker et al. 2009, 2010).It is designed to solve the multiple
global problem, requiring the atomic structures for all components. The calculation
by the program multifit consists of four steps: (1) segmentation of the map into
anchor points generated by the Gaussian mixture model, (2) fitting each subunit
to the map by an FFT search, (3) preparing a distance restraint file among the
subunits, and (4) assembling the subunits by a branch-and-bound algorithm with
the DOMINO optimizer.
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The Python Modeling Interface (PMI) allows users to employ various types of
molecular representations, spatial restraints, and sampling algorithms. The spherical
beads model and Gaussian mixture model with varying sizes are available for
molecular representation. Distance restraints for chain connectivity and chemical
cross links, and restraints for overlap with a density map can be assigned. Mon-
tecarlo and molecular dynamics methods have been implementedas basic sampling
algorithms. Combining these algorithms, more advanced sampling procedures, such
as simulated annealing, and replica-exchange methods, have been implemented.

In contrast to the hand-built and auto-refined strategy, the IMP aims at fully
automatic modeling, partly because the human intuition cannot work to find the
conformations satisfying hundreds of experimental restraints. IMP is also objective;
if a PMI python script is available for the model, and the script is executed by
the IMP program, the same model will be rebuilt, in principle. However, a rather
long Python script (tutorial scripts often have more than 100 lines) and quite a long
computation time are required.

14.5.4 Fitting Using a Gaussian Mixture Model

A Gaussian mixture model (GMM) is a probabilistic model that assumes that all
of the data points are generated from a mixture of a several number of Gaussian
functions. Similar to the VQ (vector quantization) method, GMM has been used for
representing the rough shapes of density maps and atomic models with relatively
small numbers of parameters; VQ employs a set of 3D points, whereas GMM uses a
set of 3D Gaussian functions. A 3D Gaussian mixture model is described as follows:

f (r) =
K∑

k

wk · φk (r) ,

where r is a 3D vector, φk(r) is the k-th Gaussian function, and wk is the weight for
the k-th function. The Gaussian function φk(r) is defined as follows:

φk (r) = 1

(2π)3/2|�k|1/2
exp

(
−1

2

(
r − μk

)T
�−1

k

(
r − μk

))
,

where μk is a 3D vector of the mean position, and �k is a 3x3 symmetric covariance
matrix. The parameters required for a K-component GMM are K sets of (wk,
μk, �k).Several groups have used the Gaussian mixture models. The program
gmfit employs GMM for multiple rigid-body fitting (Kawabata 2008). IMP also
employs GMM as one of the molecular representations. The program MultiFit
employs GMM to determine the anchor points. The structure of Mediator complex
(PDBDEV_00000003) was modeled using Gaussian mixture model (Robinson et al.
2015).

The GMM has the following properties that make it better than the other repre-
sentation methods. (1)The parameters of GMM are fitted efficiently to maximize the
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likelihood function by the expectation-maximization (EM) algorithm. (2) Similar
density maps can be reproduced from the GMM with a relatively small number
of Gaussian functions. Especially, the center of gravity, radius of gyration, and
covariance matrix of the GMM are identical to the original map or atomic model,
even if the GMM is one Gaussian function (K = 1). The VQ method does not
have this conservation property.(3) The overlap of two Gaussian functions can be
analytically calculated as follows:

∫ ∞

−∞
φA (r) φB (r) dr

= 1

(2π)3/2|�A + �B |1/2
exp

(
−1

2
(μA − μB)T (�A + �B)−1 (μA − μB)

)

This equation enhances the computation speed for the fitting calculation, because
the overlap function has to be evaluated many times during a search for the optimal
fitting position.

The fitting program gmfit uses the GMM for representing both maps and atomic
models (Kawabata 2008) for multiple subunit fitting. The C source codes of gmfit
and its accompanying program gmconvert are freely available (http://pdbj.org/
gmfit); the program gmconvert makes a GMM from a map or model. The service
“pairwise gmfit” is also available through the Web, which quickly fit given two
maps or models. This service can be accessed from a searching result page of the
Omokage shape search (Suzuki et al. 2016; Kinjo et al. 2017; Kinjo et al. 2018).

The GMM-based fitting is now being enhanced from several point of views. First,
the EM algorithm implemented in gmconvert has been improved to consider the
sizes of voxels and atoms. The standard EM algorithm only accepts points without
their size as the input. However, the voxels and atoms are not actually points, as
they have their own grid widths or atomic radii. We invented a new EM algorithm,
called the Gaussian-input Gaussian mixture model, which accepts small Gaussian
distribution functions that have identical radii of gyration to those of voxels or atoms
(Kawabata 2018). Second, a down-sampled Gaussian mixture model is developed,
by merging several neighboring voxels into one anisotropic Gaussian function
(Kawabata 2018). This model is good for GMM with a large number of Gaussian
functions, with small computation costs. Third, a new algorithm for multiple subunit
fitting, so-called “segmentation-fitting” method, has been developed. It aims to
efficiently cover a density map by given subunits, by repeating the “segmentation”
and “fitting” procedures. This algorithm is now extended for fitting the subunits
to a part of the density map, by introducing a mask region around each subunit.
Finally, we have developed a helix detection program using GMM. The standard
GMM does not have any restriction for its components of Gaussian function, and
thus functions with any shapes and any sizes can be produced as components of
GMM. We invented a new EM algorithm with the components of GMM restricted
among a predefined library of Gaussian functions. We call this algorithm “library-
GMM”. Library GMM works for detecting candidate regions for α-helices, if the
Gaussian functions in the library correspond to poly-Ala α-helices.

http://pdbj.org/gmfit
http://pdbj.org/gmfit
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Fig. 14.4 Molecular representations for the 3D density map of a class B GPCR - G-protein
complex (EMD-8623; 2003 voxels; 4.1 Å; Liang et al. 2017). (a) Surface model of the density map.
The author-recommended cutoff value of 0.05 is employed. (b) 3D point model generated by the
vector quantization program quanvol in the SITUS package using 10 points (code book vectors).
(c) Gaussian mixture model generated with the program gmconvert by the EM algorithm using
10 Gaussian functions. (d) Down-sampled Gaussian mixture model generated with the program
gmconvert by merging 83 voxels into one Gaussian function. The number of Gaussian functions
of the down-sampled GMM is 546. (e) The atomic model built by the authors (PDBcode:5uz7).
The map consists of five protein chains (A:Gα: GNAS2_HUMAN, B:Gβ: GBB1_HUMAN, G:Gγ:
GBG2_HUMAN, N:nanobody 51, R:Calcitonin receptor: CALCR_HUMAN). The chains A, B, G,
N are colored by blue, and the chain R is colored red

Several representation of the map of the GPCR-G-protein complex(EMD-8623;
Liang et al. 2017) are summarized in Fig. 14.4. The resolution of the map is
medium-high (4.1 Å). The Gaussian mixture model with 10 Gaussian distribution
function, derived by the EM algorithm for the Gaussian-input Gaussian mixture
model, is shown in Fig. 14.4c. The down-sampled Gaussian mixture model,
generated by merging 83 voxels into one Gaussian distribution function, is displayed
in Fig. 14.4d. The number of Gaussian functions of the down-sampled GMM is
546. The atomic model built by the original authors (PDBcode:5uz7) is shown in
Fig. 14.3e. The model in the soluble region was built by fitting the X-ray structure
of G-protein complex (PDBcode:3sn6). The trans-membrane region was built by
fitting the homology model based on the template X-ray structure of class A GPCR
(PDBcode: 4l6r). The model was finally refined by the Phenix in the real space.

Various types of rigid-body fitting using GMM are shown in Fig. 14.5. A single
global fitting is shown in Fig. 14.5a. The simple principal-component axis-based
fitting with a small number of Gaussian functions is good enough for the single
global fitting, if the two shapes are similar. Examples of single local fitting are
displayed in Fig. 14.5b, c. For fitting the G-protein complex (Fig. 14.4b), GMM with
10 functions are sufficient, however, fitting the GPCR protein (Fig. 14.5c) requires
more detailed GMM, if we regard the original authors’ model (PDBcode:5uz7;
Fig. 14.3e) as the correct standard. Generally speaking, fitting smaller subunits
requires more detailed resolution of the map. An example of the multiple global
fitting is shown in Fig. 14.4d. The detailed GMM also requires to the GPCR subunit
to fit correctly.
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Fig. 14.5 Rigid body fitting of X-ray atomic models into the 3D density map of class B GPCR
- G-protein complex (EMD-8623; Liang et al. 2017) calculated by the program gmfit. Several
homologous X-ray structures were fitted on the map, without using the authors’ model. Both
GMMs (left) and corresponding atomic models (right) are shown. (a) Single global fitting. The
atomic model of class A GPCR – G-protein complex (PDBcode:3sn6, chains A, B, G, N, R) is
fitted into the GMM using 10 Gaussian functions (Fig. 14.4c).The atomic model consists of five
chains; A:Gα: GNAS2_BOVIN, B:Gβ: GBB1_RAT, G:Gγ: GBG2_BOVIN, N:Camelid antibody
VHH fragment, R:beta-2 adrenergic receptor:ADRB2_HUMAN). The residues 1002–1160 in
chain R (ENLYS_BPT4) have been removed. (b) Single local fitting of the complex of Gα,Gβ,Gγ

and antibody (PDBcode:3sn6, chains A, B, G, N) into the GMM using 10 Gaussian functions
(Fig. 14.4c). (c) Single local fitting of the class B GPCR (PDBcode:4l6r, chain A) into the down-
sampled GMM (Fig. 14.4d).The residues 1001–1106 (C562_ECOLX) have been removed. (d)
Multiple global fitting of the two rigid body subunits into the down-sampled GMM (Fig. 14.4d).
The first subunit is the complex of Gα,Gβ,Gγ and nanobody (PDBcode:3sn6, chains A, B, G,
N),colored blue. The second subunit is the class B GPCR (PDBcode:4l6r, chain A), colored red

De novo modeling of trans-membrane helices is shown in Fig. 14.6. The
density map of the trans-membrane regions is extracted by the fitted soluble G-
protein complex (Fig. 14.6a, b). Then, candidates of trans-membrane helices are
generated as a set of Gaussian functions by the library-GMM algorithm, as shown
in Fig. 14.6c.
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Fig. 14.6 Detection of trans-membrane (TM) helices in the 3D density map. (a) The subunit is
the complex of Gα,Gβ,Gγ and nanobody (PDBcode:3sn6, chains A, B, G, N) is fitted into the map
EMD-8623. (b) The region around the fitted subunit is erased. The remaining region is supposed
to be the trans-membrane region. (c) The TM helix candidates are detected by the library-GMM
algorithm. Each TM helix candidate is represented by one Gaussian function

14.6 Concluding Remarks

This chapter has surveyed the statistics of the atomic modeling programs for elec-
tron microscopy density maps, and mainly reviewed rigid-body fitting programs.
The high resolution EM map allows us the de novo modeling using tools for X-
ray crystallography. However, since biologically important complexes are often
unstable and flexible, medium and medium-high resolution maps will be still
common. Until the next revolution in single particle analysis for flexible complexes,
specialized modeling tools must be developed for the medium and medium-high
resolution map. Efficient and accurate rigid-body fitting programs must also be
developed.
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Chapter 15
Hybrid Methods for Modeling Protein
Structures Using Molecular Dynamics
Simulations and Small-Angle X-Ray
Scattering Data

Toru Ekimoto and Mitsunori Ikeguchi

Abstract Small-angle X-ray scattering (SAXS) is an efficient experimental tool to
measure the overall shape of macromolecular structures in solution. However, due
to the low resolution of SAXS data, high-resolution data obtained from X-ray crys-
tallography or NMR and computational methods such as molecular dynamics (MD)
simulations are complementary to SAXS data for understanding protein functions
based on their structures at atomic resolution. Because MD simulations provide
a physicochemically proper structural ensemble for flexible proteins in solution
and a precise description of solvent effects, the hybrid analysis of SAXS and
MD simulations is a promising method to estimate reasonable solution structures
and structural ensembles in solution. Here, we review typical and useful in silico
methods for modeling three dimensional protein structures, calculating theoretical
SAXS profiles, and analyzing ensemble structures consistent with experimental
SAXS profiles. We also review two examples of the hybrid analysis, termed MD-
SAXS method in which MD simulations are carried out without any knowledge of
experimental SAXS data, and the experimental SAXS data are used only to assess
the consistency of the solution model from MD simulations with those observed in
experiments. One example is an investigation of the intrinsic dynamics of EcoO109I
using the computational method to obtain a theoretical profile from the trajectory of
an MD simulation. The other example is a structural investigation of the vitamin D

T. Ekimoto
Graduate School of Medical Life Science, Yokohama City University, Tsurumiku,
Yokohama, Japan
e-mail: ekimoto@yokohama-cu.ac.jp

M. Ikeguchi (�)
Graduate School of Medical Life Science, Yokohama City University, Tsurumiku,
Yokohama, Japan

Medical Sciences Innovation Hub Program, RIKEN, Tsurumiku,
Yokohama, Japan
e-mail: ike@yokohama-cu.ac.jp

© Springer Nature Singapore Pte Ltd. 2018
H. Nakamura et al. (eds.), Integrative Structural Biology with Hybrid Methods,
Advances in Experimental Medicine and Biology 1105,
https://doi.org/10.1007/978-981-13-2200-6_15

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2200-6_15&domain=pdf
mailto:ekimoto@yokohama-cu.ac.jp
mailto:ike@yokohama-cu.ac.jp
https://doi.org/10.1007/978-981-13-2200-6_15


238 T. Ekimoto and M. Ikeguchi

receptor ligand-binding domain using snapshots generated by MD simulations and
assessment of the snapshots by experimental SAXS data.

Keywords Small-angle X-ray scattering · Molecular dynamics simulation ·
Solution structure · Coarse-grained model · MD-SAXS · Endonuclease ·
Vitamin D receptor

15.1 Introduction for Small-Angle X-Ray Scattering

Small-angle X-ray scattering (SAXS) is an efficient experimental tool for measuring
three-dimensional protein structures in solution (Svergun and Koch 2003; Rambo
and Tainer 2013; Kikhney and Svergun 2015; Vestergaard 2016; Hammel 2012;
Hura et al. 2009; Bernado 2010; Bernado and Svergun 2012). First, X-ray scattering
data for both protein-solution samples and pure-buffer samples are obtained. Next,
one-dimensional (1-D) scattering intensity is calculated by subtracting the scattering
intensity for the buffer sample from that of the solution sample. The resulting 1-D
scattering intensity includes information on the overall shape and size of proteins
in the solution. Since proteins fluctuate and rotate freely in solution, the scattering
intensity is an average quantity of rotational and conformational protein variants.

In contrast to X-ray crystallography, which is widely used for determination
of protein atomic structures, SAXS data is limited to low resolution. However,
structural information from SAXS data can capture bare structures in solution, and
it is free from the effects of crystal packing; this is a major advantage of SAXS.
There is no molecular-size limitation in SAXS experiments, and there is also a
contrast advantage over nuclear magnetic resonance (NMR) that is widely used to
capture solution structures. Since SAXS data can only estimate the overall shape
of molecules due to its low resolution, high-resolution data obtained from other
tools are necessary for determining atomic structures and dynamics. This means that
SAXS is complementary to X-ray crystallography and NMR (Svergun and Koch
2003; Rambo and Tainer 2013; Hammel 2012; Grishaev et al. 2005; Venditti et al.
2016).

Basic analyses of SAXS data to understand solution structures are as follows
(Svergun and Koch 2003; Rambo and Tainer 2013; Kikhney and Svergun 2015;
Vestergaard 2016; Hammel 2012; Hura et al. 2009; Bernado 2010). From a 1-D
scattering intensity, a radius of gyration (Rg), molecular weight, maximal dimension
(Dmax), excluded particle volume and flexibility can be estimated through the
Guinier approximation at the small-angle range, the forward intensity, the pair dis-
tance function, the Porod volume and the Kratky plot, respectively. These analyses
are used for validating monodispersity and interparticle interference (Jacques et al.
2012).When a high-resolution three-dimensional (3D) crystallography or NMR
structure is available, a theoretical SAXS profile for the 3D structure is calculated
using CRYSOL (Svergun et al. 1995). This is then compared to the experimental
profile. The deviation between the two theoretical and experimental profiles can be
structurally examined by superimposing the 3D structure onto a 3D envelope esti-
mated from the experimental profile by ab initio methods (e.g., DAMMIN (Svergun
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1999) and GASBOR (Svergun et al. 2001)). When the deviation seems to arise
from flexible regions and/or relative arrangements of domains, ab initio modeling
methods (e.g., SASREF (Petoukhov and Svergun 2005), BUNCH (Petoukhov and
Svergun 2005), and CORAL (Petoukhov et al. 2012)) provide possible 3D structural
models that are consistent with the experimental SAXS profile. A possibility of the
effects of mixture on the SAXS profile is simply tested using OLIGOMER (Konarev
et al. 2003) with arbitrary conformations.

Although information about solution structures is extracted from the basic
analyses described above, there are essential difficulties to investigating solution
structures from low-resolution SAXS data. Since the superimposition of the crystal
structure onto the envelope estimated from the SAXS experimental data is not
topologically unique, this approach makes it difficult in principle to figure out
how the conformation is different from the crystal structure. In addition, misun-
derstandings may occur in the cases of very flexible proteins, proteins undergoing
conformational changes and intrinsically disordered proteins/regions (Kikhney and
Svergun 2015; Bernado and Svergun 2012; Wright and Dyson 1999), since those
proteins do not adopt a specific and rigid conformation. In the case of these flexible
proteins, SAXS data represent an average of scattering from various conformations
in solution. This means that a set of conformations is necessary to analyze them
using ensemble-modeling methods (e.g., EOM (Bernado et al. 2007)). However,
the unique determination of a structural ensemble based on only SAXS data is
still difficult due to the limited amount of available information. The generation
of ensemble structures also requires careful handling, because proteins structurally
fluctuate in specific ways based on their structural characteristics. To overcome the
difficulty posed by the flexibility of proteins, an incorporation of physicochemical
methods, such as molecular dynamics (MD) simulation, into SAXS analysis would
allow us to generate physicochemically proper solution structures and structural
ensembles. (See excellent reviews for more detailed information: Rambo and Tainer
2013; Kikhney and Svergun 2015; Hammel 2012; Schneidman-Duhovny et al.
2012; Boldon et al. 2015).

MD simulation is now becoming a powerful tool to study protein dynamics with
increasing computational power (Dror et al. 2012; Goh et al. 2016; Lane et al. 2013).
MD simulations can capture the conformational dynamics of proteins based on their
structurally intrinsic characteristics. However, all-atom MD simulations suffer from
two major problems. One is the limitation of the timescale, and the other is the accu-
racy of the force fields. To overcome the limitation of the timescale, many efforts
have been made to improve the MD calculations. This includes developing highly
parallelized algorithms (e.g., GROMACS (Abraham et al. 2015), AMBER (Case
et al. 2017), NAMD (Phillips et al. 2005) and GENESIS (Kobayashi et al. 2017))
and specialized hardware (e.g., MD-GRAPE (Ohmura et al. 2014) and ANTON
(Shaw et al. 2008)). In addition to conventional MD simulations, efficient sampling
techniques with biased simulations (e.g., replica exchange (Sugita and Okamoto
1999), accelerated MD (Hamelberg et al. 2004), string methods (Weinan and
Vanden-Eijnden 2010), and metadynamics (Piana and Laio 2007)) and statistical
analysis of unbiased simulations (e.g., weighted ensemble simulation (Zuckerman
and Chong 2017) and Markov state model (Harrigan et al. 2017; Scherer et al.
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2015)) have been developed. Comparison of the simulated conformational dynamics
with those observed in experiments allows us to assess the accuracy of the force
fields (e.g., refs (Lindoroff-Larsen et al. 2012; Beauchamp et al. 2012)), and
improvements on the force field are still ongoing. For example, ensemble structures
generated by various force fields have been examined and compared to SAXS and
NMR data (Rauscher et al. 2015).

Hybrid analysis of SAXS and MD simulation is a promising method for estimat-
ing solution structures and structural ensembles of flexible proteins. Two approaches
of the SAXS and MD combination have been proposed so far. The first approach
uses the artificial forces to modify the weights of structures during MD simulations
so that the generated structural-ensemble is consistent with the experimental SAXS
data (e.g., SWAXS-driven MD (Chen and Hub 2015)). In the second approach, MD
simulations are carried out without any knowledge of the experimental SAXS data
(e.g., MD-SAXS (Oroguchi et al. 2009)). Then, the consistency of the theoretical
SAXS profile that was calculated using MD trajectories from the experimental
profiles is examined. In this method, the experimental SAXS data are used only
to check the validity of MD simulations. Therefore, this approach can avoid the
excessive modification of structural ensembles fitted to the experimental profile.
These approaches and the typical methods for modeling protein structures with
SAXS data analysis are reviewed in the next section.

15.2 Overview of Computational Methods for Modeling
Protein Structures Using Small-Angle X-Ray
Scattering Data

First, a complete 3D-structure of target proteins is necessary as a starting structure.
When a crystal structure is available, missing regions for side chains, loops, and
tags at N-terminal region should be added using homology modeling to make a
complete structure such that the full length of the protein exactly agrees with that
used in the SAXS experiment. The theoretical intensity depends on the length of
the protein used in the calculation. At the small-angle region, Rg depends on the
total number of atoms in the calculated protein, and the molecular shape created
by flexible regions affects the shape of the intensity at the middle- to high-angle
regions. The homology modeling (Fiser 2010) can be executed by MODELLER
(Sali and Blundell 1993) (implemented in Chimera (Yang et al. 2012)) or web-based
tools (e.g., SWISS-MODEL (Kiefer et al. 2009), HHpred (Alva et al. 2016), Robetta
(Kim et al. 2004)). Partially unfolded, multi-domain and complex structures can be
modeled through the combined use of the template structures. When the relative
position of the domains seems to be flexible, possible relative positions are estimated
using docking simulations (e.g., ClusPro (Kozakov et al. 2017)) and modeling linker
parts. Protein-protein docking simulations are also done with experimental SAXS
data (e.g., pyDockSAXS (Pons et al. 2010), FoXSDock (Schneidman-Duhobny
et al. 2011)). If no crystal structures are available, a structure can be provided by
homology modeling (Fiser 2010), and a template search combined with SAXS data
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(e.g., SAXSTER (dos Reis et al. 2011)) is informative. When only the rough shape
is necessary, the coarse-grained (CG) model of proteins is a useful choice (Saunders
and Voth 2013). For an example of a CG model, a residue is represented as a bead
at its Cα position. Due to the coarse-grained representation, detailed discoveries of
interactions between residues are impossible. However, efficient samplings of very
flexible proteins are possible.

The theoretical SAXS profile of the provided 3D-structure is compared to the
experimental profile. The experimental SAXS data include not only the solute
itself but also the solvent effects such as the solvent-excluded volume and the
hydration water. Because the electron density of hydration water is larger than that
of bulk water, the scattering from the hydration water around the solute significantly
contributes to the SAXS profile. All methods introduced here take into account
such solvent effects and the difference is their treatments: the implicit hydration
model or explicit model. The implicit representation of hydration water is used
in CRYSOL (Svergun et al. 1995), FoXS (Schneidman-Duhovny et al. 2013),
AquaSAXS (Poitevin et al. 2011), Zernike polynomials-based method (Liu et al.
2012), SWAXS with HyPred (Virtanen et al. 2011), and RISM-SAXS (Nguyen et al.
2014). The explicit representation is used in AXES (Grishaev et al. 2010), Park et al.
(2009), MD-SAXS (Oroguchi et al. 2009), Hummer et al. (Köfinger and Hummer
2013), WAXSiS (Knight and Hub 2015), and PM-SAXS (Marchi 2016). For use
of the coarse-grained model of proteins or protein-DNA/RNA complexes, the pre-
calculated model is used in Stovgaard et al. (Stovgaard et al. 2010), and the explicit
hydration model with a dummy water molecule is used in Fast-SAXS (Yang et al.
2009) and Fast-SASXS-pro (Ravikumar et al. 2013).

In methods based on the implicit solvent model, a uniform hydration model with
adjustable parameters (CRYSOL (Svergun et al. 1995) and FoXS (Schneidman-
Duhovny et al. 2013)), a pre-calculated average density (AquaSAXS (Poitevin et al.
2011), Zernike polynomials-based method (Liu et al. 2012), and SWASX with
HyPred (Virtanen et al. 2011)) or a theoretically calculated solvent density (RISM-
SAXS (Nguyen et al. 2014)) is used for calculations of the excluded-volume term
and the hydration shell term in the form factor. For example, in CRYSOL (Svergun
et al. 1995), the hydration water is modeled as the hydration shell of proteins,
which has a higher electron density than the bulk water region, and the solvent-
excluded volume is modeled as a Gaussian sphere with effective radii. However,
the estimation of the increment of electron density in the hydration shell and the
determination of the effective radius of the Gaussian spheres are difficult because
they depend on the nature of the protein surface, the packing of protein interiors
and solvent compositions. Therefore, two parameters, i.e., the increment of electron
density in the hydration shell and the effective radius of the Gaussian spheres, are
adjusted for fitting to experimental SAXS profiles. In FoXS (Schneidman-Duhovny
et al. 2013), the formulation of the form factor is like that of CRYSOL (Svergun
et al. 1995). However, the fraction of the solvent-accessible surface is introduced
in the hydration shell term. In pre-calculated average density models (Poitevin
et al. 2011; Liu et al. 2012; Virtanen et al. 2011), the solvent density around
solute is numerically calculated by a 3-Dgrid-based approach before its density
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map at each grid is used to calculate the form factors. In RISM-SAXS (Nguyen
et al. 2014), a thermally averaged distribution of water and ions around a protein
is theoretically obtained using the three-dimensional reference interaction model
(3D-RISM). According to a comparison between methods (Schneidman-Duhovny
et al. 2012), the discrepancy between theoretical and experimental profiles χ for
CRYSOL (Svergun et al. 1995) and FoXS (Schneidman-Duhovny et al. 2013) is
reasonable despite the uniform hydration shell used in CRYSOL (Svergun et al.
1995) and FoXS (Schneidman-Duhovny et al. 2013).

In the methods using the explicit solvent model, explicitly water molecules are
placed around a protein with a superimposition (AXES (Grishaev et al. 2010)), or
explicit coordinates of water molecules around a protein are generated using an
all-atom MD simulation (Park et al. (2009), MD-SAXS (Oroguchi et al. 2009),
Hummer et al. (Köfinger and Hummer 2013), WAXSiS (Knight and Hub 2015),
and PM-SAXS (Marchi 2016)). In AXES (Grishaev et al. 2010), the excluded and
surface solvent molecules are determined by superimposition of a protein onto snap-
shots generated by MD simulations of the bulk system. Compared with CRYSOL
(Svergun et al. 1995), AXES (Grishaev et al. 2010) uses explicit configurations of
water molecules and shows an improvement in χ. However, fluctuation of water
molecules around a protein is not considered. In contrast, all-atom MD simulations
can incorporate the fluctuation of water around a flexible protein, and the MD-
based methods (Park et al. 2009; Oroguchi et al. 2009; Köfinger and Hummer
2013; Knight and Hub 2015; Marchi 2016) treat solvent effects at an atomic level.
In SAXS experiments, X-ray scattering from the buffer-only solution is measured
as well as that of the protein solution before the scattering intensity of the buffer
solution is subtracted from those of protein solution. In the MD-based methods
(Park et al. 2009; Oroguchi et al. 2009; Köfinger and Hummer 2013; Knight and Hub
2015; Marchi 2016), the MD simulation for the pure solvent and the protein solution
is performed as an experiment. Then, the theoretical SAXS profile is obtained by
subtracting the two theoretical scattering intensities of protein-solution and pure-
solvent MD simulations. Thus, the solvent effects on SAXS profiles, i.e., hydration
water and the solvent-excluded volume of proteins, are considered at the atomic
level. In addition, since the electron density of bulk solvent depends on the ion con-
centration, ions in bulk significantly affect SAXS profiles. The ion effects are also
considered (Oroguchi and Ikeguchi 2011). The computational method for the rota-
tional average of the form factor is the main difference between the MD-based meth-
ods (Park et al. 2009; Oroguchi et al. 2009; Köfinger and Hummer 2013; Knight and
Hub 2015; Marchi 2016), and the modulation of the excluded-volume term is in the
method (Köfinger and hummer 2013) to improve the accuracy for the WAXS region.

Due to the limitation of a time scale in the use of all-atom MD simulations,
the CG representation model (Saunders and Voth 2013) is still useful for very
large and/or very flexible proteins. Under CG-MD simulations, the effect of water
molecules is implicitly incorporated, and it is necessary to develop a method
for incorporating solvent effects on theoretical SAXS profiles in a CG manner.
In the method by Stovgaard et al. (2010), the form factor of CG particles is
estimated by averaging form factors calculated using CRYSOL (Svergun et al.
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1995) based on structural data in the Protein Data Bank (PDB). In contrast, in
Fast-SAXS (Yang et al. 2009) and Fast-SAXS-pro (Ravikumar et al. 2013), the
form factor of CG particles is estimated using an average of residues in high-
resolution structures in PDB, and the contributions of solvent effects are estimated
using explicit placements of dummy water molecules around the protein. Here,
in the CG-MD based approaches, the ensemble generated by CG-MD simulations
should be checked by any experimental results, including SAXS, because the CG
representation includes many adjustable parameters about structures and dynamics
due to the coarse-grained model.

The implicit or explicit treatment of solvent effects influences both the accuracy
and computational cost for theoretical SAXS profiles. This is a trade-off, and the
choice of the method depends on the purpose. For example, when the first priority is
a structural investigation to discover the structural characteristics consistent with
the experimental SAXS profile, the method based on the implicit model (e.g.,
CRYSOL (Svergun et al. 1995)) is adequate because the fast calculation allows
us to calculate a large number of structures. When an accurate SAXS profile is
necessary, the method based on the explicit model with MD simulations (e.g., MD-
SAXS (Oroguchi et al. 2009)) is adequate because it explicitly treats the dynamics
of water molecules. However, the computational cost is high, and the solvent effects
of both water molecules and ions are considered.

Because the experimental SAXS data is obtained as an averaged quantity over
conformations of proteins, a consideration of the ensemble structure is necessary.
Several approaches have been introduced so far (e.g., MD-SAXS (Oroguchi et al.
2009), Lau et al. (Lau and Roux 2007), EOM (Bernado et al. 2007), MES (Pelikan
et al. 2009), BSS-SAXS (Yang et al. 2010), and EROS (Rozycki et al. 2011)).
Procedures in these methods are as follows. First, the resolution of proteins and
solvent molecules is chosen as an all-atom or CG representation. Using MD-based
samplings or topologically random generations, a set of conformations is generated.
A theoretical profile is calculated as an average of the weighted profiles of each
conformation. A major difference among the methods is how to use experimental
SAXS profiles. In MD-SAXS (Oroguchi et al. 2009) and Lau et al. (Lau and Roux
2007), the weight in the average process is determined by the force field or free
energy landscape, respectively. In MD-SAXS (Oroguchi et al. 2009), a trajectory
generated by an all-atom MD simulation is directly used in the calculation of
the theoretical profile, and a simple average is taken because the conformations
naturally appear in accordance with weights defined in the force field. In Lau
et al. (Lau and Roux 2007), a free energy landscape is obtained using all-atom
MD simulations and umbrella sampling. The theoretical profile is obtained using
an average of the profiles for conformations near the free energy minimum with
the Boltzmann distribution of their energies. In both MD-SAXS (Oroguchi et al.
2009) and the method by Lau et al. (Lau and Roux 2007), the experimental SAXS
profile is used only for validation. In contrast, other methods use the experimental
SAXS profile in the optimization process of the weights of conformations so that the
difference between the theoretical and experimental SAXS profiles is minimized.
Two methods have been introduced to avoid overfitting. The one way is by reducing



244 T. Ekimoto and M. Ikeguchi

the size of the ensemble using in the average process. Trial for the ensemble
selection is done by iterations on the subset selection in EOM (Bernado et al. 2007)
and MES (Pelikan et al. 2009). The reduction is also done by clustering processes
in terms of structural similarity and SAXS intensity similarity, and the number of
structures and their weights are determined by the Bayesian-based Monte Carlo
in BSS-SAXS (Yang et al. 2010). The other way is through reweighting using a
maximum-entropy method in EROS (Rozycki et al. 2011).The pseudo free energy
is defined as χ2-θS, where θ is a control parameter and S is the relative entropy
representing the change in total weights from the initial weight. By changing the
weights (entropy) at an adequate θ, the relative weight of conformations is optimized
such that the free energy is minimized. Similar approaches are used in EOM2 (Tria
et al. 2015) and the ensemble-fit procedure in AquaSAXS (Poitevin et al. 2011).

When a representative structure consistent with experimental SAXS data is
required, the use of SAXS-driven structural-optimizations may be a better choice.
For example, the Monte Carlo (MC) based approach (Förster et al. 2008), the
normal-mode flexible fitting (Gorba and Tama 2010), the CG elastic network model
(Zheng and Tekpinar 2011), SAXS_MD (Kojima et al. 2004; Morimoto et al.
2013), SWAXS-driven MD (Chen and Hub 2015), and SAXS-guided metadynamics
(Kimanius et al. 2015) have been proposed. A common strategy in these methods
is to incorporate the experimental SAXS profile into the scoring function or the
potential energy as a bias so that the input structure is forced to undergo conforma-
tional change toward a structure consistent with the experimental SAXS profile. In
the MC-based approach (Förster et al. 2008), candidate structures are modeled via
rigid-body simulations. In the methods using CG representations (Gorba and Tama
2010; Zheng and Tekpinar 2011), a protein is treated as a chain of Cα atoms, and
the positions of the atoms are moved according to the low frequency normal mode
(Gorba and Tama 2010) or the minimum of the elastic network model energy (Zheng
and Tekpinar 2011). In contrast, SAXS_MD (Kojima et al. 2004), SWAXS-driven
MD (Chen and Hub 2015), and SAXS-guided metadynamics (Kimanius et al. 2015)
use all-atom MD simulations with an additional potential. Owing to the all-atom
treatment of proteins and solvent molecules, the resulting structures may be more
plausible than those generated by other methods. The solvent effects on the theoret-
ical SAXS profiles are also explicitly treated in SWAXS-driven MD (Chen and Hub
2015). Additional information derived from NMR, e.g., distances, is incorporated
in SAXS_MD (Morimoto et al. 2013). Note that the resulting structure in these
methods is obtained using artificial forces, so structural validity should be checked.

15.3 Applications of the Hybrid Method of Molecular
Dynamics Simulations and Small–Angle X–Ray
Scattering

The hybrid methods of MD simulations and SAXS experiments enable us to
discuss their functions via 3D solution structures observed in SAXS experiments
on a physicochemically rational basis. Such analyses will be helpful for even the
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following difficult cases. (i) Solution structures appear to be flexible and are hardly
crystallized. (ii) Solution structures appear to adopt a different conformation from
the crystal structures. (iii) Proteins undergo conformational changes upon ligand
binding. However, structures after the conformational change cannot be determined
using crystallography. (iv) Structures in the apo state cannot be determined. (v)
Only crystal structures of homologous proteins are determined. (vi) Only parts of
the domain structures are determined. However, full-length multi-domain structures
cannot be determined.

In the following sections, two applications of the hybrid approach of MD
simulations and SAXS are reviewed as an example. In these studies, MD simulations
are carried out without any knowledge of experimental SAXS data. Then, the
consistency of the theoretical SAXS profile calculated from MD trajectories with
the experimental profiles is examined. In this method, the experimental SAXS
data are used only to check the validity of MD simulations. This approach is
referred to as “the MD-SAXS method”. The MD-SAXS method was applied to
endonucleaseEcoO109I (Oroguchi et al. 2009) and vitamin D receptor ligand-
binding domain (Anami et al. 2016).

15.3.1 Investigation of Intrinsic Dynamics of EcoO109I
and Extensions of MD-SAXS Methods

EcoO109I is a type II restriction endonuclease that recognizes specific nucleotide
sequences. The crystal structures of both the DNA-free and DNA-bound forms have
been determined (Fig. 15.1a), and SAXS measurements for the DNA-free form
have been carried out. According to experiments, a homodimer is a functional unit
in solution, and EcoO109I consists of the dimerization domain and the catalytic
domain. In the DNA-bound form, each catalytic domain tucks a double-stranded
DNA such as a scissor. By comparing the crystal structures of the DNA-free and
DNA-bound forms, EcoO109I is supposed to undergo a conformational change after
binding DNA. However, the space between the two catalytic domains is not large
enough to bind DNA in the crystal structure for the DNA-free form.

To probe the solution structure of the DNA-free form, an all-atom MD simulation
was carried out. To understand intrinsic dynamics, a structural ensemble consistent
with the experimental SAXS data was necessary. To this end, a computational
method was developed to calculate a theoretical SAXS profile by a structural
ensemble, termed MD-SAXS, and it was used to assess the structural ensemble.

The formulation and procedure of MD-SAXS is as follows. In SAXS exper-
iments, scattering from both the buffer-only solution and the protein solution is
measured to subtract the effect of the solvent-excluded volume from the scattering
intensity of the protein solution, and then, the scattering intensity of the buffer
solution is subtracted from that of the protein solution. In MD-SAXS, just as in
experiments, the two MD simulations for pure solvent and protein solution were
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Fig. 15.1 (a) Crystal
structures of EcoO109I of
DNA-free (sub-letter A) and
DNA-bound (sub-letter B)
forms. (Oroguchi et al. 2009)
(b) Experimental (pink dots)
and theoretical profiles (blue
curve) of the DNA-free
EcoO109I. (Oroguchi et al.
2009) c Simulation time
dependence of protein-water
Rg (cyan dots) estimated
from Guinier plot for the
theoretical profile obtained
from a 150 ns simulation,
protein-water Rg calculated
from a restraint-MD
trajectory (green dots), and
protein-only Rg calculated
from the 150 ns simulation.
Horizontal blue and green
lines represent averages of
protein-water Rg over the 150
ns simulation and the
restraint-MD trajectory,
respectively. The pink line
and the error bar show Rg
estimated from Guinier plot
for the experimental profile
and its error. (Oroguchi et al.
2009)

performed, and then the theoretical SAXS profile (I(Q)) was obtained by subtracting
the two theoretical scattering intensities of protein-solution (IU(Q)) and pure-solvent
(IV(Q)) MD simulations as

I (Q) = IU (Q) − IV (Q) ,

where Q is the scattering vector. Because the experimental SAXS profile is an
averaged quantity over the orientational and configurational degree of freedom of
a protein in solution, the theoretical scattering intensity is defined by
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I (Q) =
〈〈
I ′ (Q)

〉
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〉

MD
,

where I
′

is the instantaneous scattering intensity, 〈X〉�Q
represents the orientational

average, and 〈X〉MD represents the configurational average of all snapshots in the
trajectory. The instantaneous intensity corresponding to a snapshot in the trajectory
is given by
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)
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where ρ
′
(r) is the instantaneous electron density at position r. A fictive 3D sphere

is defined such that the protein is centered in the sphere, and the sphere includes
the protein and the solvent molecules around the protein. Using the sphere, the
coordinates for the protein and water molecules in a snapshot can be classified into
the areas inside (‘V’) and outside the sphere. When the size of the sphere is large
enough, the instantaneous scattering intensity with the orientational average can be
given by
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where the integration is executed in the inside of the sphere (V). This assumption is
valid when the density fluctuation in the area outside the sphere has no correlation
with that inside the sphere. In the result, the scattering intensity can be calculated
only by the contributions inside the sphere. For fast computation, the orientational
average is calculated by a multipole expansion. The trajectory of a 150-ns MD
simulation was used in the configurational average.

The theoretical SAXS profile calculated using MD-SAXS with the structural
ensemble agreed with the experimental profile (Fig. 15.1b). In particular, Rg

estimated from the Guinier approximation of the theoretical profile (∼28.2 Å) was
within errors of the experimental Rg (28.1 ± 0.3 Å). From the simulation-time
dependence of Rg obtained by the SAXS profile in each 500 ps time window,
Rg varied within ∼1.8 Å, which was reflected in the fluctuation between the most
expanded and closed conformations (Fig. 15.1c). This shows that the agreement of
Rg is provided by the configurational average over conformations in the trajectory.
This point also shows the importance of the protein flexibility treatment; Rg
estimated from a restraint MD simulation, in which the protein structure was
restrained to the crystal structure, was close to that at the most closed conformation
and smaller than the experimental Rg (Fig. 15.1c). In addition, Rg estimated using
only the protein (∼26.2 Å) was smaller than those of those given by the theoretical
and experimental profiles, indicating that the explicit treatment of water molecules
in MD-SAXS provides an adequate description of solvent effects (Fig. 15.1c).
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From the structural ensemble consistent with the experimental SAXS profile, the
intrinsic dynamics of EcoO109I were revealed. The large motions in the trajectory
were derived using principal component analysis, and the largest- and the second-
largest motions were the open-close motion and the twisting motion, respectively.
The motions were relevant to the function as follows. The first motion allows
EcoO109I to interact with DNA like a scissor, and the second motion allows the
two catalytic domains to fit together on the major groove of DNA from both sides.
The MD simulation revealed the intrinsic dynamics, including the transiently open
conformation that was necessary to access the DNA.

In ref. (Oroguchi and Ikeguchi 2011), the formulation of MD-SAXS was
extended to the buffer with ions. Because the electron density of the bulk solvent
depends on the ion concentration, ions in bulk significantly affect SAXS profiles.
The effect of the ions was incorporated via the form factor, and the instantaneous
intensity for the buffer with ions was then given by

〈
I ′ (Q)

〉
�Q

=
〈∫∫

V

(
ρ′ (r) − ρ0fV (Q)

) (
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where fV(Q) is the form factor for solvent molecules defined as

fV (Q) =
∑

μ

xμfμ (Q) /
∑

μ

xμfμ(0)

where xμ is the number concentration of the solvent species μ, and fμ(Q) is
the atomic form factor. They applied the expanded MD-SAXS to hen egg white
lysozyme solutions for various concentrations of NaCl. The calculated intensities
showed the effects on the ion strength. The decrease in I(0) (or Rg) was observed
as the ion concentration increased, and the shape of the SAXS curves varied
for different concentrations. Due to a slow mobility of ions, the convergence of
the scattering intensity depends on the ion concentrations, and at least ∼20 ns
simulation was necessary for a converged profile even if a protein structure was
fixed. In 0 mM NaCl buffer, a simulation of ∼0.2 ns was sufficient for the
convergence. To overcome the slow convergence, they developed a novel fitting
method that produced the profile in the presence of ions from the MD simulation
in the pure water buffer, i.e., 0 mM NaCl. Dividing the solvent region in the sphere
region denoted as V into several spherical layers of thickness �d in the direction
perpendicular to the protein surface, they defined the density distribution of solvent
molecules as

ρfit (i�d) = ρfit
water (i�d) + ρfit

cs (i�d)

where ρfit
waterorρfit

cs are the density of water or ions in i-th layer. To obtain
ρfit

cs (i�d),they estimated it by the sigmoid function model for the virtual density
distribution of ions. The sigmoid model smoothly connects from the density of
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the inside region without ions to the bulk density with ions, and there are three
adjustable parameters; One parameter is the distance from the protein at which
ions can approach the protein; another parameter is the smoothness of the density
change of the buffer with ions; and the other parameter is the bulk density of
the buffer with ions. These parameters were fitted such that the similarity score
between the theoretical and experimental profiles was minimized. The fitting
method successfully reproduced the theoretical profiles with the presence of ions
for various concentrations from the MD simulations with the absence of ions.
Furthermore, the density distribution of solvents in real space was reproduced well
by the fitting method even though the fitting was carried out for the scattering
intensity. These results indicate the applicability of the method and the validity of
the solvent model.

As for the limitation of the spherical boundary denoted as V, the formulation
was extended to the non-spherical boundaries (Oroguchi and Ikeguchi 2012). When
MD-SAXS is applied to elongate proteins, many solvent molecules are necessary
in the calculation due to the limitation of the spherical region, and a cube box must
be employed. However, solvent molecules at least in a rectangular box or a cylinder
are sufficient for typical MD simulations in terms of accuracy and efficiency. The
integration parts in instantaneous intensity were formulated, and the spherical region
was changed to the box region or the cylinder region. The scattering intensities
calculated from the rectangular and the cylinder regions agreed with the intensity
calculated from the original sphere region. Owing to this formulation, MD-SAXS
can be applied to typical settings of MD simulations for elongate proteins.

15.3.2 Structural Investigation of the Vitamin D Receptor
Ligand-Binding Domain

The vitamin D receptor (VDR) is a member of the nuclear receptor (NR) family.
VDR is a ligand-dependent transcription factor that regulates the expression of
genes related to calcium homeostasis, immunomodulation, cell differentiation, and
cell proliferation. Because the functions of VDR and other NRs are involved in
human diseases, understanding their regulation by ligand binding contributes to
structure-based drug design. Transcriptional regulation is conducted by sequential
molecular events: ligand binding, dimerization with a partner receptor, recruitment
of coregulators (coactivators/corepressors), and binding to DNA. NRs have a
highly conserved DNA-binding domain and a moderately conserved ligand-binding
domain (LBD). Transactivation is initiated by the conformational change of LBD
induced by ligand binding. According to X-ray crystal structures of NRs and other
experimental results, a local conformational change around helix 12 in the LBD is
key to regulating agonism/antagonism.

Many crystal structures of agonist/antagonist-binding VDR-LBD have been
solved so far. However, all the crystal structures are almost identical, regardless
of agonist/antagonist binding (Fig. 15.2a). Those crystal structures are considered
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Fig. 15.2 (a) Superimposition of the agonist-binding VDR-LBD (PDB id: 2ZLC) and the
antagonist-binding VDR-LBD (PDB id: 2ZXM). Helix 12 of the agonist- and antagonist-binding
form is colored by red and blue, respectively, and coactivator is shown by dark-pink and purple
color. (b) A solution model agreed with the experimental SAXS data for the apo form, termed
ApoMD-open structure. (c) A solution model for the antagonist-binding form, termed AntagoMD-
open structure. (d) Experimental profile of the apo form (black dots) and theoretical profiles of
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to be the agonist form. Because the conformation of helix 12 is key, the crystal
structures do not provide structural insight into the mechanism of antagonist activity.
In addition, no crystal structure of the apo form has been reported, and the exact
conformation of the apo form remains unknown.

To reveal the apo and antagonist-binding forms of VDR-LBD, a hybrid approach
of SAXS and MD was used (Anami et al. 2016). SAXS experiments can reveal
an overall shape of molecular structures in solution, and can capture both the
flexible structure of the apo form and the conformational change in response to
antagonist binding. SAXS profiles of apo and antagonist-binding rat VDR-LBDs
were obtained. However, the profiles were different from the theoretical profiles
calculated from crystal structures. The discrepancy between the theoretical and
experimental profiles χ calculated by CRYSOL (Svergun et al. 1995) showed high
values (χ = 0.8 for the apo form (Fig. 15.2d), χ = 0.7 for the antagonist-binding
form (Fig. 15.2e)). Although all the reported crystal structures of VDR-LBD were
also fit to each experimental profile, all the theoretical curves deviated from the
experimental profile. This result showed that the solution structures of both forms
were different from the active (agonist) forms reported previously, and the solution
structures captured by SAXS experiments reflected the inactive states.

To clarify the solution structures at atomic resolution, they conducted MD
simulations and collected each structural ensemble. In this study, all-atom MD
simulations were carried out for the structural investigation, and the experimental
SAXS profiles were used only to judge whether the solution models generated
by MD simulations were close to those in the experiment or not. To improve the
generation of a structural ensemble, various initial models were prepared using
homology modeling, and multiple MD simulations from the initial models were
carried out. A 100-ns MD simulation was performed in each initial model, and a
snapshot was saved every 50 ps (2000 snapshots in total). The theoretical profile of
each snapshot structure was calculated using CRYSOL (Svergun et al. 1995), and
it was compared to the experimental profile. Then, a reliable structure for each apo
and antagonist-binding form was reported.

The structural investigation by MD simulations successfully provided a solution
model of each apo and antagonist-binding form that were consistent with the
experimental SAXS profile. Compared to the simulation time dependences of χ

for various MD simulations, an MD simulation generated solution structures with
low χ, and then the ensemble generated by the MD simulation was selected.

�
Fig. 15.2 (continued) the crystal structure (green curve) and the ApoMD-open structure (cyan
curve). (Anami et al. 2016) (e) Experimental profile of the antagonist-binding form (black dots) and
theoretical profiles of the crystal structure (light-green curve) and the AntagoMD-open structure
(orange curve). (Anami et al. 2016) (f) Distribution of χ for various snapshots generated from an
apo-form MD simulation on the distance map. (Anami et al. 2016) (g) Distribution of χ for various
snapshots generated from an MD simulation of the antagonist-binding form on the distance map.
(Anami et al. 2016). (Fig. 15.2d–g: Reprinted with permission from Anami et al. J. Med. Chem.
59:7888–7900 (2016). Copyright 2016 American Chemical Society)
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In the ensemble, a solution model was selected as a snapshot with the lowest
χ, and it was referred to as the ApoMD-open (Fig. 15.2b) and AntagoMD-open
(Fig. 15.2c) structures. The theoretical SAXS profiles of both forms agreed with
each experimental profile (χ = 0.29 for both forms (Fig. 15.2d, e)). In both forms,
helix 12 was partially unraveled and did not adopt the active form. In the ApoMD-
open structure, helix 11 bent outward in a kink-centered hinge-bending motion, and
the motion created a wide entrance leading to the ligand-binding pocket (LBP). In
the AntagoMD-open structure, the wide entrance of the LBP was created by wide
and flexible loop between helices 11 and 12 (loop 11–12).

To check how the structural feature was invariant against the various possible
conformations sampled by the MD simulation, the tendency between the structural
feature and χ was analyzed. The common structural feature in both solution models
was the wide entrance. To characterize the entrance width, two distances between
residues were defined, and χ for every snapshot was mapped onto the surface of the
distances (Fig. 15.2f, g). The distribution of χ showed that χ negatively correlated
with the entrance width. The structures with a wide entrance, like Apo/AntagoMD-
open, showed low χ. This result showed that the solution structures observed
in SAXS experiments mainly fluctuated near the ApoMD-open or AntagoMD-
open structures. To further check the validity of the relationship, cross validation
analysis was performed. The snapshots generated by the MD simulation for the
apo (or antagonist-binding) form were fitted to the experimental SAXS profile
for the antagonist-binding (or apo) form, and vice versa. The cross-validation
analysis showed distinctively different behavior in the fluctuation around the LBP
in each apo and antagonist-binding form. Interestingly, several snapshots for the
apo form showed low χ values when they were fitted to the SAXS profile of
the antagonist-binding form. However, the structures of the apo form were not
suitable for antagonist binding because crashes among the antagonist and residues
occurred. Thus, the structure around the LBP sampled by the MD simulation
for the antagonist-binding form was essential for retaining ligand binding. This
analysis demonstrated an advantage of this hybrid approach. When the structural
investigation is done using only an experimental SAXS profile, the unsuitable
structure can be selected as a consistent model to satisfy the SAXS profile. In this
hybrid approach, the unsuitable structure is never selected because the unsuitable
structure does not appear in MD simulations of the agonist-binding form.

This hybrid approach of SAXS and MD simulation provided a solution model of
apo and antagonist-binding structures. According to the SAXS experiments of the
agonist-binding form by Rochel et al. (2001), the obtained SAXS profile was consis-
tent with the theoretical profile calculated from the crystal structure, indicating that
the solution structure of the agonist-binding form is identical to the crystal structure.
Integrating the structural information about the apo and agonist/antagonist-binding
forms, they proposed a model for agonist/antagonist activity controlled by ligand
binding called the “folding-door model” in which helix 11 acts as a door for ligand-
binding unlike the mouse-trap model (Moras and Gronemeyer 1998). However,
further analyses for the structural ensemble and the whole VDR are the next steps.
Helix 12 and helix 11 may fluctuate between apo and antagonist-binding forms,
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and structural information about their structural ensembles allow us to further
understand conformations influenced by ligands. As a straightforward expansion
for the MD-SAXS method, a comparison of the theoretical profile for an ensemble
structure weighted by the existing probability estimated by the suitable techniques
(e.g., Markov state model) with the experimental profile will be suitable. Cross-
validations from the analyzing techniques of SAXS (e.g., EROS (Rozycki et al.
2011)) and SAXS-driven MD (e.g., SWAXS-driven MD (Chen and Hub 2015)) will
be applicable. SAXS experiments for the whole heterodimer VDR-RXR have been
performed by Rochel et al. (Rochel et al. 2011). Since the dimer is large and flexible,
CG representation will be useful. The analyzing technique with a CG model (e.g.,
Fast-SAXS (Yang et al. 2009) and BSS-SAXS (Yang et al. 2010)) will be applicable.

15.4 Conclusion

Small-angle X-ray scattering (SAXS) is an efficient experimental tool to measure
the overall shape of macromolecular structures under nearly physiological aqueous
conditions. Due to the low resolution of SAXS data, high-resolution data obtained
from X-ray crystallography, NMR, or other physicochemical methods is necessary
to understand protein functions based on structures at atomic resolution. Thus,
SAXS is complementary to other methods. In this review, we focused on hybrid
approaches of SAXS and in silico methods, and typical and effective methods were
introduced. The methods will be useful for obtaining theoretical SAXS profiles from
(ensemble) structures with adequate treatments of solvent effects and to estimate
reasonable structures consistent with experimental SAXS profiles. The combination
analysis of SAXS and molecular dynamics (MD) simulations is a promising method
to estimate solution structures and structural ensembles for flexible proteins. The
use of MD simulations provides a physicochemically proper structural ensemble
in solution and a precise description of solvent effects. Two approaches of such
combination analysis have been proposed so far. The first approach is the SAXS-
driven MD simulation in which artificial forces defined by experimental SAXS data
are employed to modify the weights of structural clusters during MD simulations.
The second approach is the MD-SAXS method in which MD simulations are carried
out without any knowledge of experimental SAXS data, and the experimental
SAXS data are used only to assess the consistency of the solution model from
MD simulations with those observed in experiments. Since the second approach can
avoid the excessive modification of structural ensembles fitted to the experimental
profile, we reviewed examples using the second approach. The first example is
an investigation of the intrinsic dynamics of EcoO109I (Oroguchi et al. 2009).
To investigate dynamics, the computational method to obtain a theoretical SAXS
profile from the trajectory of an MD simulation was developed. The method
provides accurate profiles from a structural ensemble, and intrinsic dynamics are
revealed from analyses of the ensemble consistent with the experimental profile.
The second example is a structural investigation of the vitamin D receptor ligand-
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binding domain for the apo and antagonist-binding forms (Anami et al. 2016).
Theoretical SAXS profiles for all the reported crystal structures deviate from the
experimental profiles. However, MD simulations successfully provided solution
models consistent with the experimental profiles. The structural features of the
solution models are reasonable from the viewpoint of their functions. These
examples demonstrate the applicability of the hybrid approach of SAXS and MD
simulations. This approach and other related methods allow us to understand the
relationship between functions and structures on the basis of experimental and
physicochemical rationales.
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Chapter 16
Archiving of Integrative Structural
Models

Helen M. Berman, Jill Trewhella, Brinda Vallat, and John D. Westbrook

Abstract Integrative or hybrid structural biology involves the determination of
three-dimensional structures of macromolecular assemblies by combining infor-
mation from a variety of experimental and computational methods. Archiving the
results of integrative/hybrid modeling methods have complex requirements and
existing archiving mechanisms are insufficient to handle these pre-requisites. Three
concepts important for archiving integrative/hybrid models are presented in this
chapter: (1) building a federated network of structural model and experimental
data archives, (2) development of a common set of data standards, and (3) creation
of mechanisms for interoperation and data exchange among the repositories in a
federation. Methods proposed for achieving these objectives are also discussed.
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16.1 Introduction

The field of structural biology has undergone dramatic growth and change in the 60
plus years since Kendrew determined the structure of myoglobin (Kendrew et al.
1958) and Perutz the structure of hemoglobin (Perutz et al. 1960) – the first atomic
structures of macromolecular proteins determined using X-ray crystallography.
Today, while individual biomolecular structures of the highest resolution and
accuracy remain central to the field, the next frontier in structural molecular
biology is characterization of the large, complex and dynamic macromolecular
networks and machinery that drive fundamental biological processes such as
replication, transcription, concerted movement, defense against infection, etc. These
targets are elusive to traditional approaches to structure determination that use
a single technique, such as X-ray crystallography, Nuclear Magnetic Resonance
(NMR) spectroscopy or 3D Electron Microscopy (3DEM). To address this problem,
integrative or hybrid (I/H) methods are being developed that combine data from
complementary experimental techniques and computational models in innovative
ways (Sali et al. 2015, Ward et al. 2013). For example, I/H methods have been used
to develop detailed molecular models of the molecular machines and assemblies
that control protein biosynthesis (ribosome) (Leitner et al. 2016), the movement
of proteins across the nuclear membrane in a cell (nuclear pore complex) (Kim
et al. 2018), sensing in pathogenic bacteria that enables infection (bacterial type
III secretion system) (Loquet et al. 2012), and the regulation of the degradation of
damaged, malfunctioning or toxic proteins in the cell (proteasomal lid sub-complex)
(Politis et al. 2014).

The Protein Data Bank (PDB), founded in 1971 with only seven protein struc-
tures (Protein Data Bank 1971), is today a searchable, open global archive that holds
more than 140,000 structures of biological macromolecules and their complexes,
all of which are freely accessible. The vast majority of deposited structures have
been determined by a single technique: X-ray crystallography, NMR spectroscopy
or 3D electron microscopy. The Model Archive (MA) (Haas et al. 2013; Haas and
Schwede 2013), managed by the Protein Model Portal (PMP), archives about 1400
in silico models derived using purely computational techniques. Well-developed
infrastructure is in place for these structural model archives, with efficient deposition
and data processing procedures along with data standards, validation and curation
methods.

The increasingly diverse data types used in I/H methods has led to models
that can span multiple spatiotemporal scales and conformational states. Therefore,
existing archiving mechanisms that are designed for individual atomistic structures,
are insufficient to capture the details of an I/H model. The necessary requirements
for processing and archiving I/H models have yet to be fully established. In
recognition of this problem, the worldwide PDB (wwPDB) (Berman et al. 2007)
established the I/H Methods Task Force, and in October 2014, a workshop was held
(Sali et al. 2015) at the European Bioinformatics Institute, Hinxton, UK. Thirty-
eight leaders in experimental structural biology, in silico and integrative modeling,
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visualization, and data archiving discussed the steps required to make the results
of I/H modeling publicly available. They converged on the set of recommendations
summarized below (Sali et al. 2015):

Recommendation 1: In addition to archiving the models themselves, all relevant
experimental data and metadata as well as experimental and computational
protocols should be archived; inclusivity is key.

Recommendation 2: A flexible model representation needs to be developed, allow-
ing for multi-scale models (with atomistic and non-atomistic representations),
multi-state models (existing in various conformations), ensembles of models, and
models related by time or other order.

Recommendation 3: Procedures for estimating the uncertainty of integrative
models should be developed, validated, and adopted.

Recommendation 4: A federation of model and data archives should be created.
Recommendation 5: Publication standards for integrative models should be estab-

lished.

Implementation of these recommendations will take years of research and
community building efforts. However, the key recommendations involving the
creation of a federated system of model and data archives and the development of a
flexible data representation are crucial for archiving I/H models and hence are being
addressed presently.

16.2 The Structural Biology Federation

Models determined by I/H methods utilize the data from a wide range of biophysical
methodologies, including but not limited to: X-ray crystallography, NMR spec-
troscopy, 3DEM, Small Angle Scattering (SAS), Förster Resonance Energy Transfer
(FRET), Chemical Crosslinking and Mass Spectrometry (CX-MS), Electron Para-
magnetic Resonance (EPR) spectroscopy, Atomic Force Microscopy (AFM), deep
sequencing and coevolution methods and other proteomics and bioinformatics
techniques (Ward et al. 2013; Whitehead et al. 2012; Hopf et al. 2014). Experimental
data from complementary methods are combined to provide a set of spatial
restraints and structural information that are used in the determination of the three-
dimensional structures of macromolecular assemblies. Currently, these data are
stored in a variety of places. The atomic coordinates of structural models derived
by X-ray crystallography, NMR spectroscopy, and 3DEM are archived in the PDB
(Berman et al. 2000) along with data needed for model validation such as the
structure factors from X-ray crystallography and NMR chemical shifts. There are
also several experimental data repositories that store information belonging to the
particular domain: the Electron Microscopy Data Bank (EMDB) (Patwardhan and
Lawson 2016) (Lawson et al. 2011) archives the 3DEM maps as well as extensive
metadata; BioMagResBank (BMRB) (Ulrich et al. 2008) contains NMR spectra,
chemical shifts and other NMR-derived information such as NOE restraints and cou-
pling constants; Small Angle Scattering Biological Data Bank (SASBDB) (Valentini
et al. 2015) and BIOISIS (Rambo et al. 2017) contain small-angle scattering data
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and models; members of the ProteomeXchange consortium (Vizcaino et al. 2014)
including PRIDE (Vizcaino et al. 2016) and PeptideAtlas (Desiere et al. 2006)
archive proteomics data as well as results from chemical crosslinking and mass
spectrometry experiments. For other experimental methods, such as FRET and EPR,
there are no standard mechanisms to archive the experimental data. As a result, there
may be cloud-hosted data sets on external sites such as GitHub (GitHub Inc. 2007),
or perhaps most commonly, un-hosted data sets not usually accessible to the public
that reside in individual research laboratories.

In addition to archiving the three-dimensional coordinates of structural models,
it is necessary to archive metadata describing the chemistry and the protocols used
to determine the model, as well as the subset of experimental data needed to validate
the models. Furthermore, many communities want and need a broader set of exper-
imental data and metadata archived so that they can be available for future research.

To accommodate the need for an archive of validated models, and archives for the
different experimental methods used to compute these models, a federated system
of model and data archives was recommended by the I/H Methods Task Force
(Sali et al. 2015). A conceptual diagram of this Federation is shown in Fig. 16.1.
At the center of the figure are the principal structural biology model repositories,
including the existing PDB and MA archives, along with a prototype PDB-Dev
system, which hosts I/H models and associated spatial restraints (Vallat et al. 2016c,
2018; Burley et al. 2017). The outside ring includes complementary experimental
data repositories that would share a subset of experimental data and metadata with
the structural model repositories at the center, while continuing to provide the full
complement of data for their specialist communities. An important component

PDB- 
Dev

SAS

FR
ET

MA

PDB

Fig. 16.1 A conceptual diagram of the proposed members of the federation. Repositories that
focus on macromolecular structural models are shown in the center of the figure (structural biology
model repositories), while examples of repositories that contain primary experimental data and/or
derived restraints and associated metadata are shown in the outer circle. This outer circle contains
only some examples of experimental data archives
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of this federation is the establishment of methods for data exchange among the
individual repositories. The data definitions supporting these repositories need to
be well-aligned and software tools required for this purpose need to be developed.
The I/H models of complex biological systems will likely evolve with time as
new and different kinds of data become available. Therefore, the data exchange
mechanisms should be able to support these evolutionary improvements. The
creation of a Federation will provide a unified network of resources for structural
biology models and data and will further enable the development of mechanisms
for communication and interoperation among the different scientific communities
contributing to structural biology.

16.3 Creation of Data Standards

One of the important pre-requisites for building an archive is the creation of data
standards. The data standards, usually defined in a “dictionary” of data terms,
provide the descriptions and specifications for the information stored in an archive.
These data specifications include precise definitions for the data terms including
their units and allowed ranges, software features, storage data formats, and data
relationships and dependencies. To build an interoperable federated system of
structural biology resources, it is necessary that each participating repository has
well-defined data standards.

The scope of the contents to be archived varies among the data repositories. Ide-
ally, the archived content contains the minimum information needed to accurately
represent a complete and reproducible experiment. Experimental data repositories
typically capture the sample conditions, the experimental methods and software
tools used, the primary results and derived data, and associated metadata. Structural
model repositories capture atomic and molecular descriptions along with metadata
related to the structure determination method. The scope of the data content and
formats for data standards among different repositories are not always the same.

The PDB archive uses the PDBx/mmCIF data standard (Fitzgerald et al. 2005)
that grew out of an effort by the crystallographic community to define the many
elements of the crystallographic experiments and the results derived from those
experiments. The initial dictionary contained about 3000 data items, which is now
expanded to about 6500. Terms specific for NMR and for 3DEM were added as
structural models derived from those methods were deposited and processed by
the PDB. In addition to the atomic coordinates of the models, the PDB also stores
experimental data that are essential for validating these structures. These include
X-ray structure factors, NMR chemical shifts and restraints, all of which are defined
in the PDBx/mmCIF data dictionary (Fitzgerald et al. 2005).

The experimental data repositories that are members of the Federation, archive
method-specific data and metadata. They require a compatible data representation
that serves the needs of the community. BMRB (Ulrich et al. 2008) has a large
array of NMR specific spectral data such as the chemical shifts, NOE restraints
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and coupling constants. The underlying data representation is based on the NMR-
Star format (BioMagResBank 2004), which is a close relative of the PDBx/mmCIF
data representation. EMDB (Patwardhan and Lawson 2016) (Lawson et al. 2011)
contains 3DEM-derived maps expressed in CCP4 format (Winn et al. 2011) and a
database that follows an internally defined XML format. SASBDB (Valentini et al.
2015) archives the results of solution scattering experiments and has adopted an
extension of the PDBx/mmCIF dictionary, called sasCIF (Kachala et al. 2016; Mal-
fois and Svergun 2000). The sasCIF extension provides SASBDB the advantages
of pre-aligned data definitions and seamless interoperation with the PDB. Other
communities that generate in silico structural models, CX-MS data, FRET data,
EPR data, and deep genome sequencing are in various stages of creating standards
for their disciplines.

The creation of an I/H model archive requires the development of a flexible data
representation as recommended by the wwPDB I/H Methods Task Force. The exist-
ing data pipeline of the PDB archive is insufficient to handle I/H models because the
PDB currently handles mono-scale atomistic structures derived from experimental
techniques such as X-ray crystallography, NMR spectroscopy, and 3DEM. The
data representation for I/H models should account for ensembles of multi-scale
structural models (comprising of atomistic and coarse-grained representations of
macromolecular assemblies), conformations in multiple states and models related
by time or other order. It is envisioned that multi-scale I/H models can span a
broad range of structures including those of individual molecules, their complexes,
cellular neighborhoods, and even the entire cell. Furthermore, the input spatial
restraints used in I/H modeling can be obtained from a variety of experimental
and computational techniques and hence, the data representation should be able
to comprehensively capture this information together with details of modeling
workflows and other relevant metadata.

An I/H methods data dictionary has been created (Berman et al. 2016, Vallat
et al. 2016a, b, 2018) that defines the data contents from an I/H investigation to be
archived. This dictionary is an extension of the PDBx/mmCIF dictionary (Fitzgerald
et al. 2005) and therefore is complementary to the definitions already present in
the PDBx/mmCIF dictionary such as descriptions of the molecular system, atomic
coordinates, metadata related to authors, citations, and software use. New definitions
have been created to represent multi-scale structural models (including coarse-
grained spheres and three-dimensional Gaussian volumes), multi-state and time
ordered ensembles, starting structural models used as input in the I/H modeling
and restraints derived from experimental methods such as CX-MS, 2DEM, 3DEM
and SAS. Preliminary information regarding the modeling workflows and validation
metrics are also defined in the dictionary. The initial set of definitions have been
created based on the I/H models obtained from the Integrative Modeling Platform
(IMP, (Russel et al. 2012)) software package. Figure 16.2 shows a schematic
representation of the contents of the I/H methods data dictionary.

The PDB-Dev system (Vallat et al. 2016c, 2018; Burley et al. 2017) has been
built based on the new I/H methods extension dictionary. At present, twenty two
structures covering a variety of I/H modeling software and experimental data types
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Fig. 16.2 Illustration of the data content captured in the integrative/hybrid methods dictionary
(Berman et al. 2016; Vallat et al. 2016a, b, 2018). The green boxes represent existing external
repositories that archive sequence, chemical, structural, and experimental data for biological
macromolecules. The yellow, orange, and blue boxes represent the information captured in the
recently developed I/H methods dictionary. This information includes details of the molecular
components, the starting structural models of individual molecular components, and the spatial
restraints derived from various experimental methods. The details of the integrative modeling
algorithm are also captured in the dictionary including definitions for multi-scale, multi-state and
ordered structural ensembles of macromolecular assemblies

have been deposited into PDB-Dev. These structures and associated spatial restraints
are available from the PDB-Dev website (Vallat et al. 2016c, 2018; Burley et al.
2017) in a format compliant with the new I/H methods data dictionary (Berman et al.
2016; Vallat et al. 2016a, b, 2018). The ChimeraX visualization software (Ferrin
et al. 2017) provides basic support to visualize the multi-scale I/H models obtained
from PDB-Dev.

Following the recommendations of the wwPDB I/H Methods Task Force, we
have assembled a set of data standards and a prototype deposition and archiving
system that lays the foundation for building a full-fledged archive for I/H models.
The development of a comprehensive data pipeline to curate and validate these I/H
structural models to provide cleaner and richer data content to the users, is the focus
of ongoing research projects.
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16.4 Methods for Data Exchange

The proposed federation comprises a network of information resources that con-
tribute to the field of structural biology. The creation of a federation will greatly
streamline the process of data preservation and access. The basis of such a federation
is the establishment of mechanisms for exchanging information among its various
members. This important process requires extensive participation and consensus
building among the communities involved.

Experience suggests that the organization of the structural biology federation
be based on autonomous repositories networked via a set of mutually agreed
communication and data exchange protocols. The diversity of archived data types
and data validation protocols require the greatest local autonomy in establishing
data formats and standards, and to build and maintain each individual repository.
Mutually agreed mechanisms are then required to enable member repositories to
interoperate with each other in an effective manner including efficient methods for
communication and data exchange. The objective of seamless interoperation with
the federation can be achieved in several ways, as proposed below, and these may
be adopted based on community consensus.

References to data residing in other repositories will rely on high level identifiers
such as Digital Object Identifiers (DOIs), stable accession codes and persistent
URLs. While experimental data and structural models will reside in their respective
repositories, the spatial restraints and associated information derived from the
experimental data, required for validation of the structural model, will be shared
among the repositories. The limited set of commonly shared information need to
be identified and defined accordingly to avoid duplication and to enable seman-
tically precise data exchange. Software tools need to be developed to facilitate
seamless interoperation among the repositories in the federation. These tools include
development of methods for data harvesting, format conversion, semantic mapping
and alignment of data residing in different repositories as well as mechanisms
for exchange of data using secure industry-standard web services. Figure 16.3
shows a schematic representation of different layers of interoperation among various
structural model and experimental data repositories in the proposed federation as
well as developers of I/H modeling software.

To account for refinements of the structural models arising from revisions to the
underlying experimental data and/or modeling methods, data exchange mechanisms
should support versioning and updates to data residing in a particular repository.
Timely propagation of updated information to other repositories within the fed-
eration will also need to be supported. These objectives can be achieved through
mutual agreements on maintaining explicitly versioned data files and unambiguous
descriptions of accession codes and version numbers within the commonly shared
data definitions. Furthermore, automated messaging and communication tools are
required to enable downstream dissemination of data updates.
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Fig. 16.3 A schematic portrayal of the data exchange among the structural model and experimen-
tal data repositories in the proposed structural biology federation

16.5 Conclusion

The future of structural biology relies heavily on the development of integra-
tive/hybrid methods that combine information from a variety of experimental data
sources with computational methods to elucidate the structures of complex macro-
molecular assemblies. These I/H methods are evolving into techniques that provide
spatiotemporal information regarding molecular events at the cellular level. From an
archival perspective, it is important to capture every structural and functional detail
so that the knowledge gained from I/H models can be available for other applications
in biotechnology and medicine as well as to guide future research. The structural
biology community and the worldwide PDB (wwPDB, (Berman et al. 2007)) have
combined their efforts to enable the archiving and dissemination of I/H models and
associated experimental data and computational protocols in a concerted manner.
Although the long-term vision of a comprehensive structural biology federation is
yet to be fully materialized, the first steps in this direction have been productive and
basic building blocks have been developed. These steps include bringing together
several research communities contributing to the field of structural biology and the
development of preliminary data standards and a prototype archiving system for
I/H models. Further progress towards the establishment of a unified, global and
interoperable network of structural biology resources that provides rich content of
curated and validated structural data to the users, is the focus of ongoing and future
research and community building efforts.
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