
Chapter 10
Clustering for Binary Featured Datasets

Peter Taraba

Abstract Clustering is one of themost important concepts for unsupervised learning
in machine learning. While there are numerous clustering algorithms already, many,
including the popular one—k-means algorithm, require the number of clusters to be
specified in advance, a huge drawback. Some studies use the silhouette coefficient
to determine the optimal number of clusters. In this study, we introduce a novel
algorithm called Powered Outer Probabilistic Clustering, show how it works through
back-propagation (starting with many clusters and ending with an optimal number
of clusters), and show that the algorithm converges to the expected (optimal) number
of clusters on theoretical examples.

Keywords Binary valued features · Clustering · Emails · k-Means · Optimal
number of clusters · Probabilities

10.1 Introduction

For over half a century, clustering algorithms have generated massive research inter-
est due to the number of problems they can cover and solve. As an example [1], the
authors use clustering to group planets, animals, etc. The main reason for the popu-
larity of clustering algorithms is that they belong to unsupervised learning and hence
do not require manual data labeling, in contrast to supervised learning, which can
require the cooperation of many people who often disagree on labels. As an example
one can even mention Pluto, the celestial body no longer considered a planet as of
2006. The advantage of using unsupervised over supervised learning is that rather
than relying on human understanding and labeling, clustering algorithms rely purely
on the objective properties of the entities in question. A good clustering algorithm
survey can be found in [2].

The largest obstacle for clustering algorithms is finding the optimal number of
clusters. Some results on this topic can be found in [3], where the authors com-

P. Taraba (B)
Berkeley, CA 94710, USA
e-mail: taraba.peter@mail.com

© Springer Nature Singapore Pte Ltd. 2019
S.-I. Ao et al. (eds.), Transactions on Engineering Technologies,
https://doi.org/10.1007/978-981-13-2191-7_10

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2191-7_10&domain=pdf

128 P. Taraba

pare several algorithms on two to five distinct, non-overlapping clusters. As another
example, one can mention [4], where the authors use a silhouette coefficient (c.f. [5])
to determine the optimal number of clusters.

In this study, we construct three theoretical datasets: one with clusters that are
clearly defined, a second with clusters that have randomly generated mistakes and
last but not least clusters which have majority of features noisy. We then show that
the algorithm introduced in this chapter converges to the expected number of clusters
for all three examples.

This chapter is organized as follows. In Sect. 10.2, we describe the Powered
Outer Probabilistic Clustering (POPC) algorithm. In Sect. 10.3, we confirm on three
theoretical examples that the algorithm converges to the expected number of clusters.
In Sect. 10.4, we present an additional example of real email dataset clustering. In
Sect. 10.5, we dive deeper into the algorithm properties. And finally in Sect. 10.6,
we draw conclusions.

10.2 Algorithm Description

The POPC algorithm, originally introduced in [6], relies on computing discounted
probabilities of different features belonging to different clusters. In this section, we
use only features that have binary values 0 and 1, which means the feature is either
active or not. One can write the probability of feature fi belonging to cluster k as

p(cl(fi) = k) = c(s j (fi) = 1, cl(s j) = k)Cm + 1

c(fi = 1)Cm + N
,

where c is the count function, cl is the clustering classification, N is the the number of
clusters, k ∈ {1, . . . , N } is the cluster number, s j are samples in the dataset, s j (fi) ∈
{0, 1} is the value of feature fi for sample s j , and Cm is a multiplying constant (we
use Cm = 1000 in this study). If we sum over all clusters for one feature, we get:

N∑

k=1

p(cl(fi) = k) = 1,

and subsequently further over all features fi we get:

F∑

i=1

N∑

k=1

p(cl(fi) = k) = F. (10.1)

If we used (10.1) as the evaluation function, we would not be able to optimize
anything, because the function’s value is constant no matter how we cluster our
samples s j . Hence, instead of summing over probabilities, our evaluation function J
uses higher powers of feature probabilities as follows:

10 Clustering for Binary Featured Datasets 129

Fig. 10.1 Values of the evaluation function for a hypothetical case where there is one feature and
two clusters. If the feature is distributed between two different clusters, the evaluation function J
has a lower value (near 0.5 on the x-axis). In case the feature belongs to only one cluster, or mostly
to one cluster, J has a higher value for evaluation function (left near 0.0 or right near 1.0 on the
x-axis—values close to optimum J (fi) = 1)

J =
F∑

i=1

J (fi) =
F∑

i=1

N∑

k=1

pP(cl(fi) = k) ≤ F, (10.2)

where P is the chosen power and we choose P > 1 in order to have a non-constant
evaluation function. The main reason why this is desired can be explained with
reference to a hypothetical case where there is only one feature and two clusters. We
want samples with s j (f1) = 1 to belong only to one of two clusters. In the case that
samples are perfectly separated into the two clusters on the basis of the one feature,
we maximize

∑N
k=1 p

P(cl(fi) = k) (value very close to 1 as we use discounting).
In the case that some samples belong to one cluster and some to the other, so the
separation is imperfect, we get a lower evaluation score (value significantly lower
than 1) for the feature. The higher the power P , the lower the score we obtain when
one feature is active in multiple clusters. This is displayed in Fig. 10.1 for different
powers P ∈ {1, 2, 3, 10} and two clusters. For results reported in this section we use
P = 10.

The algorithm starts by using the k-means algorithm to assign each sample s j a
cluster number. The number of clusters is set to half the number of samples in the
dataset. Then the algorithm proceeds to reshuffle samples s j into different clusters
{1, . . . , N }. If the evaluation function J increases as a result of reshuffling, the new
cluster assignment is preserved. The algorithm ends when reshuffling no longer
increases the evaluation function J .

130 P. Taraba

The algorithm can be summarized in the following steps:

1. Using k-means clustering, assign each sample s j cluster cl(s j) = k, where k ∈
{1, . . . , N } and N—the number of clusters—is chosen to be half the number of
data samples.

2. Compute Jr=0 for the initial clustering, where r denotes the iteration of the
algorithm.

3. Increase r to r := r + 1, start with Jr = Jr−1.
4. For each sample s j , try to assign it into all the clusters to which it does not belong

to (cl(s j) �= k)

a. If the temporary evaluation score JT with the temporarily assigned cluster
improves over the previous value, i.e. JT > Jr , then assign Jr := JT and
move sample s j to the new cluster.

5. If Jr is equal to Jr−1, then stop the algorithm. Otherwise go back to step 3.

Remark 1 (Implementation detail) The algorithm can be made faster if one saves
the counts of different features for different clusters and updates these counts only if
and when the evaluation score improves. This is just an implementation detail, which
speeds up computations significantly and does not influence the result.

10.3 Examples

In this section, we create three theoretical examples, one perfect, one slightly imper-
fect and one with a majority of noisy features.

For the perfect example, we create a dataset containing 200 samples with 100
features and assign each sample to a random cluster (N = 7) with a uniform discrete
distribution, so that every cluster has approximately the same number of samples. In
the same way, we assign every feature to a cluster. A feature is active (its value is
1) only if the feature belongs to the same cluster as the sample and only 80% of the
time.

In Fig. 10.2 top, we show the k-means evaluation function depending on the
number of clusters. There is a break-point at exactly N = 7, the expected number
of clusters. Figure 10.2 bottom shows the number of clusters created by the POPC
algorithm. We can see that if we start with a number of clusters larger or equal to 7,
we always end with the expected number of clusters 7.

The first example clustered with POPC algorithm is displayed in Fig. 10.3. As
shown, clusters are found as expected.

For theoretical example 2, we create also noisy features, which do not belong to
any cluster. These features can be active for samples belonging to any cluster. They
are active 20% of time. The results for example 2 are displayed in Fig. 10.4. The
POPC algorithm introduced in this chapter once again yields the expected number
of clusters.

10 Clustering for Binary Featured Datasets 131

Fig. 10.2 (Top) K-means evaluation function depending on the number of clusters for example 1.
(Bottom) Number of clusters created by the POPC algorithm depending on the number of starting
clusters

132 P. Taraba

Fig. 10.3 Theoretical example 1—seven perfect clusters clustered by POPC. On vertical axis we
have different samples belonging to different clusters (separated by lines) and on horizontal axis
we have different features

The second example clustered with POPC algorithm is displayed in Fig. 10.5. As
shown, clusters are found as expected despite having a small amount of imperfect
features.

For theoretical example 3, we create 7 clusters with every cluster having 30 sam-
ples with 20 features. Every cluster has exactly one feature, which is active only for
the cluster it belongs to. The remaining 13 features are random features, which do
not belong to any cluster and are activated 50% of time. This is the main example,
which shows why the POPC algorithm is so useful. K-means algorithm, due to a
majority of features being randomly active, cannot find features which are signifi-
cant features for clusters and finds clusters which are not the way we would expect
them. Evaluation function Jk−means is very close to 0 even if we knew we are looking
for 7 clusters. This is displayed in Fig. 10.6.

On the other hand, when we use POPC algorithm we find exactly 7 clusters we
expected and more importantly JPOPC is close to 7, which is the amount of features
that are significant to respective clusters. This is displayed in Fig. 10.7. This last
theoretical example explains why in real life situations, POPC is not only able to
find the correct number of clusters, but also to find significantly better clusters than
k-means for binary feature datasets.

All the theoretical examples introduced in this section can be generated with C#
code which can be downloaded from [7]. Same code contains implementation of
popc algorithm.

10 Clustering for Binary Featured Datasets 133

Fig. 10.4 (Top) K-means evaluation function depending on the number of clusters for example 2.
(Bottom) Number of clusters created by the POPC algorithm depending on the number of starting
clusters

134 P. Taraba

Fig. 10.5 Theoretical example 2—seven imperfect clusters clustered by POPC. On vertical axis
we have different samples belonging to different clusters (separated by lines) and on horizontal axis
we have different features. Last 10% features (on right) are the features, which do not belong to
any cluster and are active 20% of time

10.4 Real Life Example—Email Dataset

As a last example, wewill use an example from real life: email data. Each email is one
sample in the dataset. The features are the people included on the email. Results are
displayed in Fig. 10.8. As shown in the graph on the top, there is no clear break-point
as in the previous two examples, showing why it is so hard in real life situations to
find the optimal number of clusters. Despite this fact, when we start with the number
of clusters larger than or equal to 93, the algorithm introduced in this chapter settles
on a final clustering with 26 clusters.

The email dataset contains 270 emails (samples) and 66 people (features). The
final score for the evaluation function with 26 clusters is J = 52.19 out of the max-
imum possible value 66. Even if we knew the correct number of clusters (which we
do not) and used it with k-means, the evaluation function introduced in this chapter
would be Jk−means = 32.91, which is significantly lower than 52.19. This represents
an improvement in cluster quality of 29.21%. The score reflects approximately the
number of people who belong only to a single cluster. Email clusters for the email
dataset are displayed in Fig. 10.9. Improvement over k-means was confirmed on
emails of two other email datasets belonging to other people. Due to privacy issues,
the email dataset is not shared as it belongs to a private company.

Remark 2 (Interesting detail) While the maximum evaluation function value can be
achieved by assigning all samples to the same single cluster, when starting with a
large number of clusters, the algorithm does not converge even for real life datasets

10 Clustering for Binary Featured Datasets 135

Fig. 10.6 Theoretical example 3—seven imperfect clusters clustered by k-means. (Top) On ver-
tical axis we have different samples belonging to different clusters (separated by lines) and on
horizontal axis we have different features. (Bottom) K-means evaluation function based on number
of clusters—no clear break of evaluation function as for two previous theoretical examples

to a single cluster due to the use of back-propagation and the presence of local
maximums along the way which result from reshuffling only a single sample at a
time. This provides unexpected, but desired functionality. For the same reason, we
are not able to start the algorithm with one cluster and subsequently subdivide the
clusters, because this would only lower the evaluation function’s value. Hence, the
algorithm works only backwards.

136 P. Taraba

Fig. 10.7 Theoretical example 3—seven imperfect clusters clustered by POPC. On vertical axis
we have different samples belonging to different clusters (separated by lines) and on horizontal
axis we have different features. First 7 features (from left) are the significant features of respective
clusters. Remaining 13 features are non-significant features, which do not belong to any cluster and
are active 50% of time

10.5 Deeper Dive into the Algorithm

In this sectionwe dive deeper into properties of the algorithm introduced in this paper
(but for simplicity, we omit multiplying constant Cm and ···+1

···+N technique which is
used to achieve non-zero probabilities).

As a first example, we consider the simple example of two clearly separated
clusters, which features do not intersect as it is displayed in Table 10.1. Evaluation
of the function is the same whether we have one or two clusters:

J2clusters = n

((
k

k

)P

+
(
0

k

)P
)

+ m

((
l

l

)P

+
(
0

l

)P
)

= n + m = J1cluster

But if we start with two clusters, the evaluation function will not allow joining
these two clusters, as we move only one sample at a time and the evaluation function
would not improve for different rounds r of algorithm (Jr > Jr+1). Consider moving
sample from cluster 2 to cluster 1:

Jr = n + m > n + m

((
l − 1

l

)P

+
(
1

l

)P
)

= Jr+1

10 Clustering for Binary Featured Datasets 137

Fig. 10.8 (Top) K-means evaluation function depending on the number of clusters for real life
example (emails). (Bottom) Number of clusters created by the POPC algorithm depending on the
number of starting clusters

138 P. Taraba

Fig. 10.9 Email clustering example. Emails are displayed as ‘o’ in different cluster circles. People
are displayed as ‘+’ and connections between emails and people included on these emails are
displayed as lines between them

for P > 1, hence sample from cluster 2 will not move to cluster 1 and it could be
shown the same way for sample from cluster 1 to cluster 2. This is the reason these
two clusters will not be joined for k > 1 and l > 1.

Now, we explore a slightly more complicated situation when we have two clusters
(Email Group 1 and 2). In one cluster, we have communication with all people
(features 1 to n + m), and in the other email group we communicate only with a
subgroup of people in the first email group (features n + 1 to n + m). This is shown
in Table 10.2.

Now if we ask if these two clusters should be together or not, without optimizing
our evaluation function by moving only one sample at a time, the answer is they
should be together as

J2clusters = n + m

((
k

k + l

)P

+
(

l

k + l

)P
)
< n + m = J1cluster

10 Clustering for Binary Featured Datasets 139

Table 10.1 Two groups of emails with k + l samples and n + m people (features)—completely
separated

Sample
number

Email
group

F1 ... Fn Fn+1 ... Fn+m

1 1 1 ... 1 0 ... 0

... 1 1 ... 1 0 ... 0

k 1 1 ... 1 0 ... 0

k + 1 2 0 ... 0 1 ... 1

... 2 0 ... 0 1 ... 1

k + l 2 0 ... 0 1 ... 1

Table 10.2 Two groups of emails with k + l samples and n + m people (features)—intersected
features

Sample
number

Email
group

F1 ... Fn Fn+1 ... Fn+m

1 1 1 ... 1 1 ... 1

... 1 1 ... 1 1 ... 1

k 1 1 ... 1 1 ... 1

k + 1 2 0 ... 0 1 ... 1

... 2 0 ... 0 1 ... 1

k + l 2 0 ... 0 1 ... 1

for P > 1, which we consider.
So the question to answer is why, when using back-propagation, even though

J1cluster > J2clusters for the situation in Table 10.2, we do not end up with one cluster.
Consider we have two clusters, and we move one sample from group two to group
one only if the evaluation function is increased:

Jr = n + m

((
k

k + l

)P

+
(

l

k + l

)P
)

< n + m

((
k + 1

k + l

)P

+
(
l − 1

k + l

)P
)

= Jr+1

which holds if
kP + l P < (k + 1)P + (l − 1)P

and for case when P = 2 it is if
l < k + 1.

140 P. Taraba

Fig. 10.10 The condition kP + l P < (k + 1)P + (l − 1)P is the same for P = 2 and P = 10 for
k ∈ {2, ..., 40} and l ∈ {2, ..., 40}. Circle indicates condition is not fulfilled, while empty space
opposite.

This means if there are enough samples l of the second group, at least k + 1, the
member of group two will not move to group one and the clustering algorithm ends
up with two clusters. Even for P = 10, the condition seems to be unchanged and is
displayed in Fig. 10.10.

Another question for this example is why does the sample from group one not
move to group 2. This can be explained by

Jr = n + m

((
k

k + l

)P

+
(

l

k + l

)P
)

> n

((
k − 1

k

)P

+
(
1

k

)P
)

+ m

((
k − 1

k + l

)P

+
(
l + 1

k + l

)P
)

= Jr+1

Even this simple situation can get complicated, but for n � m, we can simplify
the equation to

Jr
n

≈ 1 >

((
k − 1

k

)P

+
(
1

k

)P
)

≈ Jr+1

n

10 Clustering for Binary Featured Datasets 141

Fig. 10.11 The condition Jr = n + m

((
k

k+l

)P +
(

l
k+l

)P
)
> n

((k−1
k

)P + (1
k

)P)
+

m

((
k−1
k+l

)P +
(
l+1
k+l

)P
)

= Jr+1 is not the same for P = 2 (left) and P = 10 (right) for

k ∈ {2, ..., 40} and l ∈ {2, ..., 40}. For this example, we chose n = m = 10. Circle indicates
condition is not fulfilled, while empty space opposite

which is true for P > 1 and k > 1. So if n is significantly larger than m, we have no
reason to move the sample from group 1 to group 2. When this condition is fulfilled
versus not is displayed in Fig. 10.11 also for case n = m = 10.

This is when parameter P starts to play its role unlike before (Fig. 10.10) and
whether two clusters are joined or not depends on P .

10.6 Conclusions

We introduced a novel clustering algorithm POPC, which uses powered outer proba-
bilities and works backwards from a large number of clusters to the optimal number
of clusters. On three theoretical examples, we show that POPC converges to the
expected number of clusters. In a real life example with email data, we show that it
would be difficult to determine the optimal number of clusters based on the k-means
evaluation score, but when the algorithm introduced in this chapter is used, it settles
on the same number of clusters as if we had started with a large enough initial number
of clusters. Importantly, the clusters are of higher quality in comparison with those
produced by k-means even if we happened to know the correct number of clusters
ex ante. Software Small Bang, which clusters emails and uses POPC algorithm, can
be downloaded from [8].

Acknowledgements The authors would like to thank David James Brunner for many fruitful
discussions on knowledge workers information overload as well as proofreading of the first draft.
The authors would also like to thank anonymous reviewers for providing feedback which led to
significant improvement of this chapter.

142 P. Taraba

References

1. J. Hartigan, Clustering Algorithms (Wiley, 1975)
2. R. Xu, D. Wunsch, Survey of clustering algorithms. IEEE Trans. Neural Netw. 16 (2005)
3. G. Milligan, M. Cooper, An examination of procedures for determining the number of clusters

in a data set. Psychometrika 50 (1985)
4. G. Frahling, C. Sohler, A fast k-means implementation using coresets. Int. J. Comput. Geom.

Appl. 18 (2008)
5. P. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.

Comput. Appl. Math. 20 (1987)
6. P. Taraba, Powered outer probabilistic clustering, in Proceedings of the World Congress on

Engineering and Computer Science 2017, 25–27 October, 2017, San Francisco, USA. Lecture
Notes in Engineering and Computer Science (2017), pp. 394–398

7. P. Taraba, Popc examples [Online] (2017), https://github.com/pepe78/POPC-examples
8. P. Taraba, Small bang [Online] (2017), http://www.frisky.world/p/small-bang.html

https://github.com/pepe78/POPC-examples
http://www.frisky.world/p/small-bang.html

	10 Clustering for Binary Featured Datasets
	10.1 Introduction
	10.2 Algorithm Description
	10.3 Examples
	10.4 Real Life Example—Email Dataset
	10.5 Deeper Dive into the Algorithm
	10.6 Conclusions
	References

