
Chapter 7
Experimenting with Adaptation in Smart
Cyber-Physical Systems: A Model
Problem and Testbed

Vladimir Matena, Tomas Bures, Ilias Gerostathopoulos, and Petr Hnetynka

Abstract The chapter focuses on experimentation with adaptation in the field of
smart cyber-physical systems (sCPS). In particular, it provides a model problem
that features a coordination of autonomous cleaning robots. The model problem
is accompanied with a testbed which allows the execution of the model problem
along with custom adaptation logic. The testbed can be executed as a simulation
of multiple robots running or deployed on an actual TurtleBot robot. Both the
simulated and actual deployment environment are based on the same software stack.
The offered simulation is precise timing-, bandwidth-, and mobility-aware and
brings together a ROS-based Stage simulation of a swarm of robots and OMNeT++-
based simulation of 802.15.4 wireless network, while the actual deployment is based
on the TurtleBot robotic platform. The adaptation business logic is based on the
DEECo component model and points to specific places, where the user code can be
easily plugged in.

7.1 Introduction

Smart cyber-physical systems (sCPS) are distributed and decentralized systems that
closely cooperate with their physical environment by sensing and actuating [9].
A characteristic feature of sCPS is that they exhibit a high level of “intelligence”
in terms of opportunistic cooperation, dynamic self-organization, self-healing, and
self-adaptation [6]. As such, sCPS are regarded as vital for building applications for
smart mobility, smart energy grids, ambient assisted living, smart cities, etc.
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Software engineering of sCPS is largely an open challenge, as sCPS combine
autonomous decentralized cooperative behavior, with concerns of real-time, limited
communication, dependability, etc. The lack of software engineering support also
applies to self-adaptation [7], which is a central feature of sCPS, crucial for coping
with the uncertain environments in which sCPS operate.

While there is a large body of knowledge for experimenting with adaptation in
the context of enterprise services and other traditional software systems, there is
rather a vacuum in terms of knowledge and especially tools for experimenting with
adaptation in sCPS. This is in our view because sCPS combine multiple relatively
distinct disciplines (real-time, control, networking, agents, learning, data-analysis,
etc.) [4]. This consequently requires engineering approaches and tools for sCPS
to build synergies between the disciplines and support the mutual interplay of the
concerns.

In this chapter,1 we partially address the problem of development of self-adaptive
sCPS by providing a model problem and testbed for experimenting with, comparing,
and developing new adaptation solutions pertinent to sCPS.

In particular, the model problem and testbed provide challenges in coordination
of autonomous robots with the interplay of concerns of (a) realistic communication
(i.e., communication limited by bandwidth and subject to latencies), (b) real-time
control, and (c) decentralized operation.

To enable fast prototyping, the testbed abstracts robots as autonomous com-
ponents (implemented in Java) and allows describing robot communication via
dynamic collaboration groups. It also points to specific places in the code where
adaptation logic can be plugged in and provides metrics for evaluating the plugged-
in adaptation. Thus, together, the model problem and the testbed provide a concrete
ready-to-use benchmark for experiments in the relatively new field of sCPS.

Either the implementation can be executed as a simulation, or it can be directly
deployed to actual robots (currently, the implementation out of the box supports the
TurtleBot robots2).

The chapter is organized as follows. Section 7.2 describes the model problem
in detail. Section 7.3 presents the testbed from both the user perspective and also
implementation point of view. Section 7.4 describes a sample adaptation we have
used for evaluating the testbed and further discusses lessons learned and limitations.
Section 7.5 briefly details the structure of the provided testbed (detailed instructions
are packaged together with the testbed). Section 7.6 discusses related work, while
Sect. 7.7 concludes the chapter by summarizing the contributions.

1It is based on material included in a SEAMS 2016 publication by the same authors [5].
2http://www.turtlebot.com/

http://www.turtlebot.com/
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7.2 Model Problem

The model problem provided by our testbed is the “Autonomous Cleaning Robots
Coordination” (ACRC) problem. In ACRC, a number of cleaning robots is deployed
in in-door space consisting of corridors and multiple office rooms (see Fig. 7.1).

Every robot is equipped with a camera which provides depth information. The
robots use the cameras to observe obstacles (other robots, walls, etc.) and for
navigation, by means of Adaptive Monte Carlo Localization (AMCL). Robots are
equipped with a map of the place that they are supposed to clean. This map is used in
the AMCL-based navigation, which works by comparing a depth scan with the map.

Robots are capable of limited communication using an IEEE 802.15.4 transceiver
(with approx. 10 m direct visibility range), which allows building mobile ad hoc
networks. This means that robots can exchange data only when they are close to
one another. Robots can extend the communication range by acting as proxies that
rebroadcast messages further. Generally, however, no global communication can be
assumed as situations when no proxy is close enough or too much interference exists
are rather often.

The basic software of the robots is formed by the Robot Operating System3

(ROS), which is the de facto standard set of libraries and services for building open-
source robotic platforms.

Fig. 7.1 A visualization of the model problem

3http://wiki.ros.org/

http://wiki.ros.org/
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7.2.1 Operation and Adaptation Challenges

Each robot is initially given its own set of places it is supposed to visit and clean. In
the naïve solution, which can be considered as the baseline, robots act completely
independently of one another (i.e., they do not communicate nor coordinate) and
visit places on their list in the given order.

Due to the complexity of the environment and the deficiencies in the ROS stack
(which we consider as a black-box component that is given and one has to live with),
the naïve solution gives rise to multiple problems:

• A robot has only an approximation of its position and orientation. Often,
especially when other robots are present nearby, the AMCL localization fails as
the depth scans (which include other robots) cannot be matched with the known
map. As a result, the robot navigation becomes very imprecise and sometimes,
when in dense traffic, fails completely, and the robot stops.

• The navigation module in a robot sometimes fails to find a route to the destination
because other robots moving by obstruct it. As the result the robot stops.

• Due to physical space constraints, robots often get to a deadlock situation – e.g.,
when one robot wants to enter the office and another wants to exit it. The result is
again that the robots stop to avoid collision. (Note that this is a different situation
to the previous point, where the failure to find a way is only transient. In this
case, however, it persists until the deadlock is explicitly solved.)

Generally, each of these problems can be solved by pointing the robot to the right
direction. However, it practically turns out to be quite difficult to (1) distinguish the
cause of the problem and (2) to know where to navigate the robot to recover it from
the failed state.

Though these problems could be targeted by modifying ROS, our experience
with extending and customizing ROS shows that a more practically viable solution
is to regard ROS as a black-box and build an adaptation layer over it. As such, the
robotic scenario constitutes an excellent case for adaptation. (Of course, this is by no
way a criticism of ROS, which itself is the most comprehensive open-source solution
for robotics. It is more an acknowledgment of the complexity inherently connected
with developing systems that perform in and interact with real environments.)

To remediate the deficiencies of the baseline solution, the adaptation layer has
generally free access to the robot navigation. In particular, it can obtain estimates of
the position and can sense whether the robot moves. Based on this, it can:

• manipulate the queue of locations to be visited (destinations),
• pause the robot and command the robot to move to any place on the map.

Additionally, the adaptation layer on one robot may communicate with the
adaptation layers of other robots to realize more complex adaptation strategies via
cooperation.

The adaptation however comes with another set of problems once we try not
only to recover the robots from failures and deadlocks but also optimize the overall
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performance of the system. Clearly, by reordering the locations to be visited and
by transferring the responsibility of cleaning a place from one robot to another, the
system can highly optimize itself. Theoretically, it can even get to a point when
no collisions happen because robots exchange their destinations in such a way that
they do not interfere. This is however subject to multiple problems, which can be
regarded as additional adaptation challenges:

• The uncertainty in location makes planning not completely reliable.
• Communication range is limited, which means that robots in different rooms

cannot communicate directly but only through proxies (if present), which have
to be located in the corridor close to the office entrances.

• The communication is subject to latencies and unreliability (due to interference)
which makes it impossible for a robot to have an up-to-date knowledge of the
global state of the system and disallows strong synchronization among robots.

7.2.2 Solution Comparison Dimensions

Having the adaptation logic in place, various metrics can be considered for eval-
uation and comparison of different adaptation strategies (solutions to ACRC). We
list below metrics which we found useful in our experiments with ROS-controlled
robots. Note that since ACRC contains random elements and non-determinism, the
evaluation of a solution requires multiple simulation runs of ACRC and statistical
evaluation (e.g., by statistical testing of sample means or quantiles).

Time to complete all the tasks (i.e., visit and clean all locations assigned to
the robots at the start) can be regarded as the basic metric when we assume that
the evaluated solution is able to make the robots complete all their tasks. Our
experience showed that this is more difficult than it appears to be. For evaluating
partial successes, we thus suggest the following metrics.

Number of cleaning tasks that were completed This covers situations when time
limit for completion expires or when the system itself realizes that certain locations
cannot be cleaned – e.g., if a robot gets stuck in a room entrance and any attempts
to move the robot out of the way fail.

Total running time till system completes or gives up This can be used as a metric
complementary to the above one, to reward solutions which possess the ability to
recognize that certain problems cannot be solved. It can serve to resolve ties in
case two solutions are statistically similar (e.g., a statistical test cannot reject the
hypothesis of the two solutions that have the same average number of cleaning tasks
completed).
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7.3 Testbed

The provided testbed allows for easy experimentation with adaptation techniques
and algorithms for the ACRC problem. The model problem is implemented on top
of ROS, and both the adaptation logic and the adapted system are specified using
DEECo, which is a component model for sCPS. Details on the technical architecture
are given in Sect. 7.3.5.

The testbed offers two modes of deployment and execution. The first mode
is a simulation of a swarm of TurtleBots solving the ACRC problem. This
mode is primarily suitable for early stages of development and/or for conducting
quantitative measurements. The second mode allows for actual deployment using
real TurtleBots.

The simulation mode is implemented on top of the Stage simulator, which is
tightly integrated with ROS. The Stage simulator is capable of simulating robot
physics, movement, laser scan sensing, and odometry readings. Currently the
included Stage is configured to simulate TurtleBots only, but it is possible to change
robot shape, movement model, and sensors to match different robots as well.

The Stage simulator is further extended by a custom integration of the OMNeT++
network simulation into ROS – called ROSOMNeT++4 – which enables sending and
receiving IEEE 802.15.4 packets using ROS facilities.

For the actual deployment, it is necessary to equip each TurtleBot with an
onboard computer and wireless network interface. Regarding the onboard computer,
any average contemporary machine is suitable (we tested it with the Intel P9600
CPU and 6 GB of RAM, and such a configuration was completely sufficient). For
the wireless network interface, an external microcontroller with an IEEE 802.15.4
module is expected. The testbed has been tested with and is prepared for the
STM32F45 board equipped with the extension board6 and the BEE click7 module.
All of them are off-the-shelf components.

ROS already contains modules, which serve as drivers for TurtleBot, and we have
developed extensions to support the IEEE 802.15.4 network. In particular, we have
developed two projects. The beeclickarm8 provides the firmware and Java interface
for the used microcontroller, while the beeclickarmROS9 exports features of the
beeclickarm as ROS topics and services.

The detailed instructions about hardware installation and deployment are avail-
able in the testbed’s README file.10

4https://github.com/d3scomp/ROSOMNeT
5http://www.st.com/stm32f4
6http://www.mikroe.com/stm32/stm32f4-discovery-shield
7http://www.mikroe.com/click/bee
8https://github.com/d3scomp/beeclickarm/tree/robot-additions
9https://github.com/d3scomp/beeclickarmROS
10https://github.com/d3scomp/deeco-adaptation-testbed

https://github.com/d3scomp/ROSOMNeT
http://www.st.com/stm32f4
http://www.mikroe.com/stm32/stm32f4-discovery-shield
http://www.mikroe.com/click/bee
https://github.com/d3scomp/beeclickarm/tree/robot-additions
https://github.com/d3scomp/beeclickarmROS
https://github.com/d3scomp/deeco-adaptation-testbed
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The testbed seamlessly supports both deployment modes; the simulated and
actual devices are accessible via the same ROS interface, and thus no changes at
user code are required when switching between the deployment modes.

7.3.1 Modeling Concepts for Decentralized Coordination

The robots’ behavior is developed using DEECo [2], which is a component model
and framework for developing complex sCPS. DEECo is based on concepts of
ensemble-based component systems (EBCS) (designed primarily in the scope of
the EU FP7 ASCENS project11). In EBCS, a system is modeled as a set of
dynamic cooperation groups of software components – ensembles. DEECo itself
is an abstract component model; however it comes with two implementations – one
in Java12 (JDEECo) and one in C++13 (CDEECo). In the testbed, we use JDEECo
as we found Java easier for prototyping the components.

A component in DEECo is represented by its data (knowledge in EBCS) and
its tasks (processes in EBCS). Figure 7.2 shows a code skeleton of the baseline
implementation of the robot component in JDEECo. JDEECo-specific constructs
are expressed using an internal domain-specific language (DSL) defined via Java
annotations. A component is defined as a plain Java class annotated with the
@Component annotation. Component’s knowledge is defined as Java class fields
(lines 3–10 in Fig. 7.2). Knowledge that is not supposed to be shared with other
components via ensembles (as described below) is marked as @Local. Component’s
fields are manipulated by the component’s processes (e.g., lines 13–33). Processes
are defined as, respectively, annotated static Java class methods. Processes are either
periodically executed or event-triggered (i.e., commonly as a reaction to knowledge
change). This is determined by the annotation attached to the process.

Typically, processes involve sensing, computation, mutation of the component
knowledge fields, and actuating. The signature of the process defines which
knowledge fields are read/written (as in/out/in-out). Technically, the processes are
scheduled by JDEECo runtime, which also takes care of thread-safe retrieval of
component’s knowledge to be used by a process and storing of the process results
back in component’s knowledge.

Figure 7.2 lists the processes defined in the baseline implementation of the
cleaner robot as provided by ACRC. These are (i) setting the next destination, (ii)
reading the position, (iii) reporting the status, and (iv) controlling the movement of
the robot.

Communication between components is in DEECo modeled by ensembles. An
ensemble dynamically determines which components are in the communication

11http://ascens-ist.eu/
12http://github.com/d3scomp/JDEECo
13http://github.com/d3scomp/CDEECo

http://ascens-ist.eu/
http://github.com/d3scomp/JDEECo
http://github.com/d3scomp/CDEECo
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Fig. 7.2 Model of ACRC baseline in JDEECo

group via a membership condition. Topologically, an ensemble in JDEECo is a
star featuring one coordinator and multiple members. The communication within
ensembles is implicit, i.e., the ensemble defines an exchange method, which
performs knowledge exchange among components grouped in the ensemble (i.e.,
copying data from a knowledge field of one component to a knowledge field of
another component).
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Fig. 7.3 Adaptation architecture

The baseline implementation does not involve any ensembles. However, ensem-
bles are to be exploited for decentralized coordination of adaptation across several
robots. This is demonstrated in Fig. 7.12, where an ensemble for location exchange
is given. It is established between robots which are close to each other, and both
of them are stuck. The ensembles are defined again as plain Java classes with
annotations. The membership and exchange methods are periodically executed
(with prescribed period – line 2), and their parameters specify the read/written
knowledge fields of particular components (prefixes coord- and mbr- are used to
identify coordinator and member role, respectively).

The architectural view of the adaptation is depicted in Fig. 7.3, which shows the
split into “adapted” and “adaptation” layers. The adapted layer consists of robot
drivers, ROS modules, and business logic implemented as DEECo processes. The
adaptation layer is implemented by DEECo constructs. In case of local adaptations,
which do not take multiple robots into account, the adaptation is implemented as
a DEECo process. In more advanced cases when the adaptation layers of multiple
robots need to cooperate, a DEECo ensemble is used to implement the adaptation
logic.

7.3.2 Setup

The testbed models the ACRC problem via DEECo component model (in detail in
Sect. 7.3.1). In particular, it represents each robot as an instance of the CleanerRobot
component and provides its baseline behavior (i.e., the base-level subsystem [13])
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Fig. 7.4 Deploying multiple robots in simulation

in Java. The testbed provides a well-defined place in the component where the
adaptation logic is to be plugged in (i.e., the reflective subsystem). Technically,
this is done by introducing additional periodic processes to the Collector Robot
component and additional ensemble specifications (e.g., see Sect. 7.4.1). There is no
difference between the setup for the simulator deployment and the actual TurtleBot
deployment; only the initialization and launching differ as follows.

Simulation setup In Fig. 7.4 the code responsible for initializing the simulation is
shown. Lines 1–3 establish DEECo simulation using ROS, lines 4–7 load DEECo
plug-ins shared by all robots, the loop on lines 8–18 deploys robots, and finally line
19 runs simulation for 600 s. The simulation is configured by the number of robots,
their initial positions, and the map of the environment. The testbed comes with one
map that comprises a corridor and two offices. Custom maps can be provided as
PNG files similar to the one shown in Fig. 7.1.

Actual TurtleBot setup Instead of deploying all the robots at once (as in the case
of simulation), the deployment code depicted in Fig. 7.5 deploys a single cleaning
robot component on a single actual robot. Thus, it is necessary to run the code
on each individual robot. Lines 1–4 are responsible for establishing the DEECo
system using wall timer and actual robot ROS interface, lines 6–11 deploy a DEECo
node with all required plug-ins, lines 13–20 are responsible for deployment of the
cleaning robot component and ensembles, and finally line 22 runs the system and
blocks forever as the real deployment has no time limit.
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Fig. 7.5 Single actual robot deployment

Further guidelines on deployment as well as the whole source code of the testbed
can be found on GitHub.14

7.3.3 Debugging

The testbed enables usage of several debugging tools that can be used to observe the
system in order to deploy adaptation techniques as well as debug existing adaptation
code. The testbed is using ROS topics to control the simulated robot using standard
messages described by ROS. Thus it is possible to use ROS tools to inspect and
visualize messages in the system at no extra cost. These can be used to obtain a
robot-centric view of the system (as displayed in Fig. 7.6) and thus realize what is
wrong at a local level. In the following paragraphs, the most important tools are
briefly described.

Stage visualization The primary output of the testbed is the direct visualization
of the scenario shown in Fig. 7.1 (the visualizer itself comes with the Stage robot
simulator – Sect. 7.3.5). Via it, the user can observe the movement of the robots
in real time. Black lines represent walls and other obstacles impenetrable for the

14https://github.com/d3scomp/deeco-adaptation-testbed

https://github.com/d3scomp/deeco-adaptation-testbed
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Fig. 7.6 Robots’ perception of the environment

robots (i.e., the map provided to the testbed). The colored dots represent the robots
as located in the simulated system. Thus the output of the Stage visualization is
global view of the systems’ ground truth data.

Logging ROS messages As mentioned above robot control is ROS based on
sending messages. Fortunately those can be printed to command-line or a file for
later processing by plotting or using statistical tools. ROS defines how different
datatypes are represented as text, thus printing robot location requires no extra
output formatting as shown in Fig. 7.7.

Robot Visualizer (RViz)15 This tool provides a convenient way to observe a
robot’s view of the environment by displaying ROS messages in a 2D or 3D. Most
of the messages used in the system are directly understood by RViz, so that having
data visualized is as easy as choosing the correct data source.

The real power of RViz is the visualization of the data from real robot. Figure 7.8
shows RViz visualization of data from the TurtleBot deployed in a real environment.
The background is a static map of the environment which is used for long-range
planning. The colored rectangle around the robot is a local map capturing temporary
obstacles detected by distance scanner such as chairs and persons. Below the 3D
model of the robot, a cloud of green arrows used by AMCL to guess robot location

15http://wiki.ros.org/rviz

http://wiki.ros.org/rviz
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Fig. 7.7 Printing ROS
location message

Fig. 7.8 RViz using data from real robot

is visible. Finally a depth image captured by onboard camera is displayed in 3D in
order to help guess how guessed location matches reality.

rqt_plot16 Working on top of ROS messages, an rqt_plot tool can generate plots of
various messages in real-time and store them for later use. The output of this tool is
depicted in Fig. 7.9.

16http://wiki.ros.org/rqt_plot

http://wiki.ros.org/rqt_plot
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Fig. 7.9 rqt_plot showing MANET packet arrivals

ROS Bags17 ROS has an ability to record all messages in the system into a file,
which can be used for offline analysis. All the aforementioned tools using ROS
messages can work on top of replayed messages recorded during simulation or
actual system execution. For instance, it is possible to visualize trajectories of the
robots and replay the visualization over and over.

This feature is important for recording simulation runs as it saves time needed
to execute the same simulation repeatedly. It is even more important for the actual
deployments as it is in fact impossible to execute a scenario repeatedly with the
exactly same results.

Eclipse debugger18 As the testbed and all the adaptation code are written in Java,
it is possible to run the testbed as a Java application directly from Eclipse IDE and
thus use all debugging features of Eclipse. This is possible for both the simulation
and actual run. The limitation here (stemming from the soft real-time nature of ROS)
is that ROS continues running even if jDEECo and the adaptation logic are paused
by debugging. However, this is typically not a problem due to the fact that jDEECo
controls ROS essentially only by setting robot waypoints. As such, if jDEECo is
paused, the robot only continues to its next waypoint or stops sooner if there seems
to be an obstacle preventing its move and then it waits for the adaptation logic to
instruct it further.

17http://wiki.ros.org/rosbag
18https://eclipse.org/

http://wiki.ros.org/rosbag
https://eclipse.org/
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Fig. 7.10 Boxplots of results
from 10 experiment runs

7.3.4 Obtaining Results

The testbed comes with a script which computes statistics of the evaluation from the
logs collected in multiple simulation runs. It generates boxplots of the results for the
last two metrics defined in Sect. 7.2.2 (as in Fig. 7.10).

7.3.5 Technical Architecture

Figure 7.11 shows the architecture of the testbed. Technically, it is a merger of four
main existing modules. The contribution of the testbed lies in properly configuring
them and bridging them by glue and synchronization code. The modules are:

• ROS Core – this module provides publish/subscribe middleware for robotic
systems and the basic software of the robot. In particular, it implements the
AMCL localization, navigation, and low-level movement control of the robot.
The messaging system is used to interconnect robot basic software as well as to
connect remaining modules described later.

• OMNeT++19 – it is a network simulator. It runs independently of ROS. We
have implemented a bridge between ROS Core publish/subscribe mechanism

19http://omnetpp.org/

http://omnetpp.org/
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Fig. 7.11 Testbed deployment diagram

and OMNeT++, which exposes the MANET transceiver as a ROS topic. This
allows modules connected to ROS to communicate. OMNeT++ simulates the
latency, physical range, and interference of the communication based on robots’
positions.

• Stage20 – it is a robot simulator, which controls the simulation. It connects to
ROS Core and simulates sensors and actuators of the robot given the simulated
robot position and the map of the environment. Robots sensors and actuators
are exported as ROS topics. The interface of simulated robot is the same as the
interface of the real TurtleBot. The only difference is the usage of namespaces
which enable deployment of multiple simulated robots into one ROS system.

• JDEECo – it provides the component abstraction and concepts for decentralized
coordination as described in Sect. 7.3.1. It abstracts ROS topics on location and
navigation and exposes them to DEECo components to allow for adaptation.
It further exploits the ROS topic on MANET-based communication (backed
by OMNeT++) to implement inter-component communication via ensembles.
JDEECo again runs independently of ROS and is synchronized with it by a bridge
that we have developed as part of the testbed.

20http://playerstage.sourceforge.net/

http://playerstage.sourceforge.net/


7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model. . . 165

7.4 Evaluation

7.4.1 Example Adaptation Logic

We complement the model problem specification and the testbed with an example
adaptation logic as part of the model problem. It provides a comprehensive
example of the modeling concepts (described in Sect. 7.3.1) and also serves as
evaluation of the testbed to perform simulation of physical, mobility, networking,
and coordination concerns.

In the example adaptation, we tackle the problems described in Sect. 7.2.1 in the
following way:

1. We introduce a process (on each robot), which periodically detects the situation
when a robot is stuck. This is done by checking whether the robot is moving and
whether the robot has a destination set. The robot that is not moving and wants
to move is considered stuck.

2. If a robot is detected to be stuck, we select a random location from its queue
of destinations and set it as its current one. This resets the navigation module in
the robot and typically gets the robot to move. We monitor the outcome via the
process described in (1) and repeat if no visible outcome is detected.

3. If another robot is stuck in close proximity (up to 1.5 m), we establish an
ensemble with it. Within the ensemble, one robot adopts the current destination
of the other robot and vice versa. This solves the (deadlock) situations when two
robots meet in the office entrance and cannot proceed.

Strategy (3) is illustrated in Fig. 7.12. Ensemble membership is defined on lines
7–13, and destination adoption is defined on lines 20–24.

7.4.2 Lessons Learned and Limitations of the Testbed

The experience with development of the testbed on top of ROS led us to several
observations, which we believe are of general interest. We thus share them here.

Generally, a relatively big surprise was the overall immaturity of the frameworks.
This most likely stems from the fact that ROS is primarily used as a platform for
controlling a single robot at real time. Though it has very flexible architecture, which
allows running multiple robots within a single ROS system and allows connecting
different environment simulators (e.g., Stage), the practice shows that these setups
work out of the box only for trivial examples. Deploying multiple robots without
careful configuration of the environment would make ROS or the Stage simulator
crash. Similar story applies for OMNeT++, which is a mature and production-
ready network simulator used in many applications. Nevertheless, when it comes to
complex exercising of the mobile ad hoc network, the simulator again becomes very
fragile, and without careful configuration and patching, it crashes for no obvious
reason. From this perspective, we believe that even without the DEECo abstraction
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Fig. 7.12 Excerpt from example ACRC adaptation strategy

layer, the pre-configured testbed we provide can save a couple of months of painful
debugging.

Another class of problems comes from the fact that though ROS has been used
in simulations, it is not a discrete event simulator. It consists of a number of
modules, which just run in wall-clock time. This means that (1) the simulation is
non-deterministic and (2), if extra care is not taken, the system crashes because the
simulator, ROS, OMNeT++, and DEECo are not synchronized. We have solved this
problem by introducing explicit synchronization at critical places, but still one has
to keep in mind that this solution does not result in fully deterministic simulations.

Surprisingly enough, our experience with developing the sample adaptation
logic has shown that the wall-clock-timed simulation has certain advantages over
a standard off-line discrete-event simulation. Since the system is live (and behaves
as if the robots were moving in real time), one can watch the system as it runs,
inspect the laser scans, etc. Additionally, it is possible to modify the system while it
is running – e.g., a robot can be dragged by mouse to another location. While this is
not important in classical batch simulations which focus on statistical comparison
of different algorithms, it is very useful in debugging and especially in prototyping
(which in fact is one of the primary goals of our testbed and the reason why we
equipped the testbed with DEECo abstractions).
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7.5 Testbed Structure

The complete testbed is available at http://d3s.mff.cuni.cz/projects/components_
and_services/deeco/files/deeco-adaptation-testbed.zip. It contains the source code
of the testbed, together with installation and usage instructions. Moreover, a pre-
configured virtual machine image is included in order to enable rapid hands-on
experience without the hassle of installing tons of libraries.

7.6 Related Work

In this section, we briefly review three model problems/exemplars that have been
contributed to the self-adaptive systems community repository [8]. This is an
ongoing effort to provide benchmarks to evaluate new techniques against the state
of the art, a popular strategy in other communities such as performance engineering
(DaCapo suite [1], SPEC benchmarks [11], Cloud Efficiency Metric [10]).

The automated traffic routing problem (ATRP) [14] is a model problem that can
be used as benchmark for the evaluation of different self-adaptation mechanisms.
ATPR features cars traveling on a map. Each car has a specific starting point, a
specific destination, and a specific starting time. Each car has the goal to reach
its destination by traversing the map while respecting the speed limits on the
streets. Problems arise due to conflicts between individual goals (e.g., all cars select
the same street resulting in traffic congestion on the street), traffic accidents, and
road closures. ATRP can have solutions that are fundamentally different ranging
from centralized to completely decentralized ones and generating answers that are
optimal or suboptimal. These solutions can be compared w.r.t. dimensions such as
scalability, answer quality, robustness to sensor uncertainty, etc.

To evaluate and compare ATRP solutions, ADASIM has been proposed [14].
ADASIM is a Java-based discrete-event simulator that simulates the execution of an
ATRP solution on an ATRP instance. It provides configuration files for specifying
the problem instance, built-in routing algorithms, traffic delay functions, filters for
introducing measurement uncertainty, and Java interfaces that can be implemented
to specify an ATPR solution. An event logging and analysis infrastructure is also
provided. In summary, ATRP provides a vehicle suitable for experimentation with
different self-adaptation strategies that try to resolve conflicts between goals of
individual agents, prioritize between nonfunctional properties, and provide robust-
ness to faults. Similarly, our model problem and testbed stand as a benchmark for
self-adaptation mechanisms but focus more on run-time uncertainty and unreliable
communication and coordination in sCPS.

Znn.com [3] is another model problem for self-adaptation. Znn.com is a news
service that serves multimedia content to its customers. It is realized by a classical
N-tier client-server architecture. The objective of Znn.com is to serve content while
optimizing operating costs and keeping the response time bounded. Self-adaptation

http://d3s.mff.cuni.cz/projects/components_and_services/deeco/files/deeco-adaptation-testbed.zip
http://d3s.mff.cuni.cz/projects/components_and_services/deeco/files/deeco-adaptation-testbed.zip
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capabilities are needed in order for Znn.com to react to spikes on user load or
other external changes while satisfying its objectives. In such cases, Znn.com can
choose from a limited number of predesigned adaptation decisions, e.g., switching
the content served from multimedia to textual or incrementing the server pool size.
While Znn.com is primarily suitable for comparing self-optimization solutions, our
model problem and exemplar are more suitable for comparing solutions that focus
on self-healing and survivability (robot unblocking, deadlock resolution) properties
of sCPS.

Tele Assistance System (TAS) [12] is an exemplar for self-adaptation in the area
of service-based systems. TAS aims to aid patient suffering from chronic conditions
via tele-assistance. It is realized by wearable sensors measuring vital parameters
and three remote services for data analysis, medication delivery, and ambulance
dispatching in case of emergency. TAS comes with a number of generic adaptation
scenarios. Each scenario consists of the type of uncertainty that warrants self-
adaptation (e.g., service failure), appropriate self-adaptation actions (e.g., switching
to equivalent service), and type of quality attributes (QoS) impacted (e.g., cost).
For measuring the satisfaction level of each QoS, respective metrics are specified.
A reference implementation of TAS [12] provides a convenient way of comparing
self-adaptation solutions w.r.t. user-specified requirements in user-specified settings
(instances of the generic TAS scenarios) by simulating them and analyzing the
results with built-in graphical tools. While an excellent representative exemplar for
self-adaptive systems, TAS focuses specifically on service-based systems, not CPS.

7.7 Summary

Responding to the pressing need for model problems and testbeds to evaluate the
research ideas in the area of self-adaptive smart cyber-physical systems (sCPS), we
have presented ACRC, a model problem in the realm of sCPS that lends itself to a
number of self-adaptation techniques that increase its self-healing, survivability, and
self-optimization properties. It facilitates the process of trying out and comparing
self-adaptation solutions to this problem. Our pre-configured testbed provides a
starting point for experimental research. Moreover, the experiments can be easily
extended to actual robots as the simulation shares interface with off-the-shelf robotic
platform. We hope that ACRC will help increase the awareness of the yet-to-be-
addressed challenges in the exciting field of self-adaptive sCPS and drive further
advances in the field.
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