
Chapter 5
Parallel Adaptation of Multiple Service
Composition Instances

Rafael Roque Aschoff, Andrea Zisman, and Pedro Alexandre

Abstract Existing approaches for adaptation of service compositions do not
consider the fact that common services can be used in different compositions, and,
therefore, a problem that may be identified in one composition could be used to
predict unwanted situations in other compositions. In this paper, we propose a
parallel and proactive adaptation framework that supports proactive adaptation in
multiple service composition instances at the same time. In the framework, events
observed for one particular service composition instance are shared between all
composition instances executed in parallel in order to better predict problems and
rectify them in all necessary instances, when possible. The parallel characteristic of
the framework also supports balancing the load among candidate service operations,
and, therefore, it considers the maximum expected service operation throughput
between the compositions. A prototype tool has been implemented to illustrate and
evaluate the framework in different scenarios.

5.1 Introduction

Adaptation of service compositions is considered a major research challenge for
service-based systems [6, 7, 14, 19]. Several situations may trigger the need for
adaptation in service compositions, including (i) changes in or emergence of new
requirements, (ii) changes in the context of the composition and participating

R. R. Aschoff (�)
Federal Institute of Pernambuco - IFPE, Pernambuco, Brazil
e-mail: rafael.roque@palmares.ifpe.edu.br

A. Zisman
The Open University, Milton Keynes, UK
e-mail: andrea.zisman@open.ac.uk

P. Alexandre
University of Sao Paulo, São Paulo, Brazil
e-mail: pedro.alexandre@usp.br

© Springer Nature Singapore Pte Ltd. 2019
Y. Yu et al. (eds.), Engineering Adaptive Software Systems,
https://doi.org/10.1007/978-981-13-2185-6_5

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2185-6_5&domain=pdf
mailto:rafael.roque@palmares.ifpe.edu.br
mailto:andrea.zisman@open.ac.uk
mailto:pedro.alexandre@usp.br
https://doi.org/10.1007/978-981-13-2185-6_5


116 R. R. Aschoff et al.

services, (iii) changes in functional and quality aspects of services in compositions,
(iv) failures in services in compositions, and (v) emergence of new services.

More recently, some approaches to support adaptation of service composition in a
reactive way [1, 4, 9, 15, 18] or proactive way [5, 22] have been proposed. However,
these approaches support changes in service compositions in future executions of the
composition, instead of changes in compositions during their execution. Moreover,
existing approaches allow changes to be performed only in a single composition and
do not consider the fact that services that need to be replaced may be participating
in different compositions at the same time.

In this paper we propose a framework called ParProAdapt to support parallel
and proactive adaptation of service compositions. The work presented in this paper
extends our previous work [2, 3] that supports proactive adaptation of service
composition in order to allow parallel adaptation and load balancing management
of service compositions. We define parallel adaptation of service compositions as
changes in service compositions that are being executed at the same time and which
share common service operations that need to be replaced. Our approach supports
the situation in which common operations are being used in different compositions,
and these operations may need to be replaced in the different compositions and not
necessarily only in the composition where the need for changes has been identified,
for example, when the service providing the operation becomes unavailable or
when the operation malfunctions. The approach also supports the situation in which
several execution instances of the same composition are executed concurrently, and
a problem identified in one instance also needs to be rectified in the other instances
of the composition.

Another novelty of the work presented in this paper is the support for load
balancing management. More specifically, when performing changes in a service
composition, the load of a particular invoke activity can be distributed over different
candidate service operations in order to increase or maintain the total throughput
of the composition. If a deployed service operation is unavailable, and there are no
candidate operations with the same expected throughput, a combination of more
than one candidate operation can be considered.

In order to illustrate, suppose a credit card service SCC , with an operation to
make a payment OPay , that is used in compositions C1, C2, and C3. Assume that
SCC becomes unavailable and this is identified when trying to invoke OPay in
composition C1. Consider that OPay has not yet been invoked during the execution
of C2 and C3. In this case, OPay should be replaced in C1, to allow the composition
to continue its execution, as well as proactively replaced in C2 and C3, to avoid
invoking OPay in these two compositions, and only after attempting to invoke OPay ,
the process realises that OPay is unavailable. The situation described above is not
unrealistic since it is expected that services will be used in several applications at
the same time.

In the framework the proactive adaptation of service compositions consists of
detecting the need for changes and implementation of changes in a composition,
before reaching an execution point in the composition where a problem may occur,
for example, the identification that the response time of a service operation in



5 Parallel Adaptation of Multiple Service Composition Instances 117

a composition may cause violation of the composition’s service-level agreement
(SLA), requiring other operations in the composition to be replaced in order to
maintain the SLA, or the identification that a service provider P is unavailable
requiring other services in the composition from P to be replaced, before reaching
the parts in the composition where services from P are invoked.

In ParProAdapt the prediction of problems that trigger the need for adaptation
is based on function approximation and failure spatial correlation techniques [16].
Moreover, the need for adaptation considers a group of operations in a composition
flow, instead of isolated operations, in order to avoid replacing an operation in a
composition when there is a problem, and this problem can be compensated by
other operations in the composition flow.

The remainder of this paper is structured as follows. In Sect. 5.2 we present an
overview of the ParProAdapt framework and provide a description of the proactive
and parallel adaptation approaches used in the framework. In Sect. 5.3 we describe
implementation and evaluation aspects of our work. In Sect. 5.4 we give an account
of related work. Finally, in Sect. 5.5 we discuss concluding remarks and future work.

5.2 Parallel and Proactive Adaptation Framework

The main goals of the ParProAdapt framework is to provide dynamic, proactive,
and parallel adaptation of service compositions. It supports a parallel identification
and prediction of the need for adaptation and an autonomously reconfiguration of
the service compositions during their execution time. The parallel characteristic
of the approach is concerned with the identification of a problem in an instance
of a composition and the impact of this problem in other instances of the same
composition or in different compositions that share common services when the
identified problem is in any of these services.

ParProAdapt is based on an event-based strategy in which different compo-
nents of the framework generate different types of events. It supports parallel
and proactive adaptation of service compositions due to four different types of
situations, namely, C1, events that cause the composition to stop its execution (e.g.
unavailability or malfunctioning of a deployed service operation); C2, events that
allow the composition to continue to be executed, but not necessarily in its best
way (e.g. the network link is congested, causing delays on the response times of
some operations; such fluctuations in the response time may require adaptation in
order to comply with SLA parameters of the composition); C3, emergence of new
requirements (e.g. messages exchanged between services need to be encrypted; the
response time of the composition needs to be improved); and C4, emergence of
better services (e.g. a cheaper service becomes available).

The above situations are mapped to different events that are analysed in terms of
the need for adaptation, and, depending on the results of the analysis, the adaptation
process is executed. The adaptation consists of creating a valid configuration for
a composition by (a) replacing a single service operation in the composition by
another service operation or by a group of dynamically composed service operations



118 R. R. Aschoff et al.

Composer

receives

BPD + SLA

request

Clients

Execution Instances

Operations
Map

Workflow
Template

creates
Admin

registers

Execution
Engine

executes

Events

generates

Bi
nd

In
fo

rm
at

io
n

Re
po

si
to

ry

Service
Discovery

requires

updates Event
Analyser

monitors

Adaptor

triggers
uses

generates

reads/
updates

reads

reads/
updates

Web Servicesrefers to

reads

reads

Fig. 5.1 ParProAdapt framework architecture

(replacement of types 1-1 or 1-n) or (b) replacing a group of service operations in a
composition by a single operation or by a group of dynamically composed service
operations (replacement of types n-1 or n-m).

The replacement of an operation may cause signature dependency issues with
other operations in the execution instance, i.e. the situation in which the output
parameter (or its part) of an operation is used as input parameter (or its part)
in another operation. In the case of operation signature dependency issues, it is
necessary to verify the need to replace affected operations.

The creation of a valid configuration for a composition considers the execution
logic (regions) of the composition (sequence, parallel, conditional selection, and
repeat) to identify a group of operations that may need to be replaced by an
operation or a group of dynamically composed operations. The creation of a
valid configuration is considered an optimisation problem based on the selection
of appropriate combinations of candidate service operations that satisfy the SLA
parameters of a composition.

Figure 5.1 shows an overview of ParProAdapt framework. The framework
is composed of five mains components, namely, composer, service discovery,
execution engine, event analyser, and adaptor, described below.

Composer This component is responsible to parse business process definitions
(BPDs) (service compositions) and their associated service-level agreements
(SLAs) and create an internal configuration for the service composition using
the service discovery and bind information repository. This configuration is a
service composition execution instance. The composer invokes the service discovery
component to identify service operations that implement the logic of the service
compositions and satisfy the SLA parameters of the compositions. Different
configurations of a service composition execution instance may be created for
the various clients requesting the composition.



5 Parallel Adaptation of Multiple Service Composition Instances 119

Execution Instance It is composed of (i) a logic workflow of a service composi-
tion, which defines abstract operations, their order of execution and dependencies
between operations and (ii) a map between the abstract operations in the workflow
and the binding information for the actual services. An execution instance extends
the expressiveness of a service composition with information about the (i) execution
flow, (ii) deployed endpoint service operations and their locations, (iii) state of a
service operation in a composition (e.g. executed, to be executed, and executing),
(iv) observed QoS values of a service operation after its execution, (v) expected
QoS values of a service operation, and (vii) SLA parameter values for the service
operations and the composition as a whole.

Service Discovery This component identifies possible candidate service operations
to be used in the composition, or to be used as replacement operations in case
of problems. We assume the use of the service discovery approach that has been
developed by one of the authors of this paper to assist with the identification of
candidate service operations [22]. This approach advocates a proactive selection of
candidate service operations based on distance measurements that match functional,
behavioural, quality, and contextual aspects. The candidate service operations are
identified in parallel to the execution of the compositions based on subscribed
operations and are kept in a local bind information repository.

Bind Information Repository It keeps track of all possible service operations to
be used by the service compositions, including not only the deployed operations,
but also candidate service operations. The repository also contains information
about the expected QoS parameters of the operations and their status (e.g. available
and unavailable). The service discovery component updates the repository with
information about new identified service operations or new status of already
identified operations. When new operations are identified, or there are changes in
the status or characteristics of existing operations, an event about the changes is
generated and handled by the event analyser component.

Execution Engine An execution engine is the piece of software responsible for
the execution of business processes described in the form of an executable service
composition. Different service compositions can be deployed in an execution
engine, and for each request of a particular composition, a private session must be
maintained in order to individually and correctly parse input and output parameters.
In the same way that a web service description (WSD) contains an abstract part
for the general definitions of a web service and a concrete part for the binding
information, for each service composition SCn deployed in an execution engine,
there is an abstract composition template Tn consisting of the workflow logic and a
set of binding information for each deployed service operation STn .

The abstract template Tn contains invoke activities pointing to abstract web
service definitions. While executing a services composition SCn, the execution
engine uses the binding information STn to identify the actual concrete operation
to be invoked. Without a way to dynamically update the structural logic (T ) or
the binding information (ST ), compositions are bound to use the same set of



120 R. R. Aschoff et al.

concrete operations, which results in great issues when such operations degrade
their performance or present any fault.

We developed a simple execution engine that handles execution instances
independently. It identifies service operations to be used and how they should be
accessed. Before invoking a service operation, the execution engine requests the
status of the operation and the status of the composition as a whole (e.g. when
the response time for the whole composition violates the SLA parameter of the
composition). In the case in which a service operation is unavailable, or there is not
a match between the expected and observed QoS values of an operation, a new event
is created and sent to the event analyser.

Event Analyser This component is responsible for analysing all the generated
events in order to predict unwanted situations and execute parallel changes in
the execution instances, when necessary. More details of the functionality of this
component are discussed in the subsections below.

Adaptor This component is responsible to execute individual changes in the
execution instances, based on requests received from the event analyser. In order
to execute the necessary changes, the adaptor component reads information from
the bind repository about available operations.

5.2.1 Proactive Adaptation Approach

The proactive adaptation approach used by the framework has been described
in details in [2, 3]. In this section we provide an overview of the approach for
completeness of this paper and to better understand the parallel characteristics of
the approach, which is the novel aspect of the paper.

As described above, the adaptation process may be triggered by situations of
types C1 to C4. The events generated for situations C1 to C3 may produce unwanted
situations resulting in failure in the execution of service compositions. Due to the
nature of situations, C3 and C4, they cannot be predicted. However, prediction
techniques can be used to support situations C1 and C2. For any of the situations
that may trigger the need for adaptation, the process tries to identify other parts in
the execution instance that may be affected by the situation. The process is based
on the use of two techniques executed by the event analyser component, namely, (a)
QoS analysis and (b) spatial correlation analysis.

QoS Analysis It consists of a failure prediction technique that verifies the impact
that changes of QoS values of deployed service operations may have in the SLA
parameters of a composition as a whole. This analysis is used to avoid replacing an
operation in an execution instance when the problem can be compensated by other
operations in the execution flow. The process also identifies other operations in the
instance that may be affected due to violation of QoS values.



5 Parallel Adaptation of Multiple Service Composition Instances 121

In the framework, the process concentrates on the analysis of violations of
response times and cost values of the operations. The analysis is based on the use of
exponentially weighted moving average (EWMA) [13] for modelling the expected
service operation QoS values. An expected QoS value (e.g. response time) of an
operation is calculated based on previous observed QoS values for that operation.
The new expected QoS value of an operation is updated on the bind information
repository. The aggregated QoS values of an execution instance is calculated based
on the expected QoS values of the operations not yet executed, and the observed QoS
values of the operations are already executed. The computation of the aggregated
QoS values for the whole composition depends on the type of the QoS values and the
logic workflow structures of the composition (e.g. conditional, sequence, parallel,
and repeat logic structures).

When there is no violation of the SLA values for the whole composition, there
is no need to adapt the execution instance. If the expected values are violated, the
adaptor component is invoked to identify a valid configuration for the composition.
This valid configuration may be generated by replacing operations in the execution
instance that have not yet been executed and by attempting to find possible
combinations of replacement operations that provide the functionality of those
operations and maintain the SLA values of the composition.

Spatial Correlation Analysis This technique consists of identifying spatial corre-
lations between operations, services, and providers. It is concerned with the situation
in which providers, services, and operations become unavailable and the impact
that this unavailability may have in other services or operations being used in
the composition. For example, consider a service S that becomes unavailable. In
this case, the process considers all other operations of S in the composition since
these operations may not be able to be executed. Similarly, when a provider P is
unavailable, all services and operations provided by P are also marked as out of
reach on the bind information repository.

During the spatial correlation analysis, the bind information repository is updated
about the availability of operations. In the case in which operations deployed in
the execution instances are identified as unavailable, the adaptor is invoked to
identify a valid configuration for the composition. In the spatial correlation analysis,
all running execution instances are aware of any issues when trying to invoke
operations with a problem.

When using only the proactive adaptation approach, for the trigger situations
C1 and C2, the running execution instances identify a problem with an operation
only when they reach a point of execution in which they request the operation with
the problem. The other parts of the execution instances that may be affected by
the operation with a problem will be proactively identified based on the techniques
discussed above. However, to allow running execution instances to be notified about
a problem in a deployed operation, as soon as possible, for any of the trigger
situations, we propose the parallel adaptation approach described below.



122 R. R. Aschoff et al.

5.2.2 Parallel Adaptation Approach

The parallel adaptation approach complements the proactive adaptation approach
with two new techniques, namely, (a) parallel analysis and (b) load balancing
analysis. Overall, the idea of the parallel approach is to identify other running
execution instances that may be affected by a problem identified in one execution
instance and rectify this problem in these other instances in parallel, during their
execution time. As mentioned before, those execution instances can be copies of
the same service composition in which a problem was identified or different service
compositions that use an operation for which there is a problem.

Parallel Analysis With this technique, it is possible to reduce the time that it is
necessary to identify a problem in an operation used in a service composition, the
assessment of this problem in other running service compositions that share the
operation and the execution of the actions to rectify the problem.

Our approach allows instances of service compositions to be adapted in parallel
independent of each other. More specifically, changes executed in one service
composition instance do not necessarily interfere with other instances which are
executed in parallel, even when these are instances of the same service composition.

Figure 5.2 presents a snapshot of the above characteristics of our approach.
As shown in the figure, for each request m of a deployed service composition
SCn, an execution instance EInm is created using the composition template Tn and
its respective binding information STn . The framework creates for each execution
instance EInm a private template T n

m and binding information for this template SnTm

Execution Engine

Request SCr

SC1 SC2 SCn. . .

Deployed Service
Compositions

Requ
est S

Cs

Request SCr

Execution
Ins tances

Requester 1Requester 1

Requester 2Requester 2

Requester mRequester m

WS1 WS2 WSk. . .

Web Services

Fig. 5.2 Illustration of the execution engine accessing execution instances of service composition



5 Parallel Adaptation of Multiple Service Composition Instances 123

in order to allow adaptations of a particular service composition instance. The
approach also maintains the composition template Tn and its binding information
STn to support proactive adaptation of new instances of a service composition that
may be created due to future requests. In order to illustrate, consider three execution
instances EIr1 , EIr2 , and EIs1 for service compositions SCr and SCs respectively.
Changes in the private template T r

1 of EIr1 or changes in its binding information
SrT1

do not create direct changes in the private templates T r
2 and T s

1 or in the
binding information SrT2

and SsT1
. However, it is possible to allow the adaptation

across parallel execution instances of the same or different service compositions by
accessing their private templates and binding information. Moreover, given a set of
deployed service compositions {SC1, SC2, . . . , SCn}, new execution instances of
these compositions can benefit from previous processed information by changing
the respective composition templates Tx, 1 ≤ x ≤ n or the respective default
binding information STx , 1 ≤ x ≤ n, which are both used to create the new
execution instances.

As described in Sect. 5.2.1, in the proactive approach, the verification of the
status of deployed operations is only executed when a running execution instance
reaches a point of execution in which a deployed operation is requested. With the
parallel analysis, the event analyser component triggers parallel adaptation of all
affected execution instances. This allows parallel execution instances to reconfigure
themselves earlier in the running process (before reaching the operation with issues)
and, therefore, augment the probability of success in the adaptation since there will
have potentially more options for changes in the composition, for example, in the
case in which it is necessary to change a group of operations in the composition
that have not yet been executed, in order to conform to the SLA values of the
composition.

The parallel analysis is executed by verifying if each running execution instance
has a valid configuration, before the execution of each deployed operation in the
instances. The verification of a valid configuration consists of analysing if there is
any operation not yet invoked that may have become unavailable and if there are
any SLA violations due to QoS discrepancies. This verification is executed by the
event analyser based on the information in the execution instances and the bind
information repository (see Fig. 5.1). During the above verifications, an execution
instance cannot proceed with its execution until either an adaptation is performed or
it is concluded that there is no need for adaptation.

Load Balancing This technique is used to verify if the throughput of the ser-
vice compositions are maintained as initially specified for the compositions. The
throughput specified for a service composition is reflected in the activities and their
deployed operations in the composition. The throughput of each service operation
in an execution instance is calculated and compared with the maximum accepted
throughput value of the composition, in order to avoid overloading the use of the
deployed operations. This is done by using a throughput counter for each deployed
operation. When an execution instance is created, the counters associated with the
operations are incremented; when the operations are invoked during the execution



124 R. R. Aschoff et al.

of an instance, their associated counters are decremented. The maximum accepted
throughput value of an operation is maintained in the bind information repository to
allow the composer and adaptor components know which operations can be used in
an execution instance, without causing operation overload.

In the case in which a deployed operation O needs to be replaced, the approach
supports the use of one or more operations to replace O when these operations
provide the same functionality of O and the sum of the throughput values of these
operations are equal to the throughput value specified for the activity associated with
O. The above is possible due to the parallel approach being described in the paper
since the framework keeps track of the parallel use of all operations in the execution
instances that are running at the same time.

5.3 Implementation and Evaluation

In order to demonstrate and evaluate the work, we have implemented a prototype
tool of the framework in Java. The tool assumes service compositions in WS-
BPEL [20] exposed as web services using SOAP protocol, and participating
operations and user requests emulated using SoapUI. The service discovery tool
was also implemented in Java and is exposed as a web service.

In our previous paper [3], we showed how computationally inexpensive and
scalable are the various activities concerned with the proactive adaptation aspect
of the framework for a single service composition. In particular, we analysed
the time to identify and resolve SLA violations, the time to identify and resolve
signature dependencies, the time to identify spatial correlations, and the time to
adapt a composition by changing groups of operations in a composition. In the
current parallel approach, the activity that generates additional computational effort
is concerned with the reconfiguration algorithm of a service composition and its
additional analysis of the load of operations. Therefore, we consider that the parallel
extension is aligned with our previous results with respect to the computation of
these activities. In this paper, our focus is to demonstrate if there are improvements
in the adaptation process when considering the parallel adaptation, in terms of the
number of service compositions that can adapt successfully. In other words, we
are trying to verify if our approach is able to improve the dependability of service
compositions by dealing with two specific types of problems, namely, (a) a problem
that can only be solved by changing the identified faulty operation and a set of other
operations which are logically presented in the compositions prior to the faulty one
and (b) a problem where there is no single operation that can support the number of
requests being generated.

As previously discussed, our approach is able to adapt parallel execution
instances of single or multiple service compositions. The adaptation process itself,
however, makes no difference if the execution instances are of the same or
distinct compositions. Such distinction exists only during the initial phase when the
execution instance must be created based on the template of a deployed composition.



5 Parallel Adaptation of Multiple Service Composition Instances 125

Act01 Act02 Act03 Act04 Act05 Act06 Act07 Act08 Act09

Invoke Activity SequenceUnavailable Solution Area

Act10

Fig. 5.3 Service composition workflow for evaluation of Scenario 1

In order to make the evaluation and discussion of the results more clear, we decided
to conduct our experiments with multiple instances of the same service composition.

In the experiments, we assume that each of the various execution instances starts
its execution in different time steps. We also consider that the number of running
execution instances at different points of their execution flow is approximately the
same. More specifically, the number of running instances executing the initial part
of their flows is similar to the number of those in the middle or in the end of their
execution flows. The work has been evaluated for three main cases with different
scenarios. In the first two cases, we compare the use of the parallel and proactive
approach with the proactive approach only for a service composition with a linear
structure (Case 1) and a complex service composition (Case 2). For both cases (Case
1 and Case 2), we assume that one or more operations in the composition become
unavailable. However, the approach supports a similar process for the other types
of problems (e.g. violation of QoS values of an operation). Finally, in Case 3 we
evaluate the load balancing technique.

Case 1 – Scenario 1: In this scenario, we use a service composition with a
sequential workflow formed by ten invoke activities, as shown in Fig. 5.3. We
assume that at a certain time in the experiment, the service operation assigned to
the last invoke activity (Act10) becomes unavailable. Consider the existence of a
set of candidate service operations for each invoke activity (Act1–Act10) presented
in Fig. 5.3, and the use of any of the available candidate service operations for
Act10, along with the current assigned operations for (Act1–Act09), would cause a
violation of the SLA value of the whole composition. Consider the existence of a
valid configuration for the service composition when replacing both the operations
assigned for activities Act9 and Act10.

We compared a number of execution instances that (a) were able to adapt
successfully (successful), (b) were not able to adapt (unsuccessful) and (c) did not
require adaptation because they were not affected by the problem (not required),
for the case in which we used the parallel and proactive approach with the case in
which we used only the proactive approach. We considered 50, 100, 150, and 200
execution instances of the composition shown in Fig. 5.3.

Figure 5.4 presents the results of this experiment. For each different number of
execution instances considered in the experiment, the first column represents the
results when using the parallel and proactive approaches (specified as parallel for
simplicity), while the second column represents the results when using only the
proactive approach (specified as proactive for simplicity).



126 R. R. Aschoff et al.

Fig. 5.4 Comparison of the adaptation process for Case 1 – Scenario 1.

As shown in Fig. 5.4, when using the combined parallel and proactive
approaches, there are many more instances that are adapted and finished
successfully. This is because in the parallel approach, several execution instances
that are still in operation are notified about the unavailability of the operation
associated with Act10 and have not yet executed the operation associated with
Act09. Contrary, in the case when only the proactive approach is used, the
adaptation process is attempted when the execution process tries to invoke the
operation associated with Act10 and realises that this operation is unavailable. In
this scenario, the process requires the replacement of the operation associated with
Act09 as well. However, when attempting to invoke the operation associated with
Act10, the operation for Act09 has already been executed and cannot be replaced.

Figure 5.4 also shows that even when using the proactive approach only, some
instances are able to finish successfully for all the different numbers of execution
instances used in the experiment. These instances are the ones that managed to
invoke the operation associated with Act10 before this operation became unavailable
and, therefore, were able to finish their execution successfully.

Case 1 – Scenario 2: In this scenario, we use the same service composition
of Scenario 1, but we consider different positions in the composition where
the operation associated with an activity becomes unavailable. We consider the



5 Parallel Adaptation of Multiple Service Composition Instances 127

Fig. 5.5 Comparison of the adaptation process for Case 1 – Scenario 2

situations in which the operations associated with activities Act04, Act07, and Act10
become unavailable at the same time. In all three cases, we assume that a valid
configuration exists when replacing both the operation that becomes unavailable
and the ones associated with the previous activity of the unavailable operations,
i.e. operations associated with (i) Act03 and Act04, (ii) Act06 and Act07 and (iii)
Act09 and Act10. We assume 200 instances of the service composition executed at
the same time.

Figure 5.5 shows the results of the experiments for situations (i) to (iii) above.
As shown in the figure, when using only the proactive approach, in any of situations
(i) to (iii), none of the execution instances could be successfully adapted. This
is because the execution instances have already invoked the operations associated
with the activities that occur before the activities that become unavailable (activities
Act03, Act06, and Act09).

The results also show that the number of execution instances that do not require
adaptation decreases when the problem occurs at a position closer to the end of the
composition.

The number of unsuccessful adaptation instances, however, increases. This is due
to the number of running execution instances that are at a point before, the same,
or after the point in which the problem is identified, during their execution. This
also explains the reason for having similar numbers of execution instances that do
not require adaptation, for the parallel and proactive approach and the proactive
approach only, in situations (i) to (iii).



128 R. R. Aschoff et al.

Fig. 5.6 Comparison of the adaptation process for Case 1 – Scenario 3

From Fig. 5.5 we observe that when using the parallel and proactive approaches,
the number of successful adaptation instances increases, as the problem occurs at
a position closer to the end of the composition. This is because the number of
execution instances that can be adapted increases, since there are more instances
at execution points before the operation becomes unavailable.

Case 1 – Scenario 3: In this scenario, we compare the approaches when using
service compositions with a sequential structure, as in Scenarios 1 and 2, but
of different sizes. We considered compositions with (i’) 5, (ii’) 10 and (iii’) 15
activities. Similar to the above scenarios, we assume that in each of the three
compositions, the operation associated with the last activity becomes unavailable
and that a valid configuration exists when replacing both the operation that becomes
unavailable and the operation associated with the previous activity. We assume 200
instances of the service composition executed at the same time.

Figure 5.6 shows the results of the experiments for compositions (i’) to (iii’).
The results in the figure show an increase in the number of execution instances
that required adaptation as the size of the compositions increase. As in the case of
Scenario 2, this is due to the number of running execution instances that are at a
point before, the same, or after the point in which the problem is identified, during
their executions. Similarly, the results show an increase in the number of successful



5 Parallel Adaptation of Multiple Service Composition Instances 129

Act01 Act18 Act19 Act20

Invoke Ac�vity SequenceUnavailable Solu�on Area

Act02

Act10

Act09

Act17

Act06 Act07 Act08

Act03 Act05

Act14 Act15 Act16

Act11 Act12 Act13

Parallel Ac�vity Condi�onal Ac�vity

i’’

ii’’

iii’’

Act04

Fig. 5.7 Complex service composition workflow

adaptations for bigger compositions. Similar to Scenarios 1 and 2, the results show
that when using only the proactive approach, in any of situations (i’) to (iii’), none
of the execution instances could be successfully adapted.

Case 2: In this case we use the service composition shown in Fig. 5.7. We consider
that the operations associated with activities Act04, Act15, and Act19 become
unavailable. We also assume that for each unavailable operation, the solution of a
valid configuration exists when replacing the operations associated with the previous
and next activities of the unavailable operation and the operation that becomes
unavailable. We assume 100 instances of the service composition executed at the
same time.

The example in Case 2 differs from the scenarios in Case 1 since (a) the service
composition is more complex with more activities organised in different execution
logics (conditional and parallel), (b) a valid configuration for the composition
includes the replacement of operations associated with activities before and after the
operation that becomes unavailable and (c) the operations that become unavailable
are associated with activities in different execution logics.

The results of this experiment are shown in Fig. 5.8 for the unavailability of (i”)
Act04, (ii”) Act15, and (iii”) Act19. As it was expected, when the operation that
becomes unavailable is at the end of the composition (situation (iii”)), a larger
number of execution instances require adaptation since there are more running
instances at execution points before the operation becomes unavailable (as in the
previous scenarios). The results show that for situation (i”), half of the execution
instances did not require adaptation. For those execution instances that required
adaptation, half of them were successfully adapted.

We also observe that situation (i”) required more instances to be adapted than
situation (ii”). This is due to the fact that situation (ii”) is a conditional execution
logic, and, therefore, not necessarily all the execution instances will execute this
path in the composition. This is not the case in situation (i”) in which all the
instances need to execute the respective path in the composition.



130 R. R. Aschoff et al.

Fig. 5.8 Comparison of the adaptation process for Case 2

Case 3: In our approach, the efficiency of the proposed technique to dynamically
distribute the load of service operation requests among different service providers,
and in parallel with the execution of service composition instances, depends on
the number of requests for a particular service operation and the capacity of the
service operation to fulfil its requests. The size, complexity and logic of a service
composition do not cause impact to the load balancing technique. Therefore, in order
to evaluate the load balancing technique, we used a simple service composition.
More specifically, the evaluation was executed in a scenario with a single invoke
activity (IA) deployed in two operations given by two different providers P1 as OP1
and P2 as OP2. We assumed both OP1 and OP2 configured with a processing time
of 1 s. Moreover, in the experiment we used a maximum of 20 concurrent service
composition instances and configured OP1 and OP2 to be able to handle up to ten
concurrent requests.

In order to introduce some random behaviour in the income rate of operation
requests, we simulated the compositions requests and assumed that each request
respects a uniform distribution with minimum zero and maximum one. In other
words, each of the 20 parallel processes generating concurrent requests sleeps for a
specific amount of time and generates a new request. After that, the process starts
again if the experiment is not over. This behaviour is depicted in Fig. 5.9.



5 Parallel Adaptation of Multiple Service Composition Instances 131

Fig. 5.9 State machine of the concurrent requests generator process

In the above-described experiment, we expected to observe an improvement
in the overall performance of the execution engine in terms of the number of
successfully concluded composition requests. The basic idea is that if no distribution
of the load is in place, the best thing that an approach can do is to jump from one
operation to another as soon as it is detected as unavailable (e.g. an operation that is
not responding due to high traffic). Moreover, considering that no single operation is
suitable to answer all concurrent instances, it is almost mandatory to employ some
form of online testing to discover if the operation becomes available again. Without
a way to assess the availability of an operation, the composition instances would
just fail to be created since the system would indicate that no operation is available
to perform the required tasks. We implemented a basic online testing procedure that
periodically checks if the previously failed operation is available and marks it in the
local repository as available again.

In our experiments, using the parallel adaptation with load balancing techniques,
the average time to finish an execution instance was about 1 s. This was expected
since the processing time of both OP1 and OP2 is configured as 1 s. Moreover, there
was only at most 20 concurrent requests, and the combined throughput for OP1 and
OP2 was 20. Therefore, no extra issues were introduced. We noted that in the case
in which the ability to distribute the load between different operations was turned
off, the average time to conclude an execution instance rose to about 3 s. This was
due to the fact that now the adaptor component had to constantly face an error due
to the high load of requests in either OP1 or OP2. Figure 5.10 presents a snapshot
of the distribution of the requests made to OP1 in both experiments. As we can see,
when the load balancing technique is in place, the load distribution is much more



132 R. R. Aschoff et al.

Fig. 5.10 Comparisons of the distribution of operation request for a single provider between the
approach with and without load balancing

homogeneous. The black line at ten concurrent requests indicates the threshold for
the capability of OP1. Given that the approach with load balancing respects the
threshold for individual operations by identifying its maximum capability, no issues
are introduced. However, when such awareness is removed, and there is no way to
alleviate the load, the threshold is not respected. This causes errors and requires
adaptations to be executed.

5.4 Related Work

The work presented in this paper is concerned with approaches that support dynamic
adaptation of service compositions, which is considered a major research challenge
for service-based systems [6, 7, 14]. Initial approaches were proposed to support
adaptation of service compositions in a reactive way [1, 4, 9, 15]. These approaches
support adaptation of service composition based on predefined policies [4], self-
healing of compositions based on detection of exceptions and repair using handlers
[15], context-based adaptation of compositions using negotiation and repair actions
[1] and key performance indicator analysis [9].

Other approaches have recently been proposed to support adaptation of service
compositions in a proactive way [2, 3, 5, 10, 11, 19]. The work by Dai et al. [5] uses
semi-Markov models for performance predictions, service reliability model, and
minimization in the number of service reselection in case of changes. The decision
to adapt is based on the performance of a single service. One of the first works to use
a proactive approach is PREvent [10], which was designed to support prediction and
prevention of SLA violations in service compositions based on event monitoring
and machine learning techniques. The works by Metzer et al. [11] and Tosi et al.
[19] advocate the use of testing to anticipate problems in service compositions and
trigger adaptation requests. However, the creation of test cases is not an easy task.

Approaches to support multilayered monitoring and adaptation of service com-
positions have been proposed [8, 17, 21]. Some of these approaches use the concepts
of adaptation taxonomy and templates (patterns) created during design time to



5 Parallel Adaptation of Multiple Service Composition Instances 133

represent possible solutions for adaptation problems [17]. Other approaches rely
on dynamic identification of cross-layered adaptation strategies for software and
infrastructure layers [8, 21] or on the use of aspect-oriented techniques to support
adaptation of compositions due to QoS aspects [12].

Our framework differs from the above approaches since it supports parallel
adaptation of running execution instances. In addition, it allows for parallel and
proactive adaptation of service compositions due to different types of problems and
provides different ways of adapting the compositions.

5.5 Conclusions and Future Work

In this paper we described ParProAdapt framework, a parallel and proactive
adaptation framework that supports parallel identification and prediction of the
need for adaptation and reconfiguration of the service compositions during their
execution time. The framework supports the identification of a problem in an
instance of a composition and the impact of this problem in other instances of the
same composition or in different compositions that share common operations when
the identified problem is in any of these operations. When a problem is identified in
an instance of a composition, other affected parts of the composition are proactively
identified, in order to rectify the various composition instances. A prototype tool has
been implemented, and the approach has been evaluated in several scenarios. The
results of the evaluation demonstrate that the use of a proactive approach combined
with a parallel approach outperforms the use of only a proactive approach in terms
of the number of composition instances that are successfully adapted.

Currently, we are extending the framework to support service compositions that
provide interactions with users and how the proactive and parallel adaptation can
deal with these interactions and delays that may be caused by them. We are also
investigating the use of the congestion control algorithm used in the TCP protocol
to dynamically adjust the expected throughput of service operations. Another future
work consists of considering different types of constraints when attempting to adapt
a service composition (e.g. stateful services and operations that need to be used by
certain service providers).

References

1. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A framework for
executing adaptive web-service processes. IEEE Softw. 24(6), 39–46 (2007)

2. Aschoff, R., Zisman, A.: QoS-driven proactive adaptation of service composition. In:
ICSOC’11, pp. 421–435 (2011)

3. Aschoff, R., Zisman, A.: Proactive adaptation of service composition. In: SEAMS’12, pp.
1–10 (2012)



134 R. R. Aschoff et al.

4. Baresi, L., Di Nitto, E., Ghezzi, C., Guinea, S.: A framework for the deployment of adaptable
web service compositions. SOCA 1(1), 75–91 (2007)

5. Dai, Y., Yang, L., Zhang, B.: QoS-driven self-healing web service composition based on
performance prediction. J. Comput. Sci. Technol. 24(2), 250–261 (2009)

6. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly dynamic,
self-adaptive service-based applications. ASE 15(3), 313–341 (2008)

7. Dustdar, S., Papazoglou, M.P.: Services and service composition – an introduction (services
und service komposition – eine einführung). Inf. Technol. 50(2), 86–92 (2009)

8. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered monitoring and
adaptation. In: ICSOC’11 (2011). https://doi.org/10.1007/978-3-642-25535-9_24

9. Kazhamiakin, R., Wetzstein, B., Karastoyanova, D., Pistore, M., Leymann, F.: Adaptation of
service-based applications based on process quality factor analysis. In: LNCS’09 (2009)

10. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, prediction and prevention
of SLA violations in composite services. In: ICWS’10 (2010)

11. Metzger, A., Sammodi, O., Pohl, K., Rzepka, M.: Towards pro-active adaptation with
confidence: augmenting service monitoring with online testing. In: SEAMS’10 (2010). http://
doi.acm.org/10.1145/1808984.1808987

12. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for
WS-BPEL. In: WWW’08 (2008). https://doi.org/10.1145/1367497.1367607

13. Natrella, M.: e-Handbook of Statistical Methods. Nist/Sematech (2010). http://www.itl.nist.
gov/div898/handbook/

14. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: a
research roadmap. Int. J. Coop. Inf. Syst. 17(2), 223–255 (2008)

15. Pernici, B.: Self-healing systems and web services: the WS-DIAMOND approach. In:
LNBIP’09 (2009)

16. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services by
planning at the knowledge level. In: IJCAI’05 (2005)

17. Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: Taxonomy-driven adaptation of
multi-layer applications using templates. In: SASO’10 (2010). https://doi.org/10.1109/SASO.
2010.23

18. Saboohi, H., Amini, A., Herawan, T., Kareem, S.: Failure recovery of composite semantic
services using expiration times. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings
of the First International Conference on Advanced Data and Information Engineering (DaEng-
2013), Lecture Notes in Electrical Engineering, vol. 285, pp. 683–690. Springer, Singapore
(2014). https://doi.org/10.1007/978-981-4585-18-7_77

19. Tosi, D., Denaro, G., Pezze, M.: Towards autonomic service-oriented applications. Int. J.
Autom. Comput. 1, 58–80 (2009). https://doi.org/10.1504/IJAC.2009.024500

20. Web Services Business Process Execution Language (WS-BPEL) Version 2.0.: Organization
for the Advancement of Structured Information Standards (OASIS) (2007). http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

21. Zengin, A., Kazhamiakin, R., Pistore, M.: Clam: cross-layer management of adaptation
decisions for service-based applications. In: ICWS’11 (2011). https://doi.org/10.1109/ICWS.
2011.76

22. Zisman, A., Spanoudakis, G., Dooley, J., Siveroni, I.: Proactive and reactive runtime service
discovery: A framework and its evaluation. IEEE Trans. Softw. Eng. 39(7), 954–974 (2013)

https://doi.org/10.1007/978-3-642-25535-9_24
http://doi.acm.org/10.1145/1808984.1808987
http://doi.acm.org/10.1145/1808984.1808987
https://doi.org/10.1145/1367497.1367607
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
https://doi.org/10.1109/SASO.2010.23
https://doi.org/10.1109/SASO.2010.23
https://doi.org/10.1007/978-981-4585-18-7_77
https://doi.org/10.1504/IJAC.2009.024500
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://doi.org/10.1109/ICWS.2011.76
https://doi.org/10.1109/ICWS.2011.76

	5 Parallel Adaptation of Multiple Service Composition Instances
	5.1 Introduction
	5.2 Parallel and Proactive Adaptation Framework
	5.2.1 Proactive Adaptation Approach
	5.2.2 Parallel Adaptation Approach

	5.3 Implementation and Evaluation
	5.4 Related Work
	5.5 Conclusions and Future Work
	References


