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Abstract Bidirectional transformations are a synchronisation mechanism between
documents, a source, and a view. A bidirectional transformation is a pair of
functions, one that extracts a view from a source and the other that updates a
source according to changes made to the view. Bidirectional programming is a
recent technique that helps developers to easily write bidirectional transformations
and ensure that they satisfy properties of interest. In this chapter, we argue that
bidirectional transformations and bidirectional programming are useful techniques
in the context of self-adaptive systems. We present four applications of bidirectional
transformation for construction of adaptive systems: abstraction, separation of
concerns, rule-based adaptation, and uncertainty-aware programming.

4.1 Introduction

Bidirectional transformations [6, 11, 18] have been the focus of a lot of attention
lately, both in the programming language community [2, 10, 12, 16, 26] and in
the software engineering community [28, 29]. They are a recent way of solving
the old view-update problem, defined decades ago in the database community. As
bidirectional programming languages are growing more mature, they are getting
easier to use for software engineers and more efficient and more reliable. Perhaps the
strongest argument in favour of bidirectional programming is its ability to provide
a synchronisation mechanism between a source and a view that is guaranteed to be
correct by construction.
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In this chapter, we present four different ways in which bidirectional pro-
gramming and bidirectional transformations can improve the state of the art in
engineering self-adaptive systems. In particular, we focus on self-adaptive systems
developed around the MAPE-K feedback loop model [19].

First, bidirectional programming can be used to synchronise concrete and
abstract models in the knowledge base, allowing developers to write their adaptation
layer independently of the implementation of the target system. This facilitates
the reuse of MAPE-K components and allows developers to easily swap the
implementation of the target system, without having to rewrite the adaptation layer.

Second, bidirectional programming is useful to achieve separation of concerns,
and hence reuse of components, in the adaptation layer. By extracting from the
knowledge base small models that are tailored to a particular aspect being analysed,
bidirectional transformations simplify the development of small, focused analysis
and planning components and may even improve performance, due to the reduced
size of the models to consider.

Third, bidirectional programming is used in the context of view-based adaptation
rules for the analysis of the target system and its environment. Bidirectional
programming comes as a natural approach to implement the νRule approach, where
adaptation rules are applied depending on the state of the environment, captured in
views.

Fourth, bidirectional programming is applied in the field of uncertainty-aware
software development, a software development approach that makes uncertainty
a first-class citizen. Bidirectional transformations can extract partial models from
code and uncertainty-aware artefacts and reflect changes made to the partial models,
back to the code.

The rest of this chapter is organised as follows: In Sect. 4.2, we introduce bidi-
rectional transformations and bidirectional programming. In Sect. 4.3, we discuss
how bidirectional programming can synchronise concrete and abstract models,
and in Sect. 4.4, we focus on separation of concerns. Section 4.5 discusses the
use of bidirectional programming with νRule -based adaptation. Then, Sect. 4.6
considers the role of bidirectional programming in the context of uncertainty-aware
development. Section 4.7 concludes this chapter.

4.2 Bidirectional Programming

A bidirectional transformation is a pair of functions, a forward transformation get
and a backward transformation put, used to synchronise two documents [11]. The
forward transformation takes a source as input and produces a view; the backward
transformation takes a source and a view as inputs and uses the view to update the
source, producing an updated source.

In this paper, we will use Haskell, a functional language, to specify bidirectional
transformation. One big reason for us to choose Haskell is that a set of bidirectional
languages (libraries) have been developed in Haskell.
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In Haskell, the types for get and put are the following for a source of type
Source and a view of type View:

get :: Source -> View
put :: Source -> View -> Source

For example, the following code defines a bidirectional transformation between
a list of integers (the source) and a single element (the view).

1 get :: [Int] -> Int
2 get (x:xs) = x
3

4 put :: [Int] -> Int -> [Int]
5 put (x:xs) y = y:xs

The get function extracts the head of the list, while the put function updates
the head of the source list with the value in the view, as illustrated by the following
example:

> get [1,2,3]
1

> put [1,2,3] 9
[9,2,3]

A particularly interesting class of bidirectional transformations are well-behaved
bidirectional transformations [11, 12]. Intuitively, a well-behaved bidirectional
transformation provides a “correct” synchronisation between source and view. More
formally, a bidirectional transformation is well behaved if it satisfies two properties:
GetPut and PutGet.

GetPut is the identity law. If a view is extracted from a source and used and
unchanged to update the source, the source should not change:

put s (get s) = s

PutGet is the change conservation law. If a view has been updated, then using
it to update the source and then extracting a view from that updated source should
produce the same updated view:

get (put s v) = v

The example we used above is a well-behaved bidirectional transformation.
Using the same source as above, both laws of well-behaved bidirectional transfor-
mations are satisfied:

> put [1,2,3] (get [1,2,3]) = put [1,2,3] 1 = [1,2,3]

> get (put [1,2,3] 99) = get [99,2,3] = 99

Our example is trivial, but it can be very difficult to write a complex bidirectional
transformation, let alone proving it well behaved. Still, bidirectional transformations
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have been used in a variety of applications [6], including spreadsheets [5], graph
transformations [16], and many more.

Bidirectional programming languages are domain-specific languages that aim to
simplify the development of bidirectional transformations [11]. Developers write
one direction of the transformation, and the bidirectional programming language’s
compiler automatically derives the other direction, to form a well-behaved bidirec-
tional transformation, if it exists.

We can classify these bidirectional programming languages in two categories:
get-based languages and put-based (also called putback-based) languages.

Get-based languages let developers write a get function and automatically
derive a put function, forming a well-behaved bidirectional transformation.
GroundTRam [17] is one of these languages. The advantage of get-based languages
is that the get function is relatively easy to write. The inconvenience is that for a
given get function, there may be many put functions that form a well-behaved
bidirectional transformation. For example, the following code snippet shows three
different put functions for a single get. They all form well-behaved bidirectional
transformations:

1 get :: [Int] -> Int
2 get (x:xs) = x
3

4 put1 :: [Int] -> Int -> [Int]
5 put1 (x:xs) y = y:xs
6

7 put2 :: [Int] -> Int -> [Int]
8 put2 (x:xs) y = if x==y then y:xs else y:[]
9

10 put3 :: [Int] -> Int -> [Int]
11 put3 x y = if x>=y then y:xs else y:[]

Put-based languages, on the other hand, let developers write a put function
and automatically derive a get function to form a well-behaved bidirectional
transformation. While the put function is often more difficult to write than the
get function, we know that for a given put, there exists at most one get that
forms a well-behaved bidirectional transformation [9]. Hence, put-based languages
give developers more control over their bidirectional transformations. Examples of
put-based languages include BiFluX [25], BiGUL [21], or Brul [30].

Bidirectional programming, like bidirectional transformations, has been applied
to a variety of areas in software engineering, such as access control [13, 24], model-
code synchronisation [29], or self-adaptive systems [4].
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4.3 Bidirectional Programming and Abstraction

In self-adaptive systems built around the MAPE-K loop [19], the adaptation layer
monitors the target system and its environment, analyses data, plans changes, and
executes changes on the target system. Often, the self-adaptive layer is decoupled
from the target system. The monitoring of the system is done through probes
and gauges and the execution through effectors. This decoupling makes it easy
to reuse the same self-adaptive layer for multiple target systems. In this section,
we show how bidirectional programming can facilitate the reuse of a self-adaptive
layer for multiple target systems independently of the implementation of the target
system [4]. In particular, we focus on the adaptation of configuration files, which is
a common way of controlling the behaviour of the target system.

Configuration files are trees. They contain key-value pairs, each used to configure
a particular aspect of the software. In some configuration files, these pairs can
be placed inside blocks, and blocks can contain other blocks. Depending on the
configuration file, the order of pairs and/or blocks may matter. Keys that do not
appear in the configuration file are given a default value when parsed by the
software. The use of blocks also allows for context overriding, where the value of
a key in a block takes, for that block, precedence over other values of the same key
defined in ancestor blocks or over the default value.

An example of software that uses configuration files is a web server. There are
many implementations of web servers, such as Apache, Nginx, or Microsoft IIS.
Each implementation defines its own configuration format, syntax, and semantics.
Yet there are a lot of similarities between each implementation’s configuration files.
After all, they all describe the behaviour of web servers.

Using bidirectional programming, it is possible to synchronise a concrete
configuration file with an abstract web server configuration that is independent of the
implementation used. For each implementation, a bidirectional transformation syn-
chronises the concrete configuration file (the source of the transformation) with the
abstract configuration (the view), as depicted on Fig. 4.1. Since the transformations

Fig. 4.1 Abstraction with
bidirectional programs
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Fig. 4.2 MAPE-K loop over abstract configuration

for all implementations use the same type for the view, it is then possible to reuse
the abstract implementation when implementing the MAPE-K loop, as illustrated on
Fig. 4.2. The monitoring stage keeps track of the environment and of changes in the
software’s concrete configuration. Changes in the configuration trigger a new get
transformation that updates the abstract configuration. Both the analysis and the
planning stages use the abstract configuration and are therefore reusable across any
implementation. The planning stage can directly modify the abstract configuration
to enact adaptation. In the execution phase, a put transformation synchronises the
abstract configuration with the concrete configuration, before the configuration file
is transferred to the target system, and the target system restarted or reloaded, if
necessary.
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Fig. 4.3 Migration with
bidirectional programs

4.3.1 Migration

An additional benefit of using bidirectional transformations to synchronise concrete
and abstract configurations is the possibility to migrate the target system from one
implementation to another while conserving the same configuration. Figure 4.3
illustrates such a scenario. Let A and B be two implementations of the target system,
each with its own configuration format. Two bidirectional programs are written to
synchronise the concrete configurations with a common abstract configuration. To
migrate the target system from implementation A to implementation B, an abstract
configuration is first extracted from the concrete configuration of A, using the get
transformation provided by the bidirectional program for A. Then, the abstract

configuration is used, together with an empty template configuration for B, to
produce, through the put transformation provided by the bidirectional program for
B, a concrete configuration for B that captures the same behaviour as the concrete
configuration for A.

4.4 Bidirectional Programming and Separation of Concerns

In the previous section, we discussed how to apply bidirectional programming
to easily develop synchronisation between abstract and concrete models in the
knowledge base. This synchronisation, correct by construction, allows for the reused
of parts of the adaptation layer, regardless of the implementation of the target
system. This is not the only way in which bidirectional programming can be helpful
in the knowledge base. It can be also used to facilitate separation of concerns in
adaptation layers that adapt a target system according to multiple concerns.

For example, the adaptation of a web application deployed on an IaaS cloud
service could take into account the usage of the cloud instances, security concerns,
and service availability requirements. While it is possible to consider these concerns
together as a multi-objective optimisation problem, we argue that considering them
separately has benefits and that bidirectional programming helps to develop such
systems.
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4.4.1 Extracting Submodels

In self-adaptive systems, the analysis of a particular concern may only require a
subset of the entire model(s)1 in the knowledge base. Using a bidirectional program,
it is possible to extract the exact model subset necessary to perform adaptation
according to a given concern and to keep it synchronised with the whole model.
In this situation, the complete model is the source, while a submodel for a given
concern is a view. The submodel can be analysed and then passed on to the planning
phase, which can directly modify the submodel. A put transformation will ensure
that the source model is updated accordingly. Figure 4.4 illustrates this process.

There are several advantages in extracting a submodel for each concern:

• The phases using the submodel do not need to change if unrelated changes
happen in the complete model. It is therefore easier to implement reusable
analysis and planning phases;

• If the analysis and/or planning phases use techniques whose performance
degrades with large inputs, such as model checking, a comparatively small
submodel can speed up the adaptation;

• Once views are extracted, it is easy to parallelise the execution of the analysis
and planning phases of each concern.

One inconvenient of this approach is that two separate concerns may cause
conflicting modifications of the source model. When evaluating the entire source
at once, mitigation strategies could easily be employed. Our approach would make
this more complicated. Ordering can be used to favour the more important concerns

Fig. 4.4 Extracting a
submodel
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Firewall rules 
view
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1Since multiple models can easily be merged into a single one using a virtual root element, we
assume from now on that the knowledge base contains only one model.
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over the less important ones. In the case of several, equally important and potentially
conflicting concerns, separation may cause difficulties. However, it may still be
possible to group these concerns into a single view and perform the analysis for
these concerns simultaneously on a model that is still smaller than the source.

Using bidirectional programs provides guarantees, by construction, of the cor-
rectness of the synchronisation mechanism between the source and each of the
views. In our approach, only the analysis and planning phases use a view. The
monitoring phase directly updates the source, and the execution phase uses data
from the source, after it has been modified by all the planning phases. In the spirit
of Weyns et al.’s MAPE-K patterns for distributed systems [27], our solution follows
a M(AP) + E pattern.

4.4.2 Current vs. Desired State of the Model

In addition to using views to achieve separation of concerns, bidirectional program-
ming offers a solution to the issue of the model’s state. The solution is to use two
views, one for the current state of the model and one for the desired state of the
model. Both views are derived from the same source. Components can use the most
appropriate view.

In the source, a new status field is added to each element in the model. The
status indicates whether the element should not change (0), be created (1), or be
deleted (2) from the current model. Modifications to an element are treated as both
a deletion and a creation. The put transformation for the current model always
sets that value to 0 in the source. However, the put transformation for the desired
model sets the status to 1 for all elements created in the source and sets it to 2
for all deletions, without actually deleting the element from the source. The get
transformations derived are simple: for the current model, it selects all elements

whose status is 0 or 2; for the desired model, it selects all elements whose status is
0 or 1.

4.4.3 Evaluation Order and Concurrent Evaluation

The concurrent evaluation of multiple views can cause consistency issues. Let two
views, V 1

0 and V 2
0 , extracted from the same version of the source S0 (i.e. there

has been no put transformation run between the extraction of the two sources),
using get transformations BX1 and BX2, respectively. The respective analysis and
planning phases for V 1

0 and V 2
0 could make any changes to the views, resulting

in V 1
1 and V 2

1 , respectively. Propagating these changes to the source must be done
sequentially, as languages like BiGUL do not support the simultaneous update of
a source using multiple views. We assume that the transformation using V 1

1 is
performed first, but the argument is valid the other way around. Using BX1, a put
transformation updates S0, which becomes S1. If a get transformation with BX2
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still produces V 2
0 , then the other view has not been affected, and the second put

transformation can be performed. Otherwise, the second view is based on outdated
data, and it is possible that, should the analysis and planning be run again, another
result would be reached.

There are several ways to solve this issue. Perhaps the simplest approach is to
define a partial order between the different concerns and deal with them sequentially
according to the ordering (i.e. for each concern, start with get and then analyse and
plan and finish with put). Another strategy is, at design time, to manually inspect
the views produced and run those views that are produced from entirely distinct
subsets of the source in parallel, as they are completely separate. Finally, a more
sophisticated approach would be to deal with several concerns in parallel, keeping
track of the view produced by each get transformation (i.e. before it is modified).
After every put, all get transformations would be run again. If they produce the
same view as the previous get transformation, then the view has not been affected
by the changes introduced by put, and the updated view is still valid. Otherwise, the
analysis and planning must be run again. In the worst case, this will be equivalent
to the sequential scenario, with the addition of the comparison between different
versions of the views.

4.5 Declarative Description of Adaptation Logic

Adaption logic plays an important role in self-adaptive systems, specifying when
and how to update the behaviour and/or structure of the system in response to
changes of the environment and the system itself. So far, it has been implemented
mostly by hardwired code for analysing and planning in the MAPE-K loop. In this
section, we show that adaptation logic can be declaratively specified in putback-
based bidirectional languages such as BiFluX and BiGUL, which would allow
developers to utilise bidirectional programming to systematically construct robust
self-adaptive systems.

4.5.1 Adding Views to Adaptation Rules

Rule-based adaptation [1, 7, 22] provides a powerful mechanism to develop self-
adaptive systems, enabling systems to modify their behaviour, reconfigure their
structure, and evolve over time, reacting to changes in the operating context [3]. In a
rule-based adaptation system, a set of adaptation rules are used to specify adaptation
logic of what particular action should be performed in reaction to monitored events.

Typically, an adaptation rule takes the form of condition ⇒ action where
condition specifies the trigger of the rule, which is often fired as a result of a set
of monitoring operations, and action specifies an operation sequence to perform
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in response to the trigger. For instance, in a smart room system, we may have the
following rule:

Light.Power = off ∧ Time = daytime
⇒ Blind.State := open; Window.State := open

which declares that if the light is powered off in daytime, then the blind and the
window must be opened. Rule-based adaptation has advantages of readability and
elegance of each individual rule, the efficiency of plan process and the ease of rule
modification.

In spite of these advantages, adaptation rules pay attention only to local
transformations. However, such local transformations can be structured to ease the
satisfaction of the system’s global goals. In many cases, some environment features
may hint at different system goals, and different system goals imply different
adaptation policies.

We introduce another concern, situation, for capturing such a hint [20]. With this
concern, the adaptation logics are of two layers. The first layer intends to capture
the requirement changes when the situation changes. The second layer intends to
capture, for a certain system goal, the situation changes or changes in some of the
entities in the environment that require actions to continue satisfying the system
goal.

Then, to enable the dynamic decision on the system adaptation, three types of
νRules can be identified:

• situation → goal setting: It captures the phenomena that the user may have
different desires in different situations.

• goal setting: situation → behaviour pattern: This means that, given a goal setting,
the system should behave according to different behaviour patterns when situated
in different situations. A behaviour pattern consists of a set of environment
features.

• goal setting: environment features → system features: This means that, given a
goal setting, some of the system features need to be enabled by current emerged
environment features to better satisfice the goal setting.

The first type of rules is meaningful in decision-making about adaptation. For
example, everybody is sleeping is a situation that represents “everybody has been in
bed”. When in this situation, the system normally switches to the goal setting of the
“sleeping mode” without taking into account other environment features.

When a goal setting needs to be continuously satisfied, different situations may
also indicate different system behaviour modes. This is represented by the second
type of rules. In fact, situation is a concept that has received much attention from
philosophers and logicians. The earlier formal notion of situation was introduced as
a means to give a more realistic formal semantics for speech acts than what was then
available. In contrast with a world which determines the value of every proposition,
a situation corresponds to the limited parts of reality we perceive, reason about,
and live in. With limited information, a situation can provide answers to some, but
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not all, questions about the world. The advantage of including situation is then to
decrease the sensing cost as, normally, only parts of the environmental setting need
to be detected when making a decision in a particular situation. This is important
when the number of environment entities is large. The other advantage could be
fitting to the human recognition. In many cases, only a few features are required to
identify a situation, while others are less important.

4.5.2 νRule: View-Based Adaptation Rule

We assume that the environment states, the goal settings and the system behaviours
are represented by feature bindings and propose to structure adaptation rules into
νRules. There are two types of rules. The first type of νRule is the behaviour rule. It
is made of three parts: an observable view (v) that could be a goal configuration,
a conjunction of conditions (C) that could be a situation of the environment (a
group of significant environment features that indicates the situation) or a set of
environment features (that does not indicate a situation but captures the environment
states) and a sequence of actions (A). The second type of view-deciding rule is
made of two parts: an observable situation of the environment (C) and a system
goal configuration (A). For unification, we assume the view part of the second type
of rule is true.

The concrete syntax of νRule is shown in Fig. 4.5.
A νRule

v � C ⇒ A

can be read as “if v holds, action A should be taken under condition C and preserve
state v”. The view v and the condition C are defined over feature bindings, where
a feature is a goal setting or an environment attributes or a system component. A
feature binding f b has two alternatives: feature can be either bound with a value or
a value interval. For example, Light.Intensity = 2’ means the intensity of the light
is 2, Light.Intensity = (1, 3] equals to 1 < Light.Intensity ≤ 3.

A is a set of asked system component settings a, and each setting a binds a
constant value to a feature. For example, in the following νRule

Fig. 4.5 Syntax of νRule view-based rule νRule ::= v C Þ A
view v ::= fb
feature binding fb ::= feature = value

| feature = value interval
conditions C ::= c1 Ù c2 Ù . . . Ù cm
condition c ::= fb
action sequence A ::= a1;a2; . . . ;an
action a ::= feature := value
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(r1) Light.Power = off
� Time = daytime ∧ Blind.State = close
⇒ Blind.State := open; Window.State := open

r1 declares that when the current goal is to keep the light powered off, if it is in
daytime and the blind is closed, then the system components, the blind, and the
window will be opened.

Generally, the νRule implies that the view needs to be kept after adaptation. That
is the reason of calling the rule the view-based adaptation rule. The key is the use of
the idea of “view” in the rule specification. Rather than showing how to propagate
changes (out), the view-based rules specify how a view can be kept through changes
of necessary system components for responding the environment changes.

In the condition of a νRule, we do not support the or operation. This does
not weaken the expressiveness of νRules, as a νRule with a c1 or c2 condition
is equivalent to two νRules, with conditions c1 and c2, respectively.

4.5.3 Implementation of νRule in BiGUL

The proposed νRule s can be implemented in BiGUL. The implementation of νRule
by BiGUL includes two parts: (1) representation of the view and the source models
and (2) translation of νRule s as BiGUL updates.

4.5.3.1 Representation

For a specific νRule, the view model only specifies the binding state of one feature,
and the source model includes the binding states of all features monitored from
the environment and system. Therefore, we represent the view as a feature binding,
which is a tuple consisting of the feature name and its value, and represent the source
as a set of feature bindings. Figure 4.6 gives an example of the source and the view
for νRule r1, in the sense that the view is a projection of the source, where only the
value of feature “Light.power” is considered.

4.5.3.2 Translation

With the source and the view represented, a νRule can be translated into updates in
BiGUL. We describe the translation from νRule to BiGUL by using the νRule r1 as
an example. The translated BiGUL program is as follows (Fig. 4.7):

This program means updating the source using the view: if the view feature
“Light.power” takes the value “off”, then the source feature model will be updated
with the value of feature “Blind.state” set to “on”, and the value of feature
“Window.state” set to “open”.
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Fig. 4.6 An example of the source and the view

Fig. 4.7 The BiGUL program of νRule r1

Fig. 4.8 Consistency check

A νRule is regarded as valid when it satisfies the view preservation property: if
the view holds, it should still hold after the execution of the action. Implementing
a νRule as a BiGUL program can facilitate the check of its validity. A BiGUL
program is guaranteed to produce a well-behaved bidirectional transformation if
one exists, i.e. a BiGUL program satisfies the GetPut and PutGet laws (see
Sect. 4.2). Therefore, a successfully compiled BiGUL program is guaranteed to be
view preserved, and in this case, the corresponding νRule is guaranteed to be a
view-preserved rule.

While a νRule is valid when it is view preserved, a νRule set is regarded as well
behaved only if (1) each νRule in this set is valid and (2) every two rules in this
set are order independent. While the validity of a single νRule can be automatically
checked, the order independence between two rules can be checked through the
“checkEqual” function in Fig. 4.8. For two νRule s r1 and r2, if executing r2
after r1 and executing r1 after r2 lead to the exactly same adaptation results, r1 and
r2 will be considered as order independent.
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4.6 Bidirectional Transformations for Uncertainty-Aware
Software Development

4.6.1 Uncertainty in Software Development

Recently, uncertainty has attracted a growing interest among researchers. Research
themes spread over uncertainty of goal modelling, UML modelling, model transfor-
mations, and testing. Garlan D. argues that software systems such as self-adaptive
systems must embrace uncertainty within the engineering discipline of software
engineering [15]. As a representative work, a method for expressing uncertainty
using a partial model is proposed in [8]. A partial model can represent a specific
type of uncertainty in which there are uncertain issues known and shared among the
stakeholders including developers and customers. For example, there are alternative
user requirements although it is uncertain which alternative should be selected. A
partial model is a single model containing all possible alternative designs of a system
and is encoded in propositional logic. We can check whether or not a model satisfies
some interesting properties even if there are uncertain concerns.

4.6.2 Modular Programming for Uncertainty

Modularity is one of the important principles in software engineering. Unfortu-
nately, the state-of-the-art module mechanisms do not regard an uncertain concern
as a first-class software module. If uncertainty can be dealt with modularly, we can
add or delete uncertain concerns to/from code whenever these concerns arise or are
fixed to certain concerns.

To deal with this problem, a new programming style supporting modularity
for uncertainty is proposed in [14]. This approach consists of three key ideas:
(1) a pluggable interface for describing uncertainty, (2) interface-based modular
reasoning for uncertainty, and (3) management support for tracing when and why
uncertain concerns arise or are resolved. This interface called Archface-U, which
supports component-and-connector architecture, consists of two kinds of interfaces,
component and connector.

Figure 4.9 (Printer-scanner system), a well-known parallel system that falls
into a deadlock [23], is an example of Archface-U descriptions. Two processes
P and Q acquire the lock from each of the shared resources, the printer and the
scanner, and then release the locks. The symbols

{}
and

[]
represent alternative

and optional, respectively. A component is the same with ordinary Java interface.
A connector, which is specified using the notation similar to FSP (finite state
processes), defines the message interactions among components. FSP is based on
process algebra and generates finite LTS (labelled transition systems). An arrow in
FSP indicates a sequence of actions. For example, GET (List 1, line 22) shows that
the action scanner.get is executed after the action printer.get is executed.
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Fig. 4.9 Archface-U description (Printer-scanner system)

In Archface-U, uncertain concerns are defined as a subinterface as shown in List 2.
By extending the existing interface, we can introduce uncertainty modularly. In List
2, it is uncertain how to acquire printer and scanner resources in two processes, P
and Q.

As shown in Fig. 4.9, we can explicitly represent uncertainty using alternative
and optional language constructs. If a developer is writing a program and he or
she becomes aware of the existence of uncertainty, the developer only has to
modify Archface-U as shown in List 2. The developer does not have to modify
the original code, because the essential information containing uncertain concerns
is expressed in the Archface-U and the behavioural properties can be checked using
only this information as explained below. If an uncertain concern is fixed to certain,
a developer only has to delete the corresponding inheritance (List 2) and modify the
original Archface-U (List 1) if needed.

4.6.3 Modular Reasoning Based on Partial Model

We can use the verification power provided by a partial model as illustrated
in Fig. 4.10. A partial model is generated from Archface-U definitions including
uncertainty represented by alternative and optional. Uncertainty is a target of
compilation. The type checker verifies whether code is a subset of the partial model.
From the theoretical aspect, type checking is passed when each code is a refinement
of Archface-U. Our compiler is based on the refinement calculus focusing on
simulation.

Behavioural properties represented by LTL (linear temporal logic) can be auto-
matically verified using model checkers such as LTSA (LTS analyser) supporting
FSP. If a property is verified by a model checker and the type check is successfully
passed, the program satisfies important properties such as deadlock free. We show
a verification process in details. In case of the printer-scanner system, there are four
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Fig. 4.10 Uncertainty-aware modular reasoning

Fig. 4.11 Partial model and Java program

possible resource acquisition sequences. Type check is passed if Java code simulates
one of these sequences. In Fig. 4.11, Java code simulates the sequence 1, and the
type check is passed. If counterexamples are not generated by a model checker,
we can select any sequence (either of 1, 2, 3, or 4 is okay). We can proceed the
development even if uncertain concerns exist, because the code simulating sequence
1 is correct. Unfortunately, counterexamples are generated in case of Fig. 4.11,
and these counterexamples show that the acquisition order must be the same. In
this case, uncertainty may cause a deadlock although the Java code in Fig. 4.11
is correct. A developer can confirm whether or not he or she can embrace this
uncertainty before modifying the code. In this case, the developer should not modify
the code. As another situation, assume that a developer makes the code simulating
the sequence 3 or 4. Although the type check is passed, the code is not correct
because counterexamples are generated. In this case, a developer has to change the
code to a new version simulating the sequence 1 or 2. In this case, a developer
can resolve uncertain concerns and make a correct program before debugging and
testing.
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State explosion is a crucial problem when applying model checking to source
code. In our approach, model checking is performed in terms of only FSP
descriptions in Archface-U. Code is not the direct target of model checking. As a
result, the number of states is reduced. Nevertheless, code can be indirectly verified
by the model checker if the code conforms to its Archface-U via type checker. Our
approach mitigates the problem of state explosion by integrating type checking with
model checking.

4.6.4 Bidirectional Transformation for Uncertainty

Our approach can be regarded as an application of a bidirectional transformation.
Get uses Archface-U and code to produce a partial model as a view. Put uses
Archface-U, code, and a partial model to reflect changes made to the partial model
into the code.

4.7 Conclusion

In this chapter, we have introduced bidirectional transformation, as well as bidirec-
tional programming. We have shown how bidirectional programming is a technique
that can be applied to various aspects of the engineering of self-adaptive systems.
We targeted four areas in particular: abstraction, separation of concerns, νRule -
based adaptation, and uncertainty-aware software development.
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