
Chapter 2
Self-Adaptation of Software Using
Automatically Generated
Control-Theoretical Solutions

Stepan Shevtsov, Danny Weyns, and Martina Maggio

Abstract Control theory has contributed a set of foundational techniques to handle
“change” at runtime in software applications. These techniques however have
fundamental limitations as well: (i) they require the development and understanding
of mathematical models; (ii) synthesizing solutions is often done on a per-problem
basis, discouraging flexibility and generality. Software engineering, as a discipline,
has always aimed at finding reusable and modular solutions. The combination
of the desire to apply formally grounded control-theoretical principles and reuse
existing solutions has motivated research on the topic of automatically generated
control solutions. This research aims at designing control strategies in an automated
way from data that qualifies the given problem at hand. This chapter provides
an overview of the research topic of automatically generated control-theoretical
solutions, explaining the key research contributions and paving the way for future
research.

2.1 Introduction

Software applications need, more than ever, to be able to deal with “change” [30,
41]. Software needs to be continuously available, which in turns requires that
developers treat change as a first-class concern in the complete life cycle of the
application development, operation, and maintenance. Software applications are
nowadays expected to deal seamlessly with different types of change, such as
resource fluctuations [37], component failures [44], requirement modifications [6,
49], different user preferences [43], and much more [1, 2, 9, 14, 27, 42]. Often,
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these changes are not predictable at design time, requiring software to execute with
incomplete knowledge and face new challenges during operation [50, 53]. Con-
sequently, software engineering researchers are experimenting with new solutions
that can handle change at runtime without incurring into penalties, slowdown, and
downtime. Generally speaking, the software built to deal with change is often called
“self-adaptive” [15, 17, 51], for the ability to modify its own behavior and adapt to
the current execution conditions.

Continuous- and discrete-time control theory1 has been identified as a promising
approach to design self-adaptive software [10, 18, 26, 56]. However, the wide
adoption of control-theoretical solutions in the design of self-adaptive systems has
been limited by a number of factors.

First and foremost, continuous- and discrete-time control solutions often require
a “physical” model of the object to be controlled. In the case of low-level resources
– such as CPU, memory, and network bandwidth – researchers have proposed
models that attempt to capture the phenomena of interest [3, 20, 55] with a precision
sufficient to perform adaptation. However, it is very difficult to extract control-
theoretical (i.e., equation-based) models for the behavior of software applications.
This has been one of the main reasons why several researchers have argued that
applying control theory to adapt the higher-level software elements is a more
complex problem [4, 11, 22]. Other reasons are the diversity and interplay of
requirements and the need for instrumenting software to obtain measurements from
sensors and enacting the system through actuators [12, 28]. Second, the models
often become complicated, calling for elaborate solutions from the mathematical
perspective. Finally, since appropriate and accurate models are so difficult to write,
existing control-based approaches are often tailored for a particular problem, while
software engineers usually aim for reusable solutions. These observations have
been recently confirmed by a systematic study on control-theoretical software
adaptation, highlighting the shortcomings of the existing ad hoc control-theoretical
solutions [47].

As a response to these shortcomings, researcher aimed at automatically gener-
ating control solutions. These solutions are general enough to tackle a variety of
problems, trading off the optimality that could be reached by tailored solutions.
The code for these general solutions can be automatically generated based on
observations and data from the software application that should be controlled.
Simple linear models describing the software behavior are automatically extracted
from the data and used – at runtime – to synthesize a control solution. This chapter
gives an overview of the state of the art of the research in automatically generated
control strategies for software applications and outlines promising paths for future
work.

The remainder of this chapter is structured as follows. Section 2.2 provides a brief
background on automatically generated control-theoretical adaptation of software.

1In this chapter, we restrict ourselves to continuous- and discrete-time control [8, 54]. Discrete
event systems are out of our scope.
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In Sect. 2.3, we delve into details discussing the differences among the proposed
solutions. Finally, Sect. 2.4 outlines a number of challenges for future research, and
Sect. 2.5 draws some conclusions.

2.2 Background

This section explains the basic principle behind automatically generated control-
theoretical solutions and its use for self-adaptation.

The overall objective of automatically generated control-theoretical adaptation
is the simplification of the software design process. The aim of these strategies
is to provide the software engineer with the advantages of a control-theoretical
design, without the need for in-depth control expertise. The main advantage of
control-theoretical solutions is the presence of formal guarantees [24]. If mastered
correctly, the use of the knowledge coming from control theory allows for certified
and verifiable solutions, where desired properties can be guaranteed by design.
For example, with control theory it is possible to precisely calculate the amount
of disturbance the system can withstand or to prove that the system will not
overconsume resources in changing external conditions.

Figure 2.1 shows a typical control-theoretical feedback loop that is used in self-
adaptive software systems. Reading the figure from left to right, the Goal represents
a particular level of software quality that should be achieved by self-adaptation.
The Goal is often specified as a setpoint, i.e., a certain value of a nonfunctional
requirement, such as a specific service failure rate or response time. Using the
setpoint and the Measured Output value for the same software quality, an Error
is calculated as Setpoint − MeasuredOutput , where the -1 block indicates that
the Measured Output value should be subtracted. The Feedback Controller uses the
Error in order to compute the Control Signal, a value or a vector of values that
effect the Software System. If designed correctly, the Control Signal will result in a
Measured Output that is equal or very close to the Goal value. The Disturbances,
such as changing availability of resources or component failures, affect the software
behavior at runtime. So one of the main purposes of control strategies is to neglect
the effect of Disturbances on the system.

Historically, many manually generated control strategies used the typical feed-
back loop shown in Fig. 2.1. The automated strategies have two main differences

Fig. 2.1 A typical
control-theoretical feedback
loop

+ Feedback
Controller

Software
System

-1

Goal Error
Control
Signal

Measured
Output

Disturbances



38 S. Shevtsov et al.

from these solutions. First, the automated strategies require certain conditions to be
satisfied and the availability of specific software functions:

• The developer that wants to generate and use the control strategy should
have access to the software system, which should be working and on which
experiments should be done and data must be collected – the data is used in
an automated way to build a model of the software that can be used for control
purposes;

• The developer should be able to qualify, quantify, and measure the requirements
that must be satisfied on the system – these requirements are then translated into
goals and objectives that the controller will try to achieve;

• The developer must provide access to a set of sensors that get reliable data
about the quantifiable objectives (e.g., measure the response times of a cloud
application);

• The developer must provide access to a set of actuators (tunable parameters
of the system) that can be used during runtime to modify the behavior of
the software application (e.g., the percentage of rejected requests, or different
implementations of the same functionality).

Second, the Feedback Controller is created automatically. Namely, the automated
solution starts by running experiments on the software application, changing the
values of the actuators according to predefined patterns and measuring the values
of the goals in the tested configurations. With this data, the solution generates a
mathematical model of the software using system identification [34].2 Finally, this
model is used to synthesize a controller that provides guarantees on certain system
properties. The controller – synthesized in form of equations and subsequently in
form of a code block – adapts the behavior of the software changing the values of
the actuators to achieve the given goals. The resulting controller is often tunable
– some parameters have default values that can be changed to alter the behavior
of the controller itself. For example, parameters can be used to exploit the trade-
off between robustness to disturbances and speed of convergence. The software
engineer can select these parameters based on experience and on the specific
execution conditions.

2.3 Automated Control-Theoretical Software Adaptation

This section outlines the research progress in self-adaptation of software using
automatically generated control-theoretical solutions. We discuss five different
research problems that have been explored. Figure 2.2 gives an overview of the

2Other model synthesis techniques can be used to produce system model. But historically,
automated approaches used system identification as it is fast and approximates software well
enough for controllers to work.
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Fig. 2.2 Research in automated control-theoretical software adaptation: progress steps (left) and
approaches (right)

research steps and shows representative approaches for each step. The arrows in the
figure show the contribution of each step/approach to the following efforts.

The initial research was primarily targeting the automation of a control solution
development. Based on prior experience with control of software applications,
some generalization arose and led to the introduction of the Push-Button method-
ology (PBM) [22]. At the same time, a similar method called Brownout [33]
was applied in a specific software domain, cloud applications. The next clear
research goal has been the extension of automated methodologies to support
multiple adaptation goals simultaneously, e.g., to achieve a specific performance
level and minimize cost at the same time. The first proposed extension has been the
Automated Multi-objective Control of Software (AMOCS) approach [23], followed
by the Simplex Control Adaptation (SimCA) [45]. SimCA tackled the problem of
multi-objective adaptation by combining controllers with the simplex optimization
algorithm in a hierarchical structure. Then, SimCA* [48] introduced components
that adjust the adaptation mechanism at runtime, to deal with new types of goals
and changes in the set of adaptation goals (e.g., adding a new goal, removing a
goal). Finally, the use of Model Predictive Control (MPC) was investigated. In this
approach, the controller acts based on the current feedback from the software but
uses the model of its own behavior to predict the software evolution. The fully
automated MPC-based approach is called Automated Multi-objective Control of
Software with Multiple Actuators (AMOCS-MA) [36].

The main properties of all automated control-theoretical adaptation approaches
are listed in Table 2.1; these approaches will be discussed in detail in the following
sections.
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Table 2.1 Automated control-theoretical adaptation approaches

Approach Inputs (goals) Main pros Main cons

Brownout, PBM 1-setpoint Automation, guarantees Handles only one goal

AMOCS n-setpoint,
1-optimization

Multiple goals and
prioritization

Suboptimal adaptation
decisions

SimCA n-setpoint,
1-optimization

Guarantees + optimality Setpoints, needs
knowledge about some of
the system parameters

SimCA* n-setpoint,
n-threshold,
1-optimization

Handles new types of
goals and goal changes at
runtime

Needs knowledge about
some of the system
parameters

AMOCS-MA n-setpoint,
1-optimization

Guarantees + optimality,
does not need system
knowledge, flexible
computation time

Sensitive to disturbances
and model inaccuracies

2.3.1 Automation of Control System Development

Control-theoretical approaches were first used in software adaptation more than a
decade ago [1, 2, 14]. However, most of these approaches aim to solve a specific
problem at hand. Therefore, new problems would require modifications or even
replacement of a control system, which in turn requires expertise in control theory,
extra resources, and effort. To overcome this concern, researchers have studied
the ways to automate the entire process of control system development from the
model synthesis to the formal analysis of guarantees. This became the first step
of research on applying automatically generated control-theoretical solutions in
software adaptation.

The representative of the first step of research are Brownout [33] and PBM [22].
Both these approaches are based on the same underlying principles (creating a first-
order model from data and controlling that first-order model using pole placement).
Brownout is applied to the more confined domain of cloud computing applications
and is tailored to the specific problem of capacity shortages. Because of this,
Brownout achieves – on its own problem – better performance than the application
of the PBM controller without any modifications. We provide details on both of
these approaches below.

2.3.1.1 Brownout

The main idea behind Brownout [33, 35] is to apply the principles of graceful
degradation to cloud applications using control theory. Cloud applications behave
according to the request-response paradigm, with clients issuing requests and
a certain number of replicas of the same application providing the according
responses. When producing the response to the user requests, it is often possible
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to identify a part of the response that is the mandatory to display and a part of the
response that would provide a better user experience and increase revenues, but is
not mandatory. In the case of a travel agency website, the mandatory part of the
response is the flight search, while additional optional information are car rental
locations and hotel suggestions. Clearly, the application owner wants to provide
the additional information, but not at the expense of losing a customer. Brownout
divides the response into the two mentioned parts and measures the response time
to determine how much percentages of the optional content should be served. This
percentage is called the dimmer value. The goal of brownout is to have as big
dimmer as possible, i.e., to show as much optional content as possible, without
penalizing response times.

Brownout assumes that the cloud application behaves according to a simple first-
order linear model, where the value of the 95th percentile of the response time τ95
varies depending on the dimmer value as follows:

τ95(k) = α θ(k − 1) + δτ95(k), (2.1)

where θ(k) is the dimmer value; α(k − 1) is a time-varying coefficient that depends
on the computing platform and can be estimated; δτ95(k) is a disturbance, interfering
with the nominal system’s behavior; and k is the discrete time instance.

Based on the model (2.1), the following controller is then synthesized using loop
shaping [8]:

θ∗(k) = θ(k − 1) + 1 − pb

α̂(k)
· eτ95(k) (2.2)

where α̂(k) is an estimate of α(k) obtained with a recursive least squares (RLS)
filter, pb is a controller parameter called pole, and eτ95(k) is the error between the
desired 95th percentile of the response time τ̄95(k) and the actual value. The pole
pb can be used to trade the speed of controller convergence for robustness to model
perturbations. The analysis of the brownout closed loop allows to prove a number
of properties, such as system stability and zero steady-state error. However, this
proof is subject to how well the model (2.1) approximates the behavior of the cloud
application.

Brownout uses a single actuator (the dimmer value) to achieve a single goal,
specified in terms of a setpoint for the response time statistic. The control strategy
in Brownout can be greatly improved, and many follow-ups were devised. For
example, an event-based version of the brownout paradigm [19] explores a similar
cloud problem but controls the server queue length. Furthermore, extensions that
include brownout load balancing were considered [21, 32]. They demonstrate
that state-of-the-art load balancers which use response times as a measure for
determining where to send requests do not work with brownout-aware applications.
This is a natural limitation as the brownout controller can satisfy only a single goal
and therefore cannot form a multi-objective control strategy with other controllers.
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Brownout was designed specifically for cloud applications, so strictly speaking, it
is not a generally applicable solution. However, it is important to include Brownout
in this work as it became the first building block for development of automated
control-theoretical adaptation. The generally applicable Push-Button methodology,
discussed in the following section, is based on the same principles and shares many
elements with Brownout.

2.3.1.2 Push-Button Methodology

The PBM methodology [22] works in a way similar to Brownout but goes beyond a
single goal and a single actuator. Also, it introduces the idea of identifying the model
online. Unlike in Brownout, where model is pre-determined, PBM builds a model
directly from the data received by running experiments on the software and produces
a controller for this model. Figure 2.3 shows the two phases of the methodology:
model building and controlling.

The input required by PBM from a software engineer is a method to set the
actuator value and a method to collect measurements about the system goal. Based
on this input, PBM first produces a linear model M of the software:

M : y(k) = α(k − 1) · u(k − 1) (2.3)

where the input u is the value of the actuator, the output y is the effect of the actuator
on the goal, the parameter α is a time-varying coefficient that is determined during
model building by feeding different input values as u and measuring the resulting
outputs y, and k is a discrete time instance.

After the model building, the controller synthesis phase automatically generates
a proportional-integral controller C that works on the model M and adapts the
software.

C : u(k) = u(k − 1) + 1 − pb

α
· e(k) (2.4)

Fig. 2.3 The two operational phases of PBM
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The controller has one parameter, pb, that has the same role that it had in the
Brownout controller. More guidelines on how to tune the controller parameter pb

are available in [22].
To address model inaccuracies and small perturbations during software opera-

tion, the value of α is updated at runtime. In case of critical changes (e.g., a software
component failure), PBM restarts the model building phase and regenerates the
controller.

2.3.2 Adaptation with Goal Prioritization

In order to automatically create control solutions for more practical problems,
researches have studied the ways to address multiple adaptation goals simulta-
neously. The first automated approach that offered control-based multi-objective
software adaptation was AMOCS [23]. This approach extends the methodology
behind PBM to use multiple actuators and multiple controllers in a cascaded
structure; see Fig. 2.4.

AMOCS works as follows. The set of available actuators A = {a1, . . . , am}
is partitioned to reach the set of goals G = {g1, . . . , gn}, where m ≥ n, i.e., the
system should have more actuators than goals. The goals are added into the set G
according to their priority order, forming the chain < g1, g2, . . . gn >, where g1
is the most important goal and gn is the least important one. All goals, except the
last one, are specified as setpoint values to be achieved by the adaptation. The last
goal gn is always the optimization of a specific value (e.g., maximization of profit,
minimization of cost). Ai denotes the subset of actuators used to achieve the goal
gi . AMOCS assumes that every actuator is used:

⋃

i∈{1...n}
Ai = A, (2.5)

and each actuator is assigned to a single goal only:

∀i, j ∈ {1 . . . n}, i �= j �⇒ Ai ∩ Aj = ∅, (2.6)

Fig. 2.4 A self-adaptive software with AMOCS (for 2 goals)



44 S. Shevtsov et al.

A first instance of PBM controller C1, see (2.4) for a controller description,
is then used to translate the discrete set of configurations of all the actuators A1
related to the first goal g1 into a single configuration that satisfies this goal. This
configuration is then sent in the form of control signal k1 to the software system
and to the second instance of PBM controller C2,which tries to achieve the second
goal g2 with the available actuators A2 and operating conditions. The resulting
configuration is sent to software as control signal k2. If goals g1 and g2 are not
related, the control signal k1 will still be received by controller C2, but it will not
affect the reachability of the goal g2.

In this controller chain, only the first goal is guaranteed to be stable, while the
stability of the others depend on the disturbances and on the control values set by
the previous controllers in the chain. In other words, the goal g2 is guaranteed to be
reached only if control signal k1 allows to reach it. The last optimization requirement
is reached to the best of the chain ability; hence there is no guarantee for the solution
optimality. Despite the lack of formal guarantees, the experiments with AMOCS
show that the chain of controllers behaves well in a variety of different scenarios
and can successfully handle multiple goals of a setpoint type.

2.3.3 Adaptation with Guaranteed Optimality

Guided by the need for stronger adaptation guarantees in systems with multiple
goals, the research explored new ways to automatically build the control system.
The approach resulting from these efforts is called Simplex Control Adaptation
(SimCA) [45]. SimCA combines PBM with the simplex optimization method,
utilizing the advantages of both approaches. SimCA finds a system configuration
that satisfies multiple goals, reaches optimality with respect to an additional goal,
achieves robustness to environmental disturbances and measurement inaccuracy,
and provides control-theoretical adaptation guarantees. To that end, SimCA runs
on-the-fly experiments on the software in an automated fashion, builds a set of
linear models of the software at runtime, creates a set of tunable PI controllers
that operate on these models and independently compute control signals for each
of the goals, and combines controller outputs using the simplex method to adapt the
system. Figure 2.5 schematically shows the primary building blocks of SimCA.

SimCA builds a self-adaptive system in three phases executed during system
operation:

1. In the Identification phase, n linear models of the controlled system are built.
SimCA uses multiple instances of the PBM model M, where each model Mi , i ∈
[1, n], is responsible for one goal si . Similar to PBM, each model is automatically
learned at runtime by running the experiments on the software (see Sect. 2.3.1 for
details). As in PBM, the model Mi automatically adjusts at runtime according to
changes in the system behavior.
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Fig. 2.5 A self-adaptive software with SimCA

2. In the Controller Synthesis phase, SimCA constructs a set of n controllers; each
controller Ci is responsible for the i-th goal. Ci calculates the control signal
ui(k) at the current time step k depending on the previous value of control signal
ui(k − 1), model coefficient αi , parameter pole pi , and the error ei(k − 1), with
ei = si − Oi . Similar to PBM, pi is used to tune the controllers and trade off
different system properties.

ui(k) = ui(k − 1) + 1 − pi

αi

· ei(k − 1) (Ci)

3. In the Operation phase, the set of controllers effectively perform control. Each
controller Ci manages one goal si , rejects disturbances acting on the according
output Oi(k), and provides an output signal ui(k). SimCA combines the signals
ui(k) from all the controllers and uses the simplex method to calculate the
actuation signal usx that drives the system toward an output that satisfies all
adaptation goals.

Generally, the simplex method allows to find an optimal solution to a linear
problem written in the standard form:

max{cTx | Ax ≤ b; x ≥ 0} (2.7)

where x represents the vector of variables (to be determined), c and b are vectors
of (known) coefficients, A is a (known) matrix of coefficients, and (·)T is the
matrix transpose [16].

In SimCA each equation, except the last one, represents a goal si to be
satisfied. The last equation ensures that the system selects a valid actuation signal
by constraining the values that can be taken by elements of the vector x, e.g.,
x ≥ 0. The control signals ui(k) produced during the control phase replace
constants b, whereas matrix A and vector cT are substituted with the monitored
parameters P(k) of the system. The goal of simplex is to find a proper actuation
signal usx , i.e., vector x.
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Note that SimCA uses a simplex variant with equalities (Ax = b) in order to
prevent simplex from changing the effect of control signal ui(k) on the output
signal Oi(k). Instead, simplex is responsible for seamless translation of control
signals ui(k) to actuation signal usx . This allows to provide the entire set of
control-theoretical guarantees, including stability, absence of overshoot, tunable
settling time, and robustness to disturbances. A major advantage of SimCA over
approaches from the previous research steps is that simplex guarantees solution
optimality, meaning that all the system goals are guaranteed to be achieved. An
interested reader may refer to [45] for further details.

A follow-up work [46] compares SimCA with an architecture-based Activ-
FORMS approach using a simulated service-based system. The study shows that
both approaches can deal with multiple goals and provide guaranteed solution
optimality. However, SimCA achieves better results in the presence of runtime
changes as it does not rely on data verified at design time. Except optimality,
the two adaptation approaches offer different guarantees. The design of SimCA
adaptation mechanism allows to formally prove the properties of underlying system
and guarantee that they will hold at runtime independent of the system parameters.
ActivFORMS, on the other hand, can guarantee the functional correctness of the
implementation of the adaptation algorithm, such as the absence of erroneous states
and correct interaction between adaptation components.

2.3.4 Adaptation with New and Changing Goals

One interesting research line for automated methodologies and for control method-
ologies in general is the selection and support of types of adaptation goals. The
previously developed automated approaches had two major drawbacks. First, they
addressed goals specified either in the form of particular setpoint values to be
achieved by the system (S-goal) or values to be optimized (O-goal), while many
software systems need to address a threshold goal that keeps a value above/below
a threshold (T-goal). A typical example is limiting the response time of a Web
server. Approaches such as described in [31, 33, 38] solve this problem either by
optimizing the response time (O-goal) or by defining a setpoint for response time
that the controller should guarantee (S-goal), when the actual requirement is to keep
response time lower than a certain threshold. Second, the previously developed
approaches did not provide support for changing the set of system requirements
during operation, which requires on-the-fly adjusting, activation, and deactivation
of adaptation goals. Changing requirements are important in practice, e.g., to deal
with drastic changes in the system or its environment that may require the system to
change from one set of requirements to another.

In order to address the two mentioned concerns, the SimCA approach (see
Sect. 2.3.4) was reworked and upgraded into SimCA* [48]. Compared to original
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Fig. 2.6 Goal
Transformation phase of
SimCA*

T-goal 1..m

Simplex:

Parameters P

C-goal 1..m
c1..m

S-goal 1..n

max{cTx|Ax≤b}

O-goal 1..q

x *

Fig. 2.7 Dealing with requirement changes in SimCA*. Numbers in circles/diamonds show the
sequence of actions

SimCA, the new approach includes an additional Goal Transformation phase
(Fig. 2.6) and the necessary mechanisms to support changing system requirements
by activating/deactivating goals (Fig. 2.7).

The Goal Transformation phase of SimCA* is performed between the Controller
Synthesis and Operation phases. The purpose of this phase is to transform T-goals
into goals that can be controlled by the original SimCA controller (Ci). As such,
the approach uses simplex, where each equation in the system (2.7), except the last
one, represents an S-goal or T-goal to be satisfied (see Fig. 2.6). Equalities are used
for S-goals, while inequalities are used for T-goals. The last equation ensures that
the system selects a valid solution, the vector x, by the means of constraints, e.g.
x ≥ 0. The goal of simplex is to find such vector x that satisfies all system goals; the
details of how simplex finds such a solution can be found in the linear programming
literature [16]. Knowing the vector x, each T-goal is transformed into a controller
goal (C-goal) ci as follows: ci = Pi (k) * x. The resulting C-goal represents a
particular value of a corresponding T-goal. For example, a T-goal that should keep
a value below a threshold will be transformed into a C-goal with a value that is
equal to the lowest possible value of the goal below that threshold that satisfies
all other requirements. All the C-goals and the original S-goals are then used by
controllers (Ci) in the usual Operation phase described in Sect. 2.3.4.

In order to address the changing system requirements, SimCA* is equipped
with a Requirement Monitor, Goal Activator, and Goal Deactivator components;
see Fig. 2.7. The Requirement Monitor triggers the corresponding adaptation com-
ponent after any system requirement is changed. The Goal Activator first reads
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the relevant parameters P related to the activated goal. Then, in case of O-goal
activation, it inserts P into the objective function cT of simplex, performs a Goal
Transformation (described above), and proceeds to standard Operation phase. In
case of S- or T-goal, the Goal Activator triggers a standard Identification phase for
the new goal, which is followed by Controller Synthesis, Goal Transformation, and
Operation. The Goal Deactivator removes the according elements of the adaptation
mechanism. Namely, when an S- or T-goal is deactivated, the corresponding
controller is removed together with the equation responsible for the goal being
deactivated. When an O-req is deactivated, the corresponding variables are removed
from the objective function cT of simplex. After that, the Goal Deactivator always
triggers a Goal Transformation adapting the configuration of the control system to
the new set of requirements, after which the system returns to standard Operation.

2.3.5 Automated Model Predictive Control

The scope of applicability of the first multi-objective control solutions is limited in
different ways. For example, SimCA cannot prioritize goals or use infinite sets of
values for the actuators, while AMOCS produces suboptimal solutions. To eliminate
these limitations, researchers have studied the application of automated model
predictive control (MPC) – a technique based on the optimization of a cost function
and on the prediction of a future outcome of the adaptation. Generally, in control
theory, MPC is considered particularly well suited for multi-objective problems
with optimization, because all the interdependencies between actuators and goals
are taken into account simultaneously, achieving a truly optimal solution.

The first research effort that identifies automated MPC as a potential multi-
objective control strategy for self-adaptive systems is [5]. However, it lacks details
and does not provide any analysis of guarantees. In the same research line – again for
a specific problem, but with a general overlook – CobRA [7] provides a framework
to reason about MPC and its application to computing systems. Although the model
in CobRA has to be generated manually and fed to the system, the solution of the
MPC problem is general with respect to the involved quantities. The paper only
provides an example of the framework application, which also requires extensive
manual tuning in order to tailor the equations to a specific problem. Although formal
guarantees are not discussed in CobRA, it is possible to prove that they hold to
the extent that the model allows. PLA [38, 39] is based on similar principles that
CobRA. It uses a model of the environment and of the software to determine the
best strategy to be followed using a model checker with the ability of looking into
the future expectations for the system. CobRA and PLA have been compared [40]
showing similar results but a different runtime behavior. The authors conclude that
the concrete approach should be picked based on the problem at hand. For example,
CobRA suits more for continuous inputs, while PLA works better with discrete
control.
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Finally, a fully automated model predictive control strategy was developed as a
part of AMOCS-MA approach [36]. Similar to other automated solutions, AMOCS-
MA starts with a model building phase. The following model S is synthesized:

S =
{

x(k + 1) = A · x(k) + B · Δa(k)

O(k) = C · x(k)
(2.8)

where k is a discrete time instance, O(k) is the vector of all system outputs at time
k, Δa(k) is the control signal containing values of all actuators, x(k) is the current
system state, x(k + 1) is the next system state, and A, B, and C are the matrices of
coefficients obtained with model learning by running experiments on the software
at runtime. One of the AMOCS-MA advantages is that it reduces the model learning
time by using special input signals in the model building phase; see details in [36].
As in other automated approaches, the model S is updated according to runtime
changes that appear in the software system.

The model S is used by an MPC controller to minimize the following cost
function, which handles all S-goals and O-goals:

Minimize Δa(k + i − 1), with i = 1 . . . L in:

L∑

i=1

〈
p∑

j=1

qj · [Oj(k + i) − gj (k + i)]2 +
m∑

l=1

rl · Δal(k + i − 1)2

〉
(2.9)

Subject to: model S (2.8) and additional Δa(k) constraints
(see [36])
where k is a discrete time instance, L is the number of discrete time instances in
the future used for predicting software behavior, p is the number of goals, qj is the
weight of goal j (allows goal prioritization), Oj(k + i) is the predicted measured
output of goal j at the i-th step in future, gj (k + i) is the value of goal j at the
i-th step in future (this value is constant if goals do not change at runtime), m is the
number of actuators, rl is the weight of actuator l (allows actuator prioritization),
and Δal(k + i − 1) is the predicted change in the value of actuator l at the i − 1-th
step in future.

As the controller depends on the model (2.8), it requires information about the
system state x(k). However, it is problematic to measure the system state x(k)

directly, so it is estimated instead. To accomplish this, AMOCS-MA uses a Kalman
filter that computes an estimate x̂(k) of the state x(k) based on the previous control
signal Δa(k − 1), the measured outputs Oj(k), prediction error, and a number of
other parameters.

Using the estimate x̂(k), the MPC controller solves (2.9) and produces an optimal
plan of control actions for the future i steps: Δa(k+i−1), with i = 1 . . . L. The plan
Δa(k + i −1) contains particular values of all actuators at time instance (k + i −1).
However, AMOCS-MA uses only the first action of the plan, i.e., Δa(k) is applied
to software; see Fig. 2.8.
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Fig. 2.8 A self-adaptive system with AMOCS-MA

The controller (2.9) guarantees stability, zero steady-state error, and minimal
settling time by design. It also guarantees the optimality of a cost function specified
by the user. This function has tunable weights for the system goals qj and actuators
rl , allowing to trade off different system properties, e.g., to prioritize response time
over cost.

2.4 Challenges

The analysis of automated control-theoretical adaptation solutions showed the use
of various controllers, from hierarchical adaptive PI control (SimCA) to model
predictive control (AMOCS-MA). However, most of these approaches use the
PBM model (2.3) or its variations. Indeed, one of the key points behind this
line of research is the difficulty in finding generic models that describe software
applications and their behavior. Although the usual software models – architectural
models and UML descriptions – are a very good reference to understand how
the control code interfaces with the rest of the software application, they are not
suitable for the control design process. To design a controller, there is usually a
need to understand how the quantities that should be controlled are influenced by the
actuators that one has available. Depending on the modeling effort that the software
engineer is willing to do, the control strategies can be more or less effective:

• PLA [38, 39] and Brownout [33], for example, use explicit modeling of both the
software behavior and the environment. Explicit modeling goes a long way for
improving the performance of the control strategy that can be perfectly tailored
for a new scenario using the given knowledge. Generally speaking, when an
explicit model is available, the spectrum of results that it is possible to obtain
is much wider, opening up possibilities and allowing for more precise results.

• SimCA [45] and SimCA* [48] lift some of the requirements on the modeling
side. While no explicit disturbance model is written, the system parameters
specified in the Simplex algorithm are part of prior knowledge that is given to
the control strategy and that the controller does not have to identify based on
experiments.
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• The PBM [22], AMOCS [23], and AMOCS-MA [36] approaches use implicit
modeling requiring a very limited effort from the software engineer. The engineer
should only specify the actuators and sensor and possibly some weights that
are unrelated to the model itself but specify the properties of controller and
how to reach the goals. Despite the lack of modeling needs from the software
engineer, these approaches still build a representation of the software in the form
of equations in their model building phase. The synthesized model is then used
to create a controller.

• Advances in control theory have recently unveiled a new set of methods denoted
model-free control [13, 25, 29]. Model-free control synthesis does not build a
model of the system to be controlled but only uses data to optimize a control
strategy. To date, model-free control has not been applied to software and could
open possibilities for performance improvement and to tackle the complexity of
software systems in an automated way.

Apart from using the same type of model, all the automated approaches discussed
in this chapter synthesize centralized control solutions deployed on a single software
product. Such approaches are not suitable for systems where communication
between components is limited or very costly. A recent work on architecture-
based adaptation [52] introduced a number of patterns for designing decentralized
adaptation solutions, where controllers make independent decisions but have some
kind of interaction. The automated control solutions may definitely benefit from this
and similar efforts, as they provide means to adapt an entirely new class of software
systems.

2.5 Conclusions

Throughout the recent years, the automatically generated control-theoretical solu-
tions have made a huge progress. Starting from addressing a single adaptation
requirement, these solutions can now handle multiple goals of different types, deal
with addition or removal of system requirements on the fly, or even adapt based
on the predicted software evolutions. In this chapter, we listed the key research
steps that led to such progress and highlighted the main approaches representing
each of the steps. Surely, the automated approaches have limitations. For example,
they use simple models that are not always accurate, and they are less effective in
specific scenarios than controllers finely tuned for those scenarios. However, the
main advantage of automated control comes from these limitations: simple models
in combination with a generally applicable controller allow to build a control-based
self-adaptive system without involvement of a control expert.

As for the future of automated control-based solutions, the research efforts
can be aimed in two directions. First, as the scope of applicability and practical
effectiveness of existing solutions is often unclear, these solutions should be tested
in the industrial settings. Second, the researchers could use more state-of-the-art
practices, such as model-free control or decentralized adaptation.
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