
Engineering
Adaptive Software
Systems

Yijun Yu · Arosha Bandara · Shinichi Honiden
Zhenjiang Hu · Tetsuo Tamai · Hausi Muller
John Mylopoulos · Bashar Nuseibeh Eds.

Communications
of NII Shonan Meetings

Engineering Adaptive Software Systems

Yijun Yu • Arosha Bandara • Shinichi Honiden
Zhenjiang Hu • Tetsuo Tamai • Hausi Muller
John Mylopoulos • Bashar Nuseibeh
Editors

Engineering Adaptive
Software Systems
Communications of NII Shonan Meetings

123

Editors
Yijun Yu
The Open University
Milton Keynes, UK

Shinichi Honiden
National Institute of Informatics
Tokyo, Japan

Tetsuo Tamai
Hosei University
Tokyo, Japan

John Mylopoulos
University of Toronto
Toronto, Canada

Arosha Bandara
The Open University
Milton Keynes, UK

Zhenjiang Hu
National Institute of Informatics
Tokyo, Japan

Hausi Muller
University of Victoria
Victoria, BC, Canada

Bashar Nuseibeh
The Open University
Milton Keynes, UK

ISBN 978-981-13-2184-9 ISBN 978-981-13-2185-6 (eBook)
https://doi.org/10.1007/978-981-13-2185-6

Library of Congress Control Number: 2018961997

© Springer Nature Singapore Pte Ltd. 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-13-2185-6

Preface

The first Shonan Meeting on Engineering Adaptive Systems (EASy) [1], which
was held in 2012, generated heated discussions on the problems and challenges
about self-managing systems. Participants from multiple disciplinaries reached the
consent that EASy has by no means an easy solution in software engineering alone,
not to mention many other challenges in general system engineering.

The organisers of the following Shonan meetings [2, 3] decided to focus on the
problems and solutions that can help engineer adaptive software, hence a change
of the focus to Engineering Adaptive Software Systems (EASSy). The technical
reports above have gathered from abstracts of all individual participants; however,
there has not yet been a full report on the crux of interesting viewpoints, which could
collaboratively pave the way to solve some aspects of the long-standing research
problems.

This book is a collection of materialised reflections by some of our active
participants present in much greater details, which we hope can fuel a tank of
thoughts for engineering the next-generation adaptive software systems.

The chapters included in the book have a good coverage of the area, ranging from
design and engineering principles (Chap. 1) to control-theoretic solutions (Chap. 2)
and bidirectional transformations (Chap. 3), which can be seen as promising ways
to implement the functional requirements of self-adaptive systems. Important
quality requirements are also dealt with by these approaches: parallel adaptation
for performance (Chap. 4), self-adaptive authorization infrastructure for security
(Chap. 5), and self-adaptive risk assessment for self-protection (Chap. 6). Finally,
Chap. 7 provides a concrete self-adaptive robotics operating system as a testbed for
self-adaptive systems.

Although by no means a complete coverage of all possible research topics, these
chapters can be seen as concrete research agenda’s proposed by experts in these
areas.

v

vi Preface

In a nutshell, we hope the book will initiate promising progresses in this
interdisciplinary research field.

Shonan Village, Japan, EASSy Shonan Meetings Organisers
Milton Keynes, UK Yijun Yu
Milton Keynes, UK Arosha Bandara
Tokyo, Japan Shinichi Honiden
Tokyo, Japan Zhenjiang Hu
Tokyo, Japan Tetsuo Tamai
Victoria, BC, Canada Hausi Muller
Toronto, Canada John Mylopoulos
Milton Keynes, UK Bashar Nuseibeh
July 2018

References

1. Bandara, A., Yu, Y., Nuseibeh, B., Honiden, S.: Engineering adaptive systems. In: Shonan
Meetings, Shonan Technical Report 003, Shonan, Japan (2012)

2. Yu, Y., Honiden, S., Muller, H.A., Mylopoulos, J.: Engineering adaptive software systems. In:
Shonan Meetings, Shonan Technical Report 027, Shonan, Japan (2013)

3. Tamai, T., Muller, H.A., Nuseibeh, B.: Engineering adaptive software systems. In: Shonan
Meetings, Shonan Technical Report 052, Shonan, Japan (2015)

Contents

1 Design and Engineering of Adaptive Software Systems 1
Soichiro Hidaka, Zhenjiang Hu, Marin Litoiu, Lin Liu, Patrick Martin,
Xin Peng, Guiling Wang, and Yijun Yu

2 Self-Adaptation of Software Using Automatically Generated
Control-Theoretical Solutions . 35
Stepan Shevtsov, Danny Weyns, and Martina Maggio

3 Challenges in Engineering Self-Adaptive Authorisation
Infrastructures . 57
Lionel Montrieux, Rogério de Lemos, and Chris Bailey

4 Bidirectional Transformations for Self-Adaptive Systems 95
Lionel Montrieux, Naoyasu Ubayashi, Tianqi Zhao, Zhi Jin,
and Zhenjiang Hu

5 Parallel Adaptation of Multiple Service Composition Instances 115
Rafael Roque Aschoff, Andrea Zisman, and Pedro Alexandre

6 Assessing Security and Privacy Behavioural Risks
for Self-Protection Systems . 135
Yijun Yu, Yoshioka Nobukazu, and Tetsuo Tamai

7 Experimenting with Adaptation in Smart Cyber-Physical
Systems: A Model Problem and Testbed . 149
Vladimir Matena, Tomas Bures, Ilias Gerostathopoulos,
and Petr Hnetynka

vii

Chapter 1
Design and Engineering of Adaptive
Software Systems

Soichiro Hidaka, Zhenjiang Hu, Marin Litoiu, Lin Liu, Patrick Martin,
Xin Peng, Guiling Wang, and Yijun Yu

Abstract New challenges such as big data, ultra-large-scale services, and contin-
uously available services are driving the evolution to adaptive software systems,
which are able to modify their behavior in response to their environmental and

This chapter was edited by Soichiro Hidaka and Patrick Martin.

S. Hidaka (�)
Hosei University, Tokyo, Japan
e-mail: hidaka@hosei.ac.jp

Z. Hu
National Institute of Informatics, Tokyo, Japan
e-mail: hu@nii.ac.jp

M. Litoiu
York University, Toronto, ON, Canada
e-mail: mlitoiu@yorku.ca

L. Liu
School of Software, Tsinghua University, Beijing, China
e-mail: linliu@tsinghua.edu.cn

P. Martin
Queen’s University, Kingston, ON, Canada
e-mail: martin@cs.queensu.ca

X. Peng
Fudan University, Shanghai, China
e-mail: pengxin@fudan.edu.cn

G. Wang
Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data,
North China University of Technology, Beijing, China
e-mail: wangguiling@ict.ac.cn

Y. Yu
The Open University, Milton Keynes, UK
e-mail: y.yu@open.ac.uk

© Springer Nature Singapore Pte Ltd. 2019
Y. Yu et al. (eds.), Engineering Adaptive Software Systems,
https://doi.org/10.1007/978-981-13-2185-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2185-6_1&domain=pdf
mailto:hidaka@hosei.ac.jp
mailto:hu@nii.ac.jp
mailto:mlitoiu@yorku.ca
mailto:linliu@tsinghua.edu.cn
mailto:martin@cs.queensu.ca
mailto:pengxin@fudan.edu.cn
mailto:wangguiling@ict.ac.cn
mailto:y.yu@open.ac.uk
https://doi.org/10.1007/978-981-13-2185-6_1

2 S. Hidaka et al.

internal changes, in order to achieve their goals. Providing support in all phases of
the life cycle of adaptive software systems is thus an important challenge facing the
software engineering research community. This chapter highlights current research
on methods and techniques for the design and engineering of adaptive software
systems. The design space for self-adaptive systems is first examined, and then a
goal-oriented framework for adaptive service composition is described. The human
factors component of the design of adaptive systems are considered from four
different points of view. We then argue that model management from database
community can be adapted for effective development of self-adaptive systems.
Finally, sustainability of adaptive components are shown to be achieved by making
requirements future-proof.

1.1 Introduction

The need for software systems to accommodate the demands of new challenges such
as big data, ultra-large-scale services, and continuously available services is driving
the evolution to adaptive software systems, which are able to modify their behavior
in response to changes in their external environment, or in the system itself, in order
to achieve their goals. The mechanisms to achieve these adaptations must therefore
be one of the focuses of the system’s development and maintenance.

There is a strong agreement in the self-adaptive systems community that the
design and implementation of self-adaptive systems should be based on feedback
loops. Brun et al. [9], in their earlier research roadmap paper, emphasize feedback
loops as first-class design entities and argue that loops are the essential features
in controlling and managing uncertainties in software systems. They assert that,
by making feedback loops visible, the impact of these feedback loops on system
behavior could be identified earlier and the most important properties of self-
adaptation could be addressed. Feedback loops are therefore an important focus
of the work discussed in the chapter.

Providing support in all phases of the life cycle of adaptive software systems is an
important challenge facing the software engineering research community [15, 20].
This chapter highlights current research on methods and techniques for the design
and engineering of adaptive software systems.

1.2 Designing Adaptive Software Systems

The design of adaptive software systems involves making decisions about observ-
ing the environment and the system itself, selecting adaptation mechanisms and
enacting the mechanisms [20]. In this section Litoiu first examines the design space
for adaptive systems on Software Defined Infrastructure (SDIs) such as clouds.
SDIs introduce additional complexity for the design of adaptive systems in that an
adaptation performed by a system can affect both the system and the SDI.

1 Design and Engineering of Adaptive Software Systems 3

Service orientation is a leading form for Web-based software applications that
allow distributed enterprise business processes to integrate through the composition
of individual independently developed services. Composite services, however, need
to evolve and reorganize as new requirements and services emerge. Liu and Wang
next describe a goal-oriented framework for adaptive service composition.

Human factors are another important aspect of design since humans influence
the adaptive software systems in various ways. Adaptive software systems fulfill
the stakeholders’ requirements through the cooperation of human, hardware, and
software. Peng considers the impact of human involvement on the design of adaptive
software systems from four different viewpoints, namely, experts, users, agents, and
components.

1.2.1 Design Space for Self-Adaptive Systems

Designing an adaptive system encompasses decisions such as what and how to
monitor the system and its environment, how and when to select and activate
adaptations, etc. More recently, Brun et al. [10] introduce the concept of design
space for adaptive systems, which contains key questions to ask when designing
a self-adaptive system. The authors present a conceptual model of how to identify
different components of an adaptive system by answering a set of questions along
five dimensions: identification, observation, representation, control, and adaptation
mechanisms.

In recent years, companies and institutions have started to deploy and run their
applications on Software Defined Infrastructure (SDI), typified by clouds. The
main consequence of this is that the self-adaptive feedback loops built around an
application can change not only the application but the application’s environment,
that is, the cloud, as well. One example of such a SDI is SAVI cloud1 which
is an Extended Cloud consisting of edges and a core. The edges are resource-
constrained clouds, primarily aimed to host latency-sensitive components/services
of the application. Meanwhile, the core has ample resources and is capable of
executing the more resource-intensive components/services.

Feedback loops in a SDI have to consider the particularities of the infrastructure,
especially the fact that the SDI is programmable and resources (software services,
network, storage), exposed as services, can be acquired, released, or tuned at
runtime. Figure 1.1 shows a reference feedback loop for applications deployed on a
SDI. There are two basic complementary sets of loops, composed of varied services,
that can work at different time scales, with different performance:

• Reactive feedback (black arrows): reacts to current load and events, implements
simple control decisions such as PID (proportional, integrative, derivative). These
loops are fast but are limited in the adaptation solutions they provide

Contributed by Marin Litoiu.
1http://www.savinetwork.ca

http://www.savinetwork.ca

4 S. Hidaka et al.

Fig. 1.1 Adaptive feedback loops for applications deployed in cloud

• Predictive feedback (red arrows): anticipates future load and events and can
consider more complex decisions. These loops can use prediction models, filters,
and predictive optimization. They are slow and effortful but produce effective
results

Next we describe the elements of the predictive feedback loops and then discuss
the design decision space for these loops.

Monitoring is done through a special Monitoring service which has to fuse
metrics from both application and SDI. To build a model of the application
(performance, cost, security, etc.), the feedback loop might need to estimate data
and metrics which are not directly accessible by the Monitoring service, hence, the
need to have Filters or Estimator services (Kalman and Particle filters are example
of estimators). The Prediction Models service uses the data measured or estimated
to predict future states of the system. At the same time, the predicted data is fed
back into the Filters to adapt their estimation. Controllers are the decision services
of the feedback loop. Based on the current and estimated states and based on the
Service Level Objectives and Constraints, Controllers decide what adaptation needs
to take place. These adaptations are implemented by a Deployment Service which
through a set of APIs (Act. in Fig. 1.1) has access to both the application and SDI
control parameters (or control points).

The feedback loops represented in Fig. 1.1 follow the MAPE-K architecture.
For example, Prediction Models represent the Knowledge (K), while Controllers
represent the Analysis (A), etc.

Next, we present decisions to be considered when designing feedback loops.
We group them in three clusters, similar to the approach in Brun et al. [10], but
augmented with specific questions for these new types of deployments.

Observation cluster includes questions related to the design of Monitoring and
the Filter services. The designer has to answer questions about what is monitored,
what is the source of the data (application, SDI), when and how often monitoring

1 Design and Engineering of Adaptive Software Systems 5

occurs, and what is the format of data. For the Filter service, the designer has to
answer what and how states are determined based on the monitored data and what
types of filters are to be considered (besides Kalman and Particle filters).

Representation cluster relates to the Prediction Models service. It is concerned
with the runtime representation of the quantitative dependencies among adaptation
targets (SLO), perturbations, Actuator variables (or control points), measured
metrics, and internal states. Models capture these representations, and they can
include Queuing, Regression, and Simulation formalisms, but the spectrum of
models one can consider is quite wide. What type of model to consider is the main
dimension of this cluster. It might be the case that one model is not enough to
capture the QoS under consideration. For example, Queuing models can capture
steady states, while Simulation or Regression models can capture transients and
nonstationary conditions. When and how to switch between the models are design
questions that depend on the application, workloads, and operating conditions and
define another dimension of this decision cluster.

Control cluster is concerned with the mechanisms through which an adaptation
solution is enacted through the Controllers service. This can be a very rich cluster
because it explores the space of possible adaptation solutions and the mechanisms
to find those solutions. Optimization can be the mechanism that connects the current
state with the desired states and goals. Optimization has been explored in [36]
and [35] as a way to achieve a performance goal while optimizing the cost. When
the goal has to be achieved in the future, an optimization has to optimize the
sequence of decisions over a finite time horizon, a technique called Model Predictive
Control [26]. Defining an objective function to optimize can be a laborious process.
Zoghi et al. [59] showed a methodology that constructs an objective function based
on the adaptation goals and the control points in the system. The control points are
the APIs available at the Actuators, and they can belong to application, to cloud, or
to multi-cloud. In general, the optimization algorithms use the Prediction Models to
estimate and predict the effect of different decisions. It might be the case that, since
there are many models used by a feedback loop, there should be many controllers
as well. Switching between them can become a complex task that might require a
higher-layer feedback loop that supervises the performance of different models and
optimizers.

1.2.2 Design of Adaptive Services

In the services adaptation setting, in order to effectively accommodate changes and
provide satisfactory services to customers, a provider has to know what services
to provide, with what functional features, and at what quality level. To this end,
a general conceptual model of services needs to be in place to support the adap-

∗Contributed by Lin Liu and Guiling Wang.

6 S. Hidaka et al.

tation process. Service orientation as a form for Web-based software applications
allows distributed enterprise business processes to integrate through composition
of individual services developed independently. Composability provides desirable
flexibility and reusability in building distributed enterprise information systems.
However, existing composite services need to evolve and reorganize as new
requirements and services emerge.

While many techniques of conventional requirements elicitation could poten-
tially be applied to services, their open and dynamic nature introduces new
challenges.

There are existing technical solutions – such as middleware adapters, software
agents, and adaptive architectures – intended to link software components through
various kinds of interaction styles. However, the ability to respond to changes in the
environment by means of reorganization, thereby exhibiting context awareness and
adaptability, has yet to be supported by any existing runtime platform.

Many studies in the requirements engineering (RE) literature suggest the impor-
tance of runtime requirements monitoring and adaptation. In [24], Fickas and
Feather have clearly illustrated the significance of monitoring requirements based
on the analysis of two commercial case studies. A comprehensive probe into the
research challenges in this area is provided in [3], which pointed out, among other
things, that requirements engineering for self-adaptive systems must deal with
uncertainty and treat requirements as runtime entities. Jureta et al. [31] propose
a formalism for modeling dynamic requirements. All these efforts agree on the
importance of the problem of requirements modeling, monitoring, and evolution,
on an ongoing basis, for a running, live, and ever-changing system.

This chapter further develops the concepts and techniques of goal-oriented
requirements analysis, to seek answers to the following questions: (1) how to model
and refine the high-level requirements of service users at runtime and map them
into abstract service composition architectures and (2) how to enable compositional
adaptation through the maintenance and monitoring of such requirements models
and their mapping to services structure.

Our proposed framework is founded on our previous work on a service ontol-
ogy [37] and an analysis of goal-oriented modeling for runtime requirements [30,
39]. Using this research baseline, this chapter proposes service-oriented require-
ments monitoring and a continuous negotiation and adaptation process. Our pro-
posal exploits existing goal-oriented service requirements models and new service
requests to establish an alignment between service ends (defined by requirements)
and service means (defined by the current pool of available services). Current
environment variables being monitored include service availability, quality of
service (QoS) status, user service needs, and operating environment variables.

We suggest that a service model consists of the following basic elements: services
context, high-level composite services, service interface, and service implementa-
tion. Service is the core and major entity involved in the adaptation process. Context
represents external factors influencing the system or influenced by the system, which
in general is the major cause for changes and adaptations of services. In order to
reduce the negative impact of change, the service composition and reconfiguration

1 Design and Engineering of Adaptive Software Systems 7

is used to adapt the existing services. Services are composed of one or more
elementary services, each of which has associated quality attributes. Two major
processes are defined in our framework: adaptation and composition. Adaptation
can be imposed on either the service interface or the service implementation, which
are two predefined strategies to accommodate changing requests.

With regard to Service, this chapter takes the position that service systems
should not be designed as to be able to predict how user requirements will change.
The system design should be relatively simple and easy to maintain. For the
self-adaptable service systems, the basic elements of a system should be fine-
grained and ready for compositional adaptation. Service systems are composed
of two major parts: functionalities and QoS. System functions are supported by
services, and a service can provide one or more function points by structural
composition. QoS relates to the nonfunctional properties of a system, such as cost,
performance, reliability, security, and so on. Composite services also have QoS,
which is essentially a function of the QoS attributes of the element services. If a
system’s QoS satisfies the constraints of the requesters, the system is suitable for
the current context. Otherwise, the system has to take some actions to adapt itself
according to the environment.

In the followings, we introduce the model of runtime requirements for adaptive
service composition, followed by the adaptive service composition approach based
on runtime requirements monitoring.

1.2.2.1 A Modeling Framework for Adaptive Service Composition

The basic elements of our proposed framework for adaptive service composition
(ASC for short) consist of one or more service classes, represented with a service
specification (e.g., DownloadDVD(x)). Each service specification has one or more
instances that represent concrete services that implement the abstract service they
are instances of. All service instances associated with a service class implement
the same functionality, but the level of QoS may vary. In addition, an ASC model
includes a set of service functionalities. Functionalities are associated with service
classes and instances through Function. If S is an abstract service and si one of its
instances, then SPECIFICATION(s1, . . . , sm) |� Function(S).

QoS for different services is represented through quality attributes, such as
“average response time.” Concrete services are assigned values for each quality
attribute through the function Quality. If the average response time of service s is 1 s,
Quality(AverageResponseTime, s) = 1 s. Quality attribute values can be considered
as constraints on the range of a quality attribute. Services are maintained in a service
repository. Due to the dynamic nature of the services environment, the service
repository is changing constantly.

User requirements are represented as goals, using the notation of goal-oriented
requirements engineering languages such as i∗ [53] and Tropos [11] and earlier
AI literature on planning [12]. Nonfunctional requirements, such as QoS, are
represented as softgoals. For each softgoal, R, with an associated quality attribute

8 S. Hidaka et al.

Table 1.1 Meaning of grammar rules

Rule Meaning

seq(s+) Sequential execution of atomic services s+

loop(s, n) Repeated execution of atomic service s, n times

sel(s+) Conditional selection of atomic services s+

par_and(s+) Concurrent execution of atomic services s+ (with complete synchronization)

par_or(s+) Concurrent execution of atomic services s+ (with 1 out of n synchronization)

Q and a constraint, such as “responseTime < 2 s”, a concrete service fulfills
R iff Quality(Q, s) |� Constraint(R), for example, the quality attribute value
“responseTime < 1sec” entails the constraint “responseTime < 2 s.”

We now assume that all the abstract services that correspond to a specification
Sp have been composed in order to satisfy the goal entailed by Sp, and hence we
can derive an abstract service composition structure based on the goal-refinement
structure and the hidden temporal/casual constraints between all services in Sp.
We use the following set of composition operators: seq(s+), loop(s, n), sel(s+),
par_and(s+), and par_or(s+), where s denotes an atomic service, s+ denotes a
set of one or more services, and seq, loop, sel, par_and, par_or are introduced in
Table 1.1.

A composite abstract service can be instantiated into a composite one by
assigning an atomic concrete service to each atomic abstract service. Thus, there
are two levels of composition. When composition is derived from a specification
Sp, we take advantage of the goal model from which the specification was
derived. In particular, we compose functionalities, where sequential composition
(seq(s+)), conditional selection of composition (sel(s+)), and concurrent execution
with complete synchronization (par_and(s+)) are used. Sequential composition
and concurrent execution are derived from and-decomposition of goals, while
conditional selection of composition is derived from or-decomposition of goals.

Services are monitored to ensure that QoS requirements are met. This is
accomplished by monitoring environmental variables, such as time and location,
or specific variables, such as object internal states, and the application or system
runtime performance variables, such as CPU utilization, memory usage, bandwidth
availability, network stability, average user waiting time, or number of concurrent
online users.

Services in S have associated quality constraints on the expected value or range
thereof for a service quality (e.g., performance). The function Constraints map
each service in S to a set of associated constraints. For example, if the service
“Provide Video Tutorials” only requires “Network speed above 50 kbps,” then
Constraints(Provide Video Tutorials) = {Network speed ≥ 50 kbps}.

Environmental variables influence both the status of services and user goals and
their refinements. For example, if one of the constraints associated with service
“Provide Video Tutorials” is “Network speed > 50 kbps” and environmental variable

1 Design and Engineering of Adaptive Software Systems 9

Table 1.2 Revoking action

Action Revoke(sij , sil)

Precondition Constraint(sil)

∧(bound(sij) ∧ (Function(sil) |� Function(sij))

∧Quality(sil) |� Quality(G)

∨¬Available(sij))

Trigger Quality(sil) |� Quality(sij) ∧ available(sil)

Effect bound(sil) ∧ remove(sij)

Table 1.3 Par_and(si1, sij , sil) Composition action

Action Par_and(si1, sij , sil)

Precondition Constraint(si1, sij , sil) holds

∧(Function(si1) |� Function(sij)) ∧ Function(si1) |� Function(sil))

∧minimal(throughput(G)) ≥ throughput(si1)

∧minimal(throughput(G)) ≥ throughput(sij)

∧minimal(throughput(G)) ≥ throughput(sil)

∧available(si1) ∧ available(sij) ∧ available(sil)

Trigger throughput(Par_and(si1, sij , sil)) ≥ minimal(throughput(G))

Effect bound(si1) ∧ bound(sij) ∧ bound(sil)

“Network speed” has a value that is less than 50 kbps, then the service is not
available.

An adaptive system can perform actions to handle changes of user goals, the
environment, or service components. Each action represents a specific procedure
to be carried out by the system. Adaptation actions include adding, removing, or
updating an atomic service; reorganizing the structure of an abstract service plan;
reorganizing the structure of a concrete service chain and adding, removing, or
updating user goals; and adding, removing, or updating an environmental monitor.

For each action there may be associated environmental conditions that need to
be monitored by the system and included in the environment set E. Actions have
associated preconditions, triggers, and effects with usual semantics. All of them
consist of propositions constraining environmental variables and the internal state
of a service component.

For example, when a new atomic service sil emerges, sij is an atomic service of
a composite service that suddenly becomes unavailable or waiting to be executed
at the moment, i.e., Functionality(sil) = Functionality(sij), and Quality(sil) is
obviously better than Quality (sij); the system may take “revoking” action in
Table 1.2.

When a user’s required value exceeds the QoS value of any existing service
e1, . . . , en, the system may execute more than one atomic service (say si1, sij , sil)
concurrently (with complete synchronization) to meet the demand. This is shown as
action “Par_and(si1, sij , sil) composition” in Table 1.3.

10 S. Hidaka et al.

Table 1.4 Par_or(sij , sil) Composition action

Action Par_or(sij , sil)

Precondition Constraint(sij,sil) holds

∧(Function(sij) == Function(sil))

∧minimal(reliability(G)) ≤ reliability(sij) ≤ optimal(reliability(G))

∧minimal(reliability(G)) ≤ reliability(sil) ≤ optimal(reliability(G))

∧available(sij) ∧ available(sil)

Trigger reliability(Par_or(sij , sil)) ≥ reliability(sij)

∧reliability(Par_or(sij , sil)) ≥ reliability(sil)

Effect bound(sij) ∧ bound(sil)

When a user needs a high-reliability service, while every available service has a
certain level of risk, the system may execute more than one atomic service (e.g., sij
and sil) concurrently (with 1 out of n synchronization) to meet the demand. This is
shown as action “Par_or(sij , sil)” in Table 1.4.

The concepts defined above form a basic framework for representing the planning
strategy of composite services. During the service composition process, user goals
are likely to change, the environment variables are often unpredictable, and the
service repository is constantly updated, so the service composition plan has to
adapt to these changes. Strategies can be formed to decide what adaptive actions to
be carried out, based on the user’s goals to be satisfied, the environment conditions
to be monitored, and the service repository dynamically changing. We provide three
categories of strategies according to the type of change: goal-driven adaptation strat-
egy, environment-triggered adaptation strategy, and service-association strategy.

• Goal-driven strategy: Given a softgoal G, if Quality(s1,. . . ,sr) does not satisfy
the user’s minimal (Quality(G)), we take actions according to the service
repository and the environment variables to satisfy the user’s new softgoal G,
if possible. This corresponds to the scenario when user requirements change at
runtime. Generally, a goal-driven strategy influences the selection of the structure
of an abstract service.

• Environment-triggered strategy: Given a certain runtime context E, where there
are composed but not yet executed services, if a certain constraint on E does
not hold, alternative services are selected to satisfy the environment constraints.
The strategy fits the cases where the environment is not stable and requires
reconfiguration of concrete services.

• Service-dominated strategy: This strategy applies if there is a bounded set of
services that haven’t been executed yet and there is a new service providing
equivalent function and better quality or one of the bounded services becomes
unavailable. Assuming that user goals and the environment stay the same, the
new service can satisfy user goals better, so we take action to add the new service
or remove the unavailable one. This strategy is useful for a dynamically changing
service repository and will result in replacement of the concrete services.

1 Design and Engineering of Adaptive Software Systems 11

1.2.2.2 Adaptive Service Composition Process

This section introduces a generic adaptive service composition process (Fig. 1.2). It
is closely related to the MAPE-K feedback loop, proposed by IBM in Autonomous
Computing White Paper [16], in which “M” corresponds to P7 (monitor for events),
“A” corresponds to P6 (analyze environmental variables), “P” refers to P4 (select
and adapt predefined services, in other words, planning), “E” is P5 (execute
selected services), and “K” includes P1, P2, where initial knowledge are acquired
and domain information is interpreted and categorized. Next we introduce these
proposed functions in detail.

Step 1: The initialization function (P1) receives inputs from the environment and
the users, such as the system goals and the values of environmental variables.

Step 2: The domain information is then interpreted and categorized (P2). The
required goals are used to build the goal model whose leaf goals can be matched
with service functions, to select predefined services. The environmental variables
are monitored according to the process discussed below.

Step 3: The service repository is categorized according to a set of abstract
services which include many concrete atomic services available over
the Internet. The Match abstract services operation (P3) matches the
abstract service {S0, . . . , Sn, e1, . . . , en} from the service repository with
{F0, . . . , Fm, e1, . . . , en} refined iteratively from the user’s goals (Function
(G)).

Fig. 1.2 A generic monitoring and adaptation process model

12 S. Hidaka et al.

Step 4: The select and adapt concrete services operation (P4) selects atomic
services or compositions from the abstract service according to user softgoals,
Quality(G). If the Monitor operation (P7) identifies certain Change(S,G,E), the
Select operation (P4) undertakes adaptive action to tackle the problems according
to the current strategy (G×E×S×A). During selection and adaptation, machine
learning and AI strategies can be adopted to provide useful feedbacks. The select
and adapt the concrete services (P4) would output a series of selected services.

Step 5: Selected services generated in Step 4 are now executed (P5). The exe-
cution affects the runtime values of the environmental variables, whose change
can be monitored by the monitoring mechanism. And when abnormal behaviors
have been observed, the system will trigger predefined actions to maintain the
expected service effect.

Step 6: The runtime status is analyzed, and new environmental variables may be
obtained (P4). If current values do not satisfy expected values of environmental
variables, the monitor for events operation (P7) identifies the problem.

Step 7: During the execution of the service process (P5), user goals are also
allowed to change, environmental variables are allowed to have uncertain
changes, while service repository is also allowed to change dynamically. These
changes (S,G,E) need to be captured and submitted to the select and adaptation
engine for concrete services (P4).

As shown in Fig. 1.2, the steps P4, P5, P6, and P7 form a feedback loop that
executes iteratively to support runtime adaptation. Those changes on the goals and
the service repository come from the user and the platform correspondingly, so they
are not part of the feedback loop.

In summary, the goal-driven runtime service composition adaptation proposed
in this chapter aims to provide a different viewpoint and interpretation to runtime
requirement monitoring and services adaptation. To allow runtime requirements
changes and system adaptation, the software system needs to maintain a goal
refinement model during execution, in which the set of user goals, environment
variables, possible system actions, and triggering rules connecting the previous
three sets can evolve dynamically. The proposed service adaptation architecture, the
different types of rules in the rule base, the monitoring mechanism for collecting the
environmental parameters, and the planning mechanism reasoning about adaptation
strategies are to be further examined in our ongoing future work.

1.2.3 Human Factors

An engineered adaptive system captures the knowledge of human experts such as
business analysts and architects as runtime models and adaptation rules and uses
them as a knowledge base for adaptation decisions. On the other hand, most of

∗Contributed by Xin Peng.

1 Design and Engineering of Adaptive Software Systems 13

the software systems today can be treated as the so-called socio-technical systems,
in which human, hardware, and software components work in tandem to fulfill
stakeholder requirements [40]. Therefore, human factors are critical for the design
and engineering of adaptive software systems.

Human factors in an adaptive system can be understood and considered from
different perspectives. A human can act as an expert providing knowledge for
runtime adaptation decisions. A human can also be treated as a user, an agent, or
a component of an adaptive system. Human factors from these perspectives need
to be considered together with software techniques such as reconfigurable software
architectures when designing an adaptive system.

1.2.3.1 Human as Expert

In traditional software evolution, human experts such as business analysts and
architects make adaptation decisions based on their business and design knowledge.
Runtime adaptation can be regarded as the automation of human-directed adaptation
based on runtime representations of human knowledge. Some adaptive systems
even can have humans in the adaptation loop, where major changes are demanded
and require human approval or guidance [41]. Moreover, runtime adaptation often
involves both requirements and architectural decisions where different concerns
require different knowledge [13]. Considering human as expert, we need to capture
human knowledge at different layers as knowledge bases of runtime adaptation
and establish some kinds of multilayered control and feedback loops at runtime. A
difficulty of this multilayered loop lies in the complex interaction between different
layers. For example, if a problem (e.g., performance degradation) cannot be handled
by lower-layer adaptation, an adaptation request will be thrown to higher layers. On
the other hand, higher-layer adaptation actions need to be mapped to lower-layer
adaptation actions. This mapping involves complex traceability between different
layers (e.g., requirements and architecture).

1.2.3.2 Human as User

Online systems such as online shopping and games usually serve a large number
of users simultaneously. Each user in this kind of system has his own experience
on the system. And their preferences on quality attributes are usually different. For
example, a response time of 10 s is usually unacceptable for a young person doing
online shopping but may be good enough for an old person. From this perspective,
an adaptive system can plan the overall adaptation by considering personalized
experiences of different users. This can provide more flexibility for system-level
adaptation decisions. For example, the system can allocate less resources for users
who are less sensitive to response time to ensure the satisfaction of more sensitive
users. Considering human as user, an adaptive system can learn user experience and
quality preference by implicitly monitoring user behaviors and feedback using HCI

14 S. Hidaka et al.

(human-computer interaction) techniques such as eye tracking and touch sensors.
Based on the learned user experience and preference, the system can make more
flexible and personalized adaptations, for example, by using personalized utility
functions for different users.

1.2.3.3 Human as Agent

An adaptive system can be an open system if it has multiple autonomous and
heterogeneous participants (e.g., organizations and humans) interacting with each
other in order to fulfill their respective goals [18]. Runtime adaptation in this
kind of system involves not only technical solutions of individual participants
but also social interactions among different participants. Considering human (also
organization) as agent, we need to support the multi-agent nature of these systems
to allow each agent to achieve its goals by both its own capabilities and social
collaborations with others. To this end, the system needs to be designed to support
decentralized requirements monitoring, reasoning, and adaptation using inter-agent
interactions [40]. Each agent in the system can reason about the fulfillment
and adaptation of its goals by considering inter-agent interactions such as label
propagations and agent substitution. To decouple the specifications of different
agents, commitments among participating agents need to be modeled and managed
as a contract among them. By commitments, an agent has only to enter into the
appropriate commitment relationships with another agent and need not care if the
latter actually has the intention, since commitments are publicly verifiable and thus
socially binding [18].

1.2.3.4 Human as Component

In a socio-technical system, humans are no longer just the users but an integral part
of the system [21]. From this perspective, humans in a system can be treated as
components that have their own capabilities and communicate and coordinate with
other human/software/hardware components via various interfaces. This perspective
is different from the perspective of human as agent: the former emphasizes the
autonomous nature of humans and focuses on the goals of individual agents, while
the latter emphasizes the achievement of the overall goals of a whole system with
humans as components. Human as component can be reflected by the concept of
human architecture [21], which describes the system’s users in terms of human
components and collaboration connectors along with their means of communication
and coordination. Considering human as component, an adaptive system needs to
integrate human components and their collaboration topology at all stages of the
MAPE-K adaptation cycle [21].

1 Design and Engineering of Adaptive Software Systems 15

1.3 Engineering Adaptive Software Systems

As with design, engineering adaptive software systems, that is realizing the design
as an effective executing system on a specific platform, requires novel methods
and tools focused on the adaptation mechanisms in the system. We require a
way to represent important ingredients of adaptive software systems such as
system structure, system behavior, user needs, system workload, or the surrounding
environment, and modeling plays an important role in providing abstractions of the
ingredients as first-class artifacts of system development, as well as mechanisms
for manipulating them to cope with reuse and evolution. Provided with suitable
connections with the system under study, Hidaka, Hu, and Martin show that the
notion of model management from database research [7] can embody the adaptation
process of software systems and support adaptive system development.

The final topic of this chapter focuses on the continuum of the adaptation
process. With the advent of mature version control and backup systems, rollbacks of
adaptations to past instances of a system are possible. Yu introduces the concept of
future-proof requirements and uses them as a basis for an approach to derive system
instances for future adaptations from previous instances.

1.3.1 Model Management in Adaptive Software Systems

Given a view of models as manipulable representations as first-class artifacts, we
propose an approach to handling models using model management to embody the
adaptation process of software systems.

We first introduce the model management concepts and how we can construct
mappings between components in the MAPE-K loop. Update propagation in the
MAPE-K loop is also shown to be achieved using model management operators.

Evolution of different components should be synchronized, and model manage-
ment can cope with this synchronization. However, current model management does
not have a clear guarantee of consistency because of its high degree of expres-
siveness. Within the synchronized adaptation, consistency could be maintained
via the notion of bidirectional model transformations. We provide a prospective
viewpoint toward extending current bidirectional transformation with the more
complex scenario of changing mappings to cope with model management problems
in self-adaptive systems.

1.3.1.1 Model Management

Self-adaptation mechanisms address different aspects of a system including perfor-
mance, health, security, and configuration. In all these different kinds of mecha-

∗(Contributed by Soichiro Hidaka, Zhenjiang Hu, and Patrick Martin).

16 S. Hidaka et al.

nisms, precise models of aspects such as system structure, system behavior, user
needs, system workload, or the surrounding environment are needed to perform the
adaptation [14]. Models are therefore an important aspect of self-adaptive systems,
and their development, testing, and evolution should be considered during the
corresponding phases of the managed system’s life cycle. Given this view of models
as first-class artifacts of system development, it is natural to consider how to support
features such as model reuse and evolution. We propose an approach to handling the
models in self-adaptive systems based on the concept of model management [6, 7].

Model management, originally proposed by Bernstein et al. [7], is intended to
help with managing change in models and with the transformation of data from one
model to another. It treats models and mappings as first-class objects and defines
high-level operations that simplify their use. We argue that model management can
be adapted to the management of the models developed for self-adaptive systems
and so facilitates a common understanding of the models and their concepts,
interoperability and interaction among different models, and effective development
of self-adaptive systems through the reuse and adaptation of existing models and
mappings.

In the model management work, models are complex discreet structures that
represent artifacts such as XML DTDs, website schemas, interface definitions, rela-
tional schemas, workflow definitions, and software configurations. At an abstract
level, models can be viewed as directed graphs. The nodes in the graph are objects
composed of properties, and the edges represent the containment relationship among
the objects. The set of values of the properties describe the state of the object.
Nodes are instances of a class, and each class definition describes the properties
and relationships of instances of that class. More specifically, a model is a set
of objects O that is identified by a root object r in O such that O − {r} is the
set of objects reachable from r by following the containment relationships. This
simple representation of a model can be used to capture a large portion of models in
self-adaptive systems, which are commonly represented in markup formats such as
XML, XMI, JSON, and PMML.

Mappings are also first-class entities in model management. A mapping consists
of connections between instances of two models. It defines transformations of the
properties from the objects in the domain model to properties of the objects in the
range model. A mapping is in fact represented as a model and so can be manipulated
with similar operations.

The operations on models are intended to reduce the amount of programming
required to manipulate models. Each operation should return a model so that
operations can be composed. Each operation should also be generic so that it can be
applied to any type of model. The basic operations defined by Bernstein et al. [7]
include the following:

• Match: Match(M1,M2) takes two models M1 and M2 as input and returns a
mapping between them. This could be defined as simply as returning the set of
objects from M1 and M2 that match exactly or could use more complex notions
of similarity.

1 Design and Engineering of Adaptive Software Systems 17

• Compose: map1 ◦map2 takes two mappings map1 and map2 as input and returns
their composition.

• Merge: Merge(M1,M2, map) takes two models M1 and M2 and a mapping map
between them as input and returns a model that is the merge of M1 and M2 using
map to guide the alignment of objects in the merged model.

• Difference: Diff(M1,M2) takes two models M1 and M2 as input and returns a
model that contains the objects of M1 that are not in M2.

• Copy: DeepCopy(M, map) takes a model M and a mapping map as input
(where the mapping is incident to the model) and returns a copy of both the
model and mapping as output.

• Enumerate: Enum(M, next) takes a model M as input and performs a traversal
of all the objects in M . The traversal order can be given as a parameter next, e.g.,
breadth-first or depth-first.

• Model Generation: ModelGenT1,T2(M1) takes a model M1 conforming to the
metamodel T1 and returns a model conforming to the metamodel T2 and a
mapping between M1 and M2. Note that a metamodel specifies an abstract
language that describes the model that conforms the metamodel. For example, if
we consider a specific database state as a model, then its metamodel corresponds
to the schema of the database state. If we consider a schema as a model, then the
generic notion of relational data model that describe the schema corresponds to
the metamodel of the schema.

Note that since models are object structures, they can be manipulated by the usual
object-at-a-time operators: read an attribute, traverse a relationship, create an object,
update an attribute, add or remove a relationship, etc.

Our use of model management in self-adaptive systems shares common goals
with the work by Lehmann et al. on meta-modeling runtime models [34]. They
propose a meta-metamodel to express metamodels of various runtime models. Using
this common modeling approach facilitates achieving goals such as a common
understanding of runtime models, a means for comparing different runtime models,
and interoperability of runtime models. Our approach goes beyond these goals
to support the development of self-adaptive systems through model reuse and
adaptation.

1.3.1.2 Model Management for Implementing MAPE Loops

The MAPE-K (Monitor-Analyze-Plan-Execute) loop [32], as shown in Fig. 1.3
(left), is the heart of any self-adaptive system. The monitor part provides the
mechanisms that collect, aggregate, filter, and report information collected from
managed resources. The analyze part contains the mechanisms that correlate and
model complex adaptation situations. The plan function encloses the mechanisms
that construct the actions needed to achieve goals and objectives. The execute
function groups the mechanisms that control the execution of an adaptation plan
with considerations for dynamic updates. The knowledge is shared among the
monitor, analyze, plan, and execute functions.

18 S. Hidaka et al.

Fig. 1.3 MAPE-K loop (left), runtime models (right)

It is shown in [48] that knowledge in the MAPE-K loop can be refined to a set
of runtime models, as shown in Fig. 1.3 (right). Monitoring Models map system-
level observations to the abstraction level of Reflection Models. The Reflection
Models are analyzed to identify adaptation needs by applying Evaluation Models
that, e.g., define constraints on Reflection Models. If adaptation needs have been
identified, the planning activity devises a plan prescribing the adaptation on
the Reflection Models. Planning is specified by Change Models describing the
adaptable software’s variability space. Evaluation Models such as utility preferences
guide the exploration of this space to find an appropriate adaptation. Finally, the
execute activity enacts the planned adaptation on the adaptable software based on
Execution Models that refine model-level adaptation to system-level adaptation.

Model management enables us to easily establish static mappings among the
runtime models in Fig. 1.3 (right). For the static mappings of Monitor, Analyze, and
Execute, the definitions are straightforward.

mapMonitor = Match(Monitoring Model, Reflection Model)
mapAnalyze = Match(Reflection Model, Evaluation Model)
mapExecute = Match(Reflection Model, Execution Model)

For the mapping of Plan, we first merge Evaluation Model and Change Model to
form a new model, say Adaptation Model, by

Adaptation Model = Merge(Evaluation Model, Change Model, mapEC)

where mapEC = Match(Evaluation Model, Change Model), and then we build a
mapping between Adaptation Model and Reflection Model using Match.

Furthermore, model management provides a convenient way to implement
dynamic update propagation along the MAPE-K loop. As an example, consider that
the Monitoring Model is updated to M ′ and that we want to propagate this update
to the Reflection Model and get R′ together with a corresponding mapping between

1 Design and Engineering of Adaptive Software Systems 19

Fig. 1.4 Update propagation
from Ms to Mv

M ′ and R′. To see how to implement this update propagation, let us consider a more
general case. Suppose that we are given two models Mv and Ms and a mapping map
that maps elements of Ms to that of Mv (see Fig. 1.4). Given that Ms is updated to
M ′

s , the problem is to define an updated version M ′
v of Mv that is consistent with M ′

s

with a new mapping map′ from M ′
s to M ′

v . We can solve this problem using model
management operators as follows:

map3 = Match(Ms,M
′
s)

map4 = map ◦ map3

(M ′
v, map′) = DeepCopy(Mv, map4)

(M ′′
v , map5) = Diff(M ′

v, map′)
For each e in Enum(map5, depthFirst), delete the source element from M ′

v.

We omit the detailed explanation of the above program. In fact, it is very similar to
the solution to the schema evolution problem in [7].

1.3.1.3 Bidirectional Model Transformations for Adaptive Software
Systems

While model management facilitates the propagation of changes across models,
in order to make self-adaptive systems stable, the models together with mappings
between them should satisfy some properties. For example, in the scenario of update
propagation depicted in Fig. 1.4, after propagation is completed, M ′

s and M ′
v should

be related by map′ in a way that is consistent with the way that map related Ms and
Mv . Moreover, if the Mv that is the target of transformation via map is updated to
M ′

v , the update should to be propagated back to Ms so that updated model M ′
s still

generates M ′
v via transformation.

To guarantee these round-trip properties, bidirectional transformations [17]
between models can be used. Song et al. [45] identify some of these transfor-
mations in the context of synchronization between an architecture model and the
system under study for adaptation to environmental changes. Once a bidirectional
transformation is defined between models, changes on these models are propagated

20 S. Hidaka et al.

Fig. 1.5 Symmetric bidirectional transformation (maintainer) scheme and some major properties

back and forth between the models. If the transformation creates a view model
from another model, the model can be managed through the views. To achieve
consistency, bidirectional properties (often called well-behavedness) are studied to
guarantee that updates are correctly preserved in the process of transformations.
Traces that are computed along with the transformation help propagate these
changes.

Bidirectional transformation respects the user-defined relations between those
parts (system model and architecture model in [45]) and propagates changes over
the relations.

Figure 1.5 shows the symmetric bidirectional transformation (maintainer)
scheme. x � y indicates x and y are consistent.−→

R : S×T → T for the relation R produces from old target t and updated source

s′ the new target t ′, i.e.,
−→
R (s′, t) = t ′. ←−

R : S × T → S is defined symmetrically.
Hippocraticness [46] says that transformation from already consistent pair lead
to no modification on the counterpart artifacts. For the forward direction, (s, t) ∈
R ⇒ −→

R (s, t) = t . Correctness [46] says that after updates are propagated by
transformations in both directions, the resultant pairs are consistent. For the forward

direction,
−→
R (s′, t) ∈ R.

Bernstein [4] demonstrates that model management supports round-trip engi-
neering (e.g., model-code coevolution), by the scenario of updating the Mv side in
Fig. 1.4 as mentioned above. However, it is not explicit in [4] on the formal guaran-
tee of the round-trip engineering, while bidirectional transformations guarantee the
well-behavedness property, keeping mappings constant. The main reason for this
gap is that the model management framework is more expressive in the sense that
mappings are not fixed but manipulable and sometimes automatically generated.
On the contrary, bidirectional transformation currently tackles problems where
mappings are fixed, like view update problems where queries (transformations) to
generate views are fixed. View update problems are considered as a special case
of mapping generations in [5] among more general model management scenarios
including changing the transformations as well as models.

We discuss here how different kinds of updates could be accommodated by model
management, using Fig. 1.4.

For in-place updates of model elements, it does not cause metamodel changes, so
map3 generated by the first step using Match() may produce an “almost-identity”
mapping except that, in the element of map3 that is responsible for relating the

1 Design and Engineering of Adaptive Software Systems 21

element before and after updates, an equivalence operator that defines these element
to be equal is generated. Therefore, composition in the second step is almost trivial.
Backward transformation propagating changes from Mv goes through this operator.

For deletion of model elements, model management changes the map by deleting
the corresponding elements in the maps. From the viewpoint of bidirectional
transformations, it corresponds to dropping a bidirectional transformation rule that
involved the transformation of the deleted elements (you can consider dropping
ATL rules that is translated to bidirectional graph transformation in the framework
of Sasano et al. [44]).

In the case of inserting new model elements, the operator ModelGenMMv,MMs ()

where MMv and MMs , respectively, denote the metamodels to which the models
Mv and Ms conform is utilized as the default mapping to support backward trans-
formation for a newly inserted object on the Mv side, reverse engineering the corre-
sponding element in Ms , and that is the invariant that corresponds to the mapping in
bidirectional transformation. As a postcondition, M ′

v = ModelGenMMs ,MMv (M
′
s)

should be satisfied. In the context of bidirectional transformations, this kind of
operation is either explicitly provided (create function in [25]) or derived (insertion
handling in [28]) solely relying on a given transformation using generic inversion
strategy like Universal Resolving Algorithm [1].

Toward bidirectional model transformation capable of wider range of changing
scenarios, bidirectional transformations should also consider scenarios in which
transformation evolves. For example, metamodel evolution scenario forces trans-
formations to evolve. A recent study by Hoisl et al. [29] considers coevolution
of metamodels to cope with transformation changes, using the notion of higher-
order transformation [47]. However, bidirectional transformation property under
this scenario is not explicitly addressed so far, and we could easily imagine part of
the reason being too many degrees of freedom introduced by allowing changes of the
mapping. The strategies like those mentioned in Sect. 1.2.2 might guide reasoning
about the property.

1.3.2 Adaptation for Evolving Software Systems

Time travel is the dream of archaeologists to verify their hypotheses of our history
and the subject of science fiction writers in order to speculate on our destiny.
Supported by change management and backup file systems, however, imperfect,
traveling to the past of a project is no longer a dream. However, traveling to the
future software world remains largely so. On the basis of various advances in
the theory and practice of requirements engineering [43, 49, 56], especially the
progress in the active maintenance of runtime traceability relationships [55, 57]
between problems and solutions, we speculate that traveling to the future may be

∗(Contributed by Yijun Yu).

22 S. Hidaka et al.

enabled by (a collection of) carefully designed software systems [51]. We present
a scenario where some of these requirements can be made future-proof through a
well-designed adaptive systems. We also present a few challenges faced by such a
design for some other requirements to be future-proof.

1.3.2.1 From Natural Selection to Self-Adaptation

Through natural selection, biological species survive environmental changes by
passing on the fittest features over generations [19]. To survive the test of time,
software systems also have to respond to a changing environment to better satisfy
stakeholders’ core requirements [43]. Bacteria of the simplest life form coexist with
advanced mammals as long as suitable environments for them still exist after billions
years of profound changes. The ecosystem of the biological world has its match in
the software world too: early generations of command-line programs coexist with
the bells and whistles of mobile apps, and they probably fit in the present high-
assurance-requiring purposes like steering pathfinders to the deep space better.

Software archaeologists [8] attempt to find the fossils of historical software
such that knowledge of legacy could be preserved and lessons could be learnt for
developing modern software [50]. The motivation for reverse engineering software
requirements from legacy code [56] is to achieve better understanding of the
traceability [27] between the current artifacts to those of the past.

If all that is possible, what about the time travel then? Compared to teleporting
objects obeying physics laws [22], it is much easier for software code to travel to
the past, as long as one can reconstruct the contemporary version of the operating
environment. One can recover almost every artifact committed to software change
management (SCM) systems. With the advent of backup file systems such as the
trademarked Time Machine of MacOSX, not only code but also related files can
be retrieved. Ignoring the fact that much of the design rationale and documentation
can be missing from the SCM or backup files, for the sake of argument, one can
in principle teleport the current software system to its ancestors’ environments. The
basic requirement for such a time machine is to answer the following question:

When it comes to teleporting a software system to the future, is there a way
to allow the current software system to run without worrying about possible
environmental changes?

1.3.2.2 Future-Proof by Core Architectures

Our study here focuses on the open-source software systems such as Eclipse that
have survived years of rapid changes, and the analysis is reproducible. To establish
the ground truths about future-proof software systems, we have taken a close look
at the Eclipse SDK and its ecosystem in a prior study [51]. As a whole the system
underwent changes all the time. However, the architectural design of the software
system is quite stable. Known as the plug-in architecture, through the introduction of

1 Design and Engineering of Adaptive Software Systems 23

structural extensions, API compatibility has been extended to support compatibility
between data schema and control classes. On the other hand, one cannot see such
stability by looking inside a plug-in component: the number of Java classes grows
at a superlinear speed, while more methods are introduced release after release.
One insight we obtained from the empirical study was the persistence of a stable
core subset of plug-in components (i.e., 23 of them) since the very first release 1.0;
the interface dependencies among these core components are preserved along all
releases.

We first define the concept of future-proof software requirement and test on the
special components of the core architecture of Eclipse SDK. Then we propose
to redesign the plug-in architecture as an adaptive time-managed system such
that components of the older releases can work along with the newer ones after
introducing time-managed wrappers.

1.3.2.3 Future-Proof Requirements

Consider the basic requirement problem characterized by Zave and Jackson [58]:

W,S � R (1.1)

where descriptions W indicate the properties of the domains in the physical world
(i.e., environment), in which a solution S brings satisfaction to the requirement R.

Naturally, a temporal extension of the problem is

W(t), S(t) � R(t) (1.2)

where t stands for a given time.
From the (current) time t0 onward to the time t in the future (t > t0), a future-

proof solution is defined as the solution S(t0) that brings satisfaction to the future
requirement:

W(t), S(t0) � R(t) (1.3)

If the current solution S(t0) does not satisfy the requirement of the future, i.e.,
W(t), S(t0) �� R(t), what shall be done then?

1.3.2.4 Composition Requirements for Encapsulating Future Changes

Here we argue that there is a wrapper circa with which the composed solution
circa S(t0) satisfies:

W(t), circa S(t0) � R(t) (1.4)

Wrapping mechanism at the design (solution) level such as feature configura-
tions, state-chart behavior models, or Koala component-connector models offers

24 S. Hidaka et al.

the capability to switch from one alternative to another [54]. To make such
high-variability design work, a monitoring and switching (or self-reconfiguring)
mechanism is required for the system to satisfy the same requirements [42]. How-
ever, at runtime or after evolution, the original requirements can be relaxed [52],
evolved [23], or adapted [2]. Therefore, we state that the future-proof requirement
for solving a problem is to be able to adapt the solution to the changes of both the
requirement and the environment. The scope of the environment depends largely
on where the system boundary is drawn. A complex software system consists of
multiple components; each addresses a subproblem of the whole. When composed
together, one ought to consider at least two basic requirement problems, with one
solution being a designed domain in the environment of the other.

Without loss of generality, let us consider two such components S1 and S2 and
assuming that S2 is a designed domain (i.e., prerequisite) for S1:

⎧
⎪⎪⎨

⎪⎪⎩

t : W1, S1 � R1

W2, S2 � R2

W1 � W2 ∧ S2

(1.5)

This creates a dynamic dependency between S2(t) and S1(t). Unfortunately,
as S1 and S2 are usually managed separately by different teams, they have their
own pace and criteria of evolution. Therefore, for the designer of the composed
system, the existence of such dependencies generates an obligation to maintain their
consistency.

If components in the complex ecosystem and their dependencies can be ver-
sioned, Ma et al. [38] propose transactional constraints to maintain version consis-
tency on dependencies between the coevolving components such that components
only execute with compatible ones, regardless of their individual update trans-
actions. The transactional constraints approximate the dynamic dependencies by
introducing future and past dependency edges to compute a consistent configuration.
The future validity is the satisfaction of the dependency after a transaction starts, and
the past validity is the satisfaction of the dependency after a transaction finishes.

To have the entire system travel to the future or to make a component of
it future-proof, all components need to be cooperative, i.e., following the same
transaction model to update their consistency requirements locally. Ma et al. [38]
further simulate their proposed version consistency update model in comparison to
the quiescence update condition [33]. It is yet to be decided where to obtain the
future/past dependency edges and how to fix them if the classification is imprecise.

1.3.2.5 Evolving Component-Based Systems: Addressing the Meaningful
Changes

Consider a large-scale evolving component-based system where profound changes
can happen to any part of the system, e.g., to each component at the level of

1 Design and Engineering of Adaptive Software Systems 25

requirements, architecture, design, code, and test cases. The GMF project of the
Eclipse ecosystem itself has 17 K changes committed to the repository [57], not
to mention the large number of changes outside the repository and the large
number of projects related to it. Due to these frequent changes, the dependencies
between components and the answer to the requirement validation and future-proof
requirement problems may change as well.

With n components connected to at least one other component(s), the system
dependency graph would have a complexity of O(n) to O(n2) edges. A typical
release of Eclipse SDK has 500 plug-in components, and a typical distribution of
the Linux has 30 K software packages. Therefore, instead of checking the versioned
consistency for all pairs of changes, we propose to apply a filter for meaningful
change to detect whether an update is harmful for adaptation.

Generalizing from earlier work on meaningful change detection [55], a change to
the requirement problem is considered meaningful if and only if the following two
relations hold:

{
t1 : W,S � R

t2 : W,S �� R
(1.6)

where t1 �= t2 are two time stamps at either side of the change. Otherwise, the
change does not require adaptation of the solution.

When it comes to two dependent components, a change that is not meaningful
for one might be meaningful to the other.

For example, even if a change is not meaningful to the component S2, it may
cause a denial of (1.5) if

t2 : W1 �� W2 ∧ S2 (1.7)

To check the violation of future-proof requirements, one can ignore all the
changes that do not satisfy (1.6) for individual components or (1.7) for dynamic
component dependencies.

1.3.2.6 Example: Meeting Scheduler

To illustrate the concepts defined above, let us consider a simplified example:
Busy Hat is a software development company, whose secretary’s job of scheduling
meetings is replaced by a computer program. The program has two components
initially. One collects time constraints from individual employees (TimeCollector);
the other sends reminders to notify the employees who wanted to participate in a
given meeting (Reminder). Both components make use of a subcomponent Email to
notify the people involved.

The TimeCollector also uses Spreadsheet to fill in the information. The (much
simplified) requirement problems are stated as Fig. 1.6.

26 S. Hidaka et al.

t1 :
Participant,Meeting,Email,Reminder ParticipantsNotified
Recepient, Info,Email InfoSent
Participant,Meeting,NotificationEmailSent ParticipantsNotified

t2 :
Employee,Email,Spreadsheet,TimeCollector ConstraintsCollected
Employee,ElicitationEmailSent,SheetFilled ConstraintsCollected

Fig. 1.6 Initial requirement problems

t3 :
Employee,Web,Form,TimeCollector ConstraintsCollected
Employee,ElicitationEmailSent,FormFilled ConstraintsCollected

t4 :

Participant,Meeting,SMS,Reminder ParticipantsNotified
Recepient, Info,Web,Form InfoSent
Employee,ElicitationInfoSent,FormFilled ConstraintsCollected
Participant,Meeting,NotificationSent ParticipantsNotified

t5 :
Employee,Web, iCal,TimeCollector ConstraintsCollected
Employee,ElicitationInfoSent, iCalFetched ConstraintsCollected

t6 :
Participant,Meeting,Twitter,Reminder ParticipantsNotified Size < 140
Recepient, Info,Twitter InfoSent

Fig. 1.7 Adaptation to evolved requirements and environments

Different labels for the v1s here emphasize their different time stamps. The
interface between an employee and the time collector is the method Constraint[]
TimeCollector.fillSheet(EmployID id) in the API that takes the employee ID as input,
via interaction with the Employee, and outputs the constraints corresponding to the
rows in the time table. Similarly, the initial interface between the reminder and
the participants of a meeting is the API method Reminder.sendEmail(Participant
p, Meeting m).

Consider the situation where two changes arise in each of the two components
(see Fig. 1.7), which are developed in tandem. At v

(1)
2 of TimeCollector, it uses Web

forms instead to collect the individual constraints, and at v
(1)
3 of TimeCollector, it

supports importing iCal entries, such as Google Calendars, into the schema. At an
independent pace, v

(2)
2 of Reminder uses a SMS service to send a reminder rather

than using emails, and at v
(2)
3 it further limits the length of short messages to 140

characters to use Twitter instead.
Let us denote the time stamps for the six versions as t1 to t6, respectively,

assuming that the six versions are interleaving, say, t1 < t2 < t3 < t4 < t5 < t6.
To illustrate the concept of dynamic dependencies, we assume that the Reminder

component is also responsible for reminding employees to collect time tables for
the interaction. The reused Email component is designed for the TimeCollector
component. In other words, there is a dependency from TimeCollector to Email.

Checking the interfaces of the two components, one realizes that at t2 the
dynamic dependency is reflected by sharing email client as the designed domain.
However, at t3 a new interface between the Web form used by TimeCollector and the

1 Design and Engineering of Adaptive Software Systems 27

Email client used by Reminder needs to be configured. At t4, the interface between
the Web form and the SMS service replaces that pair. At t5 and t6, the roles of Web
form and SMS are substituted by iCal and Twitter.

Although the dynamic dependencies in this example persist over all revisions,
they shall be carefully maintained. Otherwise, the design is not future-proof, that is,
besides possible invalidation of functional requirements local to the components, the
changes of interfaces may also invalidate the dynamic dependency required between
the two components.

Further to these precautions, it is clear, at least at t6, that the functional
requirement of Reminder is updated, e.g., to include the 140 character restriction.
The restriction is a change that was not predicted earlier. If the solution had not
changed from Email to Twitter, such a restriction would not have made sense earlier.
Therefore, the changes to validation (e.g., test cases) shall be included as part of the
future-proof (i.e., forward compatibility in this case) contract.

To keep the example simple, all the changes are meaningful to the future-
proof requirements. Of course, you can imagine hundreds of detailed changes
in design, implementation, or even marketing, such as selecting which Email
client(s) to support, deciding which carrier(s) of Telecom company to use, etc.
Although these are relevant to quality requirements when explicitly modeled, for
the simplicity and illustration purpose, here we regard them all as not meaningful
to the functional requirement of meeting scheduling and the corresponding future-
proof requirements.

1.3.2.7 Back to the Future

So far, we have presented the concept of future-proof software requirements which
are derived from Zave and Jackson’s basic requirements problem and manifested as
the version consistency problems for updating component-based software systems.
Having observed the mechanisms of representative component-based ecosystems,
where the update dependencies have been versioned over the years, we show that it
is possible to design an Adaptive Time Managed System through a prototype that
augments the developer-oriented update mechanism.

1.4 Conclusion

Providing support in all phases of the life cycle of adaptive software systems is
an important challenge facing the software engineering research community. This
chapter highlighted current research on methods and techniques for the design and
engineering of adaptive software systems.

We started by presenting decisions to be considered when designing predictive
feedback loops of self-adaptive systems in the context of Software Defined Infras-
tructure typified by clouds. They were classified into the following three types of

28 S. Hidaka et al.

deployments. Observation cluster concern includes what to monitor, the source
and the format of the data, timing and frequency of monitoring in the Monitoring
service, as well as what and how states are determined based on the monitored data
and type of filters in the Filter service. Representation cluster concerns the runtime
representation of quantitative dependencies among adaptation targets, perturbations,
Actuator variables, measured metrics, and internal states in the Prediction Models.
When and how to switch models that capture different kinds of QoS considerations
are also concerned. Control cluster is concerned with the rich space of possible
adaptation solutions and the mechanisms in the Controllers service, where Model
predictive optimization connects the current state with desired states and goals,
estimating the effect of different decisions using Prediction Models.

Next we showed that adaptation can be reified by goal-driven runtime service
composition adaptation. Given a set of primitive services, the subset of these
services are composed and reorganized by different adaptation strategy. When a
particular service can meet better QoS than already deployed service, the Revoke
action replaces the service. When combination of multiple services collectively
achieve better throughput, these services are conjunctively (and) composed. When
combination of multiple services collectively achieve better reliability, they are
disjunctively (or) composed. They are issued based on three kinds of strategies,
namely, goal-driven, environment-triggered and service-demanded strategies. Con-
crete steps are identified to implement MAPE-K loops.

Concerning human factors, four viewpoints are identified. Human as experts
provides knowledge for making decision of runtime adaptation. Experts may par-
ticipate in the adaptation loop to approve and guide the adaptation. Human as user
are concerned with the consumers subject to observation. Systems can be adjusted
to fulfill the utility of these users experiences and preferences by machine learning
at the user interface like eye tracking. Human as agent are entities aiming at own
objectives based on their own abilities and collaboration with other agents. Degree
of objective achievements and adaptation of each agent can be reasoned about by
label propagation and agent substitution. Human as component captures human as
an integral part of the system, having their own ability to interact and cooperate
with other human, software, and hardware components via various interfaces. They
are distinguished from agents in that agents have their own objectives, while human
as component aims at the overall goal of the system. Various levels of the MAPE-
K adaptation cycle takes the human component and its collaboration topology into
account.

Given the view of models as first-class artifacts representing elements in self-
adaptive systems, we proposed an approach to handling models in self-adaptive
systems. We argued that model management can be adapted to the management of
the models developed for self-adaptive systems and effective development of self-
adaptive systems can be achieved through reuse and adaptation of existing models
and mappings. We have shown that model management can implement MAPE-K
loops, and for their synchronized adaptation, consistency could be maintained via
bidirectional transformation with future enhancement to cope with modifications of
mappings.

1 Design and Engineering of Adaptive Software Systems 29

Finally we have shown that sustainable adaptation process can be achieved
by Adaptive Time Management System, identifying core architectures that can
relatively stay stable and making requirements future-proof by introducing time
axis to the predicates in Zave and Jackson’s basic requirements problem, identi-
fying meaningful changes thereof, illustrated by Meeting scheduler consisting of
dynamically evolving interdependent components.

With the new challenges of ultra-large-scale and continuously available software,
adaptive software systems are more important than ever. We believe that the methods
and techniques highlighted in this chapter further stimulate the research on design
and engineering of adaptive software systems, to push the limits in the adaptivity of
software systems.

Acknowledgements We thank all the participants of NII Shonan Meeting Seminar No. 027 on
Engineering Adaptive Software Systems (EASSy) for their valuable discussions with us to deliver
this chapter. The authors of Sect. 1.2.2 receive partial financial support from the National Natural
Science Foundation of China (No. 61033006).

References

1. Abramov, S.M., Glück, R.: Principles of inverse computation and the universal resolving
algorithm. In: Mogensen, T.Æ. (eds.) The Essence of Computation, pp. 269–295. Springer,
Berlin (2002)

2. Baresi, L., Pasquale, L.: Adaptation goals for adaptive service-oriented architectures. In:
Avgeriou, P., Grundy, J., Hall, J.G., Lago, P., Mistrík, I. (eds.) Relating Software Requirements
and Architectures, pp. 161–181. Springer, Berlin/Heidelberg. http://link.springer.com/chapter/
10.1007/978-3-642-21001-3_10

3. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements reflection:
requirements as runtime entities. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, ICSE ’10, vol. 2, pp. 199–202. ACM, New York (2010).
https://doi.org/10.1145/1810295.1810329

4. Bernstein, P.A.: Applying model management to classical meta data problems. In: First
Biennial Conference on Innovative Data Systems Research (CIDR 2003), Asilomar, CA, USA,
5–8 Jan (2003)

5. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In:
Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’07, Beijing, pp. 1–12. ACM, New York (2007). https://doi.org/10.1145/1247480.
1247482

6. Bernstein, P.A., Rahm, E.: Data warehouse scenarios for model management. In: Proceedings
of the 19th International Conference on Conceptual Modeling, ER’00, Salt Lake City, pp. 1–15.
Springer, Berlin/Heidelberg (2000). http://dl.acm.org/citation.cfm?id=1765112.1765114

7. Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A vision for management of complex models.
SIGMOD Rec. 29(4), 55–63 (2000). https://doi.org/10.1145/369275.369289

8. Booch, G.: Software archeology and the handbook of software architecture. In: Workshop on
Software Reengineering, Bad Honnef, pp. 5–6 (2008). http://dblp.uni-trier.de/rec/bibtex/conf/
wsr/Booch08

9. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. Lect. Notes
Comput. Sci. 5525, 48–70 (2009)

http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-21001-3_10
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-642-21001-3_10
https://doi.org/10.1145/1810295.1810329
https://doi.org/10.1145/1247480.1247482
https://doi.org/10.1145/1247480.1247482
http://dl.acm.org/citation.cfm?id=1765112.1765114
https://doi.org/10.1145/369275.369289
http://dblp.uni-trier.de/rec/bibtex/conf/wsr/Booch08
http://dblp.uni-trier.de/rec/bibtex/conf/wsr/Booch08

30 S. Hidaka et al.

10. Brun, Y., Desmarais, R., Geihs, K., Litoiu, M., Lopes, A., Shaw, M., Smit, M.: A design space
for self-adaptive systems. In: Lemos, R., Giese, H., Müller, Hausi, A., Shaw, M. (eds.) Software
Engineering for Self-Adaptive Systems II. Lecture Notes in Computer Science, vol. 7475, pp.
33–50. Springer, Berlin/Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_2

11. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the tropos project. Inf. Syst. 27(6), 365–389 (2002). https://doi.org/10.1016/
S0306-4379(02)00012-1

12. Chen, I.R., Bastani, F.B., Tsao, T.W.: On the reliability of ai planning software in real-time
applications. IEEE Trans. Knowl. Data Eng. 7(1), 4–13 (1995). https://doi.org/10.1109/69.
368522

13. Chen, B., Peng, X., Yu, Y., Nuseibeh, B., Zhao, W.: Self-adaptation through incremental
generative model transformations at runtime. In: 36th International Conference on Software
Engineering (ICSE 2014), pp. 676–687. Hyderabad, India. ACM/IEEE (2014)

14. Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., Marzo Serugendo, G., Dustdar, S., Finkelstein, A., Gacek,
C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J., Litoiu, M., Malek, S.,
Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., Whittle,
J.: Software Engineering for Self-Adaptive Systems, chap. Software Engineering for Self-
Adaptive Systems: A Research Roadmap, pp. 1–26. Springer, Berlin/Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02161-9_1

15. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.): Software Engineer-
ing for Self-Adaptive Systems. Lecture Notes in Computer Science, vol. 5525. Springer,
Berlin/New York (2009)

16. IBM Corporation: An architectural blueprint for autonomic computing. Autonomic Computing
White Paper, 4th edn. Technical report, IBM (2006)

17. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidirectional
transformations: a cross-discipline perspective. In: ICMT’09, ETH Zurich, pp. 260–283 (2009)

18. Dalpiaz, F., Chopra, A.K., Giorgini, P., Mylopoulos, J.: Adaptation in open systems: giving
interaction its rightful place. In: Proceedings of the 29th International Conference on
Conceptual Modeling, pp. 31–45. ER’10, Vancouver. Springer, Berlin/Heidelberg (2010).
http://dl.acm.org/citation.cfm?id=1929757.1929761

19. Darwin, C.: On the Origin of Species by Means of Natural Selection. D. Appleton and Co.,
New York (1859)

20. de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.): Software Engineering for Self-
Adaptive Systems II – International Seminar, Dagstuhl Castle, 24–29 Oct 2010 Revised
Selected and Invited Papers. Lecture Notes in Computer Science, vol. 7475. Springer (2013)

21. Dorn, C., Taylor, R.N.: Coupling software architecture and human architecture for
collaboration-aware system adaptation. In: Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, San Francisco, pp. 53–62. IEEE Press, Piscataway (2013).
http://dl.acm.org/citation.cfm?id=2486788.2486796

22. Earman, J., Smeenk, C., Wüthrich, C.: Do the laws of physics forbid the operation of time
machines? Synthese 169(1), 91–124 (2009). http://link.springer.com/article/10.1007/s11229-
008-9338-2

23. Ernst, N., Borgida, A., Jureta, I.: Finding incremental solutions for evolving requirements. In:
Requirements Engineering Conference (RE), Trento, 2011 19th IEEE International, pp. 15–24
(2011)

24. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In: Proceedings
of the Second IEEE International Symposium on Requirements Engineering, RE ’95, York,
UK, p. 140. IEEE Computer Society, Washington, DC (1995). http://dl.acm.org/citation.cfm?
id=827254.827800

25. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for
bidirectional tree transformations: a linguistic approach to the view-update problem. ACM
Trans. Program. Lang. Syst. 29 (2007). https://doi.org/10.1145/1232420.1232424

https://doi.org/10.1007/978-3-642-35813-5_2
https://doi.org/10.1016/S0306-4379(02)00012-1
https://doi.org/10.1016/S0306-4379(02)00012-1
https://doi.org/10.1109/69.368522
https://doi.org/10.1109/69.368522
https://doi.org/10.1007/978-3-642-02161-9_1
http://dl.acm.org/citation.cfm?id=1929757.1929761
http://dl.acm.org/citation.cfm?id=2486788.2486796
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s11229-008-9338-2
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s11229-008-9338-2
http://dl.acm.org/citation.cfm?id=827254.827800
http://dl.acm.org/citation.cfm?id=827254.827800
https://doi.org/10.1145/1232420.1232424

1 Design and Engineering of Adaptive Software Systems 31

26. Ghanbari, H., Litoiu, M.: Replica placement in cloud through simple stochastic model
predictive control. In: IEEE Cloud, Anchorage, Alaska, 27 June–2 July (2014)

27. Gotel, O.C., Finkelstein, C.W.: An analysis of the requirements traceability problem. In:
Proceedings of the First International Conference on Requirements Engineering, Colorado
Springs, pp. 94–101. IEEE (1994)

28. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K., Nakano, K.: Bidirectionalizing graph
transformations. In: ACM SIGPLAN International Conference on Functional Programming,
Baltimore, Maryland pp. 205–216. ACM (2010)

29. Hoisl, B., Hu, Z., Hidaka, S.: Towards co-evolution in model-driven development via bidi-
rectional higher-order transformation. In: Proceedings of the 2nd International Conference
on Model-Driven Engineering and Software Development, Lisbon, Portugal, pp. 466–
471. SciTePress (2014). http://nm.wu-wien.ac.at/nm/file/MODELSWARD2014-PP%2epdf?
m=download

30. Jian, Y., Li, T., Liu, L., Yu, E.: Goal-oriented requirements modelling for running systems.
In: 2010 First International Workshop on Requirements@Run.Time (RE@RunTime), Sydney,
NSW, Australia, pp. 1–8 (2010)

31. Jureta, I.J., Faulkner, S., Thiran, P.: Dynamic requirements specification for adaptable and open
service-oriented systems. In: Proceedings of the 5th International Conference on Service-
Oriented Computing, ICSOC ’07, Vienna, Austria, pp. 270–282. Springer, Berlin/Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74974-5_22

32. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003). https://doi.org/10.1109/MC.2003.1160055

33. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change management.
IEEE Trans. Softw. Eng. 16(11), 1293–1306 (1990)

34. Lehmann, G., Blumendorf, M., Trollmann, F., Albayrak, S.: Meta-modeling runtime models.
In: Proceedings of the 2010 International Conference on Models in Software Engineering,
Oslo, Norway, pp. 209–223. MODELS’10. Springer, Berlin/Heidelberg (2011). http://dl.acm.
org/citation.cfm?id=2008503.2008532

35. Li, J., Woodside, C.M., Chinneck, J., Litoiu, M.: Adaptive Cloud Deployment Using Persis-
tence Strategies and Application Awareness, IEEE Trans. Cloud Comput. 5(2), pp. 277–290
(2017)

36. Li, J.Z., Woodside, M., Chinneck, J., Litoiu, M.: Cloudopt: multi-goal optimization of
application deployments across a cloud. In: Proceedings of the 7th International Conference
on Network and Services Management, Paris, France, pp. 162–170. CNSM ’11. International
Federation for Information Processing, Laxenburg (2011). http://dl.acm.org/citation.cfm?id=
2147671.2147697

37. Liu, L., Liu, Q., Chi, C., Jin, Z., Yu, E.: Towards a service requirements modelling ontology
based on agent knowledge and intentions. Int. J. Agent-Oriented Softw. Eng. 2(3), 324–349
(2008). https://doi.org/10.1504/IJAOSE.2008.019422

38. Ma, X., Baresi, L., Ghezzi, C., Panzica La Manna, V., Lu, J.: Version-consistent dynamic
reconfiguration of component-based distributed systems. In: Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, Szeged, Hungary, pp. 245–255. ESEC/FSE ’11. ACM, New York (2011). https://
doi.org/10.1145/2025113.2025148

39. Ma, Z., Liu, L., Yang, H., Mylopoulos, J.: Adaptive service composition based on runtime
requirements monitoring. In: Proceedings of the 2011 IEEE International Conference on Web
Services, ICWS ’11, Washington, DC, pp. 339–346. IEEE Computer Society, Washington, DC
(2011). https://doi.org/10.1109/ICWS.2011.83

40. Mylopoulos, J.: Stateful requirements monitoring for self-repairing socio-technical systems.
In: Proceedings of the 2012 IEEE 20th International Requirements Engineering Conference
(RE), RE ’12, Chicago, IL, pp. 121–130. IEEE Computer Society, Washington, DC (2012).
https://doi.org/10.1109/RE.2012.6345796

http://nm.wu-wien.ac.at/nm/file/MODELSWARD2014-PP%2epdf?m=download
http://nm.wu-wien.ac.at/nm/file/MODELSWARD2014-PP%2epdf?m=download
https://doi.org/10.1007/978-3-540-74974-5_22
https://doi.org/10.1109/MC.2003.1160055
http://dl.acm.org/citation.cfm?id=2008503.2008532
http://dl.acm.org/citation.cfm?id=2008503.2008532
http://dl.acm.org/citation.cfm?id=2147671.2147697
http://dl.acm.org/citation.cfm?id=2147671.2147697
https://doi.org/10.1504/IJAOSE.2008.019422
https://doi.org/10.1145/2025113.2025148
https://doi.org/10.1145/2025113.2025148
https://doi.org/10.1109/ICWS.2011.83
https://doi.org/10.1109/RE.2012.6345796

32 S. Hidaka et al.

41. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N., Quilici,
A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-adaptive software.
IEEE Intell. Syst. 14(3), 54–62 (1999). https://doi.org/10.1109/5254.769885

42. Salifu, M., Yu, Y., Nuseibeh, B.: Specifying monitoring and switching problems in context. In:
15th IEEE International Requirements Engineering Conference, RE 2007, New Delhi, 15–19
Oct 2007, pp. 211–220 (2007)

43. Salifu, M., Yu, Y., Bandara, A.K., Nuseibeh, B.: Analysing monitoring and switching problems
for adaptive systems. J. Syst. Softw. 85(12), 2829–2839 (2012). http://www.sciencedirect.com/
science/article/pii/S0164121212002257

44. Sasano, I., Hu, Z., Hidaka, S., Inaba, K., Kato, H., Nakano, K.: Toward bidirectionalization
of ATL with GRoundTram. In: ICMT. Zurich, Switzerland LNCS, vol. 6707, pp. 138–151.
Springer (2011)

45. Song, H., Huang, G., Chauvel, F., Xiong, Y., Hu, Z., Sun, Y., Mei, H.: Supporting runtime
software architecture: a bidirectional-transformation-based approach. J. Syst. Softw. 84(5),
711–723 (2011). https://doi.org/10.1016/j.jss.2010.12.009

46. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open questions.
Softw. Syst. Model. 9(1), 7–20 (2010)

47. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order model
transformations. In: Model Driven Architecture – Foundations and Applications, Enschede,
The Netherlands, LNCS, vol. 5562, pp. 18–33. Springer (2009). https://doi.org/10.1007/978-
3-642-02674-4_3

48. Vogel, T., Giese, H.: Model-driven engineering of self-adaptive software with eurema. ACM
Trans. Auton. Adapt. Syst. 8(4), 18:1–18:33 (2014). https://doi.org/10.1145/2555612

49. Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J.: Monitoring and diagnosing software
requirements. Autom. Softw. Eng. 16(1), 3–35 (2009). http://link.springer.com/article/10.1007/
s10515-008-0042-8

50. Wermelinger, M., Yu, Y.: Some issues in the ‘archaeology’ of software evolution. In:
Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) Generative and Transformational
Techniques in Software Engineering III, vol. 6491, pp. 426–445. Lecture Notes in Computer
Science. Springer (2011). http://oro.open.ac.uk/22105/, International Summer School, GTTSE
2009, Braga, 6–11 July 2009, Revised Papers

51. Wermelinger, M., Yu, Y., Lozano, A., Capiluppi, A.: Assessing architectural evolution: a case
study. Empir. Softw. Eng. 16(5), 623–666 (2011). http://oro.open.ac.uk/28753/

52. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: RELAX: a language to
address uncertainty in self-adaptive systems requirement. Requir. Eng. 15(2), 177–196 (2010).
http://link.springer.com/article/10.1007/s00766-010-0101-0

53. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements engineer-
ing. In: Proceedings of the 3rd IEEE International Symposium on Requirements Engineering,
Annapolis, MD, p. 226. RE ’97. IEEE Computer Society, Washington, DC (1997). http://dl.
acm.org/citation.cfm?id=827255.827807

54. Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.C.S.P.: From goals to high-
variability software design. In: An, A., Matwin, S., Raś, Z.W., Ślȩzak, D. (eds.) Foundations
of Intelligent Systems, Toronto, Canada, vol. 4994, pp. 1–16. Lecture Notes in Computer
Science. Springer, Berlin/Heidelberg (2008). http://link.springer.com/chapter/10.1007/978-3-
540-68123-6_1

55. Yu, Y., Tun, T.T., Nuseibeh, B.: Specifying and detecting meaningful changes in programs. In:
ASE, Lawrence, KS, pp. 273–282 (2011)

56. Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., Prado Leite, J.C.S.D.:
Reverse engineering goal models from legacy code. In: Proceedings of the 13th IEEE
International Conference on Requirements Engineering, Paris, France, RE ’05, pp. 363–372.
IEEE Computer Society, Washington, DC (2005). https://doi.org/10.1109/RE.2005.61

57. Yu, Y., Lin, Y., Hu, Z., Hidaka, S., Hiroyuki, K., Montrieux, L.: Maintaining invariant
traceability through bidirectional transformations. In: ICSE, Zurich, Switzerland, pp. 540–550
(2012)

https://doi.org/10.1109/5254.769885
http://www.sciencedirect.com/science/article/pii/S0164121212002257
http://www.sciencedirect.com/science/article/pii/S0164121212002257
https://doi.org/10.1016/j.jss.2010.12.009
https://doi.org/10.1007/978-3-642-02674-4_3
https://doi.org/10.1007/978-3-642-02674-4_3
https://doi.org/10.1145/2555612
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10515-008-0042-8
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10515-008-0042-8
http://oro.open.ac.uk/22105/
http://oro.open.ac.uk/28753/
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s00766-010-0101-0
http://dl.acm.org/citation.cfm?id=827255.827807
http://dl.acm.org/citation.cfm?id=827255.827807
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-540-68123-6_1
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-540-68123-6_1
https://doi.org/10.1109/RE.2005.61

1 Design and Engineering of Adaptive Software Systems 33

58. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Softw. Eng.
Methodol. 6(1), 1–30 (1997). https://doi.org/10.1145/237432.237434

59. Zoghi, P., Shtern, M., Litoiu, M.: Designing search based adaptive systems: a quantitative
approach. In: Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’14, Hyderabad, India, pp. 7–16. ACM, New
York (2014). https://doi.org/10.1145/2593929.2593935

https://doi.org/10.1145/237432.237434
https://doi.org/10.1145/2593929.2593935

Chapter 2
Self-Adaptation of Software Using
Automatically Generated
Control-Theoretical Solutions

Stepan Shevtsov, Danny Weyns, and Martina Maggio

Abstract Control theory has contributed a set of foundational techniques to handle
“change” at runtime in software applications. These techniques however have
fundamental limitations as well: (i) they require the development and understanding
of mathematical models; (ii) synthesizing solutions is often done on a per-problem
basis, discouraging flexibility and generality. Software engineering, as a discipline,
has always aimed at finding reusable and modular solutions. The combination
of the desire to apply formally grounded control-theoretical principles and reuse
existing solutions has motivated research on the topic of automatically generated
control solutions. This research aims at designing control strategies in an automated
way from data that qualifies the given problem at hand. This chapter provides
an overview of the research topic of automatically generated control-theoretical
solutions, explaining the key research contributions and paving the way for future
research.

2.1 Introduction

Software applications need, more than ever, to be able to deal with “change” [30,
41]. Software needs to be continuously available, which in turns requires that
developers treat change as a first-class concern in the complete life cycle of the
application development, operation, and maintenance. Software applications are
nowadays expected to deal seamlessly with different types of change, such as
resource fluctuations [37], component failures [44], requirement modifications [6,
49], different user preferences [43], and much more [1, 2, 9, 14, 27, 42]. Often,

S. Shevtsov (�) · D. Weyns
Linnaeus University, Växjö, Sweden
KU Leuven, Leuven, Belgium
e-mail: stepan.shevtsov@lnu.se; danny.weyns@kuleuven.be

M. Maggio
Lund University, Lund, Sweden
e-mail: martina.maggio@control.lth.se

© Springer Nature Singapore Pte Ltd. 2019
Y. Yu et al. (eds.), Engineering Adaptive Software Systems,
https://doi.org/10.1007/978-981-13-2185-6_2

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2185-6_2&domain=pdf
mailto:stepan.shevtsov@lnu.se
mailto:danny.weyns@kuleuven.be
mailto:martina.maggio@control.lth.se
https://doi.org/10.1007/978-981-13-2185-6_2

36 S. Shevtsov et al.

these changes are not predictable at design time, requiring software to execute with
incomplete knowledge and face new challenges during operation [50, 53]. Con-
sequently, software engineering researchers are experimenting with new solutions
that can handle change at runtime without incurring into penalties, slowdown, and
downtime. Generally speaking, the software built to deal with change is often called
“self-adaptive” [15, 17, 51], for the ability to modify its own behavior and adapt to
the current execution conditions.

Continuous- and discrete-time control theory1 has been identified as a promising
approach to design self-adaptive software [10, 18, 26, 56]. However, the wide
adoption of control-theoretical solutions in the design of self-adaptive systems has
been limited by a number of factors.

First and foremost, continuous- and discrete-time control solutions often require
a “physical” model of the object to be controlled. In the case of low-level resources
– such as CPU, memory, and network bandwidth – researchers have proposed
models that attempt to capture the phenomena of interest [3, 20, 55] with a precision
sufficient to perform adaptation. However, it is very difficult to extract control-
theoretical (i.e., equation-based) models for the behavior of software applications.
This has been one of the main reasons why several researchers have argued that
applying control theory to adapt the higher-level software elements is a more
complex problem [4, 11, 22]. Other reasons are the diversity and interplay of
requirements and the need for instrumenting software to obtain measurements from
sensors and enacting the system through actuators [12, 28]. Second, the models
often become complicated, calling for elaborate solutions from the mathematical
perspective. Finally, since appropriate and accurate models are so difficult to write,
existing control-based approaches are often tailored for a particular problem, while
software engineers usually aim for reusable solutions. These observations have
been recently confirmed by a systematic study on control-theoretical software
adaptation, highlighting the shortcomings of the existing ad hoc control-theoretical
solutions [47].

As a response to these shortcomings, researcher aimed at automatically gener-
ating control solutions. These solutions are general enough to tackle a variety of
problems, trading off the optimality that could be reached by tailored solutions.
The code for these general solutions can be automatically generated based on
observations and data from the software application that should be controlled.
Simple linear models describing the software behavior are automatically extracted
from the data and used – at runtime – to synthesize a control solution. This chapter
gives an overview of the state of the art of the research in automatically generated
control strategies for software applications and outlines promising paths for future
work.

The remainder of this chapter is structured as follows. Section 2.2 provides a brief
background on automatically generated control-theoretical adaptation of software.

1In this chapter, we restrict ourselves to continuous- and discrete-time control [8, 54]. Discrete
event systems are out of our scope.

2 Self-Adaptation of Software Using Automatically Generated Control-. . . 37

In Sect. 2.3, we delve into details discussing the differences among the proposed
solutions. Finally, Sect. 2.4 outlines a number of challenges for future research, and
Sect. 2.5 draws some conclusions.

2.2 Background

This section explains the basic principle behind automatically generated control-
theoretical solutions and its use for self-adaptation.

The overall objective of automatically generated control-theoretical adaptation
is the simplification of the software design process. The aim of these strategies
is to provide the software engineer with the advantages of a control-theoretical
design, without the need for in-depth control expertise. The main advantage of
control-theoretical solutions is the presence of formal guarantees [24]. If mastered
correctly, the use of the knowledge coming from control theory allows for certified
and verifiable solutions, where desired properties can be guaranteed by design.
For example, with control theory it is possible to precisely calculate the amount
of disturbance the system can withstand or to prove that the system will not
overconsume resources in changing external conditions.

Figure 2.1 shows a typical control-theoretical feedback loop that is used in self-
adaptive software systems. Reading the figure from left to right, the Goal represents
a particular level of software quality that should be achieved by self-adaptation.
The Goal is often specified as a setpoint, i.e., a certain value of a nonfunctional
requirement, such as a specific service failure rate or response time. Using the
setpoint and the Measured Output value for the same software quality, an Error
is calculated as Setpoint − MeasuredOutput , where the -1 block indicates that
the Measured Output value should be subtracted. The Feedback Controller uses the
Error in order to compute the Control Signal, a value or a vector of values that
effect the Software System. If designed correctly, the Control Signal will result in a
Measured Output that is equal or very close to the Goal value. The Disturbances,
such as changing availability of resources or component failures, affect the software
behavior at runtime. So one of the main purposes of control strategies is to neglect
the effect of Disturbances on the system.

Historically, many manually generated control strategies used the typical feed-
back loop shown in Fig. 2.1. The automated strategies have two main differences

Fig. 2.1 A typical
control-theoretical feedback
loop

+ Feedback
Controller

Software
System

-1

Goal Error
Control
Signal

Measured
Output

Disturbances

38 S. Shevtsov et al.

from these solutions. First, the automated strategies require certain conditions to be
satisfied and the availability of specific software functions:

• The developer that wants to generate and use the control strategy should
have access to the software system, which should be working and on which
experiments should be done and data must be collected – the data is used in
an automated way to build a model of the software that can be used for control
purposes;

• The developer should be able to qualify, quantify, and measure the requirements
that must be satisfied on the system – these requirements are then translated into
goals and objectives that the controller will try to achieve;

• The developer must provide access to a set of sensors that get reliable data
about the quantifiable objectives (e.g., measure the response times of a cloud
application);

• The developer must provide access to a set of actuators (tunable parameters
of the system) that can be used during runtime to modify the behavior of
the software application (e.g., the percentage of rejected requests, or different
implementations of the same functionality).

Second, the Feedback Controller is created automatically. Namely, the automated
solution starts by running experiments on the software application, changing the
values of the actuators according to predefined patterns and measuring the values
of the goals in the tested configurations. With this data, the solution generates a
mathematical model of the software using system identification [34].2 Finally, this
model is used to synthesize a controller that provides guarantees on certain system
properties. The controller – synthesized in form of equations and subsequently in
form of a code block – adapts the behavior of the software changing the values of
the actuators to achieve the given goals. The resulting controller is often tunable
– some parameters have default values that can be changed to alter the behavior
of the controller itself. For example, parameters can be used to exploit the trade-
off between robustness to disturbances and speed of convergence. The software
engineer can select these parameters based on experience and on the specific
execution conditions.

2.3 Automated Control-Theoretical Software Adaptation

This section outlines the research progress in self-adaptation of software using
automatically generated control-theoretical solutions. We discuss five different
research problems that have been explored. Figure 2.2 gives an overview of the

2Other model synthesis techniques can be used to produce system model. But historically,
automated approaches used system identification as it is fast and approximates software well
enough for controllers to work.

2 Self-Adaptation of Software Using Automatically Generated Control-. . . 39

Fig. 2.2 Research in automated control-theoretical software adaptation: progress steps (left) and
approaches (right)

research steps and shows representative approaches for each step. The arrows in the
figure show the contribution of each step/approach to the following efforts.

The initial research was primarily targeting the automation of a control solution
development. Based on prior experience with control of software applications,
some generalization arose and led to the introduction of the Push-Button method-
ology (PBM) [22]. At the same time, a similar method called Brownout [33]
was applied in a specific software domain, cloud applications. The next clear
research goal has been the extension of automated methodologies to support
multiple adaptation goals simultaneously, e.g., to achieve a specific performance
level and minimize cost at the same time. The first proposed extension has been the
Automated Multi-objective Control of Software (AMOCS) approach [23], followed
by the Simplex Control Adaptation (SimCA) [45]. SimCA tackled the problem of
multi-objective adaptation by combining controllers with the simplex optimization
algorithm in a hierarchical structure. Then, SimCA* [48] introduced components
that adjust the adaptation mechanism at runtime, to deal with new types of goals
and changes in the set of adaptation goals (e.g., adding a new goal, removing a
goal). Finally, the use of Model Predictive Control (MPC) was investigated. In this
approach, the controller acts based on the current feedback from the software but
uses the model of its own behavior to predict the software evolution. The fully
automated MPC-based approach is called Automated Multi-objective Control of
Software with Multiple Actuators (AMOCS-MA) [36].

The main properties of all automated control-theoretical adaptation approaches
are listed in Table 2.1; these approaches will be discussed in detail in the following
sections.

40 S. Shevtsov et al.

Table 2.1 Automated control-theoretical adaptation approaches

Approach Inputs (goals) Main pros Main cons

Brownout, PBM 1-setpoint Automation, guarantees Handles only one goal

AMOCS n-setpoint,
1-optimization

Multiple goals and
prioritization

Suboptimal adaptation
decisions

SimCA n-setpoint,
1-optimization

Guarantees + optimality Setpoints, needs
knowledge about some of
the system parameters

SimCA* n-setpoint,
n-threshold,
1-optimization

Handles new types of
goals and goal changes at
runtime

Needs knowledge about
some of the system
parameters

AMOCS-MA n-setpoint,
1-optimization

Guarantees + optimality,
does not need system
knowledge, flexible
computation time

Sensitive to disturbances
and model inaccuracies

2.3.1 Automation of Control System Development

Control-theoretical approaches were first used in software adaptation more than a
decade ago [1, 2, 14]. However, most of these approaches aim to solve a specific
problem at hand. Therefore, new problems would require modifications or even
replacement of a control system, which in turn requires expertise in control theory,
extra resources, and effort. To overcome this concern, researchers have studied
the ways to automate the entire process of control system development from the
model synthesis to the formal analysis of guarantees. This became the first step
of research on applying automatically generated control-theoretical solutions in
software adaptation.

The representative of the first step of research are Brownout [33] and PBM [22].
Both these approaches are based on the same underlying principles (creating a first-
order model from data and controlling that first-order model using pole placement).
Brownout is applied to the more confined domain of cloud computing applications
and is tailored to the specific problem of capacity shortages. Because of this,
Brownout achieves – on its own problem – better performance than the application
of the PBM controller without any modifications. We provide details on both of
these approaches below.

2.3.1.1 Brownout

The main idea behind Brownout [33, 35] is to apply the principles of graceful
degradation to cloud applications using control theory. Cloud applications behave
according to the request-response paradigm, with clients issuing requests and
a certain number of replicas of the same application providing the according
responses. When producing the response to the user requests, it is often possible

2 Self-Adaptation of Software Using Automatically Generated Control-. . . 41

to identify a part of the response that is the mandatory to display and a part of the
response that would provide a better user experience and increase revenues, but is
not mandatory. In the case of a travel agency website, the mandatory part of the
response is the flight search, while additional optional information are car rental
locations and hotel suggestions. Clearly, the application owner wants to provide
the additional information, but not at the expense of losing a customer. Brownout
divides the response into the two mentioned parts and measures the response time
to determine how much percentages of the optional content should be served. This
percentage is called the dimmer value. The goal of brownout is to have as big
dimmer as possible, i.e., to show as much optional content as possible, without
penalizing response times.

Brownout assumes that the cloud application behaves according to a simple first-
order linear model, where the value of the 95th percentile of the response time τ95
varies depending on the dimmer value as follows:

τ95(k) = α θ(k − 1) + δτ95(k), (2.1)

where θ(k) is the dimmer value; α(k − 1) is a time-varying coefficient that depends
on the computing platform and can be estimated; δτ95(k) is a disturbance, interfering
with the nominal system’s behavior; and k is the discrete time instance.

Based on the model (2.1), the following controller is then synthesized using loop
shaping [8]:

θ∗(k) = θ(k − 1) + 1 − pb

α̂(k)
· eτ95(k) (2.2)

where α̂(k) is an estimate of α(k) obtained with a recursive least squares (RLS)
filter, pb is a controller parameter called pole, and eτ95(k) is the error between the
desired 95th percentile of the response time τ̄95(k) and the actual value. The pole
pb can be used to trade the speed of controller convergence for robustness to model
perturbations. The analysis of the brownout closed loop allows to prove a number
of properties, such as system stability and zero steady-state error. However, this
proof is subject to how well the model (2.1) approximates the behavior of the cloud
application.

Brownout uses a single actuator (the dimmer value) to achieve a single goal,
specified in terms of a setpoint for the response time statistic. The control strategy
in Brownout can be greatly improved, and many follow-ups were devised. For
example, an event-based version of the brownout paradigm [19] explores a similar
cloud problem but controls the server queue length. Furthermore, extensions that
include brownout load balancing were considered [21, 32]. They demonstrate
that state-of-the-art load balancers which use response times as a measure for
determining where to send requests do not work with brownout-aware applications.
This is a natural limitation as the brownout controller can satisfy only a single goal
and therefore cannot form a multi-objective control strategy with other controllers.

42 S. Shevtsov et al.

Brownout was designed specifically for cloud applications, so strictly speaking, it
is not a generally applicable solution. However, it is important to include Brownout
in this work as it became the first building block for development of automated
control-theoretical adaptation. The generally applicable Push-Button methodology,
discussed in the following section, is based on the same principles and shares many
elements with Brownout.

2.3.1.2 Push-Button Methodology

The PBM methodology [22] works in a way similar to Brownout but goes beyond a
single goal and a single actuator. Also, it introduces the idea of identifying the model
online. Unlike in Brownout, where model is pre-determined, PBM builds a model
directly from the data received by running experiments on the software and produces
a controller for this model. Figure 2.3 shows the two phases of the methodology:
model building and controlling.

The input required by PBM from a software engineer is a method to set the
actuator value and a method to collect measurements about the system goal. Based
on this input, PBM first produces a linear model M of the software:

M : y(k) = α(k − 1) · u(k − 1) (2.3)

where the input u is the value of the actuator, the output y is the effect of the actuator
on the goal, the parameter α is a time-varying coefficient that is determined during
model building by feeding different input values as u and measuring the resulting
outputs y, and k is a discrete time instance.

After the model building, the controller synthesis phase automatically generates
a proportional-integral controller C that works on the model M and adapts the
software.

C : u(k) = u(k − 1) + 1 − pb

α
· e(k) (2.4)

Fig. 2.3 The two operational phases of PBM

2 Self-Adaptation of Software Using Automatically Generated Control-. . . 43

The controller has one parameter, pb, that has the same role that it had in the
Brownout controller. More guidelines on how to tune the controller parameter pb

are available in [22].
To address model inaccuracies and small perturbations during software opera-

tion, the value of α is updated at runtime. In case of critical changes (e.g., a software
component failure), PBM restarts the model building phase and regenerates the
controller.

2.3.2 Adaptation with Goal Prioritization

In order to automatically create control solutions for more practical problems,
researches have studied the ways to address multiple adaptation goals simulta-
neously. The first automated approach that offered control-based multi-objective
software adaptation was AMOCS [23]. This approach extends the methodology
behind PBM to use multiple actuators and multiple controllers in a cascaded
structure; see Fig. 2.4.

AMOCS works as follows. The set of available actuators A = {a1, . . . , am}
is partitioned to reach the set of goals G = {g1, . . . , gn}, where m ≥ n, i.e., the
system should have more actuators than goals. The goals are added into the set G
according to their priority order, forming the chain < g1, g2, . . . gn >, where g1
is the most important goal and gn is the least important one. All goals, except the
last one, are specified as setpoint values to be achieved by the adaptation. The last
goal gn is always the optimization of a specific value (e.g., maximization of profit,
minimization of cost). Ai denotes the subset of actuators used to achieve the goal
gi . AMOCS assumes that every actuator is used:

⋃

i∈{1...n}
Ai = A, (2.5)

and each actuator is assigned to a single goal only:

∀i, j ∈ {1 . . . n}, i �= j �⇒ Ai ∩ Aj = ∅, (2.6)

Fig. 2.4 A self-adaptive software with AMOCS (for 2 goals)

44 S. Shevtsov et al.

A first instance of PBM controller C1, see (2.4) for a controller description,
is then used to translate the discrete set of configurations of all the actuators A1
related to the first goal g1 into a single configuration that satisfies this goal. This
configuration is then sent in the form of control signal k1 to the software system
and to the second instance of PBM controller C2,which tries to achieve the second
goal g2 with the available actuators A2 and operating conditions. The resulting
configuration is sent to software as control signal k2. If goals g1 and g2 are not
related, the control signal k1 will still be received by controller C2, but it will not
affect the reachability of the goal g2.

In this controller chain, only the first goal is guaranteed to be stable, while the
stability of the others depend on the disturbances and on the control values set by
the previous controllers in the chain. In other words, the goal g2 is guaranteed to be
reached only if control signal k1 allows to reach it. The last optimization requirement
is reached to the best of the chain ability; hence there is no guarantee for the solution
optimality. Despite the lack of formal guarantees, the experiments with AMOCS
show that the chain of controllers behaves well in a variety of different scenarios
and can successfully handle multiple goals of a setpoint type.

2.3.3 Adaptation with Guaranteed Optimality

Guided by the need for stronger adaptation guarantees in systems with multiple
goals, the research explored new ways to automatically build the control system.
The approach resulting from these efforts is called Simplex Control Adaptation
(SimCA) [45]. SimCA combines PBM with the simplex optimization method,
utilizing the advantages of both approaches. SimCA finds a system configuration
that satisfies multiple goals, reaches optimality with respect to an additional goal,
achieves robustness to environmental disturbances and measurement inaccuracy,
and provides control-theoretical adaptation guarantees. To that end, SimCA runs
on-the-fly experiments on the software in an automated fashion, builds a set of
linear models of the software at runtime, creates a set of tunable PI controllers
that operate on these models and independently compute control signals for each
of the goals, and combines controller outputs using the simplex method to adapt the
system. Figure 2.5 schematically shows the primary building blocks of SimCA.

SimCA builds a self-adaptive system in three phases executed during system
operation:

1. In the Identification phase, n linear models of the controlled system are built.
SimCA uses multiple instances of the PBM model M, where each model Mi , i ∈
[1, n], is responsible for one goal si . Similar to PBM, each model is automatically
learned at runtime by running the experiments on the software (see Sect. 2.3.1 for
details). As in PBM, the model Mi automatically adjusts at runtime according to
changes in the system behavior.

2 Self-Adaptation of Software Using Automatically Generated Control-. . . 45

Fig. 2.5 A self-adaptive software with SimCA

2. In the Controller Synthesis phase, SimCA constructs a set of n controllers; each
controller Ci is responsible for the i-th goal. Ci calculates the control signal
ui(k) at the current time step k depending on the previous value of control signal
ui(k − 1), model coefficient αi , parameter pole pi , and the error ei(k − 1), with
ei = si − Oi . Similar to PBM, pi is used to tune the controllers and trade off
different system properties.

ui(k) = ui(k − 1) + 1 − pi

αi

· ei(k − 1) (Ci)

3. In the Operation phase, the set of controllers effectively perform control. Each
controller Ci manages one goal si , rejects disturbances acting on the according
output Oi(k), and provides an output signal ui(k). SimCA combines the signals
ui(k) from all the controllers and uses the simplex method to calculate the
actuation signal usx that drives the system toward an output that satisfies all
adaptation goals.

Generally, the simplex method allows to find an optimal solution to a linear
problem written in the standard form:

max{cTx | Ax ≤ b; x ≥ 0} (2.7)

where x represents the vector of variables (to be determined), c and b are vectors
of (known) coefficients, A is a (known) matrix of coefficients, and (·)T is the
matrix transpose [16].

In SimCA each equation, except the last one, represents a goal si to be
satisfied. The last equation ensures that the system selects a valid actuation signal
by constraining the values that can be taken by elements of the vector x, e.g.,
x ≥ 0. The control signals ui(k) produced during the control phase replace
constants b, whereas matrix A and vector cT are substituted with the monitored
parameters P(k) of the system. The goal of simplex is to find a proper actuation
signal usx , i.e., vector x.

46 S. Shevtsov et al.

Note that SimCA uses a simplex variant with equalities (Ax = b) in order to
prevent simplex from changing the effect of control signal ui(k) on the output
signal Oi(k). Instead, simplex is responsible for seamless translation of control
signals ui(k) to actuation signal usx . This allows to provide the entire set of
control-theoretical guarantees, including stability, absence of overshoot, tunable
settling time, and robustness to disturbances. A major advantage of SimCA over
approaches from the previous research steps is that simplex guarantees solution
optimality, meaning that all the system goals are guaranteed to be achieved. An
interested reader may refer to [45] for further details.

A follow-up work [46] compares SimCA with an architecture-based Activ-
FORMS approach using a simulated service-based system. The study shows that
both approaches can deal with multiple goals and provide guaranteed solution
optimality. However, SimCA achieves better results in the presence of runtime
changes as it does not rely on data verified at design time. Except optimality,
the two adaptation approaches offer different guarantees. The design of SimCA
adaptation mechanism allows to formally prove the properties of underlying system
and guarantee that they will hold at runtime independent of the system parameters.
ActivFORMS, on the other hand, can guarantee the functional correctness of the
implementation of the adaptation algorithm, such as the absence of erroneous states
and correct interaction between adaptation components.

2.3.4 Adaptation with New and Changing Goals

One interesting research line for automated methodologies and for control method-
ologies in general is the selection and support of types of adaptation goals. The
previously developed automated approaches had two major drawbacks. First, they
addressed goals specified either in the form of particular setpoint values to be
achieved by the system (S-goal) or values to be optimized (O-goal), while many
software systems need to address a threshold goal that keeps a value above/below
a threshold (T-goal). A typical example is limiting the response time of a Web
server. Approaches such as described in [31, 33, 38] solve this problem either by
optimizing the response time (O-goal) or by defining a setpoint for response time
that the controller should guarantee (S-goal), when the actual requirement is to keep
response time lower than a certain threshold. Second, the previously developed
approaches did not provide support for changing the set of system requirements
during operation, which requires on-the-fly adjusting, activation, and deactivation
of adaptation goals. Changing requirements are important in practice, e.g., to deal
with drastic changes in the system or its environment that may require the system to
change from one set of requirements to another.

In order to address the two mentioned concerns, the SimCA approach (see
Sect. 2.3.4) was reworked and upgraded into SimCA* [48]. Compared to original

2 Self-Adaptation of Software Using Automatically Generated Control-. . . 47

Fig. 2.6 Goal
Transformation phase of
SimCA*

T-goal 1..m

Simplex:

Parameters P

C-goal 1..m
c1..m

S-goal 1..n

max{cTx|Ax≤b}

O-goal 1..q

x *

Fig. 2.7 Dealing with requirement changes in SimCA*. Numbers in circles/diamonds show the
sequence of actions

SimCA, the new approach includes an additional Goal Transformation phase
(Fig. 2.6) and the necessary mechanisms to support changing system requirements
by activating/deactivating goals (Fig. 2.7).

The Goal Transformation phase of SimCA* is performed between the Controller
Synthesis and Operation phases. The purpose of this phase is to transform T-goals
into goals that can be controlled by the original SimCA controller (Ci). As such,
the approach uses simplex, where each equation in the system (2.7), except the last
one, represents an S-goal or T-goal to be satisfied (see Fig. 2.6). Equalities are used
for S-goals, while inequalities are used for T-goals. The last equation ensures that
the system selects a valid solution, the vector x, by the means of constraints, e.g.
x ≥ 0. The goal of simplex is to find such vector x that satisfies all system goals; the
details of how simplex finds such a solution can be found in the linear programming
literature [16]. Knowing the vector x, each T-goal is transformed into a controller
goal (C-goal) ci as follows: ci = Pi (k) * x. The resulting C-goal represents a
particular value of a corresponding T-goal. For example, a T-goal that should keep
a value below a threshold will be transformed into a C-goal with a value that is
equal to the lowest possible value of the goal below that threshold that satisfies
all other requirements. All the C-goals and the original S-goals are then used by
controllers (Ci) in the usual Operation phase described in Sect. 2.3.4.

In order to address the changing system requirements, SimCA* is equipped
with a Requirement Monitor, Goal Activator, and Goal Deactivator components;
see Fig. 2.7. The Requirement Monitor triggers the corresponding adaptation com-
ponent after any system requirement is changed. The Goal Activator first reads

48 S. Shevtsov et al.

the relevant parameters P related to the activated goal. Then, in case of O-goal
activation, it inserts P into the objective function cT of simplex, performs a Goal
Transformation (described above), and proceeds to standard Operation phase. In
case of S- or T-goal, the Goal Activator triggers a standard Identification phase for
the new goal, which is followed by Controller Synthesis, Goal Transformation, and
Operation. The Goal Deactivator removes the according elements of the adaptation
mechanism. Namely, when an S- or T-goal is deactivated, the corresponding
controller is removed together with the equation responsible for the goal being
deactivated. When an O-req is deactivated, the corresponding variables are removed
from the objective function cT of simplex. After that, the Goal Deactivator always
triggers a Goal Transformation adapting the configuration of the control system to
the new set of requirements, after which the system returns to standard Operation.

2.3.5 Automated Model Predictive Control

The scope of applicability of the first multi-objective control solutions is limited in
different ways. For example, SimCA cannot prioritize goals or use infinite sets of
values for the actuators, while AMOCS produces suboptimal solutions. To eliminate
these limitations, researchers have studied the application of automated model
predictive control (MPC) – a technique based on the optimization of a cost function
and on the prediction of a future outcome of the adaptation. Generally, in control
theory, MPC is considered particularly well suited for multi-objective problems
with optimization, because all the interdependencies between actuators and goals
are taken into account simultaneously, achieving a truly optimal solution.

The first research effort that identifies automated MPC as a potential multi-
objective control strategy for self-adaptive systems is [5]. However, it lacks details
and does not provide any analysis of guarantees. In the same research line – again for
a specific problem, but with a general overlook – CobRA [7] provides a framework
to reason about MPC and its application to computing systems. Although the model
in CobRA has to be generated manually and fed to the system, the solution of the
MPC problem is general with respect to the involved quantities. The paper only
provides an example of the framework application, which also requires extensive
manual tuning in order to tailor the equations to a specific problem. Although formal
guarantees are not discussed in CobRA, it is possible to prove that they hold to
the extent that the model allows. PLA [38, 39] is based on similar principles that
CobRA. It uses a model of the environment and of the software to determine the
best strategy to be followed using a model checker with the ability of looking into
the future expectations for the system. CobRA and PLA have been compared [40]
showing similar results but a different runtime behavior. The authors conclude that
the concrete approach should be picked based on the problem at hand. For example,
CobRA suits more for continuous inputs, while PLA works better with discrete
control.

2 Self-Adaptation of Software Using Automatically Generated Control-. . . 49

Finally, a fully automated model predictive control strategy was developed as a
part of AMOCS-MA approach [36]. Similar to other automated solutions, AMOCS-
MA starts with a model building phase. The following model S is synthesized:

S =
{

x(k + 1) = A · x(k) + B · Δa(k)

O(k) = C · x(k)
(2.8)

where k is a discrete time instance, O(k) is the vector of all system outputs at time
k, Δa(k) is the control signal containing values of all actuators, x(k) is the current
system state, x(k + 1) is the next system state, and A, B, and C are the matrices of
coefficients obtained with model learning by running experiments on the software
at runtime. One of the AMOCS-MA advantages is that it reduces the model learning
time by using special input signals in the model building phase; see details in [36].
As in other automated approaches, the model S is updated according to runtime
changes that appear in the software system.

The model S is used by an MPC controller to minimize the following cost
function, which handles all S-goals and O-goals:

Minimize Δa(k + i − 1), with i = 1 . . . L in:

L∑

i=1

〈
p∑

j=1

qj · [Oj(k + i) − gj (k + i)]2 +
m∑

l=1

rl · Δal(k + i − 1)2

〉

(2.9)

Subject to: model S (2.8) and additional Δa(k) constraints
(see [36])
where k is a discrete time instance, L is the number of discrete time instances in
the future used for predicting software behavior, p is the number of goals, qj is the
weight of goal j (allows goal prioritization), Oj(k + i) is the predicted measured
output of goal j at the i-th step in future, gj (k + i) is the value of goal j at the
i-th step in future (this value is constant if goals do not change at runtime), m is the
number of actuators, rl is the weight of actuator l (allows actuator prioritization),
and Δal(k + i − 1) is the predicted change in the value of actuator l at the i − 1-th
step in future.

As the controller depends on the model (2.8), it requires information about the
system state x(k). However, it is problematic to measure the system state x(k)

directly, so it is estimated instead. To accomplish this, AMOCS-MA uses a Kalman
filter that computes an estimate x̂(k) of the state x(k) based on the previous control
signal Δa(k − 1), the measured outputs Oj(k), prediction error, and a number of
other parameters.

Using the estimate x̂(k), the MPC controller solves (2.9) and produces an optimal
plan of control actions for the future i steps: Δa(k+i−1), with i = 1 . . . L. The plan
Δa(k + i −1) contains particular values of all actuators at time instance (k + i −1).
However, AMOCS-MA uses only the first action of the plan, i.e., Δa(k) is applied
to software; see Fig. 2.8.

50 S. Shevtsov et al.

MPC
Controller (2.9)

Software
System

Kalman
Filter

Goals

g j(k)

Control
Signal

a(k)

Measured
Outputs

Oj(k)

Disturbances

State
Estimate

x̂(k)

Δ

Fig. 2.8 A self-adaptive system with AMOCS-MA

The controller (2.9) guarantees stability, zero steady-state error, and minimal
settling time by design. It also guarantees the optimality of a cost function specified
by the user. This function has tunable weights for the system goals qj and actuators
rl , allowing to trade off different system properties, e.g., to prioritize response time
over cost.

2.4 Challenges

The analysis of automated control-theoretical adaptation solutions showed the use
of various controllers, from hierarchical adaptive PI control (SimCA) to model
predictive control (AMOCS-MA). However, most of these approaches use the
PBM model (2.3) or its variations. Indeed, one of the key points behind this
line of research is the difficulty in finding generic models that describe software
applications and their behavior. Although the usual software models – architectural
models and UML descriptions – are a very good reference to understand how
the control code interfaces with the rest of the software application, they are not
suitable for the control design process. To design a controller, there is usually a
need to understand how the quantities that should be controlled are influenced by the
actuators that one has available. Depending on the modeling effort that the software
engineer is willing to do, the control strategies can be more or less effective:

• PLA [38, 39] and Brownout [33], for example, use explicit modeling of both the
software behavior and the environment. Explicit modeling goes a long way for
improving the performance of the control strategy that can be perfectly tailored
for a new scenario using the given knowledge. Generally speaking, when an
explicit model is available, the spectrum of results that it is possible to obtain
is much wider, opening up possibilities and allowing for more precise results.

• SimCA [45] and SimCA* [48] lift some of the requirements on the modeling
side. While no explicit disturbance model is written, the system parameters
specified in the Simplex algorithm are part of prior knowledge that is given to
the control strategy and that the controller does not have to identify based on
experiments.

2 Self-Adaptation of Software Using Automatically Generated Control-. . . 51

• The PBM [22], AMOCS [23], and AMOCS-MA [36] approaches use implicit
modeling requiring a very limited effort from the software engineer. The engineer
should only specify the actuators and sensor and possibly some weights that
are unrelated to the model itself but specify the properties of controller and
how to reach the goals. Despite the lack of modeling needs from the software
engineer, these approaches still build a representation of the software in the form
of equations in their model building phase. The synthesized model is then used
to create a controller.

• Advances in control theory have recently unveiled a new set of methods denoted
model-free control [13, 25, 29]. Model-free control synthesis does not build a
model of the system to be controlled but only uses data to optimize a control
strategy. To date, model-free control has not been applied to software and could
open possibilities for performance improvement and to tackle the complexity of
software systems in an automated way.

Apart from using the same type of model, all the automated approaches discussed
in this chapter synthesize centralized control solutions deployed on a single software
product. Such approaches are not suitable for systems where communication
between components is limited or very costly. A recent work on architecture-
based adaptation [52] introduced a number of patterns for designing decentralized
adaptation solutions, where controllers make independent decisions but have some
kind of interaction. The automated control solutions may definitely benefit from this
and similar efforts, as they provide means to adapt an entirely new class of software
systems.

2.5 Conclusions

Throughout the recent years, the automatically generated control-theoretical solu-
tions have made a huge progress. Starting from addressing a single adaptation
requirement, these solutions can now handle multiple goals of different types, deal
with addition or removal of system requirements on the fly, or even adapt based
on the predicted software evolutions. In this chapter, we listed the key research
steps that led to such progress and highlighted the main approaches representing
each of the steps. Surely, the automated approaches have limitations. For example,
they use simple models that are not always accurate, and they are less effective in
specific scenarios than controllers finely tuned for those scenarios. However, the
main advantage of automated control comes from these limitations: simple models
in combination with a generally applicable controller allow to build a control-based
self-adaptive system without involvement of a control expert.

As for the future of automated control-based solutions, the research efforts
can be aimed in two directions. First, as the scope of applicability and practical
effectiveness of existing solutions is often unclear, these solutions should be tested
in the industrial settings. Second, the researchers could use more state-of-the-art
practices, such as model-free control or decentralized adaptation.

52 S. Shevtsov et al.

References

1. Abdelwahed, S., Kandasamy, N., Neema, S.: Online control for self-management in comput-
ing systems. In: Proceedings. RTAS 2004. 10th IEEE Real-Time and Embedded Technology
and Applications Symposium, Toronto, pp. 368–375 (2004)

2. Abdelzaher, T.F., Shin, K.G., Bhatti, N.: Performance guarantees for web server end-systems:
a control-theoretical approach. IEEE Trans. Parallel Distrib. Syst. 13(1), 80–96 (2002)

3. Abdelzaher, T., Stankovic, J., Lu, C., Zhang, R., Lu, Y.: Feedback performance control in
software services. IEEE Control Syst. 23(3), 74–90 (2003)

4. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-adaptive
software systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.)
Software Engineering for Self-Adaptive Systems, pp. 27–47. Springer Berlin/Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02161-9_2

5. Angelopoulos, K., Papadopoulos, A.V., Mylopoulos, J.: Adaptive predictive control for
software systems. In: Proceedings of the 1st International Workshop on Control Theory for
Software Engineering, CTSE 2015, Bergamo, pp. 17–21. ACM (2015)

6. Angelopoulos, K., Souza, V.E.S., Mylopoulos, J.: Capturing variability in adaptation spaces:
a three-peaks approach. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L.,
Pastor López, Ó. (eds.) Proceedings of Conceptual Modeling: 34th International Conference,
ER 2015, Stockholm, 19–22 Oct 2015, pp. 384–398. Springer International Publishing, Cham
(2015). https://doi.org/10.1007/978-3-319-25264-3_28

7. Angelopoulos, K., Papadopoulos, A.V., Silva Souza, V.E., Mylopoulos, J.: Model predictive
control for software systems with cobra. In: Proceedings of the 11th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. SEAMS ’16, Austin, pp.
35–46. ACM, New York (2016). https://doi.org/10.1145/2897053.2897054

8. Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers.
Princeton University Press, Princeton (2008)

9. Babu, S.: Towards automatic optimization of mapreduce programs. In: SoCC, pp. 137–142.
ACM, New York (2010)

10. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. Lect. Notes
Comput. Sci. 5525, 48–70 (2009)

11. Brun, Y., Desmarais, R., Geihs, K., Litoiu, M., Lopes, A., Shaw, M., Smit, M.: A design
space for self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II: International Seminar, Dagstuhl Castle,
24–29 Oct 2010 Revised Selected and Invited Papers, pp. 33–50. Springer, Berlin/Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5_2

12. Cai, K.Y., Cangussu, J., DeCarlo, R.A., Mathur, A.: An overview of software cybernetics. In:
Eleventh Annual International Workshop on Software Technology and Engineering Practice,
Amsterdam, pp. 77–86 (2003)

13. Campi, M.C., Savaresi, S.M.: Direct nonlinear control design: the virtual reference feedback
tuning (VRFT) approach. IEEE Trans. Autom. Control 51(1), 14–27 (2006)

14. Cangussu, J.A.W., Cooper, K., Li, C.: A control theory based framework for dynamic
adaptable systems. In: Proceedings of the 2004 ACM Symposium on Applied Computing
SAC ’04, Nicosia, pp. 1546–1553. ACM, New York (2004). https://doi.org/10.1145/967900.
968209

15. Cheng, B.H., et al.: Software engineering for self-adaptive systems: a research roadmap. In:
Cheng, B.H.C. (eds.) Software Engineering for Self-Adaptive Systems, LNCS, vol. 5525.
Springer, Berlin/New York (2009)

16. Dantzig, G.B., Thapa, M.N.: Linear Programming 1: Introduction. Springer, New York (1997)
17. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second research

roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. Lecture Notes in Computer Science, vol. 7475. Springer,
Berlin/Heidelberg (2013)

https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1007/978-3-319-25264-3_28
https://doi.org/10.1145/2897053.2897054
https://doi.org/10.1007/978-3-642-35813-5_2
https://doi.org/10.1145/967900.968209
https://doi.org/10.1145/967900.968209

2 Self-Adaptation of Software Using Automatically Generated Control-. . . 53

18. de Lemos, R., Garlan, D., Giese, H.: Software Engineering for Self-Adaptive Systems:
Assurances, Dagstuhl Seminar 13511 (2013)

19. Desmeurs, D., Klein, C., Papadopoulos, A., Tordsson, J.: Event-driven application brownout:
reconciling high utilization and low tail response times. In: 2015 International Conference on
Cloud and Autonomic Computing (ICCAC), Cambridge, pp. 1–12 (2015)

20. Diao, Y., Gandhi, N., Hellerstein, J., Parekh, S., Tilbury, D.: Using MIMO feedback control
to enforce policies for interrelated metrics with application to the apache web server. In:
NOMS 2002. 2002 IEEE/IFIP Network Operations and Management Symposium, Florence,
pp. 219–234 (2002)

21. Durango, J., Dellkrantz, M., Maggio, M., Klein, C., Papadopoulos, A., Hernandez-Rodriguez,
F., Elmroth, E., Arzen, K.E.: Control-theoretical load-balancing for cloud applications with
brownout. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), Los
Angeles, pp. 5320–5327 (2014)

22. Filieri, A., Hoffmann, H., Maggio, M.: Automated design of self-adaptive software with
control-theoretical formal guarantees. In: Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, Hyderabad, pp. 299–310. ACM (2014)

23. Filieri, A., Hoffmann, H., Maggio, M.: Automated multi-objective control for self-adaptive
software design. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, pp. 13–24. ACM, New York (2015). https://doi.org/
10.1145/2786805.2786833

24. Filieri, A., Maggio, M., Angelopoulos, K., D’Ippolito, N., Gerostathopoulos, I., Hempel,
A., Hoffmann, H., Jamshidi, P., Kalyvianaki, E., Klein, C., Krikava, F., Misailovic, S.,
Papadopoulos, Alessandro, V., Ray, S., Sharifloo, Amir, M., Shevtsov, S., Ujma, M., Vogel,
T.: Software engineering meets control theory. In: Proceedings of the 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, Florence
(2015). https://hal.inria.fr/hal-01119461

25. Fliess, M., Join, C.: Model-free control. Int. J. Control. 86(12), 2228–2252 (2013)
26. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Computing

Systems. Wiley, New York (2004)
27. Herodotou, H., Babu, S.: Profiling, what-if analysis, and cost-based optimization of mapre-

duce programs. PVLDB 4(11), 1111–1122 (2011)
28. Hoffmann, H., Eastep, J., Santambrogio, M.D., Miller, J.E., Agarwal, A.: Application

heartbeats: A generic interface for specifying program performance and goals in autonomous
computing environments. In: Proceedings of the 7th International Conference on Autonomic
Computing, ICAC ’10, Reston, pp. 79–88. ACM, New York (2010). https://doi.org/10.1145/
1809049.1809065

29. Hou, Z., Jin, S.: Data-driven model-free adaptive control for a class of MIMO nonlinear
discrete-time systems. IEEE Trans. Neural Netw. 22(12), 2173–2188 (2011)

30. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)
31. Kihl, M., Robertsson, A., Wittenmark, B.: Performance modelling and control of server

systems using non-linear control theory. In: J. Charzinski, R.L., Tran-Gia, P. (eds.) Providing
Quality of Service in Heterogeneous Environments Proceedings of the 18th International
Teletraffic Congress – ITC-18, Teletraffic Science and Engineering, vol. 5, pp. 1151–1160.
Elsevier (2003). http://www.sciencedirect.com/science/article/pii/S1388343703802640

32. Klein, C., Papadopoulos, A., Dellkrantz, M., Durango, J., Maggio, M., Arzen, K.E.,
Hernandez-Rodriguez, F., Elmroth, E.: Improving cloud service resilience using brownout-
aware load-balancing. In: 2014 IEEE 33rd International Symposium on Reliable Distributed
Systems (SRDS), Nara, pp. 31–40 (2014)

33. Klein, C., Maggio, M., Årzén, K.E., Hernández-Rodriguez, F.: Brownout: building more
robust cloud applications. In: Proceedings of the 36th International Conference on Software
Engineering, Hyderabad, pp. 700–711. ICSE 2014. ACM (2014)

34. Ljung, L.: System Identification: Theory for the User. Prentice-Hall, Inc., Upper Saddle River
(1986)

https://doi.org/10.1145/2786805.2786833
https://doi.org/10.1145/2786805.2786833
https://hal.inria.fr/hal-01119461
https://doi.org/10.1145/1809049.1809065
https://doi.org/10.1145/1809049.1809065
http://www.sciencedirect.com/science/article/pii/S1388343703802640

54 S. Shevtsov et al.

35. Maggio, M., Klein, C., Årzén, K.E.: Control strategies for predictable brownouts in cloud
computing. In: IFAC Proceedings Volumes, vol. 47, pp. 689–694 (2014)

36. Maggio, M., Papadopoulos, A.V., Filieri, A., Hoffmann, H.: Automated control of multiple
software goals using multiple actuators. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ESEC/FSE 2017, Paderborn, pp. 373–384. ACM, New
York (2017). https://doi.org/10.1145/3106237.3106247

37. Mars, J., Tang, L., Hundt, R., Skadron, K., Soffa, M.L.: Bubble-up: increasing utilization
in modern warehouse scale computers via sensible co-locations. In: Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-44, Porto
Alegre, pp. 248–259. ACM, New York (2011). https://doi.org/10.1145/2155620.2155650

38. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Proactive self-adaptation under uncer-
tainty: a probabilistic model checking approach. In: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ESEC/FSE 2015, Bergamo, pp. 1–12.
ACM, New York (2015). https://doi.org/10.1145/2786805.2786853

39. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Efficient decision-making under uncer-
tainty for proactive self-adaptation. In: 2016 IEEE International Conference on Autonomic
Computing (ICAC), Würzburg, pp. 147–156. IEEE (2016)

40. Moreno, G.A., Papadopoulos, A.V., Angelopoulos, K., Cámara, J., Schmerl, B.: Comparing
model-based predictive approaches to self-adaptation: CobRA and PLA. In: Proceedings of
the 12th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems. SEAMS ’17, Buenos Aires, pp. 42–53. IEEE Press, Piscataway (2017). https://doi.
org/10.1109/SEAMS.2017.2

41. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework,
approaches, and styles. In: Companion of the 30th International Conference on Software
Engineering. ICSE Companion ’08, Leipzig, pp. 899–910. ACM, New York (2008). https://
doi.org/10.1145/1370175.1370181

42. Rizvandi, N., Taheri, J., Zomaya, A.: On using pattern matching algorithms in mapreduce
applications. In: ISPA, pp. 75–80 (2011)

43. Sayyad, A.S., Menzies, T., Ammar, H.: On the value of user preferences in search-based
software engineering: a case study in software product lines. In: Proceedings of the 2013
International Conference on Software Engineering. ICSE ’13, San Francisco, pp. 492–501.
IEEE Press, Piscataway (2013). http://dl.acm.org/citation.cfm?id=2486788.2486853

44. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible, scalable
schedulers for large compute clusters. In: Proceedings of the 8th ACM European Conference
on Computer Systems. EuroSys ’13, Prague, pp. 351–364. ACM, New York (2013). https://
doi.org/10.1145/2465351.2465386

45. Shevtsov, S., Weyns, D.: Keep it simplex: satisfying multiple goals with guarantees in control-
based self-adaptive systems. In: 24th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering. FSE 2016, Seattle (2016)

46. Shevtsov, S., Iftikhar, M.U., Weyns, D.: SimCA vs ActivFORMS: comparing control- and
architecture-based adaptation on the TAS exemplar. In: Proceedings of the 1st International
Workshop on Control Theory for Software Engineering, CTSE 2015, Bergamo, pp. 1–8.
ACM, New York (2015). https://doi.org/10.1145/2804337.2804338

47. Shevtsov, S., Berekmeri, M., Weyns, D., Maggio, M.: Control-theoretical software adaptation:
a systematic literature review. IEEE Trans. Softw. Eng. 44(8), 784–810 (2018)

48. Shevtsov, S., Weyns, D., Maggio, M.: Handling new and changing requirements with
guarantees in self-adaptive systems using SimCA. In: Proceedings of the 12th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems. SEAMS ’17,
Buenos Aires, pp. 12–23. IEEE Press, Piscataway (2017). https://doi.org/10.1109/SEAMS.
2017.3

49. Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness require-
ments for adaptive systems. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS ’11, Waikiki, pp. 60–69.
ACM, New York (2011). https://doi.org/10.1145/1988008.1988018

https://doi.org/10.1145/3106237.3106247
https://doi.org/10.1145/2155620.2155650
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1109/SEAMS.2017.2
https://doi.org/10.1109/SEAMS.2017.2
https://doi.org/10.1145/1370175.1370181
https://doi.org/10.1145/1370175.1370181
http://dl.acm.org/citation.cfm?id=2486788.2486853
https://doi.org/10.1145/2465351.2465386
https://doi.org/10.1145/2465351.2465386
https://doi.org/10.1145/2804337.2804338
https://doi.org/10.1109/SEAMS.2017.3
https://doi.org/10.1109/SEAMS.2017.3
https://doi.org/10.1145/1988008.1988018

2 Self-Adaptation of Software Using Automatically Generated Control-. . . 55

50. Souza, V.E.S., Lapouchnian, A., Mylopoulos, J.: (Requirement) evolution requirements
for adaptive systems. In: Proceedings of the 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS ’12, Zurich, pp. 155–164.
IEEE Press, Piscataway (2012). http://dl.acm.org/citation.cfm?id=2666795.2666820

51. Weyns, D.: Software engineering of self-adaptive systems: an organised tour and future
challenges. In: Cha, S., Taylor, R.N., Kang, K.C. (eds.) Handbook of Software Engineering.
Springer, Cham (2018)

52. Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke, J.,
Andersson, J., Giese, H., Göschka, K.M.: On patterns for decentralized control in self-
adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software
Engineering for Self-Adaptive Systems II: International Seminar, Dagstuhl Castle, 24–29 Oct
2010 Revised Selected and Invited Papers, pp. 76–107. Springer, Berlin/Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5_4

53. Weyns, D., Bencomo, N., Calinescu, R., Camara, J., Ghezzi, C., Grassi, V., Grunske, L.,
Inverardi, P., Jezequel, J.M., Malek, S., Mirandola, R., Mori, M., Tamburrelli, G.: Perpetual
assurances for self-adaptive systems. In: de Lemos, R., Garlan, D., Ghezzi, C., Giese, H. (eds.)
Software Engineering for Self-Adaptive Systems III: Assurances, Lecture Notes in Computer
Science, vol. 9640. Springer, Cham (2017)

54. Wittenmark, B., Åström, K., Årzén, K.E.: Computer control: an overview. Technical report
(2002)

55. Zhu, X., Wang, Z., Singhal, S.: Utility-driven workload management using nested control
design. In: American Control Conference, Minneapolis, p. 6 (2006)

56. Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Padala, P., Shin, K.: What does
control theory bring to systems research? SIGOPS Oper. Syst. Rev. 43(1), 62–69 (2009).
https://doi.org/10.1145/1496909.1496922

http://dl.acm.org/citation.cfm?id=2666795.2666820
https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1145/1496909.1496922

Chapter 3
Challenges in Engineering Self-Adaptive
Authorisation Infrastructures

Lionel Montrieux, Rogério de Lemos, and Chris Bailey

Abstract As organisations expand and interconnect, authorisation infrastructures
become increasingly difficult to manage. Several solutions have been proposed,
including self-adaptive authorisation, where the access control policies are dynam-
ically adapted at run-time to respond to misuse and malicious behaviour. The
ultimate goal of self-adaptive authorisation is to reduce human intervention, make
authorisation infrastructures more responsive to malicious behaviour, and manage
access control in a more cost-effective way. In this chapter, we scope and define
the emerging area of self-adaptive authorisation by describing some of its develop-
ments, trends, and challenges. For that, we start by identifying key concepts related
to access control and authorisation infrastructures and provide a brief introduction to
self-adaptive software systems, which provides the foundation for investigating how
self-adaptation can enable the enforcement of authorisation policies. The outcome
of this study is the identification of several technical challenges related to self-
adaptive authorisation, which are classified according to the different stages of a
feedback control loop.

3.1 Introduction

A critical concern for organisations is the assurances that need to be provided
regarding confidentiality, integrity, and availability of their computer-based
resources. To provide such assurances, organisations use access control to protect

L. Montrieux (�)
National Institute of Informatics, Tokyo, Japan
e-mail: lionel.montrieux@zalando.de

R. de Lemos
University of Kent, Canterbury, UK

University of Coimbra, Coimbra, Portugal
e-mail: R.Delemos@kent.ac.uk

C. Bailey
University of Kent, Canterbury, UK

© Springer Nature Singapore Pte Ltd. 2019
Y. Yu et al. (eds.), Engineering Adaptive Software Systems,
https://doi.org/10.1007/978-981-13-2185-6_3

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2185-6_3&domain=pdf
mailto:lionel.montrieux@zalando.de
mailto:R.Delemos@kent.ac.uk
https://doi.org/10.1007/978-981-13-2185-6_3

58 L. Montrieux et al.

against unauthorised access. Regardless of adopting a fine-grained approach to
access control, abuse of access is still possible. Any form of access, no matter
how restrictive, presents the risk of attacks due to uncertainty in user behaviour. To
accommodate for this risk, organisations employ a range of methods [32] to monitor
and audit access within their systems and resources.

Traditionally, human administrators are relied upon to actively identify and drive
changes in access control in response to detected abuse, natural organisational
change, or identified errors in the criteria for access. It is challenging for human
administrators to maintain a true awareness of the configuration of access, partic-
ularly within a run-time environment. With no complete view of access, obtaining
assurances [21] against changes made to mitigate the abuse of access is limited. This
potentially enables erroneous changes that cause a greater impact to the organisation
over identified abuse. In addition, and as evident in case studies of historic insider
attacks [11], the use of human administrators alone is inefficient in mitigating abuse
in a timely manner. Improving on access control methodologies is one solution, yet
such approaches [7, 25, 31, 42] are unable to actively mitigate abuse, since they are
constrained to a static definition of the criteria for access control at run-time.

Implementations of authorisation infrastructures [14] must be capable in han-
dling the dynamic aspect of risk at run-time, driven by the uncertainty in user
behaviour. It is therefore necessary for such systems to actively observe how access
rights are being used, in order to infer whether the current criteria and assignment of
access are enabling a user to conduct malicious activity. A promising solution for the
provision of dynamic support to authorisation infrastructures is the incorporation of
self-adaptation.

Self-adaptive systems are systems that are able to modify their behaviour and/or
structure in response changes that occur to the system itself, its environment, or even
its goals [17]. Applying self-adaptive techniques to authorisation infrastructures
enables the infrastructure to observe, reason, and act on its own configuration of
access control. Through the use of a feedback loop [10], it is possible to employ
a clear separation of concerns between the decision for access, and decision for a
management change, therefore reducing the complexity in the criteria for access that
dynamic access control approaches introduce.

The main contribution of this chapter is identification of several technical chal-
lenges associated with the self-adaptation of authorisation infrastructures. Another
contribution is related to how the self-adaptation of authorisation infrastructures
should be structured in order to handle parametric adaptations, i.e. the specification
of access rights of subjects to resources, and structural adaptations, i.e. the enforce-
ment of those specifications by controlling the subject’s access to a resource.

The rest of chapter is organised as follows. Section 3.2 presents the concepts and
terminology related to access control and authorisation infrastructures and provides
a brief introduction to self-adaptive software systems. We review the related work
on dynamic access control in context of self-protection in Sect. 3.3. Section 3.4
identifies, in terms of the key stages of a feedback control loop, like the MAPE-
K loop, some challenges associated with the engineering self-adaptive authorisation
infrastructures. Finally, Sect. 3.5 concludes the chapter and indicates directions for
future work.

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 59

3.2 Background

The focus of this chapter is the application of self-adaptation in the management
of privileges and the rendering of access control decisions. The goal is to reduce
the need for human intervention while reducing cost and enabling systems to
robustly adapt when responding to change. As such, the following section discusses
some background topics: access control models, authorisation infrastructures, static
and dynamic access control, self-adaptive authorisation infrastructures, and insider
threats that we employ as a motivation for managing access control.

3.2.1 Access Control Models

In the literature, the terms authorisation and access control are sometimes used
interchangeably. In this chapter, we define them as follows.

Definition 3.1 (Authorisation) Authorisation refers to the specification of whether
a subject has access to a resource.

Definition 3.2 (Access control) Access control refers to the enforcement of autho-
risation by controlling (i.e. granting or denying) subject’s access to a resource.

The goal of access control is to prevent unauthorised access to protected
resources. A resource could be anything from a software system (e.g. web appli-
cation and database) to an electronic device (e.g. electronic door lock and mobile
phone). Through the specification of authorisation, captured in terms of policies, an
organisation garners a certain level of protection from unwanted access.

Authorisation embodies two concepts: identities and permissions. An identity is
a digital representation of a subject (a user), where a subject could be a human
being, a system, or even a process [7]. An identity contains information about
the subject, particularly relevant for authentication [43], where a subject must
identify themselves, for example, entering in a username and password or use of
biometrics [47]. Most importantly, an identity contains a set of the subject’s access
rights (also referred to as privileges [13]). Access rights, as the name suggests,
represent a subject’s right of access to a resource, used in accordance to a set of
permissions. Once a subject obtains the required access right(s) to a resource, the
subject is said to be authorised.

Access control models classify and define how permissions are expressed, who
can define permissions, and what an access right looks like [37]. Arguably, the
most adopted access control model in industry is the Role-based Access Control
(RBAC) model [35], where recently 50% of the 150 companies surveyed by the
National Institute of Standards and Technology (NIST) had adopted RBAC by
2010 [39]. RBAC introduced the notion of roles, whereby a role is assigned a set
of permissions that enable access to a resource. Finally, the Attribute-based Access
Control (ABAC) model [57] presents a more generic view of the RBAC model,
where instead of roles, attributes (a type – value tuple) are used in order to collate
and assign permissions.

60 L. Montrieux et al.

3.2.2 Implementing Access Control Models

Traditionally, access control models have been implemented as bespoke components
of information systems. A problem with this approach is the heterogeneous qualities
of resources an organisation may wish to protect, often requiring each resource (e.g.
a web application) to implement its own form of access control.

A solution to this problem is implementing access control models in a service-
orientated way, as demonstrated by the eXtensible Access Control Markup Lan-
guage [38]. XACML is a popular standard for implementing ABAC and RBAC
models and provisions a reference architecture in which to guide implementation.
XACML standardises the way in which identities and permissions are defined,
communicated, and assessed in order for its reference architecture to render access
control decisions. It does this through the use of authorisation policies (to express
identities, privileges, and permissions as ‘attributes’ and ‘rules’) and the use of
standardised protocols (e.g. SAML [37]). Authorisation policies embody the ‘autho-
risation’ aspect of an access control model, whereas the protocols support ‘access
control’ via retrieval of privileges and deliverance of access control decisions.

XACML’s reference architecture describes a set of components that exist to
facilitate access to protected resources. The reference architecture defines a four-tier
process to access control: Enforce requests and decisions to access, Decide upon
access, Support retrieval of credentials and policies, and Manage administration
of policies. This process is implemented through a set of conceptual components
that when combined achieves access control (Table 3.1). These components are the
enabling factors for controlling access, whereby in real systems that implement such
components, access control can easily be monitored and managed. A key selling
point of the XACML reference architecture is the separation between access control
and resources, where access control primarily becomes a service that resources and
users can rely upon.

Table 3.1 XACML components

Component Description

Policy enforcement point (PEP) Makes access requests and enforces

access decisions

Policy decision point (PDP) Evaluates access requests against policies

to provide access decisions

Policy information point (PIP) Contains subject identity information

(attributes)

Policy retrieval point (PRP) Contains ABAC authorisation policies

to govern access decisions

Policy administration point (PAP) The source of authority/system that

issues access control policies

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 61

The XACML reference architecture has arguably sparked the rise of access con-
trol as a service, where we refer to such solutions as authorisation infrastructures.

3.2.3 Authorisation Infrastructures

An authorisation infrastructure [14] is a loose term for a collection of services and
mechanisms that implement an access control model. There are a number of varying
terms for authorisation infrastructures, such as the ones defined by authentication
and authorisation infrastructures (AAIs) [30], XACML’s reference authorisation
architecture [38], and privilege management infrastructures [13]. We adopt the
following rather simple definition for authorisation infrastructure.

Definition 3.3 (Authorisation Infrastructure) Authorisation infrastructures facil-
itate the management of identities, privileges and policies, and render access control
decisions.

The key facet of authorisation infrastructures is the use of services that provide
access control external to an organisation’s resources. This implies a separation of
duties between provisioning of services by the resources and the assessment of right
to access [14, 30, 38]. Specifically, access control is implemented by the following
key services:

Identity services responsible for the management of subject access rights, such as
access rights and subject identifiers.

Authorisation services responsible for the evaluation of access rights against
access control rules and decision of access.

The combination of both identity services and authorisation services should
conform to an access control model (e.g. RBAC [35]). Based on existing implemen-
tations [14, 30, 38], identity services may authenticate subjects and maintain, assign,
and release a subject’s access rights (i.e. privileges) to authorisation services based
on policies (e.g. Shibboleth’s attribute release policy [33]). Examples of an identity
service include directory services, such as the Lightweight Directory Access Proto-
col (LDAP) [28]. Other forms of identity services include credential issuing services
(such as SimpleSAMLphp [49] and the Shibboleth identity provider [33]). These
types of identity services not only maintain a subject’s access rights (privileges) but
can be configured to decide what access rights can be issued and released to given
services across multiple domains. Authorisation services may validate and evaluate
a subject’s access rights against a set of policies (e.g. PERMIS’s access control and
credential validation policies [46]). Examples of authorisation services include the
Axiomatics Policy Server [1], PERMIS stand-alone authorisation service [46] (both
of which utilise the XACML standard to define access control policies), and the
community authorisation service (CAS) [45].

Figure 3.1 defines a general model of an authorisation infrastructure that abstracts
away from its varying implementations. With reference to the flow of communica-

62 L. Montrieux et al.

Fig. 3.1 General authorisation infrastructure model

tion to obtain authorisation, subjects (users) authenticate (1) with a given identity
service that maintains a set of access rights for each subject. The authenticated
subject can then request (2) access to a particular resource. The resource’s policy
enforcement point (PEP) communicates with an authorisation service (3), which can
first validate (4) the subject’s set of access rights and then decide upon access. The
authorisation service sends a response back to the PEP with a message indicating
whether authorisation should be granted or denied (5).

As already mentioned, authorisation infrastructures rely on policies to derive
access control decisions. Authorisation infrastructures may utilise a variety of
policy types, where an instance of a policy type will express rules relevant to
a particular service within an authorisation infrastructure. For example, policies
within authorisation services are used to define the constraints of access (i.e. RBAC
role permission assignments), whereas policies and subject attribute repositories
(e.g. LDAP [28]) within identity services contain or define what subjects have in
terms of assigned access. With this in mind, there are four types of authorisation
policies, which are defined as follows.

Access Control Policy An access control policy specifies the security controls of
what credentials a subject must own in order to gain access to a set of protected
resources, what obligations they must conform to, and what conditions they must
meet.

Credential Validation Policy A credential validation policy defines what creden-
tials an identity service is trusted to issue.

Delegation Issuing Policy A delegation issuing policy defines the trust in the
extent of access a subject can delegate unto others.

Credential/Attribute Release Policy A credential/attribute release policy
defines what information an identity service will release on behalf of a subject to
any requesting authorisation services or resources.

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 63

Associated with policies and access rights is the notion of source of authority
(SOA) and issuer [14]. A source of authority is the owner of a resource that
establishes the rules of access (as policies) to their resources. An issuer is the
identity service or person responsible for issuing to a subject a set of access rights,
which are either stored in an attribute repository as unsigned or signed attributes [24]
or are generated at time of request [37].

Lastly, an additional quality of authorisation infrastructures is the ability to oper-
ate in federated environments (i.e. components of an authorisation infrastructure
become component systems managed across multiple organisations). This is often
referred to as federated identity management, or federated access control [15, 22,
26, 53], and enables the sharing of access across multiple management domains
(organisations). Various access control models are suitable for federated access
control, demonstrated by several implementations [14, 33, 49].

3.2.4 Static and Dynamic Access Control

We have seen how access control is a key element when implementing authorisa-
tion infrastructures. However, one thing not addressed is the distinction between
traditional (static) approaches to access control, to more recent (dynamic) advanced
approaches. In a static approach to access control, a user’s access rights are assessed
against a set of security controls in order to determine access (e.g., RBAC [35]). This
is limited since at time of access no additional context is assessed, such as the user’s
historical access, their location, time of day, or other external factors. With this in
mind, static approaches are presumptuous in that, should a user have the necessary
access rights, they should be awarded access.

Arguably, it is not always the case that access should be granted despite the user
owning the necessary access rights. As such, there is a growing focus on dynamic
approaches to access control that allow organisations to define a finer grain of
control over access in response to varying risks, threats, and environment states.
The definitions for static and dynamic access control are as follows.

Definition 3.4 (Static Access Control) Static access control refers to the evalua-
tion of a subject’s access rights against a set of immutable authorisation policies for
deciding the subject’s access to a resource, regardless of the context in which the
request is made and evaluated.

Definition 3.5 (Dynamic Access Control) Dynamic access control refers to the
evaluation of a subject’s access rights against a set of authorisation policies for
deciding the subject’s access to a resource, taking into account the context in which
the request is made and evaluated.

Dynamic access control differs from static access control because it is capable
of employing various security controls that are related to changes in the state of
the environment or protected resources and user activity. As such, an authorisation

64 L. Montrieux et al.

policy may contain a diverse set of access control rules to accommodate a wide
variety of scenarios (e.g. a rise in national security threat levels [31]). Appropriate
access control rules are applied to requests for access in a mutually exclusive
manner, given the context (i.e. state of the environment, such as user activity or
time of day) that surrounds the request.

The overall goal of dynamic access control is to reduce human intervention,
make access control more responsive to attacks, and more cost effective. Several
techniques have been proposed, including resource usage [42], temporal proper-
ties [25], risk [31], and trust [8, 48]. For example, in usage control [42], a perception
of user activity is maintained over time and evaluated against thresholds of usage
(e.g. a staff member may not print more than 100 pages per day), alongside
traditional access control rules (e.g. a user must be assigned the role of staff to
print). Additionally, ABAC can be seen as a dynamic access control model given its
ability to define permissions that can be valid for a multitude of system states.

3.2.5 Self-Adaptive Authorisation Infrastructures

With the goal of reducing human intervention, self-adaptation can be incorporated
into existing authorisation infrastructures, thus enabling these infrastructures to
manage themselves, at run-time, the definition of authorisation policies and process
of access control. In particular, the focus of this chapter is how self-adaptation can be
integrated with authorisation infrastructures and how authorisation infrastructures
can self-protect against insider threats.

3.2.5.1 Self-Adaptation

Self-adaptation enables a system to adjust itself in response to changes that might
affect itself or its environment. Self-adaptive systems can be defined as follows.

Definition 3.6 (Self-Adaptive Systems [17]) ‘Systems that are able to modify their
behaviour and/or structure in response to changes that occur to the system itself, its
environment, or even its goals’.

Although there are several reference models for self-adaptive systems [27, 29,
41], most of them share the common use of a feedback loop [10, 18, 20]. In this
chapter, we adopt as a feedback control loop, the Monitor, Analyse, Plan, Execute –
Knowledge (MAPE-K) reference model [27], as shown in Fig. 3.2. In this figure, the
Controller, which embodies the stages of the MAPE-K reference model, observes
(via probes) and adapts (via effectors) a target system – represented as red arrows.
The Monitor stage obtains the state of the target system and its environment.
The Analyse stage analyses the state of the target system and its environment in
order, first, to decide whether adaptation should be triggered (solution domain) and,
second, to identify the appropriate courses of action in case adaptation is required

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 65

Monitor Execute

Analyse
(Problem
Domain)

Analyse
(Solution
Domain)

Plan
(Decision
Maker)

Plan
(Plan

Synthesis)

Knowedge
(Models)

System

Target System

Environment

Controller

Fig. 3.2 Modified version of the MAPE-K reference model for autonomic computing [27]

(problem domain). The Plan stage, first, selects amongst alternative course of action
those that are the most appropriate (decision-maker) and, second, generates the
plans that will realise the selected course of action (plan synthesis). The Execute
stage executes the plans that deploy the course of action for adapting the system.
Finally, Knowledge represents any information related to the perceived state of the
target system and environment that enables the provision of self-adaptation, which
is shared by all the stages.

Applying the MAPE-K reference model, we view an authorisation infrastructure
as the target system, and all the rest, including the users and protected resources, as
the environment. The role of a controller1 seeks to monitor both the target system
and the environment in which to drive changes at run-time within the authorisation
infrastructure. With this in mind, self-adaptation is capable of extending traditional
approaches to access control, where such approaches become capable to respond
to unplanned states, evolve to changing user needs, and maintain assurances in
confidentiality, integrity, and availability of resources.

1Also referred to as the self-adaptive layer.

66 L. Montrieux et al.

3.2.5.2 Self-Adaptive Authorisation and Self-Adaptive Access Control

Self-adaptive authorisation has already been proposed by Bailey et al [2–5], where
legacy-based authorisation infrastructures have been shown to mitigate, at run-time,
attacks via the adaptation of authorisation (e.g. adaptation of authorisation policies
and subject privileges). We define self-adaptive authorisation as follows.

Definition 3.7 (Self-Adaptive Authorisation) Self-adaptive authorisation refers
to the run-time adaptation of the specification of whether a subject has access to
resources.

The incorporation of self-adaptation into authorisation has highlighted a number
of challenges that this chapter aims to address, including the engineering of self-
adaptive authorisation infrastructures and practicalities of operating such systems at
run-time. First, it is important to identify the differences between static approaches
to access control (i.e. traditional, such as RBAC), dynamic approaches (i.e. adaptive,
such as risk based), and self-adaptive ones.

Let us consider a subject requesting access to a resource outside of normal work-
ing hours, who then abuses such access in order to jeopardise the confidentiality of
a resource. A static approach (i.e. static access control) will evaluate access based
on purely the subject’s access rights alone, without considering the time of day, or
the subject’s activity. A dynamic approach (i.e. dynamic access control) may select,
from a pre-existing set of access control rules, a rule applicable for that time of day,
using environmental attributes and the subject’s access rights. On the other hand,
a self-adaptive approach may, at run-time, generate, modify, or remove the active
set of access control rules (e.g. deploying a new authorisation policy or revoking a
set of user access rights) should a user be detected while abusing their access rights
outside of normal working hours. Additionally, modifications instructed by a self-
adaptive approach are based on a maintained perception of state of its target system
and its environment.

Self-adaptive authorisation alone has some limitations. Specifically, it is lim-
ited to only mitigating attacks (e.g. insider threats) within the boundaries of an
authorisation infrastructure’s implemented access control model, where adaptation
is primarily parametric. Should services of an authorisation infrastructure suffer an
attack, or the implemented access control model becomes vulnerable, an additional
scope of adaptation is needed. As such, it is important to address the possibility of
self-adaptive access control, which we define as follows.

Definition 3.8 (Self-Adaptive Access Control) Self-adaptive access control refers
to the run-time adaptation of the enforcement of authorisation by controlling the
subject’s access to a resource.

Figure 3.3 emphasises the association between the self-adaptive authorisation
and self-adaptive access control, which allow us to mitigate attacks more effectively
and efficiently, depending on the type of attack observed. Authorisation is the
collection of policies that govern access, while access control is the process in
how an access decision is achieved. From the diagram, we can see a distributed

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 67

Environment

Controller

Authorisation Infrastructure

Self-adaptive Authorisation

Controller

Self-adaptive Access Control

Authorisation
Policies

Access Control
ModelsConforms

Fig. 3.3 Self-adaptive authorisation and self-adaptive access control

control topology of two controllers operating together in mitigating potential attacks
originating from the environment of the authorisation infrastructure. The controller
associated with self-adaptive authorisation observes activity of the authorisation
infrastructure and its environment in order to gain a perception of malicious
behaviour with relevance to the current state of authorisation policies. Should
malicious behaviour be observed, this controller can adjust deployed authorisation
policies to mitigate attacks. Similarly, the controller associated with self-adaptive
access control may observe the authorisation infrastructure and its environment in
order to identify if the current state of the employed access control model is fit for
purpose. For example, external threats may warrant additional steps in validating
subject credentials, and as such, the controller may deploy credential validation
services [14] between policy decision and policy enforcement points [38]. Based
on the above, we define self-adaptive authorisation infrastructures as follows.

Definition 3.9 (Self-Adaptive Authorisation Infrastructure) Self-adaptive
authorisation infrastructures refer to the run-time adaptation of the collection of
authorisation policies and their enforcement.

3.2.5.3 Self-Protection

Self-protection is of particular relevance since the goal of this work is to manage
access control in order to mitigate abuse of access. Self-protecting systems can be
defined as follows.

Definition 3.10 (Self-Protecting System [59]) Self-protecting systems are a class
of autonomic systems capable of detecting and mitigating security threats at run-
time.

68 L. Montrieux et al.

There are various self-protective solutions that seek to detect and mitigate
malicious behaviour. However, few works exist that are able to concretely address
self-protection with a view to mitigate the abuse of access. While many systems
appear to be self-protective, such as intrusion response systems [34, 51, 52], many
are only adaptive and lack an awareness of ‘self’. A self-protecting system is clearly
demonstrated by Yuan et al.’s architectural-based self-protection framework [58],
where a system maintains a modelled state of its own system architecture in which
to guide mitigation of threats.

3.2.6 Insider Threats

Insider threat refers to an organisation’s risk of attack by their own users or
employees. It is fast becoming a prominent topic that organisations need to address,
as highlighted by recent scandals in the media [6, 9, 54]. This is particularly relevant
to access control, where the active management of authorisation has the potential to
mitigate and prevent users from abusing their own access rights to carry out attacks.
The CERT Guide to Insider Threats (Cappelli et al.) [11] defines malicious insider
threats as the following.

Definition 3.11 (Insider Threat [11]) ‘A malicious insider threat is a current or
former employee, contractor, or business partner who has or had authorised access
to an organisation’s network, system, or data and intentionally exceeded or misused
that access in a manner that negatively affected the confidentiality, integrity, or
availability of the organisation’s information or information systems’.

Capelli et al. [11] classify three types of insider threat: sabotage, where malicious
users attempt to damage or corrupt organisational resources; theft of intellectual
property, where organisational resources are stolen and distributed; and fraud, where
activity is covered up or information is used to commit crimes, such as falsifying
money transfers.

A common characteristic of insider threat is that malicious insiders utilise their
knowledge of their organisation’s systems, and their assigned access rights, to
conduct attacks. This places a malicious insider in a fortuitous position, whereby
the insider (as an authorised user) can cause far greater damage than an external
attacker, simply due to their access rights [12]. Such form of attack is representative
of the attacks that many organisations consider to be most vulnerable from, being
the abuse of privileged access rights by the employees of an organisation [40].

Unless additional measures are put into place, malicious insiders can abuse
existing security measures, where current approaches fail to robustly adapt and
respond to the unpredictable nature of users. For example, traditional approaches
to access control assume that if a user has authenticated, and has the required access
rights, access to resources should be given. While there are a number of novel
techniques that enable the detection of insider threat [23, 36, 50], there is little
research that utilises such techniques within an automated setting. Many existing
approaches require analysis by human agents to identify and execute resultant
actions to mitigating attacks.

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 69

3.3 Related Work

In this section, we review some related work on self-protection in the context of
detection and mitigation of insider threat.

Self-protecting systems are a specialisation of self-adaptive systems with a goal
to mitigating malicious behaviour. In the following, we discuss the few works that
have demonstrated self-protection within the context of mitigating insider attacks.
In particular, we discuss two self-protection approaches based on the state of access
control and one approach based on the state system architecture.

One of the approaches to self-protection via access control is SecuriTAS [44].
SecuriTAS is a tool that enables dynamic decisions in awarding access, which is
based on a perceived state of the system and its environment. SecuriTAS is similar
to dynamic access control approaches, such as RADac [31], in that it has a notion
of risk (threat) to resources and changes in threat leads to a change in access
control decisions. However, it furthers the concepts in RADac to include the notion
of utility, whereby given a perceived state of the system and its environment, the
optimum set of security controls are used. This is achieved through an autonomic
controller that updates and analyses a set of models (that define system objectives
and vulnerabilities, threats to the system, and importance of resources in terms
of a cost value) at run-time. The autonomic controller deploys optimal security
controls (i.e. access control constraints) within the system, changing the conditions
of access. A novel aspect of this work is that it is aimed towards physical security,
whereby a resource (e.g. a computer terminal or handheld device) is stored within
an office (also considered to be a resource), for example. SecuriTAS may change
the conditions of access to the office based on the presence of high-cost resources
or the presence of highly authorised staff.

Another form of self-protection in access control is positioned by SAAF [4], a
Self-Adaptive Authorisation Framework. SAAF’s goal is to make existing autho-
risation infrastructures self-adaptable, where an organisation can benefit from the
properties of dynamic access control without the need to adopt new access control
models. This is achieved through a globally centralised autonomic controller that
monitors the distributed services of an authorisation infrastructure to build a
modelled state of access at run-time (i.e. deployed access control rules, assigned
subject privileges, and protected resources). Malicious user behaviour observed
by a SAAF controller is mitigated through the generation and deployment of
authorisation policies at run-time, preventing any identified abuse from continuing.
Adaptation at the model layer enables assurances and verification that abuse can
no longer continue. In addition, model transformation has been shown to generate
authorisation policies from an abstract model of access. This has the potential to
enable the generation of policies specific to many different implementations of
access control.

The main difference between SecuriTAS and SAAF is that SecuriTAS posi-
tions its own bespoke access control model and authorisation infrastructure that
incorporates self-adaptation by design. SAAF, on the other hand, is a framework

70 L. Montrieux et al.

that describes how existing access control models and authorisation infrastructures
can be made self-adaptive and, as such, configured to actively mitigate insider
threat. With that said, both approaches demonstrate an authorisation infrastructure’s
robustness in mitigating insider attacks, by ensuring that authorisation remains
relevant to system and environment states (and preventing continuation of attacks
by adaptation of security controls).

In contrast to self-protection via access control, architectural-based self-
protection (ABSP) [58] presents a general solution to detection and mitigation
of security threats, via run-time structural adaptation. Rather than reason at the
contextual layer of ‘access control’, ABSP utilises an architectural model of
the running system to identify the extent of impact of identified attacks. Once
attacks or security threats have been assessed, a self-adaptive architectural manager
(Rainbow [19]) is used to perform adaptations to mitigate the attack. One adaptation
example the approach offers is to throttle network connections to a server, in order
to disrupt ongoing attacks. Another example is the deployment of application
guards where a protective wrapper is deployed around architectural components
(e.g. a web server). These provide mitigation measures that improve upon the
integrity of architectural components (i.e. the encryption of session ids susceptible
to hijacking). ABSP shares a number of similarities with intrusion response and
prevention systems, particularly with the scope of adaptations that ABSP can
perform (e.g. structural adaptation against network devices and connections).
However, because ABSP maintains a notion of ‘self’, it is able to reason about
the impact of adaptations and provide assurance over adaptation before adapting its
target system.

3.4 Challenges in Engineering Self-Adaptive Authorisation
Infrastructures

In this section, we identify some challenges for engineering self-adaptive authori-
sation infrastructures in the context of the MAPE-K loop. For each of the stages of
the MAPE-K loop, we discuss what are the challenges specifically associated with
self-adaptive authorisation infrastructures, looking, in particular, into issues related
to insider threats. For example, what types of probes are needed for the Monitor
stage, how to generate dynamic plans in the Plan stage, and how to perform policy
updates in Execution, etc. For each of the challenges, we identify and describe the
challenge and discuss their relevance in the context of authorisation infrastructures
regarding insider threats.

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 71

3.4.1 Monitor

The size of what needs to be monitored and the ability of the monitoring to adapt its
own probes and gauges are the two dimensions that will influence the complexity of
the Monitor stage. Since self-adaptive authorisation infrastructures have no control
over their environment, it is impossible to foresee all the environment changes
that might affect the system. Some changes can easily be detected by the probes
and gauges of the self-adaptive authorisation infrastructure, while some others can
remain oblivious if the appropriate probes and gauges are not provided. In order to
avoid the risk of the infrastructure missing important information, it is necessary to
dynamically adapt (1) what needs to be monitored and (2) the type of probes and
gauges required.

3.4.1.1 Active Monitoring

With passive monitoring, static probes and gauges are set up at deployment time, to
monitor the authorisation infrastructure and its environment. The probes and gauges
are static since they cannot be redeployed or removed at run-time, nor can they be
reconfigured.

While it may be tempting to monitor a wide range of environment resources,
monitoring comes at a cost. It has an impact on performance, and may affect
other requirements, such as the users’ privacy. Within a changing self-adaptive
authorisation infrastructure and its environment, the right balance between data
collection and performance or privacy is likely to evolve.

Challenge The challenge is the provision of active (or proactive) monitoring for
reducing the amount of traffic related to monitoring considering that some of
the analysis can be performed by the probes and gauges themselves. Moreover,
proactive monitoring requires the availability of smart probes and gauges, able to
adapt to what they monitor.

Relevance The key motivation for proactive monitoring in self-adaptive authori-
sation infrastructures is to make dynamic access control more resilient to changes,
thereby allowing the infrastructure to better detect and react to insider threats. The
detection of insider threats relies on monitoring a wide range of resources from the
environment of the authorisation service with the purpose of profiling the status and
activity of subjects inside the organisation. As the monitoring might be outside the
ownership of the authorisation service, special probes need to be synthesised and
deployed that might be constrained by privacy issues, for instance.

72 L. Montrieux et al.

3.4.1.2 Run-Time Synthesis of Probes and Gauges

The synthesis of probes and gauges at run-time is one way of achieving active
monitoring. The decision to synthesise probes and gauges should not be restricted
to the Monitor stage of the MAPE-K loop; other stages may well require further
data regarding the system or its environment. The synthesis, configuration, and
deployment of probes and gauges should be the responsibility of the Monitoring
stage, but it should be supported by different control loop.

Challenge The challenge is the ability to synthesise probes and gauges at run-time,
in response to new or emerging attacks. These probes and gauges, once deployed,
should improve the resilience of the self-adaptive authorisation infrastructure
against unexpected changes.

Relevance The run-time synthesis and deployment of probes and gauges in self-
adaptive authorisation infrastructures can help to cope with the unpredictable nature
of an attack. There are no guarantees that what is being monitored is sufficient to
identify a whole range of attacks, hence the need to autonomously synthesise and
deploy a probe or a gauge that would be able to examine novel system attributes.

3.4.1.3 Mutating Gauges

Mutating gauges are gauges that are able to change themselves, either randomly or
guided, in order to identify unknown behavioural patterns that might be related to an
attack. If the monitoring system needs to have the capability to detect autonomously
previously unknown patterns of attack, one way to enable this is to generate new
detectors by mutating existing ones.

Challenge The challenge is to generate and deploy these mutating gauges for
examining real-time or past data to identify unexpected interactions that an autho-
rised subject might have with the system being protected. These mutating gauges
can be used to provide additional evidence, with some degree of confidence, that an
attack is, or has been, taking place.

Relevance Since the environment of authorisation infrastructures is dynamic and
unpredictable, one should not expect to know about all possible attacks before
deploying the system. The ability to deploy mutating gauges would enable the
detection of new forms of attack by simply looking for unknown anomalies, and
this would be enabled by the random nature of these gauges, i.e. there is no implicit
expectation of what they should be able to detect. Let’s consider the case in which
a gauge monitors the access to a service by authorised users. A possible change in
the environment of this service is the deployment of a new version of the server
providing the service, and this might result in changing the format of the logs that
the gauge is supposed to monitor. Either the original gauge becomes ineffective, or
it needs to be manually reconfigured. Alternatively, once a change is detected in the
log format, a mutating gauge may be able to automatically adapt itself in order to

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 73

understand the new format. Another possible usage of mutating gauges would be to
enable the perpetual analysis of logs in order to identify attacks. During run-time,
as an offline activity, different gauges could be dynamically generated by mutation,
and these would analyse the logs for identifying attacks previously unknown.

3.4.1.4 Incomplete Information

Incomplete information refers to the situation in which the Monitor stage is not able
to provide all the information needed by the other stages of the control loop. This
might be due to limited monitoring capabilities, and because of that, the monitoring
stage has to find alternative ways of obtaining the missing information.

Challenge Identify and select what to monitor in order to compensate the missing
information, and know where it is safe to make assumptions about the unknown.

Relevance Monitoring has a cost, especially when considering insider threats. The
detection of insider threats relies mostly on data from the environment, and since
the environment of an authorisation infrastructure is broad and fluid, in the sense
that it is difficult to establish its clear boundaries, this has an effect on the data
that is collected. Therefore, the system will likely have to deal with incomplete
information, which in the Analyse stage might lead to more false positives regarding
insider threats. One way to compensate for incomplete information is for the
gauges themselves to provide a level of confidence regarding the information that is
forwarded to other stages of the control loop.

3.4.1.5 Automatic Feature Identification

During system operation certain probes may cease to function, either maliciously or
accidentally. In order not to lose the features being monitored through that probes,
the system should be able to recover some or all of those features by making use
of the information provided by other probes. The assumption is that several features
can be associated with a probe and that these features can be extracted and combined
with other features from other probes in order to reconstruct totally or partially the
information lost from an unavailable probe.

Challenge The challenge is for the system to be able to automatically extract
features from its probes, and recombine those features as necessary, thus exploiting
some intrinsic redundancy that may exist amongst the probes. At run-time, this
should be achieved by combining and reconfiguring features that are associated with
the information provided by several probes.

Relevance This challenge is relevant to self-adaptive authorisation infrastructures
because it helps to increase the system’s resilience against run-time threats to probes
and gauges, whether they are intentional or accidental.

74 L. Montrieux et al.

3.4.2 Analyse

The Analyse stage is made of two consecutive parts: the problem domain analysis
and the solution domain analysis. The problem domain analyses the data provided
by the Monitor stage in order to identify changes that the system may have to
respond to. The solution domain analysis occurs after a problem has been identified
and is concerned with generating possible alternative solutions that are able to
handle the problem. The problem domain analysis can be further divided in two
parts: the identification of potential problems and the assessment of the identified
problem in order to prioritise the mitigation. In some cases, a problem may be
identified as sufficiently serious to be addressed immediately. At the other end of the
spectrum, some problems may be acknowledged, but ignored, as they are deemed
not critical enough to cause adaptation.

In the following, first, we present the challenges related to the problem domain:
anomaly detection, signature-based detection, case-based detection, diagnosis, and
normality detection. Then, we present those challenges related to both problem and
solution domains by clearly identifying how these are related to each of the domains:
perpetual evaluation, threat management, and risk analysis.

3.4.2.1 Anomaly Detection

Anomaly detection is related to the ability of the controller to identify any behaviour
that deviates from what is perceived to be acceptable. Since we are essentially
dealing with sociotechnical systems for which it is almost impossible to establish,
from the outset, all their possible behaviours, it is extremely challenging to clearly
distinguish normal from abnormal behaviour, i.e. what is acceptable and what it is
not. First, there is the uncertainty of the context of the system that might influence
whether a particular behaviour is deemed to be normal or abnormal. Second, there
are the previously unknown or unexpected behaviours that need to be classified
according to profiles of similar class of behaviours.

Since there is no single technique that should be able to accurately detect a wide
range of anomalies, one way of reducing the number of misclassifications is to use
diverse techniques whose outcome should be fused for providing confidence in the
classification. In the following, after introducing anomaly detection challenge, we
present, as an example, two specific complementarity anomaly detection techniques
that can be used for improving both the responsiveness and coverage when detecting
anomalies.

Challenge The key challenge in anomaly detection is to be accurate when detecting
anomalies under uncertainty in order to reduce misclassifications, specifically in
the context of insider threats. Since misclassifications cannot be eliminated, it is
important to associate with those classifications levels of uncertainty.

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 75

Relevance The ability of detecting anomalies should precede the system capability
of handling insider threats. Since it is difficult to accurately identify an attack,
uncertainty levels should be considered, so the system can evaluate a particular
detection against its context. The objective is to reduce the number of false positives
and false negatives that might have detrimental consequences upon self-adaptive
authorisation infrastructures.

3.4.2.2 Signature-Based Detection

Signature-based detection is a special case of anomaly detection (see Sect. 3.4.2.1),
where domain analysis is performed by matching the data provided by the Monitor
stage against signatures of known problems. A signature is a pattern that should be
matched against the data provided by the Monitor stage, such as an IP address, a
particular regular expression in a log file, a URL, a version of some software, etc.
Signature-based detection may require the matching of several individual signatures
to identify a threat. They are relatively easy to automate. Since signatures refer to
precise pieces of information, it is possible to completely automate their recognition
and therefore the identification of threats. With a sufficiently expressive language
to write the signatures and their interactions, complex analysis can be performed
to discover advanced threats. Administrators should also be allowed to define
signatures, as well as combinations of signatures, and associate them with threats.

Challenge Since the signature-based detection is a static technique, the challenge
is to be able to synthesise new signature-based detectors during run-time.

Relevance Signature-based detection is best suited to detect threats that are
known and well understood in advance. However, in the context of self-adaptive
authorisation infrastructure, the efficacy of static signature-based detectors is quite
restrictive considering that both the attacks and the infrastructure can change. Thus,
there is the need for the self-adaptive authorisation infrastructure to be able to
generate dynamically new signature-based detectors that are able to detect unknown
threats efficiently at run-time.

3.4.2.3 Case-Based Detection

Case-based detection is another special case of anomaly detection, where the
focus is on observing subjects’ behaviours, which are harder to model and, hence,
harder to automate. Where signature-based detection attempts to identify well-
defined actions performed by malicious subjects, case-based detection observes the
malicious behaviour of subject and allows for decisions to be made based on the
subject’s behaviour model. Moreover, instead of absolute thresholds for identifying
anomaly detection, relative thresholds comparing users behaviours can be used.

76 L. Montrieux et al.

Challenge The challenge in case-based detection involves recognising a behaviour
that may not be explicitly forbidden but still suspicious.

Relevance It may be the case that a subject will try to circumvent signature-based
detection since signature-based detection works by using thresholds and precise
patterns of attacks. This is where case-based detection becomes useful. The attacker
may be slowed down because of their efforts to avoid detection, but that does not
mean that the threat does not need to be addressed. Case-based detection is a good
way to complement signature-based detection because of its ability to detect and act
upon those types of threats, although it is more difficult to be fully automated.

3.4.2.4 Diagnosis

When an attack is detected, the system may try to identify the source of the attack,
how it was performed, what damage it caused or is causing, and which vulnerability
was used to carry it out. Diagnosing an attack allows the system to better understand
it and therefore to make better decisions to defend against it.

Challenge The challenge of diagnosing self-adaptive authorisation infrastructures
is the ever-changing type of attack and the new vulnerabilities that might be
introduced during adaptation.

Relevance Identifying the source of the attack and the vulnerability exploited is
key to stopping it to propagate, as well as making sure that it does not happen again.
A self-adaptive authorisation infrastructure that can understand where attacks come
from and how they are carried out will be more resilient than a system that can only
identify them without understanding what caused them to be successful.

3.4.2.5 Resuming Normality

When an attack is over and a threat does not anymore pose danger, or when a
particular risk that had previously identified has been mitigated, the system should
be able to undo the restrictive measures that were taken for protecting the system
against the attack or the likelihood of an attack. This would be more relevant if the
restrictive measures taken affected the system’s normal operation. This should be
done without exposing the system to other attacks.

Challenge After taking measures to protect the system against attacks, the chal-
lenge is when to undo some of the restrictive measures and what measures should
be put in place in order maintain a balance between usability and security.

Relevance Measures taken to prevent or mitigate attacks, in the context of self-
adaptive authorisation infrastructures, often take the form of reduced capabilities for
users or more stringent authorisation procedures. If the system were not able to scale
back some of the measures taken after the event that triggered them has occurred,

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 77

then the system would tend towards locking all the users out of the system. It is
therefore crucial that the system is able to always strike the correct balance between
usability and security.

3.4.2.6 Perpetual Evaluation

When the controller is not adapting the target system, it can run background tasks
to enhance the resilience of the self-adaptive authorisation infrastructure. Perpetual
evaluation is one such task, which stands for the continuous analysis of either the
problem or solution domains.

Challenge The challenge associated with the perpetual evaluation of the problem
domain is the identification of vulnerabilities and attacks that might affect the self-
adaptive authorisation infrastructure. On the other hand, the challenge associated
with the perpetual evaluation of the solution domain is the provision of assurances
regarding the quality of services provided by the self-adaptive authorisation infras-
tructure.

Relevance Perpetual evaluation can be used alongside traditional evaluation in
order to improve the coverage in detecting insider attacks, localise vulnerabilities,
and enhance the provision of assurances. This can be done either proactively or
reactively.

If insider attacks can be predicted to occur depending on some observable pattern
of behaviour, adaptation can be proactive, and the same applies to evaluation.
Since the proactive perpetual evaluation does not block any immediate adaptation,
it can only inform future adaptations. While traditional evaluation can make fast,
but imperfect, decisions, the reactive perpetual evaluation compliments traditional
evaluation by confirming that the adaptation satisfies the system goal, or point to
issues that may require a rollback, or further adaptation. This is possible because
the reactive perpetual evaluation can afford to take longer to complete and consider
more data or more stringent constraints. This is especially useful in scenarios where
timeliness of adaptation is important, such as the response to insider threats.

3.4.2.7 Threat Management

There may be several simultaneous attacks detected or vulnerabilities identified, and
responses to these in the form of adaptations should be prioritised. Furthermore,
responses may increase the attack surface or weaken other security measures.

Challenge In the problem domain, the ability to prioritise attacks and vulnera-
bilities is a challenge associated with threat management, which should take into
account the threats’ potential impact on the system’s operations, and attempt to take
preventive measures, to ensure that future threats can be addressed.

78 L. Montrieux et al.

In the solution domain, the challenge associated with threat management is the
ability to rank alternative responses and to ensure that a response does not increase
the system’s attack surface or weakens its security measures.

Relevance Any perceived attack or vulnerability should not be considered in
isolation from its current or historical contexts; otherwise problem domain analysis
might be incomplete, thus producing outcomes that might undermine the mitigation
of threats. Likewise, from the solution domain perspective, any measure to handle
the perceived attack or vulnerability should take into account other measures
either being processed or already processed. The goal is to reduce the amount of
resources needed for handling the attack or the vulnerability and minimise the risk
of introducing new vulnerabilities. Moreover, considering that known vulnerabilities
might exist in the authorisation infrastructure, these should be taken into account
when analysing measures for mitigating a perceived attack.

3.4.2.8 Risk Analysis

When perceived to be under attack, an authorisation infrastructure can use risk levels
to rank alternative responses and select the most appropriate one. Factors that can
influence the risk level include the coverage of the evaluation, the severity of the
attack and/or the vulnerability, and the impact of countermeasures on the system’s
operations.

Challenge The challenge of risk analysis in the problem domain is to determine
the seriousness of an attack, which should establish the appropriate response level.
Regarding the solution domain, risk analysis should guide the selection of the most
appropriate response when several options are available.

Relevance In the problem domain, depending on the perceived risk, attacks and
vulnerabilities may need to be dealt with immediately, while others may allow for a
delayed response, or no response at all, at little to no cost on the system’s security.
Whether a self-adaptive authorisation infrastructure shall react to an attack should
depend on the risk associated with the attack and/or vulnerability: the probability of
an attack to be successful, and the impact the attack might have on the system in
case it is not mitigated.

Regarding the solution domain, adaptation may be expensive, whether in terms
of time, computation resources, or inconvenience to legitimate users through
degradation of the service. Therefore, a sophisticated authorisation infrastructure
could use risk analysis to prioritise the order in which attacks should be addressed
and when and how to deal with them.

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 79

3.4.3 Plan

The Plan stage is made of two consecutive parts: decision-making and plan
synthesis. The purpose of decision-making is to select the most appropriate solution
amongst the alternatives provided by the solution domain analysis. Below, we have
identified three challenges associated with decision-making: decision-making in a
federated authorisation infrastructure, randomising decisions, and denial of service.
The goal of plan synthesis is to generate a plan that implements the selected solution.
We identified six challenges related to the plan synthesis: robust plans, controller
capabilities, and infrastructure boundary.

3.4.3.1 Decision-Making in a Federated Authorisation Infrastructure

There are several benefits associated with federated authorisation infrastructures,
being one of them the ability of authenticating users using third parties. However,
these pose additional challenges to the planning phase, compare with a simpler,
centralised infrastructure over which a single entity or user has complete control.
The selection of the best solution amongst alternatives, identified during the analysis
problem domain, needs to consider the self-interests of the different parties of the
federation. The component systems of a federated authorisation infrastructure may
have conflicting interests and goals and varying constraints (e.g. an identity provider
service may conflict with a service provider). Yet it is important to be able to
select the best solution amongst those identified in the analysis solution domain
while satisfying the goals and constraints of all the components in the federated
authorisation infrastructure.

Challenge Decision-making in a federated authorisation infrastructure should take
into account the potentially conflicting goals of all the parties in the infrastructure
and negotiate a solution that satisfies them all. This may require a solution that is
not optimal, but ‘good enough’, and acceptable to all parties involved.

Relevance In a self-adaptive federated authorisation infrastructure, it is expected
for third parties to undergo some kind of change, for example, involving their
goals or their deployment. This should have an impact on how the different parties
collaborate in order to maximise each party self-interest. However, adaptation
decisions that involve federated authorisation infrastructures may require negoti-
ation between several stakeholders. If all the component systems’ goals cannot
be satisfied, then a self-adaptive authorisation infrastructure may have to consider
stopping its collaboration with some or all of the component systems with whom a
compromise could not be reached.

80 L. Montrieux et al.

3.4.3.2 Randomising Decisions

If the decision-maker, for particular operational context, always selects the same
strategy, then a new vulnerability is being introduced. If an attacker, while interact-
ing with the system or observing its behaviour, is able to establish deterministically
the response of the self-adaptive authorisation infrastructure, the attacker may be
able to take advantage of this adaptation and cause harm to the system.

Challenge The selection of an adaptation solution amongst several more or less
equally acceptable options should be randomised, in order to prevent an attacker
from learning about the system’s response to a particular output, thus reducing the
attack surface.

Relevance Self-adaptive authorisation infrastructures could be targeted by attack-
ers wishing to exploit a new vulnerability introduced by the controller. The nature
of the adaptation measures that can be taken poses at least two threats. First, the
attackers could trick the self-adaptive system into banning users, or groups of users,
even if only for a limited amount of time, causing disruptions in the users’ ability
to use the service. Second, the attackers could trigger a denial of service attack by
forcing very frequent changes in the authorisation policies, which would overwhelm
the system.

3.4.3.3 Denial of Service

Denial of service (DoS) aims to make resource unavailable to their legitimate
users, for example, by flooding a server with bogus requests that waste computing
resources. An attacker could use the self-adaptation mechanism for this purpose,
preventing legitimate users from using the service.

Challenge As a challenge, the self-adaptive authorisation infrastructure should be
able to analyse the triggers for self-adaptation, identify their source and frequency,
and react accordingly in order to avoid the system to become unusable.

Relevance Authorisation infrastructures for which the execution of self-adaptation
requires reloading configuration files, restarting services, or interrupting or can-
celling long-lived operations are particularly vulnerable to DoS attacks. If the
attacker finds a way to trigger self-adaptation often enough, the system may become
unusable for legitimate users. In this case, the self-adaptation mechanism itself is
the attack vector used by the attacker to perpetrate his attack. If the system detects a
possible DoS attack, it may then switch to a less obtrusive means of self-adaptation
if available or disable self-adaptation for some time. Another option would be to cap
the number of self-adaptation operations that disturb the service for a specified time
period.

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 81

3.4.3.4 Robust Plans

Some of the activities in a plan may be more likely to fail than others. This could be
related to complex interactions between components of a federated authorisation
infrastructure. This can be caused by software or hardware failures or simply
because assumptions made during the conceptualisation of the plan cease to be true
during its execution.

Challenge In a self-adaptive authorisation infrastructure, the challenge is to obtain
a robust plan that should be able to handle failures in one or several of its activities
while minimising service interruptions. The plan should incorporate redundancy in
its activities, or the ability to rollback to a previous working secure state, in case an
activity fails.

Relevance Authorisation infrastructures involve various component systems, as
well as a number of policies whose interactions determine who gets access to
what. If a plan is not robust enough, the infrastructure could be left in an
intermediate insecure and unstable state, i.e. some authorisation decisions could
allow unauthorised subjects access to sensitive data. If a plan is rolled back, then the
infrastructure is again vulnerable to the insider threat that had triggered the (aborted)
adaptation. None of these scenarios are acceptable, and, therefore, the plan should
be as robust as possible in order to deal with any unexpected issue arising during
its execution. This can be achieved by enabling the controller to generate abstract
plans (i.e. a plan that does not depend on any particular implementation, it can
support several alternative implementations) that can be instantiated into concrete
plans during their execution. In case a particular instantiation of an activity fails
during its execution, the abstract plan should incorporate enough redundancy in
order to activate an alternative instantiation.

3.4.3.5 Controller Capabilities

What a controller is able to achieve in a self-adaptive authorisation infrastructure is
restricted by its capabilities. These capabilities are related to what the controller
is able to observe and control and its computational and algorithm resources.
Limitations on the controller’s capabilities might have an impact on the plans that
a controller is able to synthesise, and these limitations should be incorporated into
plans.

Challenge In a self-adaptive authorisation infrastructure, because of its nature, it
is difficult to forecast changes that might affect the system and its environment;
the challenge is for the controller to be able to identify its own limitations. In case
an operational boundary is reached, the controller should be able to act, either by
shutting itself down or invoke another alternative controller, for example.

Relevance While synthesising a plan, there is a risk that some implementations
are not able to support activities of the plan. For example, the controller of a self-

82 L. Montrieux et al.

adaptive authorisation infrastructure is able to synthesise plans that only contain
activities that rely on XACML implementation of Policy Enforcement Point (PEP),
while the actual components of the infrastructure rely on other implementations
rather than XACML.

3.4.3.6 Infrastructure Boundary

In a federated authorisation infrastructure, some components can be managed
by third parties, and this should be captured by control boundaries that can be
dynamic according to the role of the components of the infrastructure. These
components may have different or even conflicting goals; hence, negotiations
between components are needed in order to maximise their self-interest. In a self-
adaptive authorisation infrastructure, the controller may only have partial control,
or no control at all, over some of the components of the federated authorisation
infrastructure. Considering that a controller needs to act on some components of the
infrastructure that are owned by a third party, it is necessary that each party can trust
each other in order to enable the negotiations.

Challenge In a federated authorisation infrastructure in which self-adaptation
underpins the authorisation services, the challenge is the ability of establishing
boundaries of awareness and influence and the ability of handling the dynamic
nature of these boundaries.

Relevance Control boundaries are particularly relevant in federated authorisation
infrastructures, where the controller does not have direct control over the third-
party components. The controller may be able to request components of a federated
authorisation framework to enact some changes, but these changes may only be
accepted if they do not conflict with the goals of those components. In a federated
authorisation infrastructure, boundaries can be related to what can be monitored and
control, and to levels of trust, for example.

3.4.4 Execute

The Execute stage is responsible for executing the adaptation plan generated
during the Plan stage. However, the execution of the plan may not always be
straightforward since it involves several distinct needs, including the following
ones:

• meet the objectives of the adaptation plan (including the synthesis of effectors,
deployment of probes/gauges) and provide assurances that effectors have indeed
carried out their actions (i.e. feedback of success);

• effectors must trust the controller of the self-adaptive authorisation infrastructure,
in terms of authentication, authorisation, and non-repudiation;

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 83

• Execute stage is able to coordinate the effectors in issues, like concurrency, roll-
backs and commits, recovery from failed plans, and heterogeneity of effectors;

• adaptation plans incorporate redundancies for making its execution more resilient
and for supporting the provision of trust that resilience can be achieved;

• execution of the adaptation plan is secure in order to avoid exploitation of
vulnerabilities;

• adaptation plans incorporate abstract commands since it should be down to the
effector to decide how to implement a given action of the plan;

• synthesise and/or deploy probes, gauges, and effectors, or even update its own
adaptation strategy in order to respond to new threats being detected;

• ability to reloading adapted authorisation policies or restarting authorisation
services or other related services;

• ability to communicating with third-party identity providers, amongst other
services, for example.

Underpinning all these needs, there is the fundamental need to provide assur-
ances that the execution of the plan is according to its specifications. The execution
of a plan may involve checking post-conditions, and it should provide feedback of
its progress. In the following, some of the above needs will be detailed in terms of
challenges.

3.4.4.1 Run-Time Synthesis of Effectors

It is not possible for the developers, at development time, to foresee all the possible
threats that the system could face. Too many of those depend on the environment
in which the system operates, and this environment can change at any time. The
synthesis of new effectors at run-time allows the system to react to changes in the
system or its environment that would otherwise affect the resilience of the self-
adaptive authorisation infrastructure.

Challenge The challenge of a self-adaptive authorisation infrastructure to react to
changes that are not foreseen at development time is to synthesise effectors at run-
time.

Relevance Responding to threats that had not been foreseen during development
time is essential for self-adaptive authorisation infrastructures. Occasionally, han-
dling some of these threats may require effectors that are not yet available. In
particular, the self-adaptive authorisation infrastructure may require new effectors
for modifying the authorisation infrastructure. The ability to synthesise effectors
during run-time will broaden the range of unforeseen threats that the system can
protect itself against.

84 L. Montrieux et al.

3.4.4.2 Deployment and Withdrawal of Probes, Gauges, and Effectors

Although the deployment and withdrawal of probes, gauges, and effectors might be
outside the context of Execute stage of a self-adaptive authorisation infrastructure,
these are an integral part of the adaptation plan and its execution. Probes, gauges,
and effectors could either be taken from a pool, which is populated at development
time, or synthesised at run-time for allowing the system to react to unforeseen
changes. These dynamic deployment and withdrawal are different from the active
monitoring challenge discussed in Sect. 3.4.1.1. In active monitoring, deployed
probes and gauges have their own self-adaptive mechanism. In contrast, we discuss
in this section the deploying and withdrawing of probes, gauges, and effectors as
the result of the evolution of self-adaptive authorisation infrastructures. As such,
in the deployment of new probes, gauges and effectors instead of being under the
direct responsibility of a self-adaptive authorisation infrastructure, we could have
a higher-level entity responsible for controlling the evolution of the self-adaptive
authorisation infrastructure.

Challenge One of the challenges in self-adaptive authorisation infrastructures is
the ability to deploy and withdraw probes, gauges, and effectors because of the wide
range, and volatile nature, of threats that the system has to protect itself against.

Relevance In a self-adaptive authorisation infrastructure, changes affecting the
infrastructure or its environment should be handled by the controller, and the
ensuing adaptations may have an impact on how the controller observes and effects
the infrastructure and/or its environment. Consequently, this may affect the probes,
gauges, and effectors that are deployed. The complexity of the deployment can
range from entirely predefined probes, gauges, and effectors that simply need to
be activated to the synthesis of new ones. An intermediate solution would be the
ability to configure predefined probes, gauges, and effectors for a particular use.

3.4.4.3 Trust

Trust is necessary between the parties in a federated authorisation infrastructure.
The controller should trust that the other parties will carry out the plan as expected,
and the other parties must trust that the controller acts in their advantage.

Challenge A key challenge in a self-adaptive authorisation infrastructure is to
maintain trust between the parties by ensuring all parties behave as agreed. This
is not restricted to techniques that ensure trust is maintained but also associated
with strategies that are used when reacting to a breach of trust.

Relevance If a malicious user has been detected and reported to the identity
service, but the identity service fails to take action to suspend the malicious user,
then the trust between the authorisation infrastructure and the identity service should
be reevaluated. As authentication is a critical component in access control, it is
crucial for the authorisation infrastructure to be able to react to such breaches of
trust, as they may harm the protected system.

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 85

3.4.4.4 Update or Redeployment of Policies and Sessions

Self-adaptive authorisation infrastructures can adapt authorisation policies in var-
ious ways. The adaptation could either take the form of an update of the current
policy, where the controller sends the modifications to the policy decision point
(PDP). Alternatively, the controller may create a whole new policy and instruct the
PDP to deploy it instead of the previous one.

When adapting authorisation policies, the infrastructure should also consider
the sessions that are currently open by a particular user and which may carry
permissions that the user should not be assigned anymore sessions. All sessions
could be revoked every time adaptation occurs. Alternatively, sessions could be
amended in order to reflect the changes made in the authorisation policy.

Challenge During the execution of the plan, the challenge is to reduce the system
vulnerability while policies are updated or redeployed.

Relevance The adaptation of an authorisation policy is an important part of a self-
adaptive authorisation infrastructure’s reaction to an internal threat. It is important
that the adaptation is completed in a timely manner, in order to minimise the amount
of time during which an attacker can cause damage to the system. The choice
between updating the existing policy or deploying a new one should take into
account the amount of time required for the new policy to be effective. Updating an
existing policy requires the controller to communicate to the PDP only the changes
to be made to the current policy. It is then the PDP’s responsibility to enact those
changes. Deploying a new policy, however, requires the controller to prepare a
complete, updated policy, and to communicate in to the PDP, which only needs
to deploy it to replace the previous one.

Existing sessions should also be taken care of in order to adapt the permissions
given to the users that are logged on to the system while the adaptation takes
place. Terminating all sessions is a simple solution, but it will require each use
to authenticate again. In some circumstances this may not be ideal, especially if
adaptation occurs often. The alternative is to modify user sessions at run-time, which
may be more difficult to implement.

A similar challenge could be associated with the deployment of new probes
and effectors, in particular those that are third party. The heterogeneity and the
inflexibility of such devices may introduce vulnerabilities during adaptation.

3.4.4.5 Redundancy

Introducing redundancy in the Execute stage is one way to increase the resilience
of the system. In case an effector fails to properly execute a portion of the plan, the
plan should incorporate redundancies, using other effectors, alternative solutions, or
workarounds, that would allow to tolerate the failed execution.

86 L. Montrieux et al.

While the incorporation of redundancies in case of failure may be, in part, the
responsibility of Plan stage, it is the responsibility of the Execute stage to monitor
the execution of that plan and to trigger the redundancy measures when necessary.

Challenge The challenge is to include sufficient redundancies in the execution of
the plan in order to make adaptation more resilient against potential threats, being
these either internal attacks or faults.

Relevance The consequences of a failure during the execution of a plan while
adapting an authorisation policy can be disastrous. At best, the old policy will still
be in place, and the system will not be protected against the newly identified threat.
At worst, the authorisation infrastructure could fail, either by locking all users out
or by letting everyone access everything. Implementing redundant mechanisms to
update policies will increase the service’s resilience.

3.4.5 Models

This section on models refers to the Knowledge stage of the MAPE-K loop
since models are the key source of knowledge in the self-adaptive authorisation
infrastructure.

There are several types of models relevant to authorisation infrastructures, as well
as many ways of using them for self-adaptation. In this section, we first categorise
models for authorisation infrastructures into four types: authorisation polices, access
control, threat, and adaptation. We then focus on the challenges that stem from the
use of these models, which include portability, facilitating negotiation, history of
models, uncertainty and conflicts in models, and model drift.

3.4.5.1 Modelling Authorisation Policies

Authorisation policies are a central component of authorisation infrastructures,
where rules or assignments are defined and whose evaluation determines whether
requests for access to protected assets are granted or denied. Policies can be
very large, and they can be distributed across several documents, using various
technologies, or, in the case of federated authorisation infrastructures, under the
control of different entities.

Challenge Models of authorisation policies should be understandable yet precise
for facilitating their manipulation by both the controller and system administrators.

Relevance For supporting the automated manipulation of models, these need to
be precise. Moreover, these models need to be accessible to users in order to
allow their validation against their respective policies. The reason is that, since
authorisation policies determine the rendering of access control decisions, the
authorisation policies models should be consistent with the actual authorisation

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 87

policies in order to avoid discrepancies between the authorisation infrastructure
and its controller. So whatever changes are made on the authorisation policies,
either by users or automated tools, these need to be accurately reflected on their
corresponding models.

3.4.5.2 Modelling Access Control

Authorisation infrastructures often involve several key components that are con-
nected for rendering access control decisions. Architectural models at the controller
should be able to capture the components of an authorisation infrastructure and how
these components are connected.

Challenge Architectural models should be dynamic because the infrastructure is
expected to change, and these should be captured by the models. Such dynamic
architectural models should be able to capture issues, such as the unavailability of
components. In the context of federated authorisation infrastructures, architectural
models should also be able to support access control and provide assurances of this
ability.

Relevance In self-adaptive authorisation infrastructures, dynamic architectural
models are essential for enabling the controller to handle changes affecting the
infrastructure. Architectural models enable to analyse the consequence of threats
to the infrastructure and investigate potential architectural solutions for mitigating
those threats. For example, if an identity service fails to revoke credentials from
subjects that are perceived as persistent attackers, the self-adaptive authorisation
infrastructure may choose to disconnect that identity service from its infrastructure.
However, before implementing that solution, the authorisation infrastructure may
evaluate the impact of such a measure towards its users.

3.4.5.3 Modelling Threats

The purpose of self-adaptive authorisation infrastructures is to defend the system
against threats. Since threats can change throughout the lifetime of an infrastructure,
threat models should be dynamic, i.e. models that are able to change according to
the threats to the infrastructure.

Challenge For reasoning about threats in self-adaptive infrastructures, a modelling
language for expressing dynamic threat models is needed. In addition to represent-
ing threats, threat models should capture the likelihood of their occurrence, the
potential harm they can cause to the infrastructure’s assets, and which countermea-
sures can be taken to address them. If the self-adaptive infrastructure is capable of
discovering previously unknown threats, then the threat model should be adaptable
at run-time.

88 L. Montrieux et al.

Relevance Threats, whether internal or external, are what self-adaptive authori-
sation infrastructures try to defend the system against. This can only be done if
these infrastructures have a suitable model of threats and if these models cannot be
adapted according to ever-changing threats a vulnerability will ensue.

3.4.5.4 Modelling Adaptation

The various models supporting self-adaptive authorisation infrastructures should
take into account the run-time adaptation capabilities of the infrastructure. In partic-
ular, adaption models should represent what parts of the authorisation infrastructure
can be adapted, how the adaptation can be executed and in which order, and when
or under which conditions adaptation can happen.

Challenge There is the need to specify adaptation models that would be able to
coordinate adaptations taking at different levels of an authorisation infrastructure
and to identify what kind of assurances those models can provide.

Relevance Considering that both authorisation infrastructures and their environ-
ments are intrinsically dynamic, adaptation models should be related to the archi-
tectural models of the infrastructure, models of the authorisation policies, and threat
models. Adaption models should also capture how the controller communicates
with the authorisation infrastructure, which includes the monitoring and controlling
of the infrastructure. If adaptation models do not relate to all models that enable
the support of self-adaptation of authorisation infrastructures, then inconsistencies
might arise regarding how self-adaptation is enacted.

3.4.5.5 Portability

Portability can take different forms in self-adaptive authorisation infrastructures. It
could mean that the system can be deployed on various types of infrastructures.
It could also mean that the system should be able to function in heterogeneous
environments, where different subsystems can communicate with each other. The
former requires some form of vertical transformation, where abstract elements can
be concretised in various ways, depending on the underlying infrastructure. The
latter requires some form of horizontal transformation, where models and data can
be communicated between subsystems that use different representations.

Challenge The development of self-adaptive authorisation infrastructures can be
made either vertically and horizontally portable. Vertically portable self-adaptive
authorisation infrastructures can easily be redeployed on different environments or
implementations of components. Horizontally portable self-adaptive authorisation
infrastructures have components that may use different data formats and protocols
but are still able to communicate with each other.

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 89

Relevance Federated authorisation infrastructures have components controlled by
various entity systems they use. Components of these infrastructures may run
different technologies or different versions of the same technology. They may also
evolve and change at any time. Therefore, it is necessary for the self-adaptive
authorisation infrastructure to be designed in a portable way.

3.4.5.6 Facilitating Negotiation

Federated authorisation infrastructures require several components working
together. However, these components may be owned and controlled by different
entities, who may have conflicting goals and interests. Therefore, it may be
necessary for multiple components to negotiate a solution that satisfies all parties.

Challenge Models are required to facilitate negotiation between several com-
ponents of a federated authorisation infrastructure. In self-adaptive authorisation
architectures, these models should allow components to understand the conse-
quences of the proposed changes on users’ ability to use the system and should allow
components to express agreement or disagreement with some of those changes.

Relevance Self-adaptive federated authorisation infrastructures must be able to
handle negotiation between several of their components. They must be able to
exchange proposed solutions to problems and indicate agreement or preferences.
The solutions will contain models of the proposed changes, in order for the
components to make informed decisions about the proposals they are presented
with.

3.4.5.7 Capturing the History of Models

Capturing the history of models allows for the analysis of changes that happened in
the past. The detection of long-running attacks, forensics analysis, and the detection
of the entry point of an attacker all require access to historical data about the state
of the system.

Challenge Self-adaptive authorisation infrastructures should be able to keep a
history of the models that they maintain, in such a way that does not degrade
performance yet allows for efficient analysis of past events. The ability to correlate
changes to different models is especially important.

Relevance Attacks can be carried out over long periods of time. Hence, under-
standing them may require to analyse the past states of the self-adaptive authorisa-
tion infrastructure, both in order to detect and prevent attacks but also in order to
identify patterns of suspicious behaviour over a long period of time.

90 L. Montrieux et al.

3.4.5.8 Analysis Capabilities

The Analyse stage of a self-adaptive system depends on the available models in the
knowledge base. If these models cannot completely reflect the reality they represent,
the Analyse stage may not be able to always come to the correct conclusion or even
come to a conclusion at all. Therefore, analysis on incomplete models may lead to
uncertainty. If several analysis components are used, this may also lead to conflicting
results.

Challenge Self-adaptive authorisation infrastructures should be able to deal with
uncertainty and conflicts, and these may need to be encoded in the models.

Relevance Detection of insider threats is difficult because a smart malevolent
insider will attempt to try and pass their usage as legitimate. Therefore, there is
often no clear-cut distinction between legitimate and malicious users, making their
detection difficult and ambiguous. Moreover, in a federated self-adaptive authori-
sation infrastructure, various Analyse stages may reach different conclusions, even
when considering the same data.

3.4.5.9 Model Drift

Dynamic models are at risk of drift over time. Model drift is the progressive increase
in the discrepancy between the model and what the model represents. In self-
adaptive authorisation infrastructures, dynamic models are used to represent the
target system, as well as its environment. If the models do not correctly reflect the
reality, this may lead to suboptimal, or harmful, adaptation decisions.

Challenge In self-adaptive authorisation infrastructures, model drift should be
avoided in order to reliably detect suspicious activity and identify malicious actors.

Relevance Attackers are likely to try and masquerade their actions as legitimate
in order to escape security measures. Therefore, it is important for self-adaptive
authorisation infrastructures to keep models that are very close to reality – even a
small drift may be used by the attacker to cover their tracks.

3.5 Conclusions

The provision of self-adaptive authorisation infrastructures is a promising solution
to protect systems against the dynamic nature of attacks and uncertainties associated
with them, such as insider threats. In this chapter, we have presented how this
could be achieved architecturally by separating the specification of policies (i.e.
self-adaptive authorisation) from the enforcement of these policies (i.e. self-adaptive
access control). We have also presented several technical challenges associated with
the self-adaptation of authorisation infrastructures, which followed the stages of

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 91

the MAPE-K feedback control loop. Of course, the list of technical challenges
should not be considered exhaustive since several of them were not included due
to space constraints. Moreover, in addition to the identified technical challenges that
are based on our experience in building and deploying self-adaptive of authorisation
infrastructures [2, 4], one would expect new technical challenges to arise, depending
on authorisation infrastructure and their deployment.

For presentation purposes, it was natural to follow the MAPE-K feedback control
loop for identifying the technical challenges; however, questions may be asked about
the appropriateness of MAPE-K loop when finding solutions to the wide range
of identified challenges. Authorisation infrastructures are inherently complex since
they can be geographically distributed, and this might require architectural solutions
for the controller that might go beyond what the classical MAPE-K loop is able
to offer [16, 56]. For example, if perpetual evaluations [55] are needed in order
to obtain confidentiality, integrity, and availability assurances for computer-based
resources, regarding the adaptations performed to the authorisation infrastructure,
then new ways of enforcing separation of concerns are needed at the controller level.
This of course will raise a new set of technical challenges that should be specific to
the provision of assurances.

References

1. Axiomatics: Axiomatics policy server [Online], Available from: https://www.axiomatics.com/
axiomatics-policy-server.html. Accessed 17 Jan 2014

2. Bailey, C.M.: Self-adaptive Authorisation Infrastructures. Ph.D. thesis, University of Kent
(2015)

3. Bailey, C., Chadwick, D.W., de Lemos, R.: Self-adaptive authorization framework for
policy based RBAC/ABAC models. In: Proceedings of the 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure Computing, DASC ’11, pp. 37–44. IEEE
Computer Society, Washington, DC (2011). https://doi.org/10.1109/DASC.2011.31

4. Bailey, C., Chadwick, D.W., de Lemos, R.: Self-adaptive federated authorization infrastruc-
tures. J. Comput. Syst. Sci. 80(5), 935–952 (2014). http://www.sciencedirect.com/science/
article/pii/S0022000014000154, Special Issue on Dependable and Secure Computing the 9th
{IEEE} International Conference on Dependable, Autonomic and Secure Computing

5. Bailey, C., Montrieux, L., de Lemos, R., Yu, Y., Wermelinger, M.: Run-time generation,
transformation, and verification of access control models for self-protection. In: Proceedings
of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2014, pp. 135–144. ACM, New York (2014). https://doi.org/10.1145/
2593929.2593945

6. BBC: Credit card details on 20 million South Koreans stolen [Online] (Jan 2014), Available
from: http://www.bbc.co.uk/news/technology-25808189. Accessed 5 Jan 2014

7. Benantar, M.: Access Control Systems: Security, Identity Management and Trust Models.
Springer, New York (2005)

8. Bistarelli, S., Martinelli, F., Santini, F.: A formal framework for trust policy negotiation in
autonomic systems: abduction with soft constraints. In: Proceedings of the 7th International
Conference on Autonomic and Trusted Computing, ATC’10, vol. 6407, pp. 268–282.
Springer, Berlin/Heidelberg (2010). http://dl.acm.org/citation.cfm?id=1927943.1927968

https://www.axiomatics.com/axiomatics-policy-server.html
https://www.axiomatics.com/axiomatics-policy-server.html
https://doi.org/10.1109/DASC.2011.31
http://www.sciencedirect.com/science/article/pii/S0022000014000154
http://www.sciencedirect.com/science/article/pii/S0022000014000154
https://doi.org/10.1145/2593929.2593945
https://doi.org/10.1145/2593929.2593945
http://www.bbc.co.uk/news/technology-25808189
http://dl.acm.org/citation.cfm?id=1927943.1927968

92 L. Montrieux et al.

9. Booth, R., Brooke, H., Moriss, S.: WikiLeaks cables: Bradley Manning faces 52 years in
jail [Online] (30 Nov 2010), Available from: http://www.theguardian.com/world/2010/nov/
30/wikileaks-cables-bradley-manning. Accessed 5 Jan 2014

10. Brun, Y., Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller, H.,
Pezzè, M., Shaw, M.: Software engineering for self-adaptive systems. Engineering Self-
Adaptive Systems Through Feedback Loops, pp. 48–70. Springer, Berlin/Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02161-9_3

11. Cappelli, D.M., Moore, A.P., Trzeciak, R.F.: The CERT Guide to Insider Threats: How to
Prevent, Detect, and Respond to Information Technology Crimes, 1st edn. Addison-Wesley
Professional, Upper Saddle River (2012)

12. Caputo, D., Maloof, M., Stephens, G.: Detecting insider theft of trade secrets. IEEE Secur.
Priv. 7(6), 14–21 (2009). https://doi.org/10.1109/MSP.2009.110

13. Chadwick, D.W., Otenko, A.: The PERMIS X.509 role based privilege management infras-
tructure. In: Proceedings of the Seventh ACM Symposium on Access Control Models and
Technologies, SACMAT ’02, pp. 135–140. ACM, New York (2002). https://doi.org/10.1145/
507711.507732

14. Chadwick, D.W., Zhao, G., Otenko, S., Laborde, R., Su, L., Nguyen, T.A.: PERMIS: a
modular authorization infrastructure. Concurr. Comput. Pract. Exp. 20(11), 1341–1357
(2008). https://doi.org/10.1002/cpe.v20:11

15. Demchenko, Y., Gommans, L., Laat, C.: Extending role based access control model for
distributed multidomain applications. In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J.,
Solms, R. (eds.) New Approaches for Security, Privacy and Trust in Complex Environments,
IFIP International Federation for Information Processing, vol. 232, pp. 301–312. Springer
(2007). https://doi.org/10.1007/978-0-387-72367-9_26

16. de Lemos, R., Potena, P.: Chapter 14 – identifying and handling uncertainties in the feedback
control loop. In: Mistrik, I., Ali, N., Kazman, R., Grundy, J., Schmerl, B. (eds.) Managing
Trade-Offs in Adaptable Software Architectures. Morgan Kaufmann, pp. 353–367 (2017).
ISBN 9780128028551, https://doi.org/10.1016/B978-0-12-802855-1.00014-9

17. de Lemos, R., Giese, H., Müller, H., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B.,
Tamura, G., Villegas, N., Vogel, T., Weyns, D., Baresi, L., Becker, B., Bencomo, N., Brun,
Y., Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K., Göschka, K., Gorla,
A., Grassi, V., Inverardi, P., Karsai, G., Kramer, J., Lopes, A., Magee, J., Malek, S.,
Mankovskii, S., Mirandola, R., Mylopoulos, J., Nierstrasz, O., Pezzè, M., Prehofer, C.,
Schäfer, W., Schlichting, R., Smith, D., Sousa, J., Tahvildari, L., Wong, K., Wuttke, J.:
Software engineering for self-adaptive systems: a second research roadmap. In: de Lemos,
R., Giese, H., Müller, H., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II.
Lecture Notes in Computer Science, vol. 7475, pp. 1–32. Springer, Berlin/Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5_1

18. Dobson, S., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre,
F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Trans. Auton.
Adapt. Syst. 1(2), 223–259 (2006). https://doi.org/10.1145/1186778.1186782

19. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-
based self-adaptation with reusable infrastructure. Computer 37(10), 46–54 (2004). https://
doi.org/10.1109/MC.2004.175

20. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Computing
Systems. Wiley, New York (2004)

21. Hu, V.C., Kuhn, D.R., Xie, T., Hwang, J.: Model checking for verification of mandatory access
control models and properties. Int. J. Softw. Eng. Knowl. Eng. 21(01), 103–127 (2011)

22. Hu, V.C., Schnitzer, A., Sandlin, K., Scarfone, K.: Guide to Attribute Based Access Control
(ABAC) Definition and Considerations. NIST Special Publication (2013)

23. IBM: IBM Security Intelligence with Big Data [Online], Available from: http://www-03.ibm.
com/security/solution/intelligence-big-data/. Accessed 20 July 2014

24. ITU-T Rec. X.509: The Directory: Authentication Framework. ISO/IEC 9594-8 (2000)

http://www.theguardian.com/world/2010/nov/30/wikileaks-cables-bradley-manning
http://www.theguardian.com/world/2010/nov/30/wikileaks-cables-bradley-manning
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1109/MSP.2009.110
https://doi.org/10.1145/507711.507732
https://doi.org/10.1145/507711.507732
https://doi.org/10.1002/cpe.v20:11
https://doi.org/10.1007/978-0-387-72367-9_26
https://doi.org/10.1016/B978-0-12-802855-1.00014-9
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1145/1186778.1186782
https://doi.org/10.1109/MC.2004.175
https://doi.org/10.1109/MC.2004.175
http://www-03.ibm.com/security/solution/intelligence-big-data/
http://www-03.ibm.com/security/solution/intelligence-big-data/

3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures 93

25. Janicke, H., Cau, A., Siewe, F., Zedan, H.: Dynamic access control policies. Comput. J. 56(4),
440–463 (2013). https://doi.org/10.1093/comjnl/bxs102

26. Kalam, A.A.E., Benferhat, S., Miège, A., Baida, R.E., Cuppens, F., Saurel, C., Balbiani, P.,
Deswarte, Y., Trouessin, G.: Organization based access control. In: Proceedings of the 4th
IEEE International Workshop on Policies for Distributed Systems and Networks, POLICY
’03, pp. 120–131. IEEE Computer Society (2003). http://dl.acm.org/citation.cfm?id=826036.
826869

27. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003). https://doi.org/10.1109/MC.2003.1160055

28. Koutsonikola, V., Vakali, A.: LDAP: framework, practices, and trends. IEEE Internet Comput.
8(5), 66–72 (2004). https://doi.org/10.1109/MIC.2004.44

29. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: 2007 Future
of Software Engineering, FOSE ’07, pp. 259–268. IEEE Computer Society, Washington, DC
(2007). https://doi.org/10.1109/FOSE.2007.19

30. Lopez, J., Oppliger, R., Pernul, G.: Authentication and authorization infrastructures (AAIS):
a comparative survey. Comput. Secur. 23(7), 578–590 (2004). https://doi.org/10.1016/j.cose.
2004.06.013

31. McGraw, R.: Risk-adaptable access control (RADac). Technical report, National Institute of
Standards and Technology (NIST) (2009)

32. Moore, A.P., Hanley, M., Mundie, D.: A pattern for increased monitoring for intellectual
property theft by departing insiders. Technical report, CMU/SEI-2012-TR-008, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh (2012)

33. Morgan, R.L., Cantor, S., Carmody, S., Hoehn, W., Klingenstein, K.: Federated security:
the Shibboleth approach. EDUCAUSE Q. 27(4), 12–17 (2004). http://www.eric.ed.gov/
ERICWebPortal/detail?accno=EJ854029

34. Mu, C., Li, Y.: An intrusion response decision-making model based on hierarchical task
network planning. Expert Syst. Appl. 37(3), 2465–2472 (2010)

35. NIST: INCITS 359-2004 – Role Based Access Control (2004)
36. Nurse, J.R., Buckley, O., Legg, P.A., Goldsmith, M., Creese, S., Wright, G.R., Whitty, M.:

Understanding insider threat: a framework for characterising attacks. In: Workshop on
Research for Insider Threat (WRIT) Held as Part of the IEEE Computer Society Security
and Privacy Workshops (SPW14), in conjunction with the IEEE Symposium on Security and
Privacy (SP), pp. 214–228. IEEE (2014). http://www.sei.cmu.edu/community/writ2014/

37. OASIS: Security Assertion Markup Language (SAML) Version 2.0 (2005)
38. OASIS: eXtensible Access Control Markup Language (XACML) v3.0 (2013)
39. O’Conner, A.C., Loomis, R.J.: 2010 economic analysis of role-based access control. Techni-

cal report, RTI International, NIST (2010)
40. Oltsik, J.: The 2013 Vormetric insider threat report [Online] (2013), Available

from: http://www.vormetric.com/sites/default/files/vormetric-insider-threat-report-oct-2013.
pdf. Accessed 12 June 2014

41. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N.,
Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-adaptive
software. IEEE Intell. Syst. 14(3), 54–62 (1999). https://doi.org/10.1109/5254.769885

42. Park, J., Sandhu, R.: The UCONABC usage control model. ACM Trans. Inf. Syst. Secur.
7(1), 128–174 (2004). https://doi.org/10.1145/984334.984339

43. Pashalidis, A., Mitchell, C.J.: A taxonomy of single sign-on systems. In: Proceedings of the
8th Australasian Conference on Information Security and Privacy, ACISP’03, pp. 249–264.
Springer, Berlin/Heidelberg (2003). http://dl.acm.org/citation.cfm?id=1760479.1760507

44. Pasquale, L., Menghi, C., Salehie, M., Cavallaro, L., Omoronyia, I., Nuseibeh, B.: Securitas:
a tool for engineering adaptive security. In: Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12, pp. 19:1–
19:4. ACM, New York (2012). https://doi.org/10.1145/2393596.2393618

45. Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke, S.: A community authorization
service for group collaboration. In: Proceedings of the 3rd International Workshop on Policies

https://doi.org/10.1093/comjnl/bxs102
http://dl.acm.org/citation.cfm?id=826036.826869
http://dl.acm.org/citation.cfm?id=826036.826869
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/MIC.2004.44
https://doi.org/10.1109/FOSE.2007.19
https://doi.org/10.1016/j.cose.2004.06.013
https://doi.org/10.1016/j.cose.2004.06.013
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ854029
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ854029
http://www.sei.cmu.edu/community/writ2014/
http://www.vormetric.com/sites/default/files/vormetric-insider-threat-report-oct-2013.pdf
http://www.vormetric.com/sites/default/files/vormetric-insider-threat-report-oct-2013.pdf
https://doi.org/10.1109/5254.769885
https://doi.org/10.1145/984334.984339
http://dl.acm.org/citation.cfm?id=1760479.1760507
https://doi.org/10.1145/2393596.2393618

94 L. Montrieux et al.

for Distributed Systems and Networks (POLICY’02), pp. 50–59. IEEE Computer Society,
Washington, DC (2002). http://dl.acm.org/citation.cfm?id=863632.883495

46. PERMIS Standalone Authorisation Server: [Online], Available from: http://sec.cs.kent.ac.uk/
permis/. Accessed 5 Jan 2014

47. Ratha, N.K., Bolle, R.M., Pandit, V.D., Vaish, V.: Robust fingerprint authentication using
local structural similarity. In: Fifth IEEE Workshop on Applications of Computer Vision,
2000, pp. 29–34. IEEE (2000). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.
8588&rep=rep1&type=pdf

48. Serrano, M., Meer, S., Strassner, J., Paoli, S., Kerr, A., Storni, C.: Trust and reputation policy-
based mechanisms for self-protection in autonomic communications. In: Proceedings of the
6th International Conference on Autonomic and Trusted Computing, ATC ’09, pp. 249–267.
Springer, Berlin/Heidelberg (2009). https://doi.org/10.1007/978-3-642-02704-8_19

49. SimpleSAMLphp: [Online], Available from: http://simplesamlphp.org/. Accessed 5 Jan 2014
50. Spitzner, L.: Honeypots: catching the insider threat. In: Proceedings of the 19th Annual

Computer Security Applications Conference, pp. 170–179. IEEE (2003)
51. Stakhanova, N., Basu, S., Wong, J.: A cost-sensitive model for preemptive intrusion response

systems. In: AINA. vol. 7, pp. 428–435 (2007)
52. Strasburg, C., Stakhanova, N., Basu, S., Wong, J.S.: A framework for cost sensitive

assessment of intrusion response selection. In: Proceedings of the 2009 33rd Annual
IEEE International Computer Software and Applications Conference, COMPSAC ’09, vol.
01, pp. 355–360. IEEE Computer Society, Washington, DC (2009). https://doi.org/10.1109/
COMPSAC.2009.54

53. Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K., Essiari, A.: Certificate-
based access control for widely distributed resources. In: Proceedings of the 8th Conference
on USENIX Security Symposium, SSYM’99, pp. 17–30. USENIX Association, Berkeley
(1999). http://dl.acm.org/citation.cfm?id=1251421.1251438

54. Walsh, C.: New data theft scandal rocks subcontinent’s call centres [Online] (3 Sept 2006),
Available from: http://www.theguardian.com/money/2006/sep/03/business.india. Accessed 5
Jan 2014

55. Weyns, D.: Software engineering of self-adaptive systems: an organised tour and future
challenges. In: Cha, S., Taylor, R.N., Kang, K.C. (eds.) Handbook of Software Engineering.
Springer, Cham (2018)

56. Weyns, D., Malek, S., Andersson, J.: Forms: unifying reference model for formal specification
of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 7(1), 8:1–8:61 (2012).
https://doi.org/10.1145/2168260.2168268

57. Yuan, E., Tong, J.: Attributed based access control (ABAC) for web services. In: Proceedings
of the IEEE International Conference on Web Services, ICWS ’05, pp. 561–569. IEEE
Computer Society, Washington, DC (2005). https://doi.org/10.1109/ICWS.2005.25

58. Yuan, E., Malek, S., Schmerl, B., Garlan, D., Gennari, J.: Architecture-based self-protecting
software systems. In: Proceedings of the 9th International ACM Sigsoft Conference on
Quality of Software Architectures, pp. 33–42. ACM (2013)

59. Yuan, E., Esfahani, N., Malek, S.: A systematic survey of self-protecting software systems.
ACM Trans. Auton. Adapt. Syst. 8(4), 17:1–17:41 (2014). https://doi.org/10.1145/2555611

http://dl.acm.org/citation.cfm?id=863632.883495
http://sec.cs.kent.ac.uk/permis/
http://sec.cs.kent.ac.uk/permis/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.8588&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.8588&rep=rep1&type=pdf
https://doi.org/10.1007/978-3-642-02704-8_19
http://simplesamlphp.org/
https://doi.org/10.1109/COMPSAC.2009.54
https://doi.org/10.1109/COMPSAC.2009.54
http://dl.acm.org/citation.cfm?id=1251421.1251438
http://www.theguardian.com/money/2006/sep/03/business.india
https://doi.org/10.1145/2168260.2168268
https://doi.org/10.1109/ICWS.2005.25
https://doi.org/10.1145/2555611

Chapter 4
Bidirectional Transformations
for Self-Adaptive Systems

Lionel Montrieux, Naoyasu Ubayashi, Tianqi Zhao, Zhi Jin,
and Zhenjiang Hu

Abstract Bidirectional transformations are a synchronisation mechanism between
documents, a source, and a view. A bidirectional transformation is a pair of
functions, one that extracts a view from a source and the other that updates a
source according to changes made to the view. Bidirectional programming is a
recent technique that helps developers to easily write bidirectional transformations
and ensure that they satisfy properties of interest. In this chapter, we argue that
bidirectional transformations and bidirectional programming are useful techniques
in the context of self-adaptive systems. We present four applications of bidirectional
transformation for construction of adaptive systems: abstraction, separation of
concerns, rule-based adaptation, and uncertainty-aware programming.

4.1 Introduction

Bidirectional transformations [6, 11, 18] have been the focus of a lot of attention
lately, both in the programming language community [2, 10, 12, 16, 26] and in
the software engineering community [28, 29]. They are a recent way of solving
the old view-update problem, defined decades ago in the database community. As
bidirectional programming languages are growing more mature, they are getting
easier to use for software engineers and more efficient and more reliable. Perhaps the
strongest argument in favour of bidirectional programming is its ability to provide
a synchronisation mechanism between a source and a view that is guaranteed to be
correct by construction.

L. Montrieux (�) · Z. Hu
National Institute of Informatics, Tokyo, Japan
e-mail: lionel.montrieux@zalando.de

N. Ubayashi
Kyushu University, Fukuoka, Japan

T. Zhao · Z. Jin
Peking University, Beijing, China

© Springer Nature Singapore Pte Ltd. 2019
Y. Yu et al. (eds.), Engineering Adaptive Software Systems,
https://doi.org/10.1007/978-981-13-2185-6_4

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2185-6_4&domain=pdf
mailto:lionel.montrieux@zalando.de
https://doi.org/10.1007/978-981-13-2185-6_4

96 L. Montrieux et al.

In this chapter, we present four different ways in which bidirectional pro-
gramming and bidirectional transformations can improve the state of the art in
engineering self-adaptive systems. In particular, we focus on self-adaptive systems
developed around the MAPE-K feedback loop model [19].

First, bidirectional programming can be used to synchronise concrete and
abstract models in the knowledge base, allowing developers to write their adaptation
layer independently of the implementation of the target system. This facilitates
the reuse of MAPE-K components and allows developers to easily swap the
implementation of the target system, without having to rewrite the adaptation layer.

Second, bidirectional programming is useful to achieve separation of concerns,
and hence reuse of components, in the adaptation layer. By extracting from the
knowledge base small models that are tailored to a particular aspect being analysed,
bidirectional transformations simplify the development of small, focused analysis
and planning components and may even improve performance, due to the reduced
size of the models to consider.

Third, bidirectional programming is used in the context of view-based adaptation
rules for the analysis of the target system and its environment. Bidirectional
programming comes as a natural approach to implement the νRule approach, where
adaptation rules are applied depending on the state of the environment, captured in
views.

Fourth, bidirectional programming is applied in the field of uncertainty-aware
software development, a software development approach that makes uncertainty
a first-class citizen. Bidirectional transformations can extract partial models from
code and uncertainty-aware artefacts and reflect changes made to the partial models,
back to the code.

The rest of this chapter is organised as follows: In Sect. 4.2, we introduce bidi-
rectional transformations and bidirectional programming. In Sect. 4.3, we discuss
how bidirectional programming can synchronise concrete and abstract models,
and in Sect. 4.4, we focus on separation of concerns. Section 4.5 discusses the
use of bidirectional programming with νRule -based adaptation. Then, Sect. 4.6
considers the role of bidirectional programming in the context of uncertainty-aware
development. Section 4.7 concludes this chapter.

4.2 Bidirectional Programming

A bidirectional transformation is a pair of functions, a forward transformation get
and a backward transformation put, used to synchronise two documents [11]. The
forward transformation takes a source as input and produces a view; the backward
transformation takes a source and a view as inputs and uses the view to update the
source, producing an updated source.

In this paper, we will use Haskell, a functional language, to specify bidirectional
transformation. One big reason for us to choose Haskell is that a set of bidirectional
languages (libraries) have been developed in Haskell.

4 Bidirectional Transformations for Self-Adaptive Systems 97

In Haskell, the types for get and put are the following for a source of type
Source and a view of type View:

get :: Source -> View
put :: Source -> View -> Source

For example, the following code defines a bidirectional transformation between
a list of integers (the source) and a single element (the view).

1 get :: [Int] -> Int
2 get (x:xs) = x
3

4 put :: [Int] -> Int -> [Int]
5 put (x:xs) y = y:xs

The get function extracts the head of the list, while the put function updates
the head of the source list with the value in the view, as illustrated by the following
example:

> get [1,2,3]
1

> put [1,2,3] 9
[9,2,3]

A particularly interesting class of bidirectional transformations are well-behaved
bidirectional transformations [11, 12]. Intuitively, a well-behaved bidirectional
transformation provides a “correct” synchronisation between source and view. More
formally, a bidirectional transformation is well behaved if it satisfies two properties:
GetPut and PutGet.

GetPut is the identity law. If a view is extracted from a source and used and
unchanged to update the source, the source should not change:

put s (get s) = s

PutGet is the change conservation law. If a view has been updated, then using
it to update the source and then extracting a view from that updated source should
produce the same updated view:

get (put s v) = v

The example we used above is a well-behaved bidirectional transformation.
Using the same source as above, both laws of well-behaved bidirectional transfor-
mations are satisfied:

> put [1,2,3] (get [1,2,3]) = put [1,2,3] 1 = [1,2,3]

> get (put [1,2,3] 99) = get [99,2,3] = 99

Our example is trivial, but it can be very difficult to write a complex bidirectional
transformation, let alone proving it well behaved. Still, bidirectional transformations

98 L. Montrieux et al.

have been used in a variety of applications [6], including spreadsheets [5], graph
transformations [16], and many more.

Bidirectional programming languages are domain-specific languages that aim to
simplify the development of bidirectional transformations [11]. Developers write
one direction of the transformation, and the bidirectional programming language’s
compiler automatically derives the other direction, to form a well-behaved bidirec-
tional transformation, if it exists.

We can classify these bidirectional programming languages in two categories:
get-based languages and put-based (also called putback-based) languages.

Get-based languages let developers write a get function and automatically
derive a put function, forming a well-behaved bidirectional transformation.
GroundTRam [17] is one of these languages. The advantage of get-based languages
is that the get function is relatively easy to write. The inconvenience is that for a
given get function, there may be many put functions that form a well-behaved
bidirectional transformation. For example, the following code snippet shows three
different put functions for a single get. They all form well-behaved bidirectional
transformations:

1 get :: [Int] -> Int
2 get (x:xs) = x
3

4 put1 :: [Int] -> Int -> [Int]
5 put1 (x:xs) y = y:xs
6

7 put2 :: [Int] -> Int -> [Int]
8 put2 (x:xs) y = if x==y then y:xs else y:[]
9

10 put3 :: [Int] -> Int -> [Int]
11 put3 x y = if x>=y then y:xs else y:[]

Put-based languages, on the other hand, let developers write a put function
and automatically derive a get function to form a well-behaved bidirectional
transformation. While the put function is often more difficult to write than the
get function, we know that for a given put, there exists at most one get that
forms a well-behaved bidirectional transformation [9]. Hence, put-based languages
give developers more control over their bidirectional transformations. Examples of
put-based languages include BiFluX [25], BiGUL [21], or Brul [30].

Bidirectional programming, like bidirectional transformations, has been applied
to a variety of areas in software engineering, such as access control [13, 24], model-
code synchronisation [29], or self-adaptive systems [4].

4 Bidirectional Transformations for Self-Adaptive Systems 99

4.3 Bidirectional Programming and Abstraction

In self-adaptive systems built around the MAPE-K loop [19], the adaptation layer
monitors the target system and its environment, analyses data, plans changes, and
executes changes on the target system. Often, the self-adaptive layer is decoupled
from the target system. The monitoring of the system is done through probes
and gauges and the execution through effectors. This decoupling makes it easy
to reuse the same self-adaptive layer for multiple target systems. In this section,
we show how bidirectional programming can facilitate the reuse of a self-adaptive
layer for multiple target systems independently of the implementation of the target
system [4]. In particular, we focus on the adaptation of configuration files, which is
a common way of controlling the behaviour of the target system.

Configuration files are trees. They contain key-value pairs, each used to configure
a particular aspect of the software. In some configuration files, these pairs can
be placed inside blocks, and blocks can contain other blocks. Depending on the
configuration file, the order of pairs and/or blocks may matter. Keys that do not
appear in the configuration file are given a default value when parsed by the
software. The use of blocks also allows for context overriding, where the value of
a key in a block takes, for that block, precedence over other values of the same key
defined in ancestor blocks or over the default value.

An example of software that uses configuration files is a web server. There are
many implementations of web servers, such as Apache, Nginx, or Microsoft IIS.
Each implementation defines its own configuration format, syntax, and semantics.
Yet there are a lot of similarities between each implementation’s configuration files.
After all, they all describe the behaviour of web servers.

Using bidirectional programming, it is possible to synchronise a concrete
configuration file with an abstract web server configuration that is independent of the
implementation used. For each implementation, a bidirectional transformation syn-
chronises the concrete configuration file (the source of the transformation) with the
abstract configuration (the view), as depicted on Fig. 4.1. Since the transformations

Fig. 4.1 Abstraction with
bidirectional programs

100 L. Montrieux et al.

Knowledge base

Monitoring

Analysis Planning

Execution

Abstract model

Concrete model

BX

analyse abstract (sub-) model

plan for solution

enact concrete plan
update model

Adaptation layer

Target system

and reload serverand environment

Fig. 4.2 MAPE-K loop over abstract configuration

for all implementations use the same type for the view, it is then possible to reuse
the abstract implementation when implementing the MAPE-K loop, as illustrated on
Fig. 4.2. The monitoring stage keeps track of the environment and of changes in the
software’s concrete configuration. Changes in the configuration trigger a new get
transformation that updates the abstract configuration. Both the analysis and the
planning stages use the abstract configuration and are therefore reusable across any
implementation. The planning stage can directly modify the abstract configuration
to enact adaptation. In the execution phase, a put transformation synchronises the
abstract configuration with the concrete configuration, before the configuration file
is transferred to the target system, and the target system restarted or reloaded, if
necessary.

4 Bidirectional Transformations for Self-Adaptive Systems 101

Fig. 4.3 Migration with
bidirectional programs

4.3.1 Migration

An additional benefit of using bidirectional transformations to synchronise concrete
and abstract configurations is the possibility to migrate the target system from one
implementation to another while conserving the same configuration. Figure 4.3
illustrates such a scenario. Let A and B be two implementations of the target system,
each with its own configuration format. Two bidirectional programs are written to
synchronise the concrete configurations with a common abstract configuration. To
migrate the target system from implementation A to implementation B, an abstract
configuration is first extracted from the concrete configuration of A, using the get
transformation provided by the bidirectional program for A. Then, the abstract

configuration is used, together with an empty template configuration for B, to
produce, through the put transformation provided by the bidirectional program for
B, a concrete configuration for B that captures the same behaviour as the concrete
configuration for A.

4.4 Bidirectional Programming and Separation of Concerns

In the previous section, we discussed how to apply bidirectional programming
to easily develop synchronisation between abstract and concrete models in the
knowledge base. This synchronisation, correct by construction, allows for the reused
of parts of the adaptation layer, regardless of the implementation of the target
system. This is not the only way in which bidirectional programming can be helpful
in the knowledge base. It can be also used to facilitate separation of concerns in
adaptation layers that adapt a target system according to multiple concerns.

For example, the adaptation of a web application deployed on an IaaS cloud
service could take into account the usage of the cloud instances, security concerns,
and service availability requirements. While it is possible to consider these concerns
together as a multi-objective optimisation problem, we argue that considering them
separately has benefits and that bidirectional programming helps to develop such
systems.

102 L. Montrieux et al.

4.4.1 Extracting Submodels

In self-adaptive systems, the analysis of a particular concern may only require a
subset of the entire model(s)1 in the knowledge base. Using a bidirectional program,
it is possible to extract the exact model subset necessary to perform adaptation
according to a given concern and to keep it synchronised with the whole model.
In this situation, the complete model is the source, while a submodel for a given
concern is a view. The submodel can be analysed and then passed on to the planning
phase, which can directly modify the submodel. A put transformation will ensure
that the source model is updated accordingly. Figure 4.4 illustrates this process.

There are several advantages in extracting a submodel for each concern:

• The phases using the submodel do not need to change if unrelated changes
happen in the complete model. It is therefore easier to implement reusable
analysis and planning phases;

• If the analysis and/or planning phases use techniques whose performance
degrades with large inputs, such as model checking, a comparatively small
submodel can speed up the adaptation;

• Once views are extracted, it is easy to parallelise the execution of the analysis
and planning phases of each concern.

One inconvenient of this approach is that two separate concerns may cause
conflicting modifications of the source model. When evaluating the entire source
at once, mitigation strategies could easily be employed. Our approach would make
this more complicated. Ordering can be used to favour the more important concerns

Fig. 4.4 Extracting a
submodel

Autoscaling
view

Redundancy
view

Firewall rules
view

putget putget putget

analyse plan

AWS

monitor execute

Concrete IaaS

monitor execute

analyse plan analyse plan

1Since multiple models can easily be merged into a single one using a virtual root element, we
assume from now on that the knowledge base contains only one model.

4 Bidirectional Transformations for Self-Adaptive Systems 103

over the less important ones. In the case of several, equally important and potentially
conflicting concerns, separation may cause difficulties. However, it may still be
possible to group these concerns into a single view and perform the analysis for
these concerns simultaneously on a model that is still smaller than the source.

Using bidirectional programs provides guarantees, by construction, of the cor-
rectness of the synchronisation mechanism between the source and each of the
views. In our approach, only the analysis and planning phases use a view. The
monitoring phase directly updates the source, and the execution phase uses data
from the source, after it has been modified by all the planning phases. In the spirit
of Weyns et al.’s MAPE-K patterns for distributed systems [27], our solution follows
a M(AP) + E pattern.

4.4.2 Current vs. Desired State of the Model

In addition to using views to achieve separation of concerns, bidirectional program-
ming offers a solution to the issue of the model’s state. The solution is to use two
views, one for the current state of the model and one for the desired state of the
model. Both views are derived from the same source. Components can use the most
appropriate view.

In the source, a new status field is added to each element in the model. The
status indicates whether the element should not change (0), be created (1), or be
deleted (2) from the current model. Modifications to an element are treated as both
a deletion and a creation. The put transformation for the current model always
sets that value to 0 in the source. However, the put transformation for the desired
model sets the status to 1 for all elements created in the source and sets it to 2
for all deletions, without actually deleting the element from the source. The get
transformations derived are simple: for the current model, it selects all elements

whose status is 0 or 2; for the desired model, it selects all elements whose status is
0 or 1.

4.4.3 Evaluation Order and Concurrent Evaluation

The concurrent evaluation of multiple views can cause consistency issues. Let two
views, V 1

0 and V 2
0 , extracted from the same version of the source S0 (i.e. there

has been no put transformation run between the extraction of the two sources),
using get transformations BX1 and BX2, respectively. The respective analysis and
planning phases for V 1

0 and V 2
0 could make any changes to the views, resulting

in V 1
1 and V 2

1 , respectively. Propagating these changes to the source must be done
sequentially, as languages like BiGUL do not support the simultaneous update of
a source using multiple views. We assume that the transformation using V 1

1 is
performed first, but the argument is valid the other way around. Using BX1, a put
transformation updates S0, which becomes S1. If a get transformation with BX2

104 L. Montrieux et al.

still produces V 2
0 , then the other view has not been affected, and the second put

transformation can be performed. Otherwise, the second view is based on outdated
data, and it is possible that, should the analysis and planning be run again, another
result would be reached.

There are several ways to solve this issue. Perhaps the simplest approach is to
define a partial order between the different concerns and deal with them sequentially
according to the ordering (i.e. for each concern, start with get and then analyse and
plan and finish with put). Another strategy is, at design time, to manually inspect
the views produced and run those views that are produced from entirely distinct
subsets of the source in parallel, as they are completely separate. Finally, a more
sophisticated approach would be to deal with several concerns in parallel, keeping
track of the view produced by each get transformation (i.e. before it is modified).
After every put, all get transformations would be run again. If they produce the
same view as the previous get transformation, then the view has not been affected
by the changes introduced by put, and the updated view is still valid. Otherwise, the
analysis and planning must be run again. In the worst case, this will be equivalent
to the sequential scenario, with the addition of the comparison between different
versions of the views.

4.5 Declarative Description of Adaptation Logic

Adaption logic plays an important role in self-adaptive systems, specifying when
and how to update the behaviour and/or structure of the system in response to
changes of the environment and the system itself. So far, it has been implemented
mostly by hardwired code for analysing and planning in the MAPE-K loop. In this
section, we show that adaptation logic can be declaratively specified in putback-
based bidirectional languages such as BiFluX and BiGUL, which would allow
developers to utilise bidirectional programming to systematically construct robust
self-adaptive systems.

4.5.1 Adding Views to Adaptation Rules

Rule-based adaptation [1, 7, 22] provides a powerful mechanism to develop self-
adaptive systems, enabling systems to modify their behaviour, reconfigure their
structure, and evolve over time, reacting to changes in the operating context [3]. In a
rule-based adaptation system, a set of adaptation rules are used to specify adaptation
logic of what particular action should be performed in reaction to monitored events.

Typically, an adaptation rule takes the form of condition ⇒ action where
condition specifies the trigger of the rule, which is often fired as a result of a set
of monitoring operations, and action specifies an operation sequence to perform

4 Bidirectional Transformations for Self-Adaptive Systems 105

in response to the trigger. For instance, in a smart room system, we may have the
following rule:

Light.Power = off ∧ Time = daytime
⇒ Blind.State := open; Window.State := open

which declares that if the light is powered off in daytime, then the blind and the
window must be opened. Rule-based adaptation has advantages of readability and
elegance of each individual rule, the efficiency of plan process and the ease of rule
modification.

In spite of these advantages, adaptation rules pay attention only to local
transformations. However, such local transformations can be structured to ease the
satisfaction of the system’s global goals. In many cases, some environment features
may hint at different system goals, and different system goals imply different
adaptation policies.

We introduce another concern, situation, for capturing such a hint [20]. With this
concern, the adaptation logics are of two layers. The first layer intends to capture
the requirement changes when the situation changes. The second layer intends to
capture, for a certain system goal, the situation changes or changes in some of the
entities in the environment that require actions to continue satisfying the system
goal.

Then, to enable the dynamic decision on the system adaptation, three types of
νRules can be identified:

• situation → goal setting: It captures the phenomena that the user may have
different desires in different situations.

• goal setting: situation → behaviour pattern: This means that, given a goal setting,
the system should behave according to different behaviour patterns when situated
in different situations. A behaviour pattern consists of a set of environment
features.

• goal setting: environment features → system features: This means that, given a
goal setting, some of the system features need to be enabled by current emerged
environment features to better satisfice the goal setting.

The first type of rules is meaningful in decision-making about adaptation. For
example, everybody is sleeping is a situation that represents “everybody has been in
bed”. When in this situation, the system normally switches to the goal setting of the
“sleeping mode” without taking into account other environment features.

When a goal setting needs to be continuously satisfied, different situations may
also indicate different system behaviour modes. This is represented by the second
type of rules. In fact, situation is a concept that has received much attention from
philosophers and logicians. The earlier formal notion of situation was introduced as
a means to give a more realistic formal semantics for speech acts than what was then
available. In contrast with a world which determines the value of every proposition,
a situation corresponds to the limited parts of reality we perceive, reason about,
and live in. With limited information, a situation can provide answers to some, but

106 L. Montrieux et al.

not all, questions about the world. The advantage of including situation is then to
decrease the sensing cost as, normally, only parts of the environmental setting need
to be detected when making a decision in a particular situation. This is important
when the number of environment entities is large. The other advantage could be
fitting to the human recognition. In many cases, only a few features are required to
identify a situation, while others are less important.

4.5.2 νRule: View-Based Adaptation Rule

We assume that the environment states, the goal settings and the system behaviours
are represented by feature bindings and propose to structure adaptation rules into
νRules. There are two types of rules. The first type of νRule is the behaviour rule. It
is made of three parts: an observable view (v) that could be a goal configuration,
a conjunction of conditions (C) that could be a situation of the environment (a
group of significant environment features that indicates the situation) or a set of
environment features (that does not indicate a situation but captures the environment
states) and a sequence of actions (A). The second type of view-deciding rule is
made of two parts: an observable situation of the environment (C) and a system
goal configuration (A). For unification, we assume the view part of the second type
of rule is true.

The concrete syntax of νRule is shown in Fig. 4.5.
A νRule

v � C ⇒ A

can be read as “if v holds, action A should be taken under condition C and preserve
state v”. The view v and the condition C are defined over feature bindings, where
a feature is a goal setting or an environment attributes or a system component. A
feature binding f b has two alternatives: feature can be either bound with a value or
a value interval. For example, Light.Intensity = 2’ means the intensity of the light
is 2, Light.Intensity = (1, 3] equals to 1 < Light.Intensity ≤ 3.

A is a set of asked system component settings a, and each setting a binds a
constant value to a feature. For example, in the following νRule

Fig. 4.5 Syntax of νRule view-based rule νRule ::= v C Þ A
view v ::= fb
feature binding fb ::= feature = value

| feature = value interval
conditions C ::= c1 Ù c2 Ù . . . Ù cm
condition c ::= fb
action sequence A ::= a1;a2; . . . ;an
action a ::= feature := value

4 Bidirectional Transformations for Self-Adaptive Systems 107

(r1) Light.Power = off
� Time = daytime ∧ Blind.State = close
⇒ Blind.State := open; Window.State := open

r1 declares that when the current goal is to keep the light powered off, if it is in
daytime and the blind is closed, then the system components, the blind, and the
window will be opened.

Generally, the νRule implies that the view needs to be kept after adaptation. That
is the reason of calling the rule the view-based adaptation rule. The key is the use of
the idea of “view” in the rule specification. Rather than showing how to propagate
changes (out), the view-based rules specify how a view can be kept through changes
of necessary system components for responding the environment changes.

In the condition of a νRule, we do not support the or operation. This does
not weaken the expressiveness of νRules, as a νRule with a c1 or c2 condition
is equivalent to two νRules, with conditions c1 and c2, respectively.

4.5.3 Implementation of νRule in BiGUL

The proposed νRule s can be implemented in BiGUL. The implementation of νRule
by BiGUL includes two parts: (1) representation of the view and the source models
and (2) translation of νRule s as BiGUL updates.

4.5.3.1 Representation

For a specific νRule, the view model only specifies the binding state of one feature,
and the source model includes the binding states of all features monitored from
the environment and system. Therefore, we represent the view as a feature binding,
which is a tuple consisting of the feature name and its value, and represent the source
as a set of feature bindings. Figure 4.6 gives an example of the source and the view
for νRule r1, in the sense that the view is a projection of the source, where only the
value of feature “Light.power” is considered.

4.5.3.2 Translation

With the source and the view represented, a νRule can be translated into updates in
BiGUL. We describe the translation from νRule to BiGUL by using the νRule r1 as
an example. The translated BiGUL program is as follows (Fig. 4.7):

This program means updating the source using the view: if the view feature
“Light.power” takes the value “off”, then the source feature model will be updated
with the value of feature “Blind.state” set to “on”, and the value of feature
“Window.state” set to “open”.

108 L. Montrieux et al.

Fig. 4.6 An example of the source and the view

Fig. 4.7 The BiGUL program of νRule r1

Fig. 4.8 Consistency check

A νRule is regarded as valid when it satisfies the view preservation property: if
the view holds, it should still hold after the execution of the action. Implementing
a νRule as a BiGUL program can facilitate the check of its validity. A BiGUL
program is guaranteed to produce a well-behaved bidirectional transformation if
one exists, i.e. a BiGUL program satisfies the GetPut and PutGet laws (see
Sect. 4.2). Therefore, a successfully compiled BiGUL program is guaranteed to be
view preserved, and in this case, the corresponding νRule is guaranteed to be a
view-preserved rule.

While a νRule is valid when it is view preserved, a νRule set is regarded as well
behaved only if (1) each νRule in this set is valid and (2) every two rules in this
set are order independent. While the validity of a single νRule can be automatically
checked, the order independence between two rules can be checked through the
“checkEqual” function in Fig. 4.8. For two νRule s r1 and r2, if executing r2
after r1 and executing r1 after r2 lead to the exactly same adaptation results, r1 and
r2 will be considered as order independent.

4 Bidirectional Transformations for Self-Adaptive Systems 109

4.6 Bidirectional Transformations for Uncertainty-Aware
Software Development

4.6.1 Uncertainty in Software Development

Recently, uncertainty has attracted a growing interest among researchers. Research
themes spread over uncertainty of goal modelling, UML modelling, model transfor-
mations, and testing. Garlan D. argues that software systems such as self-adaptive
systems must embrace uncertainty within the engineering discipline of software
engineering [15]. As a representative work, a method for expressing uncertainty
using a partial model is proposed in [8]. A partial model can represent a specific
type of uncertainty in which there are uncertain issues known and shared among the
stakeholders including developers and customers. For example, there are alternative
user requirements although it is uncertain which alternative should be selected. A
partial model is a single model containing all possible alternative designs of a system
and is encoded in propositional logic. We can check whether or not a model satisfies
some interesting properties even if there are uncertain concerns.

4.6.2 Modular Programming for Uncertainty

Modularity is one of the important principles in software engineering. Unfortu-
nately, the state-of-the-art module mechanisms do not regard an uncertain concern
as a first-class software module. If uncertainty can be dealt with modularly, we can
add or delete uncertain concerns to/from code whenever these concerns arise or are
fixed to certain concerns.

To deal with this problem, a new programming style supporting modularity
for uncertainty is proposed in [14]. This approach consists of three key ideas:
(1) a pluggable interface for describing uncertainty, (2) interface-based modular
reasoning for uncertainty, and (3) management support for tracing when and why
uncertain concerns arise or are resolved. This interface called Archface-U, which
supports component-and-connector architecture, consists of two kinds of interfaces,
component and connector.

Figure 4.9 (Printer-scanner system), a well-known parallel system that falls
into a deadlock [23], is an example of Archface-U descriptions. Two processes
P and Q acquire the lock from each of the shared resources, the printer and the
scanner, and then release the locks. The symbols

{}
and

[]
represent alternative

and optional, respectively. A component is the same with ordinary Java interface.
A connector, which is specified using the notation similar to FSP (finite state
processes), defines the message interactions among components. FSP is based on
process algebra and generates finite LTS (labelled transition systems). An arrow in
FSP indicates a sequence of actions. For example, GET (List 1, line 22) shows that
the action scanner.get is executed after the action printer.get is executed.

110 L. Montrieux et al.

Fig. 4.9 Archface-U description (Printer-scanner system)

In Archface-U, uncertain concerns are defined as a subinterface as shown in List 2.
By extending the existing interface, we can introduce uncertainty modularly. In List
2, it is uncertain how to acquire printer and scanner resources in two processes, P
and Q.

As shown in Fig. 4.9, we can explicitly represent uncertainty using alternative
and optional language constructs. If a developer is writing a program and he or
she becomes aware of the existence of uncertainty, the developer only has to
modify Archface-U as shown in List 2. The developer does not have to modify
the original code, because the essential information containing uncertain concerns
is expressed in the Archface-U and the behavioural properties can be checked using
only this information as explained below. If an uncertain concern is fixed to certain,
a developer only has to delete the corresponding inheritance (List 2) and modify the
original Archface-U (List 1) if needed.

4.6.3 Modular Reasoning Based on Partial Model

We can use the verification power provided by a partial model as illustrated
in Fig. 4.10. A partial model is generated from Archface-U definitions including
uncertainty represented by alternative and optional. Uncertainty is a target of
compilation. The type checker verifies whether code is a subset of the partial model.
From the theoretical aspect, type checking is passed when each code is a refinement
of Archface-U. Our compiler is based on the refinement calculus focusing on
simulation.

Behavioural properties represented by LTL (linear temporal logic) can be auto-
matically verified using model checkers such as LTSA (LTS analyser) supporting
FSP. If a property is verified by a model checker and the type check is successfully
passed, the program satisfies important properties such as deadlock free. We show
a verification process in details. In case of the printer-scanner system, there are four

4 Bidirectional Transformations for Self-Adaptive Systems 111

Fig. 4.10 Uncertainty-aware modular reasoning

Fig. 4.11 Partial model and Java program

possible resource acquisition sequences. Type check is passed if Java code simulates
one of these sequences. In Fig. 4.11, Java code simulates the sequence 1, and the
type check is passed. If counterexamples are not generated by a model checker,
we can select any sequence (either of 1, 2, 3, or 4 is okay). We can proceed the
development even if uncertain concerns exist, because the code simulating sequence
1 is correct. Unfortunately, counterexamples are generated in case of Fig. 4.11,
and these counterexamples show that the acquisition order must be the same. In
this case, uncertainty may cause a deadlock although the Java code in Fig. 4.11
is correct. A developer can confirm whether or not he or she can embrace this
uncertainty before modifying the code. In this case, the developer should not modify
the code. As another situation, assume that a developer makes the code simulating
the sequence 3 or 4. Although the type check is passed, the code is not correct
because counterexamples are generated. In this case, a developer has to change the
code to a new version simulating the sequence 1 or 2. In this case, a developer
can resolve uncertain concerns and make a correct program before debugging and
testing.

112 L. Montrieux et al.

State explosion is a crucial problem when applying model checking to source
code. In our approach, model checking is performed in terms of only FSP
descriptions in Archface-U. Code is not the direct target of model checking. As a
result, the number of states is reduced. Nevertheless, code can be indirectly verified
by the model checker if the code conforms to its Archface-U via type checker. Our
approach mitigates the problem of state explosion by integrating type checking with
model checking.

4.6.4 Bidirectional Transformation for Uncertainty

Our approach can be regarded as an application of a bidirectional transformation.
Get uses Archface-U and code to produce a partial model as a view. Put uses
Archface-U, code, and a partial model to reflect changes made to the partial model
into the code.

4.7 Conclusion

In this chapter, we have introduced bidirectional transformation, as well as bidirec-
tional programming. We have shown how bidirectional programming is a technique
that can be applied to various aspects of the engineering of self-adaptive systems.
We targeted four areas in particular: abstraction, separation of concerns, νRule -
based adaptation, and uncertainty-aware software development.

References

1. Acher, M., Collet, P., Fleurey, F., Lahire, P., Moisan, S., Rigault, J.P., et al.: Modeling context
and dynamic adaptations with feature models. In: Proceedings of the 4th International
Workshop on Models@run.time, Denver (2009)

2. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang: resourceful
lenses for string data. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’08, San Francisco, pp. 407–
419. ACM, New York (2008)

3. Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., Marzo Serugendo, G., Dustdar, S., Finkelstein, A., Gacek,
C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J., Litoiu, M., Malek, S., Mirandola,
R., Müller, H.A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software
engineering for self-adaptive systems. In: Software Engineering for Self-Adaptive Systems:
A Research Roadmap, pp. 1–26. Springer, Berlin/Heidelberg (2009). https://doi.org/10.1007/
978-3-642-02161-9_1

https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1

4 Bidirectional Transformations for Self-Adaptive Systems 113

4. Colson, K., Dupuis, R., Montrieux, L., Hu, Z., Uchitel, S., Schobbens, P.Y.: Reusable self-
adaptation through bidirectional programming. In: SEAMS’16: 11th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. ACM, Austin (2016)

5. Cunha, J., Fernandes, J.P., Mendes, J., Pacheco, H., Saraiva, J.: Bidirectional transformation
of model-driven spreadsheets. In: Hu, Z., de Lara, J. (eds.) Theory and Practice of Model
Transformations. Lecture Notes in Computer Science, no. 7307, pp. 105–120. Springer,
Berlin/Heidelberg (2012)

6. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidirectional
transformations: a cross-discipline perspective. In: Paige, R.F. (ed.) Theory and Practice of
Model Transformations. Lecture Notes in Computer Science, no. 5563, pp. 260–283. Springer,
Berlin/Heidelberg (2009)

7. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: A language for specifying security and
management policies for distributed systems. Department of Computing, Imperial College,
Technical Report, London (2000)

8. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reasoning with
uncertainty. In: 2012 34th International Conference on Software Engineering (ICSE), Zurich,
pp. 573–583 (2012)

9. Fischer, S., Hu, Z., Pacheco, H.: “Putback” is the Essence of Bidirectional Programming.
Technical Report GRACE-TR 2012-08, National Institute of Informatics (2012)

10. Fischer, S., Hu, Z., Pacheco, H.: The essence of bidirectional programming. Sci. China Inf.
Sci. 58(5), 1–21 (2015)

11. Foster, J.N.: Bidirectional programming languages. Ph.D. thesis, University of Pensylvania
(2009)

12. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for
bidirectional tree transformations: a linguistic approach to the view-update problem. ACM
Trans. Program. Lang. Syst. 29(3), 17 (2007)

13. Foster, J., Pierce, B., Zdancewic, S.: Updatable security views. In: 22nd IEEE Computer
Security Foundations Symposium, CSF’09, Port Jefferson, pp. 60–74 (2009)

14. Fukamachi, T., Ubayashi, N., Hosoai, S., Kamei, Y.: Conquering uncertainty in Java pro-
gramming. In: Proceedings of the 37th International Conference on Software Engineering
– ICSE’15, Florence, vol. 2, pp. 823–824. IEEE Press, Piscataway (2015)

15. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research, FoSER’10, Santa Fe, pp. 125–128.
ACM, New York (2010)

16. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K., Nakano, K.: Bidirectionalizing Graph
Transformations. In: Proceedings of the 15th ACM SIGPLAN International Conference on
Functional Programming, ICFP’10, Baltimore, pp. 205–216. ACM, New York (2010)

17. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: an integrated framework
for developing well-behaved bidirectional model transformations. In: 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE), Lawrence, pp. 480–483
(2011)

18. Hu, Z., Schürr, A., Stevens, P., Terwilliger, J.F.: Dagstuhl seminar on bidirectional transforma-
tions (BX). SIGMOD Rec. 40(1), 35–39 (2011)

19. IBM Corp.: An architectural blueprint for autonomic computing. Technical report, 3rd edn.
(2005)

20. Jin, Z.: Environment Modeling Based Requirements Engineering for Software Intensive
Systems. Elsevier/Morgan Kaufmann/HZ Books, Cambridge (2018)

21. Ko, H.S., Zan, T., Hu, Z.: BiGUL: a formally verified core language for Putback-based
bidirectional programming. In: Proceedings of the 2016 ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, pp. 61–72. ACM, New
York (2016)

22. Lanese, I., Bucchiarone, A., Montesi, F.: A framework for rule-based dynamic adaptation. In:
Proceedings of the 5th International Conference on Trustworthy Global Computing, TGC’10,
Munich, pp. 284–300. Springer (2010)

114 L. Montrieux et al.

23. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs, 2nd edn. Wiley, Hoboken
(2006)

24. Montrieux, L., Hu, Z.: Towards Attribute-Based Authorisation for Bidirectional Programming,
pp. 185–196. ACM, Vienna (2015)

25. Pacheco, H., Zan, T., Hu, Z.: BiFluX: a bidirectional functional update language for XML. In:
6th International Symposium on Principles and Practice of Declarative Programming (PPDP
2014), Canterbury (2014)

26. Voigtländer, J.: Bidirectionalization for free! (pearl). In: POPL 2009, Savannah, pp. 165–176.
ACM (2009)

27. Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke, J.,
Andersson, J., Giese, H., Göschka, K.M.: On patterns for decentralized control in self-adaptive
systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for
Self-Adaptive Systems II. Lecture Notes in Computer Science, no. 7475, pp. 76–107. Springer,
Berlin/Heidelberg (2013)

28. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic model
synchronization from model transformations. In: 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), Atlanta, pp. 164–173. ACM (2007)

29. Yu, Y., Lin, Y., Hu, Z., Hidaka, S., Kato, H., Montrieux, L.: Maintaining invariant traceability
through bidirectional transformations. In: 2012 34th International Conference on Software
Engineering (ICSE), Zurich, pp. 540–550 (2012)

30. Zan, T., Liu, L., Ko, H.S., Hu, Z.: Brul: a putback-based bidirectional transformation library
for updatable views. In: Proceedings of the 5th International Workshop on Bidirectional
Transformations, Bx 2016. CEUR Workshop Proceedings, vol. 1571, pp. 77–89. CEUR-
WS.org, Eindhoven (2016)

Chapter 5
Parallel Adaptation of Multiple Service
Composition Instances

Rafael Roque Aschoff, Andrea Zisman, and Pedro Alexandre

Abstract Existing approaches for adaptation of service compositions do not
consider the fact that common services can be used in different compositions, and,
therefore, a problem that may be identified in one composition could be used to
predict unwanted situations in other compositions. In this paper, we propose a
parallel and proactive adaptation framework that supports proactive adaptation in
multiple service composition instances at the same time. In the framework, events
observed for one particular service composition instance are shared between all
composition instances executed in parallel in order to better predict problems and
rectify them in all necessary instances, when possible. The parallel characteristic of
the framework also supports balancing the load among candidate service operations,
and, therefore, it considers the maximum expected service operation throughput
between the compositions. A prototype tool has been implemented to illustrate and
evaluate the framework in different scenarios.

5.1 Introduction

Adaptation of service compositions is considered a major research challenge for
service-based systems [6, 7, 14, 19]. Several situations may trigger the need for
adaptation in service compositions, including (i) changes in or emergence of new
requirements, (ii) changes in the context of the composition and participating

R. R. Aschoff (�)
Federal Institute of Pernambuco - IFPE, Pernambuco, Brazil
e-mail: rafael.roque@palmares.ifpe.edu.br

A. Zisman
The Open University, Milton Keynes, UK
e-mail: andrea.zisman@open.ac.uk

P. Alexandre
University of Sao Paulo, São Paulo, Brazil
e-mail: pedro.alexandre@usp.br

© Springer Nature Singapore Pte Ltd. 2019
Y. Yu et al. (eds.), Engineering Adaptive Software Systems,
https://doi.org/10.1007/978-981-13-2185-6_5

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2185-6_5&domain=pdf
mailto:rafael.roque@palmares.ifpe.edu.br
mailto:andrea.zisman@open.ac.uk
mailto:pedro.alexandre@usp.br
https://doi.org/10.1007/978-981-13-2185-6_5

116 R. R. Aschoff et al.

services, (iii) changes in functional and quality aspects of services in compositions,
(iv) failures in services in compositions, and (v) emergence of new services.

More recently, some approaches to support adaptation of service composition in a
reactive way [1, 4, 9, 15, 18] or proactive way [5, 22] have been proposed. However,
these approaches support changes in service compositions in future executions of the
composition, instead of changes in compositions during their execution. Moreover,
existing approaches allow changes to be performed only in a single composition and
do not consider the fact that services that need to be replaced may be participating
in different compositions at the same time.

In this paper we propose a framework called ParProAdapt to support parallel
and proactive adaptation of service compositions. The work presented in this paper
extends our previous work [2, 3] that supports proactive adaptation of service
composition in order to allow parallel adaptation and load balancing management
of service compositions. We define parallel adaptation of service compositions as
changes in service compositions that are being executed at the same time and which
share common service operations that need to be replaced. Our approach supports
the situation in which common operations are being used in different compositions,
and these operations may need to be replaced in the different compositions and not
necessarily only in the composition where the need for changes has been identified,
for example, when the service providing the operation becomes unavailable or
when the operation malfunctions. The approach also supports the situation in which
several execution instances of the same composition are executed concurrently, and
a problem identified in one instance also needs to be rectified in the other instances
of the composition.

Another novelty of the work presented in this paper is the support for load
balancing management. More specifically, when performing changes in a service
composition, the load of a particular invoke activity can be distributed over different
candidate service operations in order to increase or maintain the total throughput
of the composition. If a deployed service operation is unavailable, and there are no
candidate operations with the same expected throughput, a combination of more
than one candidate operation can be considered.

In order to illustrate, suppose a credit card service SCC , with an operation to
make a payment OPay , that is used in compositions C1, C2, and C3. Assume that
SCC becomes unavailable and this is identified when trying to invoke OPay in
composition C1. Consider that OPay has not yet been invoked during the execution
of C2 and C3. In this case, OPay should be replaced in C1, to allow the composition
to continue its execution, as well as proactively replaced in C2 and C3, to avoid
invoking OPay in these two compositions, and only after attempting to invoke OPay ,
the process realises that OPay is unavailable. The situation described above is not
unrealistic since it is expected that services will be used in several applications at
the same time.

In the framework the proactive adaptation of service compositions consists of
detecting the need for changes and implementation of changes in a composition,
before reaching an execution point in the composition where a problem may occur,
for example, the identification that the response time of a service operation in

5 Parallel Adaptation of Multiple Service Composition Instances 117

a composition may cause violation of the composition’s service-level agreement
(SLA), requiring other operations in the composition to be replaced in order to
maintain the SLA, or the identification that a service provider P is unavailable
requiring other services in the composition from P to be replaced, before reaching
the parts in the composition where services from P are invoked.

In ParProAdapt the prediction of problems that trigger the need for adaptation
is based on function approximation and failure spatial correlation techniques [16].
Moreover, the need for adaptation considers a group of operations in a composition
flow, instead of isolated operations, in order to avoid replacing an operation in a
composition when there is a problem, and this problem can be compensated by
other operations in the composition flow.

The remainder of this paper is structured as follows. In Sect. 5.2 we present an
overview of the ParProAdapt framework and provide a description of the proactive
and parallel adaptation approaches used in the framework. In Sect. 5.3 we describe
implementation and evaluation aspects of our work. In Sect. 5.4 we give an account
of related work. Finally, in Sect. 5.5 we discuss concluding remarks and future work.

5.2 Parallel and Proactive Adaptation Framework

The main goals of the ParProAdapt framework is to provide dynamic, proactive,
and parallel adaptation of service compositions. It supports a parallel identification
and prediction of the need for adaptation and an autonomously reconfiguration of
the service compositions during their execution time. The parallel characteristic
of the approach is concerned with the identification of a problem in an instance
of a composition and the impact of this problem in other instances of the same
composition or in different compositions that share common services when the
identified problem is in any of these services.

ParProAdapt is based on an event-based strategy in which different compo-
nents of the framework generate different types of events. It supports parallel
and proactive adaptation of service compositions due to four different types of
situations, namely, C1, events that cause the composition to stop its execution (e.g.
unavailability or malfunctioning of a deployed service operation); C2, events that
allow the composition to continue to be executed, but not necessarily in its best
way (e.g. the network link is congested, causing delays on the response times of
some operations; such fluctuations in the response time may require adaptation in
order to comply with SLA parameters of the composition); C3, emergence of new
requirements (e.g. messages exchanged between services need to be encrypted; the
response time of the composition needs to be improved); and C4, emergence of
better services (e.g. a cheaper service becomes available).

The above situations are mapped to different events that are analysed in terms of
the need for adaptation, and, depending on the results of the analysis, the adaptation
process is executed. The adaptation consists of creating a valid configuration for
a composition by (a) replacing a single service operation in the composition by
another service operation or by a group of dynamically composed service operations

118 R. R. Aschoff et al.

Composer

receives

BPD + SLA

request

Clients

Execution Instances

Operations
Map

Workflow
Template

creates
Admin

registers

Execution
Engine

executes

Events

generates

Bi
nd

In
fo

rm
at

io
n

Re
po

si
to

ry

Service
Discovery

requires

updates Event
Analyser

monitors

Adaptor

triggers
uses

generates

reads/
updates

reads

reads/
updates

Web Servicesrefers to

reads

reads

Fig. 5.1 ParProAdapt framework architecture

(replacement of types 1-1 or 1-n) or (b) replacing a group of service operations in a
composition by a single operation or by a group of dynamically composed service
operations (replacement of types n-1 or n-m).

The replacement of an operation may cause signature dependency issues with
other operations in the execution instance, i.e. the situation in which the output
parameter (or its part) of an operation is used as input parameter (or its part)
in another operation. In the case of operation signature dependency issues, it is
necessary to verify the need to replace affected operations.

The creation of a valid configuration for a composition considers the execution
logic (regions) of the composition (sequence, parallel, conditional selection, and
repeat) to identify a group of operations that may need to be replaced by an
operation or a group of dynamically composed operations. The creation of a
valid configuration is considered an optimisation problem based on the selection
of appropriate combinations of candidate service operations that satisfy the SLA
parameters of a composition.

Figure 5.1 shows an overview of ParProAdapt framework. The framework
is composed of five mains components, namely, composer, service discovery,
execution engine, event analyser, and adaptor, described below.

Composer This component is responsible to parse business process definitions
(BPDs) (service compositions) and their associated service-level agreements
(SLAs) and create an internal configuration for the service composition using
the service discovery and bind information repository. This configuration is a
service composition execution instance. The composer invokes the service discovery
component to identify service operations that implement the logic of the service
compositions and satisfy the SLA parameters of the compositions. Different
configurations of a service composition execution instance may be created for
the various clients requesting the composition.

5 Parallel Adaptation of Multiple Service Composition Instances 119

Execution Instance It is composed of (i) a logic workflow of a service composi-
tion, which defines abstract operations, their order of execution and dependencies
between operations and (ii) a map between the abstract operations in the workflow
and the binding information for the actual services. An execution instance extends
the expressiveness of a service composition with information about the (i) execution
flow, (ii) deployed endpoint service operations and their locations, (iii) state of a
service operation in a composition (e.g. executed, to be executed, and executing),
(iv) observed QoS values of a service operation after its execution, (v) expected
QoS values of a service operation, and (vii) SLA parameter values for the service
operations and the composition as a whole.

Service Discovery This component identifies possible candidate service operations
to be used in the composition, or to be used as replacement operations in case
of problems. We assume the use of the service discovery approach that has been
developed by one of the authors of this paper to assist with the identification of
candidate service operations [22]. This approach advocates a proactive selection of
candidate service operations based on distance measurements that match functional,
behavioural, quality, and contextual aspects. The candidate service operations are
identified in parallel to the execution of the compositions based on subscribed
operations and are kept in a local bind information repository.

Bind Information Repository It keeps track of all possible service operations to
be used by the service compositions, including not only the deployed operations,
but also candidate service operations. The repository also contains information
about the expected QoS parameters of the operations and their status (e.g. available
and unavailable). The service discovery component updates the repository with
information about new identified service operations or new status of already
identified operations. When new operations are identified, or there are changes in
the status or characteristics of existing operations, an event about the changes is
generated and handled by the event analyser component.

Execution Engine An execution engine is the piece of software responsible for
the execution of business processes described in the form of an executable service
composition. Different service compositions can be deployed in an execution
engine, and for each request of a particular composition, a private session must be
maintained in order to individually and correctly parse input and output parameters.
In the same way that a web service description (WSD) contains an abstract part
for the general definitions of a web service and a concrete part for the binding
information, for each service composition SCn deployed in an execution engine,
there is an abstract composition template Tn consisting of the workflow logic and a
set of binding information for each deployed service operation STn .

The abstract template Tn contains invoke activities pointing to abstract web
service definitions. While executing a services composition SCn, the execution
engine uses the binding information STn to identify the actual concrete operation
to be invoked. Without a way to dynamically update the structural logic (T) or
the binding information (ST), compositions are bound to use the same set of

120 R. R. Aschoff et al.

concrete operations, which results in great issues when such operations degrade
their performance or present any fault.

We developed a simple execution engine that handles execution instances
independently. It identifies service operations to be used and how they should be
accessed. Before invoking a service operation, the execution engine requests the
status of the operation and the status of the composition as a whole (e.g. when
the response time for the whole composition violates the SLA parameter of the
composition). In the case in which a service operation is unavailable, or there is not
a match between the expected and observed QoS values of an operation, a new event
is created and sent to the event analyser.

Event Analyser This component is responsible for analysing all the generated
events in order to predict unwanted situations and execute parallel changes in
the execution instances, when necessary. More details of the functionality of this
component are discussed in the subsections below.

Adaptor This component is responsible to execute individual changes in the
execution instances, based on requests received from the event analyser. In order
to execute the necessary changes, the adaptor component reads information from
the bind repository about available operations.

5.2.1 Proactive Adaptation Approach

The proactive adaptation approach used by the framework has been described
in details in [2, 3]. In this section we provide an overview of the approach for
completeness of this paper and to better understand the parallel characteristics of
the approach, which is the novel aspect of the paper.

As described above, the adaptation process may be triggered by situations of
types C1 to C4. The events generated for situations C1 to C3 may produce unwanted
situations resulting in failure in the execution of service compositions. Due to the
nature of situations, C3 and C4, they cannot be predicted. However, prediction
techniques can be used to support situations C1 and C2. For any of the situations
that may trigger the need for adaptation, the process tries to identify other parts in
the execution instance that may be affected by the situation. The process is based
on the use of two techniques executed by the event analyser component, namely, (a)
QoS analysis and (b) spatial correlation analysis.

QoS Analysis It consists of a failure prediction technique that verifies the impact
that changes of QoS values of deployed service operations may have in the SLA
parameters of a composition as a whole. This analysis is used to avoid replacing an
operation in an execution instance when the problem can be compensated by other
operations in the execution flow. The process also identifies other operations in the
instance that may be affected due to violation of QoS values.

5 Parallel Adaptation of Multiple Service Composition Instances 121

In the framework, the process concentrates on the analysis of violations of
response times and cost values of the operations. The analysis is based on the use of
exponentially weighted moving average (EWMA) [13] for modelling the expected
service operation QoS values. An expected QoS value (e.g. response time) of an
operation is calculated based on previous observed QoS values for that operation.
The new expected QoS value of an operation is updated on the bind information
repository. The aggregated QoS values of an execution instance is calculated based
on the expected QoS values of the operations not yet executed, and the observed QoS
values of the operations are already executed. The computation of the aggregated
QoS values for the whole composition depends on the type of the QoS values and the
logic workflow structures of the composition (e.g. conditional, sequence, parallel,
and repeat logic structures).

When there is no violation of the SLA values for the whole composition, there
is no need to adapt the execution instance. If the expected values are violated, the
adaptor component is invoked to identify a valid configuration for the composition.
This valid configuration may be generated by replacing operations in the execution
instance that have not yet been executed and by attempting to find possible
combinations of replacement operations that provide the functionality of those
operations and maintain the SLA values of the composition.

Spatial Correlation Analysis This technique consists of identifying spatial corre-
lations between operations, services, and providers. It is concerned with the situation
in which providers, services, and operations become unavailable and the impact
that this unavailability may have in other services or operations being used in
the composition. For example, consider a service S that becomes unavailable. In
this case, the process considers all other operations of S in the composition since
these operations may not be able to be executed. Similarly, when a provider P is
unavailable, all services and operations provided by P are also marked as out of
reach on the bind information repository.

During the spatial correlation analysis, the bind information repository is updated
about the availability of operations. In the case in which operations deployed in
the execution instances are identified as unavailable, the adaptor is invoked to
identify a valid configuration for the composition. In the spatial correlation analysis,
all running execution instances are aware of any issues when trying to invoke
operations with a problem.

When using only the proactive adaptation approach, for the trigger situations
C1 and C2, the running execution instances identify a problem with an operation
only when they reach a point of execution in which they request the operation with
the problem. The other parts of the execution instances that may be affected by
the operation with a problem will be proactively identified based on the techniques
discussed above. However, to allow running execution instances to be notified about
a problem in a deployed operation, as soon as possible, for any of the trigger
situations, we propose the parallel adaptation approach described below.

122 R. R. Aschoff et al.

5.2.2 Parallel Adaptation Approach

The parallel adaptation approach complements the proactive adaptation approach
with two new techniques, namely, (a) parallel analysis and (b) load balancing
analysis. Overall, the idea of the parallel approach is to identify other running
execution instances that may be affected by a problem identified in one execution
instance and rectify this problem in these other instances in parallel, during their
execution time. As mentioned before, those execution instances can be copies of
the same service composition in which a problem was identified or different service
compositions that use an operation for which there is a problem.

Parallel Analysis With this technique, it is possible to reduce the time that it is
necessary to identify a problem in an operation used in a service composition, the
assessment of this problem in other running service compositions that share the
operation and the execution of the actions to rectify the problem.

Our approach allows instances of service compositions to be adapted in parallel
independent of each other. More specifically, changes executed in one service
composition instance do not necessarily interfere with other instances which are
executed in parallel, even when these are instances of the same service composition.

Figure 5.2 presents a snapshot of the above characteristics of our approach.
As shown in the figure, for each request m of a deployed service composition
SCn, an execution instance EIn

m is created using the composition template Tn and
its respective binding information STn . The framework creates for each execution
instance EIn

m a private template T n
m and binding information for this template Sn

Tm

Execution Engine

Request SCr

SC1 SC2 SCn. . .

Deployed Service
Compositions

Requ
est S

Cs

Request SCr

Execution
Ins tances

Requester 1Requester 1

Requester 2Requester 2

Requester mRequester m

WS1 WS2 WSk. . .

Web Services

Fig. 5.2 Illustration of the execution engine accessing execution instances of service composition

5 Parallel Adaptation of Multiple Service Composition Instances 123

in order to allow adaptations of a particular service composition instance. The
approach also maintains the composition template Tn and its binding information
STn to support proactive adaptation of new instances of a service composition that
may be created due to future requests. In order to illustrate, consider three execution
instances EIr

1 , EIr
2 , and EIs

1 for service compositions SCr and SCs respectively.
Changes in the private template T r

1 of EIr
1 or changes in its binding information

Sr
T1

do not create direct changes in the private templates T r
2 and T s

1 or in the
binding information Sr

T2
and Ss

T1
. However, it is possible to allow the adaptation

across parallel execution instances of the same or different service compositions by
accessing their private templates and binding information. Moreover, given a set of
deployed service compositions {SC1, SC2, . . . , SCn}, new execution instances of
these compositions can benefit from previous processed information by changing
the respective composition templates Tx, 1 ≤ x ≤ n or the respective default
binding information STx , 1 ≤ x ≤ n, which are both used to create the new
execution instances.

As described in Sect. 5.2.1, in the proactive approach, the verification of the
status of deployed operations is only executed when a running execution instance
reaches a point of execution in which a deployed operation is requested. With the
parallel analysis, the event analyser component triggers parallel adaptation of all
affected execution instances. This allows parallel execution instances to reconfigure
themselves earlier in the running process (before reaching the operation with issues)
and, therefore, augment the probability of success in the adaptation since there will
have potentially more options for changes in the composition, for example, in the
case in which it is necessary to change a group of operations in the composition
that have not yet been executed, in order to conform to the SLA values of the
composition.

The parallel analysis is executed by verifying if each running execution instance
has a valid configuration, before the execution of each deployed operation in the
instances. The verification of a valid configuration consists of analysing if there is
any operation not yet invoked that may have become unavailable and if there are
any SLA violations due to QoS discrepancies. This verification is executed by the
event analyser based on the information in the execution instances and the bind
information repository (see Fig. 5.1). During the above verifications, an execution
instance cannot proceed with its execution until either an adaptation is performed or
it is concluded that there is no need for adaptation.

Load Balancing This technique is used to verify if the throughput of the ser-
vice compositions are maintained as initially specified for the compositions. The
throughput specified for a service composition is reflected in the activities and their
deployed operations in the composition. The throughput of each service operation
in an execution instance is calculated and compared with the maximum accepted
throughput value of the composition, in order to avoid overloading the use of the
deployed operations. This is done by using a throughput counter for each deployed
operation. When an execution instance is created, the counters associated with the
operations are incremented; when the operations are invoked during the execution

124 R. R. Aschoff et al.

of an instance, their associated counters are decremented. The maximum accepted
throughput value of an operation is maintained in the bind information repository to
allow the composer and adaptor components know which operations can be used in
an execution instance, without causing operation overload.

In the case in which a deployed operation O needs to be replaced, the approach
supports the use of one or more operations to replace O when these operations
provide the same functionality of O and the sum of the throughput values of these
operations are equal to the throughput value specified for the activity associated with
O. The above is possible due to the parallel approach being described in the paper
since the framework keeps track of the parallel use of all operations in the execution
instances that are running at the same time.

5.3 Implementation and Evaluation

In order to demonstrate and evaluate the work, we have implemented a prototype
tool of the framework in Java. The tool assumes service compositions in WS-
BPEL [20] exposed as web services using SOAP protocol, and participating
operations and user requests emulated using SoapUI. The service discovery tool
was also implemented in Java and is exposed as a web service.

In our previous paper [3], we showed how computationally inexpensive and
scalable are the various activities concerned with the proactive adaptation aspect
of the framework for a single service composition. In particular, we analysed
the time to identify and resolve SLA violations, the time to identify and resolve
signature dependencies, the time to identify spatial correlations, and the time to
adapt a composition by changing groups of operations in a composition. In the
current parallel approach, the activity that generates additional computational effort
is concerned with the reconfiguration algorithm of a service composition and its
additional analysis of the load of operations. Therefore, we consider that the parallel
extension is aligned with our previous results with respect to the computation of
these activities. In this paper, our focus is to demonstrate if there are improvements
in the adaptation process when considering the parallel adaptation, in terms of the
number of service compositions that can adapt successfully. In other words, we
are trying to verify if our approach is able to improve the dependability of service
compositions by dealing with two specific types of problems, namely, (a) a problem
that can only be solved by changing the identified faulty operation and a set of other
operations which are logically presented in the compositions prior to the faulty one
and (b) a problem where there is no single operation that can support the number of
requests being generated.

As previously discussed, our approach is able to adapt parallel execution
instances of single or multiple service compositions. The adaptation process itself,
however, makes no difference if the execution instances are of the same or
distinct compositions. Such distinction exists only during the initial phase when the
execution instance must be created based on the template of a deployed composition.

5 Parallel Adaptation of Multiple Service Composition Instances 125

Act01 Act02 Act03 Act04 Act05 Act06 Act07 Act08 Act09

Invoke Activity SequenceUnavailable Solution Area

Act10

Fig. 5.3 Service composition workflow for evaluation of Scenario 1

In order to make the evaluation and discussion of the results more clear, we decided
to conduct our experiments with multiple instances of the same service composition.

In the experiments, we assume that each of the various execution instances starts
its execution in different time steps. We also consider that the number of running
execution instances at different points of their execution flow is approximately the
same. More specifically, the number of running instances executing the initial part
of their flows is similar to the number of those in the middle or in the end of their
execution flows. The work has been evaluated for three main cases with different
scenarios. In the first two cases, we compare the use of the parallel and proactive
approach with the proactive approach only for a service composition with a linear
structure (Case 1) and a complex service composition (Case 2). For both cases (Case
1 and Case 2), we assume that one or more operations in the composition become
unavailable. However, the approach supports a similar process for the other types
of problems (e.g. violation of QoS values of an operation). Finally, in Case 3 we
evaluate the load balancing technique.

Case 1 – Scenario 1: In this scenario, we use a service composition with a
sequential workflow formed by ten invoke activities, as shown in Fig. 5.3. We
assume that at a certain time in the experiment, the service operation assigned to
the last invoke activity (Act10) becomes unavailable. Consider the existence of a
set of candidate service operations for each invoke activity (Act1–Act10) presented
in Fig. 5.3, and the use of any of the available candidate service operations for
Act10, along with the current assigned operations for (Act1–Act09), would cause a
violation of the SLA value of the whole composition. Consider the existence of a
valid configuration for the service composition when replacing both the operations
assigned for activities Act9 and Act10.

We compared a number of execution instances that (a) were able to adapt
successfully (successful), (b) were not able to adapt (unsuccessful) and (c) did not
require adaptation because they were not affected by the problem (not required),
for the case in which we used the parallel and proactive approach with the case in
which we used only the proactive approach. We considered 50, 100, 150, and 200
execution instances of the composition shown in Fig. 5.3.

Figure 5.4 presents the results of this experiment. For each different number of
execution instances considered in the experiment, the first column represents the
results when using the parallel and proactive approaches (specified as parallel for
simplicity), while the second column represents the results when using only the
proactive approach (specified as proactive for simplicity).

126 R. R. Aschoff et al.

Fig. 5.4 Comparison of the adaptation process for Case 1 – Scenario 1.

As shown in Fig. 5.4, when using the combined parallel and proactive
approaches, there are many more instances that are adapted and finished
successfully. This is because in the parallel approach, several execution instances
that are still in operation are notified about the unavailability of the operation
associated with Act10 and have not yet executed the operation associated with
Act09. Contrary, in the case when only the proactive approach is used, the
adaptation process is attempted when the execution process tries to invoke the
operation associated with Act10 and realises that this operation is unavailable. In
this scenario, the process requires the replacement of the operation associated with
Act09 as well. However, when attempting to invoke the operation associated with
Act10, the operation for Act09 has already been executed and cannot be replaced.

Figure 5.4 also shows that even when using the proactive approach only, some
instances are able to finish successfully for all the different numbers of execution
instances used in the experiment. These instances are the ones that managed to
invoke the operation associated with Act10 before this operation became unavailable
and, therefore, were able to finish their execution successfully.

Case 1 – Scenario 2: In this scenario, we use the same service composition
of Scenario 1, but we consider different positions in the composition where
the operation associated with an activity becomes unavailable. We consider the

5 Parallel Adaptation of Multiple Service Composition Instances 127

Fig. 5.5 Comparison of the adaptation process for Case 1 – Scenario 2

situations in which the operations associated with activities Act04, Act07, and Act10
become unavailable at the same time. In all three cases, we assume that a valid
configuration exists when replacing both the operation that becomes unavailable
and the ones associated with the previous activity of the unavailable operations,
i.e. operations associated with (i) Act03 and Act04, (ii) Act06 and Act07 and (iii)
Act09 and Act10. We assume 200 instances of the service composition executed at
the same time.

Figure 5.5 shows the results of the experiments for situations (i) to (iii) above.
As shown in the figure, when using only the proactive approach, in any of situations
(i) to (iii), none of the execution instances could be successfully adapted. This
is because the execution instances have already invoked the operations associated
with the activities that occur before the activities that become unavailable (activities
Act03, Act06, and Act09).

The results also show that the number of execution instances that do not require
adaptation decreases when the problem occurs at a position closer to the end of the
composition.

The number of unsuccessful adaptation instances, however, increases. This is due
to the number of running execution instances that are at a point before, the same,
or after the point in which the problem is identified, during their execution. This
also explains the reason for having similar numbers of execution instances that do
not require adaptation, for the parallel and proactive approach and the proactive
approach only, in situations (i) to (iii).

128 R. R. Aschoff et al.

Fig. 5.6 Comparison of the adaptation process for Case 1 – Scenario 3

From Fig. 5.5 we observe that when using the parallel and proactive approaches,
the number of successful adaptation instances increases, as the problem occurs at
a position closer to the end of the composition. This is because the number of
execution instances that can be adapted increases, since there are more instances
at execution points before the operation becomes unavailable.

Case 1 – Scenario 3: In this scenario, we compare the approaches when using
service compositions with a sequential structure, as in Scenarios 1 and 2, but
of different sizes. We considered compositions with (i’) 5, (ii’) 10 and (iii’) 15
activities. Similar to the above scenarios, we assume that in each of the three
compositions, the operation associated with the last activity becomes unavailable
and that a valid configuration exists when replacing both the operation that becomes
unavailable and the operation associated with the previous activity. We assume 200
instances of the service composition executed at the same time.

Figure 5.6 shows the results of the experiments for compositions (i’) to (iii’).
The results in the figure show an increase in the number of execution instances
that required adaptation as the size of the compositions increase. As in the case of
Scenario 2, this is due to the number of running execution instances that are at a
point before, the same, or after the point in which the problem is identified, during
their executions. Similarly, the results show an increase in the number of successful

5 Parallel Adaptation of Multiple Service Composition Instances 129

Act01 Act18 Act19 Act20

Invoke Ac�vity SequenceUnavailable Solu�on Area

Act02

Act10

Act09

Act17

Act06 Act07 Act08

Act03 Act05

Act14 Act15 Act16

Act11 Act12 Act13

Parallel Ac�vity Condi�onal Ac�vity

i’’

ii’’

iii’’

Act04

Fig. 5.7 Complex service composition workflow

adaptations for bigger compositions. Similar to Scenarios 1 and 2, the results show
that when using only the proactive approach, in any of situations (i’) to (iii’), none
of the execution instances could be successfully adapted.

Case 2: In this case we use the service composition shown in Fig. 5.7. We consider
that the operations associated with activities Act04, Act15, and Act19 become
unavailable. We also assume that for each unavailable operation, the solution of a
valid configuration exists when replacing the operations associated with the previous
and next activities of the unavailable operation and the operation that becomes
unavailable. We assume 100 instances of the service composition executed at the
same time.

The example in Case 2 differs from the scenarios in Case 1 since (a) the service
composition is more complex with more activities organised in different execution
logics (conditional and parallel), (b) a valid configuration for the composition
includes the replacement of operations associated with activities before and after the
operation that becomes unavailable and (c) the operations that become unavailable
are associated with activities in different execution logics.

The results of this experiment are shown in Fig. 5.8 for the unavailability of (i”)
Act04, (ii”) Act15, and (iii”) Act19. As it was expected, when the operation that
becomes unavailable is at the end of the composition (situation (iii”)), a larger
number of execution instances require adaptation since there are more running
instances at execution points before the operation becomes unavailable (as in the
previous scenarios). The results show that for situation (i”), half of the execution
instances did not require adaptation. For those execution instances that required
adaptation, half of them were successfully adapted.

We also observe that situation (i”) required more instances to be adapted than
situation (ii”). This is due to the fact that situation (ii”) is a conditional execution
logic, and, therefore, not necessarily all the execution instances will execute this
path in the composition. This is not the case in situation (i”) in which all the
instances need to execute the respective path in the composition.

130 R. R. Aschoff et al.

Fig. 5.8 Comparison of the adaptation process for Case 2

Case 3: In our approach, the efficiency of the proposed technique to dynamically
distribute the load of service operation requests among different service providers,
and in parallel with the execution of service composition instances, depends on
the number of requests for a particular service operation and the capacity of the
service operation to fulfil its requests. The size, complexity and logic of a service
composition do not cause impact to the load balancing technique. Therefore, in order
to evaluate the load balancing technique, we used a simple service composition.
More specifically, the evaluation was executed in a scenario with a single invoke
activity (IA) deployed in two operations given by two different providers P1 as OP1
and P2 as OP2. We assumed both OP1 and OP2 configured with a processing time
of 1 s. Moreover, in the experiment we used a maximum of 20 concurrent service
composition instances and configured OP1 and OP2 to be able to handle up to ten
concurrent requests.

In order to introduce some random behaviour in the income rate of operation
requests, we simulated the compositions requests and assumed that each request
respects a uniform distribution with minimum zero and maximum one. In other
words, each of the 20 parallel processes generating concurrent requests sleeps for a
specific amount of time and generates a new request. After that, the process starts
again if the experiment is not over. This behaviour is depicted in Fig. 5.9.

5 Parallel Adaptation of Multiple Service Composition Instances 131

Fig. 5.9 State machine of the concurrent requests generator process

In the above-described experiment, we expected to observe an improvement
in the overall performance of the execution engine in terms of the number of
successfully concluded composition requests. The basic idea is that if no distribution
of the load is in place, the best thing that an approach can do is to jump from one
operation to another as soon as it is detected as unavailable (e.g. an operation that is
not responding due to high traffic). Moreover, considering that no single operation is
suitable to answer all concurrent instances, it is almost mandatory to employ some
form of online testing to discover if the operation becomes available again. Without
a way to assess the availability of an operation, the composition instances would
just fail to be created since the system would indicate that no operation is available
to perform the required tasks. We implemented a basic online testing procedure that
periodically checks if the previously failed operation is available and marks it in the
local repository as available again.

In our experiments, using the parallel adaptation with load balancing techniques,
the average time to finish an execution instance was about 1 s. This was expected
since the processing time of both OP1 and OP2 is configured as 1 s. Moreover, there
was only at most 20 concurrent requests, and the combined throughput for OP1 and
OP2 was 20. Therefore, no extra issues were introduced. We noted that in the case
in which the ability to distribute the load between different operations was turned
off, the average time to conclude an execution instance rose to about 3 s. This was
due to the fact that now the adaptor component had to constantly face an error due
to the high load of requests in either OP1 or OP2. Figure 5.10 presents a snapshot
of the distribution of the requests made to OP1 in both experiments. As we can see,
when the load balancing technique is in place, the load distribution is much more

132 R. R. Aschoff et al.

Fig. 5.10 Comparisons of the distribution of operation request for a single provider between the
approach with and without load balancing

homogeneous. The black line at ten concurrent requests indicates the threshold for
the capability of OP1. Given that the approach with load balancing respects the
threshold for individual operations by identifying its maximum capability, no issues
are introduced. However, when such awareness is removed, and there is no way to
alleviate the load, the threshold is not respected. This causes errors and requires
adaptations to be executed.

5.4 Related Work

The work presented in this paper is concerned with approaches that support dynamic
adaptation of service compositions, which is considered a major research challenge
for service-based systems [6, 7, 14]. Initial approaches were proposed to support
adaptation of service compositions in a reactive way [1, 4, 9, 15]. These approaches
support adaptation of service composition based on predefined policies [4], self-
healing of compositions based on detection of exceptions and repair using handlers
[15], context-based adaptation of compositions using negotiation and repair actions
[1] and key performance indicator analysis [9].

Other approaches have recently been proposed to support adaptation of service
compositions in a proactive way [2, 3, 5, 10, 11, 19]. The work by Dai et al. [5] uses
semi-Markov models for performance predictions, service reliability model, and
minimization in the number of service reselection in case of changes. The decision
to adapt is based on the performance of a single service. One of the first works to use
a proactive approach is PREvent [10], which was designed to support prediction and
prevention of SLA violations in service compositions based on event monitoring
and machine learning techniques. The works by Metzer et al. [11] and Tosi et al.
[19] advocate the use of testing to anticipate problems in service compositions and
trigger adaptation requests. However, the creation of test cases is not an easy task.

Approaches to support multilayered monitoring and adaptation of service com-
positions have been proposed [8, 17, 21]. Some of these approaches use the concepts
of adaptation taxonomy and templates (patterns) created during design time to

5 Parallel Adaptation of Multiple Service Composition Instances 133

represent possible solutions for adaptation problems [17]. Other approaches rely
on dynamic identification of cross-layered adaptation strategies for software and
infrastructure layers [8, 21] or on the use of aspect-oriented techniques to support
adaptation of compositions due to QoS aspects [12].

Our framework differs from the above approaches since it supports parallel
adaptation of running execution instances. In addition, it allows for parallel and
proactive adaptation of service compositions due to different types of problems and
provides different ways of adapting the compositions.

5.5 Conclusions and Future Work

In this paper we described ParProAdapt framework, a parallel and proactive
adaptation framework that supports parallel identification and prediction of the
need for adaptation and reconfiguration of the service compositions during their
execution time. The framework supports the identification of a problem in an
instance of a composition and the impact of this problem in other instances of the
same composition or in different compositions that share common operations when
the identified problem is in any of these operations. When a problem is identified in
an instance of a composition, other affected parts of the composition are proactively
identified, in order to rectify the various composition instances. A prototype tool has
been implemented, and the approach has been evaluated in several scenarios. The
results of the evaluation demonstrate that the use of a proactive approach combined
with a parallel approach outperforms the use of only a proactive approach in terms
of the number of composition instances that are successfully adapted.

Currently, we are extending the framework to support service compositions that
provide interactions with users and how the proactive and parallel adaptation can
deal with these interactions and delays that may be caused by them. We are also
investigating the use of the congestion control algorithm used in the TCP protocol
to dynamically adjust the expected throughput of service operations. Another future
work consists of considering different types of constraints when attempting to adapt
a service composition (e.g. stateful services and operations that need to be used by
certain service providers).

References

1. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A framework for
executing adaptive web-service processes. IEEE Softw. 24(6), 39–46 (2007)

2. Aschoff, R., Zisman, A.: QoS-driven proactive adaptation of service composition. In:
ICSOC’11, pp. 421–435 (2011)

3. Aschoff, R., Zisman, A.: Proactive adaptation of service composition. In: SEAMS’12, pp.
1–10 (2012)

134 R. R. Aschoff et al.

4. Baresi, L., Di Nitto, E., Ghezzi, C., Guinea, S.: A framework for the deployment of adaptable
web service compositions. SOCA 1(1), 75–91 (2007)

5. Dai, Y., Yang, L., Zhang, B.: QoS-driven self-healing web service composition based on
performance prediction. J. Comput. Sci. Technol. 24(2), 250–261 (2009)

6. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly dynamic,
self-adaptive service-based applications. ASE 15(3), 313–341 (2008)

7. Dustdar, S., Papazoglou, M.P.: Services and service composition – an introduction (services
und service komposition – eine einführung). Inf. Technol. 50(2), 86–92 (2009)

8. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered monitoring and
adaptation. In: ICSOC’11 (2011). https://doi.org/10.1007/978-3-642-25535-9_24

9. Kazhamiakin, R., Wetzstein, B., Karastoyanova, D., Pistore, M., Leymann, F.: Adaptation of
service-based applications based on process quality factor analysis. In: LNCS’09 (2009)

10. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, prediction and prevention
of SLA violations in composite services. In: ICWS’10 (2010)

11. Metzger, A., Sammodi, O., Pohl, K., Rzepka, M.: Towards pro-active adaptation with
confidence: augmenting service monitoring with online testing. In: SEAMS’10 (2010). http://
doi.acm.org/10.1145/1808984.1808987

12. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for
WS-BPEL. In: WWW’08 (2008). https://doi.org/10.1145/1367497.1367607

13. Natrella, M.: e-Handbook of Statistical Methods. Nist/Sematech (2010). http://www.itl.nist.
gov/div898/handbook/

14. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: a
research roadmap. Int. J. Coop. Inf. Syst. 17(2), 223–255 (2008)

15. Pernici, B.: Self-healing systems and web services: the WS-DIAMOND approach. In:
LNBIP’09 (2009)

16. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services by
planning at the knowledge level. In: IJCAI’05 (2005)

17. Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: Taxonomy-driven adaptation of
multi-layer applications using templates. In: SASO’10 (2010). https://doi.org/10.1109/SASO.
2010.23

18. Saboohi, H., Amini, A., Herawan, T., Kareem, S.: Failure recovery of composite semantic
services using expiration times. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings
of the First International Conference on Advanced Data and Information Engineering (DaEng-
2013), Lecture Notes in Electrical Engineering, vol. 285, pp. 683–690. Springer, Singapore
(2014). https://doi.org/10.1007/978-981-4585-18-7_77

19. Tosi, D., Denaro, G., Pezze, M.: Towards autonomic service-oriented applications. Int. J.
Autom. Comput. 1, 58–80 (2009). https://doi.org/10.1504/IJAC.2009.024500

20. Web Services Business Process Execution Language (WS-BPEL) Version 2.0.: Organization
for the Advancement of Structured Information Standards (OASIS) (2007). http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

21. Zengin, A., Kazhamiakin, R., Pistore, M.: Clam: cross-layer management of adaptation
decisions for service-based applications. In: ICWS’11 (2011). https://doi.org/10.1109/ICWS.
2011.76

22. Zisman, A., Spanoudakis, G., Dooley, J., Siveroni, I.: Proactive and reactive runtime service
discovery: A framework and its evaluation. IEEE Trans. Softw. Eng. 39(7), 954–974 (2013)

https://doi.org/10.1007/978-3-642-25535-9_24
http://doi.acm.org/10.1145/1808984.1808987
http://doi.acm.org/10.1145/1808984.1808987
https://doi.org/10.1145/1367497.1367607
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
https://doi.org/10.1109/SASO.2010.23
https://doi.org/10.1109/SASO.2010.23
https://doi.org/10.1007/978-981-4585-18-7_77
https://doi.org/10.1504/IJAC.2009.024500
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://doi.org/10.1109/ICWS.2011.76
https://doi.org/10.1109/ICWS.2011.76

Chapter 6
Assessing Security and Privacy
Behavioural Risks for Self-Protection
Systems

Yijun Yu, Yoshioka Nobukazu, and Tetsuo Tamai

Abstract Security and privacy can often be considered from two perspectives. The
first perspective is that of the attacker who seeks to exploit vulnerabilities of the
system to harm assets such as the software system itself or its users. The second
perspective is that of the defender who seeks to protect the assets by minimising the
likelihood of attacks on those assets. This chapter focuses on analysing security and
privacy risks from these two perspectives considering both the software system and
its uncertain environment including uncertain human behaviours. These risks are
dynamically changing at runtime, making them even harder to analyse. To compute
the range of these risks, we highlight how to alternate between the attacker and
the defender perspectives as part of an iterative process. We then quantify the risk
assessment as part of adaptive security and privacy mechanisms complementing
the logic reasoning of qualitative risks in argumentation (Yu et al., J Syst Softw
106:102–116, 2015). We illustrate the proposed approach through the risk analysis
of examples in security and privacy.

6.1 Introduction

Security properties are often described using confidentiality, integrity, availability,
authentication and authorisation according to the ISO/IEC 9126 standard [5], which
highlight the protection of asset values from malicious attacks. Privacy properties,
as understood by “the rights to be left alone” [13], concern the control of sharing

Y. Yu (�)
The Open University, Milton Keynes, UK
e-mail: y.yu@open.ac.uk

Y. Nobukazu
National Institute of Informatics, Tokyo, Japan
e-mail: nobukazu@nii.ac.jp

T. Tamai
Hosei University, Tokyo, Japan
e-mail: tamai@hosei.ac.jp

© Springer Nature Singapore Pte Ltd. 2019
Y. Yu et al. (eds.), Engineering Adaptive Software Systems,
https://doi.org/10.1007/978-981-13-2185-6_6

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2185-6_6&domain=pdf
mailto:y.yu@open.ac.uk
mailto:nobukazu@nii.ac.jp
mailto:tamai@hosei.ac.jp
https://doi.org/10.1007/978-981-13-2185-6_6

136 Y. Yu et al.

Analyze Plan

Monitor Knowledge Execute

Sensors Actuators

Domain Specific System

Context

1
2

3 4
5

Fig. 6.1 Security and privacy concerns on the MAPE-K architecture [4] for self-protection

the identity of individuals or groups to prevent potential harms to their life and can
be represented using selective disclosure [12], contextual integrity [1], etc.

Both security and privacy properties are adaptive in nature. From the dimensions
of self-adaptive systems, known as MAPE-K feedback loops [2], both security and
privacy can be seen as cross-cutting concerns to all these five dimensions at runtime.
Self-adaptive security and privacy mechanisms, or self-protection, instantiate the
MAPE-K dimensions [4] as follows (see Fig. 6.1).

Monitoring aims to detect system vulnerability and privacy leaks. Analysis
requires a quantification of risks in terms of assessing of the likelihood and impact
of runtime incidents. Planning involves the ranking, prioritisation and trade-offs of
incident responses in order to select the best countermeasures at runtime. Execution
enacts the defence to control the managed system or individuals and implement the
countermeasures. Throughout these activities, the knowledge about the system and
the individuals also change over time, which could change the predefined boundaries
between attackers and defenders.

According to our earlier studies on security risks [16] and privacy argu-
ments [12], it is necessary to analyse contextual factors in order to identify and
assess the risk factors. These approaches proposed to use problem-oriented analysis
on the context of a system in its running environment, in order to elicit the risk
factors from a prepared knowledge base (e.g. common vulnerability exposures1 and
common vulnerability scoring system2).

In addition to MAPE-K feedback loops for self-protection, system and individ-
uals also need to quantify the security and privacy risk factors at runtime. Such
quantified risks could help tune the set points [3] for runtime security and privacy
feedback loop controls. However, runtime properties of the system and environment

1https://cve.mitre.org
2https://nvd.nist.gov/vuln-metrics/cvss

https://cve.mitre.org
https://nvd.nist.gov/vuln-metrics/cvss

6 Assessing Security and Privacy Behavioural Risks for Self-Protection Systems 137

attacker protector
Risk

Runtime

Security & Privacy Risk Analysis in Self-Protection Systems

Kp > Ka

Kp < Ka

Fig. 6.2 Knowledge adaptation centric to assessing security and privacy risks

typically involve dynamic behaviours; therefore, it is also necessary to consider the
behaviour models explicitly.

The uncertainty in self-adaptive systems can be classified into unknown knowns,
known unknowns and unknown unknowns [11], where the known unknowns shall
be addressed at the runtime, leaving unknown knowns and unknown unknowns to
the approaches that perform machine learning, which is beyond the scope of this
chapter. Specifically, in this chapter, we would like to address the following research
questions:

• Can behavioural models be modified at runtime to reflect the new changes of the
known unknowns at design time?

• Can the known unknowns be explicitly defined as parameters on top of the
behavioural models at runtime?

• When an attacker can adapt their behaviour according to their knowledge supe-
rior to what the protector knows, would self-adaptation capability be misused to
hurt security?

• If it cannot be prevented to misuse self-adaptive systems, how can we exert
runtime control into the design against this possibility of misuses?

Conceptually, Fig. 6.2 depicts the relationship between the knowledge of
defender (Kp) and the attacker (Ka). In principle, when the attacker has more
knowledge than the protector, the security and privacy risks of self-adaptive systems
are likely to increase. When the defender knows more, the risks can be controlled
better. However, the knowledge boundary between the defender and attacker is not
always explicitly defined and can change over time. Therefore, the reassessment
of the security and privacy risks needs to be performed continuously. Taking the
ancient analogy of spears (矛) for attacks and shields (盾) for protections, the best
means for meeting security goals and anti-goals are not staying constant. When the
two sides are confronting each other at runtime, the winner is not always predictable
unless there is a systematic way to manage the changes.

138 Y. Yu et al.

The key question to ask is, if such analogy holds, whether there is a way to
quantitatively access the impact of self-adaptation on security and privacy? When
the frontier knowledge is changed, both self-adaptive system and security controls
try their best to deal with uncertain behaviours. How to ensure or maintain the level
of security when systems are facing such uncertain adaptive behaviours?

In this chapter, we will use example behaviour models to illustrate these
challenges and demonstrate the need to expand the knowledge boundary for a self-
protection system.

6.1.1 Motivating Examples

To illustrate the problem and the proposed solutions, we show two example systems
briefly here to give the context.

6.1.1.1 A PIN Entry Device System

PINs are used for ATM and various smartphones to authenticate users. They are not
as hard as online banking protection because the password allowed to use is limited
to a few digits. However, such systems are widely used because it demands little
memory from users, hence offering a bit more usability. Since it is widely used and
simple, we use this example to illustrate the basic concepts in our risks analysis.

6.1.1.2 A Social Media System

Social media such as Facebook are widely used to connect people by posting
messages to friends who can pass them onwards to the friends of friends. Privacy,
however, it is a key asset to protect so that the information is not passed on the
unintended audience. Since the users of social media systems follow their instinct
to share posts, it is likely such privacy concerns are violated. The user behaviour-
based risk analysis approach proposed in this chapter will be exemplified, again
using a simplified behaviour model of a social media system of Facebook.

6.2 Abstract Goal Behaviour Models

In order to perform such an analysis on security and privacy risks, we first introduce
the behaviour models for agents, including both human and machine, according to
Jackson’s abstract goal behaviour models [6].

Definition 6.1 (Behaviour Model) The behavioural model of a domain (or a
machine) is represented by a state machine, denoted as a tuple < S, s0, T ,G,A >

where S is the set of states, s0 ∈ S is an initial state, A is the set of actions on an

6 Assessing Security and Privacy Behavioural Risks for Self-Protection Systems 139

alphabet, T : S × A × S is a set of A labelled transitions between the states, and
G : T × B is the set of Boolean guard conditions, indicating whether a transition
can be fired.

We assume that the agents have goals that determine their interpretations of the
current states of the domains in the world.

Definition 6.2 (Goals) A goal g can be defined as a certain property that holds on
the desired states. In other words, given an initial state s0, the goal of a system can
be described by a set of states s ∈ S such that g(s) is true.

Consider the satisfaction of goals; according to van Lamsweerde [8], there are
four typical modes. An ACHIEVE goal is described by ¬g(s0)∧g(s), indicating that
the goal property was not initially true; a MAINTAIN goal is described by g(s0) ∧
g(s), indicating that initially established property is maintained to be true; a CEASE
goal is described by g(s0) ∧ ¬g(s), indicating that the initially established “anti-
goal” is no longer true; and an AVOID goal is described by ¬g(s0) ∧ ¬g(s), which
avoids the satisfaction of an anti-goal. All these modes can be mapped nicely to
security and privacy goals, where the ACHIEVE goal of a protector can be regarded
as the CEASE goal of an attacker and vice versa.

Definition 6.3 (Abstract Goal Behaviours) Since requirements goals are pre-
scriptive on the machine and domains, we can establish the following basic
requirements satisfaction argument according to [17]:

W,S |� R (6.1)

where W and S are nothing but the properties of behaviour models with respect to
world context domains and specification of the machine, respectively, while R is the
abstract goal behaviours desired by composing these behaviour models.

The intermediate concept of abstract goal behaviours connects the requirements
properties with respect to those of the machine domains. When problem domains are
biddable or uncertain (e.g., human actors are non-deterministic), we need to handle
the uncertainty by considering probabilistic behaviours. In order to quantify these
abstract behaviour models, we introduce the notion of risks in terms of likelihood
and impact, as follows.

6.3 Risks in Behaviour Models

In this section, we give the definitions of R-DTMC behavioural models and their
extension for modelling transparency. Then we provide the technical details of
algorithms to compute the security risks by composing the models and the adaptive
transparency of risk functions.

140 Y. Yu et al.

Definition 6.4 (Discrete Time Markov Chains (DTMC), Reward DTMC) A
DTMC extends a state machine by a function π : δ → [0, 1] that is the probability
for a transition in T to be successfully fired. For every state s, the sum of the
probability of its outgoing transitions is

∑
s′|(s,s′)∈δ π(s, s′) = {0, 1}. When the sum

is zero, the state is an absorbing or final state. Furthermore, an R-DTMC extends a
DTMC with an impact function I : S → [0,∞) as the reward for reaching a state
s ∈ S, typically it indicates the impact of damage on the assets.

Note that in its general form, R-DTMC could associate an impact on transitions
as well. In this work, we do not require this level of generality because we have
been focusing on the risks of damaging assets at these states, rather than the risks of
certain actions on the transitions. By associating the impact with the source state of
a transition, our state-only representation of impact is equivalent to associating any
impact with the transition.

Definition 6.5 (Traces and Risks) From Definition 6.4, a trace 〈s0, s〉 from the
initial state s0 to a state s is defined by a sequence of n transitions (sk, sk+1) ∈ δ

where n > 0, k = 0, . . . , n − 1, and sn = s. From the same pair of states s0 and s,
there could be more than one trace, and these traces may have different lengths. For
a given trace 〈s0, sn〉 of length n, the likelihood p(s) is defined as follows:

p(s) =
n−1∏

k=0

π(sk, sk+1) (6.2)

and the associated risk rn(s) is defined as the product of impact I (s) and likelihood
p(s):

rn(s) = I (s) × p(s), (6.3)

which measures how the impact could take effect when the state at the end of the
trace is reached from the initial state, at certain likelihood. Considering all possible
traces from s0 to s, the aggregate risk on the state s is given as

r∗(s) =
∞∑

n=1

∑

〈s0,s〉∈δn

rn(s). (6.4)

One can use a naïve Algorithm 1 to simulate a stochastic decision process which
walks on a random transition of each state with respect to the probability distribution
of the outgoing transitions. The input also contains two thresholds, t for the total
number of traces to simulate and n for the maximal length of the traces before
a final state is reached. When there could be infinite length of a trace due to
cycles, the simulation forces a trace to terminate when its length is larger than a
certain threshold (Lines 2) or when it already has no further transitions (Lines 3–5).
Otherwise, the random walk is based on a uniformly distributed random number

6 Assessing Security and Privacy Behavioural Risks for Self-Protection Systems 141

Algorithm 1: Compute risks by simulating a stochastic decision-making
process through random walks

Data: An R-DTMC (S, δ, s0, π , I) per Definition 6.4;
t , maximal number of traces to simulate through random walks;
n, maximal length of traces to simulate;

Result: Approximated risks rn(s) per Definition 6.5 from the simulated traces
1 for c:=1 to t do
2 for l := 1..n do

3 if
∑

(sl−1,sk)∈δ

π(sl−1, sk) = 0 then

4 break;
5 end

6 r := random(0,
∑

(sl−1,sk)∈δ

π(sl−1, sk)) where k indexes outgoing transitions of sl−1;

� uniformly distributed random number

7 Let sl = sk where k is the minimal number so that r <

∑

(sl−1,sk)∈δ

π(sl−1, sk);

8 r∗(sl) := r∗(sl) + i(sl);
9 end

10 end
11 rn(s) := rn(s)/t for each state s;
12 return rn(s);

generator (Line 6). When it falls into the slot by the probabilistic distribution of
the outgoing transitions from the previous state sl−1, the corresponding outgoing
transition will be assumed (Line 7). On that transition, the risk of reaching the
current state sl will be updated by adding its impact (Line 8).

Finally, the risk is computed as dividing the aggregated impact by the number
of simulated traces through random walks, t (Line 11). Note that the chance
of selecting an outgoing transition of the previous state is proportional to the
probability of the outgoing transitions.

The time complexity of Algorithm 1 in terms of the number of random decisions
is O(tn). To get more precision, both t and n need to be larger. Yet when the machine
contains cyclic transitions, it is impossible to enumerate all traces.

Depending on the probabilities assigned to the cyclic transitions, the risks in
Algorithm 1 are an approximation on the threshold of n, which may not converge to
constants when n increases. To illustrate, consider any transitions that form a self-
cycle (s, s) ∈ δ with π(s, s) = 1. In such a trace, the state s will be visited n times
with the likelihood of 1. Its risk, computed by the simulation, n×I (s), will increase
proportionally to n.

When the cyclic exploration machine gets more complex, however, it is no longer
obvious whether the risk computation by simulation converges or not. Even when
it converges, a large number of enumerations could be taken to approximate the

142 Y. Yu et al.

risks in order to achieve high precision. The challenge is, given an R-DTMC,
there should be a way to tell whether the risks converge or not without lengthy
simulations. Furthermore, is there a way to compute the converging risks precisely
and efficiently, without all the simulations?

In a matrix form, the likelihood computation can be rewritten as solving the
likelihood vector p to a system of recurrence equations:

p = P p + c

p ≥ 0
(6.5)

where P is a n × n transition probabilities square matrix and c = (1, 0, . . .) and p
are 1 × n vectors of nonnegative real numbers.

Rewriting this as a linear equation where I stands for the identity matrix of
dimension n × n, i.e. pI = p, we have:

(I − P)p = c (6.6)

The solution of p can be obtained as:

p = (I − P)−1c (6.7)

When the probability matrix P and the impact vector i have elements of non-
numeric expressions, we call them symbolic. When P is not lower-triangular matrix,
we call the model cyclic, which can still be solved into a risk profile function by
applying symbolic LDU decompositions recurrently. Limited by space, we have
put the details of algebraic computation of the risk into a technical report,3 with a
proof that when the behavioural model converges (i.e. the necessary and sufficient
condition requires a single exit state which does not have any outgoing transitions),
the resulting risk profile function can be obtained without simulating on every
combination of values in Algorithm 1.

6.4 Running Examples

In [16], we introduced a systematic approach to elicit risk factors from the context
diagrams of a software system. The example we used is PED (PIN entry device),
where certain security risks have been identified “quantitatively”. However, since
the quantification was based on natural language processing and CVSS records, it is
not yet associated with the behavioural models, hence cannot be applied at runtime.

Here let us first simplify the example so that it is easy to see how risk assessment
can be quantified onto the behavioural models.

3https://github.com/yijunyu/demo-riskexplore/tree/master/doc

https://github.com/yijunyu/demo-riskexplore/tree/master/doc

6 Assessing Security and Privacy Behavioural Risks for Self-Protection Systems 143

Fig. 6.3 A simple behaviour
model for security risks
assessment

S0

S1

Not Granted

Granted

Retry
1�p

Enter
p

6.4.1 Security Risks in PIN Access Control

Figure 6.3 illustrates how attackers could gain access to the account after infinite
number of trials. Such cyclic behaviour model is quite common in real life; however,
existing simulation-based model checkers are not able to detect some flaws in the
model.

When the probabilities of the transitions and the impact of the states are
unknown, we need to change the way of looking at them as numeric values, but
as algebraic symbols (i.e. known unknowns) instead.

Assume that the overhead for login was −O, which rewards the attacker by the
value of bank account V , then the risk of loss is estimated to be

− O/p + V (6.8)

When p is small enough, the following condition could provide some relative
assurance of the system security:

O/p > V (6.9)

This explains why an effective policy for preventing denial-of-service attacks is to
introduce some overhead to the users while logging in to the system, so that it is not
worthwhile to try indefinitely.

6.4.2 Privacy Risks in Social Networks

While social networks systems are used by individual users, they may choose to
share posts to the friends, with a non-negligible probability that the friends may
share the posts further to unwanted or undesirable audience. The trade-offs between
sharing and not sharing, with respect to social benefits such as likes and resharing,
are frequent decisions to be made by the individual. The rationale of such decisions
are typically risk assessments on the basis of simulating the effect of leaking the
private information to unintended audience [14].

144 Y. Yu et al.

Fig. 6.4 A privacy risk assessment model taken from [10]

Recently, the original work in [14] has been extended to introduce a much more
complex behavioural model of sharing [10] by introducing inductive machine learn-
ing techniques similar to those of recommendation systems. In other words, patterns
of groups emerging from the social circles are learnt by different individuals, while
they are making similar decisions.

However, simulation-based approaches are inherently incomplete. For example,
the risk assessment model in Fig. 6.4 is a little bit more complicated than the security
one we discussed earlier. It is based on the individual’s decisions to share post
on a social network and the estimation of the risk exposure to the audience if the
information is sensitive.

The behaviour model was built using PRISM [7], but the algebraic symbols are
computed differently here. After applying our risk explorer tool,4 the risk profile
function can be obtained as such:

pseen*r1+pjk*r3-(r4*puc*(pjk-(1-pseen-pignore)
-pagain*preply*pjk))/(1-pagain*preply*pfl
+pagain*preply*(pfl-(1-puc-pfc))-pagain*preply*pfc
-pagain*preply*puc)-(r5*pfc*(pjk-(1-pseen-pignore)
-pagain*preply*pjk))/(1-pagain*preply*pfl
+pagain*preply*(pfl-(1-puc-pfc))-pagain*preply*pfc
-pagain*preply*puc)+(r6*(pfl-(1-puc-pfc))*(pjk-
(1-pseen-pignore)-pagain*preply*pjk))/(1
-pagain*preply*pfl+pagain*preply*(pfl-(1-puc-pfc))
-pagain*preply*pfc-pagain*preply*puc)-(r7*pfl*(pjk

4https://github.com/yijunyu/demo-riskexplore

https://github.com/yijunyu/demo-riskexplore

6 Assessing Security and Privacy Behavioural Risks for Self-Protection Systems 145

-(1-pseen-pignore)-pagain*preply*pjk))/(1
-pagain*preply*pfl+pagain*preply*(pfl-(1-puc-pfc))
-pagain*preply*pfc-pagain*preply*puc)

where the following determinant condition has to be satisfied; otherwise the
behavioural model will not converge to a solution:

0<1-pagain*preply*pfl+pagain*preply*(pfl-(1-puc-pfc))

-pagain*preply*pfc-pagain*preply*puc

By applying an optimisation algorithm to minimise the risk profile function, e.g.
differential evolution optimisation [9], it is possible to obtain a near-optimal solution
in less than 1 min.

For example, when r1 = r2 = r3 = r4 = r5 = r6 = r7 = 1, the lowest risk of
0.012 can be achievable when pseen = 0.006239582, pignore = 0.987266657,
pjk = 0.003001324, puc = 0.115949677, pf c = 0.446085095, pf l =
0.131866686, preply = 0.003728548 and pagain = 0.048901284.

6.5 Discussions

Of course, this combination of the known unknowns for “minimum” risks is derived
without considering any constraints. With more knowledge at runtime, either for the
protector or for the attacker, the minimal risk would not look the same because they
would see these unknowns differently.

In principle, both normal user and attackers can be modelled as biddable
domains, in which not all decisions are deterministic and not all states are explicit.
In other words, unless we are the attackers, such models are just intellectual guesses.
Nonetheless, having a model allows us to estimate the risks of actions of individual
agents.

We assume that the attackers and the defenders have different knowledge of
the system. In other words, through observations, the attacker could realise some
vulnerabilities before the defenders knows, and the defenders certainly could know
some internal designs that the attacker may not know.

In the following, we show an example where the attacker knows a vulnerability
before it manifests to the public.

Suppose the protector initially assume that the PIN code protection used in the
system is uniformly distributed and to guess correctly the 4 digits one would have to
try 10,000 combinations in the worst case and 5000 in the average case. However,
through key loggers or other means, attackers could estimate the distribution of
probability so that p increases to 0.5. In that case, the current behavioural model
could no longer offer sufficient protection since the risk increases dramatically.
Similarly, if the protector knows that the account has $0 in value, while the attacker
does not, it becomes easier for the protector to set up a trapping “honey pot” in order
to catch such reckless attackers. In this case attackers would face higher risks.

146 Y. Yu et al.

6.6 Summary

In this chapter, we have articulated the need to quantify the risks for self-protection,
i.e. offering both protectors and attackers’ perspectives in assessing the risks.
The known unknowns, in this work, manifest as symbolic probabilistic variables
appearing on the guard condition of transitions in behavioural models. We have also
used two examples from security and privacy application domains to illustrate the
advantage of such quantified risk exploration.

Note that the work of risk exploration is an ongoing research effort, where we
have developed open-source tools for colleagues to use and compare with our
results https://github.com/yijunyu/demo-riskexplore. A guide tour of risk explo-
ration can be found in the tutorial [15].

In the future, we hope to improve the efficiency of our quantitative risk
exploration tool so that self-protection systems could be armed with the runtime
behaviour models to define the set points for efficient self-adaptation.

References

1. Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and contextual integrity:
framework and applications. In: Proceedings of the 2006 IEEE Symposium on Security and
Privacy, SP’06, pp. 184–198. IEEE Computer Society, Washington, DC (2006). https://doi.org/
10.1109/SP.2006.32

2. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller, H.,
Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feedback Loops, pp. 48–70.
Springer, Berlin/Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9_3

3. Chen, B., Peng, X., Yu, Y., Zhao, W.: Requirements-driven self-optimization of composite
services using feedback control. IEEE Trans. Serv. Comput. 8(1), 107–120 (2015). https://doi.
org/10.1109/TSC.2014.2298866

4. Iglesia, D.G.D.L., Weyns, D.: Mape-k formal templates to rigorously design behaviors for self-
adaptive systems. ACM Trans. Auton. Adapt. Syst. 10(3), 15:1–15:31 (2015). https://doi.org/
10.1145/2724719

5. ISO/IEC: Iso/iec 25010 system and software quality models. Technical report (2010)
6. Jackson, M.: System behaviours and problem frames: concepts, concerns and the role of

formalisms in the development of cyber-physical systems. In: Dependable Software Systems
Engineering, pp. 79–104 (2015). https://doi.org/10.3233/978-1-61499-495-4-79

7. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceedings of 23rd International
Conference on Computer Aided Verification (CAV’11), Snowbird. LNCS, vol. 6806, pp. 585–
591. Springer (2011)

8. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: 5th IEEE
International Symposium on Requirements Engineering (RE 2001), 27–31 Aug 2001, Toronto,
p. 249 (2001). https://doi.org/10.1109/ISRE.2001.948567

9. Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: DEoptim: an R package for global
optimization by differential evolution. J. Stat. Softw. 40(6), 1–26 (2011). http://www.jstatsoft.
org/v40/i06/

10. Rafiq, Y., Dickens, L., Russo, A., Bandara, A.K., Yang, M., Stuart, A., Levine, M., Calikli,
G., Price, B.A., Nuseibeh, B.: Learning to share: engineering adaptive decision-support for

https://github.com/yijunyu/demo-riskexplore
https://doi.org/10.1109/SP.2006.32
https://doi.org/10.1109/SP.2006.32
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1109/TSC.2014.2298866
https://doi.org/10.1109/TSC.2014.2298866
https://doi.org/10.1145/2724719
https://doi.org/10.1145/2724719
https://doi.org/10.3233/978-1-61499-495-4-79
https://doi.org/10.1109/ISRE.2001.948567
http://www.jstatsoft.org/v40/i06/
http://www.jstatsoft.org/v40/i06/

6 Assessing Security and Privacy Behavioural Risks for Self-Protection Systems 147

online social networks. In: Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE ’17), IEEE Press, Piscataway, pp. 280–285 (2017)

11. Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns. In: 2013
21st IEEE International Requirements Engineering Conference (RE), Rio de Janeiro, pp. 92–
104 (2013). https://doi.org/10.1109/RE.2013.6636709

12. Tun, T.T., Bandara, A.K., Price, B.A., Yu, Y., Haley, C., Omoronyia, I., Nuseibeh, B.: Privacy
arguments: analysing selective disclosure requirements for mobile applications. In: 2012 20th
IEEE International Requirements Engineering Conference (RE), Chicago, pp. 131–140 (2012)

13. Warren, S.D., Brandeis, L.D.: The right to privacy. Harvard Law Rev. 4(5), 193–220 (1890).
http://www.jstor.org/stable/1321160

14. Yang, M., Yu, Y., Bandara, A.K., Nuseibeh, B.: Adaptive sharing for online social networks:
a trade-off between privacy risk and social benefit. In: 13th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications, TrustCom 2014, Beijing,
24–26 Sept 2014, pp. 45–52 (2014). https://doi.org/10.1109/TrustCom.2014.10

15. Yu, Y.: Risk assessment using early requirements models: a guided tour. In: 25th International
Requirements Engineering Conference, Tutorial, Lisbon (2017)

16. Yu, Y., Franqueira, V.N.L., Tun, T.T., Wieringa, R., Nuseibeh, B.: Automated analysis of
security requirements through risk-based argumentation. J. Syst. Softw. 106, 102–116 (2015).
https://doi.org/10.1016/j.jss.2015.04.065

17. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Softw. Eng.
Methodol. 6(1), 1–30 (1997). https://doi.org/10.1145/237432.237434

https://doi.org/10.1109/RE.2013.6636709
http://www.jstor.org/stable/1321160
https://doi.org/10.1109/TrustCom.2014.10
https://doi.org/10.1016/j.jss.2015.04.065
https://doi.org/10.1145/237432.237434

Chapter 7
Experimenting with Adaptation in Smart
Cyber-Physical Systems: A Model
Problem and Testbed

Vladimir Matena, Tomas Bures, Ilias Gerostathopoulos, and Petr Hnetynka

Abstract The chapter focuses on experimentation with adaptation in the field of
smart cyber-physical systems (sCPS). In particular, it provides a model problem
that features a coordination of autonomous cleaning robots. The model problem
is accompanied with a testbed which allows the execution of the model problem
along with custom adaptation logic. The testbed can be executed as a simulation
of multiple robots running or deployed on an actual TurtleBot robot. Both the
simulated and actual deployment environment are based on the same software stack.
The offered simulation is precise timing-, bandwidth-, and mobility-aware and
brings together a ROS-based Stage simulation of a swarm of robots and OMNeT++-
based simulation of 802.15.4 wireless network, while the actual deployment is based
on the TurtleBot robotic platform. The adaptation business logic is based on the
DEECo component model and points to specific places, where the user code can be
easily plugged in.

7.1 Introduction

Smart cyber-physical systems (sCPS) are distributed and decentralized systems that
closely cooperate with their physical environment by sensing and actuating [9].
A characteristic feature of sCPS is that they exhibit a high level of “intelligence”
in terms of opportunistic cooperation, dynamic self-organization, self-healing, and
self-adaptation [6]. As such, sCPS are regarded as vital for building applications for
smart mobility, smart energy grids, ambient assisted living, smart cities, etc.

V. Matena (�) · T. Bures · P. Hnetynka
Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
e-mail: matena@d3s.mff.cuni.cz; bures@d3s.mff.cuni.cz; hnetynka@d3s.mff.cuni.cz

I. Gerostathopoulos
Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

Fakultät für Informatik, Technische Universität München, Munich, Germany
e-mail: iliasg@d3s.mff.cuni.cz

© Springer Nature Singapore Pte Ltd. 2019
Y. Yu et al. (eds.), Engineering Adaptive Software Systems,
https://doi.org/10.1007/978-981-13-2185-6_7

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2185-6_7&domain=pdf
mailto:matena@d3s.mff.cuni.cz
mailto:bures@d3s.mff.cuni.cz
mailto:hnetynka@d3s.mff.cuni.cz
mailto:iliasg@d3s.mff.cuni.cz
https://doi.org/10.1007/978-981-13-2185-6_7

150 V. Matena et al.

Software engineering of sCPS is largely an open challenge, as sCPS combine
autonomous decentralized cooperative behavior, with concerns of real-time, limited
communication, dependability, etc. The lack of software engineering support also
applies to self-adaptation [7], which is a central feature of sCPS, crucial for coping
with the uncertain environments in which sCPS operate.

While there is a large body of knowledge for experimenting with adaptation in
the context of enterprise services and other traditional software systems, there is
rather a vacuum in terms of knowledge and especially tools for experimenting with
adaptation in sCPS. This is in our view because sCPS combine multiple relatively
distinct disciplines (real-time, control, networking, agents, learning, data-analysis,
etc.) [4]. This consequently requires engineering approaches and tools for sCPS
to build synergies between the disciplines and support the mutual interplay of the
concerns.

In this chapter,1 we partially address the problem of development of self-adaptive
sCPS by providing a model problem and testbed for experimenting with, comparing,
and developing new adaptation solutions pertinent to sCPS.

In particular, the model problem and testbed provide challenges in coordination
of autonomous robots with the interplay of concerns of (a) realistic communication
(i.e., communication limited by bandwidth and subject to latencies), (b) real-time
control, and (c) decentralized operation.

To enable fast prototyping, the testbed abstracts robots as autonomous com-
ponents (implemented in Java) and allows describing robot communication via
dynamic collaboration groups. It also points to specific places in the code where
adaptation logic can be plugged in and provides metrics for evaluating the plugged-
in adaptation. Thus, together, the model problem and the testbed provide a concrete
ready-to-use benchmark for experiments in the relatively new field of sCPS.

Either the implementation can be executed as a simulation, or it can be directly
deployed to actual robots (currently, the implementation out of the box supports the
TurtleBot robots2).

The chapter is organized as follows. Section 7.2 describes the model problem
in detail. Section 7.3 presents the testbed from both the user perspective and also
implementation point of view. Section 7.4 describes a sample adaptation we have
used for evaluating the testbed and further discusses lessons learned and limitations.
Section 7.5 briefly details the structure of the provided testbed (detailed instructions
are packaged together with the testbed). Section 7.6 discusses related work, while
Sect. 7.7 concludes the chapter by summarizing the contributions.

1It is based on material included in a SEAMS 2016 publication by the same authors [5].
2http://www.turtlebot.com/

http://www.turtlebot.com/

7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model. . . 151

7.2 Model Problem

The model problem provided by our testbed is the “Autonomous Cleaning Robots
Coordination” (ACRC) problem. In ACRC, a number of cleaning robots is deployed
in in-door space consisting of corridors and multiple office rooms (see Fig. 7.1).

Every robot is equipped with a camera which provides depth information. The
robots use the cameras to observe obstacles (other robots, walls, etc.) and for
navigation, by means of Adaptive Monte Carlo Localization (AMCL). Robots are
equipped with a map of the place that they are supposed to clean. This map is used in
the AMCL-based navigation, which works by comparing a depth scan with the map.

Robots are capable of limited communication using an IEEE 802.15.4 transceiver
(with approx. 10 m direct visibility range), which allows building mobile ad hoc
networks. This means that robots can exchange data only when they are close to
one another. Robots can extend the communication range by acting as proxies that
rebroadcast messages further. Generally, however, no global communication can be
assumed as situations when no proxy is close enough or too much interference exists
are rather often.

The basic software of the robots is formed by the Robot Operating System3

(ROS), which is the de facto standard set of libraries and services for building open-
source robotic platforms.

Fig. 7.1 A visualization of the model problem

3http://wiki.ros.org/

http://wiki.ros.org/

152 V. Matena et al.

7.2.1 Operation and Adaptation Challenges

Each robot is initially given its own set of places it is supposed to visit and clean. In
the naïve solution, which can be considered as the baseline, robots act completely
independently of one another (i.e., they do not communicate nor coordinate) and
visit places on their list in the given order.

Due to the complexity of the environment and the deficiencies in the ROS stack
(which we consider as a black-box component that is given and one has to live with),
the naïve solution gives rise to multiple problems:

• A robot has only an approximation of its position and orientation. Often,
especially when other robots are present nearby, the AMCL localization fails as
the depth scans (which include other robots) cannot be matched with the known
map. As a result, the robot navigation becomes very imprecise and sometimes,
when in dense traffic, fails completely, and the robot stops.

• The navigation module in a robot sometimes fails to find a route to the destination
because other robots moving by obstruct it. As the result the robot stops.

• Due to physical space constraints, robots often get to a deadlock situation – e.g.,
when one robot wants to enter the office and another wants to exit it. The result is
again that the robots stop to avoid collision. (Note that this is a different situation
to the previous point, where the failure to find a way is only transient. In this
case, however, it persists until the deadlock is explicitly solved.)

Generally, each of these problems can be solved by pointing the robot to the right
direction. However, it practically turns out to be quite difficult to (1) distinguish the
cause of the problem and (2) to know where to navigate the robot to recover it from
the failed state.

Though these problems could be targeted by modifying ROS, our experience
with extending and customizing ROS shows that a more practically viable solution
is to regard ROS as a black-box and build an adaptation layer over it. As such, the
robotic scenario constitutes an excellent case for adaptation. (Of course, this is by no
way a criticism of ROS, which itself is the most comprehensive open-source solution
for robotics. It is more an acknowledgment of the complexity inherently connected
with developing systems that perform in and interact with real environments.)

To remediate the deficiencies of the baseline solution, the adaptation layer has
generally free access to the robot navigation. In particular, it can obtain estimates of
the position and can sense whether the robot moves. Based on this, it can:

• manipulate the queue of locations to be visited (destinations),
• pause the robot and command the robot to move to any place on the map.

Additionally, the adaptation layer on one robot may communicate with the
adaptation layers of other robots to realize more complex adaptation strategies via
cooperation.

The adaptation however comes with another set of problems once we try not
only to recover the robots from failures and deadlocks but also optimize the overall

7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model. . . 153

performance of the system. Clearly, by reordering the locations to be visited and
by transferring the responsibility of cleaning a place from one robot to another, the
system can highly optimize itself. Theoretically, it can even get to a point when
no collisions happen because robots exchange their destinations in such a way that
they do not interfere. This is however subject to multiple problems, which can be
regarded as additional adaptation challenges:

• The uncertainty in location makes planning not completely reliable.
• Communication range is limited, which means that robots in different rooms

cannot communicate directly but only through proxies (if present), which have
to be located in the corridor close to the office entrances.

• The communication is subject to latencies and unreliability (due to interference)
which makes it impossible for a robot to have an up-to-date knowledge of the
global state of the system and disallows strong synchronization among robots.

7.2.2 Solution Comparison Dimensions

Having the adaptation logic in place, various metrics can be considered for eval-
uation and comparison of different adaptation strategies (solutions to ACRC). We
list below metrics which we found useful in our experiments with ROS-controlled
robots. Note that since ACRC contains random elements and non-determinism, the
evaluation of a solution requires multiple simulation runs of ACRC and statistical
evaluation (e.g., by statistical testing of sample means or quantiles).

Time to complete all the tasks (i.e., visit and clean all locations assigned to
the robots at the start) can be regarded as the basic metric when we assume that
the evaluated solution is able to make the robots complete all their tasks. Our
experience showed that this is more difficult than it appears to be. For evaluating
partial successes, we thus suggest the following metrics.

Number of cleaning tasks that were completed This covers situations when time
limit for completion expires or when the system itself realizes that certain locations
cannot be cleaned – e.g., if a robot gets stuck in a room entrance and any attempts
to move the robot out of the way fail.

Total running time till system completes or gives up This can be used as a metric
complementary to the above one, to reward solutions which possess the ability to
recognize that certain problems cannot be solved. It can serve to resolve ties in
case two solutions are statistically similar (e.g., a statistical test cannot reject the
hypothesis of the two solutions that have the same average number of cleaning tasks
completed).

154 V. Matena et al.

7.3 Testbed

The provided testbed allows for easy experimentation with adaptation techniques
and algorithms for the ACRC problem. The model problem is implemented on top
of ROS, and both the adaptation logic and the adapted system are specified using
DEECo, which is a component model for sCPS. Details on the technical architecture
are given in Sect. 7.3.5.

The testbed offers two modes of deployment and execution. The first mode
is a simulation of a swarm of TurtleBots solving the ACRC problem. This
mode is primarily suitable for early stages of development and/or for conducting
quantitative measurements. The second mode allows for actual deployment using
real TurtleBots.

The simulation mode is implemented on top of the Stage simulator, which is
tightly integrated with ROS. The Stage simulator is capable of simulating robot
physics, movement, laser scan sensing, and odometry readings. Currently the
included Stage is configured to simulate TurtleBots only, but it is possible to change
robot shape, movement model, and sensors to match different robots as well.

The Stage simulator is further extended by a custom integration of the OMNeT++
network simulation into ROS – called ROSOMNeT++4 – which enables sending and
receiving IEEE 802.15.4 packets using ROS facilities.

For the actual deployment, it is necessary to equip each TurtleBot with an
onboard computer and wireless network interface. Regarding the onboard computer,
any average contemporary machine is suitable (we tested it with the Intel P9600
CPU and 6 GB of RAM, and such a configuration was completely sufficient). For
the wireless network interface, an external microcontroller with an IEEE 802.15.4
module is expected. The testbed has been tested with and is prepared for the
STM32F45 board equipped with the extension board6 and the BEE click7 module.
All of them are off-the-shelf components.

ROS already contains modules, which serve as drivers for TurtleBot, and we have
developed extensions to support the IEEE 802.15.4 network. In particular, we have
developed two projects. The beeclickarm8 provides the firmware and Java interface
for the used microcontroller, while the beeclickarmROS9 exports features of the
beeclickarm as ROS topics and services.

The detailed instructions about hardware installation and deployment are avail-
able in the testbed’s README file.10

4https://github.com/d3scomp/ROSOMNeT
5http://www.st.com/stm32f4
6http://www.mikroe.com/stm32/stm32f4-discovery-shield
7http://www.mikroe.com/click/bee
8https://github.com/d3scomp/beeclickarm/tree/robot-additions
9https://github.com/d3scomp/beeclickarmROS
10https://github.com/d3scomp/deeco-adaptation-testbed

https://github.com/d3scomp/ROSOMNeT
http://www.st.com/stm32f4
http://www.mikroe.com/stm32/stm32f4-discovery-shield
http://www.mikroe.com/click/bee
https://github.com/d3scomp/beeclickarm/tree/robot-additions
https://github.com/d3scomp/beeclickarmROS
https://github.com/d3scomp/deeco-adaptation-testbed

7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model. . . 155

The testbed seamlessly supports both deployment modes; the simulated and
actual devices are accessible via the same ROS interface, and thus no changes at
user code are required when switching between the deployment modes.

7.3.1 Modeling Concepts for Decentralized Coordination

The robots’ behavior is developed using DEECo [2], which is a component model
and framework for developing complex sCPS. DEECo is based on concepts of
ensemble-based component systems (EBCS) (designed primarily in the scope of
the EU FP7 ASCENS project11). In EBCS, a system is modeled as a set of
dynamic cooperation groups of software components – ensembles. DEECo itself
is an abstract component model; however it comes with two implementations – one
in Java12 (JDEECo) and one in C++13 (CDEECo). In the testbed, we use JDEECo
as we found Java easier for prototyping the components.

A component in DEECo is represented by its data (knowledge in EBCS) and
its tasks (processes in EBCS). Figure 7.2 shows a code skeleton of the baseline
implementation of the robot component in JDEECo. JDEECo-specific constructs
are expressed using an internal domain-specific language (DSL) defined via Java
annotations. A component is defined as a plain Java class annotated with the
@Component annotation. Component’s knowledge is defined as Java class fields
(lines 3–10 in Fig. 7.2). Knowledge that is not supposed to be shared with other
components via ensembles (as described below) is marked as @Local. Component’s
fields are manipulated by the component’s processes (e.g., lines 13–33). Processes
are defined as, respectively, annotated static Java class methods. Processes are either
periodically executed or event-triggered (i.e., commonly as a reaction to knowledge
change). This is determined by the annotation attached to the process.

Typically, processes involve sensing, computation, mutation of the component
knowledge fields, and actuating. The signature of the process defines which
knowledge fields are read/written (as in/out/in-out). Technically, the processes are
scheduled by JDEECo runtime, which also takes care of thread-safe retrieval of
component’s knowledge to be used by a process and storing of the process results
back in component’s knowledge.

Figure 7.2 lists the processes defined in the baseline implementation of the
cleaner robot as provided by ACRC. These are (i) setting the next destination, (ii)
reading the position, (iii) reporting the status, and (iv) controlling the movement of
the robot.

Communication between components is in DEECo modeled by ensembles. An
ensemble dynamically determines which components are in the communication

11http://ascens-ist.eu/
12http://github.com/d3scomp/JDEECo
13http://github.com/d3scomp/CDEECo

http://ascens-ist.eu/
http://github.com/d3scomp/JDEECo
http://github.com/d3scomp/CDEECo

156 V. Matena et al.

Fig. 7.2 Model of ACRC baseline in JDEECo

group via a membership condition. Topologically, an ensemble in JDEECo is a
star featuring one coordinator and multiple members. The communication within
ensembles is implicit, i.e., the ensemble defines an exchange method, which
performs knowledge exchange among components grouped in the ensemble (i.e.,
copying data from a knowledge field of one component to a knowledge field of
another component).

7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model. . . 157

Fig. 7.3 Adaptation architecture

The baseline implementation does not involve any ensembles. However, ensem-
bles are to be exploited for decentralized coordination of adaptation across several
robots. This is demonstrated in Fig. 7.12, where an ensemble for location exchange
is given. It is established between robots which are close to each other, and both
of them are stuck. The ensembles are defined again as plain Java classes with
annotations. The membership and exchange methods are periodically executed
(with prescribed period – line 2), and their parameters specify the read/written
knowledge fields of particular components (prefixes coord- and mbr- are used to
identify coordinator and member role, respectively).

The architectural view of the adaptation is depicted in Fig. 7.3, which shows the
split into “adapted” and “adaptation” layers. The adapted layer consists of robot
drivers, ROS modules, and business logic implemented as DEECo processes. The
adaptation layer is implemented by DEECo constructs. In case of local adaptations,
which do not take multiple robots into account, the adaptation is implemented as
a DEECo process. In more advanced cases when the adaptation layers of multiple
robots need to cooperate, a DEECo ensemble is used to implement the adaptation
logic.

7.3.2 Setup

The testbed models the ACRC problem via DEECo component model (in detail in
Sect. 7.3.1). In particular, it represents each robot as an instance of the CleanerRobot
component and provides its baseline behavior (i.e., the base-level subsystem [13])

158 V. Matena et al.

Fig. 7.4 Deploying multiple robots in simulation

in Java. The testbed provides a well-defined place in the component where the
adaptation logic is to be plugged in (i.e., the reflective subsystem). Technically,
this is done by introducing additional periodic processes to the Collector Robot
component and additional ensemble specifications (e.g., see Sect. 7.4.1). There is no
difference between the setup for the simulator deployment and the actual TurtleBot
deployment; only the initialization and launching differ as follows.

Simulation setup In Fig. 7.4 the code responsible for initializing the simulation is
shown. Lines 1–3 establish DEECo simulation using ROS, lines 4–7 load DEECo
plug-ins shared by all robots, the loop on lines 8–18 deploys robots, and finally line
19 runs simulation for 600 s. The simulation is configured by the number of robots,
their initial positions, and the map of the environment. The testbed comes with one
map that comprises a corridor and two offices. Custom maps can be provided as
PNG files similar to the one shown in Fig. 7.1.

Actual TurtleBot setup Instead of deploying all the robots at once (as in the case
of simulation), the deployment code depicted in Fig. 7.5 deploys a single cleaning
robot component on a single actual robot. Thus, it is necessary to run the code
on each individual robot. Lines 1–4 are responsible for establishing the DEECo
system using wall timer and actual robot ROS interface, lines 6–11 deploy a DEECo
node with all required plug-ins, lines 13–20 are responsible for deployment of the
cleaning robot component and ensembles, and finally line 22 runs the system and
blocks forever as the real deployment has no time limit.

7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model. . . 159

Fig. 7.5 Single actual robot deployment

Further guidelines on deployment as well as the whole source code of the testbed
can be found on GitHub.14

7.3.3 Debugging

The testbed enables usage of several debugging tools that can be used to observe the
system in order to deploy adaptation techniques as well as debug existing adaptation
code. The testbed is using ROS topics to control the simulated robot using standard
messages described by ROS. Thus it is possible to use ROS tools to inspect and
visualize messages in the system at no extra cost. These can be used to obtain a
robot-centric view of the system (as displayed in Fig. 7.6) and thus realize what is
wrong at a local level. In the following paragraphs, the most important tools are
briefly described.

Stage visualization The primary output of the testbed is the direct visualization
of the scenario shown in Fig. 7.1 (the visualizer itself comes with the Stage robot
simulator – Sect. 7.3.5). Via it, the user can observe the movement of the robots
in real time. Black lines represent walls and other obstacles impenetrable for the

14https://github.com/d3scomp/deeco-adaptation-testbed

https://github.com/d3scomp/deeco-adaptation-testbed

160 V. Matena et al.

Fig. 7.6 Robots’ perception of the environment

robots (i.e., the map provided to the testbed). The colored dots represent the robots
as located in the simulated system. Thus the output of the Stage visualization is
global view of the systems’ ground truth data.

Logging ROS messages As mentioned above robot control is ROS based on
sending messages. Fortunately those can be printed to command-line or a file for
later processing by plotting or using statistical tools. ROS defines how different
datatypes are represented as text, thus printing robot location requires no extra
output formatting as shown in Fig. 7.7.

Robot Visualizer (RViz)15 This tool provides a convenient way to observe a
robot’s view of the environment by displaying ROS messages in a 2D or 3D. Most
of the messages used in the system are directly understood by RViz, so that having
data visualized is as easy as choosing the correct data source.

The real power of RViz is the visualization of the data from real robot. Figure 7.8
shows RViz visualization of data from the TurtleBot deployed in a real environment.
The background is a static map of the environment which is used for long-range
planning. The colored rectangle around the robot is a local map capturing temporary
obstacles detected by distance scanner such as chairs and persons. Below the 3D
model of the robot, a cloud of green arrows used by AMCL to guess robot location

15http://wiki.ros.org/rviz

http://wiki.ros.org/rviz

7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model. . . 161

Fig. 7.7 Printing ROS
location message

Fig. 7.8 RViz using data from real robot

is visible. Finally a depth image captured by onboard camera is displayed in 3D in
order to help guess how guessed location matches reality.

rqt_plot16 Working on top of ROS messages, an rqt_plot tool can generate plots of
various messages in real-time and store them for later use. The output of this tool is
depicted in Fig. 7.9.

16http://wiki.ros.org/rqt_plot

http://wiki.ros.org/rqt_plot

162 V. Matena et al.

Fig. 7.9 rqt_plot showing MANET packet arrivals

ROS Bags17 ROS has an ability to record all messages in the system into a file,
which can be used for offline analysis. All the aforementioned tools using ROS
messages can work on top of replayed messages recorded during simulation or
actual system execution. For instance, it is possible to visualize trajectories of the
robots and replay the visualization over and over.

This feature is important for recording simulation runs as it saves time needed
to execute the same simulation repeatedly. It is even more important for the actual
deployments as it is in fact impossible to execute a scenario repeatedly with the
exactly same results.

Eclipse debugger18 As the testbed and all the adaptation code are written in Java,
it is possible to run the testbed as a Java application directly from Eclipse IDE and
thus use all debugging features of Eclipse. This is possible for both the simulation
and actual run. The limitation here (stemming from the soft real-time nature of ROS)
is that ROS continues running even if jDEECo and the adaptation logic are paused
by debugging. However, this is typically not a problem due to the fact that jDEECo
controls ROS essentially only by setting robot waypoints. As such, if jDEECo is
paused, the robot only continues to its next waypoint or stops sooner if there seems
to be an obstacle preventing its move and then it waits for the adaptation logic to
instruct it further.

17http://wiki.ros.org/rosbag
18https://eclipse.org/

http://wiki.ros.org/rosbag
https://eclipse.org/

7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model. . . 163

Fig. 7.10 Boxplots of results
from 10 experiment runs

7.3.4 Obtaining Results

The testbed comes with a script which computes statistics of the evaluation from the
logs collected in multiple simulation runs. It generates boxplots of the results for the
last two metrics defined in Sect. 7.2.2 (as in Fig. 7.10).

7.3.5 Technical Architecture

Figure 7.11 shows the architecture of the testbed. Technically, it is a merger of four
main existing modules. The contribution of the testbed lies in properly configuring
them and bridging them by glue and synchronization code. The modules are:

• ROS Core – this module provides publish/subscribe middleware for robotic
systems and the basic software of the robot. In particular, it implements the
AMCL localization, navigation, and low-level movement control of the robot.
The messaging system is used to interconnect robot basic software as well as to
connect remaining modules described later.

• OMNeT++19 – it is a network simulator. It runs independently of ROS. We
have implemented a bridge between ROS Core publish/subscribe mechanism

19http://omnetpp.org/

http://omnetpp.org/

164 V. Matena et al.

Fig. 7.11 Testbed deployment diagram

and OMNeT++, which exposes the MANET transceiver as a ROS topic. This
allows modules connected to ROS to communicate. OMNeT++ simulates the
latency, physical range, and interference of the communication based on robots’
positions.

• Stage20 – it is a robot simulator, which controls the simulation. It connects to
ROS Core and simulates sensors and actuators of the robot given the simulated
robot position and the map of the environment. Robots sensors and actuators
are exported as ROS topics. The interface of simulated robot is the same as the
interface of the real TurtleBot. The only difference is the usage of namespaces
which enable deployment of multiple simulated robots into one ROS system.

• JDEECo – it provides the component abstraction and concepts for decentralized
coordination as described in Sect. 7.3.1. It abstracts ROS topics on location and
navigation and exposes them to DEECo components to allow for adaptation.
It further exploits the ROS topic on MANET-based communication (backed
by OMNeT++) to implement inter-component communication via ensembles.
JDEECo again runs independently of ROS and is synchronized with it by a bridge
that we have developed as part of the testbed.

20http://playerstage.sourceforge.net/

http://playerstage.sourceforge.net/

7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model. . . 165

7.4 Evaluation

7.4.1 Example Adaptation Logic

We complement the model problem specification and the testbed with an example
adaptation logic as part of the model problem. It provides a comprehensive
example of the modeling concepts (described in Sect. 7.3.1) and also serves as
evaluation of the testbed to perform simulation of physical, mobility, networking,
and coordination concerns.

In the example adaptation, we tackle the problems described in Sect. 7.2.1 in the
following way:

1. We introduce a process (on each robot), which periodically detects the situation
when a robot is stuck. This is done by checking whether the robot is moving and
whether the robot has a destination set. The robot that is not moving and wants
to move is considered stuck.

2. If a robot is detected to be stuck, we select a random location from its queue
of destinations and set it as its current one. This resets the navigation module in
the robot and typically gets the robot to move. We monitor the outcome via the
process described in (1) and repeat if no visible outcome is detected.

3. If another robot is stuck in close proximity (up to 1.5 m), we establish an
ensemble with it. Within the ensemble, one robot adopts the current destination
of the other robot and vice versa. This solves the (deadlock) situations when two
robots meet in the office entrance and cannot proceed.

Strategy (3) is illustrated in Fig. 7.12. Ensemble membership is defined on lines
7–13, and destination adoption is defined on lines 20–24.

7.4.2 Lessons Learned and Limitations of the Testbed

The experience with development of the testbed on top of ROS led us to several
observations, which we believe are of general interest. We thus share them here.

Generally, a relatively big surprise was the overall immaturity of the frameworks.
This most likely stems from the fact that ROS is primarily used as a platform for
controlling a single robot at real time. Though it has very flexible architecture, which
allows running multiple robots within a single ROS system and allows connecting
different environment simulators (e.g., Stage), the practice shows that these setups
work out of the box only for trivial examples. Deploying multiple robots without
careful configuration of the environment would make ROS or the Stage simulator
crash. Similar story applies for OMNeT++, which is a mature and production-
ready network simulator used in many applications. Nevertheless, when it comes to
complex exercising of the mobile ad hoc network, the simulator again becomes very
fragile, and without careful configuration and patching, it crashes for no obvious
reason. From this perspective, we believe that even without the DEECo abstraction

166 V. Matena et al.

Fig. 7.12 Excerpt from example ACRC adaptation strategy

layer, the pre-configured testbed we provide can save a couple of months of painful
debugging.

Another class of problems comes from the fact that though ROS has been used
in simulations, it is not a discrete event simulator. It consists of a number of
modules, which just run in wall-clock time. This means that (1) the simulation is
non-deterministic and (2), if extra care is not taken, the system crashes because the
simulator, ROS, OMNeT++, and DEECo are not synchronized. We have solved this
problem by introducing explicit synchronization at critical places, but still one has
to keep in mind that this solution does not result in fully deterministic simulations.

Surprisingly enough, our experience with developing the sample adaptation
logic has shown that the wall-clock-timed simulation has certain advantages over
a standard off-line discrete-event simulation. Since the system is live (and behaves
as if the robots were moving in real time), one can watch the system as it runs,
inspect the laser scans, etc. Additionally, it is possible to modify the system while it
is running – e.g., a robot can be dragged by mouse to another location. While this is
not important in classical batch simulations which focus on statistical comparison
of different algorithms, it is very useful in debugging and especially in prototyping
(which in fact is one of the primary goals of our testbed and the reason why we
equipped the testbed with DEECo abstractions).

7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model. . . 167

7.5 Testbed Structure

The complete testbed is available at http://d3s.mff.cuni.cz/projects/components_
and_services/deeco/files/deeco-adaptation-testbed.zip. It contains the source code
of the testbed, together with installation and usage instructions. Moreover, a pre-
configured virtual machine image is included in order to enable rapid hands-on
experience without the hassle of installing tons of libraries.

7.6 Related Work

In this section, we briefly review three model problems/exemplars that have been
contributed to the self-adaptive systems community repository [8]. This is an
ongoing effort to provide benchmarks to evaluate new techniques against the state
of the art, a popular strategy in other communities such as performance engineering
(DaCapo suite [1], SPEC benchmarks [11], Cloud Efficiency Metric [10]).

The automated traffic routing problem (ATRP) [14] is a model problem that can
be used as benchmark for the evaluation of different self-adaptation mechanisms.
ATPR features cars traveling on a map. Each car has a specific starting point, a
specific destination, and a specific starting time. Each car has the goal to reach
its destination by traversing the map while respecting the speed limits on the
streets. Problems arise due to conflicts between individual goals (e.g., all cars select
the same street resulting in traffic congestion on the street), traffic accidents, and
road closures. ATRP can have solutions that are fundamentally different ranging
from centralized to completely decentralized ones and generating answers that are
optimal or suboptimal. These solutions can be compared w.r.t. dimensions such as
scalability, answer quality, robustness to sensor uncertainty, etc.

To evaluate and compare ATRP solutions, ADASIM has been proposed [14].
ADASIM is a Java-based discrete-event simulator that simulates the execution of an
ATRP solution on an ATRP instance. It provides configuration files for specifying
the problem instance, built-in routing algorithms, traffic delay functions, filters for
introducing measurement uncertainty, and Java interfaces that can be implemented
to specify an ATPR solution. An event logging and analysis infrastructure is also
provided. In summary, ATRP provides a vehicle suitable for experimentation with
different self-adaptation strategies that try to resolve conflicts between goals of
individual agents, prioritize between nonfunctional properties, and provide robust-
ness to faults. Similarly, our model problem and testbed stand as a benchmark for
self-adaptation mechanisms but focus more on run-time uncertainty and unreliable
communication and coordination in sCPS.

Znn.com [3] is another model problem for self-adaptation. Znn.com is a news
service that serves multimedia content to its customers. It is realized by a classical
N-tier client-server architecture. The objective of Znn.com is to serve content while
optimizing operating costs and keeping the response time bounded. Self-adaptation

http://d3s.mff.cuni.cz/projects/components_and_services/deeco/files/deeco-adaptation-testbed.zip
http://d3s.mff.cuni.cz/projects/components_and_services/deeco/files/deeco-adaptation-testbed.zip

168 V. Matena et al.

capabilities are needed in order for Znn.com to react to spikes on user load or
other external changes while satisfying its objectives. In such cases, Znn.com can
choose from a limited number of predesigned adaptation decisions, e.g., switching
the content served from multimedia to textual or incrementing the server pool size.
While Znn.com is primarily suitable for comparing self-optimization solutions, our
model problem and exemplar are more suitable for comparing solutions that focus
on self-healing and survivability (robot unblocking, deadlock resolution) properties
of sCPS.

Tele Assistance System (TAS) [12] is an exemplar for self-adaptation in the area
of service-based systems. TAS aims to aid patient suffering from chronic conditions
via tele-assistance. It is realized by wearable sensors measuring vital parameters
and three remote services for data analysis, medication delivery, and ambulance
dispatching in case of emergency. TAS comes with a number of generic adaptation
scenarios. Each scenario consists of the type of uncertainty that warrants self-
adaptation (e.g., service failure), appropriate self-adaptation actions (e.g., switching
to equivalent service), and type of quality attributes (QoS) impacted (e.g., cost).
For measuring the satisfaction level of each QoS, respective metrics are specified.
A reference implementation of TAS [12] provides a convenient way of comparing
self-adaptation solutions w.r.t. user-specified requirements in user-specified settings
(instances of the generic TAS scenarios) by simulating them and analyzing the
results with built-in graphical tools. While an excellent representative exemplar for
self-adaptive systems, TAS focuses specifically on service-based systems, not CPS.

7.7 Summary

Responding to the pressing need for model problems and testbeds to evaluate the
research ideas in the area of self-adaptive smart cyber-physical systems (sCPS), we
have presented ACRC, a model problem in the realm of sCPS that lends itself to a
number of self-adaptation techniques that increase its self-healing, survivability, and
self-optimization properties. It facilitates the process of trying out and comparing
self-adaptation solutions to this problem. Our pre-configured testbed provides a
starting point for experimental research. Moreover, the experiments can be easily
extended to actual robots as the simulation shares interface with off-the-shelf robotic
platform. We hope that ACRC will help increase the awareness of the yet-to-be-
addressed challenges in the exciting field of self-adaptive sCPS and drive further
advances in the field.

Acknowledgements The work on this paper has been partially supported by the Charles
University Grant Agency project No. 391115 and Charles University institutional funding SVV-
2016-260331. This work is part of the TUM Living Lab Connected Mobility (TUM LLCM) project
and has been funded by the Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und
Technologie (StMWi).

7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model. . . 169

References

1. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S., Bentzur, R., Diwan,
A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss,
J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T., von Dincklage, D., Wiedermann, B.: The
dacapo benchmarks: java benchmarking development and analysis. SIGPLAN Not. 41(10),
169–190 (2006). https://doi.org/10.1145/1167515.1167488

2. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: Deeco: an
ensemble-based component system. In: Proceedings of the 16th International ACM Sigsoft
Symposium on Component-Based Software Engineering, CBSE’13, pp. 81–90. ACM, New
York (2013). https://doi.org/10.1145/2465449.2465462

3. Cheng, S.W., Schmerl, B.: Znn model problem. http://self-adaptive.org/exemplars/model-
problem-znn-com. Accessed 22 Jan 2016

4. Kim, K., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial. Proc. IEEE
100(Centennial-Issue), 1287–1308 (2012). https://doi.org/10.1109/JPROC.2012.2189792

5. Matena, V., Bures, T., Gerostathopoulos, I., Hnetynka, P.: Model problem and testbed for
experiments with adaptation in smart cyber-physical systems. In: Proceedings of the 11th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS’16, pp. 82–88. ACM, New York (2016). https://doi.org/10.1145/2897053.2897065

6. NIST: Cyber physical systems: situation analysis of current trends, technologies, and chal-
lenges. In: NIST CPS Workshop (2012). http://events.energetics.com/NIST-CPSWorkshop/
pdfs/CPS_Situation_Analysis.pdf

7. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. ACM
Trans. Auton. Adapt. Syst. 4(2), 14:1–14:42 (2009). https://doi.org/10.1145/1516533.1516538

8. Self-adaptive systems community repository. http://self-adaptive.org/exemplars. Accessed 22
Jan 2016

9. Sha, L., Gopalakrishnan, S., Liu, X., Wang, Q.: Cyber-physical systems: a new frontier. In:
Singhal, M., Serugendo, G.D.M., Tsai, J.J.P., Lee, W., Römer, K., Tseng, Y., Hsiao, H.C.W.
(eds.) IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing (SUTC 2008), Taichung, 11–13 June 2008, pp. 1–9. IEEE Computer Society
(2008). https://doi.org/10.1109/SUTC.2008.85

10. Shtern, M., Smit, M., Simmons, B., Litoiu, M.: A runtime cloud efficiency software quality
metric. In: Companion Proceedings of the 36th International Conference on Software
Engineering, ICSE Companion 2014, pp. 416–419. ACM, New York (2014). https://doi.org/
10.1145/2591062.2591127

11. Spec benchmarks. http://www.spec.org/benchmarks.html. Accessed 22 Jan 2016
12. Weyns, D., Calinescu, R.: Tele assistance: a self-adaptive service-based system examplar. In:

Proceedings of the 10th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS’15, pp. 88–92. IEEE Press, Piscataway (2015). http://dl.acm.
org/citation.cfm?id=2821357.2821373

13. Weyns, D., Malek, S., Andersson, J.: Forms: a formal reference model for self-adaptation.
In: Proceedings of the 7th International Conference on Autonomic Computing, ICAC’10, pp.
205–214. ACM, New York (2010). https://doi.org/10.1145/1809049.1809078

14. Wuttke, J., Brun, Y., Gorla, A., Ramaswamy, J.: Traffic routing for evaluating self-adaptation.
In: Müller, H.A., Baresi, L. (eds.) 7th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS, Zurich, 4–5 June 2012, pp. 27–32. IEEE
Computer Society (2012). https://doi.org/10.1109/SEAMS.2012.6224388

https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/2465449.2465462
http://self-adaptive.org/exemplars/model-problem-znn-com
http://self-adaptive.org/exemplars/model-problem-znn-com
https://doi.org/10.1109/JPROC.2012.2189792
https://doi.org/10.1145/2897053.2897065
http://events.energetics.com/NIST-CPSWorkshop/pdfs/CPS_Situation_Analysis.pdf
http://events.energetics.com/NIST-CPSWorkshop/pdfs/CPS_Situation_Analysis.pdf
https://doi.org/10.1145/1516533.1516538
http://self-adaptive.org/exemplars
https://doi.org/10.1109/SUTC.2008.85
https://doi.org/10.1145/2591062.2591127
https://doi.org/10.1145/2591062.2591127
http://www.spec.org/benchmarks.html
http://dl.acm.org/citation.cfm?id=2821357.2821373
http://dl.acm.org/citation.cfm?id=2821357.2821373
https://doi.org/10.1145/1809049.1809078
https://doi.org/10.1109/SEAMS.2012.6224388

	Preface
	References

	Contents
	1 Design and Engineering of Adaptive Software Systems
	1.1 Introduction
	1.2 Designing Adaptive Software Systems
	1.2.1 Design Space for Self-Adaptive Systems
	1.2.2 Design of Adaptive Services
	1.2.2.1 A Modeling Framework for Adaptive Service Composition
	1.2.2.2 Adaptive Service Composition Process

	1.2.3 Human Factors
	1.2.3.1 Human as Expert
	1.2.3.2 Human as User
	1.2.3.3 Human as Agent
	1.2.3.4 Human as Component

	1.3 Engineering Adaptive Software Systems
	1.3.1 Model Management in Adaptive Software Systems
	1.3.1.1 Model Management
	1.3.1.2 Model Management for Implementing MAPE Loops
	1.3.1.3 Bidirectional Model Transformations for Adaptive Software Systems

	1.3.2 Adaptation for Evolving Software Systems
	1.3.2.1 From Natural Selection to Self-Adaptation
	1.3.2.2 Future-Proof by Core Architectures
	1.3.2.3 Future-Proof Requirements
	1.3.2.4 Composition Requirements for Encapsulating Future Changes
	1.3.2.5 Evolving Component-Based Systems: Addressing the Meaningful Changes
	1.3.2.6 Example: Meeting Scheduler
	1.3.2.7 Back to the Future

	1.4 Conclusion
	References

	2 Self-Adaptation of Software Using Automatically Generated Control-Theoretical Solutions
	2.1 Introduction
	2.2 Background
	2.3 Automated Control-Theoretical Software Adaptation
	2.3.1 Automation of Control System Development
	2.3.1.1 Brownout
	2.3.1.2 Push-Button Methodology

	2.3.2 Adaptation with Goal Prioritization
	2.3.3 Adaptation with Guaranteed Optimality
	2.3.4 Adaptation with New and Changing Goals
	2.3.5 Automated Model Predictive Control

	2.4 Challenges
	2.5 Conclusions
	References

	3 Challenges in Engineering Self-Adaptive Authorisation Infrastructures
	3.1 Introduction
	3.2 Background
	3.2.1 Access Control Models
	3.2.2 Implementing Access Control Models
	3.2.3 Authorisation Infrastructures
	3.2.4 Static and Dynamic Access Control
	3.2.5 Self-Adaptive Authorisation Infrastructures
	3.2.5.1 Self-Adaptation
	3.2.5.2 Self-Adaptive Authorisation and Self-Adaptive Access Control
	3.2.5.3 Self-Protection

	3.2.6 Insider Threats

	3.3 Related Work
	3.4 Challenges in Engineering Self-Adaptive Authorisation Infrastructures
	3.4.1 Monitor
	3.4.1.1 Active Monitoring
	3.4.1.2 Run-Time Synthesis of Probes and Gauges
	3.4.1.3 Mutating Gauges
	3.4.1.4 Incomplete Information
	3.4.1.5 Automatic Feature Identification

	3.4.2 Analyse
	3.4.2.1 Anomaly Detection
	3.4.2.2 Signature-Based Detection
	3.4.2.3 Case-Based Detection
	3.4.2.4 Diagnosis
	3.4.2.5 Resuming Normality
	3.4.2.6 Perpetual Evaluation
	3.4.2.7 Threat Management
	3.4.2.8 Risk Analysis

	3.4.3 Plan
	3.4.3.1 Decision-Making in a Federated Authorisation Infrastructure
	3.4.3.2 Randomising Decisions
	3.4.3.3 Denial of Service
	3.4.3.4 Robust Plans
	3.4.3.5 Controller Capabilities
	3.4.3.6 Infrastructure Boundary

	3.4.4 Execute
	3.4.4.1 Run-Time Synthesis of Effectors
	3.4.4.2 Deployment and Withdrawal of Probes, Gauges, and Effectors
	3.4.4.3 Trust
	3.4.4.4 Update or Redeployment of Policies and Sessions
	3.4.4.5 Redundancy

	3.4.5 Models
	3.4.5.1 Modelling Authorisation Policies
	3.4.5.2 Modelling Access Control
	3.4.5.3 Modelling Threats
	3.4.5.4 Modelling Adaptation
	3.4.5.5 Portability
	3.4.5.6 Facilitating Negotiation
	3.4.5.7 Capturing the History of Models
	3.4.5.8 Analysis Capabilities
	3.4.5.9 Model Drift

	3.5 Conclusions
	References

	4 Bidirectional Transformations for Self-Adaptive Systems
	4.1 Introduction
	4.2 Bidirectional Programming
	4.3 Bidirectional Programming and Abstraction
	4.3.1 Migration

	4.4 Bidirectional Programming and Separation of Concerns
	4.4.1 Extracting Submodels
	4.4.2 Current vs. Desired State of the Model
	4.4.3 Evaluation Order and Concurrent Evaluation

	4.5 Declarative Description of Adaptation Logic
	4.5.1 Adding Views to Adaptation Rules
	4.5.2 νRule: View-Based Adaptation Rule
	4.5.3 Implementation of νRule in BiGUL
	4.5.3.1 Representation
	4.5.3.2 Translation

	4.6 Bidirectional Transformations for Uncertainty-Aware Software Development
	4.6.1 Uncertainty in Software Development
	4.6.2 Modular Programming for Uncertainty
	4.6.3 Modular Reasoning Based on Partial Model
	4.6.4 Bidirectional Transformation for Uncertainty

	4.7 Conclusion
	References

	5 Parallel Adaptation of Multiple Service Composition Instances
	5.1 Introduction
	5.2 Parallel and Proactive Adaptation Framework
	5.2.1 Proactive Adaptation Approach
	5.2.2 Parallel Adaptation Approach

	5.3 Implementation and Evaluation
	5.4 Related Work
	5.5 Conclusions and Future Work
	References

	6 Assessing Security and Privacy Behavioural Risks for Self-Protection Systems
	6.1 Introduction
	6.1.1 Motivating Examples
	6.1.1.1 A PIN Entry Device System
	6.1.1.2 A Social Media System

	6.2 Abstract Goal Behaviour Models
	6.3 Risks in Behaviour Models
	6.4 Running Examples
	6.4.1 Security Risks in PIN Access Control
	6.4.2 Privacy Risks in Social Networks

	6.5 Discussions
	6.6 Summary
	References

	7 Experimenting with Adaptation in Smart Cyber-Physical Systems: A Model Problem and Testbed
	7.1 Introduction
	7.2 Model Problem
	7.2.1 Operation and Adaptation Challenges
	7.2.2 Solution Comparison Dimensions

	7.3 Testbed
	7.3.1 Modeling Concepts for Decentralized Coordination
	7.3.2 Setup
	7.3.3 Debugging
	7.3.4 Obtaining Results
	7.3.5 Technical Architecture

	7.4 Evaluation
	7.4.1 Example Adaptation Logic
	7.4.2 Lessons Learned and Limitations of the Testbed

	7.5 Testbed Structure
	7.6 Related Work
	7.7 Summary
	References

