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Abstract In quantum statistical mechanics, closed many-body systems that do not
exhibit thermalization after an arbitrarily long time in spite of the presence of interac-
tions are called as many-body localized systems, and recently have been vigorously
investigated. After a brief review of this topic, we consider a many-body interacting
quantum system in one dimension, which has conformal symmetry and integrability.
We exactly solve the system and discuss its thermal or non-thermal behavior.
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1 Introduction

In quantum statistical physics, it is still a big challenge to formulate and understand
how systems out of thermal equilibrium settle down to systems in thermal equilib-
rium, although innumerable attempts has been done toward its understanding for
over a century. Recently, by investigating closed quantum many-body systems and
their time evolution for a sufficiently long time, two qualitaitvely different phases
have been found in the thermodynamic limit, which are referred to as thermal-
ization/delocalization and localization. First, we start with a brief review of these
phases.1

1For review articles, see [1, 10, 12] for example.
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Fig. 1 The closed system S
is the inside of the box. The
subregion A is a region
bounded by the red circle,
and B = S − A is the rest

A

B

1.1 Thermalization

Let us consider a closed quantum system S, for which the Hamiltonian H is defined.
The density matrix of the system ρ evolves with the time t as

ρ(t) = e−i Htρ(0) eiHt . (1)

Suppose the same system is put in thermal equilibrium at temperatureβ−1. Its density
matrix is expressed as

ρ(eq)(β) = 1

Z(β)
e−βH with Z(β) = Tr e−βH . (2)

Next, we pick any small subregion A in S in real space, and regard B = S − A
as a reservior (Fig. 1). The reduced density matrix of A for (1) and (2) is obtained
from ρ by tracing out the states belonging to the Hilbert space of the subsystem B:

ρA(t) = TrB ρ(t), (3)

and
ρ

(eq)
A (β) = TrB ρ(eq)(β), (4)

respectively. Then, we define thermalization as follows.

Definition 1 If
ρA(t) → ρ

(eq)
A (β) (5)

as sending t and the volume of S to infinity with the volume of A being fixed, and if it
holds for any choice of the subsystem A, the system S thermalizes for the temperature
β−1.

Note that since in a closed system the densitymatrix of the total systemρ(t)undergoes
unitary time-evolution, ρ(t) does not evolve to ρ(eq)(β) in general. This brings us to
the Eigenstate Thermalization Hypothesis.
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1.2 Eigenstate Thermalization Hypothesis

Suppose the initial state ρ(0) is a pure state for an energy eigenstate of the energy
En:

ρ(0) = |En〉 〈En| with H |En〉 = En |En〉 . (6)

Then, ρ is time-independent: ρ(t) = ρ(0), which leads to ρA(t) = ρA(0) for any A
from (3). In this case, noting Definition 1, we could expect that all the energy eigen-
states are thermalized, which is called as the Eigenstate Thermalization Hypothesis
(ETH) [8, 13–15].

If ETH holds, the temperature at the thermal equilibrium, denoted by β−1
n , is

determined by

En = 〈H〉βn
≡ 1

Z(βn)
Tr

(
H e−βn H

)
. (7)

The entanglement entropy of the subsystem A:

SA = −TrA (ρA ln ρA) (8)

coincides with the equilibrium thermal entropy of A. In particular, SA is an extensive
quantity, proportional to the volume of A.

However, ETH is a hypothesis, and not true for one class of systems. Such systems
are called as localized systems.

1.3 Localized Systems

A simple example of single-particle localization is given by the one-dimensional
Hamiltonian:

H = − 1

2m

∂2

∂x2
+ Vp(x) + Vq(x), (9)

where Vp(x) is a periodic potential, and Vq(x) is a random noise. If the noise is absent
(Vq(x) = 0), the wave function of the particle is oscillating due to the Bloch wave,
and delocalized. However, when the noise is turned on, the wave function becomes
localized as

ψ(x) ∼ e−μq x as |x | → ∞ (10)

with a strictly positive constant μq . This phenomenon is well-known as the Anderson
localization [2, 5]

Next, we turn tomany-body localization (MBL), which takes place in the presence
of many-body interactions and for highly excited states. A typical example is given
by a one-dimensional quantum spin-1/2 chain, whose Hamiltonian takes the form
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H =
∑

i

hiσ
z
i + J

∑

<i, j>

σi · σ j . (11)

Here, i, j ∈ {1, 2, . . .} denote the sites of the system, hi are random magnetic fields
at the site i distributed over the range [−W,W ], and the second term represents the
nearest neighbor interactions of the Pauli spins.

At J = 0, the eigenstates of (11) are product states of the σz eigenstates:
∣∣σz

1

〉 ⊗∣∣σz
2

〉 ⊗ · · · with |σz〉 = |↑〉 or |↓〉. Each spin variable is completely decoupled and
undergoes independent time evolution. This system is fully localized, and essentially
the same as the above single-particle localization. There are strictly local integrals
of motions (LIOM) σz

i (i = 1, 2 . . .), whose supports are on single sites.
When turning on J but J � W , the localization property somehow remains. This

case is called asMBL. There are also LIOM, but they satisfymilder locality condition
with exponentially decaying tails in large distances (called as quasi LIOM). Such
quasi LIOM are constructed, and DC spin transport and energy transport are shown
to be absent perturbatively and nonperturbaively with respect to the coupling J
[4, 9].

On increasing J , the localization ceases and ETH starts to hold eventually. Inter-
estingly, there will be a transition between MBL (localized) and delocalized phases
around J ∼ W , which is a new type of phase transition between thermal equilib-
rium and out-of-equilibrium. It is expected that the localization is an intriguing
phenomenon that protects the system from thermal decoherence and can be useful
to construct devices for quantum computations.

However, analyses for MBL have been performed mainly for quantum spin sys-
tems. Extension to other quantum systems should be important to find new aspects
and understand universal properties for localizations. In the rest of this contribution,
we construct an integrable model of many-body conformal quantum mechanics by
using its coalgebra structure, and analyze its thermal or localization properties.

2 Many-Body Interacting Model by Using Coproducts

The conformal group in one dimension, SL(2,R), is generated by the Lie algebra
generators L0, L± satisfying

[
L0, L±

] = ±L±, [L+, L−] = −2L0 (12)

with the quadrartic Casimir

C = L2
0 − L0 − L+L−. (13)

This is realized in one-dimensional quantum mechanical system [7] as



Many-Body Localization in Large-N Conformal Mechanics 141

L0 = 1

4

(
p2 + g

x2
+ x2

)
, (14)

L± = 1

4

(
−p2 − g

x2
+ x2

)
∓ i

1

4
(xp + px) (15)

with [x, p] = i andC = − 3
16 + 1

4g. L0 plays a role of the Hamiltonian. For simplic-
ity, we will consider the case of g = 0, in which the system reduces to a harmonic
oscillator.

2.1 Coproducts

In treating N -body systems, it is convenient to introduce coproducts denoted byΔ(k)

(k = 2, 3, . . . , N ). Let La, i (a = 0, ±) be the La-operator for particle i (or at site
i). Δ(2)(La) acts on two-particle states, which is defined by

Δ(2)(La) = La ⊗ 1 + 1 ⊗ La = La, 1 + La, 2. (16)

Also, Δ(2)(1) = 1 ⊗ 1. Then, Δ(3)(La) acting on three-particle states is given as

Δ(3)(La) = (1 ⊗ Δ(2)) ◦ Δ(2)(La)

= (1 ⊗ Δ(2)) ◦ (La ⊗ 1 + 1 ⊗ La)

= La ⊗ Δ(2)(1) + 1 ⊗ Δ(2)(La)

= La ⊗ 1 ⊗ 1 + 1 ⊗ (La ⊗ 1 + 1 ⊗ La)

= La, 1 + La, 2 + La, 3, (17)

In general, Δ(k)(La) is inductively given as

Δ(k)(La) = (

k−2
︷ ︸︸ ︷
1 ⊗ · · · ⊗ 1⊗Δ(2)) ◦ Δ(k−1)(La)

= La, 1 + · · · + La, k . (18)

Note that the coproducts act as homomorphism and preserve the algebra (12):

[Δ(k)(L0), Δ(k)(L±)] = ±Δ(k)(L±), (19)

[Δ(k)(L+), Δ(k)(L−)] = −2Δ(k)(L0) (20)

with the quadratic Casimir

Δ(k)(C) = (
Δ(k)(L0)

)2 − Δ(k)(L0) − Δ(k)(L+)Δ(k)(L−). (21)

We can see that Δ(k ′)(C) commutes with Δ(k)(La) for k ′ ≤ k.
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Fig. 2 The operator Δ(k)(C)

has support on sites
{1, 2, . . . , k}

1 2 k N

Δ(k)(C)

2.2 Hamiltonian

We consider the Hamiltonian for N -particle interacting conformal system as

HN = Δ(N )(L0) +
N∑

k=2

αkΔ
(k)(C), (22)

where the first termdescribes N free harmonic oscillators, and the rest are interactions
with coupling constants αk . Δ(k)(C) is an interaction with support on sites 1 to k as
depicted in Fig. 2. The construction of (22) is based on the idea in [3, 11]. Eventually,
we send N to infinity.

Since Δ(N )(L0) and Δ(k)(C) (k = 2, . . . , N ) mutually commute, they give N
conserved quantities. This implies that the system is integrable. However, they are
not local in general, and it is nontrivial whether the system exhibits MBL. If we
choose the coupling constants behaving as

αk ∼ e−k/ξ with ξ some positive number, (23)

all the interactions become quasi local and the above conserved quantities can be
regarded as quasi LIOM.

In terms of the position and momentum variables, (22) is expressed as

HN =
N∑

i=1

1

4

(
p2i + x2i

) +
N∑

k=2

αk

⎧
⎨

⎩
1

4

∑

1≤i< j≤k

M2
i j + k(k − 4)

16

⎫
⎬

⎭
(24)

with Mi j ≡ xi p j − x j pi being an analog of angular momentum operators.

3 Eigenstates and Eigenvalues

In order to exactly solve the system (22), we first consider the lowest weight states
(level 0 states) satisfying

L−, i |s〉N = 0 for i = 1, . . . , N . (25)
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Here, the subscript ‘N ’ in the state vector is used to denote the N -particle state. The
conditions are solved as

|s〉N =
∣∣
∣r (1)

0 , . . . , r (N )
0

〉
≡

∣∣
∣r (1)

0

〉
⊗ · · · ⊗

∣∣
∣r (N )

0

〉
(26)

with
∣∣∣r (i)

0

〉
being the eigenstate of L0, i with the weight 1/4 or 3/4:

L0, i

∣
∣∣r (i)

0

〉
= r (i)

0

∣
∣∣r (i)

0

〉 (
r (i)
0 = 1

4
,
3

4

)
. (27)

The weights 1/4 and 3/4 correspond to the ground state energy and the first excited
energy of the harmonic oscillator, respectively. The energy eigenvalue is given by

E0 = RN +
N∑

k=2

αk Rk (Rk − 1) , Rk ≡ r (1)
0 + · · · + r (k)

0 (28)

Any state vector in the Fock space can be obtained by successively acting L+, i

operators on the level 0 states. From the SL(2, R) algebra (12), the states containing
n L+, i operators increase the weight by n, and correspond to 2n-th excited states of
the harmonic oscillator. The Fock space is decomposed as

F =
⊕

r (1)
0 ,...,r (N )

0

F
(r (1)

0 ,...,r (N )
0 )

(29)

with
F

(r (1)
0 ,...,r (N )

0 )
≡

{
Lk1+, 1 . . . LkN

+, N |s〉N ; k1, . . . , kN = 0, 1, 2, . . .
}

. (30)

Lk1+, 1 . . . LkN
+, N |s〉N is the eigenstate ofΔ(N )(L0)with the eigenvalue k1 + · · · + kn +

RN , and called as a level k1 + · · · + kn state.

3.1 Level 1 States

We find the following N states of level 1:

|v1〉N = Δ(N )(L+) |s〉N ,
∣∣v1, (1,1)

〉
N = F1

(
L+, 1, L+, 2

) |s〉N ,
∣∣v1, (1,2)

〉
N = F1

(
Δ(2)(L+), L+, 3

) |s〉N ,

...
∣∣v1, (1, N−1)

〉
N = F1

(
Δ(N−1)(L+), L+, N

) |s〉N , (31)
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where F1
(
Δ(n)(L+), L+, n+1

)
is a linear function of Δ(n)(L+) and L+, n+1 given by

F1
(
Δ(n)(L+), L+, n+1

) = −r (n+1)
0

Rn
Δ(n)(L+) + L+, n+1 (32)

for n = 1, . . . , N − 1, and hereafter Δ(1)(L+) is regarded as L+, 1. Notice that

Δ(m)(L−)
∣∣v1, (1,n)

〉
N = 0,

F1
(
Δ(m)(L−), L−,m+1

) ∣∣v1, (1,n)

〉
N = 0 (33)

hold for m > n, which leads to the orthogonality of the states (31).
The energy eigenvalues are obtained as

E1 = RN + 1 +
N∑

k=2

αk Rk(Rk − 1) (34)

for |v1〉N , and

E1, (1,n) = RN + 1 +
n∑

k=2

αk Rk(Rk − 1) +
N∑

k=n+1

αk(Rk + 1)Rk (35)

for
∣∣v1, (1,n)

〉
N .

3.2 Level p States

General level p states are obtained as

∣∣vp
〉
N = (

Δ(N )(L+)
)p |s〉N ,

∣∣vp, (m1,n1), ...,(mq ,nq )
〉
N

= (
Δ(N )(L+)

)p−m1−···−mq

×Fm1

(
Δ(n1)(L+), L+, n1+1

)
+m2+···+mq

×Fm2

(
Δ(n2)(L+), L+, n2+1

)
+m3+···+mq

× · · ·
×Fmq−1

(
Δ(nq−1)(L+), L+, nq−1+1

)
+mq

×Fmq

(
Δ(nq )(L+), L+, nq+1

) |s〉N , (36)
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where q runs from 1 to p, and m1, . . .mq ∈ {1, . . . , p} satisfy
∑q

i=1 mi ≤ p.
The integersni shouldbe taken as N − 1 ≥ n1 > n2 > · · · > nq ≥ 1. Fm

(
Δ(n)(L+),

L+, n+1
)
is a degree-m homogeneous polynomial of Δ(n)(L+) and L+, n+1, whose

explicit form is

Fm
(
Δ(n)(L+), L+, n+1

) = c(m)
0

(
Δ(n)(L+)

)m + c(m)
1

(
Δ(n)(L+)

)m−1
L+, n+1

+ · · · + c(m)
p−1Δ

(n)(L+)
(
L+, n+1

)m−1 + (
L+, n+1

)m
(37)

with the coefficients

c(m)
k ≡ (−1)m−k

(
m
k

) Γ
(
2r (n+1)

0 + m
)

Γ
(
2r (n+1)

0 + k
)

Γ (2Rn)

Γ (2Rn + m − k)
. (38)

Note that (37) is independent of the couplings αk’s. Fm
(
Δ(n)(L+), L+, n+1

)
+�

denotes (37) with every Rn appearing in (38) replaced by Rn + �. The states in

(36) consist of mutually orthogonal

(
p + N − 1

p

)
states. All of the states have no

dependence on the couplings, which comes from the Hamiltonian (22) consists of
the mutually commuting operators.

The norms of the states are computed as

∣∣∣∣∣∣vp
〉
N

∣∣∣∣2 = p!Γ (2RN + p)

Γ (2RN )
, (39)

∣∣∣∣∣∣vp, (m1,n1),...,(mq ,nq )
〉
N

∣∣∣∣2 = (p − M1)!Γ (2RN + M1 + p)

Γ (2RN + 2M1)

×
q∏

a=1

⎡

⎣ma !
Γ

(
2r (na+1)

0 + ma

)

Γ
(
2r (na+1)

0

)
Γ

(
2Rna + 2Ma+1

)

Γ
(
2Rna + 2Ma+1 + ma

)

× Γ
(
2Rna+1 + 2Ma − 1

)

Γ
(
2Rna+1 + 2Ma+1 + ma − 1

)

]

(40)

with

Ma ≡
q∑

k=a

mk . (41)

The energy eigenvalues are

Ep = RN + p +
N∑

k=2

αk Rk(Rk − 1) (42)
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for
∣∣vp

〉
N , and

Ep, (m1,n1),...,(mq ,nq ) = RN + p +
nq∑

k=2

αk Rk(Rk − 1)

+
q∑

�=2

n�−1∑

k=n�+1

αk (Rk + M�) (Rk + M� − 1)

+
N∑

k=n1+1

αk (Rk + M1) (Rk + M1 − 1) (43)

for
∣∣vp, (m1,n1), ...,(mq ,nq )

〉
N
.

We can see that all the level p states are degenerate for the free case, while the
degeneracy is completely resolved by turning on the couplings αk . Note for the
choice (23), the level splitting between states with different m j ’s is of the order
O

(
eN/ξ

)
, which yields continuous spectrum at large N . This seems a situation in

which thermalization takes place. On the other hand, there are quasi local LIOM that
support MBL as we have seen in Sect. 2. Thus, it is interesting to see which property
of ETH and MBL is realized in this case.

4 Entanglement Entropy

Let us start with the density matrix for the pure state:

ρ = 1
∣
∣
∣
∣
∣
∣vp, (m1,n1),...,(mq ,nq )

〉
N

∣
∣
∣
∣2

∣∣vp, (m1,n1),...,(mq ,nq )
〉
N

〈
vp, (m1,n1),...,(mq ,nq )

∣∣ . (44)

We divide the total system S = {1, 2, . . . , N } into a small subsystem A = {N −
ν + 1, . . . , N } with ν � N and the rest B = {1, 2, . . . , N − ν}. For simplicity, we
consider the case of n1 ≤ N − ν − 1, in which all the Fm operators in (36) act only
on B. For such pure states, the reduced density matrix ρA takes a diagonal form with
each diagonal entry taking a simple form:

λA, ñ ≡
(
p − M1

ñ

)
B

(
2RN−ν + 2M1 + ñ, 2R̄ν + p − M1 − ñ

)

B
(
2RN−ν + 2M1, 2R̄ν

) , (45)

where

R̄ν ≡
N∑

i=N−ν+1

r (i)
0 , (46)

and ñ runs from 0 to p − M1.
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We find the large-N behavior of the entanglement entropy

SA = −
p−M1∑

ñ=0

λA, ñ ln λA, ñ (47)

in the following two cases:

• For p − M1 � RN + M1 (case 1),

SA ∼ R̄ν
p − M1

RN + M1
ln (RN + M1) . (48)

Since R̄ν grows with ν (the volume of A), this result exhibits the volume-law like
behavior although the multiplicative factor p−M1

RN+M1
ln (RN + M1) is tiny for the

case.
• For p − M1 � RN + M1 (case 2),

SA ∼ ln(p − M1). (49)

This result is independent of ν, and exhibits the area law, which supports the
localization phase.

In the case 1, the energy is relatively lower, but the result (48) seems to support
thermal like phase. On the other hand, in the case 2, the energy is relatively higher,
and the result (49) suggests localization. Interestingly, because the states (44) do not
depend on the couplings αk , the above results hold for any choice ofαk . In particular,
the result means that there are some highly excited states which exhibit the area law
behavior (49) even in the presence of nonlocal interactions. It is also interesting
to analyze the case in which p − M1 is comparable to RN + M1 (the intermediate
region of the cases 1 and 2), and to see how the volume-law like behavior changes
to the area law.

5 Discussion

In this contribution, first we have briefly reviewed topics on quantum thermalization
and localization. Second, we have constructed an integrable model with many-body
interactions by using coproducts, and obtained the exact spectrum of the model.
Third, by computing the entanglement entropy, we have found a localization property
in highly excited states in spite of nonlocal interactions. We guess that this captures
a new aspect of localization, which has not been seen yet.

Since the entanglement entropy does not depend on the couplings, it will be
interesting to analyze other quantities that are sensitive to the couplings. Actu-
ally, we introduced a deformation breaking the integrablity, and computed how the
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entanglement entropy of the level 1 states changes with the time t . For general cou-
plings for which interactions are nonlocal, the entanglement entropy initially grows
as t2, but saturates at some value soon after and keeps oscillating. On the other hand,
for the choice (23), the entanglement entropy keeps growing as t2, and never reaches
the point that is saturated in the nonlocal case. We can see that the exponential
decreasing couplings crucially slow down the spreading of the entanglement. We are
also considering to measure transport properties by computing connected two point
correlation functions.

The SL(2, R) conformal symmetry plays a crucial role to construct the Hamil-
tonian (22) and thus to make the energy eigenstates independent of the couplings.
Investigating this model from the viewpoint of AdS/CFT correspondence [6] will
also be intriguing.
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