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and the Conservation of Cross Helicity

Asher Yahalom

Abstract Standard cross helicity is not conserved in non-barotropic magnetohydro-
dynamics (MHD) (as opposed to barotropic or incompressible MHD). It was shown
that a new kind of cross helicity which is conserved in the non barotropic case can
be introduced. The non barotropic cross helicity reduces to the standard cross helic-
ity under barotropic assumptions. Here we show that the new cross helicity can be
deduced from a variational principle using the Noether’s theorem. The symmetry
group associated with the new cross helicity is related to translation in a labelling of
the flow elements connected to the magnetic field lines known as magnetic metage.

Keywords Symmetry group · Magnetohydrodynamics · Topological conservation
laws · Metage · Cross helicity
1 Introduction

The theorem of Noether dictates that for every continuous symmetry group of an
Action the system must possess a conservation law. For example time translation
symmetry results in the conservation of energy, while spatial translation symmetry
results in the conservation of linear momentum and rotation symmetry in the conser-
vation of angular momentum to list some well known examples. But sometimes the
conservation law is discovered without reference to the Noether theorem by using
the equations of the system. In that case one is tempted to inquire what is the hidden
symmetry associated with this conservation law and what is the simplest way to
represent it.

The concept of metage as a label for fluid elements along a vortex line in ideal
fluids was first introduced by Lynden-Bell and Katz [1]. A translation group of this
label was found to be connected to the conservation of Moffat’s [2] helicity by
Yahalom [3]. The concept of metage was later generalized by Yahalom and Lynden-
Bell [4] for barotropic MHD, but now as a label for fluid elements along magnetic
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field lines which are comoving with the flow in the case of ideal MHD. Yahalom and
Lynden-Bell [4] have also shown that the translation group of the magnetic metage
is connected to Woltjer [5, 6] conservation of cross helicity for barotropic MHD.
Recently the concept of metage was generalized also for non barotropic MHD in
which magnetic field lines lie on entropy surfaces [7]. This will be generalized in
this paper by dropping the entropy condition on magnetic field lines.

Cross Helicity was first described by Woltjer [5, 6] and is give by:

HC ≡
∫

B · vd3x, (1)

in which B is the magnetic field, v is the velocity field and the integral is taken
over the entire flow domain. HC is conserved for barotropic or incompressible MHD
and is given a topological interpretation in terms of the knottiness of magnetic and
flow field lines. A generalization of barotropic fluid dynamics conserved quantities
including helicity to non barotropic flows including topological constants of motion
is given by Mobbs [13]. However, Mobbs did not discuss the MHD case.

Both conservation laws for the helicity in the fluid dynamics case and the
barotropic MHD case were shown to originate from a relabelling symmetry through
the Noether theorem [3, 4, 8, 9]. Webb et al. [10] have generalized the idea of
relabelling symmetry to non-barotropic MHD and derived their generalized cross
helicity conservation law by using Noether’s theorem but without using the simple
representation which is connected with the metage variable. The conservation law
deduction involves a divergence symmetry of the action. These conservation laws
were written as Eulerian conservation laws of the form Dt + ∇ · F = 0 where D is
the conserved density and F is the conserved flux. Webb et al. [11] discuss the cross
helicity conservation law for non-barotropicMHD in amulti-symplectic formulation
of MHD. Webb et al. [10, 11] emphasize that the generalized cross helicity conser-
vation law, in MHD and the generalized helicity conservation law in non-barotropic
fluids are non-local in the sense that they depend on the auxiliary nonlocal variable
σ, which depends on the Lagrangian time integral of the temperature T (x, t). Notice
that a potential vorticity conservation equation for non-barotropic MHD is derived
by Webb, G. M. and Mace, R.L. [12] by using Noether’s second theorem.

It should be mentioned that Mobbs [13] derived a helicity conservation law for
ideal, non-barotropic fluid dynamics, which is of the same form as the cross helicity
conservation law for non-barotropic MHD, except that the magnetic field induc-
tion is replaced by the generalized fluid helicity � = ∇ × (v − σ∇s). Webb et al.
[10, 11] also derive the Eulerian, differential form of Mobbs [13] conservation law
(although they did not referenceMobbs [13]).Webb andAnco [14] show howMobbs
conservation law arises in multi-symplectic, Lagrangian fluid mechanics.

Variational principles for magnetohydrodynamics were introduced by previous
authors both in Lagrangian and Eulerian form. Sturrock [15] has discussed in his
book a Lagrangian variational formalism for magnetohydrodynamics. Vladimirov
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and Moffatt [16] in a series of papers have discussed an Eulerian variational prin-
ciple for incompressible magnetohydrodynamics. However, their variational princi-
ple contained three more functions in addition to the seven variables which appear
in the standard equations of incompressible magnetohydrodynamics which are the
magnetic field B the velocity field v and the pressure P . Kats [17] has general-
ized Moffatt’s work for compressible non barotropic flows but without reducing
the number of functions and the computational load. Sakurai [18] has introduced
a two function Eulerian variational principle for force-free magnetohydrodynamics
and used it as a basis of a numerical scheme, his method is discussed in a book by
Sturrock [15]. Yahalom and Lynden-Bell [4] combined the Lagrangian of Sturrock
[15] with the Lagrangian of Sakurai [18] to obtain an Eulerian Lagrangian prin-
ciple for barotropic magnetohydrodynamics which depends on only six functions.
The variational derivative of this Lagrangian produced all the equations needed to
describe barotropic magnetohydrodynamics without any additional constraints. The
equations obtained resembled the equations of Frenkel, Levich and Stilman [30] (see
also [19]). Yahalom [32] have shown that for the barotropic case four functions will
suffice. Moreover, it was shown that the cuts of some of those functions [20] are
topological local conserved quantities.

Previous workwas concerned only with barotropicmagnetohydrodynamics. Vari-
ational principles of non barotropicmagnetohydrodynamics can be found in thework
of Bekenstein and Oron [21] in terms of 15 functions and V.A. Kats [17] in terms
of 20 functions. Morrison [22] has suggested a Hamiltonian approach but this also
depends on 8 canonical variables (see table 2 [22]). The variational principle intro-
duced in [23, 24] show that only five functions will suffice to describe non barotropic
MHD in the case that we enforce a Sakurai [18] representation for the magnetic field
(see also [29] for the stationary case).

The plan of this paper is as follows: First we introduce the basic quantities and
equations of non-barotropicMHD. Thenwe describe the concept ofmagneticmetage
for non-barotropic MHD. This is followed by a description of a Lagrangian varia-
tional principle for non-barotropic MHD. Finally we derive a non-barotropic cross
helicity conservation law for non-barotropic MHD using Noether’s theorem.

2 Basic Equations

Consider the equations of non-barotropic MHD [15, 23]:

∂B
∂t

= ∇ × (v × B), (2)

∇ · B = 0, (3)

∂ρ

∂t
+ ∇ · (ρv) = 0, (4)
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ρ
dv
dt

= ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇p(ρ, s) + (∇ × B) × B
4π

, (5)

ds

dt
= 0. (6)

In the above the following notations are utilized: ∂
∂t is the temporal derivative, d

dt is
the temporal material derivative and ∇ has its standard meaning in vector calculus.
ρ is the fluid density and s is the specific entropy. Finally p(ρ, s) is the pressure
which depends on the density and entropy (the non-barotropic case). Equation (2)
describes the fact that the magnetic field lines are moving with the fluid elements
(“frozen” magnetic field lines), Eq. (3) describes the fact that the magnetic field is
solenoidal, Eq. (4) describes the conservation ofmass andEq. (5) is theEuler equation
for a fluid in which both pressure and Lorentz magnetic forces apply. Equation (6)
describes the fact that heat is not created (zero viscosity, zero resistivity) in ideal
non-barotropicMHD and is not conducted, thus only convection occurs. The number
of independent variables for which one needs to solve is eight (v,B, ρ, s) and the
number of equations (2), (4), (5), (6) is also eight. Notice that Eq. (3) is a condition
on the initial B field and is satisfied automatically for any other time due to Eq. (2).

In non-barotropic MHD one can calculate the temporal derivative of the cross
helicity (1) using the above equations and obtain:

dHC

dt
=

∫
T∇s · Bd3x, (7)

in which T is the temperature. Hence, generally speaking cross helicity is not con-
served.

3 Load and Metage

The following section follows closely a similar section in [4, 31]. Consider a thin
tube surrounding a magnetic field line as described in Fig. 1,

the magnetic flux contained within the tube is:

ΔΦ =
∫

B · dS (8)

and the mass contained with the tube is:

ΔM =
∫

ρdl · dS, (9)
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Fig. 1 A thin tube
surrounding a magnetic field
line

in which dl is a length element along the tube. Since the magnetic field lines move
with the flow by virtue of Eqs. (2) and (4) both the quantities ΔΦ and ΔM are
conserved and since the tube is thin we may define the conserved magnetic load:

λ = ΔM

ΔΦ
=

∮
ρ

B
dl, (10)

in which the above integral is performed along the field line. Obviously the parts of
the line which go out of the flow to regions in which ρ = 0 have a null contribution
to the integral. Notice that λ is a single valued function that can be measured in
principle. Since λ is conserved it satisfies the equation:

dλ

dt
= 0. (11)

By construction surfaces of constant magnetic load move with the flow and contain
magnetic field lines. Hence the gradient to such surfaces must be orthogonal to the
field line:

∇λ · B = 0. (12)

Now consider an arbitrary comoving point on the magnetic field line and denote it by
i , and consider an additional comoving point on the magnetic field line and denote
it by r . The integral:

μ(r) =
∫ r

i

ρ

B
dl + μ(i), (13)
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Fig. 2 Surfaces of constant
load

is also a conservedquantitywhichwemaydenote followingLynden-Bell andKatz [1]
as the magnetic metage. μ(i) is an arbitrary number which can be chosen differently
for each magnetic line. By construction:

dμ

dt
= 0. (14)

Also it is easy to see that by differentiating along the magnetic field line we obtain:

∇μ · B = ρ. (15)

Notice that μ will be generally a non single valued function, we will show later
in this paper that symmetry to translations in μ; will generate through the Noether
theorem the conservation of the magnetic cross helicity.

At this point we have two comoving coordinates of flow, namely λ,μ obviously in
a three dimensional flow we also have a third coordinate. However, before defining
the third coordinate we will find it useful to work not directly with λ but with a
function of λ. Now consider the magnetic flux within a surface of constant load
Φ(λ) as described in Fig. 2 (the figure was given by Lynden-Bell and Katz [1]).
The magnetic flux is a conserved quantity and depends only on the load λ of the
surrounding surface. Now we define the quantity:

χ = Φ(λ)

2π
. (16)
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Obviously χ satisfies the equations:

dχ

dt
= 0, B · ∇χ = 0. (17)

Let us now define an additional comoving coordinate η∗ since ∇μ is not orthogonal
to the B lines we can choose ∇η∗ to be orthogonal to the B lines and not be in the
direction of the ∇χ lines, that is we choose η∗ not to depend only on χ. Since both
∇η∗ and ∇χ are orthogonal to B, B must take the form:

B = A∇χ × ∇η∗. (18)

However, using Eq. (3) we have:

∇ · B = ∇A · (∇χ × ∇η∗) = 0. (19)

Which implies that A is a function of χ, η∗. Now we can define a new comoving
function η such that:

η =
∫ η∗

0
A(χ, η

′∗)dη
′∗,

dη

dt
= 0. (20)

In terms of this function we obtain the Sakurai (Euler potentials) presentation:

B = ∇χ × ∇η. (21)

And the density is now given by the Jacobian:

ρ = ∇μ · (∇χ × ∇η) = ∂(χ, η,μ)

∂(x, y, z)
. (22)

It can easily be shown using the fact that the labels are comoving that the above
forms of B and ρ satisfy Eqs. (2), (3) and (4) automatically.

Notice however, that η is defined in a non unique way since one can redefine η
for example by performing the following transformation: η → η + f (χ) in which
f (χ) is an arbitrary function. The comoving coordinates χ, η serve as labels of the
magnetic field lines. Moreover the magnetic flux can be calculated as:

Φ =
∫

B · dS =
∫

dχdη. (23)

In the case that the surface integral is performed inside a load contour we obtain:

Φ(λ) =
∫

λ

dχdη = χ

∫
λ

dη =
{

χ[η]
χ(ηmax − ηmin)

(24)
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There are two cases involved; in one case the load surfaces are topological cylinders;
in this case η is not single valued and hence we obtain the upper value for Φ(λ). In a
second case the load surfaces are topological spheres; in this case η is single valued
and has minimal ηmin and maximal ηmax values. Hence the lower value of Φ(λ) is
obtained. For example in some cases η is identical to twice the latitude angle θ. In
those cases ηmin = 0 (value at the “north pole”) and ηmax = 2π (value at the “south
pole”).

Comparing the above equation with Eq. (16) we derive that η can be either single
valued or not single valued and that its discontinuity across its cut in the non single
valued case is [η] = 2π.

The triplet χ, η,μ will suffice to label any fluid element in three dimensions. But
for a non-barotropic flow there is also another label s which is comoving according
to Eq. (6). The question then arises of the relation of this label to the previous three.
As one needs to make a choice regarding the preferred set of labels it seems that the
physical ones are χ, η, s in which we use the surfaces on which the magnetic fields
lie and the entropy, each label has an obvious physical interpretation. In this case
we must look at μ as a function of χ, η, s. If the magnetic field lines lie on entropy
surface then μ regains its status as an independent label. The density can now be
written as:

ρ = ∂μ

∂s

∂(χ, η, s)

∂(x, y, z)
. (25)

Now as μ can be defined for each magnetic field line separately according to Eq. (13)
it is obvious that such a choice exist in which μ is a function of s only. One may also
think of the entropy s as a functions χ, η,μ. However, if one change μ in this case
this generally entails a change in s and the symmetry described in Eq. (13) is lost.

4 Lagrangian variational principle of MHD

ALagrangian variational principle for barotropicMHDhas been discussed by a num-
ber of authors (see for example [4, 15]), we repeat the derivation with the necessary
modifications which are required for the non-barotropic case. Consider the action:

A ≡
∫

Ld3xdt,

L ≡ ρ

(
1

2
v2 − ε(ρ, s)

)
− B2

8π
, (26)

In the above ε is the specific internal energy (internal energy per unit of mass). The
reader is reminded of the following thermodynamic relations which will become
useful later:
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dε = Tds − Pd
1

ρ
= Tds + P

ρ2
dρ

∂ε

∂s
= T,

∂ε

∂ρ
= P

ρ2

w = ε + P

ρ
= ε + ∂ε

∂ρ
ρ = ∂(ρε)

∂ρ

dw = dε + d

(
P

ρ

)
= Tds + 1

ρ
dP (27)

in the above T is the temperature and w is the specific enthalpy. A variation in any
quantity F for a fixed position r is denoted as δF hence:

δA =
∫

δLd3xdt,

δL = δρ

(
1

2
v2 − w(ρ)

)
− ρT δs + ρv · δv − B · δB

4π
, (28)

A change in a position of a fluid element located at a position r at time t is given by
ξ(r, t). A change involving both a local variation coupled with a change of element
position of the quantity F is given by:

ΔF = δF + (ξ · ∇)F, (29)

hence
Δv = δv + (ξ · ∇)v. (30)

However, since:

Δv = Δ
dr
dt

= dΔr
dt

= dξ

dt
. (31)

We obtain:

δv = dξ

dt
− (ξ · ∇)v = ∂ξ

∂t
+ (v · ∇)ξ − (ξ · ∇)v. (32)

For any of the labels χ, η,μ a change in a specific spatial location is only possible by
the displacement of the fluid element to a new position. However, if one takes into
account both the spatial change in value and change due to the displacement then
obviously the total change is zero as each fluid element retains its labels. Hence:

Δχ = δχ + (ξ · ∇)χ = 0 ⇒ δχ = −(ξ · ∇)χ,

Δη = δη + (ξ · ∇)η = 0 ⇒ δη = −(ξ · ∇)η,

Δμ = δμ + (ξ · ∇)μ = 0 ⇒ δμ = −(ξ · ∇)μ, (33)
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Now since s is a comoving quantity depending only on the fluid element labels we
have:

Δs = 0 ⇒ δs = −(ξ · ∇)s. (34)

Using Eqs. (22) and (33) we obtain a mass conserving variation of ρ:

δρ = −∇ · (ρξ) (35)

Using Eqs. (21) and (33) a magnetic flux conserving variation takes the form:

δB = ∇ × (ξ × B). (36)

Introducing the result of Eqs. (32), (34), (35), (36) into (28) and integrating by parts
we arrive at the result:

δA =
∫

d3xρv · ξ|t1t0

+
∫

dt

{∮
dS ·

[
−ρξ

(
1

2
v2 − w(ρ)

)
+ ρv(v · ξ) + 1

4π
B × (ξ × B)

]

+
∫

d3xξ ·
[
−ρ∇w + ρT∇s − ∂(ρv)

∂t
− ∂(ρvvk)

∂xk
− 1

4π
B × (∇ × B)

] }
, (37)

in which a summation convention is assumed. Taking into account the continuity
equation (4) we obtain:

δA =
∫

d3xρv · ξ|t1t0

+
∫

dt

{ ∮
dS ·

[
−ρξ

(
1

2
v2 − w(ρ)

)
+ ρv(v · ξ) + 1

4π
B × (ξ × B)

]

+
∫

d3xξ ·
[
−∇P − ρ

∂v
∂t

− ρ(v · ∇)v − 1

4π
B × (∇ × B)

] }
, (38)

hence we see that if δA = 0 for a ξ vanishing at the initial and final times and on the
surface of the domain but otherwise arbitrary then Euler’s equation (5) is satisfied
(taking into account that ∇w − T∇s = ∇p

ρ
).

The Lagrangian density given in Eq. (26) does not admit a μmodification symme-
try since we assume that the entropy s = s(χ, η,μ) is a given function of the labels.
This problem can be overcome by taking s as a dynamical variable and enforcing its
conservation by using aLagrangemultiplier. In this approach the variational principle
takes the form:
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A ≡
∫

Ld3xdt,

L ≡ ρ

(
1

2
v2 − ε(ρ, s)

)
− B2

8π
− ρσ

ds

dt
, (39)

A variation with respect to the Lagrange multiplier σ will obviously result in Eq. (6).
A variation with respect to s will result in:

δs A =
∫

d3xdtδs

[
∂(ρσ)

∂t
+ ∇ · (ρσv) − ρT

]

+
∫

dt
∮

dS · ρσvδs −
∫

d3xρσδs|t1t0 , (40)

Taking into account the continuity equation (4) we obtain for locations in which the
density ρ is not null the result:

dσ

dt
= T, (41)

provided that δs A vanished for an arbitrary δs. Now let us turn our attention to the
variation with respect to the fluid element displacement which takes the form:

δAξ =
∫

δLξd
3xdt,

δLξ = δρ

(
1

2
v2 − w(ρ)

)
− ρσδv · ∇s + ρv · δv − B · δB

4π
, (42)

As most of the terms were calculated previously we will only calculate the term
−ρσδv · ∇s which is equal to:

− ρσδv · ∇s = ξ · ρT∇s − ∂(ρσ∇s · ξ)

∂t
− ∇ · (ρσ(∇s · ξ)v) . (43)

The above result was obtained using Eqs. (32), (6) and (41). Hence the variation of
the action with respect to a displacement of the fluid elements is:

δξA =
∫

d3xρ(v − σ∇s) · ξ|t1t0

+
∫

dt

{ ∮
dS ·

[
−ρξ

(
1

2
v2 − w(ρ)

)
+ ρv ((v − σ∇s) · ξ) + 1

4π
B × (ξ × B)

]

+
∫

d3xξ ·
[
−ρ∇w + ρT∇s − ∂(ρv)

∂t
− ∂(ρvvk)

∂xk
− 1

4π
B × (∇ × B)

]}
, (44)

in which a summation convention is assumed. Taking into account the continuity
equation (4) and the thermodynamic identities given in Eq. (27) we obtain:
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δξA =
∫

d3xρ(v − σ∇s) · ξ|t1t0

+
∫

dt

{∮
dS ·

[
−ρξ

(
1

2
v2 − w(ρ)

)
+ ρv((v − σ∇s) · ξ) + 1

4π
B × (ξ × B)

]

+
∫

d3xξ ·
[
−∇P − ρ

∂v
∂t

− ρ(v · ∇)v − 1

4π
B × (∇ × B)

]}
, (45)

Hence we obtain the correct dynamical equations for an arbitrary ξ. Now suppose
that the equations and boundary conditions hold. Then:

δξA =
∫

d3xρ(v − σ∇s) · ξ|t1t0 (46)

If in addition ξ is a small symmetry displacement such that δξA = 0 we obtained a
conserved Noether current:

δJ =
∫

d3xρ(v − σ∇s) · ξ (47)

5 Non Barotropic Cross Helicity Conservation
via the Noether Theorem

It is obvious that the choice of fluid labels is quite arbitrary. However, when enforcing
the χ, η,μ coordinate system such that:

ρ = ∂(χ, η,μ)

∂(x, y, z)
. (48)

The choice is restricted to χ̃, η̃, μ̃:

∂(χ̃, η̃, μ̃)

∂(χ, η,μ)
= 1. (49)

Moreover the Euler potential magnetic field representation:

B = ∇χ × ∇η, (50)

reduces the choice further to:

∂(χ̃, η̃)

∂(χ, η)
= 1. (51)
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In what follows we consider the transformation (see also Eq. (13)):

χ̃ = χ, η̃ = η, μ̃ = μ + a(χ, η) (52)

Hence a is a label displacementwhichmay be different for eachmagnetic field line, as
the field line is closed one need not worry about edge difficulties. This transformation
satisfies trivially the conditions (49), (51). If a = δμ is small we can use Eq. (33) to
calculate the associated fluid element displacement with this relabelling.

ξ = − ∂r
∂μ

δμ = −δμ
B
ρ

. (53)

Inserting this expression into the boundary term in Eq. (45) will result in:

δAB =
∫

dt
∮

dS ·
[
B

(
1

2
v2 − w(ρ)

)
− v((v − σ∇s) · B)

]
δμ = 0, (54)

which is the condition for magnetic cross helicity conservation. Inserting Eq. (53)
into (47) we obtain the conservation law:

δJ =
∫

d3xρ(v − σ∇s) · ξ = −
∫

d3xδμ(v − σ∇s) · B (55)

In the simplest case we may take δμ to be a small constant, hence:

δJ = −δμ

∫
d3x(v − σ∇s) · B = −δμHCNB (56)

Where HCNB is the non barotropic global cross helicity [11, 25, 26] defined as:

HCNB ≡
∫

d3x(v − σ∇s) · B =
∫

d3xvt · B (57)

in which vt ≡ v − σ∇s is the topological velocity field. We thus obtain the conser-
vation of non-barotropic cross helicity using the Noether theorem and the symmetry
group of metage translations. Of course one can perform a different translation on
each magnetic field line, in this case one obtains:

δJ = −
∫

d3xδμvt · B = −
∫

dχdηδμ

∮
χ,η

dμρ−1vt · B (58)

Now since δμ is an arbitrary (small) function of χ, η it follows that:

I =
∮

χ,η

dμρ−1vt · B (59)
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is a conserved quantity for each magnetic field line. Along a magnetic field line the
following equations hold:

dμ = ∇μ · dr = ∇μ · B̂dr = ρ

B
dr (60)

in the above B̂ is an unit vector in the magnetic field direction an Eq. (15) is used.
Inserting Eq. (60) into (59) we obtain:

I =
∮

χ,η

drvt · B̂ =
∮

χ,η

dr · vt . (61)

which is just the circulation of the topological velocity along the magnetic field lines.
This quantity can be written in terms of the generalized Clebsch representation of
the velocity [23]:

v = ∇ν + α∇χ + β∇η + σ∇s. (62)

as:

I =
∮

χ,η

dr · vt =
∮

χ,η

dr · ∇ν = [ν]. (63)

[ν] is the discontinuity of ν. This was shown to be equal to the amount of non
barotropic cross helicity per unit of magnetic flux [25, 26].

I = [ν] = dHCNB

dΦ
. (64)

6 Conclusion

We have shown the connection of the translation symmetry group of labels which is
a subgroup of the relabelling group to both the global non barotropic cross helicity
conservation law and the conservation law of circulations of topological velocity
along magnetic field lines. The latter were shown to be equivalent to the amount of
non barotropic cross helicity per unit of magnetic flux [25, 26]. Possible applications
of the generalized cross helicity conservation law (both local and global) may arise
in solar MHD, where rotation, and the baroclinic instability can give rise to magnetic
tornadoes, in which vorticity of the fluid is generated in part by the baroclinic term
∇T × ∇s (see for example [12] eqn. (4.54) and also [27]). Other possible applica-
tions for MHD constraints of the current constants of motion are described in [26].
The importance of constants of motion for stability analysis is also discussed in [28].
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