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Preface of Volume 2

This is the Second Volume of the Proceedings of the joint conference X.
International Symposium “Quantum Theory and Symmetries” (QTS-10) and XII.
International Workshop “Lie Theory and Its Applications in Physics” (LT-12),
19–25 June 2017, Varna, Bulgaria.

The first symposium of the QTS series was held in Goslar (Germany) in 1999,
and then it was held in Cracow (2001), Cincinnati (2003), Varna (2005), Valladolid
(2007), Lexington (2009), Prague (2011), Mexico City (2013), Yerevan (2015).
The series started around the core concept that symmetries underlie all descrip-
tions of quantum systems. It has since evolved to a symposium on the frontiers
of theoretical and mathematical physics (for more details on this series, see here
http://theo.inrne.bas.bg/*dobrev/QTS-homepage.htm).

The LT series covers the whole field of Lie Theory in its widest sense together
with its applications in many facets of physics. As the interface between mathe-
matics and physics, the workshop serves as a meeting place for mathematicians and
theoretical and mathematical physicists. The first three workshops of the LT series
were organised in Clausthal (1995, 1997, 1999), the fourth was part of the Second
Symposium “Quantum Theory and Symmetries” in Cracow (2001), the fifth was
organised in Varna (2003), the sixth was part of the Fourth Symposium “Quantum
Theory and Symmetries” in Varna (2005), but has its own volume of Proceedings,
and the seventh, eighth, ninth, tenth were organised in Varna (2007, 2009, 2011,
2013); see: http://theo.inrne.bas.bg/-dobrev/.

In the division of the material between the two volumes, we have tried to select
for the first, respectively, second, volume more mathematics, respectively, physics,
oriented papers. However, this division is relative since many papers could have
been placed in either volume.

The scientific level was very high as can be judged by the speakers. The plenary
speakers contributing to Volume 2 are: Benjamin Basso (ENS, Paris), Loriano
Bonora (SISSA, Trieste), Martin Cederwall (Chalmers University of Technology,
Gothenburg), Sumit R. Das (University of Kentucky, Lexington) joint paper with
Antal Jevicki (Brown University, Providence), Evgeny Ivanov (JINR, Dubna), Ivan
Kostov (CNRS, Saclay), Emil Nissimov (INRNE, BAS), Emery Sokatchev
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(LAPTh, Annecy), Fumihiko Sugino (Institute for Basic Science, Seoul), Apostolos
Vourdas (University of Bradford).

The topics covered the most modern trends in the field of the joint conferences:
Symmetries in String Theories, Conformal Field Theory, Holography, Gravity
Theories and Cosmology, Gauge Theories, Foundations of Quantum Theory,
Nonrelativistic and Classical Theories.

The joint meeting of QTS-10 and LT-12 was organised by the Institute of
Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences
(BAS) in June 2017 at the International House of Scientists “Frederic Joliot-Curie”
(IHS) on the Black Sea Coast near Varna. The overall number of participants in the
2017 joint conference was 130, and they came from 33 countries. (The list is given
at the end of the volume.)

The Organizing Committee was: V. K. Dobrev (Chairman), L. K. Anguelova,
V. I. Doseva, V. G. Filev, A. Ch. Ganchev, K. K. Marinov, D. T. Nedanovski,
T. V. Popov, D. R. Staicova, M. N. Stoilov, N. I. Stoilova, S. T. Stoimenov.
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From Hexagons to Feynman Integrals

Benjamin Basso

Abstract I briefly describe some of the recent advances in the computation of struc-
ture constants of local operators in planar N = 4 SYM theory using the so-called
hexagon formalism. I then report on the application of this technique to the compu-
tation of a family of planar massless Feynman integrals.

Keywords Integrability · Structure constants · Feynman integrals

1 Introduction

Studies of anomalous dimensions in QCD [1–3] and, more recently, in supersym-
metric gauge theories [4–8] have revealed an interesting connection between planar
graphs and integrable spin chains. In some cases, this connection seems to pervade
every corner of the theory, at weak and strong coupling, raising hopes that compli-
cated interacting higher dimensional systems can be solved by means of the Bethe
ansatz.

The best example of a higher dimensional theory that is being intensely investi-
gated using integrability is the (4d) N = 4 SYM theory. This theory outstands for
its huge amount of symmetries, being exactly conformal and maximally supersym-
metric. It is also a string theory in disguise, if seen through the lens of the AdS/CFT
correspondence [9]. The correspondence and other pieces of evidence [8] lend sup-
port to the idea that the theory should be solvable, at least in the planar regime.
This idea lies at the heart of many important all-order conjectures recently pushed
forward, like the conjecture that the spectrum of scaling dimensions of the planar
theory is encoded, at any value of the ’t Hooft coupling constant g2 = λ/(16π2),
in a closed system of discrete Schrödinger-like equations, named Quantum Spectral
Curve [7].

B. Basso (B)
Laboratoire de Physique Théorique de l’École Normale Supérieure, CNRS, Université PSL,
Sorbonne Universités, Université Pierre et Marie Curie, 24 rue Lhomond, 75005 Paris, France
e-mail: basso@lpt.ens.fr

© Springer Nature Singapore Pte Ltd. 2018
V. Dobrev (ed.), Quantum Theory and Symmetries with Lie Theory
and Its Applications in Physics Volume 2, Springer Proceedings
in Mathematics & Statistics 255, https://doi.org/10.1007/978-981-13-2179-5_1
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4 B. Basso

Themost recent developments in this area aimat extending this “conjectural” tech-
nology to the computation of more complicated quantities, like the gluon scattering
amplitudes [10], the higher-point functions [11–14] or some of the many conformal
Feynman integrals that the theory can produce [15–19].

In this short note, I will lightly review some of these developments, focusing on
the so-called hexagon approach for structure constants [12] and correlators [13, 14].
I will then illustrate through a specific example how the method can help computing
complicated 4d massless integrals [20].

2 Integrable Spin Chain and Hexagon Form Factors

Integrability in planar N = 4 SYM theory was primarily developed for finding the
conformal single-trace operators of the theory and computing their scaling dimen-
sions [8] or, equivalently, their two-point functions,

〈OΔA(x)O∗
ΔB

(0)〉 = δA,Bx
−2ΔA . (1)

In this framework, the local single-trace operators are identified with the states of
a quantum spin chain and their scaling dimensions to the spin chain energies. The
canonical example is given by composite operators made out of products of two
complex scalar fields, φ1 and φ2. They map to states of a spin one-half periodic
chain,

O ∼ trφ1φ2φ1 . . . φ2φ1 ↔ | ↑↓↑ · · · ↓↑〉 . (2)

with the fields φ1 and φ2 mapping to up and down spins, respectively, and with the
length L of the chain counting the total number of fields in the operator. In the free
theory, operators with the same length L have the same canonical dimensionΔ0 = L
and the spectrum is maximally degenerate. This state of affairs does not continue at
loop level: the operators start mixing with each others and the associated eigenvalue
problem is a serious task at generic length L . This is overlooking that the spin chain
is secretly integrable, in the planar limit. At one loop, for instance, the chain happens
to be identical to the Heisenberg magnet [4, 6], which is the prototypical example of
an integrable quantum mechanical system.

There are operators that never renormalize, regardless of the strength of the inter-
action. These protected states form the multiplet of the ferromagnetic vacuum of the
spin chain, with highest weight state

trφL
1 = | ↑ · · · ↑〉 = |0〉 . (3)

More complicated operators, or excited states, describe linear superpositions of spin
waves or magnons, which are down spins propagating and scattering on top of the
up-spin background. Diagonalising the spin-chain Hamiltonian amounts to finding
those linear combinations that are proper scattering eigenstates. They correspond to
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conformal primaries. Themain idea,which goes back toBethe, is that the integrability
of the model translates into the factorization of the magnon S-matrix. Accordingly,
the M-magnon S-matrix boils down to a product a 2-body S-matrices,

S12...M =
M∏

i< j

S(pi , p j ) , (4)

where S(pi , p j ) is the elastic S-matrix for two magnons carrying momenta pi and
p j . This remarkable property allows one to immediately write down the quantization
conditions on the magnons’ momenta, the celebrated Bethe ansatz equations,

eipk L
M∏

j 	=k

S(pk, p j ) = 1 , (5)

which result from the periodicity conditions on the magnon wave function.
The energy spectrum is determined by adding up the individual energies of the

magnons,Δ = L − M + ∑M
j=1 E(p j ), for thosemomenta that solve the above equa-

tions. In this form the original eigenvalue problem is reduced to finding the magnon
S-matrix and energy [21]. The large amount of residual supersymmetries of the
spin-chain vacuum, together with some extra requirements [22], has permitted to fix
completely this data for theN = 4 SYM spin chain [23–25]. The dispersion relation
for a magnon, for instance, is concisely given to all loops by the simple expression

E2 − 16g2 sin2
( p

2

)
= 1. (6)

The S-matrix approach briefly described here is believed to take into account all
the short-range spin-chain interactions. These ones are associated to diagrams that do
not explicitely depend on the length L and survive in the asymptotic limit L → ∞. A
graph of this type is shown in the left panel of Fig. 1. For any finite length, however,
a new type of interactions will appear at some point and must be added to the for-
malism. These interactions are associated to diagrams that wrap around the operator,
like the one shown in the right panel of Fig. 1. They are exponentially suppressed
with the length, being of order ∼g2L at weak coupling. Nicely, these finite-size cor-
rections can be included in the form of so-called mirror magnons that wind around
the chain [26, 27]. The latter mimic the effect of virtual particles propagating in
the loops surrounding the operator. Unlike the spin waves associated to excitations
of the operator, mirror magnons carry imaginary scaling dimensions, or energies
E ∼ 2iu, which must be integrated over. Heuristically, the imaginary energy acts as
a momentum conjugated to displacement along the radial direction in Fig. 1 and the
integration is needed to obtain a loop of arbitrary shape. Summing over a complete
basis of mirror magnons should in principle accomodate for all the virtual particles
wrapping around the operator. In this manner, finite-length corrections can be sys-
tematically included within the framework of the thermodynamical Bethe ansatz,
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Fig. 1 Examples of planar graphs contributing to the mixing of local single-trace operators O ∼
trφ1φ2φ1 . . .φ1φ2. The operators are represented by spin-chain states, with fields φ1 (white nodes)
standing for up spins and fields φ2 (black nodes) for down spins. Typical quantum corrections
to the operators, like the one-loop gluon exchange represented in the left panel, produce short-
range interactions among the spins. The asymptotic S-matrix description is obtained by keeping the
interactions that survive in the limit where the spin-chain length L → ∞. The right panel provides
an example of a wrapping graph, which is not captured by the S-matrix approach. It translates into a
long-range interaction that is included in the formalism in the form of a virtual magnon propagating
around the world. Its contribution to the scaling dimension of an operator of size ∼L is of order
∼g2L at weak coupling

which upgrades the Bethe ansatz equations (5). The same end point can be more
elegantly reached within the Quantum Spectral Curve framework [7], which treats
equally all the contributions, regardless of their origins.

As mention in the introduction, in recent years, a lot of progress has been made at
extending the spin-chain approach to the computation of more complicated observ-
ables. Among them are the structure constants characterizing the operator product
algebra. Some of the new tools for computing planar correlators of single-trace oper-
ators by means of integrability [13, 14] stem from their study.

By definition, the structure constants measure the couplings among three confor-
mal operators, or three-point functions,

C123 = 〈OΔ1(0)OΔ2(1)OΔ3(∞)〉 . (7)

Like the scaling dimensions, these are, in general, complicated functions of the
quantum numbers of the operators and of coupling constant g2. Unlike the scaling
dimensions, the structure constants are generically small in the planar limit, N →
∞. They scale like 1/N for typical correlators, with Δi j = (Δi + Δ j − Δk) 	= 0,
when the single-trace operators are normalized as in Eq. (1). As such, computing the
structure constants is a necessary step towards understanding the infinite tail of 1/N
corrections. In the dual string theory, they are associated to the fundamental string
vertex or pair-of-pants diagram.

At weak coupling, the computation of the structure constants follows from the
Wick theorem and the fields in the operators are pairwise contracted as shown in
Fig. 2. The analysis in the spin-chain framework was initiated in [11] where it was
found to result in partial overlaps of the Bethewave functions characterizing the three
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= ⊗

Fig. 2 Factorization of the pair-of-pants diagram into two hexagons. In the left panel we show a
typical planar diagram contributing to the structure constant of three single-trace operators. Only
the top operator is excited here and carries magnons (black dots). Straight lines stand for tree-level
Wick contractions among the fundamental fields. At loop level one must add decorations, as shown
in the left panel in the form of a gluon exchange between two neighbouring lines. In the hexagon
approach one imagines opening the planar diagrams along three so-called mirror cuts, shown here
as dashed lines. Each hexagon is made of three spin-chains edges and three mirror cuts

operators. At higher loops, one must decorate the Wick contractions with virtual
gluons, etc. From the color viewpoint, this dressing turns the object into a three-
punctured sphere, or equivalently a pair of pants. The hexagon approach [12] allows
us to analyse the pair-of-pants diagram more directly, when all the characteristic
lengths in the problem are large, roughly when Δi j � 1. The main idea is that in
this asymptotic regime the pair of pants factorizes into two hexagons, as shown in
Fig. 2. Each hexagon is made of 3 edges taken from the spin chains and 3 mirror
edges obtained by cutting along the seams of the pair of pants. The hexagons are
easier to deal with than their parent pair of pants. Since all characteristic lengths are
assumed to be large, the magnons can propagate freely on the hexagons. As such
they are amenable to powerful bootstrap techniques developed for computing form
factors in infinite volume.

Themain information captured by the hexagon form factors are the amplitudes for
creation or annihilation of magnons on the boundary of the hexagon. For illustration,
in the simplest situationwhere only one edge is excited and carries a pair of magnons,
with momenta p1, p2, the hexagon form factor is merely a function of these two
momenta,

h(p1, p2) = 〈h||p1, p2〉 ⊗ |0〉 ⊗ |0〉 , (8)

and, implicitely, of the coupling contant. Remarkably, inN = 4 SYM, the two-point
hexagon form factor can be determined at any value of the coupling through the
integrable bootstrap, quite similarly to what happens for the magnon S-matrix. It
is also the seed for the general form factor conjecture of [12] which, disregarding
flavor indices, states that the M-magnon form factor can be expressed as a product
of two-magnon form factors,
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O1

O3

O2

O1
+ 1

O1

O3

O2

O1

Fig. 3 The left panel shows a tree-level structure constant in the planar limit. The bridge length
� counts the number of Wick contractions between two operators, here between operators 2 and
3. The two hexagons decouple when all the bridge lengths are large. The right panel displays a
loop correction to the same structure constant with a propagator stretching across the bridge. The
interpretation of this graph in the hexagon framework is that a mirror magnon, produced on one
hexagon and annihilated on the other, crosses the mirror cut connecting 2 and 3. The effect is of
order ∼g2� at weak coupling and dies off at large separation � � 1

h(p1, p2, . . . , pM) =
M∏

i< j

h(pi , p j ) . (9)

More generic configurations where the magnons are distributed along the various
edges of the hexagon can be obtained by crossing symmetry. Structure constants
are then determined to all loops in the asymptotic regime Δi j � 1, by tensoring two
form factors and summing over all the inequivalent ways of distributing the magnons
on the two hexagons. Schematically,

C123 ∝ 1

N
×

∑

α

h(α)h(ᾱ) , (10)

where the sum runs over the bipartite partitions of the set of momenta, α ∪ ᾱ =
{p1, . . . , pM}.

The hexagon are seen to capture a certain half of the structure constant. Graph-
ically, only the diagrams that fill the gaps between the tree-level contractions sup-
porting the hexagon are expected to be encoded in the hexagon form factors. On
finite-length pair of pants, one also finds long-range diagrams that are not contained
inside one particular hexagon but instead overlap the two hexagons, see Fig. 3. They
form the links between the hexagons and map to finite-size corrections. More tech-
nically, they come about when stitching the hexagons back together along the mirror
cuts, by performing sums over complete basis of mirror magnons, like the ones dis-
cussed earlier for the finite-size corrections to the scaling dimensions. For example,
the loop diagram shown in the right panel of Fig. 3 maps to a mirror magnon linking
the hexagons along a seamof the pair of pants.Other diagrams, like the ones involving
particles wrapping around an operator, can also be interpreted in this way. However,
unlike the previous example, wrapping processes lead to technical problems which
have not been completely solved yet [28].
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As alluded to before, the hexagon approach can also be used to study higher-point
functions [13, 14]. The underlying idea, which is reminiscent of the triangulation of
2d surfaces, is that any punctured sphere can be covered by means of hexagons, if
enough of them are used and if they are stitched together in the appropriatemanner. In
the following, we illustrate the power of the hexagonalisation procedure on a simple
planar four-point function.

3 Hexagonalisation and Fishnet Integrals

InN = 4 SYM it is not possible in general to extract the information about a single
diagramwithin the integrability framework. It is a virtue of the formalism to subsume
into a single entity the many diagrams contributing to a given observable. The loop
diagram shown in the right panel of Fig. 3, for instance, corrects the structure constant
shown in the left panel. But many similar looking diagrams, featuring gluons, scalars
and gluinos, also contribute at the same loop order. The hexagon approach does not
a priori distinguish among them and only gives us access to their overall sum.

Nonetheless, it is sometimes possible to twist the sum such as to disentangle a
particular graph. There are several ways of doing. One can choose very carefully the
quantum numbers of the operators such that only one graph remains in the sum, at
a certain loop order. Alternatively, one can deform the theory itself so that it only
generates a particular set of diagrams from the onset. If the deformation preserves
integrability then the technique can be used to compute graphs directly. This iswhat is
happening in the so-called fishnet theory [15, 16]. The latter is obtained by twisting
N = 4 SYM through a procedure known as the γ-deformation [29, 30] and then
letting the deformation parameter go to infinity. All the excitations of the theory
are forcefully decoupled, if not for two scalar fields which interact in the deformed
theory only by means of a quartic potential,

Lint = (4πg)2trφ1φ2φ
∗
1φ

∗
2 . (11)

As a vestige of the original gauge symmetry, the scalar fields are matrices in the
adjoint representation ofU (N ) and one still obtains a decent planar theory by taking
N large at fixed g2.

This procedure significantly reduces the number of planar graphs. In most cases
only one graph remains, at a given loop order. Furthermore, all the graphs look
locally the same and take the form of the fishnet mesh displayed in Fig. 4. Despite
the massive cut in the number of graphs, the fishnet theory has a lot in common with
N = 4 SYM. It is conformal in the planar limit for any value of g2, if completed
with properly tuned double-trace interactions [31, 32], and it is “as integrable as”
N = 4 SYM in the planar limit. In fact, the integrability of the fishnet graphs has
been known for many years and explored in the pioneering work of Zamolodchikov
[33] (see also Isaev’s quantummechanical approach to Feynman diagrams [34]). The
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Fig. 4 The planar graphs of the fishnet theory all look locally like the fishnet mesh shown here.
Every line represents a massless propagator 1/(x − y)2 and each node stands for a φ4 interaction

p4 p4p3p3

p2 p2p1 p1

φn
1

φm
2

φ∗m
2 φ∗

2

φ2

φ∗n
1 φ∗n

1φn
1

Fig. 5 Left panel: the Feynman graph contributing to the fishnet correlator. A beam of n massless
particles is produced at x1 on the left and annihilated at x2 on the right. Similarly, a beam of m
massless particles is created at x3 at the bottom and annihilated at x4 at the top. The particles in the
beams interact locally at the white nodes, by means of a φ4 potential. In grey we represent the dual
color-ordered amplitude, with momentum conservation at every vertex. The duality transformation
maps a propagator in coordinate space to a propagator in momentum space, 1/p2 = 1/(x − y)2,
where x and y are the spacetime points on the two sides of the momentum p. Note that the external
momenta are off shell when the four external points are space-like separated from each other. Right
panel: for m = 1 the Feynman integral reduces to the n-rung ladder integral [35]

only price to pay here is that the fishnet theory is not unitary. However, this is of no
concern when the goal is to compute individual graphs.

The fishnet theory gives us access to an interesting class of conformal integrals
which we can study using the techniques described earlier. Consider for instance the
Feynman graph depicted in the left panel of Fig. 5. It is the sole graph contributing
in the planar limit to the color-ordered correlator
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Gm,n({xi }) = 〈trφ1(x1)
nφ2(x3)

mφ∗
1(x2)

nφ∗
2(x4)

n〉 , (12)

where the trace here embraces all the operators. For a generic configuration of the
four external points, the resulting integral is both UV and IR finite. As such it is a
function of the conformal cross ratios,

u = x214x
2
23

x212x
2
34

= zz̄

(1 − z)(1 − z̄)
, v = x213x

2
24

x212x
2
34

= 1

(1 − z)(1 − z̄)
, (13)

where (z, z̄) are the holomorphic (or light-cone) coordinates of the 4-th point in the
conformal frame (x1, x3, x2) = (0, 1,∞). More precisely,

Gm,n ∼ g2nm

x2n12 x
2m
34

× Φm,n(z, z̄) , (14)

after stripping out the weights of the fields and the obvious powers of the coupling.
Here,

Φm,n(z, z̄) = Φn,m(z, z̄) = Φm,n(1/z, 1/z̄) = Φm,n(z̄, z) , (15)

due to reflection and cyclic symmetry of the correlator. For m = 1 we obtain the
ladder integrals, see Fig. 5. They have been computed long ago [35] and found to be
given by

Φ1,n = (1 − z)(1 − z̄)

z − z̄
× Ln(z, z̄) , (16)

where L p(z, z̄) is an iterated integral (or pure function) of weight 2p,

L p(z, z̄) =
p∑

j=0

(2p − j)!
p! j !(p − j)! (− log zz̄) j

[
Li2p− j (z) − Li2p− j (z̄)

]
, (17)

with Lik(z) = ∑∞
a=1 z

a/ak the polylogarithm. This peculiar combination of loga-
rithms and polylogarithms defines for any p a real analytical function for complex
conjugated z, z̄ 	= 0; the function has a logarithmic singularity at ρ = √

zz̄ = 1. For
p = 1 this single-valued version of the dilogarithm,

L1(z, z̄) = 2Li2(z) − 2Li2(z̄) + log (zz̄) log

(
1 − z

1 − z̄

)
, (18)

is known as the Bloch–Wigner dilogarithm, or box integral.
The hexagon fomalism allows us to write down an integral representation for

this two-parameter family of integrals which generalises the ladders. The hexagon
factorization of the fishnet integral is shown graphically in Fig. 6 and consists in
three components. (i) First we have the hexagon form factors. They account for the
production and absorption of m mirror magnons on the bottom and top hexagons.
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(z, z̄)

0

1

∞

φ∗m
2

φn
1 φ∗n

1

φm
2

Fig. 6 The planar correlator can be covered with two hexagons. The vertical propagators map to
m mirror magnons, on the mirror edges of the hexagons. (The spin chain edges are not depicted
here; they sit at the tips of the triangles.) These magnons are created on the bottom hexagon and
absorbed on the top one. The two hexagons are identical, if not for the fact that they stretch between
different points. Their form factors are related by a conformal transformation [13] that preserves 0
and ∞ and maps 1 to (z, z̄)

A mirror magnon can be viewed here as describing the propagation of a scalar field
φ2. It carries two labels: a rapidity u, which is a momentum conjugated to shift
along the direction (0,∞), and a positive integer a, which enumerates the Lorentz
harmonics of the field. Alternatively, s = a − 1 counts the number of derivatives
attached to the field, ∂α1α̇1 . . . ∂αs α̇sφ2, such that a magnon in the a-th mode forms
a symmetric (traceless) representation of the Lorentz group, with spins ( s2 ,

s
2 ) and

dimension a2. Once properly normalized, and disregarding Lorentz indices, these
hexagon amplitudes result in

|ha1,...,aM (u1, . . . , uM)|2 =
m∏

i=1

ai
(u2i + ai

4 )m
×

m∏

i< j

Δai a j (ui , u j ) , (19)

where

Δab(u, v) =
[
(u − v)2 + (a + b)2

4

]
×

[
(u − v)2 + (a − b)2

4

]
. (20)

(i i) The next ingredient accounts for the propagation of the m mirror magnons
through the n lines connecting 0 and ∞. Alternatively, the edge along which the two
hexagons are stitched together has a thickness, given by the number of lines in the
horizontal beam. The transport of the magnons through this stack results in the factor

m∏

i=1

(
g2

u2i + ai
4

)n

. (21)
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(i i i) Finally, there is a factor that accounts for the 4pt geometry. In the four-point
function the two hexagons do not end on the same 3 points; they only meet at 0 and
∞. Therefore, one must perform a conformal transformation, among those that fix 0
and ∞, to transform one hexagon into the other [13]. This transformation consists in
a dilatation by ρ = √

zz̄ and a rotation by eiφ = √
z/z̄. This is how the information

about the cross ratios enters into the construction. Under this transformation, a mirror
magnon picks a factor ρ−2iuei jφ, where j is the total spin of themagnon. After tracing
over the Lorentz multiplet, and using that only left-right symmetric states contribute
to the 4p function, one finds that the dilatation-rotation brings, for every magnon,
the factor [13]

(zz̄)−iu × χa(φ) , (22)

where χa is the spin 1
2 (a − 1) character, χa(φ) = sin (aφ)/ sin φ.

Putting these three ingredients together yields an integral representation for the
fishnet correlator (14). After normalizing the correlator as in (14) and stripping off
an overall rational factor,

Φm,n =
[
(1 − z)(1 − z̄)

z − z̄

]m

× Im,n , (23)

one obtains

Im,n =
∑

a1,...,am

∫
du1 . . . dum
(2π)mm!

m∏

i=1

ai z−iui+ai /2 z̄−iui−ai /2

(u2i + a2i /4)
m+n

m∏

i< j

Δai a j (ui , u j ) , (24)

where the sum runs over ai = ±1,±2, . . . and the integral is taken over Rm . Though
not obvious, the integral (24) is symmetric under exchange of m and n, up to an
overall weight,

Im,n =
[

z − z̄

(1 − z)(1 − z̄)

]m−n

× In,m , (25)

as required by Φn,m = Φm,n . The other relations in (15) are trivially satisfied.
For m = 1, the integral is seen [13] to reproduce the ladders (17). For higher

values of m, one finds a surprising simplicity as well. Evaluating the matrix-model-
like integral (24) explicitely for various values of m, n suggests that it can be cast
into the form of a determinant of ladders for any m, n. The proposal put forward in
[20] is that Im,n is a pure function of weight 2mn, for n + 1 > m, that can be written
as

Im,n = det N∏m
k=1(n − m + 2k − 2)!(n − m + 2k − 1)! , (26)

where N is a m × m Hankel matrix with ij element1

1The overall factor in (26) can be absorbed in the columns of the matrix and the determinant written
in the alternative form given in [20].
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Ni j = (n − m + i + j − 2)!(n − m + i + j − 1)! × Ln−m+i+ j−1(z, z̄) . (27)

For n = m = 2, it evaluates to

I2,2 = L1L3 − 1

3
L2
2 , (28)

a form that is equivalent to the result obtained in [36] by direct integration of the
2 × 2 fishnet Feynman integral. In the general case the determinant formula has not
been proven yet, and thus stands as a conjecture. One verifies however that it meets
non-trivial analyticity requirements. Among them is the fact that the integral should
admit a dual interpretation as an off-shell color-ordered amplitude. The amplitude
is obtained by dualising the propagators, as shown in Fig. 5. Amplitudes are subject
to stringent constraints like the Steinmann relations [37]. In our case, they enforce
that the integral should have a single discontinuity upon continuing (1 − z) → (1 −
z)eiπ, (1 − z̄) → (1 − z̄)eiπ . The ladder amplitude L p fulfills this requirement.Upon
the continuation it shifts by the amount

disc L p = 2πi
(−1)p

p!(p − 1)! log (z/z̄)(log z log z̄)p−1 , (29)

which itself has no discontinuity, disc disc L p = 0. Only special combinations of
products of ladders will obey the Steinmann relations. Under extra mild assumptions
on these combinations [20], there is only one possibility at a given weight, the
determinant (26). Under the continuation every column in N shifts by the same
amount, which itself is free of discontinuity. Hence, det N has no higher discontinuity
and the Steinmann relations are satisfied.

4 Conclusion

I have briefly described the use and utility of integrability for computing correlators
inN = 4 SYMand its siblings. There is of course amuchwider range of observables
that can be analyzed along these lines. For instance, a typical fishnet correlator, like
the one shown in Fig. 4, with the external legs ending at arbitrary spacetime points,
can be cut down into hexagons. There are actually many ways of doing, and many
hexagons are needed. All the different cuttings should in principle return the same
answer. However, the proliferation of hexagons with the number of external legs
makes the resulting integrals rather intricate. These integrals are significantly more
difficult than the ones considered here and it is currently unknown how to evaluate
them efficiently.

Owing to its proximity to N = 4 SYM and its elegant simplicity, the fishnet
theory appears as an ideal laboratory for testing the integrability conjectures, the
many excursions behind the spectral problem and the recent explorations of the non-
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planar regime [38–40]. It also provides a more transparent setting for understanding
these conjectures from the first principles, that is from the graphs directly. In the
long run, its study should enrich the dictionary between Feynman diagrams and
integrable quantum mechanics [34] and bring new information about a broad family
of conformal integrals.

Recent results obtained in the fishnet theory [31] and in ladder limits of N = 4
SYM [41] hint at other ways of representing correlators within the integrability
framework, which could bypass the limitations of the hexagon method. The Yangian
invariance of fishnet correlators [17, 18] is also suggestive of additional structures
that could complement the hexagon approach. It would be interesting to see if the
combinations of all these methods can help computing more general conformal inte-
grals and teach us something new about the functions that are needed to represent
them.

Acknowledgements I would like to thankLanceDixon,VolodyaKazakov andGrishaKorchemsky
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Higher Spins from One-Loop Effective
Actions

L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari and T. Štemberga

Abstract In this contribution we review the method to obtain information about
the classical dynamics of a higher spin field by minimally coupling the field via
a conserved current to a simple free fermion, and by integrating out the latter. We
consider here the two point correlators of two conserved currents, which allow us to
determine the effective action to quadratic order. We show that this gives rise to the
classical equation of motion of the Fronsdal type. We point out the importance of
the contributions of the tadpole and seagull terms and the ambiguity related to the
choice of the conserved currents.

1 Introduction

A widespread idea is that, in order to describe quantum matter and quantum gravity
together in the framework of field theory, an infinite number of fields is needed. This
is obvious in string and superstring theories, but has also been argued on a general
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footing as a condition to avoid a causality violation, see [1]. What should be the
theory with infinite many fields is of course the problem. Apart from superstring
theories other proposals for consistent theories involving fields with infinite spins
have been made, in particular, by Vasiliev [2] in the framework of 4d anti-De Sitter
spacetime. Various consistent models have been shown to exist also in 3d.

However, despite such impressive results, many problems remain. Even before
a comparison with experimental data can be approached, one is faced with a series
of questions concerning various aspects of the would be theory. We have already
mentioned the problem of causality, but even more basic is the problem of locality,
which is naturally raised by the introduction of an infinite number of fields. For
instance, string theory is non-local, but in a mild way does not spoil causality and
unitarity. What should be the right amount of non-locality in a theory with infinite
many fields is still a not understood and untackled problem. Beside locality, another
basic problem in such kind of theories is their symmetries. The lattermust be local and
very large in order for them to reduce the enormous number of degrees of freedom.
In trying to construct local higher spin theory free equations of motion, covariant
under such gauge symmetries, one soon realizes that locality and covariance come
to an apparent clash, [3], and in order to preserve both of them one is obliged to
introduce auxiliary fields. It is a remarkable result that this is possible, at least at the
lowest (linear) level, [4].

Notwithstanding the progress made so far, it is clear that analyzing the problem
of theories with infinite many higher spin fields by trial and error is a daunting, if
not hopeless, task. In this contribution we would like to review a proposal made, and
carried out to some extent, in a series of papers, [5–7], which may help outlining
a viable work program. The basic idea is to exploit the one-loop effective actions
of elementary field theories coupled via conserved currents to external higher spin
sources, in order to extract information about the (classical) dynamics of the latter.We
will focus here, in particular, on a massive Dirac fermion model coupled to external
sources, although an analogous treatment can be extended to a massive scalar, as
was done in the above cited papers, and, no doubt, to other elementary fields. We
will show that the effective action of this model contains the local quadratic action
of all the low and higher spin fields and it is built out of the corresponding Fronsdal
differential operators.

Already at this stage, i.e. even before coping with interactions, one can extract
several derived results and mark some interesting points. The first is that all the local
actions obtained in this way can be expressed in geometric form by means of tensors
which are the generalizations of the Riemann one in 4d. The second is connected
with the conserved currents to which one couples the external fields: they are not
unique and their choice affect the form of the effective actions. This is important in
particular in relation to the non-diagonal correlators. The third point is connectedwith
the technique we use to compute the effective actions, that of Feynman diagrams: our
basic diagram is the bubble diagram, with two interaction vertices and two fermion
propagators. However we will consider also others, the tadpoles and seagull ones,
which may give precious information on the covariance of the model.
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The paper is organized as follows. In the next section we consider a few intro-
ductory examples in 3d and 4d. Section3 outlines and reviews the analysis of 2pt
current correlators and illustrates the results. Section4 is devoted to a discussion of
the Fronsdal-type equations and their appearance in our result. Section5 contains
some auxiliary material, such as the discussion about tadpole and seagull terms and
non-diagonal correlators. Section6 is devoted to a few concluding remarks.

2 A Few Examples in 3d and 4d

To justify our faith in the effective actionmethod, let us consider a few low dimension
and low spin examples. Let us start from the free Dirac field action

S0 =
∫

ddx
[
iψ̄γμ∂μψ − mψ̄ψ

]
, (1)

Out of it we can construct on shell conserved currents of any spin. For instance, if ψ
belongs to the fundamental representation of a Lie algebra with generators T a , the
spin 1 current

Jaμ (x) = iψ̄γμT
aψ (2)

is conserved on shell. We can couple it to the a gauge field Aa
μ via the interaction term

S1 = ∫
dd x Jaμ A

aμ. Considering S = S0 + S1 one can define the interaction vertex
between the gauge field and two fermions, as well as the fermion propagator. One
can easily compute the two currents amplitude Jabμν (x, y) = 〈0|T Jaμ (x)J b

ν (y)|0〉 in
any dimension; for instance, in 3d for large m, we have1

J̃ abμν (k) = i

4π

1

3|m|δ
ab(kμkν − k2ημν) (3)

This term is local. By Fourier anti-transforming it and inserting it into the quadratic
effective action

∫
d3xd3y Aμ

a (x)Jabμν (x, y)Aν
b(y), it takes the form

S ∼ 1

|m|
∫

d3x
(
Aa

μ∂
μ∂ν Aa

ν − Aa
ν�Aaν

)
(4)

which is the lowest term in the expansion of the YM action

SYM = − 1

gYM

∫
d3x Tr

(
FμνF

μν
)

(5)

1This is the even parity part of the correlator. Since the mass term breaks the reflection invariance
in 3d, there is also an odd part of the correlators, which we overlook here. It gives rise to the
Chern–Simons action, see [5, 6].



20 L. Bonora et al.

where gYM ∼ |m|.
Similarly, we can couple ψ to the metric. If we represent gμν(x) = ημν + hμν(x),

then the flat space energy-momentum tensor

Tμν = i

4
ψ̄

(
γμ

↔
∂ν +γν

↔
∂μ

)
ψ. (6)

is conserved on shell, and can be linearly coupled to the metric fluctuation hμν via
S1 = ∫

dd x T μνhμν . In the same way as above we can easily determine the vertex
with one h and two fermion legs, and compute the two-point function of the em
tensor. In 3d, in the IR limit, the 2pt e.m. tensor correlator behaves as

〈Tμν(k)Tλρ (−k)〉I R = i |m|
96π

[1
2

((
kμkληνρ + λ ↔ ρ

) + μ ↔ ν
)

(7)

− (
kμkνηλρ + kλkρημν

) − k2

2

(
ημληνρ + ημρηνλ

) + k2ημνηλρ

]
.

This is a local expression multiplied by |m|. In fact Fourier anti-transforming it and
integrating over spacetime after saturating it with hμν and hλρ, it gives rise to the
action

S ∼ |m|
∫

d3x
(−2∂μh

μλ∂νh
ν
λ − 2h ∂μ∂νh

μν − hμν�hμν + h�h
)
, (8)

which is the linearized Einstein–Hilbert action:

SEH = 1

2κ

∫
d3x

√
g R (9)

where κ ∼ 1
|m| .

As explained in the previous footnote, the odd parity two–point correlators give
rise, in an analogous way, to the gauge and gravity Chern–Simons action in 3d.
Analogous results can be obtained also in 4d, with some differences: the coupling
constant of the EH and YM actions are momentum dependent and the EH appears
in a non-local form (see below). Some of these results in 3d and 4d for spin-1 and
-2 have been known for a long time, see for instance [8]. But the systematic way in
which they appear creates the expectation that this method might lead to the same
results in all dimensions.

Not only that. The fermion model (like the scalar one, see [9]) does not admit
only spin one and two conserved currents, but in fact it has conserved currents of
any spin. So the question arises as to whether something similar to spin 1 and 2
may be true also for higher spins: can one extract from the two-point correlators of
such currents the quadratic action of the corresponding higher spin source fields,
or, equivalently, their linearized equations of motion? The answer is yes for both
questions. The relevant results have been obtained in [6, 7].
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3 Two-Point Correlators and Effective Actions

As pointed out above the free fermionmodel (1) admits on shell symmetric conserved
currents of any spin s, J (s)

μ1...μs
. Their form is not uniquely determined by conservation.

The simplest choice is

J (s)
μμ1...μs

= i s−1 ∂

∂z(μ1
· · · ∂

∂zμs−1
ψ

(
x + z

2

)
γμs )ψ

(
x − z

2

) ∣∣∣
z=0

(10)

For instance

J (1)
μ = ψγμψ (11)

J (2)
μ1μ2

= i
(
∂(μ2ψγμ1)ψ − ψγ(μ1∂μ2)ψ

)
(12)

. . . (13)

Our method consists in linearly coupling such currents to external sources aμ1...μs ,
in analogy with the gauge field and the metric fluctuation, via the action term∫
ddx J (s)

μ1μ2...μs
aμ1...μs , extracting the Feynman vertices and proceeding to the cal-

culation of the correlators. The complete effective action for this model is

W [a, s] = W [0] +
∞∑
n=1

i n−1

n!
∫ n∏

i=1

ddxia
μ11...μ1s (x1) . . . aμn1...μns (xn) (14)

× 〈0|T J (s)
μ11...μ1s

(x1) . . . J (s)
μn1...μns

(xn)|0〉.

In particular aμ = Aμ, aμν = 1
4hμν and J (2)

μν = 2Tμν . For the time being we will limit
ourselves to the two-point correlators and the main object of investigation will be
the bubble diagram with two external a legs and two internal fermion propagators.
This will generate the quadratic part of the effective action.

The typical integral we meet in this calculation is the tensor integral

J̃μ1...μp (d;α,β; k,m) =
∫

dd p

(2π)d

pμ1 . . . pμp(
p2 − m2

)α (
(p − k)2 − m2

)β
(15)

To evaluate it we follow the method of Davydychev et al. [10], which consists in
reducing it to a combination of scalar integrals in different dimensions, and evaluating
the latter with the dimensional regularization. The result is expressed in terms of
generalized hypergeometric functions. In fact this is so in two distinct ways, by
means of convergent series, one relevant to the IR, with |k|

2m << 1, and one to the
UV, with |k|

2m >> 1. The two expressions are the analytic continuation of each other.
In [6, 7] this analysis was carried out for external fields with spin up to 5 and in

dimensions up to 8. In fact in some cases it is possible to obtain compact expressions
for the 2pt correlators of any spins and any dimensions (for instance, in the UV limit



22 L. Bonora et al.

m → 0). The exact formulas are usually gigantic expressions, whose physical (and
geometrical) content is not always simple to read out. It is easier to view it by using
the IR and the UV series expansions alluded to above. The IR expressions are series
of local terms (when inserted in the effective action (14)). It is often the case that
some of these terms, corresponding to non-negative powers ofm, are non-conserved
(non-transverse with respect to k, the external momentum). Similar non-conserved
terms exist also in the UV. However, since the IR non-conserved terms are local,
we are allowed to subtract them from the effective action. We obtain in this way
conserved expressions. Here we give one single example for spin 3 in 4d. In such a
case the even power of order 0, logarithmic and 2,4,6 in m are not conserved, but

OUV (m0) − OI R(m0) − OI R(log(m)) (16)

= − 2ik6

99225π2

(
−210 log

(
− k2

m2

)
+ 599

) (
n1 ·π(k) ·n2

)
3

+ ik6

1587600π2

(
−3885 log

(
− k2

m2

)
+ 13339

)

×(n1 · π(k) · n2)(n1 · π(k) · n1)(n2 · π(k) · n2)

and

OUV (m2) − OI R(m2) = −4im2k4

2025π2

(
15 log

(
− k2

m2

)
− 16

) (
n1 ·π(k) ·n2

)
3 (17)

+ im2k4

16200π2

(
480 log

(
− k2

m2

)
− 857

)
(n1 · π(k) · n2)(n1 · π(k) · n1)(n2 · π(k) · n2)

OUV (m4) − OI R(m4) = 4im4k2

27π2

(
n1 ·π(k) ·n2

)
3 (18)

− im4k2

144π2

(
18 log

(
− k2

m2

)
−23

)
(n1 · π(k) · n2)(n1 · π(k) · n1)(n2 · π(k) · n2)

OUV (m6) − OI R(m6) = 4im6

81π2

(
6 log

(
− k2

m2

)
− 7

) (
n1 ·π(k) ·n2

)
3 (19)

+ im6

162π2

(
69 log

(
− k2

m2

)
− 70

)
(n1 · π(k) · n2)(n1 · π(k) · n1)(n2 · π(k) · n2),

where the above mentioned subtractions have already been carried out, are all con-
served. Here we are using a compact notation where

π(k)
μν = ημν − kμkν

k2
(20)

and n1, n2 are two polarization vectors, a bookkeeping device to guarantee the correct
Lorentz index symmetry. The final contribution to the effective action is obtained by
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differentiating with respect to n1 and n2, Fourier anti-transforming and inserting the
result into (14).

Equation (18) is related to a non-local version of the spin 3 Fronsdal equation. Let
us consider, for instance the piece k2

(
n1 ·π(k) ·n2

)
3. After stripping it of the polariza-

tion vectors, Fourier anti-transforming and inserting it into (14), the corresponding
piece gives rise to the following equation of motion

�ϕμνλ − ∂μ∂ ·ϕνλ + 1

�∂μ∂ν∂ ·∂ ·ϕλ − 1

�2
∂μ∂ν∂λ∂ ·∂ ·∂ ·ϕ = 0 (21)

where the spin three field aμνλ has been called, as it is customary, ϕμνλ. In this
equation a dot denotes index contraction and underlined indices mean the sum over
the minimum number of terms necessary to completely symmetrize the expression
in μ, ν and λ. Equation (21) is clearly non-local, but, as we shall see, it corresponds
to a non-local form of the spin 3 Fronsdal equation. However, before carrying on,
we need a bit of recalling.

4 The Local and Non-local Fronsdal Equations

Historically the first formulation of equations for the unconstrained free massless
symmetric spin 3 field ϕ was given by Fronsdal [3]

Fμνλ ≡ �ϕμνλ − ∂μ∂ ·ϕνλ + ∂μ∂νϕ
′
λ = 0 (22)

where a prime ′ means that the tensor is traced over a pair of indices. From now on
we shall use a more concise notation in which all indexes are suppressed, see [4]. In
this new notation the Fronsdal equation for a spin s field takes the form

F ≡ �ϕ − ∂ ∂ · ϕ + ∂2ϕ′ = 0 (23)

where ϕ represents a completely symmetric rank-s tensor field ϕ ≡ ϕμ1···μs . In the
case of s = 3 Eq. (23) coincide with Eq. (22).

The Fronsdal equation (23) is invariant under local transformations that are
parametrised by traceless completely symmetric rank-(s − 1) tensor fields � ≡
�μ1···μs−1

δϕ = ∂� (24)

with �′ = 0. While this gauge symmetry guarantees that the field propagates only
free spin-s excitations, for s ≥ 3 the gauge symmetry is constrained to trace-free
parameters �. This unwelcome limitation may be avoided by sacrificing locality, at
least in an intermediate stage, and recovering it by introducing additional auxiliary
fields. In fact one can rewrite the Fronsdal equation in an unconstrained form by
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introducing a rank-(s − 3) compensator field α transforming on (unconstrained)
gauge transformations (24) as δα = �′, in the following way

F = ∂3α (25)

This equation is invariant under the unconstrained gauge transformations (24)
because the variation of α exactly cancels the variation of the Fronsdal tensor. Most
important, the system ϕ,α can be cast in a (local) Lagrangian form. By the partial
gauge fixing condition α = 0 one obtains the original Fronsdal’s equation (23).

There exists a generalization F(n) of the Fronsdal differential operator, which is
gauge invariant for n large enough. It is given in terms of the recursive formula [4,
11]

F(n+1) = F(n) + 1

(n + 1)(2n + 1)

∂2

� F(n)′ − 1

n + 1

∂

�∂ · F(n) (26)

with F(0) = �ϕ. So, in particular,

F(1) ≡ F = �ϕ − ∂∂ · ϕ + ∂2ϕ′ (27)

is the original Fronsdal operator.
The operators (26) are in general non-local and are non-divergenceless. Therefore

they do not have the right form to represent our results in [6, 7], because the latter, like
(16) and the following ones, can always be expressed as the product of a form factor
times products of the projector (20), which are automatically conserved. However
one can easily realize that, once one accepts the option of non-locality, there is large
freedom in constructing linearized higher spin equations of motion, and the choice
of F(n) is far from unique.

The right object to make the connection with our results is the Einstein-like tensor

G(n) =
n∑

p=0

(−1)p
(n − p)!
2pn! η p F(n)[p] (28)

where the superscript in square bracket denotes the number of time F(n) has been
traced, and η is the Minkowski metric. The association of ϕ with the spin s is as
follows:

{
s = 2n s even

s = 2n − 1 s odd
(29)

The G(n) tensor is divergenceless

∂ · G(n) = 0 (30)
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The free (unconstrained) linearized equations of motion for ϕ are

G(n) = 0 (31)

Once again, it can be shown that such an equation can be cast in local Lagrangian
form, provided one introduces auxiliary fields (compensators). One can show that
the Eq. (21) is precisely of the type (31).

On a general footing one can show that all the 2pt correlators of the two conserved
currents can be expressed (in the usual concise notation) as follows

�s/2∑
l=0

al Ã
(s)
l (k, n1, n2) (32)

where the coefficients al are functions of k and m and

Ã(s)
l (k, n1, n2) = (n1 ·π(k) ·n2)s−2l(n1 ·π(k) ·n1)l(n2 ·π(k) ·n2)l (33)

On the other hand we can also show that

k2(n1 ·π(k) ·n2)s−2l(n1 ·π(k) ·n1)l(n2 ·π(k) ·n2)l (34)

= 1( �s/2
l

)
�s/2∑
p=l

(
−1

2

)p (
p
l

)
(2�s/2 + D − 2p − 4)!!
p!(2�s/2 + D − 4)!!

× (n1 ·π(k) ·n1)p G̃(n)[p](k, n1, n2)

where G̃(n)(k, n1, n2), the generalized Einstein symbol, is the Fourier transform of
the differential operator that in G(n) acts on ϕ. The latter is saturated with n1 as far
as the naked indices of G(n) are concerned, while n2 replace the symmetric indices
of ϕ (for more details, see [7]).

In conclusion, any expression of the type (32), i.e. any conserved structure, can be
expressed in terms of the generalized Einstein symbols G̃(n)(k, n1, n2) and its traces.
Thus any EA (or any eom) we obtain from our model, by integrating out matter, can
be expressed in terms of the generalized Einstein tensor G(n) and its traces preceded
by a function of � and the mass m of the model, with suitable multiples of the
operator

ημν − ∂μ∂ν

� .

We can conclude that, although the quadratic effective action obtained by inte-
grating out matter minimally coupled to a given higher spin source field is a highly
non-local expression, its backbone is determined by the corresponding generalized
Einstein differential operator.
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5 More Results and Remarks

The main result of our work has been enunciated at the end of the previous section.
However one can consider in addition several refinements and related problems.

5.1 Geometrization

To start with, the above results can be formulated in a more ‘geometrical’ way by
introducing the Jacobi tensors Rμ1...μsν1...νs , [12]. The latter are one of the possible
generalizations of the 4d Riemann tensor. They are defined by

1

(s!)2 (ms ·R(s) ·ns) =
s∑

l=0

(−1)l

s!(s − l)!l! (m ·∂)s−l(n ·∂)l(ml ·ϕ·ns−l) (35)

The tensors R(s) are connected to the F(n) as follows:

F(n) =
{ 1

�n−1R
(s)[n] s = 2n

1
�n−1 ∂ ·R(s)[n−1] s = 2n − 1

(36)

where the traces in square brackets refer to the first set of indices. Using (28) one
can replace the dependence on G(n) in (34) with the dependence on F(n), and the
dependence on the latter by the dependence on the Jacobi tensors using (36). In this
way we can express any EA or any eom in terms of R(s) and traces (in the second
set of indices) thereof.

For completeness it should be added that the Jacobi tensors are not the only
possible generalizations of the 4d Riemann tensor.

5.2 Tadpoles and Seagulls

Above, in order to evaluate the two point correlators of conserved currents we com-
puted only the bubble diagrams formed by two internal scalar or fermion lines and
two vertices. In this way we found that several local terms (polynomials of the exter-
nal momentum k) were not transverse. In such cases we recovered conservation by
subtracting local counterterms from the EA. However it is in general not necessary
to do so provided one takes into account not only the two-point bubble diagrams but
also other diagrams such as tadpole and seagull ones. A tadpole diagram has one
external a leg attached to an internal fermion loop, while seagull terms are similar
but with two or more a legs attached to the same point of an internal fermion loop.
For the quadratic action of the source fields both tadpole terms and seagull terms
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with two external legs may contribute. So far we have not taken them into account
and, for higher spins, not knowing the full action, we are unable to compute the latter.

Let us see an example of gravity in any dimension. In this case we know the exact
form of the action, therefore we can compute not only the tadpole terms but also
the seagull contributions. When these contributions are taken into account the Ward
identity for the 2pt correlator is not simply the transversality condition with respect
to the external momentum k, but (in momentum space) takes the following form

kμT̃
μμνν(k) =

[
−kνημν + 1

2
kμηνν

]
Θ̃ (37)

where Θ̃ is a constant and represents the tadpole contribution, which, due to transla-
tion invariance, takes the form: Θ̃μμ(k) = Θ̃ ημμ. Here repeated indices mean sym-
metrization, for instance μμ stands for (μ1μ2).

From the explicit computation, the tadpole contribution turns out to be

Θ̃μμ(k) = −2−2−d+� d
2  i mdπ

d
2 �

(
−d

2

)
ημμ ≡ Θ̃ ημμ, (38)

and the seagull term

T̃ μμνν
(s) (k) = 2−3−d+� d

2  i mdπ
d
2 �

(
−d

2

)
(3ημνημν − 2ημμηνν) . (39)

On the other hand the bubble diagram contributes two parts, the transverse part,

T̃ μμνν
t (k) = − 1

d(d + 1)k2
2−2−d+� d

2  i mdπ
d
2 �

(
1 − d

2

)

[(
−8m2 + (d + 1)k2 + 2F1

[
1,−d

2
,
1

2
,

k2

4m2

]
(8m2 + (d − 1)k2)

)
πμνπμν

+
(

−4m2 + (d + 1)k2 + 2F1

[
1,−d

2
,
1

2
,

k2

4m2

]
(4m2 − k2)

)
πμμπνν

]
(40)

and the non-transverse part

T̃ μμνν
nt (k) = −2−3−d+� d

2  i mdπ
d
2 �

(
−d

2

)
(ημνημν − ημμηνν) . (41)

Taking formulas (38), (39), (40) and (41) and inserting them into (37) one can verify
that the Ward identity is satisfied in any dimension d.

The result for spin 2 represents a useful suggestion for higher spins. As pointed
out above, in the higher spin case we can easily compute the tadpoles, but we do
not know the seagull terms, because in the elementary model S0 + S1 the external
source appears only linearly. Imposing that the relevant Ward identity be satisfied
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may determine or, at least, considerably restrict the form of the interaction among
the fermions and two external source fields.

5.3 Non-diagonal Correlators

So far we have been considering only 2pt correlators of a given current with itself,
but there are also many non-vanishing 2pt of currents with different spins. Here we
content ourselves with an example in 4d, the correlator of a spin 1 current with a spin
3 current. The transverse part is

T̃ t
μννν = k4π(k)

νν π(k)
μν

(
i

5π2

((
31

180
− L0

12

)
+ 2

3

m2

k2
− 4

m4

k4

)
+

+ i S

5π2

(
−1

6

1

k
− 1

3

m2

k3
+ 4

m4

k5

) )
(42)

while the non-transverse part is

T̃ nt
μννν = ηννημν

( i L2
2π2m4

)
(43)

where k = √
k2 and

Ln = 2

ε
+ log

(
m2

4π

)
+ γ −

n∑
k=1

1

k
, S =

√
4m2 − k2 csc−1

(
2m

k

)

This and analogous results mean that in the effective action there will be non-
diagonal kinetic operators which entangle fields of different spins. This is a new
factor of complexity along the way that hopefully will lead to a covariant classical
higher spin action. On the other hand these results depend very much on the form of
the currents we choose. Different choices lead to different results for the correlators
and in some cases even to vanishing non-diagonal correlators. It is clearly important
to determine the form of the currents that induces the simplest possible structure for
the correlators. This research is under way.

6 Comments

In this paper we have reviewed the progress made in the effective action approach to
higher spin theories. By computing, in a model of free Dirac fermions (or scalars)
coupled to external (higher spin) fields, the 2pt correlators of conserved currents
we have calculated the relevant one-loop effective action. This is quadratic in the
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fields and, to a large extent, non-local. It also contains a local part which can be
interpreted as a classical quadratic action of the corresponding higher spin fields.
Equivalently, it gives rise to the corresponding generalized (generally non-local,
but covariant) Fronsdal equations. We have also reviewed the mechanism by which
the non-locality can be reabsorbed by means of auxiliary fields, so as to transform
the action to a local one. Returning to the effective action for a given higher spin
field, we have also noticed that, although it is non-local, it can be broken down to
pieces (preceded by a suitable form factor), each one of which is characterized by a
differential operator which is a particular (generally non-local) version of the same
Fronsdal (or Einstein) operator. Related to this we have shown how to carry out a
complete geometrization of our results.

In summary, the one-loop effective action extracted from such simple models by
integrating out matter, is strictly connected to the classical dynamics of the source
fields. In other words, quantizing these simple models yields information about the
dynamics of higher spin fields. Of course this is only a beginning. The real challenge
now is to tackle the problem of interaction of higher spin fields. Carrying on our
program, this means that we have to study the three point correlators of conserved
currents. We are aware that it is not just a problem of evaluating an integral more
complicated than (15). Before that a few preliminary problems must be investigated
and understood. One such problem is the of role tadpole and seagull terms, which
we have partly clarified above. Another important point is the choice of conserved
currents that minimize the complexity of the calculations, as outlined above. An
additional fundamental issue is the form of the gauge symmetry, which, in this paper,
we have introduced only at the lowest level, see Eq. (24).

These are the visible problems within our present horizon, not forgetting that the
final goal is a consistent theorywith an infinite number of fields. This thought actually
suggests another consideration. Any free field theory coupled to external sources via
conserved currents can be treated in the sameway aswe have donewith the scalar and
fermion models, i.e. we can integrate out the fields in the original model and obtain
a classical dynamics for the sources. It would seem that a theory is complete only
when the field content of the original model coincides with the sources, otherwise
when we quantize the initial model we excite always new dynamics. Perhaps this
concept of completeness is what is in store for us beyond the present horizon.
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Algebraic Structures in Exceptional
Geometry

Martin Cederwall

Abstract Exceptional field theory (EFT) gives a geometric underpinning of the
U-duality symmetries ofM-theory. In this paper I give an overview of the surprisingly
rich algebraic structures which naturally appear in the context of EFT. This includes
Borcherds superalgebras, Cartan type superalgebras (tensor hierarchy algebras) and
L∞ algebras. This is the written version of a talk based mainly on Refs. [1–6].

Keywords Exceptional geometry · Superalgebras · Extended geometry

Duality symmetries in string theory/M-theorymixgravitational andnon-gravitational
fields. Manifestation of such symmetries calls for a generalisation of the concept of
geometry. It has been proposed that the compactifying space (torus) is enlarged to
accommodate momenta (representing momenta and brane windings) in modules of
a duality group. This leads to double geometry [7–31] in the context of T-duality, and
exceptional geometry [32–52] in the context of U-duality. These classes of models
are special cases of extended geometries, and can be treated in a unified manner [4].
The duality group is in a certain sense present already in the uncompactified theory.
It becomes “geometrised”.

In the present paper, I will
• Describe the basics of extended geometry, with focus on the gauge transforma-

tions;
• Describe the appearance of Borcherds superalgebras and Cartan-type superal-

gebras (tensor hierarchy superalgebras);
• Indicate why L∞ algebras provide a good framework for describing the gauge

symmetries.
• Point out some questions and directions.

The focus will thus be on algebraic aspects, and less on geometric ones (Table1).
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Table 1 A list of U-duality
groups

n En(n) R1

3 SL(3) × SL(2) (3, 2)

4 SL(5) 10

5 Spin(5, 5) 16

6 E6(6) 27

7 E7(7) 56

8 E8(8) 248

9 E9(9) fund

Fig. 1 The module R1

n

1 2 n−4 n−3 n−2 n−1

Consider compactification from11 to 11 − n dimensions on T n . As iswell known,
fields and charges fall into modules of En(n) (Fig. 1).

To be explicit, take n = 7 as an example. The gauge parameters ξM in 56 of E7

decompose as:
ξm λmn λ̃mnpqr ξ̃m,n1...n7 ← ξM

7 + 21 + 21 + 7 = 56
(1)

We recognise the parameters for diffeomorphisms, gauge transformations of the 3-
form and dual 6-form and a parameter for “dual diffeomorphisms”. The scalar fields
are in the coset E7(7)/K (E7(7)) = E7(7)/(SU (8)/Z2). The dimension of coset is:
133 − 63 = 70, and it is parameterized by

gmn Cmnp C̃mnpqrs ← G M N

28 + 35 + 7 = 70
(2)

From the point of view of N = 8 supergravity in D = 4, this is the scalar field
coset. Now it becomes a generalised metric. There are also mixed fields (generalised
graviphotons): 1-forms in R1, etc.

The situation for T-duality is simpler. Compactification from 10 to 10 − d dimen-
sions gives the (continuous) T-duality group O(d, d). The momenta are comple-
mented with string windings to form the 2d-dimensional module.

Note that the continuous duality group is not to be seen as a global symmetry.
Discrete duality transformations in O(d, d;Z) or En(n)(Z) arise as symmetries in
certain backgrounds, roughly as the mapping class group SL(n;Z) arises as discrete
isometries of a torus. The rôle of the continuous versions of the duality groups is
analogous to that of GL(n) in ordinary geometry (gravity).
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One has to decide how tensors transform. The generic recipe is to mimic the Lie
derivative for ordinary diffeomorphisms:

LU V m = U n∂n V m − ∂nU m V n . (3)

The first term is a transport term, and the second one a gl transformation, with
parameter in red.

In the case of U-duality, the role of GL is assumed by En(n) × R
+, and

LU V M = LU V M + Y M N
P Q∂N U P V Q

= U N ∂N V M + Z M N
P Q∂N U P V Q , (4)

where Z M N
P Q = −αn P M

adjQ,
N

P + βnδ
M
Q δN

P = Y M N
P Q − δM

P δN
Q projects on the

adjoint of En(n) × R, so that the red factor becomes a parameter for an en ⊕ R trans-
formation.

The transformations form an “algebra” for n ≤ 7:

[LU ,LV ]W M = L[U,V ]W M , (5)

where the “Courant bracket” is [U, V ]M = 1
2 (LU V M − LV U M), provided that the

derivatives fulfil a “section constraint”.
The section constraint ensures that fields locally depend only on an n-dimensional

subspace of the coordinates, onwhich a GL(n) subgroup acts. It reads Y M N
P Q∂M . . .

∂N = 0, or
(∂ ⊗ ∂)|R2

= 0 . (6)

For n ≥ 8 more local transformations, so called “ancillary transformations” [4]
emerge, which are constrained local transformations in g (Fig. 2 and Table2).

The interpretation of the section condition is that the momenta locally are chosen
so that they may span a linear subspace of cotangent space with maximal dimension,
such that any pair of covectors p, p′ in the subspace fulfil (p ⊗ p′)|R2

= 0.
The corresponding statement for double geometry is ηM N ∂M ⊗ ∂N = 0, where

η is the O(d, d)-invariant metric. The maximal linear subspace is a d-dimensional
isotropic subspace, and it is determined by a pure spinor Λ. Once a Λ is chosen, the
section condition can be written Γ MΛ∂M = 0. An analogous linear construction can

Fig. 2 The module R2

n

1 2 n−4 n−3 n−2 n−1
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Table 2 A list of R1 and R2
for different En

n R1 R2

3 (3, 2) (3, 1)

4 10 5

5 16 10

6 27 27

7 56 133

8 248 1 ⊕ 3875

be performed in the exceptional setting. The section condition in double geometry
derives from the level matching condition in string theory. Locally, supergravity is
recovered. Globally, non-geometric solutions are also obtained.

There is a universal form [1, 3, 4] of the generalised diffeomorphisms for any
Kac–Moody algebra and choice of coordinate representation. Let the coordinate
representation be R(λ), for λ a fundamental weight dual to a simple root α (the
construction can be made more general). Then

σY = −ηAB T A ⊗ T B + (λ,λ) + σ − 1 , (7)

where η is the Killing metric and σ the permutation operator, σ(a ⊗ b) = (b ⊗ a)σ.
This follows from the existence of a solution to the section constraint in the form

of a linear space:
• Each momentum must be in the minimal orbit. Equivalently, p ⊗ p ∈ R(2λ).
• Products of different momenta may contain R(2λ) and R(2λ − α), where

R(2λ − α) is the highest representation in the antisymmetric product. Expressing
these conditions in terms of the quadratic Casimir gives the form of Y .

I will skip the detailed description of the generalised gravity. It effectively provides
the local dynamics of gravity and 3-form, which are encoded by a vielbein EM

A in
the coset (En(n) × R)/K (En(n)) (Table3).

Table 3 A list of compact
subgroups

n En(n) K (En(n))

3 SL(3) × SL(2) SO(3) × SO(2)

4 SL(5) SO(5)

5 Spin(5, 5) (Spin(5) ×
Spin(5))/Z2

6 E6(6) U Sp(8)/Z2

7 E7(7) SU (8)/Z2

8 E8(8) Spin(16)/Z2

9 E9(9) K (E9(9))
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TheT-duality case is described by a generalisedmetric in the coset O(d, d)/(O(d)

× O(d)), parametrised by the ordinary metric and B-field.
With some differences from ordinary geometry, one can go through the con-

struction of connection, torsion, metric compatibility etc., and arrive at generalised
Einstein’s equations encoding the equations of motion for all fields. (This has been
done for n ≤ 8.)

For n ≥ 8, the coset En(n)/K (En(n)) contains higher mixed tensors that do not
carry independent physical degrees of freedom. They are removed by ancillary trans-
formations that arise in the commutator between generalised diffeomorphisms [3, 4,
45, 48, 49].

One may introduce (local) supersymmetry. In the case of T-duality, the super-
space is based on the fundamental representation of an orthosymplectic supergroup
O Sp(d, d|2s). The exceptional cases are unexplored, but will be based on ∞-
dimensional superalgebras [53].

The generalised diffeomorphisms do not satisfy a Jacobi identity. On general
grounds, it can be shown that the “Jacobiator”

[[U, V, W ] + cycl 
= 0 , (8)

but is proportional to ([U, V ], W ) + cycl, where (U, V ) = 1
2 (LU V + LV U ).

It is important to show that the Jacobiator in some sense is trivial. It turns out that
L(U,V )W = 0 (for n ≤ 7), and the interpretation is that it is a gauge transformation
with a parameter representing reducibility (for n ≤ 6). (The limits on n in the state-
ments here are due to non-covariance of the derivative arising at some point in the
tensor hierarchy, see below. I will not go into details.)

In double geometry, this reducibility is just the scalar reducibility of a gauge
transformation: δB2 = dλ1, with the reducibility δλ1 = dλ′

0.
In exceptional geometry, the reducibility turns out to be more complicated, lead-

ing to an infinite (but well defined) reducibility, containing the modules of tensor
hierarchies, and providing a natural generalisation of forms (having connection-
free covariant derivatives). One may ask why it does not reproduce only the finite
reducibility of the gauge transformations of the 3-form and 6-form fields. These are
of course contained in the tower of ghosts, but do not by themselves fill out modules
of En . Insisting on having En modules at each level of reducibility means (given a
solution to the section constraint) that the forms sooner or later need to be accompa-
nied by somemixed tensors. Some examples of this phenomenon, including tables of
the decompositions of some Rn’s into GL(n) representations are given in Appendix
B of Ref. [43].

The reducibility continues, and there are ghosts at all levels > 0. The represen-
tations are those of a “tensor hierarchy”, a sequence of representations Rn that for
low n agrees with the representations of n-form gauge fields in the dimensionally
reduced theory.

R1
∂←− R2

∂←− R3
∂←− . . . (9)
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Fig. 3 Dynkinj diagram for
B(En)

0 1 2 n−4 n−3 n−2 n−1

n

Example, n = 5:

16
∂←− 10

∂←− 16
∂←− 45

∂←− 144
∂←− . . . (10)

16 − 10 + 16 − 45 + 144 − . . . = 11 (11)

(suitably regularised), which is the number of degrees of freedom of a pure spinor.
The representations {Rn}∞n=1 agree with [54].• The ghosts for a “pure spinor” constraint (a constraint implying an object lies

in the minimal orbit);
• The positive levels of a Borcherds superalgebra B(En) (Fig. 3).
Indeed, the denominator appearing in the denominator formula for B(En) is iden-

tical to the partition function of a “pure spinor” [54].
B(Dn) ≈ osp(n, n|2)
B(An) ≈ sl(n + 1|1)

· · · ∂←− R−1
∂←− R0

∂←− R1
∂←− R2

∂←− . . .
∂←− R8−n

︸ ︷︷ ︸

covariant

∂←− R9−n
∂←− R10−n

∂←− · · ·

(12)

The modules R1, . . . , R8−n behave like forms. The “exterior derivative” is
connection-free (for a torsion-free connection), and there is a wedge product [43].

Themodules showa symmetry: R9−n = Rn . There is another extension to negative
levels that respects this symmetry, and seems more connected to geometry: tensor
hierarchy algebras [2, 5].

In the classification of finite-dimensional superalgebras by Kac, there is a special
class, “Cartan-type superalgebras”. The Cartan-type superalgebra W (n), which I
prefer to call W (An−1), is asymmetric between positive and negative levels, and
(therefore) not defined through generators corresponding to simple roots and Serre
relations.

W (An−1) is the superalgebra of derivations on the superalgebra of (pointwise)
forms in n dimensions.

Any operation ω → Ω ∧ ıV ω, where Ω is a form and V a vector, belongs to
W (An−1). A basis is given by (Table4)
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Table 4 The level
decomposition of W (An−1)

level = 1 ιa

0 ebιa

-1 eb1eb2 ιa

-2 eb1eb2eb3 ιa

. . . . . .

Fig. 4 Dynkin diagram for
B(g) and W (g)

A subalgebra S(An−1) contains traceless tensors. The positive levels agree with
B(An−1) ≈ sl(n|1). Note that the representations of torsion and torsionBianchi iden-
tity appear at levels −1 and −2.

In spite of the absence of a Cartan involution, there is a way to give a systematic
Chevalley–Serre presentation of the superalgebra, based on the sameDynkin diagram
as the Borcherds superalgebra [5] (Fig. 4).

The construction can be extended to W (Dn), and, most interestingly, W (En) (and
the corresponding S(g)). The statements about torsion and Bianchi identities remain
true (but we still lack a good geometric argument).

Back to the Jacobi identity. Expressed in terms of a fermionic ghost in R1,

[[c, c], c] 
= 0 . (13)

How is this remedied? The most general formalism for gauge symmetries is the
Batalin–Vilkovisky formalism, where everything is encoded in the master equation
(S, S) = 0.

If transformations are field-independent, one may consider the ghost action con-
sistently. An L∞ algebra is a (super)algebraic structure which provides a perturbative
solution to the master equation.

Let C denote all ghosts. Then the master equation states the nilpotency of a
transformation

δC = (S, C) = ∂C + [C, C] + [C, C, C] + [C, C, C, C] + . . . (14)

The identities that need to be fulfilled are:

∂2C = 0 ,

∂[C, C] + 2[∂C, C] = 0 , (15)

∂[C, C, C] + 2[[C, C], C] + 3[∂C, C, C] ,

. . .
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Assuming ∂c = 0, the non-vanishing of [[c, c], c] can be compensated by the deriva-
tive of an element in R2 (representing reducibility).Oneneeds to introduce a3-bracket

[c, c, c] ∈ R2 . (16)

Then, there are more identities to check.
For double field theory, a 3-bracket is enough [55].
For exceptional field theory, there are signs, that one will in fact obtain arbitrarily

high brackets [6]. There are also other issues concerning the non-covariance outside
the “form window”. I will not go into detail.

In conclusion, the area has rich connections to various areas of pure mathematics,
some of which are under investigation:

• Group theory and representation theory
• Minimal orbits
• Superalgebras
• Cartan-type superalgebras
• Infinite-dimensional (affine, hyperbolic,...) Lie algebras
• Geometry and generalised geometry
• Automorphic forms
• L∞ algebras
• ...
There are many open questions:
• Can the formalism be continued to n > 9? The transformations work for e.g.

E10 [4], and there seems to be no reason (other than mathematical difficulties) that
it stops there. Is there a connection to the “E10 proposal” [56] with emergent space?

• Geometry from algebra? What is the precise geometric relation between the
tensor hierarchy algebra and the generalised diffeomorphisms?

• Superspace/supergeometry? And some formalism generalising that of pure
spinor superfields, that manifests supersymmetry?

• The section constraint: Can it be lifted, or dynamically generated?
• What can be learnt about the full string theory/M-theory?
• . . . ?
Thank you for your attention.
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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [14, 15, 25] has been recently attracting a
lot of attention as a useful laboratory to understand the origins of the AdS/CFT
duality. The model is notable for several reasons. It features an emergent conformal
reparametrization invariance in the IR limit (i.e. the strong coupling limit J |t | � 1).
The out-of-time-order correlators exhibit quantum chaos, with a maximal Lyapunov
exponent characteristic of black holes, thus providing an example of the butterfly
effect [15].

Once we deviate away from the critical IR point, the kinetic term sources the
breaking of the conformal symmetry. In the following we first summarize the treat-
ment of the dynamical symmetry mode and its coupling to matter developed in [11,
12]. The effective action describing the symmetry mode was originally suggested by
Kitaev as given by a Schwarzian derivative [15] and confirmed at the quadratic level
by Maldacena and Stanford [19]. We will explain the full non-linear derivations of
the Schwarzian effective action of the symmetry mode with full implementation of
reparametrization symmetry.

We then consider the important question regarding the duality of the SYK model
and the identification of the dual spacetime. The Large N representation of the the-
ory is based on bi-local composite variables which have in general been proposed
as a vehicle for AdS holography [8]. For the present one dimensional theory this
provides a two-dimensional representation: in terms of the center-of-mass and rel-
ative coordinates, one sees a Lorentzian AdS2 or dS2. The SYK eigenfunctions are
derived exactly in the IR limit, which are seen to correspond to Lorentzian AdS2
or dS2 wave functions. This presents a conundrum, since we expect that the dual
theory of the Euclidean SYK model should have Euclidean spacetime. We describe
a resolution of this question. As we explain below, there is a need for a non-local
space-time transformation leading to the Euclidean AdS2 bulk space-time picture.
This transformation is such that it brings Lorentzian wave functions into those of
Euclidean AdS2. At the same time, this transformation leads to additional factors
which morally resemble the leg pole factors of the c = 1 matrix model necessary
to relate the collective field to the usual tachyon field of the dual 2D string theory
and reproduce the S-Matrix. We speculate that these factors incorporate the coupling
of additional bulk states similar to the discrete states of 2D string theory. Finally
we discuss the highly nontrivial matter spectrum of the model. We show that this
can be realized as a Kaluza–Klein reduction of a three dimensional model where
the additional dimension is an interval, similar to Horava-Witten compactification.
Perhaps more significantly, the 3D propagator between points at the center of the
interval exactly reproduces the SYK bilocal propagator.
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2 Overview of SYK

In this section, we will give a brief review of the Large N formalism and results
as developed in [11, 12]. In the IR limit this framework is used for solving for the
spectrum, and study of correlation functions. We will describe the emergence of
reparametrization symmetry and will give a details on the nonlinear derivation of the
zero-mode effective action, given by the Schwarzian derivative.

The Sachdev-Ye-Kitaev model [14, 15] is a quantum mechanical many body
system with all-to-all interactions on fermionic N sites (N � 1), represented by the
Hamiltonian

H = 1

4!
N∑

i, j,k,l=1

Ji jkl χi χ j χk χl , (1)

whereχi areMajorana fermions, which satisfy {χi ,χ j } = δi j . The coupling constant
Ji jkl are random with a Gaussian distribution with width J . The generalization to
analogous q-point interacting model is straightforward [15, 19]. After the disorder
averaging for the random coupling Ji jkl , there is only one effective coupling J in the
effective action. The model is usually treated by replica method. One does not expect
a spin glass state in this model [25] so that we can restrict to the replica diagonal
subspace. The Large N theory is simply represented through a (replica diagonal)
bi-local collective field:

Ψ (t1, t2) ≡ 1

N

N∑

i=1

χi (t1)χi (t2) , (2)

where we have suppressed the replica index. The corresponding path-integral is

Z =
∫ ∏

t1,t2

DΨ (t1, t2) μ[Ψ ] e−Scol[Ψ ] , (3)

where Scol is the collective action:

Scol[Ψ ] = N

2

∫
dt

[
∂tΨ (t, t ′)

]

t ′=t
+ N

2
Tr logΨ − J 2N

2q

∫
dt1dt2 Ψ q(t1, t2) .

(4)
Here the trace term comes from a Jacobian factor due to the change of path-integral
variable, and the trace is taken over the bi-local time. One also has an appropriate
order O(N 0) measure μ[Ψ ]. This action being of order N gives a systematic 1/N
expansion, while the measure μ[Ψ ] begins to contribute at one-loop level (in 1/N ).
There is another formulation with the two bi-local fields: the fundamental fermion
propagator G(t12) and the self energy �(t12). This is equivalent to the above for-
mulation after elimination of �(t12). In this article, we focus on this Euclidean time
SYK model.
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In the above action, the first linear term represents a conformal breaking term,
while the other terms respect conformal symmetry. In the IR limit with strong cou-
pling |t |J � 1, the collective action is reduced to the critical action

Sc[Ψ ] = N

2
Tr logΨ − J 2N

2q

∫
dt1dt2 Ψ q(t1, t2) , (5)

which exhibits an emergent conformal reparametrization symmetry

Ψ (t1, t2) → Ψ f (t1, t2) =
∣∣∣ f ′(t1) f ′(t2)

∣∣∣
1
q
Ψ ( f (t1), f (t2)) , (6)

with an arbitrary function f (t). This symmetry is responsible for the appearance of
zero modes in the strict IR critical theory. This problem was addressed in [11] with
analog of the quantization of extended systems with symmetry modes. The above
symmetry mode representing time reparametrization can be elevated to a dynamical
variable through the Faddeev–Popov method, leading to a Schwarzian action for this
variable [12], which was originaly proposed by Kitaev:

S[ f ] = − Nα

24πJ

∫
dt

[
f ′′′(t)
f ′(t)

− 3

2

(
f ′′(t)
f ′(t)

)2
]

, (7)

where the coefficient α = −12πB1γ with B1 representing the strength of the first
order correction, established in numerical studies of the free energy by Maldacena
and Stanford [19], who also verified the action in the linearized approximation, the
full non-linear evaluation was give in [12]. Similar evaluation was also recently given
by Kitaev and Suh [17].

In the rest of this section, we summarize the basic steps entering the evaluation
of the non-linear Schwarzian action. One starts with the fact that the kinetic term in
the action (4) breaks the conformal symmetry, and therefore the effective action (in
the leading order of 1/J ) for the IR breaking is given by

S[ f ] = N

2

∫
dt1

[
∂1Ψ0, f (t1, t2)

]

t2=t1
, (8)

where Ψ0 is the saddle-point solution for the critical action (5) given by

Ψ0(t1, t2) = b
sgn(t12)

|J t12| 2
q

, (9)

with ti j ≡ ti − t j and q-dependent numerical coefficient b. Then, Ψ0, f is the general
reparametrized solution according to the transformation (6). If we use subleading cor-
rections (in terms of 1/J ) for the saddle-point solution, instead of Ψ0, we will obtain
1/J corrections for the zero-mode effective action. The first subleading correction is
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discussed in [17], but in this article we focus only on the leading contribution, which
leads to the Schwarzian action.

For the q = 2 model, the induced action (8) can be directly evaluated [11]. We
first expand the reparametrized critical solution in the t1 → t2 limit as

Ψ0, f (t1, t2) = − 1

πJ

(
1

|t12| + |t12|
12

Sch( f (t2), t2) + · · ·
)

, (10)

where Sch( f (t), t) is defined by the inside of the square bracket of Eq. (7).We define
our regularization scheme to eliminate the first term. Substituting this expansion into
Eq. (8), this leads to

S[ f ] = − N

24πJ

∫
dt Sch( f (t), t) . (11)

The evaluation for general q involves a non-trivial regularization of the source
term [12]. This is implemented by replacing the delta function source by a series in
terms of powers:

δ′(t12) ⇒ Qs(t1, t2) ≡ (s − 1
2 )

6qB1γ J 2

b

sgn(t12)

|J t12|2− 2
q +2s

+ O(
(s − 1

2 )
2
)
. (12)

The leading contribution is given by s → 1/2 limit. Then, the indued action is given
by

S[ f ] = − N

2
lim
s→ 1

2

∫
dt1dt2 Ψ0, f (t1, t2) Qs(t1, t2) . (13)

Let us explain this regularization schememore. The original δ′(t12) source represents
a UV source while the evaluation of the action started in the IR region. Consequently
one is to represent the UV source as a series in terms of IR basis functions. The
first term in the source expansion with s = 1/2 represents the leading correction to
the critical conformal theory. Similar regularization and evaluation of the effective
action is done by Kitaev and Suh [17]. One can indeed evaluate the integrals for
any general reparametrization by expansion in series [12] or non-linearly as in [11].
After taking the s → 1/2 limit, we find the Schwarzian action

S[ f ] = − Nα

24πJ

∫
dt

[
f ′′′(t)
f ′(t)

− 3

2

(
f ′′(t)
f ′(t)

)2
]

, (14)

where α = −12πB1γ with B1 representing the strength of the first order correction.
The path-integral for this Schwarzian action is proven to be one-loop exact in

[26]. Also the gravitational dual description of this Schwarzian action is archived
in [9, 10, 20] based on the AdS2 dilaton-gravity model of [2]. In the dual gravity
theory the Schwarzian action describes the effective action of the boundary graviton
in AdS2.
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3 Bulk Space-Time

Fluctuations around the critical IR saddle point background Ψ0(t1, t2) can be studied
by expanding the bi-local field as [11]

Ψ (t1, t2) = Ψ0(t1, t2) + 1√
N

Ψ (t1, t2) , (15)

where Ψ0 is the IR large N saddle-point solution and Ψ is the fluctuation. At the
quadratic level, we have a quadratic kernel K. The diagonalization of this quadratic
kernel is done by the eigenfunction uν,ω and the eigenvalue g̃(ν) as

∫
dt ′1dt

′
2 K(t1, t2; t ′1, t ′2) uν,ω(t ′1, t

′
2) = g̃(ν) uν,ω(t1, t2) . (16)

The quadratic kernelK can be diagonalized by using SL(2,R) invariance. Consider
the bi-local SL(2,R) Casimir

C1+2 = (
D̂1 + D̂2

)2 − 1

2

(
P̂1 + P̂2

)(
K̂1 + K̂2

) − 1

2

(
K̂1 + K̂2

)(
P̂1 + P̂2

)

= − (t1 − t2)
2 ∂1∂2 , (17)

with the SL(2,R) generators D̂ = −t∂t , P̂ = ∂t , and K̂ = t2∂t . The eigenfunctions
of the bi-local SL(2,R) Casimir (17) are, due to the properties of the conformal
block, given by the three-point function of the form

|t12|2Δ
〈
Oh(t0)OΔ(t1)OΔ(t2)

〉
= sgn(t12)

|t10|h|t20|h|t12|−h
. (18)

The eigenvalues of the kernel, g̃(ν), are given by the expression

1

g̃(ν)
= −(q − 1)

Γ
(
3
2 − 1

q

)
Γ

(
1 − 1

q

)
Γ

(
h
2 + 1

q

)
Γ

(
1
2 + 1

q − h
2

)

Γ
(
1
2 + 1

q

)
Γ

(
1
q

)
Γ

(
3
2 − 1

q − h
2

)
Γ

(
1 − 1

q + h
2

) (19)

where we have defined
h ≡ ν + 1/2 (20)

This equation becomes simpler for q = 4,

g̃q=4(ν) = − 2ν

3
cot

(πν

2

)
. (21)

The SYK quadratic kernelK is a function of the bi-local SL(2,R)Casimir acting on
fermions which have conformal dimension Δ. This means that the three-point func-
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tion
〈
Oh(t0)OΔ(t1)OΔ(t2)

〉
is also the eigenfunction of the SYK quadratic kernel.

For the investigation of dual gravity theory, it is more useful to Fourier transform
from t0 to ω by

〈
Õh(ω)OΔ(t1)OΔ(t2)

〉
≡

∫
dt0 e

iωt0
〈
Oh(t0)OΔ(t1)OΔ(t2)

〉

∝ sgn(t12)

|t12|2Δ− 1
2

eiω(
t1+t2

2 )Zν(|ωt12
2 |) , (22)

with h = ν + 1/2 and

Zν(x) = Jν(x) + ξν J−ν(x) , ξν = tan(πν/2) + 1

tan(πν/2) − 1
. (23)

The t0 integral in the Fourier transform can be performed by decomposing the inte-
gration region into three pieces. The complete set of ν can be understood from the
representation theory of the conformal group, as discussed recently in [16]. We have
the discrete modes ν = 2n + 3/2 with (n = 0, 1, 2, · · · ) and the continuous modes
ν = ir with (0 < r < ∞). Adjusting the normalization,we define our eigenfunctions
by

uν,ω(t, ẑ) ≡ sgn(ẑ) ẑ
1
2 eiωt Zν(|ωẑ|) . (24)

which have normalization condition
∫ ∞

−∞
dt

2π

∫ ∞

0

dẑ

ẑ2
u∗

ν,ω(t, ẑ) uν ′,ω′(t, ẑ) = Nν δ(ν − ν ′)δ(ω − ω′) , (25)

with

Nν =
{

(2ν)−1 for ν = 3/2 + 2n

2ν−1 sin πν for ν = ir .
(26)

Here we used the change of the coordinates by

t ≡ t1 + t2
2

, ẑ ≡ t1 − t2
2

. (27)

The bi-local SL(2,R) Casimir can be seen to take the form of a Laplacian of
Lorentzian two dimensional Anti de-Sitter or de-Sitter space (in this two dimen-
sional case they are characterized by the same isometry group SO(2,1) or SO(1,2)).
Under the canonical identification with AdS

ds2 = −dt2 + dẑ2

ẑ2
, (28)



50 S. R. Das et al.

it equals
C1+2 = ẑ2(−∂2

t + ∂ẑ2) . (29)

Consequently the SYK eigenfunctions should be compared with known AdS2 or
dS2 basis wave functions. Note that the Bessel function Zν (23) are not the standard
normalizable modes used in quantization of scalar fields in AdS2: in particular they
have rather different boundary conditions at the Poincare horizon. Another important
property of this basis is that when viewed as a Schrodinger problem as in [24] it has
a set of bound states, in addition to the scattering states. This will be discussed in
detail below.

This leads one to try an identification with de-Sitter basis functions. In fact the
bi-local SYK wave functions can be realized as a particular α-vacuum of Lorentzian
dS2 with a metric

ds2 = −dη2 + dt2

η2
. (30)

This can be obtained by the coordinate change (27) by replacing ẑ → η. The
Euclidean (Bunch–Davies [4]) wave function of a massive scalar field is given by

φE
ω (η) eiωt , (31)

with

φE
ω (η) = η

1
2 H (2)

ν (|ω|η) , ν =
√
1

4
− m2 , (32)

where H (2)
ν is the Hankel function of the second kind. Since the t-dependence is

always like eiωt , in the following we will focus only on the η dependence. The α-
vacuum wave function is defined by Bogoliubov transformation from this Euclidean
wave function [1, 22] as

φα
ω(η) ≡ Nα

[
φE

ω (η) + eαφE∗
ω (η)

]

= Nα η
1
2

[
H (2)

ν (|ω|η) + eαH (1)
ν (|ω|η)

]
, (33)

where

Nα = 1√
1 − eα+α∗ , (34)

and α is a complex parameter. Now let us consider a possibility of α-vacuum with

α = iπ

(
ν + 1

2

)
= iπh . (35)

With this choice of α, using the definition of the Hankel functions
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H (1)
ν (x) = J−ν(x) − e−iπν Jν(x)

i sin(πν)
, H (2)

ν (x) = J−ν(x) − eiπν Jν(x)

−i sin(πν)
, (36)

one can rewrite the α-vacuum wave function as

φα
ω(η) =

(
2 η

1
2

1 + ξν e−iπν

)
Zν(|ω|η) , (37)

where Zν is defined in Eq.(23). After excluding the η-independent part of the wave
function, we can write the η-dependent part as

φα
ω(η) = η

1
2 Zν(|ω|η) . (38)

This wave function agrees with the eigenfunction of the SYK quadratic kernel (24)
after the identifications of η = (t1 − t2)/2 and t = (t1 + t2)/2.

Therefore, the SYK bi-local propagator has a natural interpretation as a two-point
function in this Lorentzian dS2 α-vacuum.Due to this observation, onemight attempt
to claim that the dual gravity theory of the SYK model is given by Lorentzian dS2
space. However, there is a critical issue in this claim. Apart from the Lorentzian
signature in this metric (30), we still have a discrepancy in the exponent of the
partition function (3) with a factor of “i”. Namely, if the dual gravity theory (higher
spin gravity or string theory) is Lorentzian dS2, it must have

Z =
∫

Dhn DΦm exp

[
i
(
Sgrav[h, Φ] + Smatter[h, Φ]

)]
, (39)

where we collectively denote the graviton and other “higher spin” gauge fields by
hn and the dilaton and other matter fields by Φm . Hence the agreement of the SYK
bi-local propagator

DSYK(t1, t2; t ′1, t ′2) =
〈
Ψ (t1, t2)Ψ (t ′1, t

′
2)

〉
=

∞∑

m=0

Gpm (t1, t2; t ′1, t ′2) , (40)

with a dS2 propagator

DdS(η, t; η′, t ′) = 1

i

∞∑

m=0

〈
Φm(η, t)Φm(η′, t)

〉
= 1

i

∞∑

m=0

Gm(η, t; η′, t ′) , (41)

is only up to the factor i . Namely, even if we have a complete agreement of Gpm
with Gm by identifying the coordinates by (27) (with a replacement of ẑ → η), there
is a problem with the signature (i.e. the discrepancy of the factor i). For higher
point functions, the same i-problem proceeds due to the i factors coming from the
propagator and each vertex.
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To conclude, for the Euclidean SYKmodel under consideration, one needs a dual
gravity theory to be in the hyperbolic plane H2 (i.e. EuclideanAdS2) for thematching
of n-point functions.

To reach such an Euclidean bulk dual description, we employ a nonlocal map
constructed so that it brings the SYK eigenfunctions (as given on bi-local space-
time) to the standard eigenfunctions of theEAdS2 Laplacian. The need for a non-local
transform on external legs appears to be characteristic of collective theory (which
as a rule contains a minimal set of physical degrees of freedom). For the Bi-local
Vectorial/Higher Spin duality in higher dimension such maps were constructed in
several papers (see for example [18]). The present d = 1 map is even simpler, it will
be seen to take the form of the well known H 2 Radon transform (a related suggestion
was made in [19]).1

Let us describe the simple method of construction, based on a canonical trans-
formation, from the bi-local phase space;(t1, p1), (t2, p2) to EAdS2 (τ , pτ ), (z, pz)
phase space.

For this,one equates the SL(2,R) generators

Ĵ1+2 = ĴEAdS . (42)

The bi-local conformal generators are

D̂1+2 = t1 p1 + t2 p2 , P̂1+2 = −p1 − p2 , K̂1+2 = − t21 p1 − t22 p2 ,

(43)
and the EAdS2 generators are given by

D̂EAdS = τ pτ + z pz , P̂EAdS = −pτ , K̂EAdS = (z2 − τ 2) pτ − 2τ z pz ,

(44)
where we defined px ≡ −∂x , with (x = t1, t2, τ or z). Equating the generators, we
can determine the map is uniquely given by:

τ = t1 p1 − t2 p2
p1 − p2

, pτ = p1 + p2 , z2 = −
(

t1 − t2
p1 − p2

)2
p1 p2 , p2z = −4p1 p2 .

(45)
One can see that the canonical commutators are preserved under the transform (at
least classically, i.e. in terms of the Poisson bracket). Namely, [τ , pτ ] = [z, pz] = 1
and others vanish provided that [ti , p j ] = δi j , with (i, j = 1, 2). Hence, we conclude
the map is canonical transformation, which is also a point transformation in momen-
tum space. For the kernel which implements this momentum space correspondence
we can take

1The first appearance of Radon type transforms in identifying holographic space-time was seen in
the c = 1 / D = 2 string correspondence. The transformation maps the eigenvalue density field of
the c = 1 matrix model to the tachyon field in a 2D (black hole) space-time (see Eq.(90)). Related
maps from the collective field or fermions to fields in a black hole background have been proposed
which are also possibly related to Radon transforms. As a transformation to EAdS (from dS) this
transform was introduced in [3].
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R(p1, p2; pτ , pz) = δ(pτ − (p1 + p2))√
p2z + 4p1 p2

. (46)

Through Fourier transforming all momenta to corresponding coordinates, the asso-
ciated coordinate space kernel is seen to be related to the well known Circular Radon
transform (47) given by

[R f
]
(η, t) = 2η

∫ t+η

t−η

dτ

∫ ∞

0

dz

z
δ
(
η2 − (τ − t)2 − z2

)
f (τ , z) , (47)

where the resulting function [R f ](η, t) is understood as a function on the Lorentzian
dS2 (30).

In particular, we evaluate the transformation of (unit-normalized) EAdS2 wave
functions

φEAdS2(τ , z) = αν z
1
2 e−iωτ Kν(|ω|z) , (48)

to obtain the relation:

Rφ
(EAdS2)
ω,ν (τ , z) = L(ν)ψ

(dS2)
ω,ν (η, t) , (49)

where φEAdS2 and ψdS2 are the unit-normlized wave functions of Euclidean AdS2 and
Lorentzian dS2, respectively, The extra factor respect to the unit-normlized wave
functions are identified as a leg factor, defined by

L(ν) ≡ (Leg Factor) = −2i
√

π
Γ

(
1
4 + ν

2

)

Γ
(
3
4 + ν

2

) . (50)

For the SYK case one will be employing then the inverse-Radon transform, which
is expected to take us from the bi-local to E AdS2 bulk space-time. The relevant
expressions are

R−1 ψ
(dS2)
ω,ν (η, t) = L−1(ν)φ

(EAdS2)
ω,ν (τ , z) . (51)

for ν �= 3/2 + 2n, while for νn = 3/2 + 2n we have instead

R−1 ψ
(dS2)
ω,νn

(η, t) = α′
νn
z1/2e−ikτ Iνn (|k|z) (52)

where

α′
νn

=
(
2νn
π

) 1
2 Γ ( 34 + νn

2 )

Γ
(
1
4 + νn

2

) (53)



54 S. R. Das et al.

We start with bi-local space propagator given by

G(t1, t2; t ′1, t ′2) ∝ J−1
∫ ∞

−∞
dω

∑

ν

u∗
ν,ω(t1, t2)uν,ω(t ′1, t ′2)

Nν [̃g(ν) − 1] , (54)

where uν,ω are the eigenfunctions defined in Eq.(24). Here the summation over ν is
a short-hand notation denotes the discrete mode sum and the continuous mode sum.
Next, the inverse Radon transform (51) and (52) are applied. This transforms the
bi-local/dS wave functions into the EAdS wave functions with a result

G(τ , z; τ ′, z′) = 2πJ−1
∫ ∞
−∞

dω

{ ∞∑

n=0

4 sin πνn

g̃(νn) − 1
|L−1(νn)|2 φ

∗
ω,νn (τ , z) φω,νn (τ

′, z′)

+
∫ ∞
0

dr |L−1(ν)|2 φ
∗
ω,ν(τ , z) φω,ν(τ ′, z′)

g̃(ν) − 1

∣∣∣∣
ν=ir

}
.

(55)

Here we have defined φω,νn (τ , z) by

φω,νn (τ , z) = α′
νn
z1/2e−ikτ Iνn (|k|z) (56)

Note that φω,νn (τ , z) is not really a EAdS wave function.
One can transform this representation (after contour integration) to a more recog-

nizable form (from the EAdS viewpoint):

G(τ , z; τ ′, z′)

= |zz′| 12
2πJ

∫ ∞

−∞
dω e−iω(τ−τ ′)

{ ∞∑

m=0

Γ ( 34 + pm
2 )Γ ( 34 − pm

2 )

Γ ( 14 + pm
2 )Γ ( 14 − pm

2 )

pm
g̃′(pm)

Kpm (|ω|z>)Ipm (|ω|z<)

+
∞∑

n=0

Γ 2( 34 + νn
2 )

Γ 2( 14 + νn
2 )

(
νn

g̃(νn) − 1

) [
2Iνn (|ω|z>) − I−νn (|ω|z>)

]
Iνn (|ω|z<)

}
. (57)

Here we still have the zero mode (p0 = 3/2) coming from Γ ( 34 − p0
2 ) = ∞ which

is projected out through our Schwarzian mode gauge fixing. In this expression, the
Bessel function part of the first contribution in the RHS is the standard form for
EAdS propagator, while the extra factor coming from the leg-factors can be possibly
understood as a contribution from the naively pure gauge degrees of freedom as
in the c = 1 model, in which case the second contribution in RHS represents the
contribution from these modes.
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4 3D Realization and c = 1

To leading order in strong coupling, the spectrum of the theory is given by the
equation

g̃(ν) = 1 (58)

The solutions of this transcendental equation will be denoted by pm . The bilocal
propagator at strong coupling can be then written as

G(t, ẑ; t ′, ẑ′) ∼ − 1

J
|ẑ ẑ′| 12

∑

m

∫ ∞
−∞

dω

2π
e−iω(t−t ′)

∫
dν

Nν

Z∗
ν (|ωẑ|)Zν(|ωẑ′|)

ν2 − p2m
(2pm)R(pm)

(59)
where R(pm) denotes the residue at the pole ν = pm ,

[R(ν)]−1 = Nh

[
H−1+ h

2 + 1
q

+ H 1
2 − h

2 − 1
q

− Hh
2 − 1

q
− H− 1

2 − h
2 + 1

q

]
(60)

where Hn denotes the Harmonic number, and

Nh =
(
sin πh + sin 2π

q

)
Γ

(
2
q

)
Γ

(
2 − h − 2

q

)
Γ

(
1 + h − 2

q

)

πqΓ
(
3 − 2

q

) (61)

where, as before, we have defined h = ν + 1/2.
This form of the propagator shows that the theory can be thought of an infinite

number of fields living in AdS2 ordS2.However thesefields cannot have conventional
kinetic terms, as is clear from the nontrivial residue.

In [5, 7], we presented at 3D picture of the SYK theory, based on the fact that
the non-trivial spectrum predicted by the model, which are solutions of g̃(pm) = 1
with (m = 0, 1, 2, . . .) can be reproduced through Kaluza–Klein mechanism in one
higher dimension.

This picture is more natural in the AdS2 interpretation of the bilocal space. The
action of the theory is

1

2

∫
dtdzdx

√−g
[−gμν∂μΦ∂νΦ − V (x)Φ2

]
(62)

where the background metric which describes the bilocal theory of the strong cou-
pling SYK model is

ds2 = |x | 4
q −1

[
1

ẑ2
(−dt2 + dẑ2) + dx2

4|x |(1 − |x |)
]

(63)

and the direction x lies in the interval−1 < x < 1. The space-time is then conformal
to AdS2 × S1/Z2. The potential which appears in (62) is given by
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V (x) = 1

|x | 4
q −1

[
4

(
1

q
− 1

4

)2

− 1

4
+ 2V

J (x)

(
1 − 2

q

)
δ(x)

]
(64)

where V is a constant to be determined below and

J (x) = |x | 2
q −1

2
√
1 − |x | (65)

We will impose Dirichlet boundary conditions at x = ±1,

Φ(t, z,±1) = 0 (66)

while the delta function discontinuity in the potential determines the discontinuity
at x = 0 to be

Limε→0

[
|x |2/q√1 − |x |∂xΦ

]ε

−ε
=

(
1 − 2

q

)
VΦ(t, z, 0) (67)

In the following we will be interested in fields which are even under x → −x . For
such fields (67) implies

[
x2/q∂xΦ

]
x=0 =

(
1 − 2

q

)
V

2
Φ(t, z, 0) (68)

Once we impose this we can restrict to 0 < x < 1 and forget about the delta function.
It turns out that the Kaluza–Klein spectrum of this model is in exact agreement

with the SYK spectrum. Furthermore the bulk propagator of this theory between
points (t, ẑ, x = 0) and (t ′, ẑ′, x ′ = 0) exactly reproduce the SYK propagator. In the
following we will indicate how this happens for the simplest case q = 4, following
[7]. The treatment for general q is entirely analogous and given in [5].

For q = 4 the background is AdS2 × S1/Z2. In this case it is conveninent to use
coordinates −L ≤ y ≤ L , in terms of which the metric is

ds2 = 1

ẑ2
[−dt2 + dẑ2] + dy2 (69)

and the potential is simply a delta function at y = 0. This metric is that of the near-
horizon geometry of an extremal BTZ black hole.

To obtain the spectrum we decompose the field

Φ(t, ẑ, y) =
∑

k

∫
dω

∫
dν

Nν
e−iωt ẑ1/2Zν(|ωz|) fk(y) ξ(ω, ν, k) (70)
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where the function fk(y) denote the even parity eigenfunction of the operator−∂2
y +

V δ(y) satisfying Dirichlet conditions at the ends of the interval. This is a standard
Schrodinger problem. The solutions are

f (y) =
{
Bk sin(k(y − L)) (0 < y < L)

−Bk sin(k(y + L)) (−L < y < 0)
(71)

where k satisfies the equation

− 2

V
k = tan(kL) . (72)

If we choose L = π/2 and V = 3 we precisely reproduce the spectum of the SYK
model g̃q=4(ν) = 1 given by (21). The normalization factor Bk is given by

Bk =
√

2k

2kL − sin(2kL)
. (73)

Wecannowproceed and calculate the propagator using the abovemode expansion.
The result is

G(0)(ẑ, t, y; ẑ′, t ′, y′) = |ẑ ẑ′| 12
∑

k

fk(y) fk(y
′)

∫
dω

2π
e−iω(t−t ′)

∫
dν

Nν

Z∗
ν (|ωẑ|) Zν(|ωẑ′|)

ν2 − k2
,

(74)
Let us now evaluate this propagator with y = y′ = 0.

G(0)(t, ẑ, 0; t ′, ẑ′, 0) = − |ẑ ẑ′| 12
∞∑

k=0

C(k)
∫

dω

2π
e−iω(t−t ′)

∫
dν

Nν

Z∗
ν (|ωẑ|) Zν(|ωẑ′|)

ν2 − p2m
,

(75)
where we have defined

C(k) ≡ fk(0) fk(0) = B2
k

k2

k2 + (3/2)2
= 2k3

[k2 + (3/2)2][πk − sin(πk)] . (76)

On the other hand the residue factor in the SYK propagator (60) simplifies for q = 4
with the result

Rq=4(pm) = 3p2m
[p2m + (3/2)2][π pm − sin(π pm)] (77)

Therefore we have the relation

C(pm) = 2pm
3

R(pm) , (78)
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Consequently the 3d propagator (75) becomes exactly equal to the SYK propagator
with the index k simply renamed to pm . Integration over ν yields the expression

G(0)(t, z, 0; t ′, z′, 0) = 1

3
|zz′| 12

∞∑

m=0

∫ ∞

−∞
dω e−iω(t−t ′) R(pm)

Z−pm (|ω|z>)Jpm (|ω|z<)

Npm
.

(79)

This strong coupling propagator is of course divergent because of the contribu-
tion of pm = 3/2 where Z−3/2 diverges. This is in fact precisely the zero mode of
reparametrization invariance. At finite coupling we do not expect this diveregence
since the kinetic term in the SYK action breaks the symmetry. In the 3d picture, the
background (63) needs to be corrected. For q = 4 this modification is simple,

ds2 = 1

ẑ2
[−dt2 + dẑ2] +

[
1 + a

ẑ

]
dy2 (80)

where a ∼ 1
J . One can now proceed to solve the eigenvalue equation for the third

dimension perturbatively in a. This results in a shift of the eigenvalue k = ν = 3/2
to

ν = 3

2
+ a|ω|

6π

(
2 + q2

0

) + O(a2) . (81)

where qm denotes the expectation value of the operator −∂2
y − V (y) in the state

whose wavefunction is f pm (y) and p0 = 3/2. The shift in eigenvalue is in agreement
with the SYK result obtained by Maldacena and Stanford. Furthermore if we now
use the corrected eigenvalue to compute the contribution of this lowest mode to the
proagator we get

G(0)
zero−mode(t, z, 0; t ′, z′, 0) = − 9π

4a

B2
0

(2 + q20 )
|zz′| 12

∫ ∞

−∞
dω

|ω| e
−iω(t−t ′) J 3

2
(|ωz|)J 3

2
(|ωz′|) .

(82)
which is also in agreement with the “enhanced” propagator in the SYK model.

The situation for general q is exactly analogous and described in detail in [5].
In this case the eigenfunctions of the operator in the third dimension are hypergeo-
metric functions, and we have not been able to obtain analytic expressions for C(k).
However, a numerical evaluation of C(k) shows that the ratio C(k)

2kR(k) is independent
of k, and depends only on q. This establishes the agreement of the propagators.

The limit of large q is interesting. If one naively performs a 1/q expansion of the
right hand side of (19) one finds that the only solution to the eigenvalue equation is
the zero mode h = 2 or ν = 3/2. This is, however, incorrect. In fact, for any q there
are an infinite number of solutions. However, as q increases the residues of the poles
for all pm �= 3/2 go to zero,
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R(pm) → 1

q

4(2m2 + m)

(2m2 + m − 1)2
+ O(1/q2) , pm �= 3/2

R(3/2) = 2

3
− 1

q

(
5

2
+ π2

3

)
+ O(1/q2) (83)

This means that to leading order at large q only the pm = 3/2 mode contributes to
the propagator.

Now, we will point out a similarity between the 3D picture of the SYK model [5,
7] and the c = 1 Liouville theory (2D string theory).

Consider the three dimensional propagator (74). After the (inverse) Radon trans-
form and the contour integral for the continuous mode sum, the propagator is
reduced to

G(0)
ω;−ω(z, y; z′, y′)

= |zz′| 12
4π

∑

k

fk(y) fk(y
′)

{
Γ

( 3
4 + k

2

)
Γ

( 3
4 − k

2

)

Γ
( 1
4 + k

2

)
Γ

( 1
4 − k

2

) Kk(|ω|z>)Ik(|ω|z<)

+ 2
∞∑

n=0

Γ 2
( 3
4 + νn

2

)

Γ 2
( 1
4 + νn

2

)
(

νn

ν2n − k2

)
Iνn (|ω|z<)

[
2Iνn (|ω|z>) − I−νn (|ω|z>)

] }
.

(84)

On the other hand, for the c = 1 matrix model / 2D string duality, theWilson loop
operator is related to the matrix eigenvalue density field φ by

W (t, �) ≡ Tr
(
e−�M(t)

)
=

∫ ∞

0
dx e−�x φ(t, x) . (85)

The corresponding propagator was found by Moore and Seiberg [21] as

〈
w(t,ϕ)w(t ′,ϕ′)

〉
=

∫ ∞

−∞
dE

∫ ∞

0
dp

p

sinh π p

φ∗
E,p(t,ϕ)φE,p(t ′,ϕ′)

E2 − p2
, (86)

with � = e−ϕ and the normalized wave function

φE,p(t,ϕ) = √
p sinh π p e−i Et Kip(

√
μe−ϕ) . (87)

After evaluating the p-integral as a contour integral, we obtain the propagator as

〈
w(t,ϕ)w(t ′,ϕ′)

〉
= −π

∫ ∞

−∞
dE e−i E(t−t ′)

{
πE

2 sinh πE
KiE (

√
μe−ϕ<

) Ii E (
√

μe−ϕ>

)

+
∞∑

n=1

(−1)nn2

E2 + n2
Kn(

√
μe−ϕ<

) In(
√

μe−ϕ>

)

}
.

(88)
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The point we want to make here is that this 3D picture is completely parallel to
the c = 1 Liouville theory (2D string theory) [23]. Namely, if we make a change of
coordinate by z = e−ϕ, then the ϕ-direction becomes the Liouville direction, while
the y-direction (at least in the leading order of 1/J ) can be understood as the c = 1
matter direction. In this comparison, the τ -direction serves as an extra direction.
Finally, the ν appearing in the SYK model is realized as a momentum k along the
y-direction in the 3D picture (84). Therefore, we have the following correspondence
between the c = 1 non-critical string and the 3D picture of the SYK model.

ie−ϕ ⇔ z ,

−i t ⇔ y ,

i p ⇔ ν ,

i E ⇔ k ,√
μ ⇔ |ω| , (89)

where the LHS corresponds to quantities in 2D string theory while the RHS is the
3D picture of the SYK model.

There is also an appearance of Radon type transforms in the context of the c =
1/D = 2 string correspondence in identifying the holographic space-time. In [13]
one had a transformation from the collective to a 2D (black hole) space-time of the
form

T (u, v) =
∫ ∞

−∞
dt

∫ ∞

0
dx δ

(
ue−t + vet

2
− x2

)
γ(i∂t )φ(t, x) , (90)

where T (u, v) is the tachyon field in the Kruskal coordinates representing the target
space-time and φ(t, x) is related to the eigenvalue density field. This map is identical
to the Radon map. It appears that non-local map are in general required in going
from collective to bulk space-time.
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Implications of HiddenN = (0, 1)
Super-Symmetry inN = (1, 1), 6D
SYM Theory

Evgeny Ivanov

Abstract Using the harmonic superfield description of N = (1, 1) SYM theory,
the list of possible candidate counterterms with the canonical dimensions d = 6, 8
and 10 is derived from hidden N = (0, 1) supersymmetry. The d = 6 and d = 8
counterterms are at least on-shell vanishing, that means the one- and two-loop UV
finiteness of N = (1, 1) SYM theory. The explicit quantum calculations in fact
demonstrate a stronger property of its off-shell one-loop finiteness.

Keywords Supersymmetry · Superspace · Gauge fields

1 Motivations and Contents

For the last years, maximally extended supersymmetric gauge theories (with 16
supersymmetries) are a subject of intensive study. In diverse space-time dimensions,
these theories are realized as

(a) N = 4, 4D SYM (b) N = (1, 1), 6D SYM (c) N = (1, 0), 10D SYM ,

where SYM stands for “Super Yang–Mills”. Among them, N = 4, 4D SYM the-
ory is most renowned. It is UV finite and, perhaps, completely integrable at the
quantum level [1]. On the other hand,N = (1, 1), 6D SYM is not renormalizable
by formal counting (the coupling constant is dimensionful) but it was also found to
exhibit various unique properties. In particular, it enjoys the so-called “dual confor-
mal symmetry” like its 4D counterpart [2]. It gives the effective theory descriptions
of some particular low energy sectors of string theory, like D5-brane dynamics.
The full low-energy effective action of D5-brane is expected to be a non-abelian
Born-Infeld-type generalization of the microscopic N = (1, 1) SYM action [3].
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TheN = (1, 1) SYM theory is anomaly free [4], as opposed toN = (1, 0) SYM,
which makes unambiguous the perturbative quantum calculations in this extended
supersymmetric 6D theory. The N = (1, 1) and N = (1, 0) SYM theories are
analogs of N = 8, 4D supergravity and its lower N descendants, as well as of
their higher-dimensional cousins, which all are also non-renormalizable by formal
counting. So the study of the quantum properties of these 6D gauge theories can
shed more light on the quantum structure of diverse extended supergravities.

Recent explicit quantumcalculations inN = (1, 1)SYM(treated as a low-energy
limit of type II superstrings) revealed a lot of cancelations of the UV divergencies
which could not be expected in advance. The theory isUV-finite up to 2 loops,while at
3 loops only a single-trace counterterm of canonical dim 10 is required. The allowed
double-trace counterterms do not appear [5–7]. To explain these peculiar features,
one seemingly needs new non-renormalization theorems. As usual, the maximally
supersymmetric off-shell formulations are required to clarify these issues.

However, maximum what one can achieve in 6D is off-shell N = (1, 0) super-
symmetry.1 The most natural off-shell formulation ofN = (1, 0) SYM is achieved
in harmonic N = (1, 0), 6D superspace (HSS) [9, 10] as a generalization of
N = 2, 4D HSS [11, 12]. In HSS, the N = (1, 1) SYM theory action can be
presented as a sum (schematically) [N = (1, 1) SYM] = [N = (1, 0) SYM + 6D
hypermultiplet ], with the second hidden on-shell N = (0, 1) supersymmetry.2

In order to reveal the possible structure of the effective action and candidate
counterterms forN = (1, 1) SYM theory, one should learn how to construct higher-
dimensionN = (1, 1) invariants in terms ofN = (1, 0) superfields. In the “brute-
force” method one starts with the appropriate N = (1, 0) SYM invariant and then
completes it toN = (1, 1) invariant by adding the proper hypermultiplet terms. It is
very cumbersome technically, though the life is somewhat simplified by the fact that
for finding all admissible superfield counterterms it is sufficient to stay on shell.3

In [13] there was developed a new approach to constructing higher-dimension
N = (1, 1) invariants, based on the concept of on-shellN = (1, 1) harmonic super-
space [14]. It provides a systematic way of setting up candidate counterterms for
quantum N = (1, 1) SYM theory, as well as possible finite contributions to its
superfield effective action.

The hidden supersymmetry in itself tells us nothing about the precise coefficients
with which the variousN = (1, 1) invariants constructed in one or another way can
enter the effective action. One can reproduce them from the superfield perturbation
theory. The first steps towards this goal were recently undertaken in [15–17].

All these issueswill be addressed inmy talk. It basically followsRefs. [13, 15–19].

1The maximal off-shell supersymmetry with 16 supercharges is attainable in the “pure spinor”
superfield formalism [8], but here we limit our attention to the standard superspaces.
2We use the term “hidden supersymmetry” for some historical reasons. Perhaps, “non-manifest”
would be more appropriate.
3This just means that the on-shell vanishing counterterms can be absorbed into the microscopic
action by a field redefinition. No equations of motion are assumed for the involved (super)fields.
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2 6D Superspace Techniques

2.1 Basic Superspaces

• StandardN = (1, 0), 6D superspace [20] is defined as the following set of coor-
dinates:

z = (xM , θa
i ) , M = 0, . . . , 5 , a = 1, . . . , 4 , i = 1, 2 , (1)

with the Grassmann pseudoreal θa
i variables.

• Harmonic N = (1, 0), 6D superspace [9, 10] is constructed by adding SU (2)
harmonics to (1):

Z := (z, u) = (xM , θai , u±i ) , u−
i = (u+

i )∗, u+i u−
i = 1 , u±i ∈ SU (2)R/U (1) .

(2)

• Analytic N = (1, 0), 6D superspace has half the number of Grassmann coordi-
nates as compared to (2):

ζ := (xM
(an), θ

+a, u±i ) ⊂ Z , xM
(an) = xM + i

2
θa
k γ M

ab θb
l u

+ku−l , θ±a = θa
i u

±i .

(3)

It is still closed under the action of N = (1, 0), 6D supersymmetry.

The basic differential operators in the analytic basis of 6D HSS read:

D+
a = ∂−a , D−

a = −∂+a − 2iθ−b∂ab ,

D0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
+ θ+a∂+a − θ−a∂−a

D++ = ∂++ + iθ+aθ+b∂ab + θ+a∂−a ,

D−− = ∂−− + iθ−aθ−b∂ab + θ−a∂+a , (4)

where ∂±aθ
±b = δba and ∂++ = u+i ∂

∂u−i , ∂−− = u−i ∂
∂u+i . They obey the following

(anti)commutation relations

{D+
a , D−

b } = −2i∂ab , [D++, D+
a ] = 0 , [D++, D−

a ] = D+
a ,

[D−−, D+
a ] = D−

a , [D−−, D−
a ] = 0 ,

[D++, D−−] = D0 , [D0, D±±] = ±2D±± . (5)
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2.2 Basic Superfields

• The basic geometric object of N = (1, 0) SYM theory is the analytic gauge
connection V++:

∇++ = D++ + V++ , δV++ = −∇++Λ, Λ = Λ(ζ) .

• The second harmonic (non-analytic) connection V−− covariantizes the second
harmonic derivative:

∇−− = D−− + V−− , δV−− = −∇−−Λ .

It s related to V++ by the harmonic flatness condition

[∇++,∇−−] = D0 ⇒ D++V−− − D−−V++ + [V++, V−−] = 0

⇒ V−− = V−−(V++, u±) .

One can make use of the analytic gauge freedom to choose the Wess–Zumino
gauge:

V++ = θ+aθ+b Aab + 2(θ+)3aλ
−a − 3(θ+)4D−− .

Here Aab is the gauge field, λ−a = λai u−
i is the gaugino and D−− = D iku−

i u
−
k ,

whereD ik = D ki are the auxiliary fields. This is just the irreducible content of the
N = (1, 0) vector (gauge) multiplet.

• Using V−−, one can define the covariant spinor and vector derivatives

∇−
a = [∇−−, D+

a ] = D−
a + A −

a , ∇ab = 1

2i
[D+

a ,∇−
b ] = ∂ab + Aab ,

A −
a (V ) = −D+

a V
−−, Aab(V ) = i

2
D+

a D+
b V

−−,

[∇++,∇−
a ] = D+

a , [∇++, D+
a ] = [∇−−,∇−

a ] = [∇±±,∇ab] = 0 ,

and the covariant superfield strengths

[D+
a ,∇bc] = i

2
εabcdW

+d , [∇−
a ,∇bc] = i

2
εabcdW

−d ,

W+a = −1

6
εabcd D+

b D
+
c D

+
d V

−− , W−a := ∇−−W+a ,

∇++W+a = ∇−−W−a = 0 , ∇++W−a = W+a ,

D+
b W

+a = δab F
++ , F++ = 1

4
D+

a W
+a = (D+)4V−− ,

∇++F++ = 0 , D+
a F

++ = 0 .
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• The hypermultiplet superfield, like in theN = 2, 4D case, has an infinite number
of auxiliary fields off shell:

q+A(ζ ) = qi A(x)u+
i − θ+aψ A

a (x) + An infinite tail of auxiliary fields , A = 1, 2 .

These fields come from the expansion of q+A(ζ ) over harmonic variables.

2.3 N = (1, 0) Superfield Actions

The N = (1, 0) SYM action in 6D HSS was suggested by Boris Zupnik [10]:

SSYM = 1

f 2

∞∑

n=2

(−1)n+1

n
Tr

∫
d6x d8θ du1 . . . dun

V++(z, u1) . . . V++(z, un)

(u+
1 u

+
2 ) . . . (u+

n u
+
1 )

,

δSSYM = 0 ⇒ F++ = 0 ,

where 1/(u+
1 u

+
2 ), . . . are the harmonic distributions defined in [11, 12].

The hypermultiplet action (with q+A in the adjoint representation of gauge group
for simplicity) reads

Sq = − 1

2 f 2
Tr

∫
dζ (−4)q+A∇++q+

A , ∇++q+
A = D++q+

A + [V++, q+
A ] ,

δSq = 0 ⇒ ∇++q+A = 0 .

The N = (1, 0) superfield form of the N = (1, 1) SYM action is a sum of the
two actions just defined:

S(V+q) = SSYM + Sq = 1

f 2

(∫
dZL SYM − 1

2
Tr

∫
dζ (−4)q+A∇++q+

A

)
,

δS(V+q) = 0 ⇒ F++ + 1

2
[q+A, q+

A ] = 0 , ∇++q+A = 0 .

It possesses an invariance under the second hidden N = (0, 1) supersymmetry:

δV++ = ε+Aq+
A , δq+A = −(D+)4(ε−

A V
−−) , ε±

A = εaAθ
±a . (6)

While N = (1, 0) supersymmetry closes off shell on the analytic harmonic super-
fields V++ and q+A, the transformations (6) form, together withN = (1, 0) super-
symmetry, a closed N = (1, 1) supersymmetry only on shell, i.e. with taking into
account the equations of motion for V++ and q+A (see details in [13]). The situa-
tion here is quite similar to what one observes in N = 2 superfield formulation of
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N = 4, 4D SYM theory: there, only N = 2 supersymmetry is manifest and off-
shell, whereas the rest of N = 4 supersymmetry is realized by the transformations
like (6), with the on-shell closure [12].

3 Higher-DimensionN = (1, 0) andN = (1, 1)
Invariants

It is natural to ask how to construct the higher-dimensionN = (1, 1) invariants from
the N = (1, 0) gauge superfield strength W+a and the hypermultiplet superfield
q+A. First attempts to solve this problem were based on direct calculations.

• d = 6: In the pure SYM case the invariant of this dimension was uniquely con-
structed as [18]

S(6)
SY M = 1

2g2
Tr

∫
dζ (−4)du

(
F++)2 ∼ Tr

∫
d6x[(∇M FML)

2 + . . .] .

Does its off-shell completion to an off-shell N = (1, 1) invariant exist? The
answer is NO, only an expression whose N = (0, 1) variation vanishes on-shell
can be found. It is unique up to two real parameters

L d=6 = c0
2g2

Tr
∫

dudζ (−4)

(
F++ + 1

2
[q+A, q+

A ]
) (

F++ + 2β[q+A, q+
A ]) .

But it vanishes on-shell by itself! Thus the non-vanishing on-shell counterterms
of the canonical dimension 6 are absent, and this proves the one-loop finiteness of
N = (1, 1) SYM theory.
Recently, d = 6 counterterms were found by the explicit quantum calculations in
N = (1, 0) superspace [15–17]. It was shown that they vanish off shell, without
any need in the equations ofmotion, just because of vanishing of the corresponding
numerical coefficients!

• d = 8: AllN = (1, 0) superfield terms of such dimension in the pureN = (1, 0)
SYM theory prove to vanish on the gauge fields mass shell, in accord with the old
statement of Ref. [21]. Could adding the hypermultiplet terms somehow change
this result?
Our analysis showed that there exist NO N = (1, 0) supersymmetric off-shell
invariants of the dimension 8 which would respect the on-shellN = (1, 1) invari-
ance.
This means thatN = (1, 1) SYM theory is at least on-shell finite at two loops. It
is still an open question whether it is off- shell finite, i.e. whether the coefficients
of the candidate counterterms are vanishing, like in the one-loop approximation
(now under examination).
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Surprisingly, the d = 8 superfield expression which is non-vanishing on shell and
respects an on-shellN = (1, 1) supersymmetry can be constructed by giving up the
requirement of off-shell N = (1, 0) supersymmetry.

An example of such an invariant in N = (1, 0) SYM is very simple

S̃(8)
1 ∼ Tr

∫
dζ (−4) εabcdW

+aW+bW+cW+d .

Since D+
a W

+b = δba F
++, it vanishes on shell, when F++ = 0 . Thus, W+a is an

analytic superfield, when disregarding the terms proportional to the equations of
motion, and so the above action respectsN = (1, 0) supersymmetry on shell. Also,
a double-trace on-shell invariant exists. Both such on-shell invariants admit N =
(1, 1) completions.

Though the nontrivial on-shell d = 8 invariants exist, they cannot appear as coun-
terterms for theN = (1, 1) SYM theory. The reason is that they do not possess the
off-shell N = (1, 0) supersymmetry which the physically relevant counterterms
should obey within the manifestlyN = (1, 0) invariant supergraph techniques. The
non-existence of such counterterms agrees with the component consideration of
Ref. [22].

Apart from the fact that such d = 8 terms cannot appear as counterterms inN =
(1, 1) SYM theory, they can appear, e.g., as finite quantum corrections to the effective
Wilsonian action. For the pure N = (1, 0) SYM theory this was substantiated in
[23, 24].

It was of clear necessity to develop some simple and systematic way of con-
structing higher-order on-shellN = (1, 1) supersymmetric invariants. This became
possible within the on-shell harmonic N = (1, 1) superspace.

4 N = (1, 1) Harmonic Superspace

The first step in constructing such a superspace is to promoteN = (1, 0) superspace
toN = (1, 1) one,

z = (xab, θa
i ) ⇒ ẑ = (xab, θa

i , θ̂ A
a ).

As a result, the double set of covariant spinor derivatives comes out,

∇ i
a = ∂

∂θa
i

− iθbi∂ab + A i
a , ∇̂aA = ∂

∂θ̂Aa
− i θ̂ A

b ∂ab + ˆA aA .

The defining constraints ofN = (1, 1) SYM in this extended superspace read as
[20, 21]:
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{∇(i
a ,∇ j)

b } = {∇̂a(A, ∇̂bB)} = 0 , {∇ i
a, ∇̂bA} = δbaφ

i A

⇒ ∇(i
a φ j)A = ∇̂a(AφB)i = 0 (By Bianchis) .

Next, we defineN = (1, 1) HSS with the double set of SU (2) harmonics [14]:

Z = (xab, θa
i , u±

k ) ⇒ Ẑ = (xab, θa
i , θ̂ A

b , u±
k , u±̂

A) .

Thenwe pass to the analytic basis and choose the “hatted” spinor derivatives short,
∇+̂a = D+̂a = ∂

∂θ −̂
a

. TheN = (1, 1) SYM constraints are rewritten inN = (1, 1)

HSS as

{∇+
a ,∇+

b } = 0 , {D+̂a, D+̂b} = 0 , {∇+
a , D+̂b} = δbaφ

++̂ ,

[∇+̂+̂,∇+
a ] = 0 , [∇̃++,∇+

a ] = 0 , [∇+̂+̂, Da+̂] = 0 , [∇̃++, Da+̂] = 0 ,

[∇̃++,∇+̂+̂] = 0 .

Here

∇+
a = D+

a + A +
a (Ẑ) , ∇̃++ = D++ + Ṽ++(ζ̂ ) , ∇+̂+̂ = D+̂+̂ + V +̂+̂(ζ̂ ) ,

ζ̂ = (xaban , θ±a, θ +̂
c , u±

i , u±̂
A) .

The starting point of solving these constraints is to fix, using the Λ(ζ̂ ) gauge
freedom, the WZ gauge for the second harmonic connection V +̂+̂(ζ̂ )

V +̂+̂ = iθ +̂
a θ +̂

b
ˆA ab + εabcdθ +̂

a θ +̂
b θ +̂

c ϕA
d u

−̂
A + εabcdθ +̂

a θ +̂
b θ +̂

c θ +̂
d D

ABu−̂
Au

−̂
B ,

with ˆA ab, ϕA
d and D (AB) being some N = (1, 0) harmonic superfields.

Then the above constraints are reduced to some harmonic equations which can be
explicitly solved. The central point is the requirement that the vector 6D connections
in the sectors of hatted and unhatted variables are identical to each other.

As the final result, we have found that the first harmonic connectionV ++ coincides
precisely with the standardN = (1, 0) one, V++ = V++(ζ ), while the dependence
of all other N = (1, 1) objects on the variables with “hat” is strictly fixed as

V +̂+̂ = iθ +̂
a θ +̂

b A
ab − 1

3
εabcdθ +̂

a θ +̂
b θ +̂

c D+
d q

−−̂ + 1

8
εabcdθ +̂

a θ +̂
b θ +̂

c θ +̂
d [q+−̂, q−−̂]

φ++̂ = q++̂ − θ +̂
a W+a − iθ +̂

a θ +̂
b ∇abq+−̂ + 1

6
εabcdθ +̂

a θ +̂
b θ +̂

c [D+
d q

−−̂, q+−̂]

+ 1

24
εabcdθ +̂

a θ +̂
b θ +̂

c θ +̂
d [q+−̂, [q+−̂, q−−̂]] .

Here, q+±̂ = q+A(ζ )u±̂
A , q−±̂ = q−A(ζ )u±̂

A andW+a, q±A are just theN = (1, 0)
superfields used previously. In the process of solving the constraints, there appeared
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the analyticity conditions for q+A, as well as the full set of the superfield equations
of motion

∇++q+A = 0 , F++ = 1

4
D+

a W
+a = −1

2
[q+A, q+

A ] .

The basic advantage of using the constrained N = (1, 1) strengths φ±+̂ for the
purpose of constructing various invariants is their extremely simple transformation
rules under the hidden N = (0, 1) supersymmetry

δφ±+̂ = −ε+̂
a

∂

∂θ +̂
a

φ±+̂ − 2iε−̂
a θ +̂

b ∂abφ±+̂ − [Λ(comp), φ±+̂] ,

where Λ(comp) is some composite gauge parameter which does not contribute under
the trace.

5 Invariants in N = (1, 1) Superspace

The single-trace on-shell d = 8 invariant admits a simple rewriting in N = (1, 1)
superspace

S(1,1) =
∫

dudζ (−4)L+4
(1,1) , L+4

(1,1) = −Tr
1

4

∫
d ζ̂ (−4)dû (φ++̂)4, d ζ̂ (−4) ∼ (D−̂)4

δL+4
(1,1) = −2i∂abTr

∫
d ζ̂ (−4)dû

[
ε−̂
a θ +̂

b

1

4
(φ++̂)4

]
.

The double-trace d = 8 invariant can also be straightforwardly constructed.
Now it is easy to construct the single- and double-trace d = 10 invariants as

candidates for the 3-loop counterterms

S(10)
1 = Tr

∫
dZd ζ̂ (−4)dû (φ++̂)2(φ−+̂)2, φ−+̂ = ∇−−φ++̂ ,

S(10)
2 = −

∫
dZd ζ̂ (−4)dû Tr

(
φ++̂φ−+̂

)
Tr

(
φ++̂φ−+̂

)
.

These are N = (1, 1) extensions of the N = (1, 0) SYM invariants
∼ εabcdTr

(
W+aW−bW+cW−d

)
and ∼ εabcd Tr (W+aW−b)Tr (W+cW−d).

It is notable that the single-trace d = 10 invariant admits a representation as an
integral over the fullN = (1, 1) superspace

S(10)
1 ∼ Tr

∫
dZd Ẑ φ++̂φ−−̂ , φ−−̂ = ∇−̂−̂φ−+̂ .
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On the other hand, the double-trace d = 10 invariant cannot be written as the full
integral and so it looks as being UV protected.

This could partly explain why in the perturbative calculations of theN = (1, 1)
SYM amplitudes, the single-trace 3-loop divergence is only seen, while no double-
trace structures at the same order were observed [6, 7]

However, this does not seem to be like the standard non-renormalization theo-
rems because the quantum calculation of N = (1, 0) supergraphs should generate
invariants in the off-shell N = (1, 0) superspace, not in the on-shell N = (1, 1)
superspace. So some additional piece of reasoning is needed to explain the absence
of the double-trace divergences.

6 QuantumN = (1, 0) andN = (1, 1) SYM

For calculating variousN = (1, 0) andN = (1, 1) invariants, including countert-
erms, there was an urgent need to formulate self-consistent N = (1, 0) superfield
perturbation techniques: superpropagators, background field method, etc. All that
was recently given in a few papers by Buchbinder, Ivanov, Merzlikin and Stepa-
nyantz, [15–17]. These methods were used to prove the one-loop off-shell finiteness
of N = (1, 1) SYM theory formulated in terms of N = (1, 0) superfields.

The basic idea of the background field method is to split the relevant superfields
into the sum of the “background” superfields V++, Q+ and the “quantum” ones
v++, q+ ,

V++ → V++ + f v++, q+ → Q+ + q+ , (7)

and then to expand the action in a power series in quantum fields.
In brief, in the background field approach theN = (1, 0) , 6D SYM theory with

hypermultiplets is described by the three quantum superfield ghosts: two fermionic
Faddeev-Popov ghosts b and c together with the single bosonic Nielsen-Kallosh
ghost ϕ, in addition to the quantum v++ and q+ superfields. It was convenient to
start with the model in which hypermultiplet belongs to an arbitrary representation
R of gauge group, not just to the adjoint one.

After integrating, in the functional integral, over quantum superfields, the follow-
ing representation for the one-loop quantum correction to the classical action was
obtained

Γ (1)[V++, Q] = i

2
Tr ln

{ �

�
AB −2 f 2 Q̃+m

(
T AG(1,1)T

B
)
m
nQ+

n

}
− i

2
Tr ln

�

�

−iTr ln(∇++)2Adj +
i

2
Tr ln(∇++)2Adj + iTr ln∇++

R ,

where subscripts Adj and R mean that the corresponding operators are taken in the
adjoint representation and the representation R of the hypermultiplet, and
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�

�= 1

2
(D+)4(∇−−)2

is the covariant Box operator.
The complete one-loop divergent part of the effective action reads

Γ
(1)
div [V++, Q+] = C2 − dR

dG
C2(R)

3(4π)3ε
Tr

∫
dζ (−4)du (F++)2

− 2i f 2

(4π)3ε

∫
dζ (−4)du Q̃+(C2 − C2(R))F++Q+. (8)

The coefficients of the (F++)2 and Q̃+F++Q+ terms in the divergent part of one-
loop effective action are proportional to the differences between the second order
Casimir operator C2 for adjoint representation of gauge group and the operators
T (R) = dR

dG
C2(R) and C2(R) for the hypermultiplet representation R, respectively.

Since N = (1, 1) , 6D supersymmetric Yang–Mills theory involves the hyper-
multiplet in adjoint representation of gauge group, with dR = dG, C2(R) = C2, the
divergent part vanishes for this case. Hence, theN = (1, 1) SYM theory is one-loop
finite, and there is no need to use the equations of motion to prove this property.

For any other choice of the hypermultiplet irrep, (8) does not vanish even on shell,
so in general the theory is divergent already at one loop. The pureN = (1, 0) SYM
corresponds to C2(R) = 0 and the one-loop divergency is vanishing on the equation
of motion F++ = 0, in accord with the old result by Howe and Stelle [21].

7 Summary and Outlook

Let me summarize the above presentation.

• Off-shell N = (1, 0) and on-shell harmonic N = (1, 1) , 6D superspaces can
be efficiently used to construct higher-dimensional invariants in the N = (1, 0)
and N = (1, 1) SYM theories.

• N = (1, 1)SYMconstraintswere solved in terms of harmonicN = (1, 0) super-
fields. This allowed to explicitly construct the full set of the superfield dimension
d = 8 and d = 10 invariants withN = (1, 1) on-shell supersymmetry.

• All d = 6 N = (1, 1) invariants are at least on-shell vanishing, proving the UV
finiteness of N = (1, 1) SYM at one loop.

• The off-shell d = 8 N = (1, 1) invariants are absent. Assuming that the N =
(1, 0) supergraphs yield integrals over the fullN = (1, 0) harmonic superspace,
this means the absence of two-loop counterterms.

• Two d = 10 invariants were explicitly constructed as integrals over the whole
N = (1, 0) harmonic superspace. The single-trace invariant can be rewritten as
an integral over N = (1, 1) superspace, while the double-trace one cannot. This
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property combined with an additional reasoning could explain why the double-
trace invariant is UV protected.

• The quantum techniques for N = (1, 0) SYM theory was worked out and used
to show thatN = (1, 1) SYM theory is one-loop finite off shell, without need in
equations of motion.

7.1 Further Lines of Study

In conclusion, we outline some further possible lines of study:
(a) To construct the next d ≥ 12 invariants in the N = (1, 1) SYM theory with

the help of the on-shell N = (1, 1) harmonic superspace techniques (Buyukli &
Ivanov, in preparation);

(b) To reproduce higher-dimensional invariants from the quantum superfield per-
turbation theory, to examine whetherN = (1, 1) SYM theory is two-loop finite off
shell (Buchbinder et al., in preparation)4;

(c) Towork out the quantum superfield perturbation theory directly inN = (1, 1)
double-harmonized superspace;

(d) To apply the same methods for constructing the Born-Infeld action with man-
ifest off-shell N = (1, 0) and hidden on-shell N = (0, 1) supersymmetries. To
check the hypothesis that such an action could be identified with the full quantum
effective action of N = (1, 1) SYM;

(e) Applications in supergravity?
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TBA and Tree Expansion

Ivan Kostov, Didina Serban and Dinh-Long Vu

Abstract We propose an alternative, statistical, derivation of the Thermodynamic
Bethe Ansatz based on the tree expansion of the Gaudin determinant. We illustrate
the method on the simplest example of a theory with diagonal scattering and no
bound states. We reproduce the expression for the free energy density and the finite
size corrections to the energy of an excited state as well as the LeClair-Mussardo
series for the one-point function for local operators.

Keywords Thermodynamic Bethe Ansatz · Integrable models · Matrix-Tree
Theorem

1 Introduction

The finite size effects in 1+1 dimensional field theories come from the quantisation
of the momenta of the physical particles, as well as from the virtual “mirror” parti-
cles winding around the space circle R [1]. When R is large, the exponentially small
contribution from the mirror particles can be neglected and the spectrum is deter-
mined by the “asymptotic” Bethe–Yang equations, which take into account only the
scattering processes between the physical particles. As it was first realised by Al.
Zamolodchikov [2], for finite R a powerful technique for summing up the finite
size corrections is given by the Thermodynamical Bethe Ansatz, or TBA [3].
If the the theory is Lorentz invariant, the finite size effects can be traded to finite

I. Kostov (B) · D. Serban · D.-L. Vu
Institut de Physique Théorique, CNRS-UMR 3681-INP, C.E.A.-Saclay,
91191 Gif-sur-Yvette, France
e-mail: ivan.kostov@ipht.fr

D. Serban
e-mail: didina.serban@ipht.fr

D.-L. Vu
e-mail: dinh-long.vu@ipht.fr

© Springer Nature Singapore Pte Ltd. 2018
V. Dobrev (ed.), Quantum Theory and Symmetries with Lie Theory
and Its Applications in Physics Volume 2, Springer Proceedings
in Mathematics & Statistics 255, https://doi.org/10.1007/978-981-13-2179-5_6

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2179-5_6&domain=pdf


78 I. Kostov et al.

temperature effects. The main idea of the TBA is that the thermal trace is dominated
by a saddle point for the density of states, which is obtained as the solution of some
non-linear integral equations. By analytical continuation one can obtain the “exact
Bethe equations” for the spectrum of the excited states in finite volume [4].

In the last decades much attention is been focused on combining the TBA and
the form factor bootstrap in order to compute the correlation functions at finite
volume/temperature. This is a problem of higher complexity and in spite of the
considerable progress a systematic procedure is not yet available for the higher point
functions. The main difficulty is to learn how to insert efficiently the resolution of
the identity between the local operators in order to split the correlation function into
simpler objects, the elementary form factors at infinite volume. In other words, the
saddle point analysis of the TBA is not sufficient and has to be replaced by a more
subtle, field-theoretical, consideration.

Another motivation for looking at the sum over the intermediate states is the
recently proposed hexagon bootstrap program in the AdS/CFT integrable model [5]
which can be applied for the computation of higher point correlation functions. The
proposal prescribes to insert complete sets of mirror particles between the hexagon
operators. Although these effects resemble the wrapping corrections in the spectral
problem, no TBA methods have yet been developed to resum them.

In this paper, we address the problem of performing the sum over the mirror
states in the simplest case of a theory with diagonal scattering and no bound states.
Our proposal is close in spirit to some previous works [6, 8] where the excluded
volume in the sum over the intermediate states is compensated by including into
the sum non-physical solutions of the asymptotic Bethe–Yang equations. The new
development is that we succeeded to perform explicitly the sum over the states using
a graph expansion of the Gaudin determinant which gives the integration measure
over the Bethe states in themirror channel. This graph expansion leads to a Feynman-
like diagram technique which allows us to write the free energy as a sum over tree
Feynman diagrams.

In Sect. 2 we explain our method on the simplest example of a diagonal theory
without bound states for which we compute the partition function on a cylinder
with circumference R as the thermal trace in the mirror theory. In the rest of the
text we consider two more examples, where we re-derive the formulas obtained
previously by ingenuous application of the TBA. In Sect. 3 we compute the energy
of an excited state in the physical channel. In Sect. 4 we derive the LeClair-Mussardo
series for the one-point function. In all three examples we reduce the computation
to a combinatorial problem involving the sum over tree graphs.
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2 Integrable Quantum Field Theory on a Cylinder:
The Partition Function

2.1 Physical and Mirror Channels

Consider an integrable 1+1 dimensional field theory with one single type of particle
excitations above the vacuum. The dispersion relation between the momentum p and
the energy E of the particle is parametrised by the rapidity variable u:

p = p(u),E = E(u). (1)

We assume that there exists a transformation to the “mirror” theory in which the role
of the time t and the space x are exchanged. The physical and the mirror channels
are related by a “mirror” transformation x = −it̃, t = −ix̃ and E = ip̃, p = iẼ. The
mirror transformation can be encoded in a transformation γ : u → ũ of the rapidity
parameter, so that

E(ũ) = ip̃(u), p(ũ) = iẼ(u). (2)

The square of the mirror transformation gives the crossing transformation γ2 : u →
ū = γũwhich relates particles to anti-particles. If the theory is Lorentz invariant, then
the mirror and the physical theories are identical. The diagonal S-matrix S(u, v) is
supposed to satisfy, besides the Yang-Baxter equations, unitarity S(u, v)S(v, u) = 1,
crossing symmetry S(u, v) = S(v̄, ū), and the condition S(u, u) = −1. We will not
need to assume that the S-matrix is a function of the difference of the two rapidities.

If the theory is confined in a finite volumeRwith periodic boundary conditions, the
eigenstates of the Hamiltonian can be constructed as superpositions of plane waves
according to the Bethe Ansatz, with the spectrum of the rapidities determined by
condition of periodicity. Each eigenstate from the N -particle sector is characterised
by a set of rapidities u = {u1, . . . , uN } and the energy of this state is equal to

E(u) =
N∑

j=1

E(uj). (3)

When R is sufficiently large, the spectrum of the energies are determined by the
Asymptotic Bethe Ansatz. The quantisation condition for the rapidities is expressed
in terms of the total phase factor corresponding to a process in which one of the N
particles winds once around the space circle,



80 I. Kostov et al.

φj(u1, . . . , uN ) ≡ p(uj)R + 1

i

N∑

k(�=j)

log S(uj, uk) (j = 1, . . . ,N ). (4)

For periodic boundary conditions the scattering phases can take integer values mod-
ulo 2π

φj(u1, . . . , uN ) = 2πnj with nj integer, j = 1, . . . ,N . (5)

In a system of units where the mass of the particle is equal to one, the asymptotic
expression (37) for the scattering phases is true up to o(e−R) terms. For finite R
the Bethe–Yang equations (4)–(5) are deformed by the scattering with the virtual
particles in the mirror channel which wrap the space circle [24]. One can study the
finite volume effects using the TBA in the mirror channel. One can introduce an
infrared cutoff in the mirror theory by considering the cylinder as the limit of a torus
obtained as the product of the space circle with a time circle with asymptotically large
circumference L. When L is large, one can construct a complete set of states in the
mirror channel whose spectrum is given by the asymptotic Bethe–Yang equations.
Then the partition function can be computed by taking the thermal trace in the mirror
Hilbert space.

The standard TBA approach due to Yang and Yang [3] is to express the thermal
trace as an integral over the density of one-particle rapidities, taking into account
both the energy and the entropy of the states. The free energy is expressed as a
functional of the rapidity density and the critical point of this functional gives both
the thermal equilibrium state and the expression for the extensive piece LF0(R) of
the free energy. In field-theoretical terms this translates to replace the sum over
the intermediate states by a single “thermal state” characterised by the saddle point
density. This approximation works well for evaluating the free energy and the one-
point functions, where a single insertion of the identity is to be made, but it is not
sufficient e.g. for the computation of the two-point functions.1

2.2 Thermal Partition Function

Belowwewill perform a direct summation in themirror Hilbert space. Ourmethod is
exact up to corrections exponentially small in L and allows to control the whole 1/L
expansion of the partition function. The simplest object to compute is the partition
function on the torus, Z(R,L), which can be evaluated as a thermal trace in the
physical or in the mirror channels of the Euclidean theory,

Z(L,R) = Tr
phys

[e−LHphys ] = Tr
mir

[e−RHmir ]. (6)

1There however is a class of two-point functions for which a single insertion is sufficient [9].
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Assuming that R � L, our goal is to evaluate the the free energy

logZ(L,R) = LF0(R) + F1(R) + · · · (7)

up to corrections exponentially small in L.
Let us stress that such an exponential accuracy is beyond the reach of the standard

TBA approach which is essentially a collective field theory for the rapidity density
and as such suffers from ambiguities beyond the first two terms of the expansion
(7). The leading term in the TBA approach is determined by the saddle point of the
integral over the densities, while the subleading term is produced by the gaussian
fluctuations about the saddle point [10] and the normalisation of the wave function
of the thermal state [11], with the two effects cancelling completely for periodic
boundary conditions. Our approach does not suffer from the ambiguities of the col-
lective theory and allows to obtain the whole series (7), which in the case of periodic
boundary conditions consists of a single term LF0(R).

2.3 The Partition Function as a Sum over Mode Numbers

The quantisation condition in the mirror channel is given by the Bethe–Yang equa-
tions

φ̃j = 2πnj with nj integer, j = 1, . . . ,M , (8)

where φ̃j is the total scattering phase for the jth mirror particle,

φ̃j(u1, . . . , uM ) ≡ p̃(uj)L + 1

i

M∑

k(�=j)

log S̃(uj, uk). (9)

Here S̃(u, v) = S(ũ, ṽ) denotes the S-matrix for the mirror particles. The states in
the M -particle sector of the Hilbert space are labeled by M distinct mode numbers
n1, . . . , nM and the identity operator in this sector can be decomposed as a sum of
products of normalised states

IM =
∑

n1<...<nM

|n1, . . . , nM 〉〈n1, . . . , nM |. (10)

If we denote by ẼM (n1, . . . , nM ) the eigenvalue of the Hamiltonian for the state
|n1, . . . , nM 〉, the partition function (6) is given by the series
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Z(L,R) =
∞∑

M=0

∑

n1<n2<···<nM

e−RẼ(n1,...,nM ). (11)

Our goal is to replace in the thermodynamical limit L → ∞ the discrete sums by
multiple integrals. For that we have first to get rid of the ordering of the quantum
numbers. For that we insert a factor which kills the configurations with coinciding
quantum numbers and take the sum over non-restricted integers,

Z(L,R) =
∞∑

M=0

1

M !
∑

n1,...,nM

M∏

j<k

(
1 − δnj,nk

)
e−RẼ(n1,...,nM ). (12)

Expanding the product of Kronecker symbols, leads to a series

Z(L,R) = 1 +
∑

n

e−RẼ(n) + 1

2!
∑

n1,n2

e−RẼ(n1,n2) − 1

2

∑

n

e−RẼ(n,n) + · · · (13)

whichwe are going towrite as an exponential. The sum in (13) goes over all sequences
(nr11 , . . . , nrmm ) of positive integers nj withmultiplicities rj. For example, (n2) = (n, n).
Each such sequence defines an (unphysical) Bethe state obtained by identifying some
of the momenta of a Bethe state with M = r1 + · · · + rm magnons. This state is a
linear combination of plane waves with momenta rjp̃(uj), j = 1, . . . ,m. and energy

Ẽ(nr11 , . . . , nrmm ) = r1Ẽ(u1) + · · · + rmẼ(um). (14)

The relevance of such states has been already pointed out by Woynarovich [8] and
by Dorey et al in [7].

The rapidities u1, · · · , um are determined by the Bethe–Yang equations (8) with
M = r1 + · · · + rm. The phase φ̃j is acquired by the wave function if to one of the rj
particles with rapidity uj winds once around the time circle,

φ̃j ≡ p̃(uj)L + 1

i

m∑

k(�=j)

rk log S̃(uj, uk) + π(rj − 1) = 2πnj (j = 1, . . . ,m).

(15)

The term π(rj − 1) originates in the scattering of the probe particle with the rj − 1
particles with the same rapidity uj.
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The full series (13) has the form

Z(L,R) =
∞∑

m=0

(−1)m

m!
∑

n1,...,nm

∑

r1,...,rm

(−1)r1+···+rm Cr1...rm e−RẼ(n
r1
1 , ... , nrmm ), (16)

where the coefficients Cr1...rm are purely combinatorial. They can be fixed from the
expansion of the thermal partition function when the quasiparticles are free fermions,
S(ui, uj) = −1 and Ẽ(n1, . . . , nM ) = Ẽ(n1) + · · · + Ẽ(nM ). In the occupation num-
bers representation, the partition function for free fermions can be written as an
infinite product

Z free fermions =
∏

n∈Z

(
1 + e−RẼ(n)

)
= exp

∑

n∈Z

∞∑

r=1

(−1)r−1

r
e−rRẼ(n)

= 1 +
∞∑

m=1

(−1)m

m!
∑

n1,...,nm

∑

r1,...,rm

(−1)r1+···+rm

r1 . . . rm

m∏

j=1

e−RrjE(nj).

(17)

Comparing with (16) we find for the combinatorial coefficients

Cr1...rm = 1

r1 . . . rm
. (18)

In the case of free fermions, the multiplicities rj have obvious meaning. The
vacuum energy is a sum of all fermionic loops including those winding r times
around the space circle. The weight of an r-winding loop consists of a Boltzmann
factor e−rREn , a sign (−1)r due to the Fermi statistics and a combinatorial factor 1/r
counting for the Zr cyclic symmetry. It is natural to interpret the multiplicities rj as
winding, or wrapping, numbers also in the case of non-trivial scattering, which we
are going to do in the following.

2.4 From Mode Numbers to Rapidities

The discrete sum over the allowed values of the phases φ̃j(u1, r1; . . . , um, rm) for
given wrapping numbers can be replaced, up to exponentially small in L terms, by
an integral,

∑

n1,··· ,nm
=

∫
d φ̃1

2π
. . .

d φ̃m

2π
. (19)

Since the energy takes a simple form as a function of the rapidities, Eq. (14), we are
going to change the variables from scattering phases φj to rapidities uj,
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Z(L,R) =
∞∑

m=0

(−1)m

m!
∑

r1,...,rm

(−1)r1+···+rm

r1 . . . rm

∫
du1
2π

. . .
dum
2π

× G̃(ur11 , . . . , urmm ) e−r1Ẽ(u1) . . . e−rmẼ(um).

(20)

The change of variables brings a volume-dependent Jacobian (the Gaudin determi-
nant)

G̃ = det
m×m

G̃kj, G̃kj = ∂

∂uk
φ̃j(u

r1
1 , . . . , urmm ), (21)

which gives the density of the particle states in the rapidity space. The explicit form
of the Gaudin matrix G̃jk is

G̃kj =
(
Lp̃′(uj) +

m∑

l=1

rlK(uj, ul)

)
δjk − rkK(uk , uj), (22)

where K(u, v) = 1
i ∂u log S̃(u, v).

2.5 Graph Expansion of the Gaudin Determinant

Let us denote for brevity

p̃′
j ≡ p̃′(uj) Kjk ≡ K(uj, uk). (23)

Inspecting the expansion of the Gaudin determinant for m = 1, 2, 3

G̃(ur) = Lp̃′ ,

G̃(ur11 , ur22 ) = L2p̃′
1p̃

′
2 + Lp̃′

1r1K21 + Lp̃′
2r2K12,

G̃(ur11 ; u2
2, u

r3
3 ) = L3p̃′

1p̃
′
2p̃

′
3

+ L2p̃′
2p̃

′
3r2K12 + L2p̃′

2p̃
′
3r3K13 + L2p̃′

1p̃
′
3r1K21

+ L2p̃′
1p̃

′
3r3K23 + L2p̃′

1p̃
′
2r1K31 + L2p̃′

1p̃
′
2r2K32

+ p̃′
3Lr1r3K13K21 + p̃′

3Lr2r3K12K23 + p̃′
3Lr

2
3K13K23

+ p̃′
2Lr1r2K12K31 + p̃′

1Lr
2
1K21K31 + p̃′

1Lr3r1K23K31

+ p̃′
1Lr2r1K21K32 + p̃′

2Lr
2
2K12K32 + p̃′

2Lr2r3K13K32,

(24)
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we see that there are no cycles of the type K12K21 or K12K23K31. We will see below
that this property hold for general order m. To evaluate the Gaudin determinant
for general state {ur11 , . . . , urmm }, we will consider in the following a slightly modified
Gaudinmatrix, Ĝkj = G̃kjrj. The determinants of the twomatrices are simply related,

G̃ = det Ĝjk∏m
j=1 rj

, Ĝkj ≡ G̃kjrj. (25)

The the modified Gaudin matrix has the advantage that it is a sum of a diagonal
matrix D̂jδjk and a Laplacian matrix K̂kj (a matrix with zero row sums):

Ĝkj = D̂k δkj − K̂kj

with D̂j = Lrjp̃
′(uj) and K̂k,j = rkrjK(uk , uj) − δkj

m∑

l=1

rjrlK(uj, ul)
(26)

According to the Matrix-Tree Theorem (see e.g. [12, 13]), the determinant of the
matrix Ĝij can be expanded as a sum of graphs called directed spanning forests. A
directed forest spanning the graph� is an oriented subgraphF fulfilling the following
three conditions:
(i) F contains all vertices of �;
(ii) F does not contain cycles;
(iii) For any vertex of � there is at most one oriented edge ofF ending at this vertex.

The vertices with no incoming lines are called roots. Any forestF is decomposed
into connected components called directed trees. Each tree contains one and only
one root. The Matrix-Tree Theorem states that the determinant of the matrix Ĝ is
a sum of all directed forests F spanning the totally connected graph with vertices
labeled by j = 1, . . . ,m:

det
m×m

(
D̂jδjk − K̂jk

)
=

∑

F

∏

vi∈roots
D̂i

∏

�jk∈F
K̂kj. (27)

Theweight of a forestF is a product of factors D̂k associatedwith the roots and factors
K̂kj associated with the oriented edges �jk = 〈vj → vk〉 of the F . The expansion in
spanning forests for m = 1, 2, 3 is depicted in Fig. 1.

Applying the above graph expansion to the Jacobian, we write the partition func-
tion as

Z(L,R) =
∞∑

m=0

(−1)m

m!
∑

r1,...,rm

∫ m∏

j=1

duj
2π

[−e−RẼ(uj)]rj
r2j

×
∑

F

∏

j∈roots
Lrjp̃

′(uj)
∏

�ij∈F
rirjK(uj, ui).

(28)
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Fig. 1 The expansion of a determinant in directed spanning forests for m = 1, 2, 3. Ellipses mean
sum over the permutations of the vertices of the preceding graph. Each vertex of a directed tree,
except for the root, has exactly one incoming edge and an arbitrary number of outgoing edges. The
root can have only outgoing edges

The next step is to invert the order of the sum over graphs and the integral/sum over
the coordinates (uj, rj) assigned to the vertices. As a result we obtain a sum over the
ensemble of abstract oriented tree graphs, with their symmetry factors, embedded in
the spaceR × Nwhere the coordinatesu, r of the vertices take values. The embedding
is free, in the sense that the sum over the positions of the vertices is taken without
restriction. As a result, the sum over the embedded tree graphs is the exponential of
the sum over connected ones. One can think of these graphs as tree level Feynman
diagrams obtained by applying the following Feynman rules:

= (−1)r−1

r2
e−rRẼ(u)

= Lp′(u)
(−1)r−1

r
e−rRẼ(u)

= r1r2K(u2, u1)

(29)

In this way we can write the free energy as
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Fig. 2 The generating function Yr(u) of the directed trees with root at (u, r). Theweight of each tree
in the sum is a product of factors associated with its vertices and edges according to the Feynman
rules (29)

Fig. 3 The non-linear equation for the generating function Ỹr(u) of the trees with root at (u, r)

logZ(L,R) = L
∫

du

2π
p̃′(u)

∞∑

r=1

rỸr(u), (30)

where Ỹr(u) is the partition sum of all connected directed rooted trees with root at
the point (u, r), Fig. 2.

Equation (30) gives the free energy up to e−L terms, hence the subleading terms in
the expansion (7) vanish. Of course this is true only for periodic boundary conditions.

2.6 Performing the Sum over Trees

As any partition sum of trees, Ỹr(u) satisfies a simple non-linear equation (a
Schwinger–Dyson equation in the QFT language) depicted in Fig. 3,

Ỹr(u) = (−1)r−1

r2
e−rRẼ(u)

∞∑

n=1

1

n!

(
∑

s

∫
dv

2π
rsK(v, u)Ỹs(v)

)n

= (−1)r−1

r2

[
e−RẼ(u) e

∑
s

∫
dv
2π sK(v,u)Ỹs(v)

]r
.

(31)
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In particular for r = 1

Ỹ1(u) = e−RẼ(u) e
∑

s

∫
dv
2π sK(v,u)Ỹs(v). (32)

Substituting the rhs of (32) in the square brackets in the second line of Eq. (31), we
express all Yr in terms of Y1,

Ỹr(u) = (−1)r−1

r2
[Ỹ1(u)]r, r = 1, 2, 3, . . . . (33)

Now we can express the rhs of (30) and the exponent in on the rhs of (32) in terms
of Y1 only,

∑

r

rỸr(v) = log
[
1 + Ỹ1(v)

]
. (34)

Now Eq. (32) becomes a closed equation for Y1,

Ỹ1(u) = e
−RẼ(u)+∫

dv
2π K(v,u) log

[
1+Ỹ1(v)

]

, (35)

which determines completely the free energy

logZ(L,R) = L
∫

du

2π
p̃′(u) log

[
1 + Ỹ1(v)

]
+ o(e−L). (36)

In this way we reproduced, by summing up the tree expansion of the free energy, the
TBA equation for the pseudoenergy ε(u) = − 1

L log Ỹ1(u). The expression (36) for
the free energy is true in all orders in 1/L. In particular, there is no O(1) piece, in
accord with the TBA based computation in [11].

3 The Energy of an Excited State

In this section we will apply the tree expansion to the case of an excited state |u〉
in the physical channel characterised by a set of rapidities u = {u1, . . . , uN }. We
assume that the excited state is an eigenstate of the Hamiltonian with energy given
by Eq. (3).

For large R the wrapping phenomena can be neglected and the rapidities u satisfy
the asymptotic Bethe equations (8)–(4). In order to determine the exact energy and
the exact values of the rapidities for finite R, we again introduce a cutoff L by
compactifying the cylinnder into a torus obtained as the product of a space-like
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circleR-circle and a time-like L-circle, with a projector |u〉〈u| inserted in the physical
channel. The phases of the mirror particles now contain an extra piece which comes
from the scattering with the physical particles:

φ̃j(v1, . . . , vM ) ≡ p̃(vj)L + 1

i

N∑

k=1

log S(ṽj, uk ) + 1

i

M∑

l( �=j)

log S(ṽj, ṽl), j = 1, . . . ,M .

(37)

The computation of the partition function then follows strictly the argument of
the previous section, with the only difference that the mirror energy is modified by
the scattering with the physical particles. We have to replace

e−LẼ(v) → Ỹ ◦
1 (v) ≡ e−LẼ(v)

M∏

k=1

S(ṽ, uk) . (38)

Furthermore we have to add to the free energy the contribution from the physical
particles that go directly to the opposite edge without scattering,

logZ(L,R,u) = −L
N∑

j=1

E(uj) + L
∫

du

2π
p̃′(u) log

[
1 + Ỹ1(v)

]
+ O(e−L). (39)

with the function Y (u) satisfying non-linear integral equation which slightly gener-
alises Eq. (35),

Ỹ1(v) = Ỹ ◦
1 (v) e

∫
du
2π log(1+Ỹ1(u))K(u,v). (40)

The rapidities of the physical particles are no longer determined by the asymptotic
Bethe–Yang equations but by the “exact Bethe equations” which take into account all
virtual excitations in the mirror channel. The exact Bethe equations are formulated
in terms of the function Ỹ1. In order to avoid confusion we introduce the Y-function
in the physical channel, which is related to Ỹ by

Ỹ1(v) = Y1(ṽ). (41)

The exact Bethe equations are obtained by the following requirement. Let Zj(R,L)

be the partition function with the jth physical particle winding once around the space
circle before winding around the time circle. The configurations that contribute to
Z(R,L) and Zj(R,L) are depicted in Fig. 4a, b. In order to compute the partition
function Zj(R,L) we notice that the configurations in Fig. 4b can be simulated by
pulling one of the mirror particles out of the thermal ensemble giving to its rapidity
a physical value uj. Indeed, since S(uj, uj) = −1, the partition function in presence
of such extra mirror particle is −Zj(R,L). In this way Zj(R,L) is given by the sum
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(a) (b)

Fig. 4 The configurations that lead to the exact Bethe equation. The physical magnon winding
once around the space circle has the same effect, up to a factor (−1), as a physical magnon going
straight in presence of a mirror magnon with rapidity uj

over all trees, with one extra tree having a root ṽ = uj and r = 1. The generating
function for such trees is Y1(uj), while the contribution of the “vacuum” trees give the
partition function: Zj = −Y1(uj)Z . The periodicity in the space direction requires
that Zj = Z , which gives the exact Bethe–Yang equations

Y1(uj) = −1, j = 1, . . . ,N . (42)

4 One-Point Functions at Finite Volume/Temperature

In this section we will apply the tree expansion to compute the diagonal matrix
elements of a local operator at finite volume R. The LeClair-Mussardo conjecture
[14] gives an expression for the exact finite temperature one-point functions. In
terms of infinite-volume diagonal connected form factors, and densities of mirror
states determined by the TBA equation. The conjecture was proven for operators
representing densities of conserved quantities in [15] and for general local operator
in [16]. The proof of [16] concerns the formula about the diagonal form factors
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in asymptotically large volume conjectured by Pozsgay and Takacs [17], which is
equivalent to the L-M formula. The Pozsgay-Takacs formula, which generalises a
result by Saleur [15], gives an expansion of the diagonal matrix elements of a local
operator in terms of the infinite-volume form factors with the same or lower number
of particles.

4.1 The One-Point Function in Terms of Connected
Diagonal Form Factors

In order to simplify the notations, in this section we assume that the physical Hilbert
space is associated with the L-circle and the mirror Hilbert space is associated with
the R-circle. In infinite volume, all matrix elements of a local operator O can be
expressed, with the help of the crossing formula, in terms of the elementary form
factors

FO
n (u1, . . . , un) = 〈0|O|u1, . . . , un〉∞. (43)

The elementary form factors for local operators satisfy the Watson equations

Fn(u1, . . . , uj, uj+1, . . . , un) = S(uj, uj+1)Fn(u1, . . . , uj+1, uj, . . . , un) (44)

and have kinematical singularities

F(v, u, u1, . . . , un) = i

v̄ − u

⎛

⎝1 −
n∏

j=1

S(u, uj)

⎞

⎠Fn(u1, . . . , un) + regular,

(45)

where v̄ is obtained from v by a crossing transformation. Here it is assumed that the
infinite volume states are normalised as 〈u|v〉 = 2πδ(u − v).

The diagonal limit of the form factors for local operators is ambiguous2 and
there are two prescriptions for evaluating the finite piece, the symmetric and the
connected one [17]. The connected diagonal form factor Fc

2n(u1, . . . , un) is obtained
by performing the simultaneous limit ε1, . . . , εn → 0 of the elementary form factor
F2n(u1, . . . , u2n)definedbyEq. (43),withu2n−j+1 = ūj + iεj. The limit is not uniform
and depends on the prescription, which in this case is to retain only the ε-independent
part:

Fc
2n(ūn + iεn, . . . , ū1 + iε1, u1, . . . , un) = Fc

2n(u1, . . . , un) + ε-dependent terms.

(46)

2In the case of the non-local operators the situation is even worse: their diagonal limit diverges as
LM where M is the number of the particle pairs.
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The Saleur-Pozsgay-Takacs formula [15, 17] relates the diagonal matrix elements
in asymptotically large but finite volume L to the connected diagonal form-factors.
The formula reads

〈u|O|u〉L =
∑

α∪ᾱ=u

Fc
2|α|(α) × det

j,k∈ᾱ
Gjk + O(e−L), (47)

where the sum goes over all partitions of the rapidities u = {u1, . . . , un} in to two
complementary sets α and ᾱ, and Gjk = ∂ujφk is the Gaudin matrix for the n rapidi-
ties. It is assumed that Fc

0 = 0, so there is no termwith α = ∅. The formula is written
for the normalisation with the Gaudin norm

〈u|u〉 = det
j,k∈u

Gjk . (48)

The determinants on the rhs are the minors of the Gaudin determinant obtain by
deleting the lines and the columns that belong to the subset α. It is shown [11,
18] that the expansion (47) is equivalent to the Leclair and Mussardo series for the
one-point function of a local operator [14]

〈O〉R =
∞∑

n=1

1

n!
∫ n∏

j=1

duj
2π

f (uj) F
c
2n(u1, . . . , un), f (u) = Y1(u)

1 + Y1(u)
. (49)

Below we will derive the Leclair-Mussardo formula from the tree expansion
method. In particular, we will reproduce the result obtained by Saleur [15] for the
one-point function of a conserved charge. For that we will need the diagonal matrix
elements also for the multi-wrapping states |ur11 , . . . , urmm 〉. We will make a very nat-
ural conjecture about this action, which turns out to be compatible with the correct
formula (49), namely

〈urmm , . . . , ur11 |O|ur11 , . . . , urmm 〉L =
∑

α∪ᾱ={u1,...,um}

∏

j∈α

rj F
c
2|α|(α) × det

j,k∈ᾱ
Gjk . (50)

The logic behind this conjecture is that the action of the operator on a multi wrapping
particle is the same as if it were single wrapping particle. The only difference is that
the r-wrapping particle appears r times in the same time slice, the operator acts
on each copy, which brings an overall factor of r. We should mention here that a
discussion about the “multi-diagonal” matrix elements was presented in [19].

4.2 LeClair-Mussardo Series from the Tree Expansion

Repeating the argument from the beginning of Sect. 2.4, we can perform the sum
over the complete set of states in the thermal expectation value of the operator O
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〈O〉R =
∞∑

M=0

∑

n1<n2<···<nM

e−RE(n1,...,nM )〈n1, . . . , nM |O|nM , . . . , n1〉 (51)

by inserting the expansion (47) in each term of the sum and proceeding as in Sect. 2.3.
The expansion analogous to the formula (20) for the partition function is

〈O〉R = 1

Z(L,R)

∞∑

m=0

(−1)m

m!
∑

r1,...,rm

∫
du1
2π

. . .
dum
2π

e−Lr1E(u1)−LrmE(um)

r1 . . . rm

×
∑

α∪ᾱ={u1,...,um}

∏

j∈α

rj F
c
2|α|(α)

detj,k∈ᾱ Ĝjk∏
i∈ᾱ ri

,

(52)

where the matrix Ĝjk is defined by Eq. (26) with p̃ replaced by p and the scattering
kernel defined as K(u, v) = 1

i ∂u log S(u, v).
The next step is to apply the matrix-tree theorem for the diagonal minors of the

Gaudin determinant in the last factor in the integrand in (52). A minor obtained by
removing all edges and all columns from the subset α ⊂ {1, . . . ,m} of the matrix
Ĝjk defined in Eq. (26) has the following expansion,

det
j,k∈ᾱ

Ĝjk =
∑

F∈Fα,ᾱ

∏

roots∈ᾱ

D̂i

∏

�jk∈F
K̂kj. (53)

The spanning forests F ∈ Fα,ᾱ are subjected to conditions (i) − (iii) of Sect. 2.5,
with the additional restriction that all vertices belonging to α are roots. The weight
of these roots is one. An example is given in Fig. 5.

The expansion (53) follows directly from the expansion (27) of the previous
section which corresponds to the particular case α = ∅, ᾱ = {u1, . . . , um}. Indeed,
the rhs of (53) is obtained by retaining only the terms in the rhs of (27) that contain
the factor

∏
j∈α D̂j and then dividing the sum by this factor.

Now we can proceed similarly to what we have done in the computation of the
partition function, where rearranging of the order of summation allowed us to rewrite
the sum as a series of tree Feynman diagrams. This time there will be two kinds of
Feynman graphs: the “vacuum trees” and diagrams representing a vertex Fc

2n with
n lines and a tree attached to each line. The weight of such tree is the same as the
weight of the vacuum trees except for a factor of r2 associated with the root. This
factor becomes obvious if one writes the dependence of the integrand/summand of
(52) on the wrapping numbers r1, . . . , rm as

Fig. 5 The tree expansion for a principal minor of the Gaudin matrix detj,k∈ᾱ Ĝjk for α = {1, 2}
and ᾱ = {3, 4}
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Fig. 6 The tree expansion for the thermal expectation value of a local operator

1

r21 . . . r2m

∏

j∈α

r2j .

The sum over the vacuum trees cancels with the partition function and the sum over
the surviving terms has the same structure as (49), which is depicted in Fig. 6. The
factor f (u) is obtained as the sum of all trees with a root at the point u, with extra
weight r2 associated with the root:

∑

r

r2Yr(u) =
∑

r

(−1)r−1[Y1(u)]r = Y1(u)

1 + Y1(v)
= f (u). (54)

The difference of the sum over trees in the factor f (u) compared with the sum over
vacuum trees (34) is that there is an extra factor r associated with the root reflecting
the breaking of the Zr symmetry of the corresponding wrapping process.

4.3 The Case of a Conserved Charge

The simplest local operatorO is of the type of conserved charge, such as the energy
or the momentum. Such operators act diagonally on multi-particle states with one-
particle values o(u). The matrix elements of the operator on a multi-particle state at
zero temperature are

O = L−1
∫

dxO(x),
〈un, . . . , u1|O|u1, . . . , un〉
〈un, . . . , u1|u1, . . . , un〉 = 1

L

n∑

j=1

o(uj). (55)

By direct computation one obtains [15]

Fc
2n(u1, . . . , un) = p′(u1)K(u2, u1)K(u3, u2) . . .K(un, un−1) o(un)

+ permutations,
(56)

to be substituted in the LeClair-Mussardo series (49).
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This formula can be readily obtained from the tree expansion using only the
definition (55). We start with the series for the partition function (28), with p̃ and Ẽ
replaced by p and E, and multiply each term by the eigenvalue of the operator O,
which acts on the states |ur11 . . . , urmm 〉 as

O|ur11 . . . , urmm 〉 = 1

L

∑

j

rjo(uj) |ur11 . . . , urmm 〉. (57)

After expanding the Gaudin norm in trees, one of the trees will acquire an extra
factor rjo(uj) associated with one of its vertices. The sum over the vacuum gives
the partition function which is to be stripped off and one is left with the sum over
connected trees with one marked point,

〈O〉L,R =
∫

du1
2π

∫
du2
2π

∑

r1,r2

Lr1p
′(u1)Y (u1, r1; u2, r2)1

L
r2o(u2) (58)

whereY (u1, r1; u2, r2) is the partition function of all directed treeswith root at (u1, r1)
and a marked vertex at (u2, r2). Any such tree can be decomposed into a backbone
consisting of the edges connecting the root and the marked point, and a collection of
trees rooted at the vertices along the backbone. We will associate a factor Kjk with
the edge �kj of the backbone, while the factors rk and rj will be absorbed into the
weights of the trees rooted at the vertices k and j. In this way the trees rooted at the
point j of the backbone contain a factor r2j coming from the two adjacent edges. The
sum of such trees gives the factor f (u), Eq. (54). The net result is

〈O〉R =
∞∑

n=1

∫ n∏

j=1

duj
2π

p′(u1)f (u1)K(u2, u1)f (u2)K(u3, u2) . . .K(un, un−1)f (un)o(un)

(59)

which is illustrated by Fig. 7
Anotherway to obtain the one-point function of a conserved charge is by replacing

the energy E(u) in the thermal factors with E(u) − αo(u). In this way the problem is

Fig. 7 The tree expansion for the thermal expectation value of a conserved charge. The circle
symbolises the vertex where the one-particle operator o(u) is inserted
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reduced to the problem of the computation of the thermal partition function, but with
slightly changed form of the energy. Since the computation of the partition function
does not depend on the specific form of the energy, we can use the formulas of the
previous section where Y1(u) is replaced by Y1(u,α) determined by the non-linear
integral equation

log Y (u,α) = −RE(u) + αo(u) +
∫

dv

2π
K(v, u) log [1 + Y1(v,α)] . (60)

The one-point function is given by the derivative

〈O〉R = ∂

∂α

∫
du

2π
p′(u) log(1 + Y1(u,α))

∣∣∣
α=0

=
∫

du

2π
p′(u)f (u)õ(u), (61)

with õ(u) satisfying a linear integral equation obtained by differentiating (35),

õ(u) = o(u) +
∫

dv

2π
K(v, u)f (v) õ(v). (62)

This gives again the series (58).

5 Conclusion

We proposed a method for computing the finite volume (or finite temperature for
the mirror theory) observables in (1+1)-dimensional field theories with factorised
diagonal scattering and no bound states. The method is based on an exact treatment
of the sum over a complete set of eigenstates of the Hamiltonian of the mirror theory
using a graph expansion of the Gaudin measure using the Matrix-Tree Theorem.
The free energy and the observables are expressed in terms of tree Feynman graphs.
The vertices of such a graph correspond to virtual particles winding multiple times
around the compact dimension and the oriented propagators correspond to scattering
kernels. The method generalises trivially to the case of a theory with bound states.
It is very natural to conjecture that the method can be generalised to theories with
non-diagonal scattering.

The tree expansion derived here does not use relativistic invariance, hence the
scattering matrix is not necessarily of difference form. Our principal motivation
comes from AdS/CFT, where the world sheet (1+1)-dimensional field theory is
not Lorentz invariant. We believe that after being generalised for a theory with non-
diagonal scattering and bound states, our constructionwill help to give a renormalised
formulation of the hexagon proposal of [5] for computation of correlation functions
of trace operators.

Another exercise would be to re-derive the g-functions in the case of integrable
boundaries [7, 20]. The exact g-function for diagonal scattering is known [11] but



TBA and Tree Expansion 97

the extension to non-diagonal scattering is still out of reach. The method might be
also relevant for the one-point functions in AdS/dCFT [21, 22].

Note Added

After the completion of this work we learned about the earlier papers by G. Kato and
M. Wadati [23] where the expression for the free energy of the Lieb–Liniger model
and the XXX Heisenberg ferromagnetic has been obtained by a direct combinatorial
method which is essentially identical to the one we are proposing here. We thank
Balázs Pozsgay for bringing these works to our knowledge.

Acknowledgements We thank Benjamin Basso for enlightening discussions, to Zoltan Bajnok for
bringing to our attention ref. Reference [8]. This research was supported in part by the National
Science Foundation under Grant No. NSF PHY11-25915.
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Abstract First, we describe the construction of a new type of gravity-matter
models based on the formalism of non-Riemannian space-time volume forms - alter-
native generally covariant integration measure densities (volume elements) defined
in terms of auxiliary antisymmetric tensor gauge fields. Here gravity couples in a non-
conventional way to two distinct scalar fields providing a unified Lagrangian action
principle description of: (i) the evolution of both “early” and“late” Universe - by the
“inflaton” scalar field; (ii) dark energy and dark matter as a unified manifestation
of a single material entity - the “darkon” scalar field. A physically very interesting
phenomenon occurs when including in addition interactions with the electro-weak
model bosonic sector - we obtain a gravity-assisted dynamical generation of electro-
weak spontaneous gauge symmetry breaking in the post-inflationary “late” Universe,
while the Higgs-like scalar remains massless in the “early” Universe. Next, we pro-
ceed to the Wheeler–DeWitt minisuperspace quantization of the above models. The
“darkon” field plays here the role of cosmological“time”. In particular, we show the
absence of cosmological space-time singularities.

Keywords Dark energy · Dark matter · Non-Riemannian volume-forms
Electroweak symmetry breaking · Wheeler-DeWitt quantization

E. Guendelman
Department of Physics, Ben-Gurion University of the Negev,
Beer-Sheva, Israel
e-mail: guendel@bgu.ac.il

E. Nissimov (B) · S. Pacheva
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy
of Sciences, Sofia, Bulgaria
e-mail: nissimov@inrne.bas.bg

S. Pacheva
e-mail: svetlana@inrne.bas.bg

© Springer Nature Singapore Pte Ltd. 2018
V. Dobrev (ed.), Quantum Theory and Symmetries with Lie Theory
and Its Applications in Physics Volume 2, Springer Proceedings
in Mathematics & Statistics 255, https://doi.org/10.1007/978-981-13-2179-5_7

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2179-5_7&domain=pdf


100 E. Guendelman et al.

1 Introduction

Among the most important paradigms at the interface of particle physics and
cosmology [1–7] one should mention:

• (i) The nature of dark energy and dark matter – both “dark” species occupying
around 70 and 25% of the matter content of the “late” (today’s) Universe, respec-
tively, continue to be the two most unexplained “mysteries” in cosmology and
astrophysics (for a background, see [8–17]).

• (ii) The interplay between the cosmological dynamics and the evolution of the
symmetry breaking patterns along the history of the Universe – specifically, for the
present epoch’s phase of slowly accelerating Universe (dark energy domination)
see [8–14], and for a recent general account see [18, 19].

There exist a multitude of proposals for an adequate description of dark energy’s
and dark matter’s dynamics within the framework of standard general relativity or its
modern extensions, among them: “Chaplygin gas” models [20–22], “purely kinetic
k-essence” models [23, 24], “mimetic” dark matter models [25–28].

Addressing issue (i) above, in Sect. 2 we will briefly review our own approach
[29, 30] (for some earlier works, see also [31, 32]) to one of the principal challenge
in modern cosmology to understand theoretically from first principles the nature of
both “dark” species as a manifestation of the dynamics of a single entity of matter.
In the simplest setting we achieve unified description of dark energy and dark matter
based on a class of generalized non-canonical models of gravity interacting with
a single scalar “darkon” field employing the method of non-Riemannian volume-
forms on the pertinent spacetime manifold, i.e., non-Riemannian volume elements.
Originally [33–35] this approach was proposed as introducing alternative generally
covariant integration measure densities in terms of auxiliary “measure” scalar fields.
Later [36–38] it was reformulated in a more consistent geometrical setting, namely,
the non-Riemannian volume-forms are constructed in terms of auxiliary higher-rank
antisymmetric tensor gauge fields, which were shown to be essentially pure-gauge
degrees of freedom, i.e., no additional propagating field-theoretic (gravitational)
degrees of freedom are introduced.

Next, addressing issue (ii) we extend [39, 40] the above non-canonical gravity-
matter model by adding coupling to a second scalar “inflaton” field describing the
universe’s evolution in a unifiedway (“quintessence”), aswell as coupling to thefields
of the electroweak bosonic sector. In this way we obtain a gravity-assisted genera-
tion of electro-weak spontaneous gauge symmetry breaking in the post-inflationary
“late” Universe, while the Higgs-like scalar remains massless in the “early” Universe
[40, 41].

In Sect. 3 we perform Wheeler–DeWitt [42, 43] minisuperspace quantization of
the above models. The “darkon” field plays the role of cosmological “time” in the
pertinent Wheeler–DeWitt equation in the “early” universe. We show explicitly the
absence of cosmological singularities in the wave function of the universe.
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2 Quintessence, Unified Dark Energy and Dark Matter,
and Gravity-Assisted Higgs Mechanism

2.1 Hidden Noether Symmetry and Unification of Dark
Energy and Dark Matter

First, let us consider the following simple particular case of a non-conventional
gravity-scalar-field action – a member of the general class of the non-Riemannian-
volume-element-based gravity-matter theories [38, 39] (for simplicity we use units
with the Newton constant G N = 1/16π):

S =
∫

d4x
√−g R +

∫
d4x

(√−g + Φ(C)
)
L(u, Y ) . (1)

Here R denotes the standard Riemannian scalar curvature for the pertinent
Riemannian metric gμν . In the second term in (1) – the scalar field Lagrangian is
coupled symmetrically to two mutually independent spacetime volume-elements –
the standard Riemannian

√−g and to an alternative non-Riemannian one:

Φ(C) = 1

3!ε
μνκλ∂μCνκλ . (2)

L(u, Y ) is general-coordinate invariant Lagrangian of a single scalar field u(x),
the simplest example being:

L(u, Y ) = Y − V (u) , Y ≡ −1

2
gμν∂μu∂νu , (3)

Crucial new property – we obtain dynamical constraint on L(u, Y ) as a result of the
equations of motion w.r.t. Cμνλ:

∂μL(u, Y ) = 0 −→ L(u, Y ) = −2M0 = const , (4)

i.e., Y = V (u) − 2M0. M0 will play the role of dynamically generated cosmological
constant.

A second crucial property – hidden strongly nonlinear Noether symmetry of scalar
field action in (1) – is due to the presence of the non-Riemannian volume element
Φ(C). The scalar field action is invariant (up to a total derivative) under the following
nonlinear symmetry transformations:

δεu = ε
√

Y , δεgμν = 0 , δεCμ = −ε
1

2
√

Y
gμν∂νu

(
Φ(C) + √−g

)
, (5)

where Cμ ≡ 1
3!ε

μνκλCνκλ.
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Then, standard Noether procedure yields a conserved current:

∇μ Jμ = 0 , Jμ ≡ −
(
1 + Φ(C)√−g

)√
2Ygμν∂νu (6)

The energy-momentum tensor Tμν and Jμ (6) can be cast into a relativistic hydro-
dynamical form (taking into account (4)):

Tμν = −2M0gμν + ρ0uμuν , Jμ = ρ0uμ , (7)

where the pressure p = −2M0 = const and:

ρ0 ≡
(
1 + Φ(C)√−g

)
2Y , uμ ≡ − ∂μu√

2Y
, uμuμ = −1 . (8)

The total energy density is ρ = ρ0 − p = 2M0 +
(
1 + Φ(C)√−g

)
2Y .

Because of the constant pressure (p = −2M0) ∇νTμν = 0 implies both hidden
Noether symmetry current Jμ = ρ0uμ conservation, as well as geodesic fluid motion:

∇μ

(
ρ0uμ

) = 0 , uν∇νuμ = 0 . (9)

Therefore, Tμν = −2M0gμν + ρ0uμuν represents an exact sum of two contribu-
tions of the two dark species:

p = pDE + pDM , ρ = ρDE + ρDM (10)

pDE = −2M0 , ρDE = 2M0 ; pDM = 0 , ρDM = ρ0 , (11)

i.e., the darkmatter component is a dust fluid flowing along geodesics. This is explicit
unification of dark energy and dark matter originating from the dynamics of a single
scalar field - the “darkon” u.

2.2 Quintessential Inflation and Unified Dark Energy
and Dark Matter

We will now extend our previous gravity-“darkon” model to gravity coupled to both
“inflaton” ϕ(x) and “darkon” u(x) scalar fields within the non-Riemannian volume-
form formalism, as well as we will also add coupling to the bosonic sector of the
electro-weak model:

S =
∫

d4x Φ(A)
[
gμν Rμν(Γ ) + L1(ϕ, X) + L2(σ,∇σ;ϕ)

]
+

∫
d4x Φ(B)

[
U (ϕ) + L3(A,B) + Φ(H)√−g

]
+

∫
d4x

(√−g + Φ(C)
)
L(u, Y ) . (12)

Here the following notations are used:
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• Φ(A) = 1
3!ε

μνκλ∂μ Aνκλ and Φ(B) = 1
3!ε

μνκλ∂μ Bνκλ – two new independent
non-Riemannian volume-forms (non-Riemannian volume elements) apart from
Φ(C);

• Φ(H) = 1
3!ε

μνκλ∂μ Hνκλ is the dual field-strength of an additional auxiliary tensor
gauge field Hνκλ crucial for the consistency of (12).

• Important – we use Palatini formalism: R = gμν Rμν(Γ ); gμν , Γ λ
μν – metric and

affine connection are apriori independent.
• σ ≡ (σa) is a complex SU (2) × U (1) iso-doublet Higgs-like scalar field with a
Lagrangian:

L2(σ,∇σ;ϕ) = −gμν
(∇μσa)

∗∇νσa − V0(σ)eαϕ . (13)

The gauge-covariant derivative acting on σ reads:

∇μσ =
(
∂μ − i

2
τAAA

μ − i

2
Bμ

)
σ , (14)

with 1
2τA (τA – Pauli matrices, A = 1, 2, 3) indicating the SU (2) generators.

• The “bare” σ-field potential is of the same form as the standard Higgs potential:

V0(σ) = λ

4

(
(σa)

∗σa − μ2
)2

. (15)

• The SU (2) × U (1) gauge field action L(A,B) is of the standard Yang–Mills form
(all SU (2) indices A, B, C = (1, 2, 3)):

L3(A,B) = − 1

4g2
F2(A) − 1

4g′ 2 F2(B) , (16)

F2(A) ≡ F A
μν(A)F A

κλ(A)gμκgνλ , F2(B) ≡ Fμν(B)Fκλ(B)gμκgνλ ,

F A
μν(A) = ∂μAA

ν − ∂νAA
μ + εABCAB

μAC
ν , Fμν(B) = ∂μBν − ∂νBμ .

AA
μ (A = 1, 2, 3) and Bμ denote the corresponding SU (2) and U (1) electroweak

gauge fields.

• The “inflaton” ϕ Lagrangian terms are given by:

L1(ϕ, X) = X − V1(ϕ) , X ≡ −1

2
gμν∂μϕ∂νϕ , (17)

V1(ϕ) = f1 exp{αϕ} , U (ϕ) ≡ f2 exp{2αϕ} , (18)

where α, f1, f2 are dimensionful positive parameters.
• The form of the action (12) is fixed by the requirement of invariance under global
Weyl-scale transformations:
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gμν → λgμν , Γ
μ
νλ → Γ

μ
νλ , ϕ → ϕ − 1

α
ln λ ,

Aμνκ → λAμνκ , Bμνκ → λ2Bμνκ , Hμνκ → Hμνκ , (19)

and the electro-weak sector (σ,A,B) is inert w.r.t. (19).

Equations of motion w.r.t. affine connection Γ
μ
νλ yield a solution for the latter as

a Levi-Civita connection:

Γ
μ
νλ = Γ

μ
νλ(ḡ) = 1

2
ḡμκ (∂νḡλκ + ∂λḡνκ − ∂κḡνλ) , (20)

w.r.t. to the Weyl-rescaled metric ḡμν :

ḡμν = χ1gμν , χ1 ≡ Φ1(A)√−g
. (21)

Transition from original metric gμν to ḡμν : “Einstein-frame”, where the gravity
equations ofmotion arewritten in the standard formofEinstein’s equations: Rμν(ḡ) −
1
2 ḡμν R(ḡ) = 1

2T eff
μν with an appropriate effective energy-momentum tensor given in

terms of an Einstein-frame matter Lagrangian Leff (see (25) below).
Solutions of the eqs. of motion of the action (12) w.r.t. auxiliary tensor gauge

fields Aμνλ, Bμνλ and Hμνλ yield:

Φ(B)√−g
≡ χ2 = const , R + L1(ϕ, X) + L2(σ,∇σ;ϕ) = M1 = const ,

U (ϕ) + L3(A,B) + Φ(H)√−g
= −M2 = const . (22)

Here M1 and M2 are arbitrary dimensionful and χ2 arbitrary dimensionless integra-
tion constants, similar to M0 (4).

Within the canonical Hamilton formalism we have shown [37, 38, 44] that
M0, M1,2, χ2 are the only remnant of the auxiliary gauge fields Cμνλ, Aμνλ,

Bμνλ, Hμνλ entering (12) – they have the meaning of conserved Dirac-constrained
canonical momenta conjugated to some of the components of the latter.

We derive from (12) the physical Einstein-frame theory w.r.t. Weyl-rescaled
Einstein-frame metric ḡμν (21) and perform an additional “darkon” field redefini-
tion u → ũ:

∂ũ

∂u
= (

V1(u) − 2M0
)− 1

2 ; Y → Ỹ = −1

2
ḡμν∂μũ∂ν ũ . (23)

The Einstein-frame action reads:

S =
∫

d4x
√−ḡ

[
R(ḡ) + Leff

(
ϕ, X̄ , Ỹ ;σ, X̄σ,A,B)]

, (24)
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where (now the kinetic terms are given in terms of the Einstein-frame metric (21),
e.g. X̄ = − 1

2 ḡ
μν∂μϕ∂νϕ, etc.):

Leff
(
ϕ, X̄ , Ỹ ;σ, X̄σ,A,B) = X̄ − Ỹ

(
V1(ϕ) + V0(σ)eαϕ + M1

)

+Ỹ 2
[
χ2(U (ϕ) + M2) − 2M0

]
+ L[σ, X̄σ,A,B] , (25)

with L[σ, X̄σ,A,B] ≡ −ḡμν
(∇μσa)

∗∇νσa − χ2

4g2 F̄2(A) − χ2

4g′ 2 F̄2(B).
For static (spacetime independent) scalar field configurations we obtain from (25)

the following Einstein-frame effective scalar “inflaton+Higgs” effective potential:

Ueff
(
ϕ,σ

) =
(

V1(ϕ) + V0(σ)eαϕ + M1

)2

4
[
χ2(U (ϕ) + M2) − 2M0

]

=
[(

f1 + λ
4

(
(σa)

∗σa − μ2
)2)

eαϕ + M1

]2
4
[
χ2( f2e2αϕ + M2) − 2M0

] . (26)

Ueff
(
ϕ,σ

)
has few remarkable properties. First,Ueff

(
ϕ,σ

)
possesses two infinitely

large flat regions as function of ϕ (when σ is fixed):
(a) (−) flat region for large negative values of the “inflaton” ϕ;
(b) (+) flat region and large positive values of ϕ,
respectively, as depicted in Fig. 1.

10 5 5 10

0.2

0.4

0.6

0.8

Ueff

Fig. 1 Qualitative shape of the effective scalar potential Ueff (26) as function of ϕ at σ = fixed for
M1 > 0
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• In the (+) flat region (large positive “inflaton” values) (26) reduces to:

Ueff
(
ϕ,σ

) � U(+)(σ) =
(

λ
4

(
(σa)

∗σa − μ2
)2 + f1

)2

4χ2 f2
. (27)

• Equation (27) yields as a lowest lying vacuum the Higgs one:

|σ| = μ , (28)

i.e., we obtain the standard spontaneous breakdown of SU (2) × U (1) gauge
symmetry.

• At the Higgs vacuum (28) we get from (27) a dynamically generated cosmological
constant Λ(+):

U(+)(μ) ≡ 2Λ(+) = f 21
4χ2 f2

. (29)

• If we identify the integration constants in (26) with the fundamental constants of
Nature – MPl (Planck mass) and MEW (electro-weak mass scale) as f1 ∼ M4

EW ,
f2 ∼ M4

Pl , we are then naturally led to a very small vacuum energy density:

U(+)(μ) ∼ M8
EW /M4

Pl ∼ 10−122M4
Pl , (30)

which is the right order of magnitude for the present epoch’s vacuum energy
density according to [45]. Therefore, we can identify the (+) flat region (large
positive “inflaton” values) of Ueff (26) as describing the present “late” universe.

• In the (−) flat region (large negative “inflaton” values) (26) reduces to:

Ueff
(
ϕ,σ

) � U(−) ≡ M2
1

4(χ2 M2 − 2M0)
. (31)

If we take M1 ∼ M2 ∼ 10−8M4
Pl and M0 ∼ M4

EW , then the vacuum energy den-
sity U(−) (31) becomes U(−) ∼ 10−8M4

Pl , which conforms to the Planck Collab-
oration data [46, 47] for the energy scale of inflation (of order 10−2MPl). This
allows to identify the (−) flat region (large negative “inflaton” values) of the “infla-
ton+Higgs” effective potential (26) as describing the“early” universe, in particular,
the inflationary epoch.

• In the (−) flat region the effective potential (31) is σ-field idependent. Thus, the
Higgs-like iso-doublet scalar fieldσa remainsmassless in the “early” (inflationary)
Universe and accordingly there is no electro-weak spontaneous symmetry breaking
there.
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3 Wheeler–De Witt Minisuperspace Quantization

For simplicity here wewill consider the unified dark energy/darkmatter “quintessen-
tial” model (12) without the coupling to the bosonic electro-weak sector. The corre-
sponding Einstein-frame action reads:

S =
∫

d4x
√−ḡ

[
R(ḡ) + Leff

(
ϕ, X̄ , Ỹ

)]
, (32)

where (recall X̄ = − 1
2 ḡ

μν∂μϕ∂νϕ and Ỹ = − 1
2 ḡ

μν∂μũ∂ν ũ):

Leff
(
ϕ, X̄ , Ỹ

) = X̄ − Ỹ
(

V (ϕ) − M1

)
+ Ỹ 2

[
χ2(U (ϕ) + M2) − 2M0

]
, (33)

To study cosmological implications of (32) we perform a Friedmann–Lemaitre–
Robertson–Walker (FLRW) reduction to the class of FLRW metrics:

ds2 = ḡμνdxμdxν = −N 2(t)dt2 + a2(t)dx.dx (34)

and take the “inflaton” and“darkon” to be time-dependent only, i.e.:

X̄ = 1

2

.
ϕ
2

, Ỹ = 1

2
w2 , w ≡ dũ

dt
. (35)

The FLRW reduced action corresponding to (32) reads:

SFLRW =
∫

dt

{
− 1

N
6a

.
a
2 +Na3

[ .
ϕ
2

2N 2
− ( f1eαϕ + M1)

w2

2N 2
(36)

+
(
χ2( f2e2αϕ + M2) − 2M0

) w4

4N 4

]}
(37)

Calculating the canonically conjugated momenta pa, pϕ, pũ , we arrive at the
canonical FLRW Hamiltonian:

H = NHW DW = N

{
− p2

a

24a
+ p2

ϕ

a3
+ pũw (38)

+ a3
[
( f1eαϕ + M1)

w2

2
−

(
χ2( f2e2αϕ + M2) − 2M0

)w4

4

]}
(39)

H turns out to be pure first-class constraint HW DW a’la Dirac with the lapse N as
Lagrange multiplier.

In (39) the “darkon” velocityw is determined as function of the canonical variables
(a,ϕ, pũ) being the real root (for all values of (a,ϕ, pũ)) of the cubic algebraic
equation:
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w3 − 3A(ϕ) w − 2
B(ϕ, pũ)

a3
= 0 (40)

where the coefficients are given by:

A(ϕ) ≡ 1

3

( f1eαϕ + M1)

χ2( f2e2αϕ + M2) − 2M0
,

B(ϕ, pũ) ≡ pũ

2

1

χ2( f2e2αϕ + M2) − 2M0
. (41)

The solution of (40) for w = w(a,ϕ, pũ) reads:

w = sign(B(ϕ, pũ))|A(ϕ)|1/2|ξ|−1/6
[(
1 + √

1 − ξ
)1/3 + (

1 − √
1 − ξ

)1/3]
(42)

where ξ ≡ ξ(a,ϕ, pũ) = A3(ϕ)

9B2(ϕ,pũ)
a6.

Quantization of the Dirac-constrained canonical Hamilton (39) yields the
Wheeler–DeWitt (WDW) equation for the wave function of the universe Ψ =
Ψ (a,ϕ; pũ):

ĤW DW Ψ (a,ϕ; pũ) = 0 , (43)

where ĤW DW is the quantum version of HW DW in (39). We resolve the ordering
ambiguity there by changing variables:

a → ã = 4√
3

a3/2 , (44)

and taking the special operator ordering:

p2
a

24a
→ 1

2

1√
12a

p̂a
1√
12a

p̂a = −1

2

∂2

∂ã2
. (45)

The WDW operator ĤW DW becomes:

ĤW DW = 1

2

∂2

∂ã2
+ 8

3̃a2
p̂2

ϕ + 3

4
pũw + 3

64
w2ã2( f1eαϕ + M1) , (46)

where p̂ϕ = −i∂/∂ϕ andw = w(̃a,ϕ, pũ) is the solution (42) of the cubic equation
(40).

The final form of WDW equation reads:

[1
2

( ∂

∂ã

)2 + 8

3̃a2
p̂2

ϕ + U (̃a,ϕ, pũ)
]
Ψ (̃a,ϕ; pũ) = 0 , (47)

U (̃a,ϕ, pũ) ≡ ã2( f1eαϕ + M1)
2

64(χ2 f2e2αϕ + χ2M2 − 2M0)
F(

ξ(̃a,ϕ, pũ)
)
) (48)
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with the following notations:

ξ(̃a,ϕ, pũ) ≡ ã4( f1eαϕ + M1)
3

192p2
ũ(χ2 f2e2αϕ + χ2M2 − 2M0)

, (49)

F(ξ) ≡ ξ−1/3
[(
1 + √

1 − ξ
)1/3 + (

1 − √
1 − ξ

)1/3]

×
[
2ξ−1/3 + (

1 + √
1 − ξ

)1/3 + (
1 − √

1 − ξ
)1/3]

. (50)

Analytic solutions of (47) can be found when the “inflaton” ϕ is either on the (−) flat
region (ϕ large negative – “early” universe) or on (+) flat region (ϕ large positive –
“late”/nowadays universe), cf. Fig. 1 above.

In the (+) flat region of the “inflaton” ϕ (“late” universe) theWDW equation (47)
reduces to the quantum mechanical Schrödinger equation:

[1
2

∂2

∂ã2
+ W(+)(̃a, pϕ)

]
Ψ (̃a, pϕ) = 0 , (51)

W(+)(̃a, pϕ) ≡ 3 f 21
64χ2 f2

ã2 + 8p2
ϕ

3
ã−2 , pϕ − small . (52)

The solution of (51) reads (here c1,2 are constants):

Ψ (̃a, pϕ) = √
ã
[
c1 J 1

4

√
1−γ

(1
2
βã2

) + c2 J− 1
4

√
1−γ

(1
2
βã2

)]
, (53)

β ≡
√

3 f 21
32χ2 f2

, γ ≡ 64

3
p2

ϕ (γ − small) , (54)

Ψ (̃a, pϕ) � const ã
1
2 (1−√

1−γ) for ã → 0 , (55)

i.e., the wave function (53) vanishes at ã = 0.
Similarly, in the (−) flat region of the “inflaton” ϕ (“early” universe) the WDW

equation (47) reduces to the quantum mechanical Schrödinger equation:

[1
2

∂2

∂ã2
+ W(−)(̃a, pϕ, pũ)

]
Ψ (̃a, pϕ, pũ) = 0 , (56)

W(−)(̃a, pϕ, pũ) = 3M2
1

64(χ2M2 − 2M0)
ã2 + 8p2

ϕ

3
ã−2

+pũ

√
M1

χ2M2 − 2M0
+ O

( p2
ũ

ã2

)
. (57)

In (56) and (57) the canonical “darkon” momentum (times a constant) plays the role

of energy eigenvalue E ≡ pũ

√
M1

χ2M2−2M0)
, meaning that the “darkon” field ũ plays

the role of cosmological“time” in the “early” universe.
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We can solve explicitly WDW equation (56) for small “darkon” momenta pũ

ignoring the last term in (57):

Ψ (̃a, pϕ, pũ) = const ã
1
2 (1+√

1−γ) e
i
2 βã2

×U
(1
4
(2 + √

1 − γ) − i
E

2β
,
1

2
(2 + √

1 − γ);−iβã2
)

, (58)

β ≡
√

3M2
1

32(χ2M2 − 2M0
, γ ≡ 64

3
p2

ϕ , E ≡ pũ

√
M1

χ2M2 − 2M0
, (59)

where U (·, ·; z) denotes the confluent hypergeometric function of the second kind.
Again as in (55) the wave function (58) vanishes at ã = 0:

Ψ (̃a, pϕ, pũ) � const ã
1
2 (1−√

1−γ) for ã → 0 , (60)

In the inflationary “slow-roll” regime in the“early” Universe the “inflaton” canon-
ical momentum pϕ is very small. Thus, ignoring also the second term in W(−) (57)
and Fourier-transforming (58) w.r.t. canonical “darkon” momentum pũ with E as in
(59):

Ψ (̃a, τ ) =
∫ ∞

−∞
d E

2π
Ψ (̃a, pϕ =0, pũ) e−i Eτ , E ≡ pũ

√
M1

χ2M2 − 2M0
, (61)

i.e., τ ∼ ũ being the “cosmological” time, theWDW equation (56) and (57) acquires
the form of a time-dependent Schrödinger equation for the inverted harmonic oscil-
lator:

i
∂

∂τ
Ψ (̃a, τ ) =

[
−1

2

∂2

∂ã2
− ω2ã2

]
Ψ (̃a, τ ) (62)

with a negative “frequency” squared:

− ω2 ≡ − 3M2
1

64(χ2M2 − 2M0)
≡ − 3

16
U(−) , (63)

where U(−) (31) is the vacuum energy density of the inflationary epoch.
The solution of equation (62) in the form of a normalized (on the semiaxis ã ∈

(0,∞)) wave packet has already been found in [48]:

Ψ (̃a, τ ) =
(2ω

π
sin(2b)

)1/4(
cos(b − iωτ )

)−1/2

× exp
{

− 1

2
ã2ω tan(b − iωτ )

}
, (64)
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where the parameter b describes thewidth of thewave packet. Calculating the average
value of the FLRW scale factor a =

√
3
4 ã2/3 (cf. (44)) we obtain:

〈̃a〉 ≡
∫ ∞

0
dã ã|Ψ (̃a, τ )|2 =

[cos(2b) + cosh(2ωτ )

πω sin(2b)

]1/2
. (65)

Thus, the quantum average of the FLRW scale factor does not exhibit any singularity
(〈̃a〉 → 0) at any “time” τ .

4 Conclusions

Employing non-Riemannian spacetime volume-forms (non-Riemannian volume ele-
ments) in generalized gravity-matter theories allows for several interesting develop-
ments:

• Simple unified description of dark energy and dark matter as manifestation of the
dynamics of a single non-canonical scalar field (“darkon”).

• Construction of a new class ofmodels of gravity interactingwith a scalar “inflaton”
ϕ, as well as with other phenomenologically relevant matter including Higgs-
like scalar σ, which produce an effective full scalar potential of ϕ,σ with few
remarkable properties.

• The “inflaton” effective potential (at fixed σ) possesses two infinitely large flat
regions with vastly different energy scales for large negative and large positive
values of ϕ. This allows for a unified description of both “early” universe inflation
as well as of present “dark energy”-dominated epoch in universe’s evolution.

• In the “early” universe the would-be Higgs field σ remains massless and decouples
from the “inflaton” ϕ. The“early” universe evolution is described entirely in terms
of the “inflaton” dynamics.

• In the post-inflationary epoch ϕ and σ exchange roles. The inflaton ϕ becomes
massless and decoupled, whereas σ becomes a genuine Higgs field with a dynam-
ically generated electro-weak-type symmetry breaking effective potential.

• A natural choice for the parameters involved conforms to quintessential cosmo-
logical and electro-weak phenomenologies.

• Minisuperspace Wheeler–DeWitt quantization reveals the role of the “darkon”
scalar field as cosmological“time” in the “early” Universe. The quantum average
of the FLRW scale factor does not exhibit any singularity in its “time” evolution.

Let us also note that applying the non-Riemannian volume-form formalism to
minimal N = 1 supergravity we arrived at a novel mechanism for the supersymmet-
ric Brout-Englert-Higgs effect, namely, the appearance of a dynamically generated
cosmological constant triggering spontaneous supersymmetry breaking and mass
generation for the gravitino [36, 44]. Applying the same non-Riemannian volume-
form formalism to anti-de Sitter supergravity produces simultaneously a very large
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physical gravitino mass and a very small positive observable cosmological constant
[36, 44] in accordance with modern cosmological scenarios for slowly expanding
universe of the present epoch [8–14].

As a final comment let us mention some further extensions of the method of
non-Riemannian volume elements – gravity models with dynamical spacetime [49]
further developed into models of interacting diffusive unified dark energy and dark
matter (see [50] and references therein).
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Wilson Loop Form Factors: A New
Duality

Dmitry Chicherin, Paul Heslop, Gregory P. Korchemsky
and Emery Sokatchev

Abstract We find a new duality for form factors of lightlike Wilson loops in planar
N = 4 super-Yang-Mills theory. The dualitymaps a form factor involving an n-sided
lightlike polygonal super-Wilson loop together withm external on-shell states, to the
same type of object but with the edges of the Wilson loop and the external states
swapping roles. This relation can essentially be seen graphically in Lorentz harmonic
chiral (LHC) superspacewhere it is equivalent to planar graph duality. However there
are some crucial subtleties with the cancellation of spurious poles due to the gauge
fixing. They are resolved by finding the correct formulation of the Wilson loop and
by careful analytic continuation from Minkowski to Euclidean space. We illustrate
all of these subtleties explicitly in the simplest non-trivial NMHV-like case.

1 Introduction

The natural gauge invariant objects in any gauge theory include scattering ampli-
tudes, Wilson loops, correlation functions and form factors of local operators. In the
past years numerous studies have revealed interesting duality relations between the
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first three objects in planar N = 4 SYM theory. The simplest MHV gluon scatter-
ing amplitude An(p1, . . . , pn) has been shown [1–3] to be dual to a Wilson loop
Wn(x1, . . . , xn) defined on a lightlike contour,

An(p1, . . . , pn) = Wn(x1, . . . , xn) , (1)

upon the identification of the separation between the cusp points xi of the contour
with the particle momenta pi in Minkowski space, xi − xi+1 = pi for i = 1, . . . , n
and xn+1 ≡ x1. This duality has a natural supersymmetric extension [4–6] where
the super-lightlike contour is built out of the on-shell supermomenta of the scattered
particles. The correlation functionsGn = 〈O(x1) . . . O(xn)〉 of local gauge invariant
operators O(x) are dual to theWilson loops (and hence to the amplitudes) in the light-
like limit [7, 8], limx2i,i+1→0 x

2
12 . . . x2n1 Gn = Wn . This duality has a supersymmetric

generalisation as well [9–11].
The fourth object is the form factor 〈0|O(x)|k1, . . . , km〉 of a local operator O(x)

with an asymptotic m−particle state of on-shell momenta k2j = 0 for j = 1, . . . ,m.
It is a hybrid between correlation functions and scattering amplitudes because it lives
simultaneously in coordinate and momentum spaces. Such form factors (and their
supersymmetric extensions inN = 4 SYM) have been actively studied in the recent
years [12–18]. It is interesting to know if there are possible duality relations for
them as well. This question has been addressed in [19] but for a more complicated
object, the matrix element of a lightlike bosonicWilson loop stretched between local
operators along a single light-cone direction, with an on-shell state. It has been shown
that this object is dual to itself upon swapping the coordinate and momentum data. It
has also been conjectured there that the new duality may extend to a larger class of
objects, namely the form factorWn,m = 〈0|Wn(x1, . . . , xn)|k1, . . . , km〉 of an n−gon
lightlike (supersymmetric) Wilson loop with anm−particle state. Schematically, the
suggested duality takes the form

Wn,m({x}|{k}) = Wm,n({y}|{p}) , (2)

where the kinematical data on both sides are related like in (1),

xi − xi+1 = pi , y j − y j+1 = k j , (3)

for i = 1, . . . , n and j = 1, . . . ,m provided that the total momenta of the particles
vanish,

∑n
i=1 pi = ∑m

j=1 k j = 0. This conjecture has been successfully tested in [20]
in the simplest case of a Wilson loop with a state of helicity (+1) gluons and in the
Born approximation.

Building upon the observations in [19, 20], in this paper we study the general
case of the form factor for a lightlike supersymmetric Wilson loop and we argue that
it has a remarkable duality property in planar N = 4 SYM. It extends the bosonic
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relation (2) and the identification of coordinates with momenta (3) to their super-
symmetric analogs. The super-Wilson loop form factors are considered in the planar
limit and in the lowest-order perturbative approximation (Born level). The introduc-
tion of Grassmann variables (θi on the Wilson loop contour and η j for the on-shell
states) allows us to probe the duality for more complicated configurations of particle
helicities. By analogy with the amplitudes, we call the contributions at the lowest
level in the Grassmann expansion MHV-like, at the next level NMHV-like, etc. At
MHV level we confirm the result of [20]. The NMHV level is much more compli-
cated, the form factor being a non-trivial rational function of the kinematical data.
Yet, we show that the duality still works, in a rather simple and suggestive way, by
just matching planar Feynman diagrams. This allows us to argue that it should hold
for the complete supersymmetric object (at all Grassmann levels) and also beyond
the Born approximation.

The key to understanding the duality is the appropriate superspace formulation
of the Wilson loop and its form factor. In the conventional approach the chiral
supersymmetric Wilson loop [4–6] is formulated in terms of constrained on-shell
super-connections [21, 22], which makes the Feynman diagram technique highly
inefficient. In this paper we prefer to use the Lorentz harmonic chiral (LHC) super-
space approach [23]. It provides an off-shell formulation of the chiral N = 4 SYM
theory in terms of unconstrained prepotentials, best suited for supersymmetric quan-
tisation. LHC superspace is an alternative to the twistor formulation [24, 25], closer
in spirit to traditional field theory (see also [26]). The main idea is to consider the
interacting theory as a perturbation of the self-dual sector. The twistor formulation
has been successfully used to justify the so-called MHV rules for the computation
of the amplitude [27], to prove the duality between supersymmetric Wilson loops
and amplitudes [5], to compute off-shell correlation functions of the N = 4 stress-
tensor multiplet [28]. More recently, the LHC formalism was applied to finding the
non-chiral completion of the correlators [29] and to the calculation of form factors of
local operators [30]. In this paper, after explaining the kinematical setup in Sect. 2,
we formulate the lightlike Wilson loop in LHC superspace in Sect. 3 and apply the
Feynman rules of [30] to the computation of its form factors in Sect. 4. We find
an important additional contribution to the Wilson loop, compared to the twistor
formulation [5]. It is needed to make the Wilson loop gauge invariant.

The duality essentially works on a graph-to-graph basis. More precisely, we find
two types of Feynman graphs corresponding to two different helicity configurations
at NMHV-like level. These graphs are dual to each other after identifying the kine-
matical data as in (3) and redrawing the graph following a simple rule. In addition to
these graphs there are sets of graphs whose role is to restore gauge invariance. We
use a light-cone gauge whose parameter is the so-called reference spinor. A known
problem of such gauges is the presence of spurious poles. Their elimination in the
Feynman graphs (and hence the restoration of gauge invariance) is a somewhat subtle
procedure.
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2 Definitions and Summary of the Results

2.1 Generalised Form Factors of Wilson Loops

In this paper, we study a new object – the generalised form factor of the lightlike
Wilson loop. In N = 4 SYM with gauge group SU (N ) it is defined as the matrix
element of a lightlike n−gon supersymmetric Wilson loop Wn with the on-shell
m−particle state |1a1 . . .mam 〉:

〈0|Wn |1a1 . . .mam 〉 = 1

N
〈0|tr P exp

[

i
∮

Cn

(
dxμAμ(x, θ) + dθαAAαA(x, θ)

)]

|1a1 . . .mam 〉 ,

(4)

where the integration goes over a closed contour Cn formed by n straight lightlike
segments connecting the superspace points (xi , θi ). The bosonic and fermionic gauge
connections, Aμ and AαA, have expansions in powers of θ ’s with coefficients given
in terms of the gluon, gaugino and scalar fields. Their explicit expressions are shown
below in (31).

In the planar limit, the form factor can be decomposed in the standard manner
over the basis of single traces,

〈0|Wn|1a1 . . .mam 〉 =
∑

σ∈Sm/Zm

tr(T aσ1 . . . T aσm )Fn,m(σ1, . . . , σm) , (5)

where the sum runs over all permutations of the external particles σ1, . . . , σm modulo
cyclic shifts. The matrix element (5) is a natural generalisation of lightlike Wilson
loops 〈0|Wn|0〉 and scattering amplitudes A(1a1 . . .mam ). In fact, it gets a discon-
nected contribution given by their product. In what followswe discard it and consider
only the connected contribution to (5).

The color-ordered form factors Fn,m depend on two sets of variables. The first
set consists of n coordinates in Minkowski space-time and their odd superpartners
(x α̇α

i , θαA
i ) specifying the position of the vertices of a lightlike n−gon,1

(xi − xi+1)
2 = 0 , (xi − xi+1)

α̇α (θ A
i,α − θ A

i+1,α) = 0 (6)

for i = 1, . . . , n, with the cyclicity conditions xn+1 = x1 and θn+1 = θ1. Here the
first relation means that the Wilson loop is built from lightlike segments and the
second relation is its superpartner.

The second set of variables consists of the on-shell momenta of m particles
(kα̇α

j , η j A)

k α̇α
j = k̃ α̇

j k
α
j ≡ |k j ]〈k j | (7)

1We use two-component spinor notation for vectors, e.g., x α̇α = (σμ)α̇αxμ. The Lorentz and R
symmetry indices take values α = 1, 2, α̇ = 1, 2 and A = 1, 2, 3, 4, respectively.



Wilson Loop Form Factors: A New Duality 119

with k2j = 0 and j = 1, . . . ,m. Like the scattering amplitudes, the expansion of
the on-shell state in powers of η j A corresponds to particles with different helicity
(gluons, gaugini and scalars). Each particle superstate carries one unit of helicity. It
is then convenient to introduce the helicity-free functionWn,m multiplying (5) by the
so-called Parke-Taylor factor

Wn,m = 〈k1k2〉〈k2k3〉 . . . 〈kmk1〉 Fn,m(1, . . . ,m) , (8)

where 〈ki k j 〉 = kα
i εαβk

β

j . The scalar function Wn,m defined in this way depends on
the two sets of variables introduced above,

Wn,m = Wn,m({x, θ}; {k, η}) . (9)

As follows from the definition (5), this function is invariant under cyclic shifts of the
coordinates and momenta.

2.2 Dual Variables

To elucidate the interesting properties ofWn,m we introduce the so-called dual super-
space variables [31]. The coordinates of the Wilson loop (xi , θ A

i ) have the dual
momenta (pi , ωA

i ) defined as

xi − xi+1 = pi , |θ A
i 〉 − |θ A

i+1〉 = |pi 〉ωA
i , (10)

where we do not display the Lorentz indices for simplicity. It follows from (6) that
pi are lightlike vectors, p2i = 0, satisfying the condition

∑n
i=1 pi = 0. Similarly, the

odd variablesωA
i satisfy the relation

∑n
i=1 |pi 〉ωA

i = 0 and solve the second condition
in (6). Note that the properties of (pi , ωA

i ) (with i = 1, . . . , n) match those of the
supermomenta of the on-shell states in the scattering amplitude An . This observation
was crucial in establishing the duality between the lightlike Wilson loopWn and the
scattering amplitude An .

For the set of on-shell momenta (k j , η j A), the dual coordinates are defined as

k j = y j − y j+1 , |k j 〉 η j A = |ψ j,A〉 − |ψ j+1,A〉 . (11)

Here the dual momenta y1, . . . , ym+1 are consecutively lightlike separated, (yi −
yi+1)

2 = 0 and their superpartners satisfy (y j − y j+1)(|ψ j,A〉 − |ψ j+1,A〉) = 0. Note
the striking similarity between relations (10) and (11). Namely, these relations can
be mapped into each other by exchanging coordinates with dual momenta, (x, θ) →
(y, ψ), and momenta with dual coordinates, (k, η) → (p, ω).

There is however an important difference between the two sets of dual coordinates.
The dual vectors pi define the edges of a closed n−gon and their sum equals zero.
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The same is true for the sum of dual odd coordinates |pi 〉ωA
i ,

n∑

i=1

pi = x1 − xn+1 = 0 ,

n∑

i=1

|pi 〉ωA
i = |θ A

1 〉 − |θ A
n+1〉 = 0 , (12)

so that the dual variables satisfy the periodicity conditions xi = xi+n and θ A
i = θ A

i+n .
For the dual momenta the analogous relations read

m∑

j=1

k j = y1 − ym+1 = K ,

m∑

j=1

|k j 〉 η j A = |ψ1,A〉 − |ψm+1,A〉 = QA , (13)

where K and Q are the total momentum and supercharge of the m particles in (5),
respectively. In contrast with (12), K and Q can take arbitrary values and there are no
reasons to impose the periodicity conditions ym+1 = y1 and ψm+1,A = ψ1,A. Indeed,
the function (9) is well defined for arbitrary K and Q.

2.3 Duality Relation

Setting K = QA = 0 in (13) we restore the symmetry between (12) and (13). This
allows us to treat the original variables and their dual counterparts on an equal footing.
In this paper we argue that for K = QA = 0 the symmetry of Wn,m is enhanced and
yields an interesting duality relation for Wn,m that we shall formulate in a moment.
More precisely, we can use the dual variables to define, following (5), the matrix
element of the lightlike Wilson loop 〈0|Wm |1a1 . . . nan 〉. Here the Wilson loop is
evaluated along a closed lightlikem−gonwith vertices located at (y j , ψ j ) and the on-
shell state consists of n particles with supermomenta (pi , wA

i ). This matrix element
has the same general form (5) and (8), with the corresponding scalar function Wm,n

given by

Wm,n = Wm,n({y, ψ}; {p, ω}) . (14)

Applying relations (10) and (11) we can express it in terms of the original variables
{xi , θi } and {k j , η j }.

The duality relation that we propose states that the functions (9) and (14) coincide
in planar N = 4 SYM,

Wn,m({x, θ}; {k, η}) = Wm,n({y, ψ}; {p, ω}) . (15)

Using the definition of the dual variables we can rewrite the duality relation in other
equivalent forms, e.g.
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Fig. 1 Diagrammatic representation of the duality relation (16). The Wilson loop on the left is
built out of lightlike vectors p1, . . . , pn , the wavy lines denote on-shell particles with momenta
k1, . . . , km and the dash lines stand for free propagators. Black and white dots denote effective
vertices. The dual Wilson loop form factor on the right has the lightlike vectors and momenta
exchanged. The middle figure explains the duality by superimposing the two graphs

Wn,m({p, ω}; {k, η}) = Wm,n({k, η}; {p, ω}) . (16)

This relation is represented diagrammatically in Fig. 1.
The duality relation (15) should hold for any values of n andm. As a simple illus-

tration, we examine it for the lowest values of n and m. In the special cases m = 0
(or n = 0) we recover the well-known duality between the n−point superamplitude
and the n−point super-Wilson loop. Since the n−gon Wilson loop is well defined
for n ≥ 2, we start with n = 2, 3. In this case, the cusp points xi satisfying (6) have
to lie on the same light-ray in Minkowski space-time. Then, the integration contour
of the Wilson loop collapses to a backtracking path leading to W2 = W3 = 1. As a
consequence, the matrix element on the left-hand side of (5) only receives discon-
nected contributions yielding the vanishing ofWn,m({x, θ}; {k, η}) for n = 2, 3. The
duality relation (15) implies that the same should be true for Wm,n({y, ψ}; {p, ω})
for n = 2, 3. Indeed, the corresponding matrix element (5) involves an on-shell state
with (real valued) lightlike momenta ki that are necessarily aligned due to

∑
i ki = 0.

In this case 〈ki k j 〉 = 0 and it follows from (8) thatWm,n vanishes, in agreement with
(14).

2.4 Duality Relation at MHV Level

Let us now consider the duality relation for n,m ≥ 4. In this case both sides of
(15) are different from zero and are given by nontrivial functions of the kinematical
variables and of the ’t Hooft coupling constant. In what follows we shall restrict
our consideration to the lowest order in the coupling (Born level). Expanding both
sides of (15) in the Grassmann variables, we can get relations between the different
components. By analogy with the scattering amplitudes, we shall refer to the terms of
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the expansion as MHV, NMHV, etc. Notice that since Wn,m({x, θ}; {k, η}) depends
on two sets of Grassmann variables θi and η j , we will have to deal with a double
expansion of the form NκMHV ×NσMHV.

The lowest term of the expansion, MHV×MHV, corresponds to (15) with all
Grassmann variables put to zero on both sides of the relation. Namely, for θi = 0 the
super Wilson loop Wn reduces to the bosonic lightlike Wilson loop and for η j = 0
the on-shell state in (5) reduces to a gluon state of helicity (+1). In this way, from
(4) and (5) we obtain

FMHV×MHV
n,m (x, k) = 1

N
〈0|tr(E1n . . . E32E21

)|k+
1 . . . k+

m 〉 , (17)

where Ei+1,i denotes a bosonic Wilson line in the fundamental of SU (N ) evaluated
along the lightlike segment [xi , xi+1]

Ei+1,i = P exp

(

−i
∫ 1

0
dt pi · A(xi − pi t)

)

, (18)

with pi = xi − xi+1. Notice that the ordering of the E−factors inside the trace in
(17) is opposite to that of the gluons in the on-shell state.

In the Born approximation, AMHV×MHV
n,m is given by the sum of tree Feynman

diagrams in which the on-shell gluons are attached to the lightlike n−gon contour
either directly or through 3− and 4−gluon interaction vertices. The calculation can
be simplified by introducing the notion of a “wedge”, i.e. a cusped Wilson line built
from two semi-infinite rays running along the lightlike vectors −p1 and p2 and
joining at point x :

Wp2,p1 (x) = P

[

exp

(

i
∫ ∞
0

dt p2 · A(x + p2t)

)

exp

(

−i
∫ 0

−∞
dt p1 · A(x − p1t)

)]

. (19)

In the product Wp3,p2(x3)Wp2,p1(x2) with p2 = x2 − x3, it is easy to see that the two
semi-infinite rays running along p2 partially cancel against each other giving rise to
E32. In this way, we can rewrite (17) as

FMHV×MHV
n,m (x, k) = 1

N
〈0|tr[Wpn ,pn−1(xn) . . .Wp2,p1(x2)Wp1,pn (x1)

]|k+
1 . . . k+

m 〉 .

(20)

The advantage of this representation is that, in the Born approximation, the on-shell
gluons can be emitted by one of theW−factors thus allowing us to express thematrix
element on the right-hand side of (20) as the sum over all possible attachments of m
gluons to n wedges
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Fig. 2 Diagrammatic representation of the duality relation (28) for n = 6 and m = 5. Notice that
the polygon vertices and the gluons are ordered in opposite directions. Black blobs with outgoing
gluons denote wedge form factors (22). The lightlike edges of the Wilson loops are mapped to the
momenta of the on-shell gluons, ki = yi − yi+1 and p j = x j − x j+1

FMHV×MHV
n,m =

∑

�1<···<�s

∑

1≤is<···<i1≤n

〈0|Wpi1 ,pi1−1(xi1)|k+
�1

. . . k+
�2−1〉

× 〈0|Wpi2 ,pi2−1(xi2)|k+
�2

. . . k+
�3−1〉 . . . 〈0|Wpis ,pis−1(xis )|k+

�s
. . . k+

�1−1〉 .

(21)

Here the first sum goes over all possible partitions of m gluons over s clusters (with
s ≤ n) and the second sum runs over all possible wedges xi1 , . . . , xis to which these
clusters are attached. The difference in the ordering of indices �k and ik in (21) is
due to the opposite ordering of the E−factors and gluons in (17). Relation (21) is
represented diagrammatically in Fig. 2.

Relation (21) involves the so-called wedge form factor 〈0|Wp2,p1(x)|k+
1 . . . k+

� 〉.
Since the on-shell state contains only gluons of the same helicity, its calculation in the
Born approximation can be performed in the self-dual sector of Yang-Mills theory
[20, 26]

〈0|Wp2,p1(x)|k+
1 . . . k+

� 〉 = F(p2, k1, . . . , k�, p1) e
ix(k1+...+k�) . (22)

Here the dependence on x is fixed by Poincaré symmetry and the order of the argu-
ments of the F−functionmatches the color ordering of the gluons. Its explicit expres-
sion reads (see Sect. 4.1 for more details)

F(p2, k1, . . . , k�, p1) = 〈p2 p1〉
〈p2k1〉〈k1k2〉 . . . 〈k� p1〉 . (23)

Substituting (22) and (23) in (21) and matching the result with (8) we find
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WMHV×MHV
n,m (x, k) =

∑
eixi1 y�1�2+i xi2 y�2 ,�3+...+i xis y�s ,�1

× 〈k�1−1k�1 〉〈pi1 pi1−1〉〈k�2−1k�2 〉〈pi2 pi2−1〉 . . . 〈k�s−1k�s 〉〈pis pis−1〉
〈k�1 pi1 〉〈pi1−1k�2−1〉〈k�2 pi2 〉〈pi2−1k�3−1〉 . . . 〈k�s pis 〉〈pis−1k�1−1〉 , (24)

where the sum covers the same range as in (21). Here we used (11) to switch to dual
momenta in the exponent, e.g. y�1�2 = k�1 + · · · + k�2−1. We recall that for vanishing
total momentum K = ∑m

i=1 ki = 0, the dual momenta satisfy the periodicity condi-
tion ym+1 = y1. Using this property, we can rewrite the exponential factor in (24) in
the equivalent form

eiy�s xis ,is−1+···+iy�2 xi2 i1+iy�1 xi1 is . (25)

We observe that it can be obtained from the original factor by swapping the variables

xi1 ↔ y�s , xi2 ↔ y�s−1 , . . . , xis ↔ y�1 . (26)

Let us now examine the expression in the second line of (24). It depends on two
sets of null vectors pi and ki defining the edges of the lightlike Wilson loop and the
momenta of the on-shell gluons, respectively. It is straightforward to verify that it is
invariant under the swapping of these vectors

k�1 ↔ pis , k�2 ↔ pis−1 , . . . , k�s ↔ pi1 . (27)

Putting together (26) and (27), we immediately conclude that the expression on the
right-hand side of (24) is invariant under the exchange of the original variables (x, k)
with their dual partners (y, p). This yields the duality relation

WMHV×MHV
n,m (x, k) = WMHV×MHV

m,n (y, p) , (28)

in agreement with [20].

2.5 Duality Beyond MHV

To test the duality relation (15) beyond MHV level, we have to take into account the
dependence of the Wilson loop form factor (4) on the Grassmann variables θ A

i and
η j A. The dependence on η comes from the expansion of the on-shell super-state in
(4) over the states of particles (gluons, gaugino and scalars) with different helicity.

At the same time, the dependence of (4) on θ comes from the expansion of the
supersymmetric n−gon Wilson loop

Wn = 1

N
tr
(E1n . . . E32 E21

)
(29)
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in powers of θi defining the position of vertices of the lightlike n−gon in (chiral)
superspace.Here the supersymmetricWilson lineEi+1,i is evaluated along the straight
segment connecting the superspace points (xi , θi ) and (xi+1, θi+1)

Ei+1,i = P exp

[

−i
∫ 1

0
dt

(1

2
x α̇α
i,i+1Aαα̇(x(t), θ(t)) + θαA

i,i+1AαA(x(t), θ(t))
)]

,

(30)

where x(t) = xi − xi,i+1 t and θ(t) = θi − θi,i+1 t . The super-connectionsA are sub-
ject to the defining on-shell constraints ofN = 4SYM[32].Oneway of solving them
is to fix the non-supersymmetric Wess–Zumino gauge and express the components
of A in terms of the propagating gluon, gaugino and scalar fields [21, 22]

Aαα̇ = Aαα̇ + iθ A
α ψ̄α̇A + i

2!θ
A
α θβBDβα̇φ̄AB − 1

3!εABCDθ A
α θβBθγC Dβα̇ψD

γ + · · ·

AαA = i

2
φ̄ABθ B

α − 1

3!!εABCDθ B
α θγCψD

γ + i

4!!εABCDθ B
α θβCθγ DFβγ + · · · , (31)

where the dots denote higher-order terms in θ .
Before continuing let us examine the superspace structure we should expect this

object to have arising from supersymmetry. The chiral supersymmetry of (9) yields
the Ward identity

( n∑

i=1

∂

∂θ A
i

+
m∑

j=1

|k j 〉η j,A

)

Wn,m({x, θ}; {k, η}) = 0 . (32)

The duality relation is expected to hold if the total particle supercharge vanishes,
QA = ∑m

j=1 |k j 〉 η j A = 0. Then (32) implies that Wn,m can be an arbitrary func-
tion of θ A

i j = θ A
i − θ A

j and ηk A. In virtue of the R symmetry, these variables must
form SU (4) invariants. The latter are of three different kinds: εABCDθ A

ii ′θ
B
j j ′θ

C
kk ′θ D

ll ′ ,
η4
i jkl = εABCDηi Aη j BηkCηlD and (θi jηk) = θ A

i j ηk A. The dependence on these invari-
ants simplifies further in the Born approximation.

To compute Wn,m in the Born approximation, we substitute (29)–(31) into the
definition (4) and retain the contribution at the lowest order in the coupling. Since
the dependence on θ ’s comes from the expansion of the bosonic and fermionic con-
nections in (31), the number of contributing diagrams and their complexity increases
significantly as compared with the MHV case described in the previous subsection.
Moreover, the use of the Wess–Zumino gauge (31) breaks manifest supersymmetry.
This makes the conventional approach impractical.

In this paper we prefer the off-shell formulation of the chiralN = 4 SYM theory
in terms of unconstrained prepotentials in LHC superspace [23], better suited for
supersymmetric quantisation. In Sect. 3 we formulate the lightlike Wilson loop in
LHC superspace and apply the Feynman rules of [30] to the computation of its form
factors.
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In this new formulation,Wn,m({xi , θi }; {k j , η j }) is given by a sum of contributions
having a similar structure to (21), with the important difference that the wedge
form factors are replaced by their supersymmetric generalisations depending on
the Grassmann variables θ A

i and η j A. This leads to the following general expression
for Wn,m ,

Wn,m =
∑

eixi1 y�1�2+i xi2 y�2 ,�3+···+i xis y�s ,�1 × e〈θi1ψ�1�2 〉+〈θi2ψ�2�3 〉+···+〈θis ψ�s �1 〉 × Ŵn,m ,

(33)

which should be compared with (24). Here we used shorthand notation 〈θi1ψ�1�2〉 =
θαA
i1

(ψ�1,αA − ψ�2,αA) with the dual ψ−variables defined in (11). The sum in (33)
has the same form as in (21) and runs over all possible partitions ofm super particles
over s clusters. Notice that the function Ŵn,m depends on the choice of partition. The
second exponent on the right-hand side of (33) is the supersymmetric completion of
the first exponent depending on the bosonic variables.

Most importantly, as we show below by exploring the structure of the Feynman
diagrams, the function Ŵn,m does not depend on the mixed products of Grassmann
variables (θi jηk) in the Born approximation.2 This allows us to expand Ŵn,m in
powers of the two remaining invariants leading to the following relation

Ŵn,m = W (0,0)
n,m + (

W (1,0)
n,m + W (0,1)

n,m

) + (
W (2,0)

n,m + W (1,1)
n,m + W (0,2)

n,m

) + · · · , (34)

where W (κ,σ )
n,m is a homogenous polynomial in θ ’s and η’s of degree 4κ and 4σ ,

respectively. Schematically, W (κ,σ )
n,m ∼ θ4κη4σ . By analogy with the superamplitude,

we refer to the terms on the right-hand side of (34) with κ + σ = k as NkMHV-
like. The lowest term of the expansion, W (0,0)

n,m , defines the MHV-like contribution
WMHV×MHV

n,m discussed in the previous subsection. Its explicit expression can be read
from (24).

Substituting (33) and (34) into (15), we can formulate the duality relation in each
sector,

W (κ,σ )
n,m ({x, θ}; {k, η}) = W (σ,κ)

m,n ({y, ψ}; {p, ω}) . (35)

The explicit expressions for W (κ,σ )
n,m for generic κ and σ are rather complicated even

in the Born approximation. Nevertheless, as we show below, the duality relation (35)
can be verified by matching into each other the diagrams contributing to both sides
of (35).

2This does not follow from chiral supersymmetry (32) and it would be interesting to understand the
symmetry leading to such a structure.
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3 Lightlike Wilson Loop in LHC Superspace

As mentioned in the introduction, the conventional formulation (30) of the chi-
ral supersymmetric Wilson loops, making use of constrained super-connections, is
not convenient for quantum calculations. The LHC superspace approach, where the
dynamical gauge prepotentials are unconstrained, is much more efficient. In this
section we start by a brief summary of the LHC superspace description of N = 4
SYM. Then we present the explicit form of the Wilson loop in LHC superspace, in
terms of the two unconstrained gauge prepotentials. Our formulation is similar to the
twistor one of Mason and Skinner in [5] but differs from it on an essential point.

3.1 N = 4 Super-Yang-Mills in LHC Superspace

Here we recall some basic facts about N = 4 SYM in LHC superspace (for details
see [23]). The theory is formulated in terms of two dynamical chiral superfields
(prepotentials),

A++(x, θ+, u) , A+
α̇ (x, θ+, u) . (36)

Here θ+A = θ A
α u

+α is a projection of the chiral Grassmann variable with a har-
monic variable u+α . This commuting spinor variable together with its conjugate
u−α form a matrix of the chiral half SU (2)L of the Euclidean Lorentz group
SO(4) ∼ SU (2)L × SU (2)R . The harmonic variables u± parametrise the coset
space S2 ∼ SU (2)L/U (1). The superfields (36) are interpreted as infinite har-
monic expansions on the sphere, i.e. homogeneous series in the harmonic vari-
ables u± with fixed U (1) charge. For example, in the expansion of A+

α̇ (x, θ+, u) =
Aαα̇(x)u+α + Aαβγ α̇(x)u+αu+βu−γ + · · · + O(θ) we find the ordinary gauge field
Aαα̇(x) and an infinite set of auxiliary higher-spin fields Aαβγ α̇(x), . . . . Note the
absence of the other projection θ−A = θ A

α u
−α in (36). Such superfields are called

chiral-analytic.
The prepotentials have the meaning of connections for two of the gauge covariant

derivatives in the theory, namely

∇++ = ∂++ + A++ , ∇+
α̇ = ∂+

α̇ + A+
α̇ . (37)

Here ∂+
α̇ = u+α∂αα̇ is a projection of the space-time derivative ∂x while ∂++ =

u+α∂/∂u−α is one of the two covariant derivatives on S2. These derivatives transform
with a gauge parameter of the chiral-analytic type,

∇ → eΛ(x,θ+,u) ∇ e−Λ(x,θ+,u) . (38)
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The remaining gauge connections can be constructed from the prepotentials by solv-
ing the various super-curvature constraints. In particular, the projected spinor deriva-
tive ∂+

A = u+α∂/∂θαA commutes with the gauge parameter Λ(x, θ+, u), hence it
needs no connection, ∇+

A = ∂+
A .

The action of the theory consists of two terms,

SN=4 SY M =
∫

dud4xd4θ+ LCS(x, θ
+, u) +

∫

d4xd8θ LZ (x, θ) . (39)

The first term in (39) is of the Chern–Simons type,

LCS(x, θ
+, u) = tr

(

A++∂+α̇A+
α̇ − 1

2
A+α̇∂++A+

α̇ + A++A+α̇A+
α̇

)

(40)

and it describes the self-dual sector of the theory [33]. The second term in (39)
involves only the prepotential A++ in a non-polynomial way [24, 34],

LZ = tr
∞∑

n=2

(−1)n

n

∫

du1 . . . dun
A++(x, θ+

1 , u1) . . . A++(x, θ+
n , un)

〈u+
1 u

+
2 〉 . . . 〈u+

n u
+
1 〉 , (41)

where θ+A
i = θαA(ui )+α with i = 1, . . . , n and 〈u+

i u
+
j 〉 = u+α

i εαβ u
+β

j . This
Lagrangian is local in (x, θ) space but non-local in the harmonic space (each copy
of A++ depends on its own harmonic variable). The gauge coupling constant g can
be restored by redefining A → gA and L → g−2L .

In this paper we are dealing with form factors, so we need to define the super-
symmetric on-shell states. A detailed discussion can be found in [30], here we
only recall that the super-wave functions of the prepotentials A in the state with
(super)momentum (k, η) have the form

〈k, η|A++(x, θ+, u)|0〉 = δ2(k, u)eikx+〈kθ〉η , 〈k, η|A+
α̇ (x, θ+, u)|0〉 = 0 (42)

provided we quantise the theory in the light-cone gauge. The harmonic delta function
δ2(k, u) identifies the harmonic variable of the fieldwith the chiral spinormomentum,
u+

α = kα . Notice that only the prepotential A++ has a non-trivial wave function, while
A+

α̇ does not appear in external states.

3.2 Chiral Wilson Loop in LHC Superspace

Now, the question arises how to reformulate the Wilson loop (29), (30) in terms of
the prepotentials?
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The chiral lightlike Wilson loop in LHC superspace takes the following form:

Wn = 1

N
tr

n∏

i=1

U (xi , θi ; pi , pi−1)Ei+1,i . (43)

Here the so-called bilocal bridge

U (x, θ; p2, p1) = 1 +
∞∑

n=1

(−1)n
∫

du1 . . . dun
〈p2 p1〉A++(1) . . . A++(n)

〈p2u+
1 〉〈u+

1 u
+
2 〉 . . . 〈u+

n p1〉 (44)

resembles the interaction Lagrangian (41). The bridges glue together adjacentWilson
line segments in (43),

Ei+1,i = P exp

{

− i

2

∫ 1

0
dt p̃α̇

i A
+
α̇

(
xi − t p̃i pi , 〈piθi 〉, |pi 〉

)}

. (45)

We remark that in the expression for the Wilson loop (43) the prepotential A++
appears only at the cusps of the Wilson loop contour via the bilocal bridge U (44),
while the other prepotential A+

α̇ contributes only through the edges of the contour.
Wewould like to emphasise that the definition of theWilson loop (43) differs from

the twistor formulation of Mason and Skinner [5] in that it contains the additional
Wilson line segments Ei+1,i . We believe that the definition of the Wilson loop in [5]
is not gauge invariant and hence it is incomplete. Still, the result of their calculation
of the NMHVWilson loop is correct. However, as we show in this paper, the Wilson
line segments in (43) are indispensable for obtaining a gauge-invariant result for the
Wilson loop form factor.

4 Diagrammatic Approach to the Duality

In this section we illustrate the duality (35) in the simplest MHV×MHV case. It
corresponds to the first term on the right-hand side of (34) which has the lowest
Grassmann degree (κ = 0, σ = 0). We apply the Feynman rules to the calculation
of the Wilson loop form factor defined in (43), in the planar limit and to the lowest
order in the coupling and rederive the result (24). This example illustrates both the
graph duality and the simplicity of the LHC computation.

We end the section by a discussion of the general structure of the non-MHV
diagrams.
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Fig. 3 The left figure represents a planar Born-level diagram for theWilson loop form factorW (0,0)
12,8 .

The external particles are coming from infinity which is chosen inside the Wilson loop contour.
The right figure represents a diagram for W (0,0)

8,12 where the variables specifying the Wilson loop
contour and the external particles are swapped. Here infinity is chosen to lie outside theWilson loop
contour. In the middle figure the two diagrams are superimposed so that the planar graph duality is
manifest

4.1 MHV Example

As follows from the definition of the Wilson loop (43)–(45), to the lowest degree
in the Grassmann variables, the Born-level contribution only comes from diagrams
without internal propagators and interaction vertices and with the prepotential A++
replaced by the wave function. Indeed, the propagators of the prepotentials A++ and
A+

α̇ are nilpotent (either ∼ θ4 or ∼ η4) and increase the Grassmann degree. This
leaves us with only one type of diagram illustrated in Fig. 3.

Here in the diagram on the left-hand side we draw all external legs inside the
Wilson loop contour. These legs are ordered according to (5) and they end at a point
that we call ‘infinity’. This graph contains n = 12 edges andm = 8 external particles
and contributes to F12,8. In the second diagram in Fig. 3we show the planar dual graph
faintly superimposed. For every face of the original graph we draw a vertex, then we
join the vertices up by appropriate edges going through the boundaries of two faces
as described above. This results in the third diagram which we recognise as a valid
MHV×MHV diagram contributing to F8,12 with all external legs outside the Wilson
loop.

Let us compute the graph expressions using the simple Feynman rules. First
consider the left diagram in Fig. 3. There are five non-trivial cusps of the Wilson
loop emitting particles. We obtain the following contribution to F12,8

F12,8 = eik1x1+Q1θ1 〈p12 p1〉
〈p1k1〉〈k1 p12〉 × ei(k2+k3)x11+(Q2+Q3)θ11 〈p10 p11〉

〈p11k2〉〈k2k3〉〈k3 p10〉
× eik4x8+Q4θ8 〈p7 p8〉

〈p8k4〉〈k4 p7〉 × eik5x7+Q5θ7 〈p6 p7〉
〈p7k5〉〈k5 p6〉 × ei(k6+k7+k8)x4+(Q6+Q7+Q8)θ4 〈p3 p4〉

〈p4k6〉〈k6k7〉〈k7k8〉〈k8 p3〉 .

(46)
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where Qiθ j ≡ ηi A〈kiθ A
j 〉. The dependence on the Grassmann variables follows the

similar bosonic variables exponents. Substituting F12,8 into (8) and (33) we obtain
the corresponding contribution to Ŵ12,8

Ŵ12,8 = 〈k8k1〉〈k1k2〉〈k3k4〉〈k4k5〉〈k5k6〉 × 〈p12 p1〉〈p10 p11〉〈p7 p8〉〈p6 p7〉〈p3 p4〉
〈p1k1〉〈k1 p12〉〈p11k2〉〈k3 p10〉〈p8k4〉〈k4 p7〉〈p7k5〉〈k5 p6〉〈p4k6〉〈k8 p3〉 .

(47)

Let us now look at the right diagram in Fig. 3. It depends on the variables (y j , ψ j )

defining the Wilson loop contour and the variables (pi , ωi ) specifying the external
particles. Using the effective Feynman rules, we obtain the following contribution to
F8,12:

F8,12 = ei(p1+p2+p3)y1+(Q̃1+Q̃2+Q̃3)ψ1〈k8k1〉
〈k8 p3〉〈p3 p2〉〈p2 p1〉〈p1k1〉 × ei(p11+p12)y2+(Q̃11+Q̃12)ψ2〈k1k2〉

〈k1 p12〉〈p12 p11〉〈p11k2〉

× ei(p8+p9+p10)y4+(Q̃8+Q̃9+Q̃10)ψ4〈k3k4〉
〈k3 p10〉〈p10 p9〉〈p9 p8〉〈p8k4〉 × eip7 y5+Q̃7ψ5〈k4k5〉

〈k4 p7〉〈p7k5〉

× ei(p4+p5+p6)y6+(Q̃4+Q̃5+Q̃6)ψ6〈k5k6〉
〈k5 p6〉〈p6 p5〉〈p5 p4〉〈p4k6〉 , (48)

where Q̃iψ j ≡ ωA
i 〈piψ j A〉. Substituting this expression into (8) and (33) we find

that its contribution to Ŵ8,12 is precisely equal to (47),

Ŵ8,12 = Ŵ12,8 . (49)

This example illustrates the general diagrammatic proof of the duality in the MHV
case: there aremixed 〈ki p j 〉 brackets, common to both the graph and its dual. Then the
missing 〈ki k j 〉 brackets in the denominator on one side become explicit numerator
terms from the Wilson loop vertices on the other, and vice versa for the 〈pi p j 〉
brackets.

The exponential factors can be seen to agree in general, also diagrammatically.
Using k j = y j − y j+1 we find that there is an exponent eixi y j in the left diagram
if and only if the face y j has a corner xi . In the dual picture faces and vertices are
swapped, but the result is unchanged. The Grassmann exponents follow the same
pattern.

5 Concluding Remarks

In this paper we have given the proof of the new duality for Wilson loop form factors
at the first non-trivial NMHV-like level and in the Born approximation. Can we go
beyond?
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Consider the general duality (35) in the Born approximation. In this case the cusp
diagrams involve several propagators (see Fig. 1) and the corresponding edge dia-
grams also have amore complicated structure. In particular we need diagrams involv-
ing higher-order edge terms in the expansion of the Wilson lines Ei+1,i , Eq. (45).
Also, we encounter diagrams of the mixed type, with cups-to-cusp and cusp-to-edge
propagators. Nevertheless the mechanism of spurious pole cancellation is expected
to be essentially the same.

We can start with the cusp diagrams for which the duality is evident since it is a
duality of planar graphs. These diagrams provide the physical poles corresponding to
vanishing invariant masses, (ki + · · · + k j−1)

2 = y2i j = 0, or to the distance between
two distant points of the Wilson loop contour becoming lightlike, x2i j = 0. However
they contain various complex spurious poles. These poles are removed by adding the
appropriate mixed and edge diagrams. For each spurious pole there are correction
terms obtained by sliding an external leg along a propagator. The mechanism is
expected to work iteratively, first removing the poles of the pure cusp diagrams, then
of the mixed, etc.

We can also think of the duality beyond the Born approximation. The loop cor-
rections to the vacuum expectation value of the Wilson loop create UV-divergences.
At loop level the scattering amplitude suffers from IR-divergences. Since theWilson
loop form factor is a hybrid observable interpolating between the two, its perturbative
corrections are both UV- and IR-divergent.3 So one needs to introduce a regularisa-
tion which can handle both types of divergences. Instead, we can consider the duality
for the four-dimensional loop integrands corresponding to Lagrangian insertions into
the Born-level object.

In the planar limit the loop integrands are unambiguously well-defined rational
functions. So it is natural to expect that the duality works for them similarly to the
Born approximation. Indeed, using the effective Feynman rules together with the
Euclidean Fourier integration rules4 one can see that the cusp diagrams are dual to
each other as loop integrands. The corresponding edge diagrams play an auxiliary role
cancelling spurious complex poles. The duality (15) is again translated into a planar
graph duality. In Fig. 4 we give an example of the duality in the MHV×MHV sector
in the one-loop approximation. There the Wilson loop contour is purely bosonic
and the scattered particles are (+1) helicity gluons (this is equivalent to explicitly
performing the integration over the superspace variable related to point y0 which
the effective rules naturally give us). In the left diagram we introduce the region
momenta y0, y1, . . . , y6 associated with faces and represent the momentum space
integral as an integration over y0. Multiplying it by the Parke-Taylor prefactor we
obtain the contribution to W (0,0)

4,6 ,

3Notice that the divergent part of the Wilson loop form factor automatically satisfies the duality
relation (15). Namely, the IR divergencies of Wn,m match the UV divergences of Wm,n and vice
versa.
4We cannot fully justify applicability of the Fourier transform in Euclidean space until we have
checked for integrand level cancellation of spurious poles, but we assume this here.
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Fig. 4 Diagrammatic representationof the duality relationW (0,0)
4,6 ↔ W (0,0)

6,4 in the one-loop approx-
imation

∫

d4y0
eix23 y2eix12 y3eiy0x31[ξ |y10y04|ξ ]3

y210y
2
04[ξ |y04|k4〉〈k6|y10|ξ ]〈p3|y10|ξ ][ξ |y10|k1〉〈k3|y04|ξ ][ξ |y04|p4〉

× 〈p4 p1〉〈p1 p2〉〈p2 p3〉〈k6k1〉〈k1k2〉〈k2k3〉〈k3k4〉
〈k1 p2〉〈p2k2〉〈k2 p1〉〈p1k3〉 . (50)

In the right diagram we use the Euclidean Fourier transform to write it down imme-
diately in coordinate space and integrate over position y0 of the interaction vertex.
Its contribution to W (0,0)

6,4 coincides with (50). So we see the duality at the level of
the integrand.

There are several directions for further investigations. It is well known that the
Born-level amplitudes have a remarkable dual superconformal symmetry which,
combined with the native superconformal symmetry, results in a Yangian structure
[31, 35–37]. As a result, the form of the amplitude is completely determined by
this powerful symmetry and the requirement of absence of spurious poles. In this
context we may ask the question if the new duality found in this paper could be a
manifestation of some hidden symmetry? The first step in this direction should be to
elucidate the role of conformal symmetry. It is supposed to simultaneously act on the
Wilson loop component of the form factor as a local symmetry, and on its amplitude
component as a non-local symmetry. This issue is under investigation.

It would also be interesting to understand how to properly regularise the loop
correction integrals so that the duality still holds at loop level. Another challenging
problem is to find a strong coupling or AdS/CFT analog of this duality.
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Many-Body Localization in Large-N
Conformal Mechanics

Fumihiko Sugino and Pramod Padmanabhan

Abstract In quantum statistical mechanics, closed many-body systems that do not
exhibit thermalization after an arbitrarily long time in spite of the presence of interac-
tions are called as many-body localized systems, and recently have been vigorously
investigated. After a brief review of this topic, we consider a many-body interacting
quantum system in one dimension, which has conformal symmetry and integrability.
We exactly solve the system and discuss its thermal or non-thermal behavior.

Keywords Thermalization · Many-body localization · Conformal quantum
mechanics · Integrable models · Hopf algebra

1 Introduction

In quantum statistical physics, it is still a big challenge to formulate and understand
how systems out of thermal equilibrium settle down to systems in thermal equilib-
rium, although innumerable attempts has been done toward its understanding for
over a century. Recently, by investigating closed quantum many-body systems and
their time evolution for a sufficiently long time, two qualitaitvely different phases
have been found in the thermodynamic limit, which are referred to as thermal-
ization/delocalization and localization. First, we start with a brief review of these
phases.1

1For review articles, see [1, 10, 12] for example.
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Fig. 1 The closed system S
is the inside of the box. The
subregion A is a region
bounded by the red circle,
and B = S − A is the rest

A

B

1.1 Thermalization

Let us consider a closed quantum system S, for which the Hamiltonian H is defined.
The density matrix of the system ρ evolves with the time t as

ρ(t) = e−i Htρ(0) eiHt . (1)

Suppose the same system is put in thermal equilibrium at temperatureβ−1. Its density
matrix is expressed as

ρ(eq)(β) = 1

Z(β)
e−βH with Z(β) = Tr e−βH . (2)

Next, we pick any small subregion A in S in real space, and regard B = S − A
as a reservior (Fig. 1). The reduced density matrix of A for (1) and (2) is obtained
from ρ by tracing out the states belonging to the Hilbert space of the subsystem B:

ρA(t) = TrB ρ(t), (3)

and
ρ

(eq)
A (β) = TrB ρ(eq)(β), (4)

respectively. Then, we define thermalization as follows.

Definition 1 If
ρA(t) → ρ

(eq)
A (β) (5)

as sending t and the volume of S to infinity with the volume of A being fixed, and if it
holds for any choice of the subsystem A, the system S thermalizes for the temperature
β−1.

Note that since in a closed system the densitymatrix of the total systemρ(t)undergoes
unitary time-evolution, ρ(t) does not evolve to ρ(eq)(β) in general. This brings us to
the Eigenstate Thermalization Hypothesis.
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1.2 Eigenstate Thermalization Hypothesis

Suppose the initial state ρ(0) is a pure state for an energy eigenstate of the energy
En:

ρ(0) = |En〉 〈En| with H |En〉 = En |En〉 . (6)

Then, ρ is time-independent: ρ(t) = ρ(0), which leads to ρA(t) = ρA(0) for any A
from (3). In this case, noting Definition 1, we could expect that all the energy eigen-
states are thermalized, which is called as the Eigenstate Thermalization Hypothesis
(ETH) [8, 13–15].

If ETH holds, the temperature at the thermal equilibrium, denoted by β−1
n , is

determined by

En = 〈H〉βn
≡ 1

Z(βn)
Tr

(
H e−βn H

)
. (7)

The entanglement entropy of the subsystem A:

SA = −TrA (ρA ln ρA) (8)

coincides with the equilibrium thermal entropy of A. In particular, SA is an extensive
quantity, proportional to the volume of A.

However, ETH is a hypothesis, and not true for one class of systems. Such systems
are called as localized systems.

1.3 Localized Systems

A simple example of single-particle localization is given by the one-dimensional
Hamiltonian:

H = − 1

2m

∂2

∂x2
+ Vp(x) + Vq(x), (9)

where Vp(x) is a periodic potential, and Vq(x) is a random noise. If the noise is absent
(Vq(x) = 0), the wave function of the particle is oscillating due to the Bloch wave,
and delocalized. However, when the noise is turned on, the wave function becomes
localized as

ψ(x) ∼ e−μq x as |x | → ∞ (10)

with a strictly positive constant μq . This phenomenon is well-known as the Anderson
localization [2, 5]

Next, we turn tomany-body localization (MBL), which takes place in the presence
of many-body interactions and for highly excited states. A typical example is given
by a one-dimensional quantum spin-1/2 chain, whose Hamiltonian takes the form
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H =
∑

i

hiσ
z
i + J

∑

<i, j>

σi · σ j . (11)

Here, i, j ∈ {1, 2, . . .} denote the sites of the system, hi are random magnetic fields
at the site i distributed over the range [−W,W ], and the second term represents the
nearest neighbor interactions of the Pauli spins.

At J = 0, the eigenstates of (11) are product states of the σz eigenstates:
∣∣σz

1

〉 ⊗∣∣σz
2

〉 ⊗ · · · with |σz〉 = |↑〉 or |↓〉. Each spin variable is completely decoupled and
undergoes independent time evolution. This system is fully localized, and essentially
the same as the above single-particle localization. There are strictly local integrals
of motions (LIOM) σz

i (i = 1, 2 . . .), whose supports are on single sites.
When turning on J but J � W , the localization property somehow remains. This

case is called asMBL. There are also LIOM, but they satisfymilder locality condition
with exponentially decaying tails in large distances (called as quasi LIOM). Such
quasi LIOM are constructed, and DC spin transport and energy transport are shown
to be absent perturbatively and nonperturbaively with respect to the coupling J
[4, 9].

On increasing J , the localization ceases and ETH starts to hold eventually. Inter-
estingly, there will be a transition between MBL (localized) and delocalized phases
around J ∼ W , which is a new type of phase transition between thermal equilib-
rium and out-of-equilibrium. It is expected that the localization is an intriguing
phenomenon that protects the system from thermal decoherence and can be useful
to construct devices for quantum computations.

However, analyses for MBL have been performed mainly for quantum spin sys-
tems. Extension to other quantum systems should be important to find new aspects
and understand universal properties for localizations. In the rest of this contribution,
we construct an integrable model of many-body conformal quantum mechanics by
using its coalgebra structure, and analyze its thermal or localization properties.

2 Many-Body Interacting Model by Using Coproducts

The conformal group in one dimension, SL(2,R), is generated by the Lie algebra
generators L0, L± satisfying

[
L0, L±

] = ±L±, [L+, L−] = −2L0 (12)

with the quadrartic Casimir

C = L2
0 − L0 − L+L−. (13)

This is realized in one-dimensional quantum mechanical system [7] as
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L0 = 1

4

(
p2 + g

x2
+ x2

)
, (14)

L± = 1

4

(
−p2 − g

x2
+ x2

)
∓ i

1

4
(xp + px) (15)

with [x, p] = i andC = − 3
16 + 1

4g. L0 plays a role of the Hamiltonian. For simplic-
ity, we will consider the case of g = 0, in which the system reduces to a harmonic
oscillator.

2.1 Coproducts

In treating N -body systems, it is convenient to introduce coproducts denoted byΔ(k)

(k = 2, 3, . . . , N ). Let La, i (a = 0, ±) be the La-operator for particle i (or at site
i). Δ(2)(La) acts on two-particle states, which is defined by

Δ(2)(La) = La ⊗ 1 + 1 ⊗ La = La, 1 + La, 2. (16)

Also, Δ(2)(1) = 1 ⊗ 1. Then, Δ(3)(La) acting on three-particle states is given as

Δ(3)(La) = (1 ⊗ Δ(2)) ◦ Δ(2)(La)

= (1 ⊗ Δ(2)) ◦ (La ⊗ 1 + 1 ⊗ La)

= La ⊗ Δ(2)(1) + 1 ⊗ Δ(2)(La)

= La ⊗ 1 ⊗ 1 + 1 ⊗ (La ⊗ 1 + 1 ⊗ La)

= La, 1 + La, 2 + La, 3, (17)

In general, Δ(k)(La) is inductively given as

Δ(k)(La) = (

k−2
︷ ︸︸ ︷
1 ⊗ · · · ⊗ 1⊗Δ(2)) ◦ Δ(k−1)(La)

= La, 1 + · · · + La, k . (18)

Note that the coproducts act as homomorphism and preserve the algebra (12):

[Δ(k)(L0), Δ(k)(L±)] = ±Δ(k)(L±), (19)

[Δ(k)(L+), Δ(k)(L−)] = −2Δ(k)(L0) (20)

with the quadratic Casimir

Δ(k)(C) = (
Δ(k)(L0)

)2 − Δ(k)(L0) − Δ(k)(L+)Δ(k)(L−). (21)

We can see that Δ(k ′)(C) commutes with Δ(k)(La) for k ′ ≤ k.
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Fig. 2 The operator Δ(k)(C)

has support on sites
{1, 2, . . . , k}

1 2 k N

Δ(k)(C)

2.2 Hamiltonian

We consider the Hamiltonian for N -particle interacting conformal system as

HN = Δ(N )(L0) +
N∑

k=2

αkΔ
(k)(C), (22)

where the first termdescribes N free harmonic oscillators, and the rest are interactions
with coupling constants αk . Δ(k)(C) is an interaction with support on sites 1 to k as
depicted in Fig. 2. The construction of (22) is based on the idea in [3, 11]. Eventually,
we send N to infinity.

Since Δ(N )(L0) and Δ(k)(C) (k = 2, . . . , N ) mutually commute, they give N
conserved quantities. This implies that the system is integrable. However, they are
not local in general, and it is nontrivial whether the system exhibits MBL. If we
choose the coupling constants behaving as

αk ∼ e−k/ξ with ξ some positive number, (23)

all the interactions become quasi local and the above conserved quantities can be
regarded as quasi LIOM.

In terms of the position and momentum variables, (22) is expressed as

HN =
N∑

i=1

1

4

(
p2i + x2i

) +
N∑

k=2

αk

⎧
⎨

⎩
1

4

∑

1≤i< j≤k

M2
i j + k(k − 4)

16

⎫
⎬

⎭
(24)

with Mi j ≡ xi p j − x j pi being an analog of angular momentum operators.

3 Eigenstates and Eigenvalues

In order to exactly solve the system (22), we first consider the lowest weight states
(level 0 states) satisfying

L−, i |s〉N = 0 for i = 1, . . . , N . (25)
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Here, the subscript ‘N ’ in the state vector is used to denote the N -particle state. The
conditions are solved as

|s〉N =
∣∣
∣r (1)

0 , . . . , r (N )
0

〉
≡

∣∣
∣r (1)

0

〉
⊗ · · · ⊗

∣∣
∣r (N )

0

〉
(26)

with
∣∣∣r (i)

0

〉
being the eigenstate of L0, i with the weight 1/4 or 3/4:

L0, i

∣
∣∣r (i)

0

〉
= r (i)

0

∣
∣∣r (i)

0

〉 (
r (i)
0 = 1

4
,
3

4

)
. (27)

The weights 1/4 and 3/4 correspond to the ground state energy and the first excited
energy of the harmonic oscillator, respectively. The energy eigenvalue is given by

E0 = RN +
N∑

k=2

αk Rk (Rk − 1) , Rk ≡ r (1)
0 + · · · + r (k)

0 (28)

Any state vector in the Fock space can be obtained by successively acting L+, i

operators on the level 0 states. From the SL(2, R) algebra (12), the states containing
n L+, i operators increase the weight by n, and correspond to 2n-th excited states of
the harmonic oscillator. The Fock space is decomposed as

F =
⊕

r (1)
0 ,...,r (N )

0

F
(r (1)

0 ,...,r (N )
0 )

(29)

with
F

(r (1)
0 ,...,r (N )

0 )
≡

{
Lk1+, 1 . . . LkN

+, N |s〉N ; k1, . . . , kN = 0, 1, 2, . . .
}

. (30)

Lk1+, 1 . . . LkN
+, N |s〉N is the eigenstate ofΔ(N )(L0)with the eigenvalue k1 + · · · + kn +

RN , and called as a level k1 + · · · + kn state.

3.1 Level 1 States

We find the following N states of level 1:

|v1〉N = Δ(N )(L+) |s〉N ,
∣∣v1, (1,1)

〉
N = F1

(
L+, 1, L+, 2

) |s〉N ,
∣∣v1, (1,2)

〉
N = F1

(
Δ(2)(L+), L+, 3

) |s〉N ,

...
∣∣v1, (1, N−1)

〉
N = F1

(
Δ(N−1)(L+), L+, N

) |s〉N , (31)
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where F1
(
Δ(n)(L+), L+, n+1

)
is a linear function of Δ(n)(L+) and L+, n+1 given by

F1
(
Δ(n)(L+), L+, n+1

) = −r (n+1)
0

Rn
Δ(n)(L+) + L+, n+1 (32)

for n = 1, . . . , N − 1, and hereafter Δ(1)(L+) is regarded as L+, 1. Notice that

Δ(m)(L−)
∣∣v1, (1,n)

〉
N = 0,

F1
(
Δ(m)(L−), L−,m+1

) ∣∣v1, (1,n)

〉
N = 0 (33)

hold for m > n, which leads to the orthogonality of the states (31).
The energy eigenvalues are obtained as

E1 = RN + 1 +
N∑

k=2

αk Rk(Rk − 1) (34)

for |v1〉N , and

E1, (1,n) = RN + 1 +
n∑

k=2

αk Rk(Rk − 1) +
N∑

k=n+1

αk(Rk + 1)Rk (35)

for
∣∣v1, (1,n)

〉
N .

3.2 Level p States

General level p states are obtained as

∣∣vp
〉
N = (

Δ(N )(L+)
)p |s〉N ,

∣∣vp, (m1,n1), ...,(mq ,nq )
〉
N

= (
Δ(N )(L+)

)p−m1−···−mq

×Fm1

(
Δ(n1)(L+), L+, n1+1

)
+m2+···+mq

×Fm2

(
Δ(n2)(L+), L+, n2+1

)
+m3+···+mq

× · · ·
×Fmq−1

(
Δ(nq−1)(L+), L+, nq−1+1

)
+mq

×Fmq

(
Δ(nq )(L+), L+, nq+1

) |s〉N , (36)
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where q runs from 1 to p, and m1, . . .mq ∈ {1, . . . , p} satisfy
∑q

i=1 mi ≤ p.
The integersni shouldbe taken as N − 1 ≥ n1 > n2 > · · · > nq ≥ 1. Fm

(
Δ(n)(L+),

L+, n+1
)
is a degree-m homogeneous polynomial of Δ(n)(L+) and L+, n+1, whose

explicit form is

Fm
(
Δ(n)(L+), L+, n+1

) = c(m)
0

(
Δ(n)(L+)

)m + c(m)
1

(
Δ(n)(L+)

)m−1
L+, n+1

+ · · · + c(m)
p−1Δ

(n)(L+)
(
L+, n+1

)m−1 + (
L+, n+1

)m
(37)

with the coefficients

c(m)
k ≡ (−1)m−k

(
m
k

) Γ
(
2r (n+1)

0 + m
)

Γ
(
2r (n+1)

0 + k
)

Γ (2Rn)

Γ (2Rn + m − k)
. (38)

Note that (37) is independent of the couplings αk’s. Fm
(
Δ(n)(L+), L+, n+1

)
+�

denotes (37) with every Rn appearing in (38) replaced by Rn + �. The states in

(36) consist of mutually orthogonal

(
p + N − 1

p

)
states. All of the states have no

dependence on the couplings, which comes from the Hamiltonian (22) consists of
the mutually commuting operators.

The norms of the states are computed as

∣∣∣∣∣∣vp
〉
N

∣∣∣∣2 = p!Γ (2RN + p)

Γ (2RN )
, (39)

∣∣∣∣∣∣vp, (m1,n1),...,(mq ,nq )
〉
N

∣∣∣∣2 = (p − M1)!Γ (2RN + M1 + p)

Γ (2RN + 2M1)

×
q∏

a=1

⎡

⎣ma !
Γ

(
2r (na+1)

0 + ma

)

Γ
(
2r (na+1)

0

)
Γ

(
2Rna + 2Ma+1

)

Γ
(
2Rna + 2Ma+1 + ma

)

× Γ
(
2Rna+1 + 2Ma − 1

)

Γ
(
2Rna+1 + 2Ma+1 + ma − 1

)

]

(40)

with

Ma ≡
q∑

k=a

mk . (41)

The energy eigenvalues are

Ep = RN + p +
N∑

k=2

αk Rk(Rk − 1) (42)
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for
∣∣vp

〉
N , and

Ep, (m1,n1),...,(mq ,nq ) = RN + p +
nq∑

k=2

αk Rk(Rk − 1)

+
q∑

�=2

n�−1∑

k=n�+1

αk (Rk + M�) (Rk + M� − 1)

+
N∑

k=n1+1

αk (Rk + M1) (Rk + M1 − 1) (43)

for
∣∣vp, (m1,n1), ...,(mq ,nq )

〉
N
.

We can see that all the level p states are degenerate for the free case, while the
degeneracy is completely resolved by turning on the couplings αk . Note for the
choice (23), the level splitting between states with different m j ’s is of the order
O

(
eN/ξ

)
, which yields continuous spectrum at large N . This seems a situation in

which thermalization takes place. On the other hand, there are quasi local LIOM that
support MBL as we have seen in Sect. 2. Thus, it is interesting to see which property
of ETH and MBL is realized in this case.

4 Entanglement Entropy

Let us start with the density matrix for the pure state:

ρ = 1
∣
∣
∣
∣
∣
∣vp, (m1,n1),...,(mq ,nq )

〉
N

∣
∣
∣
∣2

∣∣vp, (m1,n1),...,(mq ,nq )
〉
N

〈
vp, (m1,n1),...,(mq ,nq )

∣∣ . (44)

We divide the total system S = {1, 2, . . . , N } into a small subsystem A = {N −
ν + 1, . . . , N } with ν � N and the rest B = {1, 2, . . . , N − ν}. For simplicity, we
consider the case of n1 ≤ N − ν − 1, in which all the Fm operators in (36) act only
on B. For such pure states, the reduced density matrix ρA takes a diagonal form with
each diagonal entry taking a simple form:

λA, ñ ≡
(
p − M1

ñ

)
B

(
2RN−ν + 2M1 + ñ, 2R̄ν + p − M1 − ñ

)

B
(
2RN−ν + 2M1, 2R̄ν

) , (45)

where

R̄ν ≡
N∑

i=N−ν+1

r (i)
0 , (46)

and ñ runs from 0 to p − M1.
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We find the large-N behavior of the entanglement entropy

SA = −
p−M1∑

ñ=0

λA, ñ ln λA, ñ (47)

in the following two cases:

• For p − M1 � RN + M1 (case 1),

SA ∼ R̄ν
p − M1

RN + M1
ln (RN + M1) . (48)

Since R̄ν grows with ν (the volume of A), this result exhibits the volume-law like
behavior although the multiplicative factor p−M1

RN+M1
ln (RN + M1) is tiny for the

case.
• For p − M1 � RN + M1 (case 2),

SA ∼ ln(p − M1). (49)

This result is independent of ν, and exhibits the area law, which supports the
localization phase.

In the case 1, the energy is relatively lower, but the result (48) seems to support
thermal like phase. On the other hand, in the case 2, the energy is relatively higher,
and the result (49) suggests localization. Interestingly, because the states (44) do not
depend on the couplings αk , the above results hold for any choice ofαk . In particular,
the result means that there are some highly excited states which exhibit the area law
behavior (49) even in the presence of nonlocal interactions. It is also interesting
to analyze the case in which p − M1 is comparable to RN + M1 (the intermediate
region of the cases 1 and 2), and to see how the volume-law like behavior changes
to the area law.

5 Discussion

In this contribution, first we have briefly reviewed topics on quantum thermalization
and localization. Second, we have constructed an integrable model with many-body
interactions by using coproducts, and obtained the exact spectrum of the model.
Third, by computing the entanglement entropy, we have found a localization property
in highly excited states in spite of nonlocal interactions. We guess that this captures
a new aspect of localization, which has not been seen yet.

Since the entanglement entropy does not depend on the couplings, it will be
interesting to analyze other quantities that are sensitive to the couplings. Actu-
ally, we introduced a deformation breaking the integrablity, and computed how the
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entanglement entropy of the level 1 states changes with the time t . For general cou-
plings for which interactions are nonlocal, the entanglement entropy initially grows
as t2, but saturates at some value soon after and keeps oscillating. On the other hand,
for the choice (23), the entanglement entropy keeps growing as t2, and never reaches
the point that is saturated in the nonlocal case. We can see that the exponential
decreasing couplings crucially slow down the spreading of the entanglement. We are
also considering to measure transport properties by computing connected two point
correlation functions.

The SL(2, R) conformal symmetry plays a crucial role to construct the Hamil-
tonian (22) and thus to make the energy eigenstates independent of the couplings.
Investigating this model from the viewpoint of AdS/CFT correspondence [6] will
also be intriguing.
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Generalized Bases with a Resolution
of the Identity: A Cooperative Game
Theory Approach

A. Vourdas

Abstract A quantum system with d-dimensional Hilbert space Hd , is considered.
A dresssing mechanism inspired by Shapley’s methodology in cooperative game
theory, is used to convert a total set of n ≥ d states (for which we have no resolution
of the identity), into a ‘generalized basis’ of n mixed states with a resolution of the
identity. Results based on these generalized bases are sensitive to physical changes
and robust in the presence of noise. An arbitrary vector is expanded in these gener-
alized bases, in terms of n component vectors. The concept of location index of a
Hermitian operator, is introduced. Hermitian operators are studied using the concepts
of comonotonic operators and comonotonicity intervals.

Keywords Generalized bases · Resolution of the identity · Shapley formalism in
quantum context

1 Introduction

Coherent states, POVMs (positive operator valuedmeasures) and frames andwavelets
(e.g., [1–3]), lead to generalized bases. They are advantageous in comparison to
orthonormal bases because calculations that use them are robust in the presence of
noise, due to redundancy. An arbitrary state can be expanded in terms of coherent
states or POVMs, because they form a resolution of the identity. In frames we have
no exact resolution of the identity, but the frame operator is upper and lower bounded
by the identity times a constant.

In recent work [4, 5], we proposed a novel approach in this general area. We
started from a pre-basis, i.e., a total set of n ≥ d states (which might not form a
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resolution of the identity). Using a formalism inspired by Shapley’s methodology in
cooperative game theory [6–9], we renormalized them into n density matrices R(i),
that resolve the identity. They can be used as a generalized basis, which is robust in
the presence of noise and yet sensitive to physical changes. This is because noise is
uniformly distributed in the whole phase space, while a physical change is associated
with local changes of certain quantities. In the present paper we review this work.
The aim is to give a physical presentation of these ideas, without the ‘distraction’
from technical proofs based on combinatorics.

In Sect. 2we give briefly the basics of cooperative game theory. It considers a num-
ber of players and divides (‘resolves’) the ‘total worth’ of the game into the various
players. Their individual contribution is ‘dressed’ (renormalized) with their contri-
bution to various coalitions. This terminology (taken from quantum field theory)
refers to the fact that we start with some initial quantity (‘bare’ quantity), and after
we add corrections to it, we get the ‘dressed or renormalized’ quantity. In analogy
to the cooperative game theory methodology, we consider in Sect. 3, n ≥ d vectors
|i〉 in Hd , and we renormalize them into mixed states R(i) that resolve the identity.

In Sect. 4, we show how to use these mixed states as a generalized basis. A vector
in Hd is represented by n component vectors.

In Sect. 5, we represent Hermitian operators θ with n coefficients, and introduce
the concept of location index. ForHermitian operators θ(λ) that depend on a coupling
parameter λ, we introduce the concept of comonotonicity intervals of the coupling
parameter λ, within which the location index remains constant. Crossing points from
one comonotonicity interval to another, indicate a possible drastic change in the
system.

We conclude in Sect. 6, with a discussion of our results.

2 Cooperative Game Theory: The Whole is Greater
than the Sum of Its Parts

Given a set Ω of players, a coalition is a subset A ⊆ Ω . Von Neumann and Mor-
genstern introduced the characteristic function which is a real valued function that
assigns a value v(A) to each subset of players A ⊆ Ω . For the empty set v(∅) = 0.
The total worth of the whole game is v(Ω).

The characteristic function takes 2|Ω| values, because there are 2|Ω| subsets of Ω .
If A = {i1, . . . , ik}, then in general

v(A) �= v(i1) + · · · + v(ik). (1)

This formalizes the expression ‘the whole is greater than the sum of its parts’ or ‘one
plus one makes three’. The coalition provides an added value, which can be positive
or negative.
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The Shapley methodology divides the total worth v(Ω) to the various players,
taking into account their contribution to the various coalitions. We call this method-
ology of dividing the total worth, Shapley’s resolution (i.e., division) of the total
worth v(Ω), to the various players. This introduces physics terminology, and pro-
vides a link with the use of a similar methodology for a resolution of the identity in
a quantum context, later.

Möbius transform has been introduced by Rota in combinatorics [10, 11]. It
generalizes the ‘inclusion-exclusion’ principle in set theory, for the cardinality of the
union of overlapping sets. Rota generalized this to partially ordered structures.

The Möbius transform of the characteristic function v(A) and its inverse, are
defined as:

m(B) =
∑

A⊆B

(−1)|A|−|B|v(A); A, B ⊆ Ω

v(A) =
∑

B⊆A

m(B). (2)

It quantifies the added value in the various coalitions. For example:

m(i1) = v(i1); m(i1, i2) = v(i1, i2) − v(i1) − v(i2)

m(i1, i2, i3) = v(i1, i2, i3) − v(i1, i2) − v(i1, i3) − v(i2, i3) + v(i1) + v(i2) + v(i3). (3)

In the special case that there is no added value in the coalitions, i.e.,

v(A) = v(i1) + · · · + v(ik), (4)

for all subsets A of Ω , then all the m(B) with |B| ≥ 2, are zero.
Shapley divided equally the added value of a coalition to all members of the

coalition. The Shapley value for the player i is given by

S(i) =
∑

A�i

m(A)

|A| = v(i) + 1

2

∑

j

m(i, j) + 1

3

∑

j,k

m(i, j, k) + . . .

∑
S(i) = v(Ω). (5)

The player i gets the worth of his individual contribution v(i), half of the worth of
the added value in the coalitions (i, j) (for all j), one third of the worth of the added
value in the coalitions (i, j, k) (for all j, k), etc.

If there is no added value in any coalition, i.e., for every coalition A = {i1, . . . , ik}
the v(A) = v(i1) + · · · + v(ik), then S(i) = v(i).

Example 1 Workers 1, 2, 3 working individually, produce 1, 1, 2 items of the same
product (per hour), correspondingly. The collaboration of (1, 2) produces 4 items,
the collaboration of (1, 3) produces 5 items, and the collaboration of (2, 3) produces
3 items. The collaboration of (1, 2, 3) produces 7 items. In this case
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v(∅) = 0; v(1) = 1; v(2) = 1; v(3) = 2

v(1, 2) = 4; v(1, 3) = 5; v(2, 3) = 3; v(1, 2, 3) = 7. (6)

The Möbius transform of the characteristic function is

m(1) = 1; m(2) = 1; m(3) = 2

m(1, 2) = 2; m(1, 3) = 2; m(2, 3) = 0; m(1, 2, 3) = −1, (7)

and it gives

S(1) = m(1) + 1

2
[m(1, 2) + m(1, 3)] + 1

3
m(1, 2, 3) = 8

3

S(2) = 5

3
; S(3) = 8

3
S(1) + S(2) + S(3) = v(1, 2, 3) = 7. (8)

3 Generalized Bases of Mixed States with a Resolution
of the Identity

We consider a quantum system with positions and momenta in Z(d) (the integers
modulo d). The associated Hilbert space Hd is d-dimensional.

In Hd we consider a ‘pre-basis’, i.e., a set

Σ = {|i〉 | i ∈ Ω}; Ω = {1, . . . , n}; n ≥ d, (9)

of n states |i〉, which are not necessarily an orthonormal basis. Ω is a set of labels
for these states. Any d of these states are assumed to be linearly independent. Then
any r ≥ d of these states, are a total set (i.e., there is no state which is orthogonal
to all of them). In general, we have no resolution of the identity in terms of these n
states.

Let H(A) be the subspace of Hd spanned by the states |i1〉, . . . |ir 〉 where A =
{i1, . . . , ir } ⊆ Ω . If r < d then H(A) is an r -dimensional subspace of H . If r ≥ d,
then H(A) = Hd .We callΠ(A) the projector to the subspace H(A). If the cardinality
of A is |A| ≥ d then Π(A) = 1. In general

Π(A) �= Π(i1) + · · · + Π(ir ). (10)

We note the analogy between this and Eq. (1). More generally, this section is inspired
by the Shapley formalism in the previous section, with

v(A) → Π(A). (11)



Generalized Bases with a Resolution of the Identity: A Cooperative Game … 153

In order to emphasize this analogy, we use a similar notation for the corresponding
quantities in the two theories.

We define Möbius transforms in the present context as

M(B) =
∑

A⊆B

(−1)|A|−|B|Π(A); A, B ⊆ Ω. (12)

The inverse Möbius transform is

Π(A) =
∑

B⊆A

M(B). (13)

Some examples are:

M(1) = Π(1); M(1, 2) = Π(1, 2) − Π(1) − Π(2)

M(1, 2, 3) = Π(1, 2, 3) − Π(1, 2) − Π(1, 3) − Π(2, 3)

+ Π(1) + Π(2) + Π(3), (14)

and then

Π(1, 2) = M(1, 2) + M(1) + M(2)

Π(1, 2, 3) = M(1, 2, 3) + M(1, 2) + M(1, 3) + M(2, 3)

+ M(1) + M(2) + M(3). (15)

TheM(B) are related to commutators that involve the projectorsΠ(A). For example:

[Π(i),Π( j)] = M(i, j)[Π(i) − Π( j)] (16)

and

[[Π(i),Π(k)],Π( j)] = Π( j)M(i, j, k)[Π(i) − Π(k)]
+ [Π(i) − Π(k)]M(i, j, k)Π( j). (17)

So the use of Möbius operators is intimatelly related to non-commutativity.
We introduce the analogue of the Shapley values in Eq. (5) for the projectors:

S (i) =
∑

A�i

M(A)

|A| = Π(i) + 1

2

∑

j

M(i, j) + 1

3

∑

j,k

M(i, j, k) + . . .

n∑

i=1

S (i) = Π(Ω) = 1. (18)
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It has been proved in [4, 5] that they are positive semi-definite operators, and that
they all have the same trace which is d

n . The proof involves another approach to
Shapley values which involves combinatorics, and which is omitted here.

Therefore we introduce the density matrices R(i)

R(i) = n

d
S (i); d

n

n∑

i=1

R(i) = 1. (19)

They satisfy the above resolution of the identity, and they can be used as a generalized
basis of mixed states.

Example 2 In the special case thatΣ is an orthonormal set of d states, the inequality
in Eq. (10) becomes equality, and all the M(B) with |B| ≥ 2, are zero. In this case
R(i) = Π(i).

Example 3 In H2 we consider the total set of states:

|0〉; 1√
5
(2|0〉 + |1〉); 1√

10
(|0〉 + 3i |1〉). (20)

In this case n = 3, and using Eq. (3) we get

M(1, 2) =
(−0.8 −0.4

−0.4 0.8

)
; M(1, 3) =

( −0.1 0.3i
−0.3i 0.1

)

M(2, 3) =
(

0.1 −0.4 + 0.3i
−0.4 − 0.3i −0.1

)

M(1, 2, 3) =
( −0.1 0.4 − 0.3i
0.4 + 0.3i −0.9

)
. (21)

Therefore

Π(1) =
(
1 0
0 0

)
→ R(1) =

(
0.775 −0.100 + 0.075i

−0.100 − 0.075i 0.225

)
;

Π(2) =
(
0.8 0.4
0.4 0.2

)
→ R(2) =

(
0.625 0.200 + 0.075i

0.200 − 0.075i 0.375

)
;

Π(3) = 1

2

(
0.1 −0.3i
0.3i 0.9

)
→ R(3) =

(
0.10 −0.10 − 0.15i

−0.10 + 0.15i 0.90

)
. (22)

The resolution of the identity is

2

3
[R(1) + R(2) + R(3)] = 1. (23)
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4 Representation of Vectors in the Generalized Basis

An arbitrary normalized vector in Hd can now be expanded in terms of n ≥ d com-
ponent vectors, as

|V 〉 =
n∑

i=1

|V (i)〉; |V (i)〉 = d

n
R(i)|V 〉. (24)

Example 4 In H2 we consider the vector

|V 〉 = 1√
13

(
2i
3

)
. (25)

Using the matrices R(1), R(2), R(3), in Eq. (22), and the resolution of the identity
in Eq. (23) we expand this vector as

|V 〉 =
(−0.055 + 0.328i

0.152 − 0.037i

)
+

(
0.110 + 0.272i
0.235 + 0.074i

)
+

(−0.055 − 0.046i
0.443 − 0.037i

)
. (26)

There is redundancy in this approach, which is precisely the merit for using it. In
[4, 5] we gave numerical examples, where in spite of noise in the components, the
overall error is small.

5 Representation of Hermitian Operators

Let θ(λ) be a Hermitian operator, e.g. a Hamiltonian that depends on a coupling
parameter λ. Also let sθ (i |λ) be the n coefficients

sθ (i |λ) = d

n
Tr[θ(λ)R(i)];

n∑

i=1

sθ (i |λ) = Tr(θ). (27)

In [4] we have considered a pre-basis that consists of coherent states, and in this
case the sθ (i |λ) is the Q-function. In general, we can regard sθ (i |λ) as a generalized
Q-function.

5.1 Location Indices, Comonotonic Operators
and Comonotonicity Intervals

We order the sθ (1|λ), . . . , sθ (n|λ) as
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sθ (i1|λ) ≥ sθ (i2|λ) ≥ · · · ≥ sθ (in|λ). (28)

The location index of θ(λ), with respect to {R(i)}, is the n-tuple

L [θ(λ)] = (i1, . . . , in). (29)

The L [θ(λ)] indicates the position of θ(λ) with respect to the generalized basis
{R(i)}. θ(λ) ismore close to R(i1) (because sθ (i1|λ) is the largest), less close to R(i2),
even less close to R(i3), etc. In this sense the location index is a kind of ‘postcode
within the Hilbert space’. The location index is unique if there are no equalities in
Eq. (28).

We consider the set Θ = {θ(λ) | λ ∈ [a, b]}. From [a, b] we will exclude values
of λ for which some of the n values sθ (i |λ) (with fixed λ and i = 1, . . . , n) are equal
to each other. In this way we get an interval I ⊆ [a, b], and the

Θ̃ = {θ(λ) | λ ∈ I } ⊆ Θ. (30)

By definition, if θ(λ) ∈ Θ̃ , there are no equalities in the corresponding Eq. (28).
Within the set Θ̃ , we say that θ(λ1) and θ(λ2) are comonotonic or cohabi-

tant, and denote it as θ(λ1) ∼ θ(λ2), if they have the same location index, i.e., if
L [θ(λ1)] = L [θ(λ2)]. ∼ is an equivalence relation within Θ̃ (but not within Θ

because transitivity does not hold). Then Θ̃ is partitioned into equivalence classes,
each of which contains operators which are comonotonic to each other.

If all θ(λ) with λ ∈ (c1, c2) ⊆ I are comonotonic to each other, the I1 = (c1, c2)
is called comonotonicity interval. In other words, all θ(λ) within a comononicity
interval have the same location index. The points in the set [a, b] \ I are crossing
points from one comonotonicity region to another.

Example 5 In the Hilbert space H2 we consider the Hermitian operator

θ(λ) =
(
1 + λ λi
−λi 2

)
. (31)

Using the matrices R(1), R(2), R(3), in Eq. (22), we get

sθ (1|λ) = 2

3
Tr[θ(λ)R(1)] = 0.816 + 0.616λ

sθ (2|λ) = 2

3
Tr[θ(λ)R(2)] = 0.916 + 0.516λ

sθ (3|λ) = 2

3
Tr[θ(λ)R(3)] = 1.266 − 0.134λ (32)

From this we find that
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λ ≤ 0.538 → sθ (1|λ) ≤ sθ (2|λ) ≤ sθ (3|λ)

0.538 ≤ λ ≤ 0.6 → sθ (1|λ) ≤ sθ (3|λ) ≤ sθ (2|λ)

0.6 ≤ λ ≤ 1 → sθ (3|λ) ≤ sθ (1|λ) ≤ sθ (2|λ)

1 ≤ λ → sθ (3|λ) ≤ sθ (2|λ) ≤ sθ (1|λ). (33)

Therefore we have the following comonotonicity intervals, and the corresponding
location indices:

(−∞, 0.538) → L = (3, 2, 1)

(0.538, 0.6) → L = (2, 3, 1)

(0.6, 1) → L = (2, 1, 3)

(1,∞) → L = (1, 2, 3). (34)

The points λ = 0.538, λ = 0.6, λ = 1, are crossing points.

We conjecture that comonotonic operators are physically similar operators. As λ

varies within a comonotonicity interval, we get mild physical changes in the system.
The crossing points from one comonotonicity interval to another, might be related
with drastic physical changes in the system. In [4, 5] we gave examples, which
support this conjecture.

6 Discussion

Our approach extends the area of coherent states, POVMs and frames and wavelets,
in a new direction. It starts from a pre-basis (i.e., a total set of n ≥ d vectors in Hd ),
and leads to n mixed states R(i) that resolve the identity (Eq. (19)). Then an arbitrary
vector can be written as a sum of n component vectors, as in Eq. (24).

A Hermitian operator can be represented with n numbers given in Eq. (27). Based
on an ordering of these numbers, we have defined the location index of a Hermitian
operator. Comonotonic (or cohabitant) operators have the same location index, and
in this sense they ‘live’ in the same part of the Hilbert space.

For Hermitian operators θ(λ) that depend on a coupling parameter λ, we have
defined comonotonicity regions, so that all θ(λ)within a given comonotonicity region
are comonotonic to each other. Then we conjecture that comonotonic operators are
physically similar. As λ varies within a comonotonicity interval, we do not get any
drastic physical changes in the system. Drastic physical changes might occur at the
crossing points, from one comonotonicity interval to another.

Our work has used cooperative game theory in the context of quantum systems
with discrete variables that take a finite number of values. There is work on cooper-
ative game theory with a continuum of players [12], which could be used to extend
these ideas into quantum systems with continuous variables.
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On Non-slow Roll Inflationary Regimes

Lilia Anguelova, Peter Suranyi and L. C. Rohana Wijewardhana

Abstract We summarize our work on constant roll inflationary models. It was
understood recently that constant roll inflation, in a regime beyond the slow roll
approximation, can give models that are in agreement with the observational con-
straints. We describe a new class of constant roll inflationary models and investigate
the behavior of scalar perturbations in them. We also comment on other non-slow
roll regimes of inflation.

Keywords Cosmological inflation · Alpha-attractors · Noether symmetry

1 Introduction

It has long been a standard lore that, to agree with the observational constraints, an
inflationary model has to be in the so called slow-roll regime. This is an approxi-
mation that allows an easy solution of the coupled equations of motion. The back-
ground metric is (near-)de Sitter and the spectrum of scalar perturbations turns out
to be (nearly-)scale invariant, as required for consistency with the data from current
cosmological observations. However, it is known since [1] that a scale invariant spec-
trum can also be obtained from a non-slow roll inflationary expansion. Although, the

L. Anguelova (B)
Institute for Nuclear Research and Nuclear Energy, BAS, 1784 Sofia, Bulgaria
e-mail: anguelova@inrne.bas.bg

P. Suranyi · L. C. Rohana Wijewardhana
Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA
e-mail: peter.suranyi@gmail.com

L. C. Rohana Wijewardhana
e-mail: rohana.wijewardhana@gmail.com

© Springer Nature Singapore Pte Ltd. 2018
V. Dobrev (ed.), Quantum Theory and Symmetries with Lie Theory
and Its Applications in Physics Volume 2, Springer Proceedings
in Mathematics & Statistics 255, https://doi.org/10.1007/978-981-13-2179-5_11

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2179-5_11&domain=pdf


162 L. Anguelova et al.

ultra-slow roll regime investigated in [1] is unstable (i.e. very short-lived) and thus
cannot provide a full-fledged inflationary model by itself.

Despite the stability issue, ultra-slow roll inflation has received considerable atten-
tion during the last several years in relation to the observed low-l anomaly of the
CMB [2]. It was also understood recently how to construct a class of ultra-slow roll
composite inflation models in the context of the gauge/gravity duality [3–5]. Much
more importantly, [6] showed that a certain generalization of ultra-slow roll, called
constant roll, can give a long-lasting/stable expansion in addition to producing a
scale invariant spectrum of scalar perturbations. Therefore, constant roll inflation is
an observationally viable alternative to the standard slow roll one.

In view of the great, and continually growing, precision of present day cosmolog-
ical observations, it is undoubtedly worth investigating in more depth the full set of
viable inflationary regimes. In [7] we performed a systematic study of the constant
roll condition and found a new class of solutions of this type. These solutions are
stable under scalar perturbations and have a corner of their parameter space, in which
one obtains a nearly scale invariant spectrum of scalar perturbations. Here we discuss
their properties and comment on broader non-slow roll regimes.

2 Constant Roll Inflation

Within the standard field theoretic description, inflation is obtained as a solution of
the equations of motion following from the action

S =
∫

d4x
√−g

[
R

2
+ 1

2
gμν∂μφ∂νφ − V (φ)

]
, (1)

upon using the metric ansatz

ds24 = −dt2 + a2(t) dx2 (2)

with a(t) being the scale factor.
The condition for inflationary solutions is ä(t) > 0. In principle, such solutions

may or may not satisfy the slow roll approximation, which can be defined in terms
of the Hubble parameter H(t) ≡ ȧ(t)

a(t) as [8, 9]:

ε ≡ − Ḣ

H 2
<< 1 and η ≡ − Ḧ

2H Ḣ
<< 1 . (3)

The standard lore for decades has been that conditions (3) are necessary in order
to obtain a long-lasting (i.e. stable) inflationary expansion, which produces a scale
invariant spectrum of scalar perturbations. In other words, it is usually assumed that
(3) is needed for consistency with the observational data.
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However, it is also well-known that the ultra-slow roll regime of [1, 10], defined
by the conditions

ε << 1 and η = 3 , (4)

similarly gives a scale invariant spectrum, i.e. with ns = 1. This regime, though, is
unstable and can last only a few e-folds. Recently [6] showed that a generalization
of the η-condition, given by

η = const ≡ c (5)

and called constant roll regime, can lead to a long-lasting inflationary expansion,
while preserving the ns = 1 result, for some values of c �= 3. The considerations of

[6] were based on the definition of the η-parameter as η = − φ̈

H φ̇
, which is equivalent

to the one in (3) uponusing thefield equations.Amore straightforward and systematic
analysis can be performed by studying instead the condition

− Ḧ

2H Ḣ
= c , (6)

following from the η-definition in (3) together with (5).
Investigating Eq. (6), the work [7] reproduced the solutions of [6] and, in addition,

found a new class of constant roll solutions. The Hubble parameter, scale factor and
inflaton of the new solutions have the following form:

H(t) = N

c
cot(Nt) ,

a(t) = Ca sin
1/c(Nt) ,

φ(t) = ±
√
2

c
ln

[
cot

(
Nt

2

)]
+ Cφ , (7)

where N , Ca and Cφ are integration constants. Also, the parameter c has to satisfy

c > 0 , (8)

to ensure Ḣ < 0 (and thus a real inflaton φ), while the combination Nt has to be in
the finite interval

Nt ∈
[
0,

π

2

]
, (9)

to have H(t) > 0 during the entire inflationary period. Clearly, by taking

N << 1 , (10)

one can have as large a t-interval as desired.
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Finally, the scalar potential is given by

V (φ) = N 2

2c2

[
(3 − c) cosh

(√
2c (φ + φ0)

)
− (3 + c)

]
, (11)

where the constant φ0 ≡ −Cφ. We will see shortly that V (φ) is positive-definite
within the entire inflationary parameter space of these constant roll models.

3 Parameter Space of the New Solutions

The class of solutions (7), with parameter space as in (8)–(9), was obtained only
by studying the defining equation for constant roll, namely Eq. (6), and imposing
the requirements for a positive Hubble parameter and a real inflaton. However, we
still need to consider the condition for inflation ä(t) > 0 . Now we will discuss the
additional constraints on the parameter space of the new solutions that follow from
this condition.

First, however, let us make an important observation. Note that the Nt-interval
in Eq. (9) can be shortened by a rescaling of the integration constant N [7]. Indeed,
introducing the constant N̂ = 2

π
θ∗N with some fixed θ∗< π

2 , we can see that Nt ∈
[0, π

2 ] becomes N̂ t ∈ [0, θ∗] . So the freedom to redefine the integration constant
N implies that we are free to restrict the Nt-interval to a convenient subinterval.
Clearly, this does not affect the above statement that the t-interval can be as large as
desired, since the rescaled integration constant N̂ is, obviously, just as arbitrary as N .
However, it will be useful, at some point later on, to restrict the Nt interval to [0, π

4 ] .
Now let us turn to investigating the condition ä > 0 . From (7), we find:

ä(t) = N 2

c2
a(t)

sin2(Nt)

[
cos2(Nt) − c

]
. (12)

Therefore, to ensure ä > 0 , one needs to satisfy the inequality

cos2(Nt) > c . (13)

To be able to do that, we must have c < 1 . Together with (8), this implies that:

0 < c < 1 . (14)

Then we can solve (13), finding:

Nt ∈ [
0, arccos(

√
c)

)
. (15)
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Note that (15) guarantees the positive-definiteness of the inflaton potential (11); see
[7].

Finally, let us discuss what are the conditions for the acceleration in the new class
of models to be increasing or decreasing. Computing the time-derivative of (12), we
have:

...
a = N 2

c2
aH

sin2(Nt)

[
cos2(Nt) − 3c + 2c2

]
. (16)

Hence, the condition
...
a > 0 is equivalent to

cos2(Nt) > 3c − 2c2 . (17)

Note that, when 1
2 < c < 1 , one always has 3c − 2c2 > 1 . So, in that case, ä(t)

is always decreasing with time. On the other hand, when c < 1
2 , one can solve the

condition for increasing acceleration (17), obtaining:

Nt < arccos
(√

3c − 2c2
)

. (18)

In conclusion, to have any period of increasing acceleration (like in the familiar de
Sitter case), one has to have c < 1

2 .

4 Stability Under Scalar Perturbations

Let us now discuss the scalar perturbations in the new class of models (7) with
parameter space (9) and (14). We will denote the perturbations of the inflaton and the
spatial part of the metric as δφ and δgi j respectively, where i, j = 1, 2, 3. It is conve-
nient to work in comoving gauge, where δφ = 0 and δgi j = a2

[
(1 − 2ζ)δi j + hi j

]
with hi j being the tensor perturbations; see [11] for instance. As is well-known, the
perturbation ζ inside δgi j is the only independent scalar degree of freedom.

Upon Fourier transforming ζ(t, x) = ∫
d3k
(2π)3 ζk(t) eik.x , one can introduce the

mode function vk ≡ √
2 zζk with z2 ≡ −a2 Ḣ

H 2 . In terms of vk , the evolution equation
for the perturbations is the Mukhanov–Sasaki equation [12, 13]:

v′′
k +

(
k2 − z′′

z

)
vk = 0 , (19)

where k ≡ |k| and ′ ≡∂τ with τ being conformal time defined as usual via dt2 =
a2dτ 2 . Note also that the z′′/z term in (19) can be rewritten exactly (as opposed to
in the slow-roll approximation) as [6, 14]:

z̃′′

z̃
= a2H 2

(
2 − ε1 + 3

2
ε2 + 1

4
ε22 − 1

2
ε1ε2 + 1

2
ε2ε3

)
, (20)
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where εi are the following series of slow roll parameters:

ε1 ≡ − Ḣ

H 2
and εi+1 ≡ ε̇i

Hεi
. (21)

To investigate the issue of stability of the new models under scalar perturbations,
we will consider the super-Hubble limit of the evolution Eq. (19), where k2 << z̃′′/z̃ .
Clearly, in that case, (19) simplifies to:

v′′
k − z̃′′

z̃
vk = 0 . (22)

It was already observed in [6] that the general solution of (22) gives the following
form for ζk =

√
2
2

vk
z̃ :

ζk = Ak + Bk

∫
dt

a3ε1
, (23)

where Ak, Bk = const and τ = τ (t) is any function. Using (21) and absorbing a
minus sign in the arbitrary integration constant Bk , we can conveniently rewrite (23)
as:

ζk = Ak + Bk

∫
H 2

a3 Ḣ
dt . (24)

The goal nowwill be to investigate the behavior of this integral at late times. If it turns
out that ζk decreases (or stays constant), then the corresponding model would be sta-
ble. On the other hand, if it were to increase with time, this would indicate instability.

Substituting the Hubble parameter H and scale factor a from (7), we find:

∫
H 2

a3 Ḣ
dt = 1

3 c N (Ca)3
cos3(Nt) 2F1

(
3

2
,
c + 3

2c
,
5

2
; cos2(Nt)

)
. (25)

Note that the parameter c here and the parameter α in [6] are related to each other
via c = 3 + α. Using this, one can immediately verify that the indices of the hyper-
geometric function in (25) coincide precisely with those in Eq. (47) of [6]. In fact, if
we denote x ≡ cos2(Nt) , we have in (25) exactly the same function (up to an overall
numerical constant) as in Eq. (47) of [6], namely

f (x) ≡ x
3
2 2F1

(
3

2
,
c + 3

2c
,
5

2
; x

)
. (26)

However, there is a crucial difference due to the fact that Ref. [6] needed to investigate
that function in the limit x → ∞, whereas for us x ∈ [c, 1] because of (15).
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Fig. 1 Plot of f (x) in Eq. (26), with x = cos2(Nt) , as a function of both Nt and c. On the
left side, f (Nt, c) is plotted for Nt ∈ (0, π

2 ) and c ∈ (0, 1) . On the right side, we have plotted a
representative slice for the intervals Nt ∈ [ 0.7 , π

4 ] and c ∈ [ 0.053 , 0.054 ] , which will be useful
in the next section

In [7] the function (26) was considered in the full parameter ranges, given by
0 < Nt < π

2 and 0 < c < 1 , and it was shown that it is always decreasing with time
regardless of the values of the constants c and N . This behavior is illustrated on
Fig. 1.

5 Scalar Spectral Index

In order to determine the scalar spectral index ns , we need to investigate the
Mukhanov–Sasaki equation (19) in a regime when the terms with k2 and z′′

z are
comparable. We will impose the usual initial condition:

vk(τ ) = e−ikτ

√
2k

for τ → −∞ . (27)

To make further progress, we need the explicit relation τ = τ (t). Using a(t) in
(7), one finds:

τ =
∫

dt

a
= − 1

CaN
cos(Nt) 2F1

(
1

2
,
c + 1

2c
,
3

2
; cos2(Nt)

)
+ const . (28)

The integration constant here can easily be chosen such that the range of τ is [7]:

τ ∈ (−∞ , 0 ] (29)
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for t varying in the entire interval

t ∈
[
0,

1

N
arccos(

√
c)

)
, (30)

according to the inflationary condition (15).
As discussed in Sect. 3 though, we can restrict to any subinterval of (30) as part

of the freedom to redefine the integration constant N . It will turn out below to be
particularly useful to consider the subinterval

t ∈
[
0,

π

4N

]
(31)

when c < 1
2 . In this case, the integration constant guaranteeing (29) is such that:

τ = − 1

CaN

[
cos(Nt) 2F1

(
1

2
,
c + 1

2c
,
3

2
; cos2(Nt)

)

−
√
2

2
2F1

(
1

2
,
c + 1

2c
,
3

2
; 1

2

)]
. (32)

Solving Eq. (19) in full generality is rather complicated because the potential term
z′′/z depends on the background. In principle, one needs to use numerical methods
[11]. However, one can find an analytical estimate, compatible with the observational
constraint ns ≈ 1 , in the approximation

c << 1 . (33)

In this limit, we are free to choose the interval (31) as our inflationary period. And,
furthermore, during that entire period the slow roll parameters εi in (21) are almost
constant [7]. More concretely, we have:

ε1 ≈ 2c , ε2 ≈ 2c , ε3 ≈ 4c . (34)

Hence, the εi -expression in (20) acquires the form:

(
2 − ε1 + 3

2
ε2 + 1

4
ε22 − 1

2
ε1ε2 + 1

2
ε2ε3

)
≈ 2 + c + 3c2 = ν2 − 1

4
, (35)

where for convenience we have introduced the notation

ν2 ≡ 9

4
+ c + 3c2 . (36)
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In addition, in the approximation (33), one can verify from (7) and (32) that [7]:

aH ≈ −1

τ
, (37)

similarly to inflation in pure de Sitter space. Now, making use of (35) and (37)
inside (19), one can easily obtain the spectral index ns by following the standard
computation [6, 7]. The result is:

ns = 4 − 2

√
9

4
+ c + 3c2 . (38)

To find the values of c that lead to agreement with the observational constraint
ns ≈ 0.96 , we need to solve the quadratic equation that follows from imposing it on
Eq. (38). It turns out that only one of the two roots lies within the parameter space
of our class of models, namely within (14). That solution is:

c ≈ 0.0522 . (39)

As explained in [7], this result is consistent with the approximationsmade in deriving
it. More precisely, for this value of the parameter c, the approximations (34) and
(37) hold to a very good degree of accuracy. Hence, we have found a corner of the
parameter space of the new constant roll models, in which they are compatible with
the present day observational data.

6 Other Non-slow Roll Regimes

The constant roll regime studied here can be viewed as a generalization of ultra-
slow roll inflation, that was first considered in [10]. Other non-slow roll inflationary
regimes have also been investigated during the last couple of decades. See, for exam-
ple [2, 15], for different cases of ‘fast roll’ inflation, depending on which (and how
many) of the slow roll parameters in (21) are actually large during the inflationary
period. Usually, such stages of expansion are expected to be rather short-lived. So
they are viewed as useful only for setting certain initial conditions for a subsequent
stage of regular slow-roll inflation. A transient non-slow roll stage preceding slow
roll is, in fact, considered to be important in explaining the observed low multipole
moment anomaly in the CMB [2].

However, in view of the recent realization [6, 7], that a constant roll inflationary
expansion can last long enough to produce a full-fledged inflationary model (com-
patible with ns ≈ 1 in a part of its parameter space), it makes sense to ask whether
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it is possible to find other stable non-slow roll regimes. In particular, it would be
interesting to investigate whether there is a suitable generalization of fast roll infla-
tion, conceptually similar to how constant roll generalizes ultra-slow roll. We hope
to come back to this question in the future.

Finally, in view of the fact that, at present, the Universe has a (small) positive
cosmological constant, it is worth exploring models that can have more than one
inflationary stage. This would enable the development of a unified description, that
can account for both inflation in the Early Universe and accelerated expansion in
the present day. Important progress in that direction was achieved in [16]. The early
inflationary period in their considerations was with constant rate of roll. It would be
interesting to explore how our new constant-roll solutions fit in this framework and,
in particular, whether they can lead to some specific observational features in this
context.

Acknowledgements L.A. has received partial support from the Bulgarian NSF grant DN 08/3 and
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Precision Test of Holographic
Flavourdynamics

Yuhma Asano, Veselin G. Filev, Samuel Kováčik and Denjoe O’Connor

Abstract We study the Berkooz–Douglas matrix model using holography, lattice
simulation and high temperature perturbative expansion. In particular we calculate
the mass susceptibility of the theory. Our results show excellent agreement between
lattice simulations and holography at low and intermediate temperatures T ≤ λ1/3.
We also report a surprisingly good agreement between holography and perturbative
high temperature expansion at T ∼ λ1/3.

1 Introduction

Among the most profound developments of modern physics is the quantum descrip-
tion of reality. Quantum field theory (QFT) is our main tool to describe physics on a
diverse range of scales, from the standardmodel of interactions to the theory of super-
conductivity.Yet there are regimes,whenQFTs are strongly coupled and perturbation
theory breaks down. These regimes are prevalent in Nature from confinement, chiral
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symmetry breaking and quark matter in particle physics to high temperature super-
conductors, strange metals and graphene in condensed matter phenomena. This calls
for novel nonperturbative tools to study QFTs at strong coupling. A promising such
tool is the AdS/CFT correspondence [1, 2], also referred to as the holographic corre-
spondence, which is a duality between a strongly coupled quantum field theory and a
higher dimensional weakly interacting gravitational system. There is overwhelming
evidence that the supersymmetric regime of the correspondence is correct, yet the
most relevant phenomenological applications of the duality, when supersymmetry is
broken are poorly tested, making the nature of these studies somewhat speculative.

Testing the AdS/CFT correspondence requires an alternative nonperturbative
approach and for a four dimensional gauge theory lattice simulations on a computer
seem a natural approach. Unfortunately, although the subject of active research, the
lattice formulation of four dimensional Supersymmetric Yang–Mills (SYM) theory
is still problematic. When faced with such difficulties, a useful approach is to study
simplified versions of the correspondence. Recently progress in this direction has
been made by studying a 0 + 1 dimensional version of the correspondence, between
the supersymmetric BFFS matrix model [3] and its dual type IIA supergravity back-
ground [4–10].

In this report we are interested in generalisation of the AdS/CFT correspondence
[11] including matter in the fundamental representation of the gauge group. The
idea of Ref. [11] is to introduce a probe D7–brane to the AdS5 × S5 supergravity
background. The corresponding dual field theory has N = 2 supercharges and is
theN = 4 SYM theory coupled to anN = 2 fundamental hypermultiplet, which is
the effective low energy theory of the D3/D7 brane intersection. This holographic
set-up has received a great deal of attention and has led to numerous theoretical and
phenomenological applications. In particular at the finite temperature regime of the
theory features a first order meson melting phase transition [12–17].

In Ref. [18] the lattice formulation of the Berkooz–Douglas matrix model [19]
(see also [20]) was studied. The main result of Ref. [18] is a numerical calculation of
the fundamental condensate of the theory using computer simulations. Comparison
with holographic calculations show remarkable agreement in the deconfined phase of
the theory. Themost plausible explanation for that agreement is that in the deconfined
phase the α′ corrections due to the high curvature of the background are cancelled in
the calculation of the condensate, since it involves a derivative of the free energy with
respect to the bare mass of the theory. It is then natural to propose that this agreement
should be even better if one considers the mass susceptibility of the condensate,
which is a second derivative of the free energy with respect to the bare mass. In
fact the mass susceptibility can be evaluated at zero bare mass, when analytic result
for the susceptibility can be obtained from holography. In Ref. [21] a perturbative
approach (at high temperature) was used to calculate the condensate susceptibility,
remarkably in Ref. [22] it was shown that at intermediate temperature (T ∼ λ1/3) the
holographic calculations agree with the perturbative high temperature expansion of
Ref. [21]. Furthermore, computer simulations of the lattice discretisation developed
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in Ref. [18] show agreement at lower temperatures. Reference [22] also considered
an alternative lattice formulation providing an independent check of the numerical
results.

The goal of this report is to discuss the results of Refs. [18, 21, 22]. The structure
of the paper is as follows:

In Sect. 2 we describe the general properties of the Dp/Dq brane intersections
T-dual to the D3/D7 system. We comment on the universal properties of the Dp/Dq
system and the difficulties in simulating supersymmetric theories in higher than
1 + 0 dimensions. Section3 describes the holographic calculation of the condensate
susceptibility performed in Ref. [22]. In Sect. 4 we compare the holographic results
with the results from field theory using both perturbative high temperature expansion
[21] and lattice simulations [22]. Finally, Sect. 5 contains a brief conclusion.

2 The Dp/Dq Brane Holographic Set-Up

The Dp/Dq holographic set-up is inspired by the Dp/Dq brane intersection T-dual
to the D3/D7 one. In this set-up a probe Dq brane is introduced to the near horizon
limit of the supergravity background describing a Dp-brane. In the dual field theory
this corresponds to addingN = 2 fundamental hypermultiplets in the Lagrangian of
theN = 4 four-dimensional SYM theory. The probe approximation corresponds to a
quenched approximation in the dual field theory when fundamental loops are ignored
in correlation functions involving only adjoint fields. In other words the dynamics
of the adjoint degrees of freedom is not affected by the presence of the fundamental
fields. Note that this is not the same as the quenched approximation in lattice gauge
theory since the fermionic determinant is not suppressed when fundamental fields
are present in the correlators (as in the case of the fundamental condensate).

In this set-up the asymptotic separation of the Dq–brane corresponds to the bare
mass of the fundamental hypermultiplet and the bending of the probe Dq-brane
at infinity encodes the fundamental condensate. Furthermore, the spectrum of the
semi-classical fluctuations of the probe corresponds to the meson spectrum in the
dual field theory. This allows one to use semi-classical calculations in supergravity
to obtain non-perturbative quantum results for the dual field theory. In particular one
can explore the phase structure of the dual theory at finite temperature and in the
presence of various other control parameters. It turns out that the thermal properties
of the Dp/Dq system exhibit some universal features [14] in particular the pattern
of the first order meson melting phase transition depends only on the dimension of
the internal cycle wrapped by the probe Dq-brane in the transverse to the Dp–brane
subspace. One can show that the D3/D7 system is in the same class of universality as
the D0/D4 system, which is dual to the Berkooz–Douglas matrix model and can be
relatively easily simulated on a computer. Therefore, by performing a precision test
of the holographic correspondence in the D0/D4 system we indirectly test properties
of the D3/D7 system.
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3 Holographic Calculation of the Condensate Susceptibility

At low temperature the BD model is proposed to be dual to the D0/D4 holographic
set-up.1 The most understood case that we will focus on is the so called quenched
approximation, when the flavour D4–branes are in the probe approximation [11]. In
the near horizon limit the D0-brane supergravity background is given by:

ds2 = −H− 1
2 f dt2 + H

1
2

(
du2

f
+ u2 dΩ2

8

)
,

eΦ = H
3
4 , C0 = H−1 , (1)

where H = (L/u)7 and f (u) = 1 − (u0/u)7. Here u0 is the radius of the horizon
related to theHawking temperature via T = 7/(4π L) (u0/L)5/2 and the length scale
L is given by L7 = 15/2 (2πα′)5 λ, with λ the ’t Hooft coupling.

To introduce matter in the fundamental representation we consider the addition
of N f D4–probe branes. In the probe approximation N f � N , their dynamics is
governed by the Dirac-Born-Infeld action:

SDBI = − N f

(2π)4 α′5/2 gs

∫
d4ξ e−Φ

√−det||Gα,β + (2πα′)Fα,β || , (2)

where Gα,β is the induced metric and Fα,β is the U (1) gauge field of the D4–brane,
which we will set to zero. Parametrising the unit S8 in the metric (1) as:

dΩ2
8 = dθ2 + cos2 θ dΩ2

3 + sin2 θ dΩ2
4 (3)

and taking aD4–brane embedding extended along: t, u, Ω3 with a non-trivial profile
θ(u), we obtain (after Wick rotation):

SE
DBI = N f β

8π2 α′5/2 gs

∫
du u3 cos3 θ(u)

√
1 + u2 f (u) θ′(u)2 . (4)

The embedding extremising the action (4) can be obtained by solving numerically the
corresponding non-linear equation of motion. The AdS/CFT dictionary then relates
the behaviour of the solution at large radial distance u to the baremass and condensate
of the theory via [11, 14]:

sin θ = m̃

ũ
+ c̃

ũ3
+ . . . , (5)

1The D0/D4 set-up belongs to a large class of Dp/Dp+4 -brane intersections exhibiting universal
properties such as the presence of a meson melting phase transition. For more details look at
Refs. [12–15, 17] as well as Ref. [16] for an extensive review.
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where ũ = u/u0 and the parameters m̃ and c̃ are proportional to the bare mass and
condensate of the theory. Therefore, the mass susceptibility of the condensate at zero
bare mass 〈Cm〉 is proportional to:

〈Cm〉 ∝ −
(
dc̃

dm̃

) ∣∣∣
m̃=0

= 7π

2

csc(π/7) Γ (3/7) Γ (5/7)

Γ (1/7)2 Γ (2/7) Γ (4/7)
. (6)

The last expression was obtained by using that small m̃ implies small θ, and hence
the equation of motion for θ can be linearised and solved analytically. Combining
equation (6) with the exact expressions for the mass and condensate in terms of m̃
and c̃ [14, 18]:

m = mq/λ
1/3 = u0 m̃

2πα′ =
(
120 π2

49

)1/5 (
T

λ1/3

)2/5

m̃ ,

〈Om〉 = − N f u30
2 π gs α′3/2 c̃ =

(
24 153 π6

76

)1/5

N f Nc

(
T

λ1/3

)6/5

(−2 c̃) , (7)

we obtain:

〈Cm〉 = 141/5152/5π9/5

(
csc(π/7) Γ (3/7) Γ (5/7)

Γ (1/7)2 Γ (2/7) Γ (4/7)

)
N f Nc

(
T

λ1/3

)4/5

≈ 1.136 N f Nc

(
T

λ1/3

)4/5

. (8)

Equation (8) is the holographic prediction for the mass susceptibility of the funda-
mental condensate, which in the next section we compare to the field theory results
obtained by high temperature expansion and lattice simulations.

4 Field Theory Comparison

In Fig. 1 we present a comparison between the analytic expression (8) obtained from
holography and our field theory results. The red curve represents the holographic
prediction (8), while the black dashed curve corresponds to the high temperature
expansion curve:

〈Cm〉 = 14.08

(
T

λ1/3

)1/2

− 3.02

(
T

λ1/3

)−1

+ O(T− 5
2 ) , (9)

obtained in Ref. [21]. The blue bars represent the results of lattice simulations using
the lattice discretisation in Ref. [18]. The red bars correspond to independent lattice
simulations based on a different lattice discretisation.
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Fig. 1 The red curve represents the holographic prediction (8), while the black dashed curve
corresponds to the high temperature expansion curve (9). The blue bars represent the results of lattice
simulations using the lattice discretisation in Ref. [18]. The red bars correspond to an independent
lattice simulation based on an alternative formulation

Overall, one can observe excellent agreement between the lattice simulation and
the high T curve even for temperatures as low as T = λ1/3. One can also observe
excellent agreementwith holographic predictions at temperatures T ∼ λ1/3. Remark-
ably, even the high temperature curve is very close to the holographic curve in this
regime. As mentioned earlier this suggests that the α′ corrections to the mass sus-
ceptibility are indeed very small.

5 Conclusion

In this paper we reported on a recent study of the Berkooz–Douglas matrix model
using both holography and field theory approaches. We focus on the study of the
mass susceptibility of the condensate, for which we derive an analytic expression
from holography. Since the curvature of the D0 supergravity background grows
with the radial distance, significant α′ corrections are expected at large and inter-
mediate temperature (radious of the black hole). Naively one would expect that the
holographic result for the susceptibility should be valid only at low temperature
(T < λ1/3). However, as argued in Ref. [18], in the deconfined phase of the theory
the derivatives of the free energy with respect to the bare mass should largely cancel
the curvature α′ corrections. Therefore, one can expect a good agreement even at
intermediate temperature (T ∼ λ1/3). Remarkably, this is exactly what we observe
in Sect. 4, where not only lattice simulation agree with the theoretical curve (8), but
also the high temperature expansion curve (9) is very close to the holographic one at
T ∼ λ. Overall our results provide a solid evidence for the validity of the holographic
description of the Berkooz–Douglas model, even when supersymmetry is broken by
a finite temperature.
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N = 4 Polygonal Wilson Loops:
Fermions

Alfredo Bonini , Davide Fioravanti , Simone Piscaglia and Marco
Rossi

Abstract The contributions of scalars and fermions to the null polygonal bosonic
Wilson loops/gluon MHV scattering amplitudes inN = 4 SYM are considered. We
first examine the re-summation of scalars at strong coupling. Then, we disentangle
the form of the fermion contribution and show its strong coupling expansion. In
particular, we derive the leading order with the appearance of a fermion-anti-fermion
bound state first and then effective multiple bound states thereof. This reproduces
the string minimal area result and also applies to the Nekrasov instanton partition
function Z of the N = 2 theories. Especially, in the latter case the method appears
to be suitable for a systematic expansion.

Keywords AdS/CFT Correspondence · N=4 SYM scattering amplitudes · Form
factors and scattering matrix for integrable theories · N=2 SYM partition functions

1 Introduction and Summary

N = 4 Super Yang–Mills (SYM) in the planar limit, with ’t Hooft coupling λ =
16π2g2, appears at one side (of one example) of the AdS/CFT correspondence [33]
and, interestingly, shows remarkable connections with 1 + 1 dimensional integrable
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models [12]. Even if integrability was discovered in the study of anomalous dimen-
sions of local operators, recently techniques borrowed from integrable systems have
been used for exact computations of other quantities in the same theory, e.g. the
expectation values of null polygonal (bosonic) Wilson loops (Wls). These Wls are
dual to (MHV) gluon scattering amplitudes [2, 18, 24, 30, 31], which makes them
even more interesting, and can be efficiently studied by the all order expansion of the
collinear limit of two consecutive edges: their value takes on the form of a (sort of
non-local) Operator Product Expansion (OPE) [4, 7]. In fact, this is the same as the
insertion of the identity (operator) as an infinite series of basis states in the space of
the integrable quantum GKP string, namely the Form Factor series which sums over
the flux-tube excitations: gluons and their bound states, fermions, anti-fermions and
scalars.

Thevalidity of the integrableOPEseries has been successfully checked, by explicit
computations, both in the weak and in the strong coupling regime [5, 6, 8, 11,
13–16, 19, 25–29, 32]. In this letter we shall focus on the latter, whose leading
contributions are of the same order and come from two sectors. The first – due to the
non-perturbative string dynamics on S5 –, is computable by considering the scalar
excitations [10, 20, 21]; the second one – caused by the classical string minimal
action in AdS5 [1, 2]–, comes from gluons, their bound states and fermions. As for
the scalar series contribution, Ws , it is resolutive considering the series for lnWs :
in this manner, each term is proven to be proportional to

√
λ. Then, because of

the fermion-anti-fermion short range potential (15), they contribute at leading order
not as single particles but through a bound state f f̄ [9, 19, 32] which arises only
at infinite coupling. Now, the (effective) sum runs on these (free) particles, named
‘mesons’ (SU (4) singlets). Moreover, it has the same mathematical structure of the
Nekrasov instanton partition function Z of the N = 2 theories with ε2 ∼ 1/g [34].
In fact, there is a short range potential (13) between two mesons which our method
uses to produce a systematic expansion at small ε2 ∼ 1/g. The leading of the latter
is given by a simplified sum on mesons and their multiple bound states which gives
rise to the dilogarithm of the Yang–Yang potential, proportional to

√
λ ∝ g ∼ 1/ε2,

for the Thermodynamic Bethe Ansatz (TBA). Actually, we have conjectured this
kind of TBA contribution in [19, 32] on the ground of the scattering theory. In this
way we can make a parallel with gluon (stable) bound states and reproduce precisely
(the middle node of) the TBA governing the string classical minimal action/area
(= free energy) [1, 4]. In Sect. 2 we briefly describe the contribution of scalars. In
Sect. 3, that of fermions: first, we work out the contribution of n couples f f̄ as that
of n mesons; then, the sum on (free) mesons (analogues of the instantons in N = 2
partition functions) is expanded at small ε2 ∼ 1/g. At leading order it becomes the
sum on multiple meson bound states which originates the TBA.

2 Non-perturbative Scalars in the Wilson Loop

The pentagon OPE approach [7] allows us to represent the Wl as a superposition
of pentagonal transitions (squared form factors) and propagations. If we go to the
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non-perturbative strong coupling regime, scalars decouple themselves to give rise
to a relativistic O(6) non-linear σ-model [3]. Therefore, we can single out their
contribution Ws to the hexagonal Wl OPE

Ws =
∞∑

n=0

W (2n)
s , W (2n)

s = 1

(2n)!
∫ 2n∏

i=1

dθi

2π
G(2n)(θ1, . . . , θ2n) e

−z
2n∑
i=1

cosh θi
, (1)

where only even numbers 2n of scalars (with rapidities θi ) are considered, for the
Wl/MHV needs to be chargeless under SU (4); the parameter z = mgap

√
τ 2 + σ2

encloses the dependence on two conformal ratios σ, τ and is proportional to
the dynamically generated mass mgap(λ). Each function G(2n) factorizes G(2n) =
�

(2n)
dyn �

(2n)
mat into a dynamical factor �

(2n)
dyn , expressed as a product over two-particle

functions, and a coupling-independent matrix part1 �
(2n)
mat , encoding the internal

SO(6) structure of scalars [10]. A dramatic improvement occurs when, rather than
computing the scalar contribution (1), we consider its logarithm

Fs = lnWs =
∞∑

n=1

F (2n)
s =

∞∑

n=1

1

(2n)!
∫ 2n∏

i=1

dθi

2π
g(2n)(θ1, . . . , θ2n)e

−z
∑2n

i=1 cosh θi

(2)

by passing from the functions G(2n) to their ‘connected’ counterparts g(2n), under a
customary procedure. The crucial point concerns the asymptotic factorization of the
Gs: that is to say, when one shifts 2k rapidities by a large amount Λ → ∞, while
holding fixed the remaining 2n − 2k, G(2n) splits as

G(2n)(θ1 + Λ, . . . , θ2k + Λ, θ2k+1, . . . , θ2n)
Λ→∞−→ (3)

G(2k)(θ1, . . . , θ2k)G
(2n−2k)(θ2k+1, . . . , θ2n) + O(Λ−2) .

This remarkable property crucially affects the connected functions, as

lim
Λ→∞ g(2n)(θ1 + Λ, . . . , θm + Λ, θm+1, . . . , θ2n) � 1

Λ2
→ 0 , for m < 2n ,

(4)
ensuring eventually their integrability. Clearly, the property (4) defines the conformal
limit at small z for the logarithm of the Wilson loop, since, jointly to the relativistic
behaviour of the G(2n) (hence the g(2n)), it allows us to integrate out one rapidity for
each F (2n)

s in (2), giving

F (2n)
s = 2

(2π)n(2n)!
∫ 2n−1∏

i=1

dθig
(2n)(θ1, . . . , θ2n−1)K0(zξ) , (5)

1This factor exhibits an interesting resemblance with the N = 2 instanton partition function: in
fact, a Young tableaux approach was developed in [21] to compute �

(2n)
mat .
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for some known function of the rapidities ξ(θ1, . . . , θ2n−1) [20]. Now, we can expand
(inside) for small argument the Bessel function K0(zξ) = − ln z − ln ξ + O(1)
(whilst we could not before with the G(2n)). Straightforwardly we can work this
out for the leading term and obtain

lnWs � A ln(1/z) � −A lnmgap � A

√
λ

4
, (6)

where the coefficient A is given by a series A = ∑∞
n=1 A

(2n) over the multi-particle
contributions, numerically very convenient as it is rapidly converging [10, 17]. For
the sub-leading terms we need a further step as the weak power decay (4) compels
us to restrict the integral at the region |zξ| < 1 and carefully estimate how the rest
behaves at small z: this is ultimately a consequence of the asymptotic freedom of the
O(6) σ-model and gives rise to the peculiar logarithmic behaviour of the two point
2D CFT correlation function [20, 21]. This procedure can be generalized to higher
number of edges and still gives [22] a leading term of the form (6), competing with
the minimal area term as conjectured in [10].

3 Fermion Contribution to the Wilson Loop

We now focus on the contribution to the hexagonalWilson Loop due to the fermionic
sector only: the singlet condition requires N f = N f̄ mod 4, but in the strong coupling
limit only states with N f = N f̄ contribute at the leading order. Anew, the pentagonal
OPE writes as a form-factor series

W f =
∞∑

n=0

W (n)
f (7)

in terms of the contribution of n fermion-anti-fermion couples:

W (n)
f = 1

n!n!
∫

C

n∏

k=1

[
duk
2π

dvk

2π
μ f (uk)μ f (vk) e

−τE f (uk )+iσ p f (uk )· (8)

·e−τE f (vk )+iσ p f (vk )
]
�

(n)
dyn({ui }, {v j })�

(n)
mat ({ui }, {v j }) .

The open integration contour C , restricted to the small fermion sheet, is described in
detail in [9, 19]. The dynamical quantities are parametrised through the set of fermion
{uk} and anti-fermion rapidities {vk}: energy and momentum of a particle correspond
respectively to E f (u) and p f (u) and couple in the propagation phase to the cross
ratios τ and σ, determining the conformal geometry of the polygon. Analogously
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to scalars, the multiparticle pentagonal transitions factorize into the product of a
dynamical and a (coupling independent) matrix part [10]. The dynamical part in turn
is factorized in terms of two particles amplitudes

�
(n)
dyn({ui }, {v j }) =

n∏

i< j

1

P(ui |u j )P(u j |ui )
1

P(vi |v j )P(v j |vi )
n∏

i, j=1

1

P̄(ui |v j )P̄(v j |ui )
(9)

where P stands for the transition between particles of the same type (i.e. fermion-
fermion or anti-fermion-anti-fermion) and P̄ for the transition between a fermion and
an anti-fermion. The function P(u|v) is endowed with a single pole for coinciding
rapidities v = u, whose residue determines themeasureμ f (u) [7]: Res v=u P(u|v) =
i/μ f (u). The factor �

(n)
mat , encoding the SU (4) matrix structure, has an integral

representation [10] in terms of the auxiliary variables a, b, c, corresponding to the
nodes of the SU (4) Dynkin diagram. In a system composed of n couples f f̄ with
rapidities ui , v j , in a SU (4) singlet, the matrix factor reads

�
(n)
mat ({ui }, {v j }) = 1

(n!)3
∫ n∏

k=1

(
dakdbkdck

(2π)3

)
· (10)

·

n∏

i< j

g(ai − a j )g(bi − b j )g(ci − c j )

n∏

i, j

f (ai − b j ) f (ci − b j )

n∏

i, j

f (ui − a j ) f (vi − c j )

,

where the integrations are performed on the whole real axis and f (u) = u2 +
1
4 , g(u) = u2(u2 + 1). Similarly to the scalars above [21], the multiple integrals
(10) can be evaluated by a Young tableaux method [22] and assume, eventually, the
polar structure

�
(n)
mat ({ui }, {v j }) = P (n)(u1, . . . , un, v1, . . . , vn)

n∏

i< j

[(ui − u j )
2 + 1]

n∏

i< j

[(vi − v j )
2 + 1]

n∏

i, j=1

[(ui − v j )
2 + 4]

.

(11)
P (n)(u1, . . . , un, v1, . . . , vn) is a degree 2n(n − 1) polynomial in the ui , v j .

3.1 Emergence of a Bound State

As we will present in this sub-section, the polar structure of the SU (4) matrix factor
(11) and the properties of the polynomials P (n) play a crucial role to unravel how,
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in the perturbative strong coupling regime (i.e. λ → ∞ with the ratios ūi = ui/2g,
v̄i = vi/2g finite), the sum on the fermionic sector can be performed as if there is
an effective particle, named ‘meson’, coalescence of a fermion and an anti-fermion.
In turn coalescences of many mesons will be summed up (in the next sub-section)
to obtain effectively the right strong coupling limit of the series, in place of the sum
over fermions. In this way, we complete the work of [19], where only two couples
f f̄ were analyzed (n = 2) (cf. also n = 1 [9]). Actually, already [32] conjectured the
possibility of substituting the original sum over fermions and anti-fermions with the
sumovermesons and theirmultiple bound states, supposed on the basis of the analytic
structure (particle content) of the S-matrix. In details, on the ground of the Bethe
Ansatz equations, the meson does not show up in the spectrum at finite coupling, as
it lies outside the physical sheet [9, 32]; on the contrary, it comes into existence at
infinitely large values of the coupling and starts contributing to the OPE differently
from (unbounded) fermions and anti-fermions, whose contribution is subdominant.
The multi-meson bound states share the same destiny [19, 32]. To ease our task, we
re-cast (8) in the form (we could have privileged the v j )

W (n)
f = 1

n!
∫

C

n∏

i=1

dui
2π

In(u1, . . . , un)
n∏

i< j

p(ui j ) , (12)

by highlighting a factor accounting for poles and zeroes in the ui rapidities,

p(ui j ) = u2i j
u2i j + 1

, ui j = ui − u j , (13)

the (meson-meson) short range potential, and enclosing the integrals on the anti-
fermionic rapidities v j inside the functions

In(u1, . . . , un) ≡ 1

n!
∫

C

n∏

i=1

dvi

2π
Rn({ui }, {v j })P(n)({ui }, {v j })

n∏

i, j=1

h(ui − v j )

n∏

i< j

p(vi j ) , (14)

where we defined the fermion-anti-fermion short range potential [9]

h(ui − v j ) = 1

(ui − v j )2 + 4
. (15)

Rn is a regular function, with no poles nor zeroes in the rapidities ui , v j and related
to the dynamical factor (9) by

Rn({ui }, {v j })
n∏

i< j

u2i jv
2
i j ≡ �

(n)
dyn({ui }, {v j })

n∏

i=1

μ̂ f (ui )μ̂ f (vi ) , (16)
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where the measure and the propagation phase are combined into μ̂ f (u) =
μ f (u)e−τE f (u)+iσ p f (u). The strong coupling limit of (14) can be evaluated by inte-
grating the rapidities vi by closing the contour C for taking the residues and obtain-
ing the result I closedn . Because of the properties of P (n) [22], only the poles in the
fermion-anti-fermion short range potential (15) vi = u j − 2i survive and provide a
contribution to

I closedn (u1, . . . , un) = (−1)n Rn(u1, . . . , un, u1 − 2i, . . . , un − 2i) , (17)

which means that fermion and anti-fermion pair up to form a complex two-strings
with spacing 2i . A comparison with (9), (16) suggests to interpret this two-string
(appearing in the OPE) as a bound state particle, the meson, whose energy and
momentum are given additively

EM(u) ≡ E f (u + i) + E f (u − i), pM(u) ≡ p f (u + i) + p f (u − i) , (18)

along with the pentagon transition amplitude built up in the form

PMM(u|v) = −(u − v)(u − v + i)P(u + i |v + i)P(u − i |v − i)|
P̄(u − i |v + i)P̄(u + i |v − i) .

From this, we can introduce the regular function (no poles, no zeroes)

PMM
reg (u|v) = PMM(u|v)

u − v

u − v + i
, (19)

for later use and, from Res v=u PMM(u|v) = i/μM(u), the (hatted) measure

μ̂M(u) = μM(u)e−τEM (u)+iσ pM (u) = − μ̂ f (u + i)μ̂ f (u − i)

P̄(u + i |u − i)P̄(u − i |u + i)
, (20)

which both allow us to recast (17) in a form with only reference to mesons

I closedn (u1, . . . , un) =

n∏

i=1

μ̂M(ui − i)

n∏

i< j

PMM
reg (ui − i |u j − i)PMM

reg (u j − i |ui − i)

. (21)

Upon plugging this strong coupling limit into (12), we can efficiently reformulate
the fermionic contribution (7) in terms of (free) mesons only:
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W f � W (M) =
∞∑

n=0

1

n!
∫

C

n∏

i=1

dui
2π

μ̂M(ui − i) · (22)

·
n∏

i< j

1

PMM
reg (ui − i |u j − i)PMM

reg (u j − i |ui − i)

n∏

i< j

p(ui j ) .

Evidently, this expression gives the exact strong coupling limit, though the next
orders need a careful reconsideration of the above procedure.

3.2 Mesons Bound States, TBA and Beyond

Now,we shall show that inW (M) (22), thanks to the short range potential (13), the sum
on mesons may be traded, at leading order, for one on ‘TBA effective bound states’
(no new nodes for them): this issue reveals a general feature beneath the appearance
of a TBA integral equation and a possible physical interpretation of ordinary TBA.
Actually, we will develop here a method to go also beyond the leading TBA order,
as in and beyond [23], in principle at all orders. In fact, formula (22) for W (M)

shares its form with the instanton partition function Z of N = 2 theories, and from
this perspective the large coupling g ∼ 1/ε2 for W (M) corresponds to the so-called
Nekrasov–Shatashvili limit of Z , where the omega background ε2 approaches zero
[34]. Our approach relies on the introduction of a quantum gaussian field X (u)

e〈X (ui )X (u j )〉 ≡ 1

PMM
reg (ui − i |u j − i)PMM

reg (u j − i |ui − i)
, (23)

so that, upon a Hubbard–Stratonovich transformation, we can rewrite the Wl [32]

W (M) =
〈 ∞∑

n=0

1

n!
∫

C

n∏

i=1

dui
2π

μ̂M(ui − i)eX (ui )
n∏

i< j

p(ui j )

〉
, (24)

where the expectation value involves a gaussian path integral over the field X (u) (cf.
an analogous development for Z ofN = 2 theories [23]). Above we have neglected
the diagonal terms ui = u j of the Gaussian identity as they are sub-leading. The
short range potential (13) part can be recast into a determinant form by means of the
Cauchy identity

n∏

i< j

p(ui j ) =
n∏

i< j

u2i j
u2i j + 1

= 1

i n
det

(
1

ui − u j − i

)
. (25)

Thus, we are encouraged to define the matrix
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M(ui , u j ) ≡
[
μ̂M(ui − i)eX (ui )μ̂M(u j − i)eX (u j )

]1/2

ui − u j − i
, (26)

so to obtain the following determinant

W (M) =
〈 ∞∑

n=0

1

n!
∫

C

n∏

i=1

dui
2πi

det
i j

M(ui , u j )

〉
. (27)

In conclusion, this entails the average of a Fredholm determinant

W (M) = 〈det (1 + M)〉 =
〈
exp

[ ∞∑

n=1

(−1)n+1

n
TrMn

]〉
, (28)

as expanded in the peculiar power traces

TrMn ≡
∫

C

n∏

i=1

dui
2πi

μ̂M(ui − i)eX (ui )
n∏

i=1

1

ui − ui+1 − i
, un+1 ≡ u1 . (29)

This holds in the same manner for the instanton partition function Z of N = 2
theories. Now, we need to compute the expansion for large g ∼ 1/ε2 of the traces
(29). At leading order, we can again close the contour C for n − 1 rapidities and
compute the residues for ui − ui+1 = i , obtaining

TrMn � (−1)n−1

n

∫

C

du

2π
μ̂n
M(u − i)enX (u) � (−1)n−1

n

∫

C

du

2π
μ̂n
M(u)enX (u) (30)

where the imaginary shifts ∼ 1/g ∼ ε2 in ū = u/(2g) have been neglected: this is
indeed the contribution of a n-meson bound state (like for gluons [32]). Notice that
in N = 2 theories all the integration contours are closed ab initio [34], so that the
traces (29) can be, in principle, computed at all orders more easily [22]. Instead,
for Wls the corrections at next orders have many origins and the computation of the
one-loop contribution is much more involved than in [23], but here we give a path
[22]. Within the bound state approximation (30), we can re-sum theWilson loop (28)
(N = 2 too [34]) into a simple path integral

W (M) �
〈
exp

[
−

∫

C

du

2π
μM(u)Li2

[−e−τEM (u)+iσ pM (u)eX (u)
]]〉

, (31)

upon use of (20) (further simplification μM(u) � −1). In details, the last gaussian
path integral (31) can be re-interpreted as the partition function with an effective
action, Yang–Yang potential, with dilogarithm potential and coincides with the con-
jecture of [32] for the middle node of the A3 TBA [1]: the stationary point of the
Yang–Yang potential gives the TBA equations. In fact, the other two nodes TBA
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contributions to the effective action can be obtained by summing up the contribu-
tion of the two (components of the) gluons, which genuinely form bound states
(and then the dilogarithm potential [32]). Of course, the saddle point TBA equations
are indeed the leading order since the effective action is proportional to g; moreover,
they coincide with those arising, in a fully different manner, by minimizing the string
area/action. The whole procedure of this section in two steps, – emergence of meson
and effectiveness of its bound states –, extends to all the other polygons thus opening
the way to the treatment of [19].

4 Conclusions and Perspectives

For scalars and fermions we compute the coupling independent parts of the OPE
series as some random partitions on Young tableaux. This allows us to disentangle
their respective two contributions (of the same order) at large coupling. At infinite
coupling, fermion-anti-fermionpairs have been thought of asmesonswhich, by virtue
of the short range potential (13), form bound states namely generate the 1/n factor
(in the traces (30)) which yields the typical TBA (di)logarithm form. Importantly,
the method is amenable to give a systematic expansion also for the partition function
Z of N = 2 gauge theories, with instanton positions ui (and their bound states at
leading order) [22].
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Hidden Symmetry in String Theory

Yi Yang

Abstract We explore the hidden symmetry in string theory by studying string scat-
tering amplitudes. We calculate 4-point open string scattering amplitudes with three
tachyons and amassive higher spin string state. The result can be expressed as TypeD
Lauricella functionswhich are generalization ofGaussianHypergeometric functions.
In various high energy limits, the string amplitudes reduced to the expected results
that we obtained previously. We find that the symmetry of the string amplitudes at
general energy is associated with SL (3 + K ,C) algebra.

Keywords Hidden symmetry · String amplitudes · Lauricella functions

1 Introduction

QuantumField Theory (QFT) is a powerful theory inmodern physics. Based onQFT,
Standard Model of particle physics successfully describes our microcosmic world.
All important predictions by Standard Model have been observed in various exper-
iments under rather precise level. However, to solve the UV divergence problem in
QFT, the key technical procedure, i.e. renormalization, is complicated and has not
been fully understood. More seriously, the renormalization procedure does not work
for gravity at all. It means that it is impossible to construct a consistent quantum
gravity theory by using the conventional method of QFT. Most of people believe that
the divergence in QFT comes from the topological structure of the interaction among
point-like particles, and it cannot be cured without modifying its topological struc-
ture. In string theory, one extends a point-like particle to a small piece of string. This
simple extension dramatically changes the topological structure of the interaction in
the theory. The new “Feynman diagram” now is a smooth world-sheet instead of a
world-line with singularity at the interacting points.
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To understand the problem of the UV divergence in QFT clearly, let us review
the high energy behavior in QFT by a simple power counting. In the high energy
hard limit, the tree amplitude by interchanging a spin-J particle behaves as A(J )

tree ∼
E−2(1−J ), so that the one-loop amplitude behaves as

A(J )
1−loop ∼

∫
d4 p

(
A(J )
tree

)2
(
p2
)2 ∼

∫
E−4(2−J ) d4E, (1)

which is finite for a scalar particle (J = 0) and renormalizable for a vector particle
(J = 1), but is nonrenormalizable for a particle with J ≥ 2, including graviton (J =
2). Nevertheless, if we sum over all the tree amplitudes by interchanging states with
different spins, the final amplitude will be

Atree =
∑
J

A(J )
tree ∼

∑
J

aJ E
−2(1−J ), (2)

which could have the enough soft behavior so that the loop amplitudes would be
finite, if the following two conditions are satisfied simultaneously:

1. there are infinite intermedian higher spin states,
2. the coefficients aJ ’s are precisely related to each other in a certain way.

In string theory, string scattering amplitudes are exponentially fall-off in the high
energy hard limit, which promises that string theory is a finite theory without the
problem of UV divergence. We believe that the reason why the high energy behavior
of string theory is so soft is that string theory satisfies the above two conditions.

The first condition is trivially satisfied in string theory because a string has infinite
oscillation modes which correspond to infinite higher spin states, i.e. the Regge
spectrum.The second condition is highly nontrivial.Weconjecture that it corresponds
to a huge symmetry in string theory, which is complicated and not apparent so
that we usually call it hidden symmetries. A useful way to investigate the hidden
symmetry is to study the symmetry among the string scattering amplitudes. Gross has
conjectured that the string scattering amplitudes are linearly related to each other in
the high energy, fixed scattering angle limit [1–3]. Using the three different methods,
including the zero norm states Ward identities [4–6], the Virasoro algebra and the
direct calculation of the scattering amplitudes, we have proved the Gross conjecture
and obtained all of the linear ratios among the string amplitudes [7–17]. We also
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extend our study to the high energy, small angle limit, i.e. Regge scattering, and
studied the recurrence relations among the scattering amplitudes [18–22]. Recently,
we calculated the four-point string amplitudes at arbitrary energy and found that the
amplitudes is associated with SL (K + 3,C) algebra [23, 24]. In the Sect. 2, we will
calculate the four-point string amplitudes. The relations among the amplitudes in
various high energy limits will be studied in Sect. 3. In Sect. 4, we will show that
how to get the SL (K + 3,C) algebra from string amplitudes.We conclude our result
in Sect. 5.

2 Four-Point String Amplitudes

To study the symmetry of string scattering amplitudes, we consider four-point open
bosonic string scattering amplitudes with three tachyons and an arbitrary massive
higher spin string state of the form,

∣∣r Tn , r Pm , r Ll
〉 = ∏

n>0

(
αT

−n

)rTn ∏
m>0

(
αP

−m

)r Pm ∏
l>0

(
αL

−l

)r Ll |0, k〉, (3)

where M2
1 = M2

3 = M2
4 = −2 are three tachyons and M2

2 ≡ M2 = 2(N − 1) is the
higher spin string state with the mass level N =∑n,m,l>0

(
nrTn + mr Pm + lr Ll

)
, as

showed in the Fig. 1.
In the center-of-mass frame, the four-momentum can be expressed as

tachyon|0,k
n>0

αT
−n

rTn

m>0
αP
−m

rPm

l>0
αL
−l

rLl |0,k

tachyon|0, k tachyon|0,k

A(rTn ,rPm,rLl ) =

Fig. 1 The four-point open bosonic string scattering amplitudeswith three tachyons and an arbitrary
massive higher spin string state
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k1 =
(√

M2
1 + |k1|2,−|k1|, 0

)
, (4)

k2 =
(√

M2
2 + |k1|2,+|k1|, 0

)
, (5)

k3 =
(

−
√
M2

3 + |k3|2,−|k3| cosφ,−|k3| sin φ

)
, (6)

k4 =
(

−
√
M2

4 + |k3|2,+|k3| cosφ,+|k3| sin φ

)
, (7)

where ki is the three dimensional momentum vector and φ is the scattering angle.
The Mandelstam variables are defined as usual as

s = − (k1 + k2)
2 , t = − (k2 + k3)

2 , u = − (k1 + k3)
2 , (8)

with s + t + u =∑M2
i .

On the two dimensional scattering plane, there are only three independent polar-
izations which we can choose to be

eT = (0, 0, 1), (9)

eL = 1

M2

(
|k1|,

√
M2 + |k1|2, 0

)
, (10)

eP = 1

M2

(√
M2 + |k1|2, |k1|, 0

)
. (11)

Note that the string amplitude with polarizations orthogonal to the scattering plane
vanish in our setup. For later use, we also define

kXi ≡ eX · ki for X = (T, P, L) . (12)

The simplest four-point string amplitude is scattered by four tachyonswithM2
i = −2,

i.e. theVeneziano amplitudes. In (s, t) channel, the four-tachyon scattering amplitude
can be easily calculated,

A(4-tachyon)
st = 〈eik1·X(x1)eik2·X(x2)eik3·X(x3)eik4·X(x4)

〉 = B

(
− s

2
− 1,− t

2
− 1

)
, (13)

where

B

(
− s

2
− 1,− t

2
− 1

)
= Γ

(− s
2 − 1

)
Γ
(− t

2 − 1
)

Γ
(
u
2 + 2

) , (14)
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is the Beta function. It is easy to verify that the Veneziano amplitude behaves as
exponentially fall-off A(4-tachyon)

st ∼ e−E in the high energy limit (s ∼ E2 → ∞, t →
∞ with s/t fixed). This property holds for all four-point scattering amplitudes in
string theory as we will show later.

The (s, t) and (t, u) channels string scattering amplitudes of states in Eq. (3) can
be calculated to be [23, 24]

A
(rTn ,r Pm ,r Ll )

st = B

(
− t

2
− 1, − s

2
− 1

)
F(K )
D

(
− t

2
− 1; RT

n , RP
m , RL

l ; u
2

+ 2 − N ; Z̃ T
n , Z̃ P

m , Z̃ L
l

)

·
∏
n=1

[
−(n − 1)!kT3

]rTn ∏
m=1

[
−(m − 1)!kP3

]r Pm ∏
l=1

[
−(l − 1)!kL3

]r Ll
, (15)

A
(rTn ,r Pm ,r Ll )

tu = B

(
− t

2
− 1, − u

2
− 1

)
F(K )
D

(
− t

2
− 1; RT

n , RP
m , RL

l ; s
2

+ 2 − N ; ZT
n , Z P

m , ZL
l

)

·
∏
n=1

[
−(n − 1)!kT3

]rTn ∏
m=1

[
−(m − 1)!kP3

]r Pm ∏
l=1

[
−(l − 1)!kL3

]r Ll
, (16)

where we have defined

RX
k ≡ {−r X1

}1
, . . . ,

{−r Xk
}k

with {a}n = a, a, . . . , a︸ ︷︷ ︸
n

, (17)

Z X
k ≡ [zX1 ] , . . . , [zXk ] with [zXk ] = zXk0, . . . , z

X
k(k−1), (18)

zXkk ′ =
∣∣∣∣k

X
1

kX3

∣∣∣∣
1
k

e
2πik′
k and z̃ Xkk ′ ≡ 1 − zXkk ′ , k ′ = 0, . . . , k − 1, (19)

and the integer K is defined to be

K =
n∑
j=1

j

{for all rTj 	=0}

+
m∑
j=1

j

{for all r Pj 	=0}

+
l∑

j=1

j

{for all r Lj 	=0}

, (20)

which is usually different from the mass level N .
In Eqs. (15) and (16), F (K )

D is the D-type Lauricella function, which is one of the
four extensions of the Gauss hypergeometric function to K variables and is defined
as

F(K )
D (a; b1, . . . , bK ; c; x1, . . . , xK )

=
∑
ki

(a)k1+···+kK
(c)k1+···+kK

(b1)k1 · · · (bn)kK
k1! · · · kK ! x

k1
1 · · · xkKK

= Γ (c)

Γ (a)Γ (c − a)

∫ 1

0
dt ta−1(1 − t)c−a−1 · (1 − x1t)

−b1 (1 − x2t)
−b2 . . . (1 − xK t)−bK , (21)
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where the integral representation of the Lauricella function F (K )
D in the last line was

discovered by Appell and Kampe de Feriet (1926) [25].
By using the identity of the Lauricella functions for bi ∈ Z−

F(K )
D (a; b1, . . . , bK ; c; x1, . . . , xK )

= Γ (c) Γ
(
c − a −∑ bi

)
Γ (c − a) Γ

(
c −∑ bi

) F(K )
D

(
a; b1, . . . , bK ; 1 + a +

∑
bi − c; 1 − x1, . . . , 1 − xK

)
, (22)

we can express the (s, t) channel amplitude (15) in the following form

A
(rTn ,r Pm ,r Ll )

st = B

(
− t

2
− 1,− s

2
− 1 + N

)
F (K )
D

(
− t

2
− 1; RT

n , RP
m , RL

l ; s
2

+ 2 − N ; ZT
n , Z P

m , Z L
l

)

·
∏
n=1

[−(n − 1)!kT3
]rTn ·

∏
m=1

[−(m − 1)!kP
3

]r Pm ∏
l=1

[−(l − 1)!kL3
]r Ll .

(23)

Now it is easy to see the string BCJ relation from the Eqs. (23) and (16),

A
(rTn ,r Pm ,r Ll )

st

A
(rTn ,r Pm ,r Ll )

tu

= (−)NΓ
(− s

2 − 1
)
Γ
(
s
2 + 2

)
Γ
(
u
2 + 2 − N

)
Γ
(− u

2 − 1 + N
) = sin

(
πu
2

)
sin
(

πs
2

) = sin (πk2 · k4)
sin (πk1 · k2) ,

(24)
which was proved by monodromy of integration of string amplitudes [26, 27] and
explicitly proved recently in [28].

3 Symmetry in High Energy Limits

To study the relations among the string scattering amplitudes, we consider two dif-
ferent high energy limits: hard scattering limit and Regge scattering limit. We will
briefly describe the results in the following. Readers can find the detail in a current
review paper [29].

3.1 Linear Relations in Hard Limit

Hard scattering limit is the fixed angle scattering with s ∼ E2 → ∞ and
t

s
∼

sin2 φ
2 = constant. The linear relations of string amplitudes in the hard scattering
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limit were conjectured by Gross [1–3] and proved in [7–11, 13]. In the hard scat-
tering limit eP = eL [7, 8], we can only consider the polarization eL . The relevant
kinematics are

kT1 = 0, kT3 � −E sin φ, (25)

kL1 � −2p2

M2
� −2E2

M2
, (26)

kL3 � 2E2

M2
sin2

φ

2
, (27)

with z̃Tkk ′ = 1, z̃Lkk ′ = 1 − (− s
t

)1/k
e

i2πk′
k ∼ O (1).

In the hard limit, the (s, t) channel string amplitude in Eq. (15) reduces to

A
(rTn ,r Ll )

st = B

(
− t

2
− 1,− s

2
− 1

)
F (K )
D

(
− t

2
− 1; RT

n , RL
l ; u

2
+ 2 − N ; (1)n , Z̃ L

l

)

·
∏
n=1

[(n − 1)!E sin φ]r
T
n

∏
l=1

[
−(l − 1)!2E

2

M2
sin2

φ

2

]r Ll
. (28)

Next, we propose the following identity

r L1∑
kr=0

(− t
2 − 1

)
kr(

u
2 + 2 − N

)
kr

(−r L1
)
kr

kr !
(
1 + s

t

)kr

= 0 ·
(
tu

s

)0

+ 0 ·
(
tu

s

)−1

+ · · · + 0 ·
(
tu

s

)−
[
r L1 +1

2

]
−1

+ CrLl

(
tu

s

)−
[
r L1 +1

2

]

+ O

⎧⎨
⎩
(
tu

s

)−
[
r L1 +1

2

]
+1
⎫⎬
⎭ , (29)

where CrL1
is independent of the energy E and depends on r L1 and possibly the

scattering angle φ. For r L1 = 2m being an even number, we can show that CrL1
=

(2m)!
m! which is independent of the scattering angle φ. We have verified Eq. (29) for

r L1 = 0, 1, 2, . . . , 10 explicitly.
It is noted that, taking the Regge limit (s → ∞with t fixed) and setting r L1 = 2m,

Eq. (29) reduces to the Stirling number identity,
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2m∑
kr=0

(− t
2 − 1

)
kr(− s

2

)
kr

(−2m)kr

kr !
( s
t

)kr �
2m∑
kr=0

(−2m)kr

(
− t

2
− 1

)
kr

(−2/t)kr

kr !

= 0 · (−t)0 + 0 · (−t)−1 + · · · + 0 · (−t)−m+1 + (2m)!
m! (−t)−m + O

{(
1

t

)m+1
}

,

(30)

which was proposed in [30] and proved in [31].
Finally, the leading order string amplitudes in the hard scattering limit can be

calculated to be

A
(rT1 ,2m,r L2 )

st � B

(
− s

2
− 1,− t

2
− 1

)
· F (4)

D

(
− t

2
− 1; RT

1 , RL
2 ; u

2
+ 2 − N ; 1, ZL

2

)

· [E sin φ]r
T
1 ·
[
−2E2

M2
sin2

φ

2

]2m
·
[
−2E2

M2
sin2

φ

2

]r L2

= B

(
− s

2
− 1,− t

2
− 1

)
(E sin φ)N ·

(
r L1 − 1

)
!!
(

− 1

M2

)2m+r L2
(
1

2

)m+r L2

=
(
r L1 − 1

)
!!
(

− 1

M2

)2m+r L2
(
1

2

)m+r L2 · A(N ,0,0), (31)

which reproduces the ratios

A
(rT1 ,2m,r L2 )
st

A(N ,0,0)
st

= (2m − 1)!!
(

− 1

M2

)2m+r L2
(
1

2

)m+r L2

, (32)

which is consistent with the previous result [7–11, 13].

3.2 Recurrence Relations in Regge Limit

Regge scattering limit is the small angle scattering with s ∼ E2 → ∞ and t ∼
E2 sin2 φ

2 = constant. The recurrence relations of string amplitudes in the Regge
scattering limit have been studied in [30, 32, 33]. The relevant kinematics in Regge
limit are

kT1 = 0, kT3 � −√−t, (33)

kP
1 � − s

2M2
, kP

3 � − t̃

2M2
= − t − M2

2 − M2
3

2M2
, (34)

kL1 � − s

2M2
, kL3 � − t̃ ′

2M2
= − t + M2

2 − M2
3

2M2
, (35)
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with z̃Tkk ′ = 1, z̃ Pkk ′ = 1 − (− s
t̃

)1/k
e

i2πk′
k ∼ s1/k and z̃Lkk ′ = 1 − (− s

t̃ ′
)1/k

e
i2πk′
k ∼ s1/k .

In the Regge limit, the (s, t) channel string amplitude in Eq. (15) reduces to

A
(rTn ,r Pm ,r Ll )

st � B

(
− t

2
− 1,− s

2
− 1

)
F1

(
− t

2
− 1;−q1,−r1;− s

2
; s
t̃
,
s

t̃ ′

)

·
∏
n=1

[
(n − 1)!√−t

]rTn ·
∏
m=1

[
(m − 1)! t̃

2M2

]r Pm ∏
l=1

[
(l − 1)! t̃ ′

2M2

]r Ll
,

(36)

where F1 is the Appell function. Equation (36) agrees with the result obtained in
[33].

The string amplitudes in the Regge limit are much more complicated than that
in the hard limit and do not have linear relations. However, there are a series of
recurrence relations for the Appell functions F1,

(a − b1 − b2) F1 − aF1 (a + 1) + b1F1 (b1 + 1) + b2F1 (b2 + 1) = 0, (37)

cF1 − (c − a) F1 (c + 1) − aF1 (a + 1; c + 1) = 0, (38)

cF1 + c (x − 1) F1 (b1 + 1) − (c − a) xF1 (b1 + 1; c + 1) = 0, (39)

cF1 + c (y − 1) F1 (b2 + 1) − (c − a) yF1 (b2 + 1; c + 1) = 0. (40)

Using the above recurrence relations, we can obtain a lot of recurrence relations
among the string amplitudes in Eq. (36). One can show that by solving the recurrence
relations, all the string amplitudes at certain mass level can be expressed in term of
a single amplitude [33].

4 Symmetry of Four-Point Amplitudes at General Energy

Let us recall the (s, t) channels string scattering amplitudes with three tachyons and
a massive higher spin string state in Eq. (15),

A
(rTn ,r Pm ,r Ll )

st = B

(
− t

2
− 1,− s

2
− 1

)
F (K )
D

(
− t

2
− 1; RT

n , RP
m , RL

l ; u
2

+ 2 − N ; Z̃ T
n , Z̃ P

m , Z̃ L
l

)

·
∏
n=1

[
−(n − 1)!kT3

]rTn ·
∏
m=1

[
−(m − 1)!kP3

]r Pm ∏
l=1

[
−(l − 1)!kL3

]r Ll
. (41)

To explore the symmetry of the above amplitudes, we need to understand theirmathe-
matical structure in a deeper way. To do it, we follow the mathematical construction
in [34] and define the generating functions associated with the D-type Lauricella
function F (K )

D as
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f
a,b j
c

(
s, u j , t, x j

) ≡ B (a, c − a) F (K )
D

(
a; b j ; c; x j

)
saub11 · · · ubKK tc, j = 1, . . . , K .

(42)
Now the (s, t) channels string scattering amplitudes can be expressed in term of the
generating functions as

A(rTn ,r Pm ,r Ll )
st ∼ f

− t
2 −1,RX

j
u
2 +2−N

(
1, kX3 , 1, Z̃ X

j

)
, X = T, P, L . (43)

We next define the operators,

Eα = s

⎛
⎝∑

j

x j∂x j + s∂s

⎞
⎠ , Eαγ = st

⎛
⎝∑

j

(
1 − x j

)
∂x j − s∂s

⎞
⎠ ,

Eβk = uk
(
xk∂xk + uk∂uk

)
, Eβkγ = uk t

(− (1 − xk) ∂xk + uk∂uk
)
,

Eγ = t

⎛
⎝∑

j

(
1 − x j

)
∂x j + t∂t − s∂s −

∑
j

u j∂u j

⎞
⎠ , Eαβkγ = suk t∂xk ,

Jα = s∂s , Jβk = uk∂uk − 1

2
t∂t + 1

2

∑
j 	=k

u j∂u j , Jγ = t∂t − 1

2

⎛
⎝s∂s +

∑
j

u j∂u j + 1

⎞
⎠ , (44)

which acting on the generating function gives,

Eα f
a,b j
c = (c − a − 1) f

a+1,b j
c , Eαγ f

a,b j
c =

⎛
⎝∑

j

b j − 1

⎞
⎠ f

a+1,b j

c+1 ,

Eβk f
a,b j
c = bk f

a,bk+1
c , Eβkγ f

a,b j
c = bk f

a,bk+1
c+1 ,

Eγ f
a,b j
c =

⎛
⎝c −

∑
j

b j

⎞
⎠ f

a,b j

c+1 , Eαβkγ f
a,b j
c = bk f

a+1,bk+1
c+1 ,

Jα f
a,b j
c =

(
a − c

2

)
f
a,b j
c , Jβk f

a,b j
c =

⎛
⎝bk − c

2
+ 1

2

∑
j 	=k

b j

⎞
⎠ f

a,b j
c ,

Jγ f
a,b j
c =

⎡
⎣c − 1

2

⎛
⎝a +

∑
j

b j + 1

⎞
⎠
⎤
⎦ f

a,b j
c . (45)

Finally, by defining a set of new operators Ei j in the following way,

Eα = E12, Eαγ = E32, Eγ = E31,
Eβkγ = −Ek+3,1, Eαβkγ = −Ek+3,2, Eβk = Ek+3,3,

Jα = 1

2
(E11 − E22) , Jγ = 1

2
(E33 − E11) , Jβk = 1

2

(Ek+3,k+3 − E33
)
. (46)
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the algebra satisfied by the new operators becomes

[Ei j , Ekl] = δ jk Eil − δli Ek j , (47)

which can be identified as sl (K + 3,C) algebra.

5 Conclusion

In this article, I briefly reviewed the hidden symmetry in string theory by studying the
string scattering amplitudes. The four-point bosonic open string scattering amplitude
with three tachyons and an arbitrary massive higher spin string state in both (s, t)
and (t, u) channels have been explicitly calculated and expressed in term of D-type
Lauricella function in Eqs. (15) and (16). The string BCJ relation can be verified
easily. We also considered two high energy limits. In hard limit, the hidden symme-
try reduces to the linear relations among the string amplitude. In Regge limit, the
hidden symmetry exhibit to be the recurrence relations of the string amplitudes. At
general energy, we mathematically showed that the hidden symmetry is associated
to sl (K + 3,C) algebra. To explore its physical picture in more details is important
to understand the hidden symmetry in string theory in the future.

Acknowledgements The main results in this talk are based on a series of works collaborated with
S.H. Lai and Jen-Chi Lee. I would like to thank the organizers of The 24th International Conference
on Integrable Systems and Quantum symmetries (ISQS24) for inviting me to present this work.
This work is supported by the Ministry of Science and Technology (MoST), Taiwan.

References

1. D. J. Gross and P. F. Mende, Phys. Lett. B 197, 129 (1987); Nucl. Phys. B 303, 407 (1988).
2. D. J. Gross, Phys. Rev. Lett. 60, 1229 (1988); Phil. Trans. R. Soc. Lond. A329, 401 (1989).
3. D. J. Gross and J. L. Manes, Nucl. Phys. B 326, 73 (1989). See section 6 for details.
4. J. C. Lee, Phys. Lett. B 241, 336 (1990); Phys. Rev. Lett. 64, 1636 (1990); Prog. Theor. Phys.91,

353 (1994). J. C. Lee, Phys. Lett. B 326, 79 (1994).
5. T. D. Chung and J. C. Lee, Phys. Lett. B 350, 22 (1995). Z. Phys. C 75, 555 (1997). J. C. Lee,

Eur. Phys. J. C 1, 739 (1998).
6. H. C. Kao and J. C. Lee, Phys. Rev. D 67, 086003 (2003). C. T. Chan, J. C. Lee and Y. Yang,

Phys. Rev. D 71, 086005 (2005).
7. C. T. Chan and J. C. Lee, Phys. Lett. B 611, 193 (2005). J. C. Lee, [arXiv:hep-th/0303012].
8. C. T. Chan and J. C. Lee, Nucl. Phys. B 690, 3 (2004).
9. C. T. Chan, P. M. Ho and J. C. Lee, Nucl. Phys. B 708, 99 (2005).
10. C. T. Chan, P. M. Ho, J. C. Lee, S. Teraguchi and Y. Yang, Nucl. Phys. B 725, 352 (2005).
11. C. T. Chan, P. M. Ho, J. C. Lee, S. Teraguchi and Y. Yang, Phys. Rev. Lett. 96 (2006) 171601.
12. C. T. Chan, P. M. Ho, J. C. Lee, S. Teraguchi and Y. Yang, Nucl. Phys. B 749, 266 (2006).

“Comments on the high energy limit of bosonic open string theory,” [arXiv:hep-th/0509009].
13. C. T. Chan, J. C. Lee and Y. Yang, Nucl. Phys. B 738, 93 (2006).
14. C. T. Chan, J. C. Lee and Y. Yang, Nucl. Phys. B 749, 280 (2006).

http://arxiv.org/abs/hep-th/0303012
http://arxiv.org/abs/hep-th/0509009


204 Y. Yang

15. Pei-Ming Ho, Xue-Yan Lin, Phys.Rev. D73 (2006) 126007.
16. C. T. Chan, J. C. Lee and Y. Yang, “Scatterings of massive string states from D-brane and their

linear relations at high energies”, Nucl.Phys.B764, 1 (2007).
17. J.C. Lee and Y. Yang, “Linear Relations of High Energy Absorption/Emission Amplitudes of

D-brane”, Phys.Lett. B646 (2007) 120, hep-th/0612059.
18. Sheng-Lan Ko, Jen-Chi Lee and Yi Yang, “Patterns of High energy Massive String Scatterings

in the Regge regime”, JHEP 0906:028,(2009); “Kummer function andHigh energy String Scat-
terings”, arXiv:0811.4502; “Stirling number Identities and High energy String Scatterings”,
arXiv:0909.3894 (published in the SLAC eConf series).

19. Jen-Chi Lee and Yi Yang, “Regge Closed String Scattering and its Implication on Fixed angle
Closed String Scattering”, Phys.Lett.B687:84-88,2010.

20. S. He, J.C. Lee, K. Takahashi and Y. Yang, “Massive Superstring Scatterings in the Regge
Regime”, arXiv:1001.5392. (accepted by PRD).

21. J.C. Lee, Catherine H. Yan and Y. Yang, “High-energy String Scattering Amplitudes and
Signless Stirling Number Identity”, arXiv: 1012.5225.

22. Jen-Chi Lee, Yoshihiro Mitsuka and Yi Yang, “Higher Spin String States Scattered from
D-particle in the Regge Regime and Factorized Ratios of Fixed Angle Scatterings”, arXiv:
1101.1228.

23. Sheng-Hong Lai, Jen-Chi Lee and Y.Y., “The Exact SL(K + 3,C) Symmetry of String Scat-
tering Amplitudes”, arXiv:1603.00396.

24. Sheng-Hong Lai, Jen-Chi Lee and Y.Y., “The Lauricella Functions and Exact String Scattering
Amplitudes”, arXiv:1609.06014, JHEP 11 (2016) 1–17.

25. Joseph Kampe de Feriet and Paul Appell. Fonctions hypergeometriques et hyperspheriques
1926.

26. N. E. J. Bjerrum-Bohr, P. H. Damgaard and P. Vanhove, Phys. Rev. Lett. 103, 161602 (2009)
[hep-th/0907.1425].

27. S. Stieberger, hep-th/0907.2211.
28. S.H. Lai, J.C. Lee and Y. Yang, JHEP 1605 (2016) 186, arXiv: 1601.0381.
29. J.C. Lee and Y. Yang, Review on High energy String Scattering Amplitudes and Symmetries

of String Theory, arXiv: 1510.03297.
30. S.L. Ko, J.C. Lee and Y. Yang, JHEP, 9060:028 (2009).
31. J.C. Lee, C.H.Yan, andY.Yang, “High energy string scattering amplitudes and signless Stirling

number identity”, SIGMA, 8:045, (2012).
32. J.C. Lee and Y. Mitsuka, JHEP 1304:082 (2013).
33. J.C. Lee and Y. Yang, Phys. Lett. B739, 370 (2014).
34. Willard Miller. Jr., “Lie theory and generalizations of the hypergeometric functions”, SIAM J.

Appl. Math. Vol. 25 No. 2, 226 (1973).

http://arxiv.org/abs/0811.4502
http://arxiv.org/abs/0909.3894
http://arxiv.org/abs/1001.5392
http://arxiv.org/abs/1012.5225
http://arxiv.org/abs/1101.1228
http://arxiv.org/abs/1603.00396
http://arxiv.org/abs/1609.06014
http://arxiv.org/abs/1601.0381
http://arxiv.org/abs/1510.03297


Information Geometry of Strings
on Plane Wave Background

H. Dimov, S. Mladenov, R. Rashkov and T. Vetsov

Abstract In this report we consider the information-theoretic approach to closed
bosonic strings in homogeneous plane wave background. We derive the extended
renormalized entanglement entropy of the string and the corresponding Fisher metric
on its statistical manifold. Our investigations are conducted exclusively within the
frameworkofThermoFieldDynamics.At the endof the reportwediscuss a procedure
for reconstructing probability density functions from a given Fisher information
metric.

Keywords String theory · Information geometry · Fisher information metric
Phase transitions

1 Introduction

It is common knowledge that different descriptions of probabilistic phenomena
in nature can be conveniently accommodated within the framework of Statistical
Physics. However, in the recent years, a new approach gains popularity, called Infor-
mation Geometry (IG) [1, 2]. It has the potential to encompass all statistically based
occurrences not only in Physics, but also in other sciences [2, 3], thus paving the
way for new and unexpected discoveries. With its variety of powerful analytic tools,
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namely Fisher information metric (FIM), relative entropies, mutual information,
etc., IG allows one to find connections between phenomena and processes, initially
regarded as distinct and unrelated.

The traditional way of gaining knowledge on a physical system is through obser-
vations and measurements that faithfully describe the different states of the system.
The accumulated data is then fed to some phenomenological model, which allows for
further refinement of the ideas and new physical predictions. From this point of view
IG inserts additional layer of knowledge by considering the nature of the information
that is conveyed by the data. This is regardless of the particular effect that is under
observation and thus providing one unified information-theoretic viewpoint.

Analysing physical systems on the basis of information flow upon phenomenolog-
ical modelling already amounts to some very interesting and intriguing results. For
example, in String Theory, in the context of the holographic duality between grav-
itational and gauge theories, the concept of emergent space-time became relevant
[4, 5], due to the Ryu–Takayanagi conjecture [6, 7]. In Black Hole (BH) physics an
alternative geometric approach to BH thermodynamics appears as thermodynamic
limit of the Fisher information metric [8, 9]. In Condensed Matter Physics FIM and
its algebraic invariants have proven to contain information about the phase structure
of the system [10]. The latter are only some of many applications of IG in modern
Physics (more applications can be found in [2, 3]).

This paper is organized as follows. In Sect. 2 we shortly discuss the basic concepts
in Thermo Field Dynamics (TFD). In Sect. 3 we apply TFD to closed bosonic strings
on D = 10 regular homogeneous plane wave background in order to derive the
extended entanglement entropy (EEE) and the Fisher metric of the system. In Sect. 4
we focus on a method of reconstructing the probability density functions (PDFs)
from given FIM. Finally, in Sect. 5 we give a short overview of our findings.

2 Basics of Thermo Field Dynamics

The essential quantity in statistical mechanics in thermal equilibrium is the statistical
average of a quantity A, say over the grand canonical ensemble at temperature T ,
given by

〈A〉 = Tr[A e−β H ]
Z(β)

, (1)

where H is the Hamiltonian of the system, Z(β) = Tre−β H is the partition function,
and β = kB T−1 is the inversed temperature. In 1955 Matsubara [11] observed that
the statistical average 〈A〉 has properties similar to the vacuum expectation value of A
in Quantum Field Theory. The latter observation lead him to construct a field theory
in which the vacuum expectation value coincides with the statistical average, i.e.
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〈A〉 = Tr[A e−β H ]
Z(β)

≡ 〈0(β)|A|0(β)〉. (2)

Here |0(β)〉 is a temperature dependent vacuum state in a new space to be constructed.
In general one can define a suitable thermal state |0(β)〉, which satisfy

〈0(β)|F |0(β)〉 = Z−1(β)
∑

n
〈n|F |n〉 e−β En , (3)

for arbitrary dynamical variable F , where

H |n〉 = En |n〉 , 〈n|m〉 = δnm . (4)

If now one expands the thermal state |0(β)〉 in terms of the energy eigenstates |n〉,

|0(β)〉 =
∑

n
|n〉 fn(β), (5)

and inserts Eq. (5) back in Eq. (3), one finds the following condition [11]:

f ∗
n (β) fm(β) = Z−1(β) e−β En δmn. (6)

Equation (6) is not possible if fn are mere c-numbers, but one has to consider them as
state vectors in some specific Hilbert space, in which Eq. (6) is an orthogonality con-
dition. The newHilbert space is called tilde space H̃. It introduces a fictitious system,
which is of exactly the same structure as the physical one under consideration,

H̃ |ñ〉 = En |ñ〉 , 〈ñ|m̃〉 = δnm . (7)

Therefore the equilibrium thermal vacuum state |0(β)〉 is a state vector in the double
Hilbert space, H = Ĥ⊗ H̃, and is given by

|0(β)〉 = 1

Z(β)

∑
n
e−β En |n, ñ〉. (8)

One can think of particle states in this TFD construction as follow. The one particle
state is build up from the thermal equilibrium state |0(β)〉 by adding one particle
without tilde or by eliminating one particle with tilde.1

As we have shown Thermo Field Dynamics requires a statistical state defined
in a double Hilbert space, which is a direct product of the original space and an
isomorphic copy of it. Although the state in (8) is in the energy eigenbasis, it turns
out that it is independent from the chosen representation. This result is known as the
general representation theorem [12] andmakes TFD very useful for treating quantum
states directly via density matrix approach.

1For more information on TFD formalism see [11].



208 H. Dimov et al.

In TFD one defines an extended density matrix, ρ̂ = |Ψ 〉 〈Ψ |, where |Ψ 〉 is a
general TFD state of the form given in Eq. (8). Now, one can use the extended density
operator to calculate the extended entanglement entropy via the standard expression

SA = −Tr{A}
(
ρ̂A ln ρ̂A

)
, (9)

where the trace is over the degrees of freedom of the suitably taken subsystem A,
while ρ̂A = Tr{B}ρ̂ is the reduced density operator for the same subsystem. In this
case the whole quantum system M is partitioned such as M = A

⋃
B. By definition

the Fisher informationmetric is nowgiven as theHessian of the entanglement entropy
[13, 14]:

gμν(θ) = ε
∂2SA(θ)

∂θμ ∂θν
, (10)

where the relative sign, ε = ±1, is chosen such as the metric components be positive
defined, as thermodynamic stability requires. The set of parameters θμ span the
parameter space, i. e. the statistical manifold of the system. The Fisher metric (10)
naturally defines a Riemannian metric on this manifold.

In what follows we will calculate the EEE and the FIM for closed bosonic string
in a simple homogeneous plane wave background within the framework of TFD.

3 The Fisher Information Metric for Closed Strings
in Plane Wave Geometry

Consider a closed relativistic string in non-singular 2 + d dimensional homogeneous
plane wave background with metric of the form

ds2 = 2 du dv + ki j x
i x j du2 + 2 fi j x

i dx j du + dxi dx j . (11)

Here ki j and fi j are constant, and the B-field is given by Biu = −hi j x j . In Ref. [15]
the authors showed that the string Hamiltonian,

H = 1

2 π

∫ π

0
dσ
[
δi j
(
Ẋ i Ẋ j + Xi ′ X j ′ − ki X

i X j
)− 2 hi j X

i X j ′] , (12)

can be written as a sum of n-level harmonic oscillator Hamiltonians:

H =
∞∑

n=0

H (n) . (13)

The zero-mode part Hamiltonian assumes the form
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H 0 =
d∑

j=1

sign
(
C j
)

Ω j

(
N j + 1

2

)
, (14)

with frequencies

Ω j =
∑d

i=1(ω
2
j − ki )mii (ω j )

2ω j
∏

k �= j (ω
2
j − ω2

k )
. (15)

Likewise, the Hamiltonians for higher modes of the string are given by

H (n) =
2 d∑

J=1

sign
(
C (n)

J

)
Ω

(n)
J

(
N (n)

J + 1

2

)
, n > 0 , (16)

where the frequency Ω
(n)
J is a sum of two terms – one coming from the plane wave

metric, and the other coming from the B-field:

Ω
(n)
J = 2ω(n)

J C (n)
J m11

(
ω(n)
J

) ∑

i, j

(
ω(n)
J δi j + i (−1)i+ j fi j

)
mi j

(
ω(n)
J

)
. (17)

Now we can apply the TFD technique to obtain the equilibrium extended entangle-
ment entropy on every energy level of the string spectrum. However, for simplicity,
we will consider only the n = 0 Hamiltonian of the string from Eq. (14). Assume the
following two subsystems:

{N j
}d
j=1 = {Nμ

}p
μ=1

⋃
{Nk}dk=p+1 = A

⋃
B , p ≤ d − 1, 2 ≤ d ≤ 9 , (18)

Once the Hamiltonian is fixed it is straightforward to find the corresponding partition
function,

Z = Tr{AB}
(
e−β Ĥ

)
=

N∏

i=1

e−β E0

1 − e−β Ei
=

N∏

i=1

e−K0

1 − e−Ki
, (19)

where we have introduced the inverse scaled temperatures K0 = β,

E0 = β
∑d

j=1 sign(C j )Ω j/2 and Ki = β, Ei = β sign(Ci )Ωi , i = 1, . . . , N . In
this case the TFD statistical state assumes the form

|Ψ 〉 =
∞∑

{ni }=0

√
(ρ̂eq)i i |{ni }〉 |{ñi }〉 , (20)

where ρ̂eq = e−β Ĥ

Z is the ordinary density matrix in equilibrium. After some lengthy
computations the EEE for the closed bosonic string in equilibrium on the regular
pp-wave background (11) is found explicitly as
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SA
(
tμ
) =

⎛

⎝
p∏

μ=1

tμ + 1

tμ − 1

⎞

⎠
p∑

μ=1

(
2 tμ ln tμ
tμ − 1

− ln
(
t2μ − 1

))
, (21)

where tμ = eKμ/2, μ = 0, 1, 2, . . . . The EEE is divergent at tμ = 1, suggesting a
critical phase transition point. This point corresponds to Kμ = 0, which puts the
system at very high temperatures (T → ∞). The Fisher metric follows immediately
from Eqs. (21) and (10),

gμν = 4

(
p∏

σ=1

δμσ δνσ

(tσ − 1)3

)
p∑

σ=1

[
2 tσ ln tσ
tσ − 1

− ln
(
t2σ − 1

)]

+ 4

(
p∏

σ=1

δνσ

(tσ − 1)2

)
p∑

σ=1

[(
1

1 + tσ
+ ln tσ

(tσ − 1)2

)
δμσ

]

+ 4

(
p∏

σ=1

δμσ

(tσ − 1)2

)
p∑

σ=1

[(
1

1 + tσ
+ ln tσ

(tσ − 1)2

)
δνσ

]

+ 4

(
p∏

σ=1

tσ + 1

tσ − 1

)
p∑

σ=1

[(
1

2t(1 + tσ)2
+ 2 − 4tσ + t2σ

2(1 + tσ)2
tσ + ln tσ

)
δμσδνσ

(tσ − 1)3

]
.

(22)

From information-theoretic point of view FIM represents a continuous setting even if
the underlying features of the system are discrete. This allows one to take advantage
of the powerful framework of differential geometry to treat probabilistic structures
as geometrical ones.

For two-dimensional statistical manifold one needs only to investigate the proper-
ties of the Fisher scalar curvature to obtain information about the critical behaviour of
the system. The latter is well-known result in differential geometry, where in 2d space
the components of the Riemann tensor are just proportional to the scalar curvature,
e.g. there is only one degree of freedom. The latter implies that any critical points,
corresponding to second order phase transitions, are encoded in the singularities of
the Ricci scalar RF IM .

Furthermore, by studying the properties of RF IM , one can say something about the
type of interactions between the constituents of the system. For example, if RF IM = 0
the system is non-interacting. While, on the other hand, a maximum positive infor-
mation curvature, max |RF IM > 0|, corresponds to maximal repulsive interactions,
the maximum of the absolute value of the negative curvature, max |RF IM < 0|, gen-
erates maximal attractive force. The critical behaviour of the closed bosonic string
in D = 5 + 2 dimensional regular plane wave background was studied in Ref. [16].

In the higher dimensional case the problem is not that simple and only the invari-
ants of the Fisher metric may not be enough to encompass all critical phase phenom-
ena. Here, an additional information analysis may has to be invoked.
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4 Reconstruction of Probability Density Functions
from Fisher Metric

In this sectionweare going to give an idea of how to reconstruct a family of probability
density functions from a given Fisher information metric.

By definition the Fisher information metric can be straightforwardly calculated
once a probability distribution has been chosen. A set of distributions P(x,θ),
parametrized by θ, forms a statistical manifold. The Riemannian metric on such
manifold is the FIM, defined by the following expectation value

gμν(θ) =
∫

X

DX P(x,θ)
∂ ln P(x,θ)

∂θμ

∂ ln P(x,θ)

∂θν
. (23)

Here x ∈ X is a point from the random sample space X . It turns out that the only
Riemannian metric is the Fisher metric, which is invariant under coordinate trans-
formations of θ and also under one-to-one transformations of the random variable
x [1]. Therefore the natural question arising is how to revert Eq. (23) with respect
to P(x,θ)? Also it is relevant to define under what conditions such operation is
possible?

For this purpose let us consider a family of normalized Gaussian PDFs in the
form:

P(x; θ) = 1√
(2 π)n

e
− 1

2

n∑
i=1

(xi−hi (θ))
2

. (24)

TheNash embedding theorem tells us that there is ann ∈ N such that a p-dimensional
manifold (Mp, g) may be C1 isometrically embedded in n- dimensional Euclidean
space (En, δ). Thus, it tells us that there exists an h such that the metric g on the
manifold is the pullback g = h ∗ δ.

The CMS (Clingman–Murugan–Shock) method, proposed in [17], is focused
on the computation of the transition functions hi (θ), i = 1, . . . , n, from En to the
statistical manifold M. The CMS ansatz for FIM is given by

gab = (∂ah
i ) (∂bh

j ) δi j . (25)

The latter expression gives a set of non-linear first-order partial differential equations
for hi (θ). A simple example is the metric on the unit 2-sphere,

ds2 = dθ2 + sin2θ dϕ2 . (26)

where an easy check shows that the set of transition functions

h = (h1(θ,ϕ), h2(θ,ϕ), h3(θ,ϕ)) = (sin θ cosϕ, sin θ sinϕ, cosθ) (27)
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satisfy Eq. (25) and thus the 2-sphere can be embedded in 3-dimensional Euclidean
space. These are only the set of spherical coordinates.

The Gaussian PDF ansatz (24) is not the only possibility. There are an infinite
number of different PDFs giving the same FIM. In other words, one can choose
an infinite-to-one families of probability density functions to be parametrized by hi ,
whichoriginate from the sameRiemannianmetric tensor. For example, the hyperbolic
secant PDF is a valid case:

P(x; θ) = 1

πn

n∏

i=1

sech(xi − hi
√
2) . (28)

Now let us get back to the string system considered in this report. When p = 2 the
statistical manifold M2 of the string is 2d with components of the Fisher metric
given by

gt1t1 = 4 (t2 + 1)

(t2 − 1) (t1 − 1)3

⎛

⎜⎝ln
t
3 (t1+1)
t1−1

1 t
2 t2
t2−1

2(
t21 − 1

) (
t22 − 1

) − 1 + 6 t1 + 3 t21
2 t1 (t1 + 1)

⎞

⎟⎠ , (29)

gt2t2 = 4 (t1 + 1)

(t1 − 1) (t2 − 1)3

⎛

⎜⎝ln
t

2 t1
t1−1

1 t
3 (t2+1)
t2−1

2(
t21 − 1

) (
t22 − 1

) − 1 + 6 t2 + 3 t22
2 t2 (t2 + 1)

⎞

⎟⎠ , (30)

gt1t2 = gt2t1 = 4

(t1 − 1)2 (t2 − 1)2

⎛

⎝ln
t
1+3 t1
t1−1

1 t
1+3 t2
t2−1

1(
t21 − 1

) (
t22 − 1

) − 2

⎞

⎠ . (31)

The Riemannian immersion of this manifold in 3-dimensional Euclidean space E3 is
defined by three transition functions h = (h1(t1, t2), h2(t1, t2), h3(t1, t2)), satisfying
the following equations:

gt1t1(t1, t2) =
(

∂h1

∂t1

)2

+
(

∂h2

∂t1

)2

+
(

∂h3

∂t1

)2

, (32)

gt2t2(t1, t2) =
(

∂h1

∂t2

)2

+
(

∂h2

∂t2

)2

+
(

∂h3

∂t2

)2

, (33)

gt1t2(t1, t2) =
(

∂h1

∂t1

)(
∂h1

∂t2

)
+
(

∂h2

∂t1

)(
∂h2

∂t2

)
+
(

∂h3

∂t1

)(
∂h3

∂t2

)
. (34)

Solutions to this non-linear system of first-order PDEs are not easy to obtain. How-
ever, we intend to address the problem in a future work, where additional PDF
reconstruction techniques will be presented.
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5 Conclusion

In this paper, using TFD techniques, we derived explicit expression for the extended
renormalized entanglement entropy of a system of closed bosonic strings, vibrating
in curved D-dimensional plane wave background. The Hessian of the EEE enabled
us to obtain positive defined analytical expressions for the components of the Fisher
information metric, which locally measures distances on the parameter space of the
given string system.

Our investigation showed that theEEEandFIMare divergent at tμ = 1, suggesting
a critical phase transition point. This point corresponds to Kμ = 0, which puts the
system at very high temperatures (T → ∞). In [16] the authors showed that, for
D = 5 + 2 dimensional pp-wave space-time, the statistical manifold of the string is
2-dimensional and the corresponding Fisher scalar curvature is regular at T → ∞.
The latter excludes critical behaviour at high temperature for the string systemwith 2d
parameter space. For higher space-time dimensions (>5 + 2) and higher parameter
space dimensions (>2) additional analysis is required.

Finally, a specific technique for reconstructing PDFs from a given Fisher informa-
tion metric was presented and supplied with examples. The method leads to a system
of non-linear first-order PDEs, which can be solved relatively easy for simple com-
ponents of the Fisher metric. For complicated metric coefficients the PDEs are also
complicated and analytical results for the transition functions are hard to obtain. In
this case additional constraints and techniques need to be invoked. Furthermore, by
using only one seedmetric, the presented reconstructionmethod generates an infinite
number of possible PDFs, parametrized by the set of transition functions it produces.
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The Global Formulation of Generalized
Einstein-Scalar-Maxwell Theories

C. I. Lazaroiu and C. S. Shahbazi

Abstract We summarize the global geometric formulation of Einstein-Scalar-
Maxwell theories twisted by flat symplectic vector bundle which encodes the duality
structure of the theory. We describe the scalar-electromagnetic symmetry group of
such models, which consists of flat unbased symplectic automorphisms of the flat
symplectic vector bundle lifting those isometries of the scalar manifold which pre-
serve the scalar potential. The Dirac quantization condition for such models involves
a local system of integral symplectic spaces, giving rise to a bundle of polarized
Abelian varieties equipped with a symplectic flat connection, which is defined over
the scalar manifold of the theory. Generalized Einstein-Scalar-Maxwell models arise
as the bosonic sector of the effective theory of string/M-theory compactifications to
four-dimensions, and they are characterized by having non-trivial solutions of “U-
fold” type.

Keywords Cosmology · Two-field models · Alpha-attractors · Mathematical
physics · Uniformization · Hyperbolic geometry

1 Introduction

Supergravity theories [1, 2] are classical theories of gravity coupled tomatter, formu-
lated using systems of “fields” defined on amanifoldM of appropriate dimension and
subject to certain partial differential equations known as the equations of motion. An
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unambiguous formulation of such theories on non-contractible spacetimes requires
that one specifies the global nature of the fields and of the differential operators
arising in these equations. Currently, the literature gives only local descriptions1 of
these objects. The globalization problem asks for globally-unambiguous mathemat-
ical definitions of such theories which reduce locally to the known description. The
solution of this problem is non-unique since, on a non-contractible space-time, there
can be many global definitions of “fields” subject to globally-defined differential
equations which reduce to a given local description.

Since supergravity theories contain spinors, their general global formulation
involves subtle questions in spin geometry (see [3–5]). In this note, we simplify the
globalization problem by ignoring the spinor fields and the supersymmetry condi-
tions, thus considering only the so-called universal bosonic sector. The latter arises in
any supergravity theory, though it is subject to increasingly stringent supplementary
constraints (not discussed in this paper) as the number of supersymmetries present
in the theory increases. In addition, we focus exclusively on the case when M is a
four-manifold.

In four dimensions, the universal bosonic sector is the so-called Einstein-Scalar-
Maxwell (ESM) theory defined on a four-manifold M , which involves gravity (mod-
eled globally by a Lorentzian metric on M), a finite number of real scalar fields
(modeled globally by a smooth map from M to a manifold M of arbitrary dimen-
sion) and a finite number of Abelian gauge fields, whose field strengths can be
modeled locally as 2-forms defined on M . While the local form of ESM theories is
well-known, their precise global formulation on arbitrary spacetimes was systemati-
cally addressed only recently [6]. It turns out that the naive globalization of the local
formulation fails to capture the classical limit of certain string theory backgrounds
known as “U-folds” and hence is insufficient for the application of such models
to string theory. The geometric description of the classical limit of U-fold back-
grounds [7] requires that one globalizes ESM models by including a “twist” of the
Abelian gauge field sector through the (pull-back of) a flat symplectic vector bundle
defined on M. This produces so-called generalized ESM models, which are locally
indistinguishable from the naive globalization but have non-trivial global behavior.
The naive globalization corresponds to using a trivial flat symplectic vector bundle
onM.

The global mathematical formulation of generalized ESM theories given in [6] is
summarized in this note; this construction can be extended further as shown in [8].We
follow the notations and conventions of op. cit. In particular, all manifolds considered
are smooth, paracompact and connected and all bundles and maps considered are
smooth. In this note, a Lorentzianmetric is a smoothmetric of signature (3, 1) defined
on a four-manifold.

1Descriptions which are valid only if one restricts all fields to contractible open subsets of M .
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2 Generalized Einstein-Scalar-Maxwell Theories

We start be defining certain mathematical objects which arise in the global
formulation.

2.1 Scalar Structures and Related Notions

Definition 2.1 A scalar structure is a triplet Σ = (M,G, Φ), where (M,G) is a
Riemannian manifold (called the scalar manifold) and Φ ∈ C∞(M,R) is a smooth
real-valued function defined onM (called the scalar potential).

Let Σ = (M,G, Φ) be a scalar structure and M be a (generally non-compact) ori-
ented four-manifold.

Definition 2.2 The modified density of a smooth map ϕ ∈ C∞(M,M) relative to
a Lorentzian metric g ∈ Met3,1(M) and to the scalar structure Σ is the real-valued
map defined on M through:

eΣ(g,ϕ)
def.= 1

2
Trgϕ

∗(G) + Φϕ ∈ C∞(M,R) , (1)

where Φϕ def.= Φ ◦ ϕ and Trg denotes trace taken with respect to g.

Definition 2.3 Themodified tension field of a smooth map ϕ ∈ C∞(M,M) relative
g ∈ Met3,1(M) and to Σ is the section of the pulled-back bundle (TM)ϕ defined
through:

θΣ(g,ϕ)
def.= θG(g,ϕ) − (gradGΦ)ϕ ∈ Γ (M, (TM)ϕ) . (2)

Here gradGΦ ∈ X (M) is the gradient vector field ofΦ with respect toG and θG(g,ϕ)

is the tension field of ϕ relative to g and G [9]:

θG(g,ϕ)
def.= Trg∇˜dϕ ∈ Ω0(M, (TM)ϕ) , (3)

where ˜dϕ ∈ Ω1(M, (TM)ϕ) is the (TM)ϕ-valued one-form associated to the dif-
ferential dϕ : T M → TM and ∇ is the connection induced on (TM)ϕ by the Levi-
Civita connections of g and G.

2.2 Duality Structures

Let N be a manifold.
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Definition 2.4 A duality structure on N is a flat symplectic vector bundle Δ =
(S, D,ω) defined over N , where ω denotes the symplectic pairing on the vector
bundle S and D denotes the ω-compatible flat connection on S.

Definition 2.5 LetΔi = (Si , Di ,ωi )with i = 1, 2 be two duality structures defined
on N . A morphism of duality structures from Δ1 to Δ2 is a based morphism of
vector bundles f ∈ Hom(S1,S2) such that ω2( f ⊗ f ) = ω1 and such that D2 ◦ f =
(idΩ1(N ) ⊗ f ) ◦ D1.

Duality structures on N form a category denoted DS(N ). Let Δ = (S, D,ω) be
a duality structure defined on N such that rk S = 2n. Let Symp be the category
of finite-dimensional symplectic vector spaces over R. Let Symp× denote the unit
groupoid of this category andΠ1(N ) denote the fundamental groupoid of N . Let TΔ

γ

denote the parallel transport of D along a path γ : [0, 1] → N .

Definition 2.6 The parallel transport functor of Δ is the functor TΔ : Π1(N ) →
Symp× which associates to any point x ∈ N the symplectic vector space TΔ(x) =
(Sx ,ωx ) and to any homotopy class c ∈ Π1(N ) with fixed initial point x and fixed
final point y the invertible symplecticmorphism TΔ(c) = TΔ

γ : (Sx ,ωx )
∼→ (Sy,ωy),

where γ ∈ P(N ) is any path which represents the class c.

Notice that TΔ can be viewed as a Symp×-valued local system defined on N . The
map sending Δ to TΔ is an equivalence between DS(N ) and the functor category
[Π1(N ),Symp×]. This implies that duality structures on N are classified up to iso-
morphism by the symplectic character variety:

Cπ1(N )(Sp(2n,R))
def.= Hom(π1(N ),Sp(2n,R))/Sp(2n,R) . (4)

Definition 2.7 Aduality frameofΔ is aD-flat symplectic frameE def.= (e1, . . . en, f1,
. . . , fn) of (S,ω) defined on an open subset U ⊂ N .

Definition 2.8 The duality structure Δ is called trivial if it is trivial as a flat sym-
plectic vector bundle.

Remark 1 A duality structure is trivial iff it admits a globally-defined duality frame.
If N is simply connected, then any duality structure on N is trivial.

2.3 Electromagnetic Structures

Let N be a manifold.

Definition 2.9 An electromagnetic structure defined on N is a quadruplet Ξ
def.=

(S, D, J,ω), where (S, D,ω) is a duality structure defined on N and J is a taming
of (S,ω).



The Global Formulation of Generalized Einstein-Scalar-Maxwell Theories 221

Remark 2 Notice that we do not require J to be compatible with D. Together with

ω, J defines an Euclidean scalar product Q on S given by Q(·, ·) def.= ω(J ·, ·).
Definition 2.10 Let Ξ1 = (S1, D1, J1,ω1) and Ξ2 = (S1, D1, J1,ω1) be two elec-
tromagnetic structures defined on N . Amorphism of electromagnetic structures from
Ξ1 to Ξ2 is a morphism of duality structures f : (S1, D1,ω1) → (S2, D2,ω2) such
that J2 ◦ f = f ◦ J1.

Electromagnetic structures defined on N forma category denotedES(N )whichfibers
over DS(N ); the fiber at a duality structure Δ = (S, D,ω) can be identified with the
setJ+(S,ω)of tamings of (S,ω),which is a contractible topological space. The set of
isomorphism classes of ES(N ) fibers over the disjoint union �n≥0Cπ1(N )(Sp(2n,R)).
LetΞ = (S, D, J,ω) be an electromagnetic structure defined on N and h = Q + iω
be the Hermitian scalar product defined by ω and J on S.

Definition 2.11 The fundamental form of Ξ is the End(S)-valued one-form on N
defined through:

ΘΞ
def.= Dad(J )

def.= D ◦ J − J ◦ D ∈ Ω1(N , End(S)) .

The electromagnetic structure Ξ is called unitary if ΘΞ = 0, i.e. if J is parallel with
respect to D.

If Ξ is unitary, then D is a unitary connection on the Hermitian vector bundle
(S, J, h). In this case, we have HolxD ⊂ U(Sx , Jx , hx ) for all x ∈ N . We have a full
sub-category of ES(N )whose objects are the unitary electromagnetic structures. This
is equivalent with the category of Hermitian vector bundles which are endowed with
a flat C-linear Hermitian connection. In particular, isomorphism classes of unitary
electromagnetic structures are in bijection with the points of the character variety:

Cπ1(N )(U(n))
def.= Hom(π1(N ),U(n))/U(n) ,

where U(n) acts by conjugation.

2.4 Scalar-Duality and Scalar-Electromagnetic Structures

Definition 2.12 A scalar-duality structure is an ordered system (Σ,Ξ), where
Σ = (M,G, Φ) is a scalar structure andΞ = (S, D,ω) is a duality structure defined
onM. A scalar-electromagnetic structure is an ordered systemD = (Σ,Ξ), where
Σ = (M,G, Φ) is a scalar structure and Ξ = (S, D, J,ω) is an electromagnetic

structure defined onM. In this case, the system D0
def.= (Σ,Ξ0) is called the under-

lying scalar-duality structure, where Ξ0
def.= (S, D,ω) is the duality structure under-

lying Ξ .
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Let D be a scalar-electromagnetic structure as in the definition.

Definition 2.13 The fundamental field of D is defined through:

ΨD
def.= (�G ⊗ idEnd(S))(ΘΞ) ∈ Γ (M, TM ⊗ End(S)) .

2.5 Pulled-Back Electromagnetic Structures

Let D = (Σ,Ξ) be a scalar-electromagnetic structure with underlying scalar struc-
ture Σ = (M,G, Φ) and underlying electromagnetic structure Ξ = (S, D, J,ω).
Let M be a four-manifold and ϕ ∈ C∞(M,M) be a smooth map from M toM.

Definition 2.14 The ϕ-pullback of the electromagnetic structure Ξ defined on M
is the electromagnetic structure Ξϕ def.= (Sϕ, Dϕ, Jϕ,ωϕ) defined on M .

The Hodge operator ∗g : ∧T ∗M → ∧T ∗M of (M, g) induces the endomorphism

∗ def.= ∗g
def.= ∗g ⊗ idSϕ of the bundle ∧M(Sϕ)

def.= ∧T ∗M ⊗ Sϕ.

Definition 2.15 The twisted Hodge operator of Ξϕ is the bundle endomorphism

� := �g,Jϕ ∈ End(M,∧T ∗M ⊗ Sϕ) defined through �g,Jϕ
def.= ∗g ⊗ Jϕ = ∗g ◦ Jϕ =

Jϕ ◦ ∗g .

Let α
def.= ⊕4

k=0(−1)k id∧k T ∗M be the main automorphism of ∧T ∗M . We have:

�2 = α ⊗ idSϕ . (5)

The operator �g,Jϕ preserves the sub-bundle ∧2
M(Sϕ) = ∧2T ∗M ⊗ Sϕ, on which

it squares to plus the identity. Accordingly, we have a direct sum decompo-
sition ∧2T ∗M ⊗ Sϕ = (∧2T ∗M ⊗ Sϕ)+ ⊕ (∧2T ∗M ⊗ Sϕ)−, where (∧2T ∗M ⊗
Sϕ)± are the sub-bundles of eigenvectors of � corresponding to the eigenvalues
±1.

Definition 2.16 An Sϕ-valued two-form η ∈ Ω2(M,Sϕ) defined on M is called
positively polarized with respect to g and Jϕ if it is a section of the vector bundle
(∧2T ∗M ⊗ Sϕ)+, which amounts to the requirement that it satisfies the positive
polarization condition:

�g,Jϕ η = η i.e. ∗g η = −Jϕη . (6)

For any open subset U of M , let gU
def.= g|U , ϕU

def.= ϕ|U and let ΩΞ,g,ϕ be the sheaf
of smooth sections of the bundle (∧2T ∗M ⊗ Sϕ)+. Globally-defined and positively-
polarized Sϕ-valued forms are the global sections of this sheaf. Notice that η ∈
Ω2(M,Sϕ) is positively polarized iff �η is.
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2.6 The Mathematical Formulation of Generalized ESM
Theories

Let M be a four-manifold and D = (Σ,Ξ) be a scalar-electromagnetic structure
with underlying scalar structure Σ = (M,G, Φ) and underlying electromagnetic
structure Ξ = (S, D, J,ω). The ϕ-pullback Qϕ of the Euclidean scalar product Q
induced by ω and J on S is a Euclidean scalar product on Sϕ. Let �g : ⊗4T ∗M →
⊗2T ∗M be the bundle morphism given by g-contraction of the two middle indices.
This is uniquely determined by the condition:

(ω1 ⊗ ω2) � (ω3 ⊗ ω4) = (ω2,ω3)gω1 ⊗ ω4 ∀ω1,ω2,ω3,ω4 ∀ω ∈ Ω1(M) ,

where ( , )g is the pseudo-Euclideanmetric induced by g on∧T ∗M . Viewing∧2T ∗M
as the sub-bundle of antisymmetric 2-tensors inside ⊗2T ∗M , this restricts to a mor-
phism of vector bundles �g : ∧2T ∗M ⊗ ∧2T ∗M → ⊗2T ∗M , which we call the
inner g-contraction of 2-forms.

Definition 2.17 The twisted inner contraction of Sϕ-valued 2-forms is the unique
morphism of vector bundles � := �g,J,ω,ϕ : ∧2

M(Sϕ) ×M ∧2
M(Sϕ) → ⊗2(T ∗M)

which satisfies:

(ρ1 ⊗ ξ1) � (ρ2 ⊗ ξ2) = Qϕ(ξ1, ξ2)ρ1 �g ρ2

for all ρ1, ρ2 ∈ Ω2(M) and all ξ2, ξ2 ∈ Γ (M,Sϕ).

LetΨ
def.= ΨD ∈ Γ (M, TM ⊗ End(S)) be the fundamental field ofD and letΨ ϕ ∈

Γ (M, (TM)ϕ ⊗ End(Sϕ)) be its pullback through ϕ. Let ( , ) be the pseudo-

Euclidean scalar product induced by g and Qϕ on the vector bundle ∧M(Sϕ)
def.=

∧T ∗M ⊗ Sϕ. For any vector bundle T defined on M , we extend this trivially to a
T -valued pairing (denoted by the same symbol) between the bundles T ⊗ ∧M(Sϕ)

and ∧M(Sϕ). Similarly, we trivially extend the twisted wedge product ∧ω defined
in Appendix C of Ref. [6] to a T ⊗ ∧T ∗M-valued pairing (denoted by the same
symbol) between the bundles T ⊗ ∧M(Sϕ) and ∧M(Sϕ).

Definition 2.18 The sheaf of ESM configurations ConfD determined by D is the
sheaf of sets defined on M through:

ConfD(U )
def.= {(g,ϕ,V)|g ∈ Met3,1(U ),ϕ ∈ C∞(U,M),V ∈ ΩΞ,g,ϕ(U )}

for all open subsets U ⊂ M , with the obvious restriction maps. An element
(g,ϕ,D) ∈ ConfD(U ) is called a local ESM configuration of type D defined on
U . The set of global configurations of typeD is the set ConfD(M) of global sections
of this sheaf. An element (g,ϕ,D) ∈ ConfD(M) is called a global ESM configura-
tion of type D.
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Definition 2.19 The generalized ESM theory associated to D is defined by the
following set of partial differential equations on M with unknowns (g,ϕ,V) ∈
ConfD(M):

1. The Einstein equation:
G(g) = κT(g,ϕ,V) , (7)

with energy-momentum tensor TD given by:

TD(g,ϕ,V)
def.= g eΣ(g,ϕ) + 2 V � V − ϕ∗(G) . (8)

2. The scalar equations:

θΣ(g,ϕ) − 1

2
(∗V, Ψ ϕV) = 0 . (9)

3. The twisted electromagnetic equations:

dDϕV = 0 , (10)

where dDϕ : Ωk(M,Sϕ) → Ωk+1(M,Sϕ) is the de Rham differential of M
twisted by the pulled-back flat connection Dϕ.

The sheaf of ESM solutions SolD of typeD is the sheaf of sets whose sections on an
open subset U ⊂ M is the set of all local solutions defined on U . A global solution
is a global section of SolD.

Remark 3 It is shown in [6] that a generalizedESMmodel is locally indistinguishable
froman ordinaryESMmodel, in the sense that the global partial differential equations
(7)–(10) reduce locally to those found in the literature (see [1]2) upon choosing a
local flat symplectic frame of the duality structure Δ = (S, D,ω). Global solutions
of generalized ESM theories afford a geometric description of a certain type of
classical U-folds, thereby realizing the proposal of [7].

2.7 Sheaves of Scalar-Electromagnetic Configurations
and Solutions

Let M and D be as above and fix a metric g ∈ Met3,1(M).

Definition 2.20 The sheaf of local scalar-electromagnetic configurations ConfgD
relative to g is the sheaf of sets defined on M whose set of sections on an open subset
U ⊂ M is defined through:

2Notice however that we use different conventions.
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ConfgD(U )
def.= {(ϕ,V)|ϕ ∈ C∞(U,M),V ∈ ΩΞ,g,ϕ(U )} .

The set of global scalar-electromagnetic configurations relative to g is the set
ConfgD(M).

Definition 2.21 The sheaf of local scalar-electromagnetic solutions relative to g is
the sheaf whose set of sections SolgD(U ) on an openU ⊂ M consists of all solutions
of (9) and (10) defined on U . The global scalar-electromagnetic solutions relative
to g are the elements of SolgD(M).

Since it will be of use later, we define:

ConfgD0
(M)

def.= ∪J∈J+(S,ω)Conf
g
(D0,J )(M) , (11)

where D0 is a scalar-duality structure.

2.8 Electromagnetic Field Strengths

Definition 2.22 An electromagnetic field strength on M with respect to D and rel-
ative to g ∈ Met3,1(M) and to the map ϕ ∈ C∞(M,M) is an Sϕ-valued 2-form
V ∈ Ω2(M,Sϕ) which satisfies the following two conditions:

1. V is positively polarized with respect to Jϕ, i.e. we have �g,JϕV = V .
2. V is dDϕ -closed, i.e.:

dDϕV = 0 . (12)

The second condition is called the electromagnetic equation.

For any open subset U of M , let:

Ω
Ξ,g,ϕ
cl (U )

def.= {V ∈ ΩΞ,g,ϕ(U )|dDϕV = 0} (13)

denote the set of electromagnetic field strengths defined on U , which is an (infinite-
dimensional) subspace of the R-vector space ΩΞ,g,ϕ(U ). This defines a sheaf of
electromagnetic field strengthsΩ

Ξ,g,ϕ
cl relative toϕ and g, which is a locally-constant

sheaf of R-vector spaces defined on M .

3 Scalar-Electromagnetic Dualities and Symmetries

Let Δ = (S, D,ω) be a duality structure on M and J be a taming of (S,ω). Let
Ξ = (S, D, J,ω) be the corresponding electromagnetic structure with underlying
duality structure Δ = (S, D,ω).
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Definition 3.1 An unbased automorphism f ∈ Autub(S) is called:

1. A symmetry of the duality structure Δ, if f is symplectic with respect to ω and
covariantly constant with respect to D.

2. A symmetry of the electromagnetic structure Ξ , if f is complex with respect to
J and is a symmetry of the duality structure Δ.

Let Autub(Δ) = Autub(S, D,ω) and Autub(Ξ) = Autub(S, D, J,ω) denote the
groups of symmetries of Δ and Ξ . We have:

Autub(Ξ) = Autub(Δ) ∩ Aut(S, J ) = Autub(S, D) ∩ Autub(S, J,ω)

Autub(Δ) = Autub(S,ω) ∩ Autub(S, D) .

Given a symplectic automorphism f ∈ Autub(S,ω), the endomorphism Ad( f )(J )

is again a taming of (S,ω), whereAd( f ) denotes the adjoint action of f on ordinary
sections of the bundle End(S) (see [6]). For any electromagnetic structure Ξ =
(S, D, J,ω) refining Δ, the quadruplet:

Ξ f
def.= (S, D,Ad( f )(J ),ω) (14)

is again an electromagnetic structure refiningΔ. This defines a left action of the group
Autub(S,ω) on the set ESΔ(M) of all electromagnetic structures whose underlying
duality structure equals Δ.

Let M be a four-manifold and D = (Σ,Ξ) be a scalar-electromagnetic structure
with underlying scalar structureΣ = (M,G, Φ) and electromagnetic structureΞ =
(S,D, J,ω). Let D0 = (Σ,Δ) be the scalar-duality structure underlying D, where
Δ = (S, D,ω). Let g ∈ Met3,1(M) and:

Aut(Σ)
def.= {ψ ∈ Iso(M,G)|Φ ◦ ψ = Φ} ,

where Iso(M,G) denote the isometry group of (M,G).

Definition 3.2 The scalar-electromagnetic duality group ofD0 is the following sub-
group of Autub(Δ):

Aut(D0)
def.= { f ∈ Autub(Δ)| f0 ∈ Aut(Σ)} ,

an element of which is called a scalar-electromagnetic duality. The duality action is
the action of Aut(D0) on Conf

g
D0

(M) given by:

f � (ϕ,V)
def.= ( f0 ◦ ϕ, f̂ ϕ(V)) , ∀ f ∈ Aut(D0) ,

where f0 ∈ Diff(M) is the projection of f to M and f̂ : S → S f0 is the based
isomorphism of vector bundles induced by f .
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Theorem 3.3 ([6]) For any f ∈ Aut(D0), we have:

f � SolgD(M) = SolgD f
(M) , (15)

where D f
def.= (Σ,Ξ f ).

Definition 3.4 The scalar-electromagnetic symmetry group ofD is the subgroup of
Aut(D0) given by:

Aut(D)
def.= { f ∈ Aut(D0)|Ad( f )(J ) = J } = { f ∈ Autub(Ξ)| f0 ∈ Aut(Σ)} .

An element of this group is called a scalar-electromagnetic symmetry.

Corollary 3.5 For all f ∈ Aut(D), we have f � SolgD(M) = SolgD(M). Thus
Aut(D) consists of symmetries of the scalar-electromagnetic equations (9) and (10),
for any fixed Lorentzian metric g ∈ Met3,1(M).

We have short exact sequences:

1 → Aut(Δ) ↪→ Aut(D0) −→ AutΔ(Σ) → 1

1 → Aut(Ξ) ↪→ Aut(D) −→ AutΞ(Σ) → 1 ,

where Aut(Δ)
def.= HomDS(N )×(Δ,Δ) and Aut(Ξ)

def.= HomES(N )×(Ξ,Ξ) consist of
based automorphisms of Δ and Ξ , while AutΔ(Σ) and AutΞ(Σ) consist of those
automorphisms of Σ which admit lifts to scalar-electromagnetic duality transforma-
tions and scalar-electromagnetic symmetries, respectively. LetHolpD be the holonomy
group of D at a point p ∈ M. Then we can identify Aut(Δ) with the commutant of
HolpD inside the group Sp(Sp,ωp) � Sp(2n,R).

4 Twisted Dirac Quantization

Let N be a manifold.

4.1 Integral Duality Structures and Integral Electromagnetic
Structures

Definition 4.1 Let Δ = (S, D,ω) be a duality structure of rank 2n defined on N .
A Dirac system for Δ is a fiber sub-bundle Λ ⊂ S which satisfies the following
conditions:

1. For any x ∈ X , the triple (Sx ,ωx ,Λx ) is an integral symplectic space, i.e. Λx is
a full lattice in Sx and ωx (Λx ,Λx ) ⊂ Z.
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2. Λ is invariant under the parallel transport of D, i.e. the following condition is
satisfied for any path γ ∈ P(N ):

TΔ
γ (Λγ(0)) = Λγ(1) . (16)

For every x ∈ N , the lattice Λx ⊂ Sx is called the Dirac lattice defined by Λ at the
point x .

Definition 4.2 An integral duality structure defined on N is a pair Δ
def.= (Δ,Λ),

where Δ is is a duality structure defined on N and Λ is a Dirac system for Δ.

Relation (16) implies that the type t (the ordered list of elementary divisors) of the
integral symplectic space (Sx ,ωx ,Λx ) does not depend on the point x ∈ N . This
quantity is denoted t(Δ) and called the type of Δ.

Definition 4.3 Let Δ = (Δ1,Λ1) and Δ2 = (Δ2,Λ2) be two integral duality struc-
tures defined on N . An morphism of of integral duality structures from Δ1 to Δ2 is
a morphism of duality structures f : Δ1 → Δ2 such that f (Λ1) ⊂ Λ2.

Remark 4 The set of isomorphism classes of integral duality structures of type t
defined on N is in bijection with the character variety:

Cπ1(N )(Spt(2n,Z)) = Hom(π1(N ),Spt(2n,Z))/Spt(2n,Z) ,

where Spt(2n,Z) is the modified Siegel modular group of type t.

LetΔ
def.= (S, D,ω,Λ) be an integral duality structure of rank 2n and type t, defined

on N . For any x ∈ N , the integral symplectic space (Sx ,ωx ,Λx ) defines a symplec-
tic torus Xs(Sx ,ωx ,Λx ). These tori fit into a fiber bundle Xs(Δ) endowed with a
complete flat Ehresmann connectionHΔ induced by D. The Ehresmann transport of
this connection preserves the group structure and symplectic form of the fibers; in
particular, the holonomy group of HΔ is contained in Spt(2n,Z).

Definition 4.4 The pair (Xs(Δ),HΔ) is called the flat bundle of symplectic tori
defined by the integral duality structure Δ.

Definition 4.5 An integral electromagnetic structure defined on N is a pair Ξ =
(Ξ,Λ), where Ξ = (Δ, J ) is an electromagnetic structure and Λ is a Dirac system
for the underlying duality structure Δ = (S, D,ω). The type of Δ = (S, D,ω,Λ)

is called the type t(Ξ) of Ξ :

t(Ξ)
def.= t(Δ) .

Let Ξ = (S, D, J,ω,Λ) be an integral electromagnetic structure of rank 2n and
type t, with underlying duality structure Δ = (S, D,ω). For every x ∈ N , the fiber
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(Sx , Jx ,ωx ,Λx ) is an integral tamed symplectic space which defines a polarized
Abelian variety Xh(Sx , Jx ,ωx ,Λx ) of type t, whose underlying symplectic torus
is given by Xs(Sx ,ωx ,Λx ). These Abelian varieties fit into a smooth fiber bun-
dle X h(Ξ). As above, the connection D induces a complete integrable Ehresmann

connection HΞ
def.= HΔ on this bundle, whose transport reserves the Abelian group

structure and symplectic form of the fibers but not their complex structure.

Definition 4.6 The pair (Xh(Ξ),HΞ ) is called the bundle of polarized Abelian vari-
eties defined by the integral electromagnetic structure Ξ .

4.2 The Twisted Dirac Quantization Condition

Let (M, g) be a Lorentzian four-manifold and (M,G) be aRiemannianmanifold. Let
ϕ ∈ C∞(M,M). Let Ξ = (Ξ,Λ) be an integral electromagnetic structure defined
onM, with underlying electromagnetic structure Ξ = (S, D, J,ω) and underlying

duality structure Δ = (S, D,ω). Then Ξϕ def.= (Ξϕ,Λϕ) is an integral electromag-
netic structure on M , whereΛϕ is theϕ-pullback of the fiber sub-bundleΛ ⊂ S; this
refines the duality structure Δϕ = (Sϕ, Dϕ,ωϕ). Let Δϕ def.= (Δϕ,Λϕ). Let Symp0
denote the category of finite-dimensional integral symplectic vector spaces. Let
H •(M,Δϕ) denote the total twisted singular cohomology group of M with coef-
ficients in the Symp×

0 -valued local system TΔϕ and let H •(M,Δϕ) denote the total
twisted singular cohomology space of M with coefficients in the Symp×-valued
local system TΔϕ . The latter can be identified with the total cohomology space
H •

dDϕ (M,Sϕ) of the twisted de Rham complex (Ω•(M,Sϕ), dDϕ). Since Sϕ =
Λϕ ⊗Z R, the coefficient sequence gives a map j∗ : H •(M,Δϕ) → H •(M,Δϕ),

whose image H •
Λϕ(M,Δϕ)

def.= j∗(H •(M,Δϕ)) is a graded subgroup of the graded
additive group H •(M,Δϕ).

Definition 4.7 An electromagnetic field V ∈ Ω2(M,Sϕ) is called Λϕ-integral if
its Dϕ-twisted cohomology class [V] ∈ H 2

dDϕ (M,Sϕ) ≡ H 2(M,Δϕ) belongs to
H 2

Λϕ(M,Δϕ):

[V] ∈ H 2
Λϕ(M,Δϕ) = j∗(H 2(M,Δϕ)) . (17)

Condition (17) is called the twistedDirac quantization condition defined by theDirac
structure Λ. This condition constrains semiclassical Abelian gauge field configura-
tions; a mathematical model for such configurations can be given using a certain
version of twisted differential cohomology.
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4.3 Integral Scalar-Electromagnetic Duality and Symmetry
Groups

Definition 4.8 An integral scalar-duality structure is a pairD0
def.= (D0,Λ), where

D0 = (Σ,Δ) is a scalar-duality structure and Λ is a Dirac system for Δ. An inte-
gral scalar-electromagnetic structure is a pairD = (D,Λ), whereD = (Σ,Ξ) is a
scalar-electromagnetic structure and Λ is a Dirac system for the underlying duality
structure of the electromagnetic structure Ξ .

Let D = (D,Λ) be an integral scalar-electromagnetic structure with underlying

scalar-electromagnetic structure D = (Σ,Ξ), where Σ = (M,G, Φ) and Ξ
def.=

(S, D, J,ω). Let Δ = (S, D,ω) be the underlying duality structure and let Δ =
(Δ,Λ) and Ξ = (Ξ,Λ) be the underlying integral duality structure and integral
electromagnetic structure. Let D0 = (Σ,Δ) be the underlying scalar-duality struc-
ture and D0 = (D0,Λ) be the underlying integral scalar-duality structure.

Definition 4.9 The integral scalar-electromagnetic duality group defined by
the integral scalar-duality structure D0 is the following subgroup of the scalar-
electromagnetic duality group Aut(D0):

Aut(D0)
def.= { f ∈ Aut(D0)| f (Λ) = Λ} ⊂ Aut(D0) ,

elements of which are called integral scalar-electromagnetic dualities. The integral
scalar-electromagnetic symmetry group ofD is the following subgroup of the scalar-
electromagnetic symmetry group Aut(D):

Aut(D)
def.= { f ∈ Aut(D)| f (Λ) = Λ} ⊂ Aut(D) ,

elements of which are called integral scalar-electromagnetic symmetries.

Notice that Aut(D) is a subgroup of Aut(D0). These groups are highly sensitive to
global topological data.
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Two-Field Cosmological Models
and the Uniformization Theorem

Elena Mirela Babalic and Calin Iuliu Lazaroiu

Abstract We propose a class of two-field cosmological models derived from
gravity coupled to non-linear sigma models whose target space is a non-compact
and geometrically-finite hyperbolic surface, which provide a wide generalization
of so-called α-attractor models and can be studied using uniformization theory. We
illustrate cosmological dynamics in suchmodels for the case of the hyperbolic triply-
punctured sphere.

Keywords Non-linear sigma models · Cosmology · Inflation · Hyperbolic
geometry

1 Introduction

Inflation in the early universe can be described reasonably well by so-called cosmo-
logical α-attractor models [1–3], which provide a good fit to current observational
results. The observational predictions of thesemodels are to a large extent determined
by the geometry of the scalar manifold rather than by the scalar potential.

The best studiedα-attractormodels contain a single scalar field, being obtained by
radial truncation of two-fieldmodels based on the hyperbolic disk [1]. The latter arise
from cosmological solutions of 4-dimensional gravity coupled to a non-linear sigma
model whose scalar manifold is the open unit disk endowed with its unique complete
metric G of constant negative Gaussian curvature K (G) = − 1

3α , whereα is a positive
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parameter. As shown in [1], the “universal” behavior of such models in the radial
one-field truncation close to the conformal boundary of the disk is a consequence
of the hyperbolic character of G, when the scalar potential is “well-behaved” near
the conformal boundary. It is thus natural to consider two-field α-attractor models in
which the hyperbolic disk is replaced by an arbitrary hyperbolic surface Σ which is
geometrically finite in the sense that its fundamental group is finitely-generated.

Definition 1 ([4]) A generalized two-field α-attractor model is defined by a triplet
(Σ,G, V ), where (Σ,G) is a complete geometrically-finite hyperbolic surface and
V : Σ → R is a smooth potential function, while K (G) = − 1

3α with α > 0.

This class of models is very rich. Since in general Σ has non-trivial topology, a
complete understanding requires going beyond one field truncations. Instead, one can
use the theoretical and numerical methods of [5, 6] and certain other approximation
techniques [4].

2 Cosmological Models with Two Real Scalar Fields
Minimally Coupled to Gravity

Let us recall the general description of cosmologicalmodelswith two real scalar fields
minimally coupled to gravity, allowing for scalar manifolds of non-trivial topology,
in a global and coordinate-free description.

2.1 Einstein–Scalar Theories with 2-Dimensional Scalar
Manifolds

Let (Σ,G) be any oriented, connected, complete and possibly non-compact two-
dimensional Riemannian manifold without boundary called the scalar manifold and
V :Σ →R be a smooth function called the scalar potential. We require complete-
ness of the metric G in order to avoid problems with conservation of energy. For
applications to cosmology, it is important to allow (Σ,G) to be non-compact and of
possibly infinite area.

Any triplet (Σ,G, V ) as above allows one to define an Einstein–Scalar theory on
any four-dimensional oriented manifold X which admits Lorentzian metrics. This
theory includes 4-dimensional gravity (described by a Lorentzian metric g defined
on X ) and a smooth mapϕ : X → Σ (which locally describes two real scalar fields),
with action:

S[g,ϕ] =
∫
X
L(g,ϕ)volg , (1)

where volg is the volume form of (X, g) and L(g,ϕ) is the Lagrange density:
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L(g,ϕ) = M2

2
R(g) − 1

2
Trgϕ

∗(G) − V ◦ ϕ . (2)

Here R(g) is the scalar curvature of g andM is the reduced Planckmass. The quantity
ϕ∗(G) is the pull-back through ϕ of the metric G, while Trgϕ∗(G) denotes the trace
of the tensor field of type (1, 1) obtained by raising one of the indices of ϕ∗(G) using
the metric g. The coordinate-free formulation (2) allows one to define such a theory
globally for any topology of Σ and X . The last two terms in the Lagrange density
(2) describe the non-linear sigma model with source (X, g), target space (Σ,G) and
scalar potential V .

2.2 Cosmological Models Defined by (Σ,G, V )

By definition, a cosmological model defined by (Σ,G, V ) is a solution of the equa-
tions of motion of the theory (1)–(2) when (X, g) is a FLRW universe and ϕ depends
only on the cosmological time. We assume for simplicity that the spatial section is
flat and simply connected. Hence the cosmological models of interest are defined by
the following conditions:

1. X is diffeomorphic with R4, with global coordinates (t, x1, x2, x3).
2. The squared line element of g has the form:

ds2g = −dt2 + a(t)2
3∑

i=1

(dxi )2 , with a(t) > 0 .

3. ϕ depends only on t .
4. (a(t),ϕ(t)) are such that (g,ϕ) is a solution of the equations of motion derived

from (1).

With these assumptions, the cosmological equations of motion are:

∇t ϕ̇ + 3H ϕ̇ + (gradGV ) ◦ ϕ = 0 ,
1

3
Ḣ + H 2 − V ◦ ϕ

3M2
= 0 , Ḣ + σ̇2

2M2
= 0 ,

where ˙ def.= d
dt , ∇t

def.= ∇ϕ̇(t) is the covariant derivative with respect to ϕ̇(t), σ is the

proper length parameter on the curveϕ(t), while H
def.= ȧ

a denotes the Hubble param-
eter. The inflationary regions of a trajectory ϕ(t) are defined as the time intervals for
which the scale factor a(t) is a convex and increasing function of t (ȧ > 0, ä > 0)
and are given by the condition:

H(t) < Hc(ϕ(t)) ,
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where Hc(p)
def.= 1

M

√
V (p)
2 is the criticalHubble parameter at a point p ∈ Σ . Approx-

imations useful for studying such models are discussed in [4].

2.3 Two-Field Generalized α-Attractor Models

By definition, a hyperbolic surface is a connected, oriented, borderless and complete
Riemannian two-manifold (Σ,G) of constant Gaussian curvature equal to −1. A
two-field generalized α-attractor model is a two-field cosmological model defined
by a triple (Σ,G, V ) as above, where G = 3αG with α a positive parameter and
(Σ,G) is a hyperbolic surface.

3 Uniformization of Hyperbolic Surfaces

An isometric model of the Poincaré disk is provided by the Poincaré half-plane,

defined as the upper half-planeH
def.= {τ ∈ C| �τ > 0} endowedwith its unique com-

plete hyperbolic metric ds2
H

= λ2
H
(τ , τ̄ )dτ 2, where λH(τ , τ̄ ) = 1

�τ
. The orientation-

preserving isometries of H form the projective special linear group PSL(2,R). An
element A ∈ PSL(2,R) is called elliptic if |tr(A)| < 2. By definition, a surface group
is a discrete subgroup Γ of PSL(2,R)which contains no elliptic elements. Our anal-
ysis of generalized α-attractor models is based on the uniformization theorem [7]:

Theorem 1 For any hyperbolic surface (Σ,G) there is a surface group Γ and
a holomorphic covering map (uniformization map) πH : H −→ Σ defined on the
Poincaré half-plane H such that Σ is isometric to the quotient H/Γ .

In this theorem, holomorphicity of πH is understood with respect to the complex
structure J induced on Σ by the conformal class of G.

3.1 Lifted Trajectories and Tilings

Consider the generalized α-attractor model defined by a hyperbolic surface (Σ,G)

at a fixed positive value of the parameter α. To study the cosmological trajectories
ϕ : I −→ Σ (where I ⊂ R is an interval), it is convenient to first study their lifts ϕ̃ :
I −→ H to the hyperbolic plane and then project them back toΣ asϕ = πH ◦ ϕ̃. The
projection fromH to Σ can be determined if we know the tiling ofH determined by
a fundamental polygon of Γ . There is no fully general stopping algorithm known for
computing fundamental polygons of surface groups.However, a general algorithm [8]
is known when Γ is an arithmetic surface group such thatH/Γ has finite hyperbolic
area. The connection to uniformization theory shows that the study of generalized
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α-attractor models requires sophisticated results from uniformization theory. When
Σ has finite hyperbolic area, this is closely connected to the theory of modular forms
and hence to number theory.

3.2 The End and Conformal Compactifications

Anon-compact hyperbolic surface (Σ,G) has two natural compactifications, namely
the end compactification [9] of Freudenthal and Kerekjarto–Stoilow (which depends
only on the topology of Σ) and the conformal compactification (which depends on
the conformal class of the hyperbolic metric G). In the geometrically-finite case,
these two compactifications can be described as follows:

• Since π1(Σ) is finitely-generated, Σ is homeomorphic with Σ̂ \ {p1, . . . , pn},
where Σ̂ is a closed oriented surface and p1, . . . , pn are distinct points on Σ̂ . The
compact surface Σ̂ can be identified with the end compactification of Σ , while
the points p1, . . . , pn can be identified with the ends of Σ .

• As shown by Maskit, the conformal compactification Σ̄ of Σ (with respect to the
complex structure J ) can be identified with the topological closure of Σ inside
a closed Riemann surface which is obtained from Σ by adding a finite number
nc of points and a finite number n f of disks, where n f + nc = n. The topological
boundary ∂∞Σ = Σ̄ \ Σ consists of nc isolated points and n f disjoint simple
closed curves and is called the conformal boundary of Σ . Contracting each of the
n f curves to a point recovers the end compactification, thenc isolated points and the
n f contraction points recovering the ends ofΣ . Accordingly, the ends ofΣ divide
into nc cusp ends (those corresponding to points in the conformal compactification)
and n f flaring ends (those corresponding to simple closed curves in the conformal
compactification).

On the neighborhoods of each end, the hyperbolic metric can be brought to one of
four explicitly known forms (namely for the “cusp”, “funnel”, “horn” or “plane”
end), thus providing the isometric classification of ends.

3.3 Well-Behaved Scalar Potentials

Let Σ̂ be the end compactification ofΣ . A scalar potential V : Σ → R is calledwell-
behaved at an end p ∈ Σ̂ \ Σ if there exists a smooth function V̂p : Σ 
 {p} → R

such that V = V̂p|Σ . The potential V is called globally well-behaved if it is well-
behaved at each end of Σ , i.e. if there exists a globally-defined smooth function
V̂ : Σ̂ → R such that V = V̂ |Σ .
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3.4 Behavior Near the Ends

The cosmological equations of motion in semi-geodesic coordinates (r, θ) on an
appropriate vicinity of an end p ∈ Σ̂ \ Σ reduce to [4]:

r̈ − 3εpα

(
Cp

4π

)2

e2εpr θ̇2 + 3Hṙ + 1

3α
∂r V = 0 ,

θ̈ + 2εpṙ θ̇ + 3H θ̇ + 1

3α

(
4π

Cp

)2

e−2εpr∂θV = 0 ,

where Cp and εp are known constants depending on the type of end. Since θ is
periodic, a generic trajectory will spiral around the ends for any well-behaved scalar
potential. Using an argument similar to that of [3], we showed in [4] that generalized
α-attractor models have the same kind of “universal” behavior as the disk models
of [1] in the naive one field truncation near each end obtained by fixing θ. The
cosmological behavior away from the ends is much more subtle than that of ordinary
α-attractors; some of its qualitative features were discussed in [4]. Various examples
are discussed in [10, 11].

4 Examples of Trajectories for the Hyperbolic Triply
Punctured Sphere

Consider those generalized α-attractor models for which the scalar manifold

Σ is the triply-punctured Riemann sphere (a.k.a. the modular curve) Y (2)
def.=

CP
1 \ {p1, p2, p3}. This is diffeomorphic with the doubly-punctured complex plane

endowed with its complete hyperbolic metric ds2 = ρ(ζ, ζ̄)2dζ2, where:

ρ(ζ, ζ̄) = π

8|ζ(1 − ζ)|
1

Re[K(ζ)K(1 − ζ̄)] , K(ζ) =
∫ 1

0

dt√
(1 − t2)(1 − ζt2)

.

Each of the three punctures pi corresponds to a cusp end, so the end com-
pactification is Σ̂ = CP

1 � S2. The surface Y (2) is uniformized by the princi-

pal congruence subgroup of level 2, Γ (2)=
{
A=

[
a b
c d

]
∈ PSL(2,Z) | a, d =

odd , b, c = even
}
, with uniformization map given by the elliptic modular lambda

function πH(τ )≡λ(τ )= ℘τ (
1+τ
2 )−℘τ (

τ
2 )

℘τ (
1
2 )−℘τ (

τ
2 )

, where ℘ is the Weierstrass elliptic func-

tion of modulus τ . A fundamental polygon for the action of Γ (2) on H is given
by thehyperbolic quadrilateralDH = {τ ∈ H| − 1 < Reτ < 0, |τ + 1

2 | > 1
2 } ∪ {τ ∈

H|0 ≤ Reτ < 1, |τ − 1
2 | > 1

2 }.
Consider the following two globally well-behaved scalar potentials:
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Fig. 1 a Level plot of the lifted potential Ṽ0 onH. b Level plot of V0 on Y (2). c Lifted trajectories
on H, with initial conditions given in Table 1. d Projected trajectories on Y (2), where the orange
trajectory is too long to fit into the plot at the scale shown. eDetail of the spiral ends of the trajectories
on Y (2). The beginning points of the trajectories are indicated by fat dots. In all figures, dark green
indicates minima of the potential while light brown indicates maxima

V̂0(ψ, θ)
def.= M0(1 + sinψ cos θ) ,

V̂+(ψ)
def.= M0 cos

2 ψ

2
,

where M0
def.= M

√
2/3 and ψ, θ are spherical coordinates on the end compactifica-

tion Σ̂ = S2. Fixing α = 1
3 and choosing the initial conditions τ0 and ṽ0

def.= ˙̃ϕ(t0)
given in Table 1, we compute [10] the lifted trajectories on the Poincaré half-plane
with coordinate τ = x + iy and then project them to Y (2) (see Figs. 1 and 2). The
potentials V̂0 and respectively V̂+ correspond to Ṽ0 and Ṽ+ on H and to V0 and V+
on Y (2).

For the potential Ṽ0, we find that the red, magenta, yellow and orange trajectories
start in inflationary regime (see Fig. 3), but computations show they have small num-
ber of e-folds (less than 5); on the other hand, the black trajectory is not inflationary.
For potential Ṽ+, we find that the red, yellow and orange trajectories (see Fig. 4) start
in inflationary regime, while the magenta and black trajectories are not inflationary.
The orange trajectory has 50 e-folds and using very small variations of its initial
conditions given in Table 1 we can easily find other trajectories with 50–60 e-folds;
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Fig. 2 a Level plots of the lifted potential Ṽ+ onH and the lifted trajectories with initial conditions
given in Table 1. b Level plots of V+ on Y (2) and the corresponding projected trajectories. c The
full orange trajectory projected on Y (2)

Fig. 3 Plot of H(t)/
√
M0 (black) and Hc(t)/

√
M0 (green) for the red, magenta, yellow and orange

trajectories for the potential Ṽ0

Fig. 4 Plot of H(t)/
√
M0 (black) and Hc(t)/

√
M0 (green) for the red, yellow and orange trajec-

tories in the potential Ṽ+. The red and yellow trajectory have small number of e-folds (less than 2),
but the orange trajectory has 50 e-folds

this shows that generalized α attractors with Σ = Y (2) can produce phenomeno-
logically realistic predictions. The number of e-folds is given by N = ∫ tI

0 H(t)dt ,
where tI is the inflationary period (the duration of the first inflationary regime).
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Table 1 Initial conditions on the Poincaré half-plane

Trajectory τ0 ṽ0

Black 0.4 + 0.5i 0.3 + i

Red 1.4 + 0.5i 0.1 + 0.2i

Magenta 0.2 + 0.7i 0.7 + 0.5i

Yellow 0.3 + 0.5i 0

Orange 0.99 + 0.415i 0

5 Conclusions

We proposed [4, 10, 11] a wide generalization of two-field α-attractor models
obtained by promoting the scalar manifold from the Poincaré disk to an arbitrary
geometrically finite non-compact hyperbolic surface and a procedure for studying
such models through uniformization techniques. Our models are parameterized by
a constant α > 0, by the choice of a surface group Γ and of a smooth scalar poten-
tial V . They have the same universal behavior as ordinary α-attractors in the naive
one-field truncation near each end, provided that the scalar potential is well-behaved
near that end.
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The Cohomological Structure
of Generalized Killing Spinor Equations

Dario Rosa

Abstract We review the topological structure, sitting in any supergravity theory,
which has been recently discovered in [7]. We describe how such a structure allows
for a cohomological reformulation of the generalized Killing spinor equations which
characterize bosonic supergravity solutions with unbroken supersymmetry.

Keywords Supersymmetric localization · Topological gravity · Topological YM
Supergravity

1 Introduction

Localization has been a powerful tool to obtain exact results for supersymetric quan-
tum field theories (SQFT) on curved spaces.1 To put a SQFT on a curved background
preserving supersymmetry is a non-trivial task. A general strategy to address this
problem2 is the following: one couples the SQFT under study to classical off-shell
supergravity. Putting to zero the supersymmetry variations of the fermionic fields
of supergravity one gets equations involving the bosonic supergravity fields. These
equations, named generalized Killing spinor equations, can be solved only for spe-
cific configurations of the supergravity background fields. We will refer to the space
of these configurations as the localization locus.

In [1, 6] the generalized Killing spinor equations for certain extended supergrav-
ity in two and three dimensions have been rewritten in a cohomological form. These
cohomological equations were shown to be equivalent to the equations obtained
setting to zero the BRST variations of the fermionic fields of topological gravity
coupled to a given topological Yang–Mills system. A conceptual explanation of this

1See [8] for an extensive overview.
2 First considered in [3], using superspace formalism, and more recently re-discovered, using
component formalism, starting from [4].
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equivalence has been furnished in [7]. In this contribution we will review this equiv-
alence. The main technical tool we will use is the BRST formulation of supergravity,
to which now we turn.

2 The BRST Formulation of Supergravity

In the BRST formalism one introduces ghost fields, of ghost number +1, associated
to each of the local symmetries. In supergravity, the bosonic local symmetries include
diffeomorphisms and YM gauge symmetries; among the latter there are always local
Lorentz transformations, plus additional local YM gauge symmetries which depend
on the particular supergravity one is considering (a typical example is provided by
the R-symmetry).We denote with ξμ the anticommuting vector ghost field associated
to diffeomorphisms, and with c the anticommuting scalar ghost field associated with
the YM gauge symmetries, c is valued in the adjoint representation of the total YM
gauge algebra. The fermionic local symmetries are the N local supersymmetries; for
them one introduces commuting spinorial Majorana3 ghosts ζ i , with i = 1, . . . , N .

The spinorial ghosts ζ i , the vierbein ea ≡ eaμdx
μ and the diffeomorphismsghost ξμ

constitute the universal sector of supergravity, in the sense that their BRST variations
are the same for any supergravity theory

s ζ i = ιγ(ψ
i ) + diffeos + gauge transfs ,

s ea =
∑

i

ψ̄i Γ a ζ i + diffeos + local Lorentz ,

s ξμ = −1

2
Lξξ

μ − 1

2

∑

i

ζ̄ i Γ aζ i eμ
a = −1

2
Lξξ

μ + γμ , (1)

where s is the nilpotent BRST operator, ψi ≡ ψi
μdx

μ are the Majorana gravitinos,
Lξ denotes the Lie derivative along the vector ξμ and the vector γμ is the following
bilinear4

γμ ≡ −1

2

∑

i

ζ̄ i Γ aζ i eμ
a , (2)

with eμ
a the inverse of the vierbein. It was observed in [2], that the universal BRST

variations (1) imply the following universal BRST variation for the vector bilinear γμ

s γμ = −Lξ γμ . (3)

3We will refer to Majorana spinors for simplicity. The discussion can be extended, when N is even,
to Dirac spinors.
4We will denote with γμ the vectorial bilinear (2) and with Γ a the Dirac matrices.
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In [7] it has been recognized that the universal BRST variations (1) and (3) pre-
ciselymatch theBRSTvariations of topological gravity, once one identifies the vector
bilinear γμ with the superghost of topological gravity. Indeed, the BRST variations
of topological gravity read

s gμν = −Lξgμν + ψμν , s ψμν = −Lξψμν + Lγgμν ,

s ξμ = −1

2
Lξξ

μ + γμ , s γμ = −Lξγ
μ , (4)

where gμν is the space-time metric, ψμν is the topological gravitino and γμ is the
topological gravity superghost. We have thus obtained that the universal sector of
supergravity exactly coincides with topological gravity. We want now bring to light
the full topological structure sitting inside any supergravity theory.

3 The Full Topological Structure of Supergravity

Beyond the ghost fields of ghost number +1 introduced in the previous section, any
supergravity theory includes also fields of ghost number 0. In the rest of this section
we will call both the fields of ghost number 0 and the commuting supergravity ghosts
ζ i as the matter fields and we will denote them with M .

The supergravity BRST variations of the matter fields read

s M = −Lξ M − δc M + M̂(M) , (5)

where δc is a gauge transformation with the ghost field c and M̂(M) denotes a com-
posite of the matter fields M only. The expressions M̂(M), except for the universal
supergravity fields discussed in Sect. 2, are the non-universal parts of the supergrav-
ity BRST transformations; they are theory-dependent functionals of thematter fields.
As an example, from (1) we find that for the universal fields ζ i , we have

ζ̂ i = ιγ ψi . (6)

The BRST variations of the anticommuting ghost fields take a slightly different
structure

s ξμ = −1

2
Lξ ξμ + γμ , s c = −c2 − Lξc + ĉ , (7)

where γμ ≡ ξ̂μ is the vector bilinear (2) and ĉ are functions, of ghost number 2, of
the matter fields. The fields ĉ are theory-dependent.

Imposing the nilpotency of the BRST operator s on the matter fields M , one
obtains the BRST rules for the composite M̂ to be
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s M̂ = −Lξ M̂ − δc M̂ + LγM + δĉM . (8)

The Eqs. (5) and (8) make convenient to define another operator S, obtained by
subtracting from s both diffeomorphisms and YM transformations

S M ≡ s M + LξM + δcM , S M = M̂(M) . (9)

By applying S on the composites M̂ it follows

∂ M̂

∂ M
(M)M̂(M) = S M̂ = S2 M = Lγ M + δĉ M , (10)

which defines a set of differential conditions that must be satisfied by M̂(M). More-
over, by computing S2M̂ one gets

S2M̂ = Lγ M̂ + δĉ M̂ + δS ĉ M , (11)

where the relation S γμ = 0, which follows from (3), has been used. On the other
hand, since the fields M̂(M) are composite, and since the operator S acts as a deriva-
tive, it must be

S2M̂ = Lγ M̂ + δĉ M̂ . (12)

By comparing (11) and (12) one obtains that the composite ĉ must satisfy the con-
dition

S ĉ = 0 . (13)

Hence, a supergravity theory is specified by the composites M̂ and ĉ, plus the
universal composite γμ that has been discussed in the previous section. On them one
has to impose the constraints

S ĉ = 0 ,

∂ M̂

∂ M
(M)M̂(M) = Lγ M + δĉ M . (14)

When the constraints (14) are imposed, the operator S satisfies the algebra

S2 = Lγ + δĉ . (15)

It can be shown (see [7] for the details) that the composite ĉ takes the general
form

ĉ = ιγ(A) + φ , (16)
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where A is the gauge field associated to the local YM symmetry and φ is a scalar
composite of the matter fields, bilinear in the supersymmetry ghosts ζ i and valued
in the adjoint of the YM Lie algebra. Its explicit form is theory-dependent.

The consistency condition Sĉ = 0 gets translated into the equation

S φ = ιγ(S A) = ιγ( Â) . (17)

The composite S A = Â is the topological gaugino, usually denoted with λ.
Together, the fields φ and λ sit into a multiplet valued in the adjoint of the gauge
algebra and whose BRST transformations are

S A = λ ,

S λ = ιγ (F) − D φ ,

S φ = ιγ (λ) , (18)

where F is the field strength associated to the local YM symmetry.
The transformations (18) are exactly the BRST variations of topological YM

coupled to topological gravity, first derived in this form in [5, 6]. This topological
multiplet represents the universal topological sector sitting inside any supergravity
theory.

Summarizing, the supergravity BRST algebra takes the universal form

S2 = Lγ + διγ(A)+φ , (19)

and it is characterized by the two topological fields γμ and φ. The vector γμ has a
universal form and it is identified with the superghost of topological gravity. The
scalar φ has a theory-dependent form and it is identified with the superghost of
topological YM coupled to topological gravity. We have thus identified the full topo-
logical content sitting inside any supergravity theory: the supergravity BRST algebra
is characterized, universally, by two composite fields having clear topological roots.

4 The Cohomological Equations of Localization

As mentioned in the Introduction, the localization locus of a given supergravity
theory is obtained by setting to zero the supersymmetry variations of the fermionic
supergravity fields. The resulting spinorial equations defining the localization locus
are typically involved, and it is hard to extract their gauge invariant content.

In the previous sections it has been shown that a topological sector sits inside
any supergravity theory. In particular, the composite topological fermions ψμν and
λμ have been constructed. Hence, on the localization locus the following equations
must hold
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S ψμν = Lγgμν = 0 , S λ = D φ − ιγ(F) = 0 , (20)

since both ψμν and λμ are composites containing the fermionic supergravity fields.
The first equation in (20) states that the vector bilinear γμ has to be an isometry of
the spacetime metric gμν . This equation is indeed well-known in the supergravity
literature.

On the other hand, the second equation is novel and it has not been studied exten-
sively in both supergravity and topological field theory literature.5 This equation,
when the YM gauge symmetry is non-abelian, is not gauge invariant: its gauge
invariant content is captured by considering the following generalized Chern classes

cn(F + φ) ≡ Tr (F + φ)n . (21)

Indeed, the generalized Chern classes cn satisfy the equations

Dγ cn ≡ (d − ιγ) cn = 0 , (22)

which states that the cn’s, on the localization locus, are closed under the coboundary
operator

Dγ ≡ (d − ιγ) , D2
γ = 0 , (23)

associated to the de Rham cohomology of forms on space-time, equivariant with
respect to the action of the Killing vector γμ. In the following, forms closed under
the operator Dγ will be called γ − equivariant .

It should be stressed that the Eq. (20) are universal, in the sense that they have to
be satisfied, with a specific φ which is theory-dependent, on the localization locus
of any supergravity theory.

It should be also stressed that the Eq. (20) in general do not completely specify
the localization locus. Indeed they are obtained by setting to zero the supergravity
BRST variations of specific (fermionic) supergravity bilinears, and there might be
inequivalent bosonic supergravity backgrounds that give rise to cn’s which are dif-
ferent representatives of the same γ-equivariant classes. As a matter of facts, the
γ-equivariant classes cn parametrize different branches of the localization locus. On
each of these branches, a moduli space of inequivalent solutions of the generalized
Killing spinor equations can be usually found.

In the following, other independent and gauge invariant composite fermions,
which can be defined for specific supergravities only, will be introduced. Setting
to zero their BRST variations one obtains additional cohomological equations which
must be satisfied on the localization locus. These equations allow for a finer clas-
sification of the localization locus, i.e. they allow to characterize the moduli space
sitting inside each of the branches defined by the cn’s.

5The author has been informed that this same equation is currently under investigation in a slightly
different context [9].
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To see how to extract these additional equations, one observes that the crucial
property of φ, which made possible to construct the topological multiplet F + λ + φ
satisfying on the localization locus the second equation in (20), is that its BRST
variation is

S φ = ιγ(λ) . (24)

We note that also the supersymmetry ghosts ζ i have a BRST variation of the same
kind:

S ζ i = ιγ(ψ
i ) . (25)

Hence, scalar and gauge invariant ghost bilinears which are independent of extra
bosonic fields automatically give rise to other topological multiplets whose BRST
take the form (18) and so, putting to zero the BRST variations of the corresponding
fermions, one gets additional cohomological equations which are satisfied on the
localization locus.

To provide an example, we wil consider the case of N = (2, 2) supergravity in
two dimensions. In N = (2, 2) 2d supergravity, it is convenient to combine the two
Majorana spinors ζ i , i = 1, 2 into a single Dirac spinor ζ, on which the R-symmetry
gauge group U (1) acts as a phase multiplication. One can then construct the two
scalar bilinears6

ϕ1 ≡ ζ̄ζ , ϕ2 ≡ ζ̄ Γ3 ζ, (26)

which are gauge invariant. Therefore, their BRST variations read

S φi = ι(λi ) , i = 1, 2 , (27)

where

λ1 ≡ ψ̄ζ + ζ̄ψ , λ2 ≡ ψ̄ γ3 ζ + ζ̄Γ3ψ . (28)

As consequence, the BRST algebra (19) tells that the generalized forms

Hi ≡ φi + λi + Ĥ (2)
i , (29)

satisfy

(S + d − ιγ)Hi = 0 . (30)

The 2-forms Ĥ (2)
i write

6Barred spinors are defined in the usual way: ζ̄ ≡ ζ† Γ0.
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Ĥ (2)
1 = ψ̄ ψ + H (2)

1 Ĥ (2)
2 = ψ̄ Γ3 ψ + H (2)

2 , (31)

where H (2)
i , with i = 1, 2, are the graphiphoton field strengths. Note that these 2-

forms are non universal: they depend indeed on the auxiliary fields of N = (2, 2)
supergravity and their explicit form can be found in [7]. From (30) one deduces that
on the localization locus the following cohomological equations hold

d ϕi − iγ(H
(2)
i ) = 0 . (32)

It has been shown7 in [1] that the Eq. (32), together with the universal equations
(20), fully characterize the localization locus of N = (2, 2) supergravity: the local-
ization locus splits in three branches which are parametrized by the integer values
of the flux of the R-symmetry field strength; on each branch the Eq. (32) give rise
to a moduli space of inequivalent supersymmetric supergravity backgrounds. This
moduli space is parametrized by two real moduli.
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Cosmological Solutions from Models
with Unified Dark Energy and Dark
Matter and with Inflaton Field

Denitsa Staicova and Michail Stoilov

Abstract Recently, few cosmological models with additional non-Riemannian
volume form(s) have been proposed. In this article we use Supernovae type Ia exper-
imental data to test one of these models which provides a unified description of both
dark energy via dynamically generated cosmological constant and dark matter as a
“dust” fluid due to a hidden nonlinear Noether symmetry. It turns out that the model
allows various scenarios of the future Universe evolution and in the same time per-
fectly fits contemporary observational data. Further, we investigate the influence of
an additional inflaton field with a step like potential. With its help we can repro-
duce the Universe inflation epoch, matter dominated epoch and present accelerating
expansion in a seamless way. Interesting feature is that inflaton undergoes a finite
change during its evolution. It can be speculated that the inflaton asymptotic value
is connected to the vacuum expectation value of the Higgs field.

Keywords Cosmology · Dark matter · Dark energy · Two-measures model

1 The Two-Measures Model

The application of the two-measures model [1–4] to cosmology has been pioneered
in series of articles by Guendelman, Nissimov and Pacheva [5–12]. In those articles,
it has been described a model which is able to describe both dark matter and dark
energy in the Universe and also early inflation. This is achieved by the introduction
of two scalar fields – a darkon and an inflaton – in a scalar Lagrangian coupled
both to the standard Riemannian volume-form (the square root of the metric deter-
minant) and to another non-Riemannian volume form (given in terms of auxiliary
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maximal-rank antisymmetric tensor gauge field). The effect of the additional mea-
sure in the theory is felt only through the ratio of the two measures – a constraint
determined by an algebraic equation. The equations of motion of such a theory gen-
erate dynamically a cosmological constant and a dark matter dust fluid term and also
inflation-inducing terms.

In this article, we will discuss our recent numerical investigations of this model
in the case of both darkon-only universe and of darkon-inflaton universe. In the first
case, we were able to successfully fit the model with the Supernova Type 1 data and
to limit its parameter space to observationally acceptable values.We also showed that
in this case it is possible for the Universe to undergo a phase transition. In the second
case, wewere able to reproduce the stages of theUniverse expansion – early inflation,
matter domination and late inflation under certain choices for the parameters.We also
observed some novel features, like the matter-dominated early epoch and a non-zero
scalar field in the late Universe. In both cases, we have numerically confirmed that
the two-measures model can be a viable cosmological model.

2 The Darkon Model in FLRWMetric

The action of the two-measures darkon model in the f(R) gravity (Guendelman,
Nissimov and Pacheva [6, 9]) has the following form:

Sdarkon =
∫

d4x
√−g(R(g, Γ ) − αR2(g, Γ )) +

∫
d4x(

√−g + Φ(C))L(u, X)

where Φ(C) = 1
3ε

μνκλ∂μCνκλ is the non-Riemannian measure and L(u, X) =
− 1

2g
μν∂μu∂νu − V (u) is the matter Lagrangian of the darkon scalar field u.

If one applies the equations of motion obtained from this action to the Friedman–
Lemaître–Robertson–Walker metric with k = 0:

ds2 = −dt2 + a(t)
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
. (1)

one obtains from the Friedman equations (G00 = T00) the following relations for the
energy density:

ρ = 1

8α
u̇2 + 3

4

pu

a(t)3
u̇ − 1

4α
(2)

pu = a(t)3
[
− 1

2α
u̇ +

(
1

4α
− 2M0

)
u̇3

]
(3)

where pu = const .
Following our work in [13], we rewrite the last cubic equation for u̇ (Eq. (3)), as

y3 + 3ay + 2b = 0 with a = − 2
3−24αM0

and b = − 2αpu

a(t)3(1−8αM0)
, y = u̇.
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The solutions are:

y1 = − a

(−b + √
a3 + b2)1/3

+ (−b +
√
a3 + b2)1/3

y2 = a

(b − √
a3 + b2)1/3

− (b −
√
a3 + b2)1/3

y3 = y2 − i
√
3y1

2

Since no real smooth solution exists in the whole [a,b] plane, we define the
following piecewise functions, real in the whole plane [a,b]:

yb =
{

y1 for (a, b) ∈ {a ≥ 0} ∪ {a < 0 ∩ b < 0}
y2 for (a, b) ∈ {a < 0 ∩ b > 0} ys =

{
y1 for b > 0

y2 for b < 0.

Weobtain the final formof the Friedman equation after rescaling time by 2|α|/3 =
1 and absorbing α into Hubble constant (ρ̄ = 4|α|ρ):

(
ȧ(t)

a(t)

)2

= ρ̄ =
(
1

2
y2 + b

a
y − 1

)
(4)

The asymptotics, corresponding to the dark energy term in the late universe, is:

ρ̄ −−−−→
a(t)→∞

{
1 for a > 0

− 3
2a − 1 for a < 0

We use as independent real solutions yb (our basic solution) and ys and integrate
numerically Eq. (4) to find the evolution of the universe.

Phase transition: From the numerical integration we have seen that it is possible
to obtain both Universes with or without phase transition. The possibility for such
transition comes from the fact that in the [a,b] plane exist sectors where two of our
solutions have positive energy density ρ.

Explicitly, let’s denote ¯̄ρ the density corresponding to solution ys (ρ̄ corresponds
to yb). At the moment t1 = 0, it will be negative, i.e. ¯̄ρ(t1) < 0. For certain moment
tp, however, it will change sign: ¯̄ρ(a(tp)) = 0. Therefore, for any moment t > tp we
have two “states” of the Universe ρ̄ and ¯̄ρ such as:

0 ≤ ¯̄ρ < ρ̄ for t ≥ tp. (5)

This opens thepossibility theUniverse to undergo“phase transition”or“quenching”
to the lower state.
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Fig. 1 Graphics of the a(t)
evolution for:
a = −5.987,b = −2.932

a3
(a)

a = −1,b = − 2
a3

(b), tp =
1.5074, as(tp) = 2.0825
(b2), a = −.5,b = − 0.5

a3
(c)

The moment of the phase transition is crucial for the further evolution, since if
t = tp the evolution stops ( ¯̄ρ = 0), if t = tp + δt , we observe phase transition of the
first kind. An illustration of this process can be seen on Fig. 1, where the transition
happens between lines b, b1 and b2.

The Supernova Fit: Using the freely available data of Supernovae Type 1a [14],
we were able to fit the distance modulus dm

1 as a function of z using using energy
density from the two-measures model:

dm = 5 log10

(
(1 + z)

∫ z

0
dx

a(x)

ȧ(x)

)
=

const + 5 log10

(
(1 + z)

∫ z

0
dx

1√
ρ(x)

)
(6)

Using a symplectic fit,wewere able to prove that ourmodel is able to reproduce the
observational data. The details on the fit can be seen in [13], here we will emphasize
only that the precision of the fit (χ2 ∼ 562 for a < −2/3, χ2 ∼ 578 for a > 1.)
is similar to the one of the standard model (χ2 = 562).

The best fit of SN data using the proposed model is not unique. We find one
parametric family of solutions producing the same dm(z) function. An approximate
formula for the dependency b(a) can be obtained using the LeastSquares algorithm
in Maple and it gives:

b± =
4∑
0

±ci a
i + O(a5),with coefficients

ci = [0.337906, 0.376679,−0.0251697, 0.00148545, 0.11272710−3]

1dm = 5 log10
( d
10

)
, where d is the distance in parsecs.
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On Fig. 1, curve (d) represents one such evolution with parameters a and b cor-
responding to the observational data.

3 The Two-Measures Theory – Including the Inflaton

In order to produce inflation in the model, one needs to include a new scalar field
– the inflaton φ. Following Guendelman, Nissimov and Pacheva [6, 12] (where
in Sdarkon α = 0)), the action, featuring two non-Riemannian measures Φ1(A) and
Φ2(B), becomes:

S = Sdarkon +
∫

d4xΦ1(A)(R + L(1)) +
∫

d4xΦ2(B)

(
L(2) + Φ(H)√−g

)

where:

L(1) = −1

2
gμν∂μφ∂νφ − V (φ), V (φ) = f1e−αφ (7)

L(2) = −b

2
e−αφgμν∂μφ∂νφ + U (φ), U (φ) = f2e−2αφ (8)

From the equations of motion we have:

p = −2M0 = const,
Φ2(B)√−g

= χ2 = const

R + L(1) = −M1 = const, L(2) + Φ(H)√−g
= −M2 = const

Uef f (φ) = ( f1e−αφ + M1)
2

4χ2( f2e−2αφ + M2) − 8M0
with U− = f 21

4χ2 f2
, U+ = M2

1

4χ2M2 − 8M0

An important condition following from the requirement that the vacuum energy
density of the early UniverseU− should be much higher than that of the late Universe
U+ gives:

f 21
χ2 f2

>>
M2

1

χ2M2 − 2M0
(9)

This ensures that the effective potential has the formof two infinite plateaus connected
with a steep slope.

Additionally, one can postulate:

|M1| ∼ M4
EW , M2 ∼ M4

Pl, f1 ∼ f2 ∼ 10−8M4
Pl,

so that one can connect the theory with the electroweak and the Planck scales.
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The system of equations that need to be solved numerically in order to obtain the
evolution of the Universe is the following:

v3 + 3av + 2b = 0 for (10)

a = −1

3

V (φ) + M1 − 1
2χ2be−αφφ̇2

χ2(U (φ) + M2) − 2M0
, b = −pu

2a(t)3(χ2(U (φ) + M2) − 2M0)
(11)

ȧ(t) =
√

ρ

6
a(t), ρ=

1

2
φ̇2(1 + 3

4
χ2be−αφv2) + v2

4
(V + M1) + 3puv

4a(t)3
(12)

ä(t) = − 1

12
(ρ + 3p)a(t), p = 1

2
φ̇2(1 + 1

4
χ2be−αφv2) − v2

4
(V + M1) + puv

4a(t)3
(13)

d

dt

(
a(t)3φ̇(1 + χ2

2
be−αφv2)

)
+ a(t)3(α

φ̇2

4
χ2be−αφv2 + 1

2
Vφv2 − χ2Uφ

v4

4
) = 0 (14)

Here Eq. (13) is optional and it offers an independent way to evaluate ä(t). This
differential system is offirst orderwith respect toa(t) andof secondorderwith respect
to φ(t). Once again, we first solve the cubic equation by choosing a base solution and
then we use it, to integrate the differential system with the implemented in Maple
Fehlberg fourth-fifth order Runge-Kutta method with degree four interpolant.

Study the [a,b] plane Unlike the previous case, where a was a constant, here
it depends on φ, φ̇. Because of this, the trajectories in the [a,b] plane which the
Universe will describe in its evolution won’t be straight lines like in the darkon case,
but curves. For example, on Fig. 2 we have plotted the trajectory for one set of
parameters (dots). It starts at b → −∞ and ends at b → 0. In its evolution, it crosses
the a3 + b2 = 0 line (solid line). On the plot, one can see also the trajectories for
the darkon case plotted with dashed lines. In order to work in the sector III, where
both solutions yb and ys are valid we have chosen the parameters in such a way that
b = −pu

2a(t)3(χ2(U+M2)−2M0)
< 0.

Numerical integration and equation of state For the numerical integration, we
impose as initial conditions:

a(0) = 10−12, φ(0) = φ0, φ̇(0) = 0.

Additionally, we impose the gauge condition: a(1) = 1.
This problem has 12 parameters of the system. Our numerical experiments show

that the system is extremely sensitive to them and small changes can lead to either
eternally exponentially expanding Universe or collapsing without inflation Universe.
In order for an evolution to reproduce the known past of the Universe the second
derivative of the scale factor ä(t) has to change sign at least 2 times: to be positive
during early inflation äi (t) > 0, to be negative during matter domination period
(äM D(t) < 0, and to be positive during the late (current) expansion äL E (t) > 0.
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Fig. 2 The evolution of the
solutions in the [a,b] plane.
The dashed line correspond
to the darkon case, the
dash-dot line – to the
inflation case, the solid lines
– the lines of validity of the
solutions

Our numerical investigations show that such “physical” cases are indeed possible,
for example Fig. 3, but require careful fine-tuning of the parameters.2 One can see
the different epochs by plotting the equation of state w = p/ρ (see Fig. 3b). The
times in which they kick in correspond to the change of sign of ä(t).

A notable result from our work is that it is not numerically possible to start from
the left plateau and to obtain a “physical” evolution. Instead, the evolution explodes
to eternal inflation. It is not possible also to finish on the right plateau, because the
evolution of the scalar field stops before reaching it (there is a friction term). This
illustrated on Fig. 3a, where one can see the effective potential in this case.

A very important feature of the model is that it starts with a pre-inflation mater
domination epoch with exponentially high energy density, which quickly cools to
enter in the early inflation stage (see Fig. 3b). Another important feature is the fact
that the scalar field does not reach zero in the late Universe as expected by the theory.
This is also due to the friction term which stops its evolution (φ̇ = 0) before it can
reach zero (Fig. 4).

In our numerical simulations we have discovered some interesting features of the
model, which is not in accorance with the asymptotic found in [6]. One needs to
keep in mind, however, that due to the numerical complexity of the problem and its
big parameter-space, we have not yet reached the theoretically predicted values of
somevadjust of the parameters discussed in there. While the main requirement of the

2The plots are for parameters M0 = −0.01, M1 = 0.1, M2 = 4, α = 0.7, b0 = 1 × 10−5, pu =
0.15, χ2 = 3.3 × 10−4, f1 = 3 × 10−5, f2 = 1 × 10−8, integrated for t = 0.4.
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(a) (b)

Fig. 3 a The effective potential, where the crosses signify the moments: t = 0, t = 1 and t = 4. b
Plot of ä(t) and the equation of state w = p/ρ. One can see the different epochs – ultra-relativistic
matter domination (UM), the early inflation (EI), the matter domination (MD) and the late inflation
(LI)

(a)
(b)

Fig. 4 a The inflaton scalar field φ(t). b Its derivative φ̇(t)

model Eq. (9) is satisfied, the values of the other parameters, which can be found in
the Table 1, should be extended to a more physically realistic domain.

Another way to define “physicality” of the problem, is the problem of the time
scales. The observationally expected values for the time atwhich ä(t) changes its sign
comes from the time when different epochs start. Theoretically, matter domination is
considered to start ataM D(t) ∼ 3 × 10−4 and the accelerated expansion– ataAE (t) �
0.6. Our current best result is aM D = 0.2, aAE = 1.2. It is yet to be seen whether the
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Table 1 Comparison
between the theoretically
stipulated and the numerical
values of some of the
parameters

Parameter Theory Numerics

M1 ∼M4
EW = 4.10−60 1/15 =

6.67 × 10−2

M2 ∼M4
Pl = 4 4

f1 ∼10−8 2 × 10−5

f2 ∼10−8 10−8

α 10−20−0.2 0.64

observational values can be reached trough fine-tuning of the parameters. Because
of the complexity of the problem, this fine-tuning needs to be done step by step and
cannot be automatized for the moment.

Finally, due to the extreme predicted ratio U+/U− ∼ 10120, reaching the theoret-
ically predicted values of the parameters may be computationally impossible, due to
possible increase in the required precision for the numerical integration of the sys-
tem. A fuller investigation of the parameter space of the problem will be presented
in future works.

4 Conclusions

In our numerical work on the application of the two-measures model to cosmology
we have confirmed that this model can be considered as an alternative of the standard
model of darkmatter and dark energy. Through numerical integration of the Friedman
equations in the K-essence theory in the darkon and the inflaton case, along with
detailed study of the plane [a,b], we have obtained interesting numerical results.

It was shown that in the darkon model we can obtain both a Universe with and
without phase transition and those models were fit to the data of Supernovae Type
1a. In the case of inflaton model, we have performed first steps in the study of the the
parameter space of the model and we have found solutions for which one can obtain
the two inflationary epochs and one matter dominated epoch. It was shown that the
inflation experiences friction, due to which inflation stops before reaching the U+
part of the potential. This was unexpected result which is to be further investigated,
because it also means that there should be a non-zero scalar field surviving to the
modern epoch.
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Relation Between Dilatonic Pressure
and Cosmological Pressure for Neutron
Stars in Minimal Dilatonic Gravity

Kalin Marinov and Plamen Fiziev

Abstract The minimal dilatonic gravity (MDG) is a proper generalization of the
Einstein general relativity (GR), which uses one gravitation-dilaton fieldΦ, an offers
a simultaneous explanation of the effects of dark matter and dark energy. We present
an in depth research of the dark matter and dark energy effects in the interior of the
non-rotating neutron star models in MDG. We use different realistic equations of
state, which are in good agreement with the latest observational data. The equations
describing relativistic static spherically symmetric stars are solved numerically for
the different equations of state and we present results for the center and the edge of
the stars.

Keywords Extended gravity · Neutron star · Gravitational dilation · Dark matter
Dark energy

1 Introduction

Themodel ofminimal dilatonic gravity (MDG) is an alternativemodel of gravitation.
First it was introduced byO’Hanlon [21]. Later, the possible relation of theO’Hanlon
model with cosmology and astrophysics was explored and the name MDG appeared
[7–16], where the cosmological constant Λ was also used. MDG is a proper, simple
modification of GR, based on the following action of the gravi-dilaton sector:

Sg,Φ = − c

2k

∫
d4x

√|g|(ΦR + 2ΛU (Φ)), (1)
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where k = 8πG/c2 is the Einstein constant, G is the Newton gravitational constant,
Λ is the cosmological constant, and Φ ∈ (0,∞) is the dilaton field. The values
of Φ must be positive because change of the sign would lead to a change of the
sign of the gravitational factor G/Φ, which would lead to antigravity. We rule out
the possibility of antigravity, since it is unphysical. The value Φ = ∞ must also be
excluded, because the gravity is eliminated.Φ = 0 is also unacceptable since it leads
to an infinite gravitational factor, and the Cauchy problem is not well posed.

The scalar field Φ is introduced in order to have a variable gravitational factor
G(Φ) = G/Φ, instead of gravitational constant G. Φ does not enter in the action
of the matter Smatter , because it has no interaction with ordinary matter. Due to its
specific physical meaning it has unusual properties. The function U (Φ) defines the
cosmological potential. It is introduced in order to have a variable cosmological
factor instead of the cosmological constantΛ.U (Φ)must be a singe valued function
of the dilaton field due to astrophysical reasons. The MDG without cosmological
term corresponds to the Brans–Dicke theory with identically vanishing parameterw.
If we set Φ = 1 and U (Φ) = 1, we are back into GR.

A special class of potential are introduced in [9]. They are called withholding
potentials and they confined the dynamical values of the dilaton Φ in the physical
domain. It is also shown that MDG model is only locally equivalent to the f (R)

theories and leads to different physical consequences.
A lot of f (R) functions could be found in the literature. For example [2, 18, 25,

26]. More extensive information about f (R) theories can be found in [3–5, 19, 20].

2 Basic Equations and Boundary Conditions

The field equation of MDG with matter fields can be found in [10, 12, 15, 16]. The
inner domain r ∈ [0, r �], where r � is the radius of the star, the structure is described
by the following system of four first order differential equation, which represent a
generalization of the Tolman–Oppenheimer–Volkoff equations:

dm

dr
= 4πr2εe f f

Φ

dp

dr
= − (p + ε)

r
(
Δ − 2πr3 pΦ/Φ

)
(
4πr3 pef f

Φ
+ m

)

dΦ

dr
= −4πr2 pΦ

Δ

dpΦ

dr
= − pΦ

Δr

(
3r − 7m − 2

3
Λr3 + 4πr3εe f f

Φ

)
− 2εΦ

r
.

(2)
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Here we have four unknown functions, m = m(r), p = p(r),Φ = Φ(r)
and pΦ = pΦ(r), the mass, the pressure, the dilaton and the dilaton pressure.
The following indications are used in the system:

Δ = r − 2m − Λr3

3
,

εe f f = ε + εΛ + εΦ, pef f = p + pΛ + pΦ,

εΛ = Λ

8π

(
U (Φ) − Φ

)
, pΛ = − Λ

8π

(
U (Φ) − Φ

3

)
,

εΦ = p − 1

3
ε + Λ

8π
V ′(Φ) + pΦ

(
4πr3

Φ
pef f + m

)
2
(
Δ − 2πr3 pΦ

Φ

) .

In the above equation εΛ and pΛ are the cosmological energy density and cos-
mological pressure, εΦ and pΦ are the dilaton energy density and dilaton pressure.
pΛ and pΦ correspond to the effects of dark energy and dark matter respectively
and the need for dark matter and dark energy is firmly established [24]. We combine
cosmological, dilaton and matter energy density in a new variable εe f f . We do the
same thing for the cosmological, dilaton and matter pressure in the variable pef f .

3 Numerical Results

In the current research we use three equations of state BSk19, BSk20, BSk21 [17, 22,
23]. Those equations are compatible with the latest results for the maximum mass
of neutron stars [1, 6]. We use the simplest withholding dilaton potential in the form
[8, 9, 14]

U (Φ) = Φ2 + 3

16d2
(Φ − 1/Φ)2, (3)

where we use the dimensionless Compton length d = λΦ

√
Λ, and λΦ is the dilaton

Compton length. More information fo the numerical procedure can be found in [10,
15, 16].

On Figs. 1, 2 and 3 are shown the results dilaton pressure and the cosmological
pressure in the center of the star. For all three equations of state the cosmological
pressure in the center is always negative and the dilaton pressure in the center of
the star can be positive or negative depending on the initial conditions. Both pΛ and
pΦ contribute to the effective pressure pef f , which lead to masses of the stars very
different from the ones obtained in general relativity [12, 15, 16].
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Fig. 1 Here is shown the
relation between the
cosmological pressure pΛ in
the center of the star and the
dilaton pressure pΦ in the
center of the star, for BSk19
equation of state. On the
figure pΛ,center is in
1029 dyne.cm2 and pΦ,center
is in 1035 dyne.cm2

Fig. 2 Here is shown the
relation between the
cosmological pressure pΛ in
the center of the star and the
dilaton pressure pΦ in the
center of the star, for BSk20
equation of state. On the
figure pΛ,center is in
1029 dyne.cm2 and pΦ,center
is in 1035 dyne.cm2

Fig. 3 Here is shown the
relation between the
cosmological pressure pΛ in
the center of the star and the
dilaton pressure pΦ in the
center of the star, for BSk21
equation of state. On the
figure pΛ,center is in
1029 dyne.cm2 and pΦ,center
is in 1035 dyne.cm2
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Fig. 4 Here is shown the
relation between the
cosmological pressure pΛ on
the edge of the star and the
dilaton pressure pΦ on the
edge of the star, for BSk19
equation of state. On the
figure pΛ,center is in
1029 dyne.cm2 and pΦ,center
is in 1035 dyne.cm2

Fig. 5 Here is shown the
relation between the
cosmological pressure pΛ on
the edge of the star and the
dilaton pressure pΦ on the
edge of the star, for BSk20
equation of state. On the
figure pΛ,center is in
1029 dyne.cm2 and pΦ,center
is in 1035 dyne.cm2

On Figs. 4, 5 and 6 are shown the results dilaton pressure and the cosmological
pressure on the edge of the star. For all three equations of state the cosmological
pressure on the edge is negative or positive depending on the initial conditions and
the dilaton pressure on the edge of the star is always positive. This leads to existence
of a sphere of dilaton around the star, called dilasphere. The dilasphere contributes to
the mass of the object significantly and it is the main reason behind the high neutron
star masses in the minimal dilatonic gravity [12, 15, 16].

In the center of the star pΦ is of the same order for all initial conditions and
Compton lengths, but pΛ varygreatlywith theCompton length.The sameobservation
is true and for the edge of the star and for all used equations of state.
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Fig. 6 Here is shown the
relation between the
cosmological pressure pΛ on
the edge of the star and the
dilaton pressure pΦ on the
edge of the star, for BSk21
equation of state. On the
figure pΛ,center is in
1029 dyne.cm2 and pΦ,center
is in 1035 dyne.cm2
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Part IV
Conformal and Gauge Theories



Conformal Ward–Takahashi Identity
at Finite Temperature

Satoshi Ohya

Abstract We study conformalWard–Takahashi identities for two-point functions in
d(≥ 3)-dimensional finite-temperature conformal field theory.We first show that the
conformalWard–Takahashi identities can be translated into the intertwining relations
of conformal algebra so(2, d). We then show that, at finite temperature, the inter-
twining relations can be translated into the recurrence relations for two-point func-
tions in complex momentum space. By solving these recurrence relations, we find
the momentum-space two-point functions that satisfy the Kubo–Martin–Schwinger
thermal equilibrium condition.

Keywords Conformal field theory · Finite temperature · Two-point function

1 Introduction

It is widely believed that conformal symmetry is always broken at finite temperature.
This comes from the naive argument that finite-temperature field theory necessarily
contains one particular scale—the temperature—and hence must break scale and
conformal invariance. Contrary to this popular belief, however, finite temperature
and conformal invariance can in fact be compatible with each other: If conformal
field theory (CFT) is thermalized via theUnruh effect, conformal symmetry remains
intact even at finite temperature. The purpose of this paper is to report our recent
work on this subject [13] and to see how the conformal symmetry determines finite-
temperature two-point functions in momentum space. The key is the intertwining
relations of conformal algebra so(2, d) [6, 8, 12, 16], which follow from the con-
formal Ward–Takahashi identities for two-point functions. We shall show that, at
finite temperature, the intertwining relations are recast into the recurrence relations
in complex momentum space. These recurrence relations can be regarded as the
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conformal Ward–Takahashi identities at finite temperature, from which we can
deduce the possible forms of momentum-space two-point functions.

The rest of the paper is organized as follows: In Sect. 2 we first introduce the
intertwining operator, which is defined as an integral transform whose kernel is
the two-point function. We then discuss that the conformal Ward–Takahashi identi-
ties are rewritten as the intertwining relations. In Sect. 3 we introduce the d(≥ 3)-
dimensional Rindler wedge, light-cone, and diamond, all of which are subspaces of
Minkowski spacetime and conformal to H1 × H

d−1. These subspaces are the whole
universes of our finite-temperature CFT and possess the global timelike conformal
Killing vectors associated with the subgroup SO(1, 1) ⊂ SO(2, d). In Sect. 4 we
study the intertwining relations in the basis in which the SO(1, 1) generator becomes
diagonal. We shall see that in this basis the intertwining relations reduce to the recur-
rence relations for momentum-space two-point functions. We also give two minimal
solutions that correspond to the positive- and negative-frequency two-point Wight-
man functions and satisfy the Kubo–Martin–Schwinger (KMS) thermal equilibrium
condition.

Throughout the paper we work with the metric signature (−,+, . . . ,+).

2 From Conformal Ward–Takahashi Identities
to Intertwining Relations

Tobeginwith, let us consider a scalar primaryoperatorOΔ(x)of scalingdimensionΔ.
Let g ∈ SO(2, d) be an element of the conformal group and x �→ xg be the associated
conformal transformation. Then the scalar primary operator transforms as follows:

U (g)OΔ(x)U−1(g) =
∣
∣
∣
∣

∂xg

∂x

∣
∣
∣
∣

Δ/d

OΔ(xg), (1)

where U is a unitary representation of the conformal group and |∂xg/∂x| stands for
the Jacobian of the conformal transformation.

Let us next consider a two-point function GΔ(x, y) ofOΔ. For example, one may
consider this to be the positive- or negative-frequency two-pointWightman functions,
〈0|OΔ(x)O†

Δ(y)|0〉 or 〈0|O†
Δ(y)OΔ(x)|0〉, where |0〉 stands for the conformally-

invariant vacuum state that satisfies U (g)|0〉 = |0〉 for any g ∈ SO(2, d). Then
GΔ(x, y) satisfies the following identity:

GΔ(x, y) =
∣
∣
∣
∣

∂xg

∂x

∣
∣
∣
∣

Δ/d ∣
∣
∣
∣

∂yg

∂y

∣
∣
∣
∣

Δ/d

GΔ(xg, yg). (2)

As is well-known, this identity—the finite form of conformal Ward–Takahashi
identity—fully determines the possible forms of two-point functions. For example,
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up to the iε prescription the Wightman functions must be of the form GΔ(x, y) ∝
[(x − y)2]−Δ.

Now, let us consider another scalar primary operator Od−Δ(x) of scaling dimen-
sion d − Δ. Once Od−Δ(x) and GΔ(x, y) are given, we can define an operator GΔ

through the following integral transform:

GΔ : Od−Δ(x) �→ (GΔOd−Δ)(x) :=
∫

ddy GΔ(x, y)Od−Δ(y). (3)

It is easy to check that thus defined operator (GΔOd−Δ)(x) satisfies the transforma-
tion law (1) and hence is a primary operator of scaling dimension Δ. Conversely,
one can start fromOΔ(x) and Gd−Δ(x, y) and then define an operator Gd−Δ through
the integral (Gd−ΔOΔ)(x) := ∫

ddy Gd−Δ(x, y)OΔ(y). In this case (Gd−ΔOΔ)(x)
becomes a primary operator of scaling dimension d − Δ. In short, Gα is a map
from one primary operator to another, where α ∈ {Δ, d − Δ}. In the literature [7]
(GαOd−α)(x) is called the shadow operator of Od−α(x).

Let us now turn to the infinitesimal conformal invariance. If g ∈ SO(2, d) is
infinitesimally close to the identity element, (1) is recast into the following commu-
tation relations:

[J ab,OΔ(x)] = −J ab
Δ (x, ∂x)OΔ(x). (4)

Likewise, (2) becomes the following identities (the infinitesimal form of conformal
Ward–Takahashi identities):

(

J ab
Δ (x, ∂x) + J ab

Δ (y, ∂y)
)

GΔ(x, y) = 0. (5)

Here J ab = −J ba (a, b = 0, 1, . . . , d + 1) are the generators of SO(2, d) and satisfy
the following commutation relations of the Lie algebra so(2, d):

[J ab, J cd ] = i(ηacJ bd − ηad J bc − ηbcJ ad + ηbd J ac), (6)

where ηab = ηab = diag(−1,+1, . . . ,+1,−1). On the other hand, J ab
Δ (x, ∂x) are the

following differential representations of J ab:

J ab
Δ (x, ∂x) = i

(

kμab(x)∂μ + Δ

d
(∂μk

μab)(x)

)

, (7)

where kμab(x) = −kμba(x) are the conformal Killing vectors given by

kμνλ(x) = ημνxλ − ημλxν, kμνd (x) = �2 − x · x
2�

ημν + xμxν

�
, (8)

kμν,d+1(x) = �2 + x · x
2�

ημν − xμxν

�
, kμd ,d+1(x) = −xμ. (9)
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Here � > 0 is an arbitrary reference length scale which needs to be introduced to
adjust the length dimensions of the equations. Note that these vectors satisfy the
conformal Killing equations ∂μkν

ab + ∂νkμ
ab = 2

d ημν∂ρkρab.
Now, let GΔ(x, y) satisfy the infinitesimal conformal Ward–Takahashi identities

(5). Then, upon integration by parts one can prove the following identities:

∫

ddy J ab
Δ (x, ∂x)GΔ(x, y)Od−Δ(y) =

∫

ddy GΔ(x, y)J ab
d−Δ(y, ∂y)Od−Δ(y), (10)

or, more compactly,

(J ab
Δ GΔOd−Δ)(x) = (GΔJ

ab
d−ΔOd−Δ)(x), (11)

where (J ab
α Oα)(x) := J ab

α (x, ∂x)Oα(x), α ∈ {Δ, d − Δ}. Since this holds for arbi-
trary Od−Δ we get the following operator identities:

J ab
Δ GΔ = GΔJ

ab
d−Δ. (12)

These are the intertwining relations, and in this respect GΔ is called the intertwin-
ing operator. As is evident from the above discussions the intertwining relations are
essentially the same as the conformal Ward–Takahashi identities. There is, however,
a big advantage of using (12): The operator identities (12) are basis independent and
hence easy to manipulate in an algebraic language. In the rest of the paper we shall
apply the intertwining relations to a certain (improper) basis for a representation space
of conformal algebra. In other words, we shall apply (12) to a mode function fα,p(x)

in terms of which the operator Oα(x) is expanded as Oα(x) = ∫ dd p
(2π)d

Õα(p)fα,p(x).

In zero-temperature CFT such mode function is just the plane wave eip·x. In this
case the intertwining relations just result in the well-known momentum-space con-
formal Ward–Takahashi identities at zero temperature. In finite-temperature CFT
thermalized via the Unruh effect, on the other hand, fα,p(x) becomes a quite nontriv-
ial function. In a more algebraic language, fα,p(x) is chosen to be an eigenfunction
for the generator of one-parameter subgroup SO(1, 1) ⊂ SO(2, d). Before going to
study the intertwining relations in the SO(1, 1) diagonal basis, let us first recall the
significance of SO(1, 1) for finite-temperature CFT.

3 Timelike Conformal Killing Vectors Associated
with the Subgroup SO(1, 1) ⊂ SO(2, d)

Let us start with the KMS condition [9]. The KMS condition is a thermal equilibrium
condition for quantum systems and expressed as an analytic condition for positive-
and negative-frequency two-pointWightman functionsG+(t) andG−(t). It demands
that (i) G+(t) (G−(t)) should be an analytic function on the strip −β < Im t < 0
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(0 < Im t < β); and (ii) G+(t) and G−(t) should satisfy the following boundary
conditions on the strips:

G+(t) = G−(t + iβ) & G−(t) = G+(t − iβ), ∀t ∈ R, (13)

where β = 1/T is the inverse temperature. (For the moment we will suppress the
spatial coordinates.) The advantage of using the KMS condition is that these analytic
conditions remain valid even after the thermodynamic limit. (Note that the extensive
property of the free energy F = −(1/β) log Tr e−βH would render the density matrix
ρ = e−β(H−F) ill-defined in the thermodynamic limit.) For a full account of the KMS
condition we refer to [9, 10].

Now, let us take a closer look at the boundary conditions (13). These conditions
are best understood in statistical mechanics for finite degrees of freedom in a finite
box. Let O(t) = eiHtO(0)e−iHt be a Heisenberg operator. Then we have

〈O(t)O†(t′)〉 = 1

Z
Tr

(

e−βHO(t)O†(t′)
) = 1

Z
Tr

(

e−βHO(t)eβH e−βHO†(t′)
)

= 1

Z
Tr

(

e−βHO†(t′)e−βHO(t)eβH
)

= 1

Z
Tr

(

e−βHO†(t′)O(t + iβ)
) = 〈O†(t′)O(t + iβ)〉, (14)

where Z = Tr e−βH is the partition function. The second line follows from the cyclic
property of trace and the last line the identity eizHO(t)e−izH = O(t + z)with z = iβ.
Setting t′ = 0 we get the condition G+(t) = G−(t + iβ). Likewise, one can prove
G−(t) = G+(t − iβ) in a similar manner.

The above discussion is based on the expectation value with respect to the den-
sity matrix ρ = e−βH/Z . However, the boundary conditions (13) themselves can be
formulated without recourse to the density matrix. Suppose that there exist a state
|Ω〉 and an antiunitary operator J such that the following identity holds:

Je− β
2 HO(t)|Ω〉 = O†(t)|Ω〉, (15)

whereO(t) is an arbitrary Heisenberg operator andH is assumed to satisfyH |Ω〉 =
0. Once we have the identity (15), we can prove that the Wightman functions with
respect to the state |Ω〉 satisfy (13). Indeed, by using the inner product notation (∗, ∗)

we have (see also Chapter 5 of [15])

〈Ω|O(t)O†(t′)|Ω〉 = (|Ω〉,O(t)O†(t′)|Ω〉) = (O†(t)|Ω〉,O†(t′)|Ω〉)
= (Je− β

2 HO(t)|Ω〉, Je− β
2 HO(t′)|Ω〉)

= (e− β
2 HO(t′)|Ω〉, e− β

2 HO(t)|Ω〉)
= (|Ω〉,O†(t′)e−βHO(t)eβH e−βH |Ω〉)
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= (|Ω〉,O†(t′)O(t + iβ)|Ω〉)
= 〈Ω|O†(t′)O(t + iβ)|Ω〉, (16)

where the second line follows from the assumption (15), the third line the antiunitarity
of J (i.e., (J |Ψ 〉, J |Φ〉) = (|Ψ 〉, |Φ〉) = (|Φ〉, |Ψ 〉)), and the fifth line the relations
e−βHO(t)eβH = O(t + iβ) and e−βH |Ω〉 = |Ω〉. Setting t′ = 0 we get the condition
G+(t) = G−(t + iβ). Likewise, one can prove G−(t) = G+(t − iβ). These mean
that, if (15) holds, the Wightman functions with respect to the state |Ω〉 are nothing
but the thermal Wightman functions at temperature T = 1/β (except the question of
analyticity on the strips).

The above discussion, though simplified, captures the essence of the interplay
between the KMS condition and the Bisognano–Wichmann theorem [1, 2]. In the
mid-1970s Bisognano and Wichmann showed that there exists the identity (15) in
generic Poincaré-invariant quantum field theories. There, the state |Ω〉 is the vacuum
state |0〉 for inertial observers, J is the CPT conjugate (with a partial reflection), and
β
2πH is the generator of Lorentz boost. The temporal coordinate t is proportional to the
dimensionless Lorentz boost parameter θ and identified as θ = (2π/β)t. Physically
speaking, t is identical to the proper time for uniformly accelerating observers and the
proportional coefficient 2π/β is identical to the proper acceleration a, from which
we can deduce the Unruh temperature T = a/(2π). This is the physical content
of Bisognano–Wichmann theorem, which provides a nonperturbative proof for the
thermality of Wightman functions with respect to the vacuum [14].

Now we have come to the point. From a group theoretical viewpoint the most
important thing in the Bisognano–Wichmann theorem is that the time-translation
generatorH is given by the Lorentz boost generator—the generator of one-parameter
subgroup SO(1, 1) of the Poincaré group ISO(1, d − 1). In Poincaré-invariant quan-
tum field theories the Lorentz boost is the only way to realize the group SO(1, 1)
as a coordinate transformation. However, there emerge several options if the theory
enjoys conformal invariance. Typical examples are the following [13]:

SO(1, 1) : xμ �→ xμ(θ) = Λμ
νx

ν, (17)

SO(1, 1) : xμ �→ xμ(θ) = e−θxμ, (18)

SO(1, 1) : xμ �→ xμ(θ) = e−ϕ xμ − bμ(x · x)
1 − 2(b · x) + (b · b)(x · x) + aμ, (19)

whereΛ =
(

cosh θ sinh θ
sinh θ cosh θ

1d−2

)

,ϕ = 2 log cosh θ
2 , b

μ = ( 1
�
tanh θ

2 , 0, . . . , 0), and a
μ =

(� tanh θ
2 , 0, . . . , 0). Note that (17) is a Lorentz boost on the (x0, x1)-plane, (18) is

a dilatation, and (19) is a special conformal transformation followed by a dilatation
followed by a translation. Note also that these transformations are the solutions to the
following flow equations generated by the conformal Killing vectors kμ10, kμd ,d+1,
and kμd0 = −kμ0d :
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ẋμ(θ) = ημ1x0(θ) − ημ0x1(θ), (20)

ẋμ(θ) = −xμ(θ), (21)

ẋμ(θ) = −�2 − x(θ) · x(θ)
2�

ημ0 − xμ(θ)x0(θ)

�
, (22)

where dot stands for the derivative with respect to θ.
Now we wish to identify the parameter θ with the temporal coordinate t (up to

the factor 2π/β). To justify this, the above conformal Killing vectors must be time-
like; that is, ẋ(θ) · ẋ(θ) < 0. It is a straightforward exercise to classify their timelike
domains. The results are as follows (see also Fig. 1):

• Rindler wedge. The Killing vector (20) becomes timelike in the following
domains:

W± = {xμ : ±x1 > |x0|}, (23)

which are nothing but the right and left Rindler wedges. The coordinate systems
in which (17) yields the time-translation are given by

x0 = ±�
sinh(t/�)

H 0 + H 1
, x1 = ±�

cosh(t/�)

H 0 + H 1
, xi = �

Hi

H 0 + H 1
, (24)

where Hμ = (H 0,H 1, . . . ,Hd−1) describes the upper half of two-sheeted hyper-
bolic space H

d−1 and is subject to the conditions H · H ≡ −(H 0)2 + (H 1)2 +
· · · + (Hd−1)2 = −1 and H 0 ≥ 1. The induced metrics on W± are

ds2W± = −dt2 + �2dH · dH
(H 0 + H 1)2

. (25)

• Light-cone. The conformal Killing vector (21) becomes timelike in the following
domains:

V± = {xμ : ±x0 > |x|}, (26)

x1

x0

x1

x0

x1

x0

Fig. 1 Timelike domains of the SO(1, 1) conformal Killing vectors (20)–(22) in the (x0, x1)-plane.
Temporal flows are identified with thick blue curves
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which are nothing but the future and past light-cones. The coordinate systems in
which (18) yields the time-translation are given by

xμ = ±�e−t/�Hμ, (27)

where Hμ is the same as above. The induced metrics on V± are

ds2V± = e−2t/�(−dt2 + �2dH · dH ). (28)

• Diamond. The conformal Killing vector (22) becomes timelike in the following
domain1:

D = {xμ : |x| + |x0| < �}, (29)

which is nothing but the diamond (or double cone). The coordinate system in
which (19) yields the time-translation is given by

x0 = �
sinh(t/�)

cosh(t/�) + H 0
, xi = �

Hi

cosh(t/�) + H 0
, (30)

where Hμ is the same as above. The induced metric on D is

ds2D = −dt2 + �2dH · dH
(cosh(t/�) + H 0)2

. (31)

Now it is obvious that these subspaces of the flat Minkowski spacetimeR1,d−1 are all
conformal to H

1 × H
d−1 � (t,Hμ). Hence the correlation functions on H

1 × H
d−1

with respect to the inertial vacuum |0〉 are just given by conformal transforma-
tions of those in the Cartesian coordinate system. For example, the positive- and
negative-frequency two-point Wightman functions 〈0|OΔ(t,H )O†

Δ(t′,H ′)|0〉 and
〈0|O†

Δ(t′,H ′)OΔ(t,H )|0〉 are given by

[
2π2T 2

− cosh(2πT (t − t′ ∓ iε)) − H · H ′

]Δ

, (32)

where T = 1/(2π�). It can be shown that these Wightman functions indeed satisfy
the KMS condition and hence give the thermal correlation functions on H

1 × H
d−1

at temperature T [13].We note that there also exist theorems [3, 11] which generalize
the Bisognano–Wichmann theorem and consider the conformal Killing vectors (21)
and (22) and their timelike domains.

So far we have considered correlation functions in position space. For practical
applications, however, we often need to know correlation functions in momentum

1In fact, as depicted in Fig. 1 the conformal Killing vector (22) becomes timelike also in the domains
K = {xμ : |x| − |x0| > �} and V± = {xμ : ±x0 > |x| + �}.
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space. A standard approach to momentum-space correlators is the Fourier transform
of position-space correlators. However, the Fourier transformof correlation functions
is generally hard to carry out. In fact, the Fourier transform of (32) is, though not
impossible, quite complicated and requires a lot of integration techniques. Hence it
would be desirable to develop amethodwhich bypasses Fourier integrals and directly
leads to momentum-space expressions.2 In the rest of the paper we will see that the
intertwining relations do the job: The operator identities (12) enable us to deduce
momentum-space two-point functions in a purely Lie-algebraic fashion.

4 Intertwining Relations in the SO(1, 1) Basis

Let us finally move on to the intertwining relations in the SO(1, 1) diagonal basis—
the conformal Ward–Takahashi identities at finite temperature. We emphasize that
this section is rather sketchy. For more details we refer to our paper [13]. In what
follows we shall set 2πT = 1/� = 1 for simplicity. The temperature dependence is
easily restored by dimensional analysis.

To begin with, let us consider the quadratic Casimir operator of the Lie algebra
so(2, d), which is given by

C2[so(2, d)] = 1

2
JabJ

ab. (33)

We wish to identify the SO(1, 1) generator as the time-translation generator H . In
group theoretical language, this means that we need to work with the basis where
the following subgroup becomes diagonal:

SO(1, 1) × SO(1, d − 1) ⊂ SO(2, d). (34)

Correspondingly, the quadratic Casimir operator is decomposed as follows:

C2[so(2, d)] = −H (H ± id) − ηabE
∓aE±b + C2[so(1, d − 1)], (35)

where E±a are certain linear combinations of J ab and C2[so(1, d − 1)] is the
quadratic Casimir operator of the subalgebra so(1, d − 1). For example, in the
case of Rindler wedge we have H = J 10, E±a = J 0a ± J 1a, and C2[so(1, d − 1)] =
(1/2)JabJ ab, where a and b run through 2 to d + 1.

2In zero-temperature CFT such a method would simply fall into the study of conformal Ward–
Takahashi identities in momentum space. In Euclidean signature this approach was thoroughly
discussed in [4] (see also [5]).
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Now let |Δ,ω, k;σ〉 be a simultaneous eigenstate of C2[so(2, d)], H , and
C2[so(1, d − 1)] that satisfies the following eigenvalue equations:

C2[so(2, d)]|Δ,ω, j;σ〉 = Δ(Δ − d)|Δ,ω, j;σ〉, (36)

H |Δ,ω, j;σ〉 = ω|Δ,ω, j;σ〉, (37)

C2[so(1, d − 1)]|Δ,ω, j;σ〉 = j(j − d + 2)|Δ,ω, j;σ〉, (38)

where σ stands for eigenvalues of other simultaneously commuting generators which
are irrelevant in the following discussion. Below we shall focus on the case j(j −
d + 2) < −(d − 2)2/4 and parameterize j as follows:

j = d − 2

2
+ ik, k ∈ (0,∞). (39)

In other words, we shall focus on the principal series representation of so(1, d − 1).
Note that j(j − d + 2) = −k2 − (d − 2)2/4 is real though j is complex. Physically,
k plays the role of the modulus of spatial momentum. From now on we shall write
the eigenstate as |Δ,ω, k;σ〉.

Now there are two important things for the following discussion. The first is
that the eigenvalue Δ(Δ − d) is invariant under the exchange Δ → d − Δ, which
means that the vectors |Δ,ω, k;σ〉 and |d − Δ,ω, k;σ〉 share the same eigenvalue
of C2[so(2, d)]. These two vectors are mapped to each other by the intertwining
operators and satisfy the following relations:

Gα|d − α,ω, k;σ〉 = G̃α(ω, k)|α,ω, k;σ〉, α ∈ {Δ, d − Δ}, (40)

where the proportional coefficients G̃α(ω, k) are the momentum-space two-point
functions. From now on J ab

α , Hα, E±a
α , etc. denote the SO(2, d) generators that act

on the representation space spanned by the vectors {|α,ω, k;σ〉}. For example, their
differential representations are given in (7).

The second important thing is the set of generators E±a
α . One can show that there

exist certain linear combinations E±
α of these generators that satisfy the following

ladder equations:

E±
α |α,ω, k;σ〉 = A± [

α − d−2
2 ∓ i(ω ± k)

] |α,ω ± i, k + i;σ〉
+ B± [

α − d−2
2 ∓ i(ω ∓ k)

] |α,ω ± i, k − i;σ〉. (41)

For example, in the case of Rindler wedge they are given by E±
α = E±d

α + E±(d+1)
α .

Note that A± and B± are α-independent irrelevant factors.
Now we have almost done. Let us finally consider the intertwining relations

E±
ΔGΔ = GΔE

±
d−Δ. Applying these to the state |d − Δ,ω, k;σ〉 we get

E±
ΔGΔ|d − Δ,ω, k;σ〉 = GΔE

±
d−Δ|d − Δ,ω, k;σ〉. (42)
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It follows from (40) and (41) that the identities (42) result in the following nontrivial
functional equations in complex momentum space:

G̃Δ(ω ± i, k ± i) = Δ − d−2
2 ∓ i(ω + k)

Δ̃ − d−2
2 ∓ i(ω + k)

G̃Δ(ω, k), (43)

G̃Δ(ω ± i, k ∓ i) = Δ − d−2
2 ∓ i(ω − k)

Δ̃ − d−2
2 ∓ i(ω − k)

G̃Δ(ω, k), (44)

where Δ̃ = d − Δ is the scaling dimension of the shadow operator. Since these
are kind of recurrence relations, we can guess the solution by iteration. “Minimal”
solutions to the recurrence relations are as follows:

G̃±
Δ(ω, k) ∝ e±πω

∣
∣
∣Γ

(
Δ− d−2

2 +i(ω+k)
2

)∣
∣
∣

2 ∣
∣
∣Γ

(
Δ− d−2

2 +i(ω−k)
2

)∣
∣
∣

2
, (45)

which can be interpreted as the positive- and negative-frequency Wightman func-
tions. Indeed, these satisfy the KMS condition in momentum space, G̃+

Δ(ω, k) =
e2πωG̃−

Δ(ω, k). One can also check that the solutions (45) exactly coincide with the
Fourier transform of (32) [13]. Note that T can be restored by the replacements
ω → ω/(2πT ) and k → k/(2πT ).

To summarize, we have seen that the intertwining relations, which are just the
conformal Ward–Takahashi identities in disguise, result in the recurrence relations
(43) and (44) when applied to the SO(1, 1) diagonal basis. These are the conformal
Ward–Takahashi identities at finite temperature and give us nontrivial constraints on
momentum-space two-point functions. Though may need a bit of experience, one
can deduce the momentum-space correlators from these constraints without recourse
to the notoriously complicated Fourier transform. We think this is a big step toward
the understanding of real-time momentum-space correlators in d(≥ 3)-dimensional
finite-temperature CFT, because these have not been studied in the literature. In fact,
for d ≥ 3 and at nonzero temperature, even themomentum-space two-point functions
of scalar primary operators have been unknown. It would be quite interesting to
generalize our approach to thermal spinning correlators.
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Renormalization in Some 2D ŝu(2) Coset
Models

Marian Stanishkov

Abstract We consider a RG flow in certain 2D coset models perturbed by the least
relevant field. In the case of the symmetric su(2) coset model we show, up to second
order of the perturbation theory, that there exists a nontrivial IR fixed point.We obtain
the structure constants and the four-point functions of certain fields by deriving
specific recursive relations. This allows us to compute the anomalous dimensions
and the mixing coefficients of these fields in the UV and IR theories. In the case of
another su(2) coset model, describing the N = 2 superconformal theories, we show
that there does not exists a nontrivial IR fixed point up to second order.

Keywords RG flow · Mixing of fields · Anomalous dimensions · Coset models

1 Introduction

In the first part of this paper we consider the symmetric ŝu(2) coset modelM(k, l) [1]
perturbed by the least relevant operator. It is known [2] that there exists an infrared
fixed point of the renormalization group flow of this theory which coincides with the
model M(k − l, l). Here we are interested in the mixing of certain fields under the
corresponding RG flow. It is known that the mixing coefficients coincide for l = 1
(Virasoro) and l = 2 (superconformal) theories (particular cases ofM(k, l)) up to the
second order of the perturbation theory [3]. We will show that this is the case in the
general theory, i.e. they do not depend on l and are finite up to the second order. For
that purpose one needs in addition to the structure constants also the corresponding
four-point functions which are not known exactly. We find it convenient, following
[2], to use the construction presented in [4]. Namely, we define the perturbing field
and the other fields in consideration recursively as a product of lower level fields.
Then the corresponding structure constants and four-point functions at some level l,
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governing the perturbation expansion, can be obtained recursively from those of the
lower levels by certain projected tensor product.

In the second part of the paper we discuss the renormalization group properties
of the N = 2 superconformal minimal models. It is known that these models are
connected to another ˆsu(2) based coset theories. The latter determine the so called
parafermionic construction [5, 6]. It is very useful for the calculation of the 4-point
functions and the structure constants of the 2D OPE algebra. The reason for that
is in the relation of the parafermionic models with the su(2) Wess–Zumino–Witten
(WZW)models [7].We compute theβ function up to second order in the perturbation
theory and show that it doesn’t possesses a non-trivial fixed point. We argue that this
is true also in higher orders.

2 Symmetric ŝu(2) Coset Models

In this Section we present the general ˆsu(2) coset model perturbed by the least
relevant field. We obtain the β function and show that it has a non-trivial fixed point
up to second order in the perturbation theory. We also construct certain fields and
find their anomalous dimensions and the corresponding mixing matrix.

2.1 The Theory

Consider a two-dimensional CFT M(k, l) based on the coset:

ŝu(2)k × ŝu(2)l
ŝu(2)k+l,

(1)

where k and l are integers, we assume k > l. It is written in terms of ŝu(2)k WZNW
models with current Ja , k is the level. The latter are CFT’s with a stress tensor
expressed through the currents by the Sugawara construction, the central charge is
ck = 3k

k+2 . The energy momentum tensor of the coset is then T = Tk + Tl − Tk+l

and:

c = 3kl(k + l + 4)

(k + 2)(l + 2)(k + l + 2)
= 3l

l + 2

(

1 − 2(l + 2)

(k + 2)(k + l + 2)

)

.

The dimensions of the primary fields φm,n(l, p) of the “minimal models” (m, n are
integers) are computed in [8]:
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Δm,n(l, p) = ((p + l)m − pn)2 − l2

4lp(p + l)
+ s(l − s)

2l(l + 2)
,

= |m − n|(mod(l)), 0 ≤ s ≤ l,

1 ≤ m ≤ p − 1, 1 ≤ n ≤ p + l − 1 (2)

where we introduced p = k + 2 (note that we inverted k and l in the definition of
the fields).

In this paper we will use a description of the theory M(k, l) presented in [4]. It
was shown there that this theory is not independent but can be built out of products
of theories of lower levels. Schematically this can be written as a recursion:

M(1, l − 1) × M(k, l) = P(M(k, 1) × M(k + 1, l − 1)) (3)

where P in the RHS is a specific projection. It allows the multiplication of fields of
the same internal indices and describes primary and descendent fields.

In the following we will be interested in the CFT M(k, l) perturbed by the least
relevant field. The theory is described by the Lagrangian:

L(x) = L0(x) + λφ̃(x)

whereL0(x) describes the theory M(k, l) itself.We define the field φ̃ = φ̃1,3 in terms
of lower level fields:

φ̃1,3(l, p) = a(l, p)φ1,1(1, p)φ̃1,3(l − 1, p + 1) + b(l, p)φ1,3(1, p)φ3,3(l − 1, p + 1). (4)

Here the field φ3,3(l, p) is just a primary field form (2). The dimension of the field
(4) is:

Δ = Δ1,3 + l

l + 2
= 1 − 2

p + l
= 1 − ε. (5)

In this paper we consider the case p → ∞ and assume that ε = 2
p+l � 1 is a small

parameter. The coefficients a(l, p) and b(l, p) as well as the structure constants of
the fields involved in the construction (4) can be found by demanding the closure of
the fusion rules [2].

The mixing of the fields along the RG flow is connected to the two-point function.
Up to the second order of the perturbation theory it is given by:

< φ1(x)φ2(0) > = < φ1(x)φ2(0) >0 −λ

∫

< φ1(x)φ2(0)φ̃(y) >0 d
2y +

+ λ2

2

∫

< φ1(x)φ2(0)φ̃(x1)φ̃(x2) >0 d
2x1d

2x2 + . . . (6)

where φ1, φ2 can be arbitrary fields of dimensionsΔ1,Δ2. The first order corrections
are expressed through the structure constants. Let us focus here on the second order.
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One can use the conformal transformation properties of the fields to bring the double
integral to the form:

∫

< φ1(x)φ2(0)φ̃(x1)φ̃(x2) >0 d
2x1d

2x2 =
= (x x̄)2−Δ1−Δ2−2Δ

∫

I (x1) < φ̃(x1)φ1(1)φ2(0)φ̃(∞) >0 d
2x1 (7)

where:

I (x) =
∫

|y|2(a−1)|1 − y|2(b−1)|x − y|2cd2y (8)

and a = 2ε + Δ2 − Δ1, b = 2ε + Δ1 − Δ2, c = −2ε. It is well known that the inte-
gral for I (x) can be expressed in terms of hypergeometric functions whose behaviour
around the points 0, 1 and∞ is well known. It is clear that the integral (7) is singular.
We follow the regularization procedure proposed in [10]. It was proposed there to cut
discs in the two-dimensional surface of radius r ( 1r ) around singular points 0, 1 (∞)
with 0 � r0 � r < 1, where r0 is the ultraviolet cut-off. The additional parameter
r is not physical and should not appear in the final result. The region outside these
discs, where the integration is well-defined, is called Ωr,r0 . Near the singular points
one can use the OPE. The final result is a sum of all these contributions. It turns out
however that we count twice two lens-like regions around the point 1 so we have to
subtract those integrals.

Let us consider the correlation function that enters the integral (7). The basic ingre-
dients for the computation of the four-point correlation functions are the conformal
blocks. According to the construction (3) any field φm,n(l, p) (or its descendent) can
be expressed recursively as a product of lower level fields. Therefore the correspond-
ing conformal blocks will be a product of lower level conformal blocks. Due to the
RHS of (3) only certain products of conformal blocks will survive the projection P.

Let us consider for example the correlation function of the perturbing field itself.
The corresponding conformal blocks are linear combinations of products of confor-
mal blocks at levels 1 and l − 1. In view of the construction (4) there are in general
16 terms. Some of them are absent because of the fusion rules in each intermedi-
ate channel. Here there are three channels: identity φ1,1, the field φ̃1,3 itself and the
descendent field φ̃1,5 which is defined in a way similar to that of φ̃1,3. We compute
the conformal blocks up to a sufficiently high level and make a guess (remind that we
need the result in the leading order in ε → 0). As a result, we obtain the following
2D correlation function:

< φ̃(x)φ̃(0)φ̃(1)φ̃(∞) >= (9)

=
∣

∣

∣

∣

1

x2(1 − x)2

[

1 − 2x +
(

5

3
+ 4

3l

)

x2 −
(

2

3
+ 4

3l

)

x3 + 1

3
x4

]∣

∣

∣

∣

2

+
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+ 16

3l2

∣

∣

∣

∣

1

x(1 − x)2

[

1 − 3

2
x + l + 1

2
x2 − l

4
x3

]∣

∣

∣

∣

2

+

+ 5

9

(

2(l − 1)

l

)2 ∣

∣

∣

∣

1

(1 − x)2

[

1 − x + l

2(l − 1)
x2

]∣

∣

∣

∣

2

.

One can check that this function is crossing symmetric and has a correct behaviour
near the singular points.

We now use this function for the computation of the β-function up to the second
order. For that purpose we have to compute the integral in (7). The integration over
the safe region far from the singularities yields (I (x) ∼ π

ε
):

∫

Ωr,r0
I (x) < φ̃(x)φ̃(0)φ̃(1)φ̃(∞) > d2x =

= (29l2 − 128l)π2

24εl2
+ 2π2

εr2
+ π2

2εr20
− 64π2 log r

3εl2
− 32π2 log 2r0

3εl2
(10)

and we omitted the terms of order r or r0/r .
We have to subtract the integrals over the lens-like regions since they would be

accounted twice. Here is the result of that integration:

π2

ε

(

− 1

r2
+ 1

2r20
+ 1

24

(

29 + 64

l

)

+ 32

3l2
log

r

2r0

)

.

Next we have to compute the integrals near the singular points 0, 1 and ∞. For that
purpose we can use the OPE of the fields and take the appropriate limit of I (x). Near
the point 0 the relevant OPE is (by definition (4):

φ̃(x)φ̃(0) = (x x̄)−2Δ(1 + . . .) + C (1,3)
(1,3)(1,3)(x x̄)

−Δ(φ̃(0) + . . .).

The structure constant was computed in [2]. The value of I (x) near 0 is given in [10]
and finally we obtain:

∫

Dr,0\Dr0 ,0

I (x) < φ̃(x)φ̃(0)φ̃(1)φ̃(∞) > d2x = − π2

r2ε
+ 32π2

3l2ε2
− 32π2

lε
+ 32

3l2
π2 log r

ε
(11)

where the region of integration Dr,0\Dr0,0 is a ringwith internal and external radiuses
r0 and r respectively. Since the integral near 1 gives obviously the same result, we
just need to add the above result twice. To compute the integral near infinity, we use
a relation

< φ1(x)φ2(0)φ3(1)φ4(∞) >= (x x̄)−2Δ1 < φ1(1/x)φ4(0)φ3(1)φ2(∞) >

and I (x) ∼ π
ε
(x x̄)−2ε. This gives
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∫

Dr,∞\Dr0 ,∞
I (x) < φ̃(x)φ̃(0)φ̃(1)φ̃(∞) > d2x = − π2

r2ε
+ 16π2

3l2ε2
− 16

π2

lε
+ 32π2 log r

3l2ε

where now Dr,∞\Dr0,∞ is a ring between 1
r and 1

r0
.

Putting altogether, we obtain the finite part of the integral:

80π2

3l2ε2
− 88π2

lε
. (12)

We want to remind also that we follow the renormalization scheme proposed in
[10]. Therefore we already omitted the terms proportional to r4ε−2

0 which could be
canceled by an appropriate counterterm in the action.

Taking into account also the first order term, we get the final result (up to the
second order) for the two-point function of the perturbing field:

G(x, λ) = < φ̃(x)φ̃(0) >

= (x x̄)−2+2ε

[

1 − λ
4π√
3

(

2

lε
− 3

)

(x x̄)ε + λ2

2

(

80π2

3l2ε2
− 88π2

lε

)

(x x̄)2ε + . . .

]

. (13)

We now introduce a renormalized coupling constant g and a renormalized field
φ̃g = ∂gL analogously to φ̃ = ∂λL. It is normalized by < φ̃g(1)φ̃g(0) >= 1. In this
renormalization scheme the β-function is given by [9, 10]:

β(g) = ελ
∂g

∂λ
= ελ

√

G(1,λ)

One can invert this and compute the bare coupling constant and the β-function in
terms of g:

λ = g + g2
π√
3

(

2

lε
− 3

)

+ g3
π2

3

(

4

l2ε2
− 10

lε

)

+ O(g4), (14)

β(g) = εg − g2
π√
3

(

2

l
− 3ε

)

− 4π2

3l
g3 + O(g4). (15)

A nontrivial IR fixed point occurs at the zero of the β-function:

g∗ = l
√
3

2π
ε

(

1 + l

2
ε

)

. (16)

It corresponds to the IR CFT M(k − l, l) as can be seen from the central charge
difference:

c∗ − c = −4(l + 2)

l
π2

∫ g∗

0
β(g)dg = −l

(

1 + l

2

)

ε3 − 3l2

4
(l + 2)ε4 + O(ε5).
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The anomalous dimension of the perturbing field becomes

Δ∗ = 1 − ∂gβ(g)|g∗ = 1 + ε + lε2 + O(ε3)

which matches with that of the field φ3,1(l, p − l) of M(k − l, l) (defined precisely
below).

2.2 Mixing of the Fields

Let us define recursively the descendant fields φ̃n,n±2:

φ̃n,n+2(l, p) = xφn,n(1, p)φ̃n,n+2(l − 1, p + 1) + yφn,n+2(1, p)φn+2,n+2(l − 1, p + 1),

φ̃n,n−2(l, p) = x̃φn,n(1, p)φ̃n,n−2(l − 1, p + 1) + ỹφn,n−2(1, p)φn−2,n−2(l − 1, p + 1)

(where x , x̃ and y, ỹ are at (l, p)) and the derivative ∂φn,n of the primary field

φn,n(l, p) = φn,n(1, p)φn,n(l − 1, p + 1). (17)

They have dimensions close to 1

Δ̃n,n±2 = 1 + n2 − 1

4p
− (2 ± n)2 − 1

4(p + l)
= 1 − 1 ± n

2
ε + O(ε2),

1 + Δn,n = 1 + n2 − 1

4p
− n2 − 1

4(p + l)
= 1 + (n2 − 1)l

16
ε2 + O(ε3). (18)

This suggests that they mix along the RG-trajectory. To ensure this we ask that
their fusion rules with the perturbing field are closed. This requirement defines the
coefficients and the corresponding structure constants [11].

We want to compute the matrix of anomalous dimensions and the corresponding
mixing matrix of the fields defined above. For that purpose we compute their two-
point functions up to second order and the corresponding integrals (7). The first order
integrals are proportional to the structure constants. For the second order calculation
we need the corresponding four point functions. They are obtained in a way similar to
that of the perturbing field φ̃(z) itself. The explicit form of the four-point functionswe
need:< φ̃(x)φ̃(0)φ̃n,n+2(1)φ̃n,n+2(∞) >,< φ̃(x)φ̃(0)φ̃n,n+2(1)φ̃n,n−2(∞) > and<

φ̃(x)φ̃(0)φ̃n,n(1)φ̃n,n+2(∞) > can be found in [12].
Let us describe briefly the renormalization scheme. We introduce renormalized

fields φg
α which are expressed through the bare ones by:

φg
α = Bαβ(λ)φβ (19)
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(here φ could be a primary or a descendent field). The two-point functions of the
renormalized fields

Gg
αβ(x) =< φg

α(x)φg
β(0) >, Gg

αβ(1) = δαβ (20)

satisfy the Callan–Symanzik equation:

(x∂x − β(g)∂g)G
g
αβ +

2
∑

ρ=1

(ΓαρG
g
ρβ + ΓβρG

g
αρ) = 0.

The matrix of anomalous dimensions Γ that appears above is given by

Γ = BΔ̂B−1 − ελB∂λB
−1 (21)

where Δ̂ = diag(Δ1,Δ2) is a diagonal matrix of the bare dimensions. The matrix
B, as defined in (19), is computed from the matrix of the bare two-point functions
we computed, using the normalization condition (20) and requiring the matrix Γ to
be symmetric.

Let us combine the fields in consideration in a vector with components:

φ1 = φ̃n,n+2, φ2 = (2Δn,n(2Δn,n + 1))−1∂∂̄φn,n, φ3 = φ̃n,n−2.

The field φ2 is normalized so that its bare two-point function is 1.
We can write the matrix of the bare two-point functions Gα,β(x,λ) =< φα(x)

φβ(0) > up to the second order in the perturbation expansion as:

Gα,β(x,λ) = (x x̄)−Δα−Δβ

[

δα,β − λC (1)
α,β(x x̄)ε + λ2

2
C (2)

α,β(x x̄)2ε + . . .

]

. (22)

As we already mentioned, the two-point functions in the first order are proportional
to the structure constants [9]. The second order contribution is a result of the double
integration in (7) of the four-point functions mentioned above. This integration goes
along the same lines as in the case of the perturbing field.

Using the entries C (1) and C (2) thus obtained we can apply the renormalization
procedure and obtain the matrix of anomalous dimensions (21). The bare coupling
constant λ is expressed through g by (14) and the bare dimensions, up to order ε2.
Evaluating this matrix at the fixed point (16), we get:

Γ
g∗
1,1 = 1 + (20 − 4n2)ε

8(n + 1)
+ l(39 − n − 7n2 + n3)ε2

16(n + 1)
,

Γ
g∗
1,2 = Γ

g∗
2,1 =

(n − 1)
√

n+2
n ε(1 + lε)

n + 1
,

Γ
g∗
1,3 = Γ

g∗
3,1 = 0,
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Γ
g∗
2,2 = 1 + 4ε

n2 − 1
+ l(65 − 2n2 + n4)ε2

16(n2 − 1)
,

Γ
g∗
2,3 = Γ

g∗
3,2 =

√

n−2
n (n + 1)ε(1 + lε)

n − 1
,

Γ
g∗
3,3 = 1 + (n2 − 5)ε

2(n − 1)
+ l(−39 − n + 7n2 + n3)ε2

16(n − 1)

Its eigenvalues are (up to order ε2):

Δ
g∗
1 = 1 + 1 + n

2
ε + l(7 + 8n + n2)

16
ε2,

Δ
g∗
2 = 1 + l(n2 − 1)

16
ε2,

Δ
g∗
3 = 1 + 1 − n

2
ε + l(7 − 8n + n2)

16
ε2.

This result coincides with the dimensions Δ̃n+2,n(l, p − l), Δn,n(l, p − l) + 1 and
Δ̃n−2,n(l, p − l) of the model M(k − l, l) up to this order. The corresponding nor-
malized eigenvectors should be identified with the fields of M(k − l, l):

φ̃n+2,n(l, p − l) = 2

n(n + 1)
φ

g∗
1 +

2
√

n+2
n

n + 1
φ

g∗
2 +

√
n2 − 4

n
φ

g∗
3 ,

φ2(l, p − l) = −
2
√

n+2
n

n + 1
φ

g∗
1 − n2 − 5

n2 + 1
φ

g∗
2 +

2
√

n−2
n

n − 1
φ

g∗
3 ,

φ̃n−2,n(l, p − l) =
√
n2 − 4

n
φ

g∗
1 −

2
√

n−2
n

n − 1
φ

g∗
2 + 2

n(n − 1)
φ

g∗
3 .

We used as before the notation φ̃ for the descendent field defined as in the UV theory
and:

φ2(l, p − l) = 1

2Δp−l
n,n (2Δp−l

n,n + 1)
∂∂̄φn,n(l, p − l)

is the normalized derivative of the corresponding primary field. We notice that these
eigenvectors are finite as ε → 0 with exactly the same entries as in l = 1 [10] and
l = 2 [3] minimal models. This is one of the main results of this paper.
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3 N = 2 Superconformal Models

The N = 2 superconformal theories are invariant under the corresponding algebra
generated by the stress-energy tensor T (z), the supercurrents G(±)(z) and the U (1)
current J (z).We shall be interested here in the simplestminimalmodels of this theory,
labeled by an integer p, containing a finite number of fields. It is well known that the
latter are connected to a coset ˆsu(2)×u(1)

u(1) . The fields of the N = 2 theories belong to
different sectors, depending on the boundary conditions of the supercurrents. Here
we will be interested in the fields of the Neveu–Schwartz (NS) sector only.

As it is clear from the coset construction, the N = 2 superconformal minimal
models admit a representation in terms of the D2p parafermionic (PF) theories.
It is based on the observation [5, 6] of the fact that the generators of the N = 2
supersymmetric theory could be expressed in terms of the PF currents and a free
scalar field.

The primary fields in the N = 2 theories are constructed from the lowest fields of
the PF theory and exponentials of the free scalar field ϕ. For the NS sector we have:

Nl
m(z) = φl

m(z) exp

(

i
m√

2p(p + 2)
ϕ(z)

)

,

l = 0, 1, . . . , p m = −l,−l + 2, . . . , l, (23)

where φl
m is the lowest dimensional fields of the parafermionic theory.

The U (1) charge of this field is:

qlm = m

2(p + 2)
(24)

and its dimension is simply the sum of the dimensions of the two ingredients:

Δl
m = dlm + m2

2p(p + 2)
= l(l + 2)

4(p + 2)
− m2

4(p + 2)
. (25)

The product with the supercurrents defines the second component of the field Nl
m :

(Nl
m)I I± ∼ φ

p−l
m±(p+2)e

i(m±(p+2)/
√
2p(p+2))ϕ (26)

Investigating the FR’s in the NS sector one must keep attention that they have more
complicated structure due to the fact that there exist three different 3-point functions
of the NS superfields - one even and two odd ones. The meaning of the odd FR’s
in terms of component fields is that in the product of two first components of given
superfields the second component of the RHS superfield appears. Taking all this into
account we obtain the following FR’s in the NS sector:
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Nl1
m1
Nl2
m2

=
L

∑

l=|l1−l2|
[�l

m],

L = min (l1 + l2, 2p − l1 − l2) (27)

where:

�l
m = (Nl

m1+m2
)even, |m1 + m2| ≤ l,

�l
m = (N p−l

m1+m2±(p+2))
odd , |m1 + m2| > l.

In this Section we would like to discuss the renormalization group properties of
the N = 2 minimal models. In other words we would like to describe the RG flow
of these models perturbed by the least relevant field. In the case of N = 2 minimal
models the latter is constructed from the chiral and antichiral fields N p

±p of dimension
Δ = 1/2 − 1/(p + 2) and U (1) charge q = ±Δ. The suitable perturbation term,
neutral and of dimension close to one, is therefore constructed out of the second
components of such chiral fields. Explicitly we consider:

L = L0 +
∫

d2zΦ(z) (28)

where L0 represents the minimal model itself and the field Φ(z) is a combination of
the second components:

Φ = (N p
p )I I + (N p

−p)
I I ≡ φ+ + φ−. (29)

It is neutral and has a dimension Δ = 1 − 1/(p + 2) = 1 − ε. Similarly to what we
did in the previous Section, we consider the case p → ∞ and assume ε = 1/(p + 2)
to be a small parameter. Also, according to our parafermionic construction, we can
express the perturbing field in terms of the PF currents and exponents of the scalar
field as follows:

(N p
p )I I =

√

2p

p + 2
ψ1

†e−i 2√
2p(p+2) ≡ φ+,

(N p
−p)

I I =
√

2p

p + 2
ψ1e

i 2√
2p(p+2) ≡ φ−

where ψ(†)
1 are the simplest parafermionic currents.

Our purpose now is to compute the beta-function of this theory and to check
for an eventual fixed point. For that we need to compute the two-point function of
the perturbing field up to a second order. The expansion was already written in (6).
As in the case of the symmetric coset, we need the 3- and 4-point functions of the
perturbing field. We note that, due to the FR’s computed above, the 3-point function
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of the field Φ(z), and therefore the first term in (6), is identically zero. So we are left
with the computation of the second order term only. This computation goes along the
same lines as above. We need to compute the 4-point function of Φ(z) up to zeroth
order in ε and to integrate it in the safe region Ωr,r0 far from the singularities. Near
the singular points 0, 1 and ∞ we use the OPE’s that we computed above.

The 4-point function of the perturbing field Φ(z) is expressed through the corre-
sponding functions of the parafermionic fields which are known [5] and the trivial
power-like contribution of the exponents. The final result is (up to zeroth order in ε):

< Φ(x)Φ(0)Φ(1)Φ(∞) >= C |1 + 1

x2
+ 1

(1 − x)2
|2 (30)

where C is some structure constant. We will not need its explicit expression here.
The integration of this function over the safe region gives:

2π2

ε

(

31

16
+ 1

r2
+ 1

4r20

)

. (31)

From this we have to subtract the contribution of the lens-like region:

π2

ε

(

31

16
− 1

r2
+ 1

2r20

)

. (32)

At the end, we add the result of the integration near the singular points:

2

(

− π2

r2ε

)

+ 2π2

ε

(

− 1

2r2
+ 1

2r20

)

(33)

corresponding to the integrals around 0 (and 1) and ∞ respectively. Summing all the
contributions we get finally as a result:

π2

εr20
. (34)

Two comments are in order. First, this result contains only the cut-off parameter and
could be cancelled by adding an appropriate counterterm in the action. Second, the
finite contribution is identically zero. This means that there is no contribution to the
beta-function neither in the first nor in the second order. One can speculate that this
is the case also in higher orders. This result leads us to the conclusion that there do
not exits a nontrivial fixed point of the beta-function close to the UV one. If such a
fixed point exists it should be due to some non-perturbative effects.
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Time-Dependent Free-Particle Salpeter
Equation: Features of the Solutions

Amalia Torre, Ambra Lattanzi and Decio Levi

Abstract An analysis of the spinless (1 + 1)D free-particle Salpeter equation is
presented. Future investigations are suggested.

Keywords Relativistic wave equation · Schrödinger equation · Wigner
distribution function

1 Introduction

The formulation of relativistic quantum mechanics had a rather articulated and in
some ways controversial path, as witnessed by the presence of three relativistic wave
equations: the Salpeter equation, the Klein–Gordon equation and the Dirac equation,
each having its own advantages and disadvantages.

The spinless Salpeter equation is the relativistic version of the Schrödinger equa-
tion [5, 7–9, 12, 13, 15]. The latter is a well defined partial differential equation
characterized by the Laplacian operator. In contrast, the Salpeter equation presents
a pseudo-differential operator since the relativistic kinetic energy operator is the
square-root of a Laplacian-related operator, that is inherently non-local [2].
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In 1926, Weyl proposed such a square-root operator for the formulation of rela-
tivistic quantum mechanics but he could not find a clear interpretation of it although
he came very close to the concept of pseudo differential operator as it is today for-
mulated. The square root operator was abandoned and new methods were proposed
leading to the Klein–Gordon and Dirac equations.

Recently, the Salpeter equation has been the object of renewed interest in both the
eigenvalues/eigenstates problem [4, 6, 10] and the time-evolution issue [5, 7–9, 15].
The spinless Salpeter equation represents a well-defined standard approximation to
the Bethe-Salpeter formalism [10, 13], and offers definite advantages with respect
to the Klein–Gordon and Dirac equations. It is first-order in the time-derivative, and
preserves the scalar nature of the wave function. It possesses solutions of positive
energies only, and supports the probabilistic interpretation of its solutions, whose
norm is a conserved quantity [7, 8]. Also, it has a well-defined classical relativistic
counterpart.

Subject of this paper is the initial condition problem for the spinless time-
dependent free-particle Salpeter equation in one space-dimension, as explicitly for-
mulated in Sect. 2. An accurate analysis of such an issue has been presented in [9] and
further developed in [15]. Analyzing specific solutions of the equation for assigned
initial conditions on the basis of simple concepts and methods, like those of symme-
tries, fundamental solution, Fourier transform, asymptotic analysis and stationary
phase method, peculiar features of the evolution governed by the Salpeter equa-
tion have been fixed. The “degree of localization” of the initial condition has been
shown to mark the border between the relativistic and non relativistic behavior. A
quantitative definition of it has been achieved for some initial conditions.

We will recall from [9, 15] the results, that are functional to the present analysis.
Thus, Sects. 3 and 4 are concerned with the fundamental solution and the evolution
of a Gaussian input, respectively.

Inspired by the well-known formal analogy between the (1 + 1)D Schrödinger
equation for a free-particle and the 2D paraxial wave equation for free propagation,
the possibility of establishing a plain correspondence between the evolution under
the Salpeter equation and the optical free propagation has been thoroughly examined
in [15]. Indeed, the analogy between the solution of the Salpeter equation in the
asymptotic limit and the Huygens-Fresnel integral for free propagation has been
established, when interpreting the former in the light of the pseudo-Euclidean metric
pertaining to theMinkowski spacetime. As a consequence, a long-time evolution rule
(paralleling the “Fraunhofer diffraction rule’) for the quantum relativistic evolution
has been formulated.

It is on theses lines that we move here. In Sect. 5, we examine the evolution of
Bessel functions, related to a new class of paraxial optical beams [11]; also, they rep-
resent a band-limited input for the equation. Then we inspect the joint coordinate-
momentum representation of the wave function, as it is provided by the Wigner
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distribution function [16], which, as is well known, finds applications also in optics
and in signal theory [14]. As a preliminary analysis, we compare theWigner charts of
the Gaussian input evolving under the Salpeter equation and the Schrödinger equa-
tion. The latter means paraxial propagation of the wave field in the optics language.
Concluding notes (Sect. 6) close the paper.

2 Salpeter Equation: Coordinate and Momentum
Representations

The initial condition problem for the spinless (1 + 1)Dfree-particle Salpeter equation
can be formulated in both the coordinate and momentum representations. In both
cases one deals with an evolution equation for the position wave function ψ(x, t) of
the particle,

i�
∂

∂t
ψ(x, t) =

√
m2c4 − c2�2

∂2

∂x2
ψ(x, t),

ψ(x, 0) = ψ0(x), (1)

and for the momentum wave function ψ̃(p, t),

i�
∂

∂t
ψ̃(p, t) =

√
m2c4 + c2 p2ψ̃(p, t),

ψ̃(p, 0) = ψ̃0(p). (2)

Equation (2) is easily solved while (1) requires a more thorough analysis. Indeed,
the Salpeter equation is usually approached in the momentum-space representation.
However, as proved in [9, 15], a parallel analysis in both representations allows for
a full-view account of the features of the solutions.

2.1 Solution: General Expressions

We introduce the dimensionless variables

ξ = x
−λc

, τ = ct
−λc

, κ = p/�

κc
, −λc = �

mc
; (3)

the Compton wavelength −λc and the corresponding wavenumber κc = −λ−1
c are the

scale factors for the space and spatial frequency variables.
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On the basis of the Fourier relation linking ψ(ξ, τ ) and ψ̃(κ, τ ), from the solution
of Eq. (2), which in terms of (3) writes as

ψ̃(κ, τ ) = e−iτ
√
1+κ2

ψ̃0(κ), (4)

two expressions for the solution of (1) can be elaborated. The momentum wave-
function based expression amounts to an integration over the momentum domain,
being the (inverse) Fourier transform of ψ̃(κ, τ ):

ψ(ξ, τ ) = 1√
2π

∫ +∞

−∞
e−iτ

√
1+κ2

eiξκψ̃0(κ)dκ. (5)

The position wave-function based expression amounts to an integration over the
space domain, being the convolution of the initial condition with the fundamental
solution S(ξ, τ ):

ψ(ξ, τ ) =
∫ +∞

−∞
S(ξ − ξ′, τ )ψ0(ξ

′)dξ′. (6)

We highlight the main results of the study presented in [9, 15], concerning in
particular the fundamental solution and the evolution of a Gaussian input.

The numerical analysis is based on (5); for the interpretation of the results we
resort to the features of the fundamental solution. Unless otherwise specified, all
the displayed plots have been obtained using Mathcad 15 infinite limit routine with
absolute error tolerance set to 10−6 (10−9 for Fig. 6).

3 Extremely Localized Input: Fundamental Solution

The fundamental solution S(ξ, τ ) is the wave function evolving from the δ-function.
It is amenable for a closed-form expression. Thus,

ψ0(ξ) = δ(ξ) (7)

evolves in [1]

S(ξ, τ ) = 1

2π

∫ +∞

−∞
e−iτ

√
1+κ2

eiκξdκ = τ

π

K1(i
√

τ 2 − ξ2)√
τ 2 − ξ2

, (8)

where K1 is the McDonald function of first order.
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Fig. 1 (ξ, τ )-contourplot of the probability density |S(ξ, τ )|2. The plots have been obtained by
Maple 8 setting to 20 the number of digits in the evaluation of (8)

The space and time variables enter expression (8) through the pseudo-Euclidean
norm s2 ≡ τ 2 − ξ2 as it is defined in the (1 + 1)D Minkowski space-time in accord
with the inherent metric of signature (1,−1). Being a solution of an evolution equa-
tion, S(ξ, τ ) should encode causality and hence its support in the (ξ, τ )-plane should
be inside the time-like region delimited by the light cone. This is confirmed by an
accurate study based on the properties of theMcDonald function K1 and a numerical
and asymptotic analysis [15].

3.1 Numerical Analysis: V-Like Shape of |S(ξ, τ )|2

In fact, as shown in Fig. 1, the probability density |S(ξ, τ )|2 covers almost exclusively
the time-like region in theMinkowski plane. Here, it displays hyperbolic level curves,
whose main characteristic is convexity. Convexity of the level curves appears to be
a peculiar feature of the relativistic evolution. The change of the curvature of the
level curves from convex to concave signalizes the passage from the relativistic to
the non-relativistic regime.



302 A. Torre et al.

4 Gaussian Input

The solution to the initial condition problem (1) for the Gaussian input

ψ(G)
0 (ξ) = 1√

2πw2
e− ξ2

2w2 , w > 0 (9)

is provided by the integral transform

ψ(G)

Salp
(ξ, τ ) = 1

2π

∫ +∞

−∞
e−iτ

√
1+κ2

eiκξe− w2κ2

2 dκ. (10)

The parameter w fixes the widths of ψ(G)
0 (ξ) in both the ξ- and κ-domains. As

“width” of a wave function, we address, as usual, the variance of the probability
density, so that for (9) one has σξ = w√

2
and σκ = 1√

2w
.

The numerical and asymptotic analysis of (10), the latter based on the stationary-
phase method, reveals that the relevant probability density is mostly contained in the
triangular region subtended by the lines ξ = ±τ (Fig. 2), reproducing more or less
faithfully the peculiar V-shape of |S(ξ, τ )|2 as far as the width parameter w is such
that

0 ≤ w ≤ 1.225. (11)

Increasingw, |ψ(G)
Salp

(ξ, τ )|2 tends to round the steepness at the edges and to change
the level-curves curvature from convex to concave, approaching the non relativistic
behavior. The plots in Fig. 3 show the behavior of the probability densities associated
with ψ(G)

Salp
(ξ, τ ) and with the solution of the Schrödinger equation ψ(G)

Schr
(ξ, τ ), which

is the well-known Gaussian wave packet for a free particle:

Fig. 2 (ξ, τ )-contourplots of |ψ(G)
Salp

(ξ, τ )|2 for values of w well inside the range (11)
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Fig. 3 (ξ, τ )-contourplots of (a) |ψ(G)
Salp

(ξ, τ )|2 and (b) |ψ(G)
Schr

(ξ, τ )|2 for some values of w

ψ(G)

Schr
(ξ, τ ) = 1√

2πw2μ(τ , w)
e
− ξ2

2w2μ(τ ,w) , μ(τ , w) = 1 + i
τ

w2
. (12)

Note that ψ(G)
0 (ξ) is normalized to the δ-function as limw→0ψ

(G)
0 (ξ) = δ(ξ).

5 Salpeter Equation and Optics

All the initial conditions examined in [9, 15] have relevance in optics as well. This
grounds on the formal analogy between the (1 + 1)DSchrödinger equation for a free-
particle and the 2D paraxial wave equation for free-propagation so that solutions of
the former are also solutions of the latter, and hence can be interpreted as optical
beams with definite and properly exploited features. For instance, the Gaussian wave
packet (12) corresponds to the optical Gaussian beam produced by a laser system.
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Further inspired by this analogy we explore the behavior of the Bessel functions
and the Gaussian-apodized Bessel functions, which represent a new class of parax-
ial optical beams [11], exhibiting a discrete-like diffraction pattern, similar to that
observed in periodic evanescently coupledwaveguide lattices endowedwith coupling
interactions up to second order.

Then, we examine the Wigner distribution function of the Gaussian input, com-
paring its evolution under the Schrödinger and Salpeter equations.

5.1 Bessel Input: Band-Limited Initial Condition

The Bessel function is interesting because it provides an example of a band-limited
input. We consider the initial wave function

ψ(Jn)
0 (ξ) = Jn(αξ),

where the parameter α fixes the width of the function in the κ-domain, since the
Fourier transform is [3]

ψ̃(Jn)
0 (κ) =

{
(−i)n

α

√
2

π(1−(κ/α)2)
Tn(κ/α), |κ/α| ≤ 1,

0, |κ/α| > 1,
(13)

where Tn denotes the Chebyshev polynomial of first kind and degree n.
The analysis of the evolution ofψ(Jn )

0 (ξ) reveals interesting aspects. The relativistic
and nonrelativistic evolutions do not differ dramatically from each other, but in a
form that highlights the basic features of the former. In both cases, one observes a
spot-structure of the probability density (Fig. 4). Is it due to a sort of interference of
the contributions emanating from the various lobes of the Bessel function? In the
case of the Salpeter solution, the spot-structure persists also when, with increasing
α, that amounts to increasing the width of the input in the κ-domain (and hence
to approaching the δ -function in the ξ-domain) and the frequency of the Bessel
oscillations, the probability density tends to mimic |S(ξ, τ )|2. This yields a certain
“granularity” of the “light-lines”, the same displayed by |S(ξ, τ )|2 (Fig. 1) as well as
by the probability density associated with other inputs when they are quite similar
to the δ-function (Fig. 2). Can such a “granularity” be considered as merely due to a
numerical effect?

The question is also stimulated by the fact that a similar spot-structure appears
in the contour plots of the probability density conveyed by a uniform band-limited
input (spatially meaning a sinc function). However, it disappears when, increasing
α, the probability density tends to be like |S(ξ, τ )|2.
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Fig. 4 (ξ, τ )-contourplots of (a)
∣∣∣ψ(J0)

Salp
(ξ, τ )

∣∣∣2 for α = 1 and α = 3, and (b)
∣∣∣ψ(J3)

Salp
(ξ, τ )

∣∣∣2 for

α = 2 and α = 4

5.2 Coordinate-Momentum Representation: Wigner
Distribution Function

The Wigner distribution function is the simplest tool for the phase-space represen-
tation in quantum mechanics [16]. Defined as

W(ξ,κ, τ ) = 1

π

∫ +∞

−∞
ψ∗(ξ − ξ′, τ )ψ(ξ + ξ′, τ )e−2iκξ′

dξ′

= 1

π

∫ +∞

−∞
ψ̃∗(κ − κ′, τ )ψ̃(κ + κ′, τ )e2iξκ

′
dκ′, (14)

equivalently through the position and momentum wave functions, it is introduced in
signal analysis and optics through an expression formally identical, with properly
involved “conjugate variables” and “system state descriptor”.

The Wigner distribution function represents the wave-optical tool closest to the
geometric-optical concept of light ray, due to its localizationproperties anddynamical
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Fig. 5 Wigner chart of ψ(G)
0 (ξ) and of the relevant time-evolved wave function forw = 1 at τ = 1

behavior, which under paraxial propagation through real optical systems is ruled by
the same transfer law of ray optics. In fact, under free propagation of the wave field,
and equivalently under the Schrödinger evolution of the wave function, it changes as

W(ξ,κ, τ ) = W0(ξ − κτ ,κ), (15)

where W0(ξ,κ) is the Wigner function at the initial time τ = 0, which for ψ(G)
0 (ξ)

writes as

W (G)
0 (ξ,κ) = 1

2π3/2w
e− ξ2

w2 −w2κ2

. (16)

Relation (15) amounts to a q-shear of the Wigner chart (Fig. 5).
Using expression (4) in (14), for ψ(G)

Salp
(ξ, τ ) we obtain

W (G)

Salp
(ξ,κ, τ ) = e−w2κ2

π2∫ +∞

0
e−w2 y2 cos[2ξy + τ (

√
1 + (κ − y)2 −

√
1 + (κ + y)2)]dy.

(17)

Figure 6 shows the Wigner chart of ψ(G)
Salp

(ξ, τ ) for w = 1 at τ = 0.5 and τ = 1.

W (G)
Salp

is real as it should be, and is nonnegative everywhere through the (ξ,κ)-
plane. This is a prerogative of the Gaussian function only; it seems then to be pre-
served by the relativistic evolution as well. Evidently, the structure ofW (G)

Salp
(ξ,κ, τ ),

as it appears in Fig. 6, deserves further investigations.
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Fig. 6 Wigner chart ofψ(G)
Salp

(ξ, τ ) forw = 1 at τ = 0.5 and τ = 1. The relativistic evolution seems
to manifest through a q-shear as well

6 Concluding Notes

An extension of the study of the spinless (1 + 1)D free-particle Salpeter equation,
reported in [9, 15], has been presented, comprising the evolution of Bessel inputs and
the coordinate-momentum representation, the latter addressed through the Wigner
distribution function. From the inherent results, hints for further investigations are
drawn.
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Leptons, Quarks, and Gauge
Symmetries, from a Clifford Algebra

Ovidiu Cristinel Stoica

Abstract Spinors having the discrete properties of the leptons and quarks in a family
of the Standard Model, with the proper symmetries, are obtained using the left ide-
als of a Clifford algebra. This algebra is the complex Clifford algebra C�6 obtained
from the exterior algebra of a complex three-dimensional vector space and its dual,
this giving the ideal decomposition and representing the electric charges, the quark
colors, and the proper SU(3) symmetries. The Lorentz and Dirac algebras appear as
subalgebras, their left actions on the ideals representing therefore the leptons and the
quarks. Because the representation of the Dirac algebra on the minimal left ideals
of C�6 is reducible, the weak symmetry emerges as well, with the isospins, hyper-
charges, and chirality. The electroweak symmetry is broken geometrically, without
resulting in additional exchange bosons or other fermions. The bare Weinberg angle
θW predicted by this model is given by sin2 θW = 0.25. The mass-related parameters
and the three families of leptons and quarks are not yet obtained in this model.

Keywords Beyond the Standard Model · Clifford algebras · Grand Unified
theory · Gauge theory

1 Introduction

At first sight, the number of types of particles is immense. But they are all known to
be composed out of a small number of elementary particles. There are three known
families of fundamental fermions – the leptons and quarks, and their antiparticles.
They interact via exchange bosons - gluons, theW± and Z particles, and the photon.
The Standard Model of particle physics (SM) is the model we currently have which
describes these particles, their properties, and their interactions. To give mass to the
particles, it relies on spontaneous symmetry breaking, which requires a scalar particle
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– theHiggs boson. The SM is completed with the data about neutrinos, coming from
the discovery that they oscillate.

The electric charges, colors, and isospins of leptons and quarks show that there
is a pattern, which is not explained by the SM. It is the purpose of this article to
provide a possible explanation of this pattern. In fact, the model proposed here gives
a generic family of leptons and quarks, together with their electric charges, colors,
weak isospins, hypercharges, chiralities, as well as the gauge symmetries at the origin
of the electromagnetic, weak, and color forces. They will be shown to emerge out
of a simple Clifford algebra. Except for the Weinberg angle, this model currently
doesn’t say anything about the masses and other parameters of the SM, and about
the number of families.

Other proposals to explain these patterns are known.Themost popular are basedon
finding a simple Lie group, and obtaining the SM symmetries by symmetry breaking,
and the leptons and quarks as representations of this group (SU(5) [1] and Spin(10)
[2, 3]). They do not explain the group and the chosen representation, and come with
additional exchange bosons and proton decay, which are not confirmed experimen-
tally. Models based on Clifford algebras and other algebras are also known [4–9].
I compare these and other models with this one in [10].

2 The Standard Model Algebra

The electric charges of leptons and quarks are all multiple of 1/3 of the electron’s
charge, and the quarks have colors, while the leptons are singlets with respect to
the color SU(3)c. This suggests the following. Let us represent electromagnetism by
the action of the symmetry group U(1)em on a complex 1-dimensional vector space
χem, so that this action preserves a Hermitian inner product hem on χem. The tensor
products of the form

⊗k χem will therefore represent an electric charge k times
larger than that of χem (which we take to be 1/3), and the tensor products of the
form

⊗−k χem := ⊗k χ†
em the opposite charges. But why is k limited between −3

and 3? To see this, consider the color as given by the group SU(3)c, of symmetries
of a complex 3-dimensional vector space χ endowed with a Hermitian inner product
h. Also consider the action of U(1)em on χ by multiplication with e

i
3ϕ. The exterior

spaces
∧

kχ and
∧ −kχ := ∧

kχ† will have the right colors and charges to represent
the internal spaces of leptons, quarks, and their antiparticles.

To see this, let us pick an orthonormal basis of χ, and its dual basis in χ†,

{
(q1, q2, q3)

(q†1, q
†
2, q

†
3).

(1)

Consider the following basis for the exterior algebra of χ,
∧ •χ,

(1, q23, q31, q12, q321, q1, q2, q3), (2)
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where q j1... jk := q j1 . . . q jk . The inner product h extends on the exterior algebra
∧ •χ

to a positive definite Hermitian inner product for which the basis (2) is orthonormal.
The internal charge and color spaces for leptons and quarks are therefore ˚ �→∧ 0χ, d �→ ∧ 1χ†, u �→ ∧ 2χ, and e− �→ ∧ 3χ†. Then, the spaces

∧
kχ, −3 ≤

k ≤ 3, are the correct representations of U(1)em and SU(3)c.
The complex 6-dimensional vector space χ† ⊕ χ is endowed with the inner prod-

uct given by the contraction between 1-forms in χ† with vectors in χ,

〈u†1 + u2, u
†
3 + u4〉 := 1

2

(
u†1(u4) + u†3(u2)

)
∈ C, (3)

where u†1, u
†
3 ∈ χ† and u2, u4 ∈ χ.

In the following, the Standard Model Algebra (SMA) is the Clifford algebra of
the space χ† ⊕ χ with the inner product (3),

ASM := C�(χ† ⊕ χ) ∼= C�6, (4)

togetherwith theWitt decompositionχ† ⊕ χ, and the inner product h. It is isomorphic
with the matrix algebra C(8).

The elements of the bases (1) satisfy the anticommutation relations

{q j , qk} = 0, {q†j , q†k} = 0, {q j , q
†
k} = δ jk (5)

for j, k ∈ {1, 2, 3}.
The matrix representation of the Standard Model Algebra has in a basis that will

be described later the form from Fig. 1.
The minimal left ideals of C�(χ† ⊕ χ), which in the matrix representation are

columns, will turn out to be reducible representations of the Dirac algebra, and will
thus represent pairs of spinors whose left chiral components are parts of the same
weak doublet. These ideals are determined by the decomposition χ† ⊕ χ. Each col-
umn contains two 4-spinors associated to two different flavors. The symmetry group
SU(3)c acts by linearly combining the columns according to the representations 1c,
3c, 1c, and 3c. To each ideal corresponds an electric charge, multiple of 1

3 , repre-
senting in part the charge of the upper particle. The colors are determined for each
ideal according to the representation of SU(3)c. The Dirac algebra and the Lorentz
group preserving a metric with signature (+,−,−,−) have reducible representa-
tions on each column, and they permute the rows of each ideal. When decomposed
into irreducible representations, they split each column into two 4-spinors, each of
them being decomposed into left and right Weyl spinors. The weak symmetry group
SU(2)L acts by permuting the rows according to the representations 1w and 2w.
Therefore, the leptons, quarks, and gauge symmetries of the SM are reproduced.
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Fig. 1 Matrix representation of the leptons and quarks. The Dirac algebra, the Lorentz group, and
the weak symmetry group, act by multiplication at left, permuting the rows. The color symmetry
group acts at right, and permutes the columns

3 Representing Leptons and Quarks

Leptons and quarks are spinor fields. Since theDirac algebra is represented in physics
as a matrix algebra, for a physicists the spinors are column matrices. From mathe-
matical point of view, spinors are elements of minimal left ideals, and they appear
as column vectors only in the matrix representation. To obtain a minimal left ideal,
we need a primitive idempotent element ofASM. As a matrix, this is a projector on a
1-dimensional space, thus giving us the column vector. Let us define q := q1q2q3 and
q† := q†3q

†
2q

†
1, and the idempotents p := qq† and p′ := q†q, (p)2 = p and (p′)2 = p′.

The representation of the algebra ASM on its ideal
∧ •χ†p is obtained by taking

the Clifford product between u† + v ∈ χ† ⊕ χ and ωp ∈ ∧ •χ†p as

(u† + v)ωp = (u† ∧ ω)p + (ivω)p ∈
∧ •χ†p, (6)

where ivω is the interior product, defined for any ω ∈ ∧
kχ† by

(ivω) (u1, . . . , uk) =
{

ω(v, u1, . . . , uk−1), for k ∈ {1, 2, 3}, and

0 for k = 0.
(7)

Then, the vectors q j and q†j act as ladder operators on
∧ •χ†p:



Leptons, Quarks, and Gauge Symmetries, from a Clifford Algebra 313

{
q†j (ωp) = (q†j ∧ ω)p,

q j (ωp) = (iq j ω)p.
(8)

A basis of the ideal
∧ •χ†p is

(1 p, q†23 p, q
†
31 p, q

†
12 p, q

†
321 p, q

†
1 p, q

†
2 p, q

†
3 p). (9)

The basis (9) is written in terms of the idempotent element p. It is equal to the
basis

(q q†,−q1 q
†,−q2 q

†,−q3 q
†, 1 q†, q23 q

†, q31 q
†, q12 q

†) (10)

written in terms of the nilpotent q†, which determines the same ideal as p.
It is convenient to use thePauli matrices σ1, σ2, σ3, and thematrices σ+ = 1

2 (σ1 +
iσ2), σ− = 1

2 (σ1 − iσ2), σ
+
3 = 1

2 (1 + σ3) = σ+σ−, and σ−
3 = 1

2 (1 − σ3) = σ−σ+.
Then, in the representation (9) of ASM on its ideal

∧ •χ†q,

q1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 iσ2 0
0 0 0 0
0 0 0 0
0 iσ2 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, q2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 σ+
3

0 0 −σ+
3 0

0 −σ−
3 0 0

σ−
3 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, q3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 σ+
0 0 −σ− 0
0 σ− 0 0

−σ+ 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (11)

The elements q†1, q†2, and q†3 are represented by the corresponding adjointmatrices.
From the matrices q1, q2, q3, q†1, q†2, and q†3, we can calculate the matrix form of any
element of interest in the algebra ASM.

From the Witt decomposition A1
SM = χ† ⊕ χ we obtain a natural decomposition

of ASM as a direct sum of left ideals

ASM =
3⊕

k=0

(∧ •χ†
)
p

∧
kχ, (12)

and the ideals have internal degrees of freedom in
∧

kχ, corresponding to the charges
and colors of leptons and quarks, as explained in Sect. 2.

The Dirac algebra is the complexified of the Clifford algebra of the Minkowski
spacetime, DC := C�1,3 ⊗ C ∼= C�4. To represent the Dirac algebra on the minimal
left ideals of the algebra ASM, we use the following representation

�μ =
⎛

⎜
⎜
⎝

γ̃μ 0
0 γμ

⎞

⎟
⎟
⎠, where γ0 = γ̃0 =

⎛

⎜
⎜
⎝

0 12
12 0

⎞

⎟
⎟
⎠, γ

j = −γ̃ j =
⎛

⎜
⎜
⎝

0 σ j

−σ j 0

⎞

⎟
⎟
⎠, (13)

where γμ is the chiral (Weyl) representation. The representation (13) is reducible,
and the minimal left ideals decompose into two 4-dimensional spaces which give
irreducible representations of the Dirac algebra. Each of these spaces decomposes
as the direct sum of two 2-dimensional chiral subspaces.
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4 The Gauge Symmetries

We construct an orthonormal basis of χ† ⊕ χ, (e1, e2, e3, ẽ1, ẽ2, ẽ3),

{
e j = q j + q†j

ẽ j = i
(
q†j − q j

)

{
q j = 1

2

(
e j + i ẽ j

)

q†j = 1
2

(
e j − i ẽ j

) (14)

where j ∈ {1, 2, 3}. Then, e2j = ẽ2j = 1.
The weak symmetry group SU(2)L is generated by the elements

⎧
⎪⎨

⎪⎩

T̃1 := uuu
′
d − u′

uud

T̃2 := uuud + u′
uu

′
d

T̃3 := uuu
′
u − udu

′
d

, (15)

where uu = −ie3ẽ1, u′
u = ẽ1ẽ2ẽ3e2, ud = i ẽ1ẽ2ẽ3, and u′

d = ie1e2e3.
From (11) follows that the elements (15) have the following matrix form:

T̃1 = 2i

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 0 12 0
0 12 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, T̃2 = 2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 0 −12 0
0 12 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, T̃3 = 2i

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 −12 0 0
0 0 12 0
0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

We define u◦ := ie3ẽ2 and u′◦ := ẽ1ẽ2ẽ3e1, and

⎧
⎨

⎩

ω j = 1
2

(
u j + iu′

j

)

ω†j = 1
2

(
u j − iu′

j

)
,

(17)

where j ∈ {u, d, ◦}.
The elements ω j and ω†j , j ∈ {u, d}, split the ideal ASMp into subspaces which

correspond to the singlets and doublets of the weak symmetry:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Right-handed up singlet space: W0R := 1 spanC
(
p,ω†◦p

)
,

Left-handed up doublet space: W0L := ω†uW0R,

Right-handed down singlet space: W1R := ω†uω
†
dW0R,

Left-handed down doublet space: W1L := ω†dW0R.

(18)

As proven in [10], the bivectors in Eq. (15) are spinorial generators of the SU(2)L
group, by the adjoint action

e−iϕTj a = e
ϕ
2 T̃ j ae− ϕ

2 T̃ j = e−iϕσ j⊗ 1−γ5

2 a (19)
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for any a ∈ W0L ⊕ W1L and j ∈ {1, 2, 3}. Therefore, the ideals give the correct
representations of the symmetry group SU(2)L.

In [10] it is also shown that for the algebraASM, theWeinberg angle is θW,ASM = π
6 ,

given by
sin2 θW,ASM = 0.25. (20)

Different experiments gave different values for sin2 θW , ranging between ∼0.223
and ∼0.24 [11, 12]. So the value predicted by this model is a bit larger, but not as
large as that of 0.375 predicted by the SU(5), Spin(10), and other GUTs, but the
same as other models like [8, 13]. For a correct comparison we should consider the
running of the coupling constants due to higher order perturbative corrections. The
Higgs scalar field is, internally, a vector φ ∈ Ww. The direction of the vector φ in
Ww is the element ω†u [10]. While in this model the symmetry breaking appears to
be due to geometry, the Higgs field is still responsible for the masses of particles.

As for the SU(3)c, it is generated by the adjoint action of

λ̃1 = e1ẽ2 − ẽ1e2, λ̃2 = e1e2 + ẽ1ẽ2, λ̃3 = e1ẽ1 − e2ẽ2,

λ̃4 = e1ẽ3 − ẽ1e3, λ̃5 = e1e3 + ẽ1ẽ3,

λ̃6 = e2ẽ3 − ẽ2e3, λ̃7 = e2e3 + ẽ2ẽ3, λ̃8 = 1√
3
(e1ẽ1 + e2ẽ2 − 2e3ẽ3).

(21)

The standard Gell-Mann matrices are defined by λ j = i λ̃ j . Then,

e−iϕλ j a = e
ϕ
2 λ̃ j ae− ϕ

2 λ̃ j , (22)

for the SU(3)c representation 3. The spinorial action generated by (21) is equivalent
to the right multiplication with the matrix O1 ⊕ eiϕλ j ⊕ O1 ⊕ e−iϕλ j , according to
the representations 1c, 3c, 1c, and 3c [6, 10, 14, 15].

Since the U(1)em gauge transformation only multiplies the vectors inχ by a phase
factor eiϕ, the generator is the identity of EndC (χ) [7, 10]

Q = e1ẽ1 + e2ẽ2 + e3ẽ3. (23)

The action of the group U(1)em being adjoint, it is consistent with the exterior
product, and it transforms both p

∧
kχ and ω†dp. The way it transforms gives charges

that are multiple of 1
3 , and they depend not only on the minimal left ideal, but also

each ideal represents two particles with charges differing by −1.

5 Open Problems

The algebra ASM proposes an explanation for the leptons and quarks, their discrete
properties, and their gauge symmetries. But it does not explain why there are three
families, the masses, the quark and lepton mixing matrices, the mechanism responsi-
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ble for the neutrino masses. Maybe there is another algebra which explains all these,
or maybe it is this one, supplemented with additional features. It is not clear at this
point what happens in perturbative regime. Another open problem is the connection
with general relativity, and quantum gravity. Does this algebra arise from a geometric
structure intimately related with the spacetime geometry?

Acknowledgements I wish to thank Prof. Ivan Todorov and Igor Salom for inspiring discussions
about this model.
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Infinitesimal Symmetries in Covariant
Quantum Mechanics

Josef Janyška, Marco Modugno and Dirk Saller

Abstract Wediscuss theLie algebras of infinitesimal symmetries of themain covari-
ant geometric objects of covariant quantum mechanics: the time form, the hermi-
tian metric, the upper quantum connection, the quantum lagrangian. Indeed, these
infinitesimal symmetries are generated, in a covariant way, by the Lie algebra of time
preserving conserved special phase functions. Actually, this Lie algebra of special
phase functions generates also the Lie algebra of infinitesimal symmetries of the
main classical objects: the time form and the cosymplectic 2-form. A natural output
of the classification of the quantum symmetries is a covariant approach to quantum
operators and to quantum currents associated with special phase functions.

Keywords Covariant classical mechanics · Covariant quantum mechanics
Quantum symmetries

2010 MSC: 81Q99 · 81S10 · 83C00 · 70H40 · 70G45 · 58A20.

1 Introduction

Several covariant formulations of Classical and Quantum Mechanics in a curved
spacetime with absolute time have been proposed by different authors (see, for
instance, [2–18, 28–32, 37–40] and citations therein).
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In particular, “Covariant Quantum Mechanics” is an approach to Quantum
Mechanics in a curved spacetime fibred over absolute time, equipped with a rie-
mannian metric on its fibres, and aimed at implementing several features of General
Relativity in this riemannian framework. This formulation started some years ago
[20] and has been further developed by several papers (see, for instance, [19, 21–23,
25, 26, 34–36, 41] and citations therein).

The infinitesimal symmetries of Covariant Classical Mechanics have been dis-
cussed in [26, 34–36]. In the present paper, we discuss the infinitesimal symmetries
of the fundamental objects of Covariant Quantum Mechanics: the time form dt , the
η-hermitian metric hη and the upper quantum connection Q↑ , which is the source
of all other quantum objects. We find that the Lie algebra of the infinitesimal sym-
metries of these objects is isomorphic, in a covariant way, to the Lie algebra of time
preserving conserved special phase functions [35]. Moreover, we find that the Lie
algebra of infinitesimal symmetries of the quantum lagrangian L and of the time
form dt coincides with the Lie algebra of the above fundamental quantum objects
and also with the Lie algebra of the fundamental classical objects: the time form dt
and the cosymplectic 2-formΩ .Hence, the results of this paper underline the mean-
ing of the Lie algebra of special phase functions and its distinguished subalgebras
within this approach to Classical and Quantum Mechanics. This again confirms the
covariant approach, which was crucial for the discovery of special phase functions.

We deal with units of measurement on the same footing of coordinates, gauges
and observers. So, in order to make our theory explicitly independent of “units of
measurement”, we use the notion of “spaces of scales” [25, 27].

We consider the following basic spaces of scales: (1) the spaceT of time intervals,
(2) the space L of lengths, (3) the space M of masses. Then, other space of scales
are obtained by tensor products of rational powers of the above basic spaces.

Weconsider thePlanck constant � ∈ T
−1 ⊗ L

2 ⊗ M as a “universal scale”.More-
over,wewill consider amassm ∈ M and charge q ∈ T

−1 ⊗ L
3/2 ⊗ M

1/2 .Wedenote
a time unit ofmeasurement and its dual, respectively, by u0 ∈ T and u0 ∈ T

∗ � T
−1 .

2 Sketch of the Classical Background

The classical background of Covariant QuantumMechanics is provided by a suitable
formulation of Classical Mechanics (for a short account of it, see, for instance, [25],
where the reader can find further details).

In the present model, we postulate time as an oriented 1-dimensional affine
space T , associated with the vector space T ⊗ R , and spacetime as an oriented
4-dimensional manifold E equipped with a time fibring t : E → T .

The time fibring yields the distinguished time form dt : E → T ⊗ T ∗E .

We shall refer to spacetime charts (xλ) ≡ (x0, xi ) , defined as charts of the man-
ifold E, which are adapted to the time fibring, the affine structure of T and the
orientation of E and T . Every spacetime chart (xλ) yields a time scale u0 ∈ T .

The associated bases of vector fields and forms are denoted by (∂λ) ≡ (∂0, ∂i ) and
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(dλ) ≡ (d0, di ) . Accordingly, we obtain the linear fibred charts of the tangent bun-
dle T E → E by (xλ, ẋλ) .

We denote by V E ⊂ T E the 3-dimensional vertical subbundle annihilated by dt
and by H∗E ⊂ T ∗E the 1-dimensional horizontal subbundle generated by dt . The
vertical projection T ∗E → V ∗E is denoted by the restriction symbol ∨ .

The classical motions are the sections s : T → E .

The classical phase space is the 7-dimensional 1st jet space of motions t10 :
J1E → E , equipped with the fibred charts (xλ, xi0) .

The phase space is naturally equipped with the contact map and the complemen-
tary contact map d : J1E → T

∗ ⊗ T E and θ : J1E → T ∗E ⊗ V E , with coordi-
nate expressions d = u0 ⊗ (∂0 + xi0 ∂i ) and θ = (di − xi0 d

0) ⊗ ∂i .

The classical observers are the sections o : E → J1E .

An observer o is characterised by the “observed” contact map and complementary
contact map d[o] :=d ◦ o : E → T

∗ ⊗ T E and θ [o] := θ ◦ o : E → T ∗E ⊗ V E ,

with coordinate expressionsd[o] = u0 ⊗ (∂0 + oi0 ∂i ) and θ [o] = (di − oi0 d
0) ⊗ ∂i .

Then, we postulate the galileian metric to be a spacelike riemannian metric g :
E → L

2 ⊗ (V ∗E ⊗ V ∗E) . With reference to a particle of mass m ∈ M , and to
the Planck constant � ∈ T

−1 ⊗ L
2 ⊗ M , the rescaled galileian metric is G := m

�
g :

E → T ⊗ (V ∗E ⊗ V ∗E) .

We have the coordinate expressions g = gi j ď i ⊗ ď j and G = G0
i j u0 ⊗ ď i ⊗ ď j ,

with gi j ∈ map(E, L
2 ⊗ R) and G0

i j ∈ map(E, R) .

The spacelikemetric g and the spacetimeorientation yield the scaled spacelike vol-
ume form η : E → L

3 ⊗ ∧3V ∗E , with coordinate expression η = √|g| ď1 ∧ ď2 ∧
ď3 .

Then, we obtain the scaled spacetime volume form υ := dt ∧ η : E → T ⊗
∧4T ∗E , with coordinate expression υ = υ0 u0 = √|g| u0 ⊗ d0 ∧ d1 ∧ d2 ∧ d3 .

Given an observer o , we define the observed kinetic energy, the observed kinetic
momentum and the observed Poincaré–Cartan form to be, respectively, the sections

K [G, o] := 1
2 G (∇[o],∇[o]) ∈ sec(J1E, H∗E) ,

Q[G, o] := θ [o] � (G� ∇[o]) ∈ sec(J1E, T ∗E) ,

Θ[G, o] := − K [G, o] + Q[G, o] ∈ sec(J1E, T ∗E) ,

with coordinate expressions

K [G, o] = 1
2 G

0
i j (x

i
0 − oi0) (x j

0 − o j
0) d

0 ,

Q[G, o] = (− 1
2 G

0
i j x

i
0 x

j
0 + 1

2 G
0
i j o

i
0 o

j
0) d

0 + G0
i j (x

j
0 − o j

0) d
i ,

Θ[G, o] = G0
i j (x

j
0 − o j

0) (di − oi0 d
0) .

We define a galileian spacetime connection to be a spacetime connection K ,

which is linear, torsion free and which fulfills the conditions ∇dt = 0 , ∇g = 0 and
Riμjν = R jνiμ , where R is the curvature tensor of K . Its coordinate expression is
of the type
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K = dλ ⊗ (∂λ + Kλ
i
μ ẋμ ∂̇i )

= dλ ⊗ ∂λ − 1
2 Gi j

0
(
∂0G

0
hj (ẋh d0 + ẋ0 dh) + (∂hG

0
jk + ∂kG

0
jh − ∂ j G

0
hk ) ẋ

k dh
) ⊗ ∂̇i

− Gi j
0

(
Φ0 j ẋ

0 d0 + 1
2 Φhj (ẋh d0 + ẋ0 dh)

) ⊗ ∂̇i ,

where Φ ≡ Φ[K ,G, o] = Φλμ dλ ∧ dμ : E → ∧2T ∗E is a closed spacetime
2-form, which depends on K , on G and on the observer o associated with the
chosen spacetime chart (xλ) , by the condition oi0 = 0 .

Further, we postulate, as gravitational and electromagnetic fields, a galileian
spacetime connection and a closed scaled spacetime 2-form [33]

K � : T E → T ∗E ⊗ T T E and F : E → (L1/2 ⊗ M
1/2) ⊗ ∧2T ∗E .

With reference to a particle of mass m and charge q , we couple K � and F into
the joined galileian spacetime connection K ≡ K � + K e := K � − 1

2
q
�

(dt ⊗ F̂ +
F̂ ⊗ dt) , where F̂ :=G2(F) : E → (L−3/2 ⊗ M

1/2) ⊗ (T ∗E ⊗ V E) .

From now on, we shall refer to the joined spacetime connection K .

The joined observed spacetime 2-form Φ ≡ Φ[K ,G, o] splits as Φ = Φ� +
1
2

q
�
F .

We consider as law of motion for a particle, with mass m and charge q , effected
by the gravitational and electromagnetic fields, the equation ∇[K ]ds = 0 .

We define a phase connection to be a connection Γ : J1E → T ∗E ⊗ T J1E of
the affine bundle t10 : J1E → E .

There is a bijection between time preserving, linear spacetime connections K and
affine phase connections Γ with coordinate expression Kλ

i
μ �→ Γλ

i
0
0
μ [21].

Each affine phase connection Γ yields the “quadratic” dynamical phase connec-
tion, the dynamical phase 2-form, the dynamical phase 2-vector

γ ≡ γ [Γ ] :=d �Γ : E → T
∗ ⊗ T J1E ,

Ω ≡ Ω[Γ,G] :=G �
(
ν[Γ ] ∧ θ

) : J1E → ∧2T ∗ J1E ,

Λ ≡ Λ[Γ,G] := Ḡ � (Γ̌ ∧ ν) : J1E → ∧2V J1E .

Therefore, the joined spacetime connection K yields the distinguished affinephase
connection, dynamical phase connection, dynamical phase 2-form, dynamical phase
2-vector Γ ≡ Γ [K ] , γ ≡ γ [K ] , Ω ≡ Ω[K ,G] , Λ ≡ Λ[K ,G] .

We have the coordinate expressions

Γ [K ] = dλ ⊗ ∂λ − Gi j
0

(
Φ0 j + 1

2 (∂0G
0
h j + Φh j ) x

h
0 )

)
d0 ⊗ ∂0

i

− Gi j
0

1
2

(
(∂0G

0
k j + Φk j ) + (∂hG

0
jk + ∂kG

0
jh − ∂ j G

0
hk) x

h
0 )

)
dk ⊗ ∂0

i ,

γ [K ] = u0 ⊗ (∂0 + xi0 ∂i )

− Gi j
0

(
(∂hG

0
jk − 1

2 ∂ j G
0
hk) x

h
0 x

k
0 + ∂0G

0
h j x

h
0 + (Φh j x

h
0 + Φ0 j )

)
u0 ⊗ ∂0

i ,
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Ω[K ,G] = (∂0G
0
h j x

h
0 + 1

2 ∂ jG
0
hk x

h
0 x

k
0 ) d

0 ∧ d j + (∂iG
0
jh x

h
0 ) d

i ∧ d j

+ G0
h j x

h
0 d

0 ∧ d j
0 − G0

i j d
i ∧ d j

0 + 1
2 Φλμ dλ ∧ dμ ,

Λ[K ,G] = Gi j
0 ∂i ∧ ∂0

j + Gih
0 G jk

0

(
∂hG

0
kr x

r
0 + 1

2 Φhk
)
∂0
i ∧ ∂0

j .

We can prove that Ω[K ,G] turns out to be closed if and only if K is galileian.
Hence, the pair (dt,Ω) turns out to be a scaled cosymplectic structure of the

phase space [24]. In other words, dt ∧ Ω ∧ Ω ∧ Ω : J1E → T ⊗ ∧7T ∗ J1E is a
scaled volume form of the phase space and dΩ = 0 .

The cosymplectic 2-form Ω admits an “upper” horizontal potential of the type
A↑ : J1E → T ∗E , according to the equation Ω = d A↑ . Clearly, the horizontal
potential A↑ is locally defined up to a gauge of the type d f : E → T ∗E , with
f ∈ map(E, R) .

For each observer o , we have Φ[K ,G, o] = 2 o∗Ω[K ,G] . Hence, the observed
potential A[K ,G, o] of Φ[K ,G, o] turns out to be given (up to a gauge) by the
equality A[K ,G, o] = o∗A↑ .

The classical law of motion for a motion s effected by the gravitational and
electromagnetic fields is expressed equivalently by the equations ∇[K ]ds = 0 , or
d j1s = γ [K ] ◦ j1s .

The classical lagrangian, the classical momentum, the observed classical hamil-
tonian and the observed classical momentum are, respectively, the horizontal and
vertical components and the observed horizontal and vertical components of A↑

L ≡ L [A↑] :=d � A↑ ∈ sec(J1E, H∗E) ,

P ≡ P[A↑] := θ � A↑ ∈ sec(J1E, T ∗E) ,

H [A↑, o] := − d[o] � A↑ = K [G, o] − A[G, o] ∈ sec(J1E, H∗E) ,

P[A↑, o] := θ [o] � A↑ = Q[G, o] + A[G, o] ∈ sec(J1E, T ∗E) .

We have the coordinate expressions

L [A↑] = ( 12 G
0
i j x

i
0 x

j
0 + A j x

j
0 + A0) d0 , P[A↑] = (G0

i j x
j
0 + Ai ) (di − xi0 d

0) ,

H [A↑, o] = ( 12 G
0
i j x

i
0 x

j
0 − A0) d0 , P[A↑, o] = (G0

i j x
j
0 + Ai ) (di − oi0 d

0) .

3 Setting of the Quantum Theory

Next, we sketch the starting setting of Covariant Quantum Mechanics (for a short
account of it, see, for instance, [25], where the reader can find further details).

We postulate the quantum bundle to be a 1-dimensional complex vector bundle
over spacetime π : Q → E , equipped with a scaled η-hermitian quantum metric
hη : Q ×

E
Q → ∧3V ∗E ⊗ C .
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We shall refer to normalised scaled quantum bases b : E → L
3/2 ⊗ Q , which

fulfill the condition hη(b, b) = η . Accordingly, we shall refer to scaled linear fibred
charts (xλ, z) , where the scaled complex function z : Q → L

−3/2 ⊗ C , fulfills the
condition z(b) = 1 , and to the associated real fibred charts (xλ, w1,w2) , given by
z = w1 + iw2 .

The quantum states are represented by the quantum sections Ψ : E → Q . We
shall write Ψ = ψ b , with ψ ≡ |ψ | exp(iϕ) ∈ map(E, L

−3/2 ⊗ C) .

Wedefinetheupperquantumbundle tobethe1-dimensionalcomplexvectorbundle
π↑ : Q↑ → J1E over the phase space, given by the pullback Q↑ := J1E ×

E
Q .

The η-hermitian quantum metric h yields, by pullback, the η-hermitian upper
quantum metric h↑ .

We say that a complex linear connectionQ↑ : Q↑ ×
J1E

T J1E → T Q↑ is reducible

if it factorises through a system of quantum connections Q[o] : Q ×
E
T E → T Q .

Indeed, Q↑ turns out to be reducible if and only if, in coordinates,Q↑0
i = 0 .

We postulate the galileian upper quantum connection Q↑ : Q↑ → T ∗ J1E ⊗
T Q↑ to be a connection of the upper quantum bundle, which is hermitian and
reducible and whose curvature fulfills the condition R[Q↑] = −2 iΩ ⊗ I

↑ , where
I
↑ : Q↑ → Q↑ is the Liouville vector field of Q↑ (see also [32]). The closure of

Ω turns out to be a necessary integrability condition for the local existence of Q↑ ,

because of the Bianchi identity. The integer cohomology class of Ω turns out to be
a necessary integrability condition for the global existence of Q↑ [41]. The upper
quantum connections Q↑ are defined locally up to a gauge of the type i d f ⊗ I

↑ ,

where f : E → R .

With reference to a quantum basis b , the coordinate expression of an upper
quantum connection Q↑ is locally of the type

Q↑ = χ↑[b] + i A↑[b] ⊗ I
↑

= χ↑[b] + i
(
Θ[o] + A[b, o]) ⊗ I

↑

= χ↑[b] + i
( − K [o] + Q[o] + A[b, o]) ⊗ I

↑

= χ↑[b] + i
( − H [b, o] + P[b, o]) ⊗ I

↑

= dλ ⊗ ∂λ + di
0 ⊗ ∂0

i + i
( − ( 12 G

0
i j x

i
0 x

j
0 − A0) d

0 + (G0
i j x

j
0 + Ai ) d

i
) ⊗ I

↑ ,

whereχ↑[b] : Q↑ → T ∗ J1E ⊗ T Q↑ is the flat hermitian upper quantumconnection
induced by the quantum basis b .

Thus, the upper quantum potential A↑[b] appearing in the above expression of
Q↑ is just a potential ofΩ and a potential of K , that have been discussed previously.

We suppose the cohomology class of Ω to be integer and postulate a galileian
upper quantum connection Q↑ , as source of all further quantum developments.

We observe that the quantum bases b allow us to parametrise the upper quantum
potentials A↑ , hence the observed quantum potentials A[b, o] .
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With reference to two quantum bases b and b́ = exp(iϑ) b and two observers o
and ó = o + v , with v ∈ sec(E, T

∗ ⊗ V E) , we have the transition rules

A↑[b́] = A↑[b] − dϑ and A[b́, ó] = A[b, o] − dϑ + θ [o] �G�(v) − 1
2 G(v, v) .

From the quantum connection Q↑ we derive, by a covariant procedure, the kinetic
quantum momentum, the probability current, the Schrödinger operator, the quantum
lagrangian and the quantum Poincaré–Cartan form

Q(Ψ ) :=d ⊗ Ψ − iG∇↑Ψ : E → T
∗ ⊗ (T E ⊗ Q) ,

J(Ψ ) :=d ⊗ ‖Ψ ‖2 − re h(Ψ, iG∇↑Ψ ) : E → L
−3 ⊗ (T∗ ⊗ T E) ,

S(Ψ ) := 1
2

(
d �∇↑Ψ + δ↑(

Q(Ψ )
)) : E → T

∗ ⊗ Q ,

L(Ψ ) := − dt ∧ (
im hη(Ψ, d �∇↑Ψ ) + 1

2 (Ḡ ⊗ hη)(∇̌↑Ψ, ∇̌↑Ψ ) : E → ∧4T ∗E ,

Θ[L] :=L + ϑ ∧̄ VQL : J1Q → ∧4T ∗ Q ,

with coordinate expressions

Q[Ψ ] = (
ψ ∂0 − iGi j

0 (∂ jψ − i A j [b, o] ψ) ∂i
) ⊗ u0 ⊗ b ,

J(Ψ ) = (|ψ |2 ∂0 + (i 12 Gi j
0 (ψ ∂ j ψ̄ − ψ̄ ∂ jψ) − Ai0[b, o] |ψ |2) ∂i

) ⊗ u0 ,

S(Ψ ) =
(
(∂0ψ − 1

2 iG
i j
0 ∂i jψ) − i (A0 − 1

2 Ai A
i
0) ψ

−
((

A j
0 + 1

2 i
∂i (G

i j
0

√|g|)√|g|

)

∂ jψ

)

+ 1
2

((
∂0

√|g|√|g| − ∂i (A
i
0
√|g|)√|g|

)

ψ

)

u0 ⊗ b ,

L(Ψ ) = 1
2

( − Gi j
0 ∂i ψ̄ ∂ jψ + i Aλ

0 (ψ̄ ∂λψ − ψ ∂λψ̄) + 2 (A0 − 1
2 Ai A

i
0)

)
υ0 ,

Θ[L] = 1
2 i (z̄ dz − z dz̄) ∧ υ0

0 − 1
2

(
Gi j
0 (z̄i dz + zi d z̄) + i Ai0 (z̄ dz − z dz̄)

) ⊗ υ0
j

+ ( 1
2 Gi j

0 z̄i z j + (A0 − 1
2 Ai A

i
0)z̄ z

)
υ0 ,

where υλ := i∂λ
υ, A0

0 := 1 and Ai
0 := Gi j

0 A j .
In the particular case of a flat spacetime and an inertial observer, S turns out to be

the standard Schrödinger operator.

4 Lie Algebra of Special Phase Functions

Definition 1 ([20, 23]) A special phase function (s.p.f.) is defined to be a phase
function f ∈ map(J1E, R) , such that its 2nd fibre derivative with respect to the
affine bundle J1E → E is of the type D2 f = f ′′ ⊗ G ,with f ′′ ∈ map(E, T ⊗ R) .
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In coordinates, a special phase function is characterised by an expression of the
type f = f 0 1

2 G
0
i j x

i
0 x

j
0 + f i G0

i j x
j
0 + f̆ , with f 0, f i , f̆ ∈ map(E, R) . Accord-

ingly, we have f ′′ = f 0 u0 .

We denote the subsheaf of s.p.f. by spe (J1E, R) ⊂ map(J1E, R) . �

We have the following distinguished subsheaves of spe (J1E, R)

subshea f o f projectable s.p. f. := pro spe (J1E, R) := {
f | ∂ j f 0 = 0

}
.

subshea f o f time preserving s.p. f. := tim spe (J1E, R) := {
f | ∂λ f 0 = 0

}
,

subshea f o f a f f ine s.p. f. := aff spe (J1E, R) := {
f | f 0 = 0

}
,

subshea f o f spacetime s.p. f. := map(E, R) := {
f | f λ = 0

}
.

Example 1 We have the distinguished special phase functions

xλ , A↑
i [b, o] = Pi [b, o] = G0

i j x
j
0 + Ai , −A↑

0[b, o] = H0[b, o] = 1
2 G0

i j x
i
0 x

j
0 − A0 .

�

Proposition 1 For each f ∈ spe (J1E, R) ,weobtain, in a covariantway, the space-
time vector field, called its tangent lift, X [ f ] = f ′′ �d − G(Df ) ∈ sec(E, T E) ,

with coordinate expression X [ f ] = f 0 ∂0 − f i ∂i .
For instance, we have: X [Pi ] = −∂i , X [H0] = ∂0 , X [L0] = ∂0 − Ai

0 ∂i . �

Proposition 2 With reference to an observer o and to a quantum basis b , we can
split each f ∈ spe (J1E, R) , respectively, as

f = −X [ f ] �Θ[o] + f̆ [o] = ( f 0 K0 + f i Qi ) + f̆ ,

f = −X [ f ] � A↑[b] + f̂ [b] = ( f 0 H0 + f i Pi ) + f̂ ,

where f̆ [o] = f̆ and f̂ [b] = f̆ + A0 f 0 − Ai f i . �

Thus, each f ∈ spe (J1E, R) is characterised:

• with reference to an observer o , by its observer and gauge independent tangent lift
X [ f ] and observer dependent and gauge independent spacetime function f̆ [o] ,

• with reference to a quantumbasis b , by its observer and gauge independent tangent
lift X [ f ] and gauge dependent and observer independent spacetime function f̂ [b] .

Proposition 3 We have two distinguished phase lifts of a special phase function f :
• the holonomic phase lift, which involves only the time fibring of spacetime,
• the hamiltonian phase lift, which involves the cosymplectic structure of the phase
space (here r1 is the natural fibred morphism r1 : J1T E → T J1E),

X↑
hol [ f ] := r1 ◦ J1X [ f ] , X↑

ham [ f ] := γ ( f ′′) + Λ(d f ) ,

with coordinate expressions
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X↑
hol [ f ] = f 0 ∂0 − f i ∂i − (∂0 f

i + ∂ j f
i x j

0 + ∂0 f
0 xi0 + ∂ j f

0 x j
0 x

i
0) ∂0

i ,

X↑
ham [ f ] = f 0 ∂0 − f i ∂i + Gi j

0

( − f 0 (∂0P j − ∂ j A0) + f h (∂hP j − ∂ j Ah)

+ ∂ j f
0 K0 + ∂ j f

h Qh + ∂ j f̆
)

∂0
i . �

Theorem 1 The equality [[ f, f́ ]] := Λ(d f, d f́ ) + γ ( f ′′). f́ − γ ( f́ ′′). f equips the
sheaf of special phase functions with an R-lie bracket, called special phase Lie
bracket. This bracket can also be expressed by the following equalities

[[ f, f́ ]] = −[
X [ f ], X [ f́ ]] �Θ[o] + X [ f ]. ˘́f − X [ f́ ]. f̆ + Φ[o](X [ f ] , X [ f́ ]) ,

[[ f, f́ ]] = −[
X [ f ], X [ f́ ]] � A↑[b] + X [ f ]. ˆ́f − X [ f́ ]. f̂ ,

[[ f, f́ ]] = X↑[ f ]. f́ − X↑[ f́ ]. f + 2Ω
(
X↑[ f ] , X↑[ f́ ]) ,

where X↑[ f ] ∈ sec(J1E, T J1E) is any phase prolongation (in particular, the holo-
nomic lift and the hamiltonian lift) of the tangent lift X [ f ] ∈ sec(E, T E) .

In coordinates, we have the following expression

[[ f, f́ ]] λ = X [ f ]μ ∂μX [ f́ ]λ − X [ f́ ]μ ∂μX [ f ]λ,
[[ f, Ĭ f́ ]] = X [ f ]μ ∂μ

˘́f − X [ f́ ]μ ∂μ f̆ + X [ f ]λ X [ f́ ]μ (∂λAμ − ∂μAλ).

The projectable, time preserving and affine subsheaves of special phase functions
turn out to be closed with respect to the special phase Lie bracket.

The holonomic lift and the hamiltonian lift of special phase functions turn out to
be Lie algebra homomorphisms. �

For each f ∈ pro spe (J1E, R), we set divη f := divη X [ f ] .

Indeed, we have divη [[ f, f́ ]] = X [ f ]. divη f́ − X [ f́ ]. divη f .

The subsheaves uniη spe (J1E, R) ⊂ duni η spe (J1E, R) ⊂ pro spe (J1E, R),
of projectable special phase functions with vanishing divergence and with constant
divergence, respectively, are closed with respect to the special Lie bracket.

Definition 2 A special phase function f is said to be holonomic if its holonomic
phase lift and hamiltonian phase lift coincide: X↑

ham [ f ] = X↑
hol [ f ] . �

Proposition 4 A special phase function f turns out to be holonomic if and only if
it fulfills the following conditions, in coordinates,

∂i f
0 = 0 ,

∂0 f
0 G0

i j − ( f 0 ∂0 − f h ∂h)G
0
i j + ∂ j f

h G0
ih + ∂i f

h G0
jh = 0 ,

∂i f̆ + ∂0 f
h G0

ih − f 0 (∂0Ai − ∂i A0) + f h (∂h Ai − ∂i Ah) = 0 .
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The subsheaf of holonomic special phase functions hol spe (J1E, R) ⊂ spe
(J1E, R) is closed with respect to the special phase Lie bracket. �

A special phase function f is said to be conserved if it is constant along the
classical motions solutions of the law of motion, i.e. if γ. f = 0 . We denote the
subsheaf of conserved special phase functions by cns spe (J1E, R) ⊂ spe (J1E, R) .

Lemma 1 For each X↑ ∈ sec(J1E, T J1E) and f ∈ map(J1E, R) , the following
implication holds

iX↑ Ω = d f ⇒ X↑ = γ
(
dt (X↑)

) + Λ(d f ) and γ. f = 0 .

Proof The proof can be achieved from the identities Λ
(
iX↑Ω

) = X↑ − γ (X↑) and
iγ Ω = 0 . QED

Theorem 2 For each f ∈ spe (J1E, R) , the following conditions are equivalent:

(1) 0 = γ. f , (2) d f = iX↑
ham [ f ] Ω , (3) d f = iX↑

hol [ f ] Ω ,

(4)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = ∂i f 0 ,

0 = ∂0 f 0 G0
hk − f 0 ∂0G0

hk + f i ∂iG0
hk + ∂h f i G0

ik + ∂k f i G0
ih ,

0 = ∂h f̆ − f 0 (∂0Ah − ∂h A0) + f i (∂i Ah − ∂h Ai ) + ∂0 f i G0
ih ,

0 = ∂0 f̆ − f i (∂0Ai − ∂i A0) .

Indeed, if the above equivalent conditions are fulfilled, then X↑
ham [ f ] =

X↑
hol [ f ] , i.e., cns spe (J1E, R) ⊂ hol spe (J1E, R) .

Proof The proof can be achieved from the above Lemma 1 and from the coordinate
expression of the condition for a special phase function to be conserved. QED

The time preserving conserved special phase functions constitute a further Lie
subalgebra tim cns spe (J1E, R) ⊂ cns spe (J1E, R) ⊂ spe (J1E, R) .

For each f ∈ tim cns spe (J1E, R) , we have LX [ f ]G = 0 , hence divη f = 0 .

5 Quantum Symmetries

A vector field Y ∈ sec(Q, T Q) is said to be real linear if it is projectable on E
and a real linear morphism over its spacetime projection X ∈ sec(E, T E) , i.e. if
it is of the type Y = Xλ ∂λ + (Y 1

1 w
1 + Y 1

2 w
2) ∂w1 + (Y 2

1 w
1 + Y 2

2 w
2) ∂w2 , with

Xλ, Y 1
1 , Y 1

2 , Y 2
1 , Y 2

2 ∈ map(E, R) .

A vector field Y ∈ sec(Q, T Q) is said to be complex linear if it is real linear and
a complex linear morphism over its spacetime projection X ∈ sec(E, T E) , i.e. if
it is of the type Y = Xλ ∂λ + Y 1

1 (w1 ∂w1 + w2 ∂w2) + Y 1
2 (w2 ∂w1 − w1 ∂w2) , with

Xλ, Y 1
1 , Y 1

2 ∈ map(E, R) .
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The sheaves lin R proE(Q, T Q) and lin C proE(Q, T Q) ofR-linear andC-linear
quantum vector fields turn out to be closed with respect to the Lie bracket of vector
fields.

Lemma 2 If f ∈ spe (J1E, R), then:

• for each observer o , the vector field Y [ f, o] := X [ f ] �Q[o] + i f̆ [o] I ∈ sec
(Q, T Q) turns out to be gauge independent;

• for each basis b , the vector field Y [ f, b] := X [ f ] �χ [b] + i f̂ [b] I ∈ sec(Q, T Q)

turns out to be observer independent.

Moreover, we have X [ f ] �Q[o] + i f̆ [o] I = X [ f ] �χ [b] + i f̂ [b] I .

Proof The proof follows from the transition rules of the quantum potential [25] and
of the components of the special phase function, which fit very well. QED

Definition 3 We define the η-hermitian quantum vector fields to be the infinitesimal
symmetries of the η-quantum metric hη , i.e. the vector fields

Yη ∈ lin R proE,T (Q, T Q) ,

such that LYη
hη = 0 . We denote the Lie algebra subsheaf of η-hermitian quantum

vector fields by her η(Q, T Q) ⊂ sec(Q, T Q) . �

Theorem 3 ([23]) The η-hermitian quantum vector fields are of the type

Yη = Yη[ f ] = X [ f ] �χ [b] + (
i f̂ [b] − 1

2 divη X [ f ]) I

= X [ f ] �Q[o] + (
i f̆ [o] − 1

2 divη X [ f ]) I

= f 0 ∂0 − f i ∂i + (
i ( f̆ + A0 f 0 − Ai f

i ) − 1
2 divη f

)
I

= f 0 ∂0 − f i ∂i + (
i f̂ − 1

2 divη f
)
I ,

with f ∈ pro spe (J1E, R). Indeed, the map Yη : pro spe (J1E, R) → her η(Q,

T Q) turns out to be an R-Lie algebra isomorphisms with respect to the special
phase Lie bracket and the Lie bracket of vector fields.

Proof The proof can be achieved by comparing the splitting of Yη into its horizontal
and vertical components with respect to the observed quantum connectionQ[o] (or
with respect to the flat quantum connection χ [b]) and the splittings of a special phase
function f into its spacetime lift X [ f ] and its observed spacetime component f [o]
(or its gauge components f [b]) (Proposition 2). QED

Example 2 We have the following distinguished η-hermitian quantum vector fields

Yη[xλ] = i xλ
I , Yη[A↑

λ] = −∂λ + 1
2

∂λ

√|g|√|g| I .

�



330 J. Janyška et al.

Definition 4 We define the η-hermitian upper quantum vector fields to be the
infinitesimal symmetries of the η-hermitian upper quantummetric h↑

η , i.e. the vector
fields Y ↑

η ∈ lin R proJ1E,E,T (Q↑, T Q↑) , such that LY ↑
η
h↑

η = 0 .

We denote the Lie algebra subsheaf of η-hermitian upper quantum vector fields
by her ↑

η(Q↑, T Q↑) ⊂ sec(Q↑, T Q↑) . �

Proposition 5 The η-hermitian upper quantum vector fields are of the type

Y ↑
η = Y ↑

η[X↑, f ] :=Q↑(X↑) + (i f − 1
2 divη X) I

↑ ,

with (X↑, f ) ∈ proE,T (J1E, T J1E) × map(J1E, R) , where X ∈ proT (E, T E) is
the spacetime projection of X↑ , i.e., in coordinates, of the type

Y ↑
η = Xλ ∂λ + Xi

0 ∂0
i + ( f + A↑

λ X
λ) (w1 ∂w2 − w2 ∂w1)

− 1
2 divη f (w1 ∂w1 + w2 ∂w2) ,

where X0 ∈ map(T , R) , Xi ∈ map(E, R) , Xi
0, f ∈ map(J1E, R) .

Proof The proof can be achieved by splitting Y ↑
η into its horizontal and vertical

components with respect to the upper quantum connection Q↑ . QED

Proposition 6 The subsheaf of η-hermitian upper quantum vector fields

her ↑
η(Q↑, T Q↑) ⊂ lin R proJ1E,E,T (Q↑, T Q↑)

turns out to be closed with respect to the Lie bracket of vector fields. Indeed, the map

Y↑
η : proE,T (J1E, T J1E) × map(J1E, R) → her ↑

η(Q↑, T Q↑) : (X↑, f ) �→ Y↑
η[X↑, f ]

turns out to be anR-Lie algebra isomorphismwith respect to the Lie bracket of phase
pairs

[
(X↑, f ) , (X́↑, f́ )

]

2Ω
=

(
[X↑, X́↑] , X↑. f́ − X́↑. f + 2Ω(X↑, X́↑)

)

and the Lie bracket of vector fields. �

Theorem 4 An η-hermitian upper quantum vector field Y ↑
η[X↑, f ] is projectable

on Q if and only if f ∈ pro spe (J1E, R) and X↑ is any phase prolongation of the
tangent lift X [ f ] ∈ pro sec(E, T E) .

Proof The proof can be achieved from the coordinate expression of LY ↑
η
h↑

η and the
splittings of the special phase functions (Proposition 2). QED

Corollary 1 For each f ∈ pro spe (J1E, R), we have twodistinguishedR-Lie alge-
bra isomorphisms (Proposition 3)
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Y ↑
η hol : pro spe (J1E, R) → her ↑

η(Q↑, T Q↑) : f �→ Y ↑
η[X↑

hol , f ] ,

Y ↑
η ham : pro spe (J1E, R) → her ↑

η(Q↑, T Q↑) : f �→ Y ↑
η[X↑

ham , f ] . �

Example 3 We have the following distinguished infinitesimal symmetries of the
η-hermitian upper quantum metric

Y ↑
η hol [xλ] = i xλ

I
↑ , Y ↑

η hol [A↑
λ] = −∂λ + 1

2
∂λ

√|g|√|g| I
↑ ,

Y ↑
η ham [xλ] = δλ

j G
i j
0 ∂0

i + i xλ
I
↑ ,

Y ↑
η ham [A↑

λ] = −∂λ + Gih
0 ∂λPh ∂0

i + 1
2

∂λ

√|g|√|g| I
↑ .

�

Definition 5 We define the infinitesimal symmetries of the upper quantum connec-
tion Q↑ to be the upper quantum vector fields Y ↑ ∈ lin R proJ1E(Q↑, T Q↑) , such
that LY ↑Q↑ = 0 . �

Proposition 7 The infinitesimal symmetries ofQ↑ are of the type

Y ↑ = Q↑(X↑) + Y̌ ↑ ,

where X↑ ∈ sec(J1E, T J1E) and Y̌ ↑ ∈ lin R proJ1E(Q↑, VJ1E Q
↑) fulfill the fol-

lowing two equivalent conditions:
(1) LY̌ ↑Q↑ = −i (iX↑Ω) ⊗ I

↑ , (2)∇↑Y̌ ↑ = i (iX↑Ω) ⊗ I
↑ .

Indeed, the sheaf cnc ↑ (Q↑, T Q↑) of infinitesimal symmetries of Q↑ turns out
to be closed with respect to the Lie bracket of vector fields.

Proof The proof can be achieved by means of our postulate R[Q↑] = −2 iΩ ⊗
I
↑ . QED

Proposition 8 The infinitesimal symmetries Y ↑
η ∈ lin R proJ1E,E,T (Q↑, T Q↑) of

h↑
η and Q↑ are of the type Y ↑

η = Y ↑
η[ f ] :=Q↑(

X↑[ f ]) + (i f − 1
2 divη f ) I

↑ ,

with f ∈ duni η cns spe (J1E, R) and X↑[ f ] = X↑
hol [ f ] = X↑

ham [ f ] , i.e. of the
type

Y ↑
η = f 0 ∂0 − f i ∂i + X j

0 ∂0
j

+ ( f̆ + A0 f 0 − Ai f
i ) (w1 ∂w2 − w2 ∂w1) − 1

2 divη f (w1 ∂w1 + w2 ∂w2) ,

where the spacetime functions f 0 ∈ map(T , R) , f i , f̆ ∈ map(E, R) fulfill the con-
ditions
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0 = ∂i f
0 ,

0 = ∂0 f
0 G0

hk − f 0 ∂0G
0
hk + f i ∂iG

0
hk + ∂h f

i G0
ik + ∂k f

i G0
ih ,

0 = ∂h f̆ − f 0 (∂0Ah − ∂h A0) + f i (∂i Ah − ∂h Ai ) + ∂0 f
i G0

ih ,

0 = ∂0 f̆ − f i (∂0Ai − ∂i A0) ,

0 = d
(
f 0

∂0
√|g|√|g| − ∂i ( f i

√|g|)√|g|
)

and

X↑[ f ] = f 0 ∂0 − f i ∂i − (∂0 f
i + ∂ j f

i x j
0 + ∂0 f

0 xi0 + ∂ j f
0 x j

0 x
i
0) ∂0

i ,

= f 0 ∂0 − f i ∂i + Gi j
0

(
∂ j f̆ + ∂ j f

0 1
2 G

0
hk x

h
0 x

k
0 + ∂ j f

h G0
hk x

k
0

− f 0
(
∂0G

0
h j x

h
0 + (∂0A j − ∂ j A0)

) + f h
(
∂hG

0
jk x

k
0 − (∂ j Ah − ∂h A j )

)
∂0
i ,

divη f = f 0
∂0

√|g|√|g| − ∂i ( f i
√|g|)√|g| .

Indeed, the upper quantum vector field Y ↑
η[ f ] turns out to be projectable on the

η-hermitian quantum vector field Yη[ f ] ∈ her η(Q, T Q).
Moreover, the map Y ↑

η : duni η cns spe (J1E, R) → cns her ↑
η(Q↑, T Q↑) :

f �→ Y ↑
η[ f ] turns out to be an R-Lie algebra isomorphism with respect to the

special phase Lie bracket and the Lie bracket of vector fields.
Furthermore, the map pro Q : cnc her ↑

η(Q↑, T Q↑) → her η(Q, T Q) :
Y ↑

η[ f ] �→ Yη[ f ] turns out to be an R-Lie algebra morphism with respect to the
Lie bracket of vector fields.

Proof The proof can be achieved from the coordinate expression of LY ↑Q↑ and
Theorem 2. QED

Theorem 5 The infinitesimal symmetries Y ↑
η ∈ lin R proJ1E,E,T (Q↑, T Q↑) of dt,

h↑
η andQ↑ are of the type Y ↑ = Y ↑[ f ] :=Q↑(

X↑[ f ]) + i f I
↑, with f ∈ cns tim

spe (J1E, R) and X↑[ f ] = X↑
hol [ f ] = X↑

ham [ f ] , i.e. of the type

Y ↑
η = f 0 ∂0 − f i ∂i + X j

0 ∂0
j + ( f̆ + A0 f 0 − Ai f

i ) (w1 ∂w2 − w2 ∂w1) ,

where the spacetime functions f 0 ∈ R , f i , f̆ ∈ map(E, R) fulfill the conditions

0 = ∂0 f
0 G0

hk − f 0 ∂0G
0
hk + f i ∂iG

0
hk + ∂h f

i G0
ik + ∂k f

i G0
ih ,

0 = ∂h f̆ − f 0 (∂0Ah − ∂h A0) + f i (∂i Ah − ∂h Ai ) + ∂0 f
i G0

ih ,

0 = ∂0 f̆ − f i (∂0Ai − ∂i A0) ,
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X↑[ f ] = f 0 ∂0 − f i ∂i − (∂0 f
i + ∂ j f

i x j
0 + ∂0 f

0 xi0 + ∂ j f
0 x j

0 x
i
0) ∂0

i ,

= f 0 ∂0 − f i ∂i + Gi j
0

(
∂ j f̆ + ∂ j f

0 1
2 G

0
hk x

h
0 x

k
0 + ∂ j f

h G0
hk x

k
0

− f 0
(
∂0G

0
h j x

h
0 + (∂0A j − ∂ j A0)

) + f h
(
∂hG

0
jk x

k
0 − (∂ j Ah − ∂h A j )

)
∂0
i .

Indeed, the upper quantum vector field Y ↑
η[ f ] turns out to be projectable on the

hermitian quantum vector field Yη[ f ] ∈ her η(Q, T Q).
Moreover, the map Y ↑

η : cns tim spe (J1E, R) → cns her ↑
η(Q↑, T Q↑) :

f �→ Y ↑
η[ f ] turns out to be an R-Lie algebra isomorphism with respect to the

special phase Lie bracket and the Lie bracket of vector fields.
Furthermore, the map pro Q : cnc her ↑ (Q↑, T Q↑) → her η(Q, T Q) : Y ↑

η[ f ]
�→ Yη[ f ] turns out to be an R-Lie algebra morphism with respect to the Lie bracket
of vector fields.

Proof The proof follows from Proposition 8. QED

Definition 6 We define the infinitesimal symmetries of the quantum lagrangian to
be theR-linear quantum vector fields Y ∈ lin R proE(Q, T Q) , such that LY1L = 0 ,

where Y1 := r1 ◦ J1Y ∈ lin R proE,Q(J1Q, T J1Q) , is the 1st holonomic prolonga-
tion of Y , with coordinate expression

Y1 = Xλ ∂λ + Y a
b w

b ∂wa + (∂μY
a
b w

b + Y a
b w

b
μ − ∂μX

ν wa
ν) ∂wμ

a .

�

Proposition 9 The infinitesimal symmetries Y of L are characterised, in coordi-
nates, by the following conditions

Y 1
1 = Y 2

2 , Y 1
2 = −Y 2

1 , ∂ j Y
1
1 = 0 ,

0 = Xλ ∂λ(A0 − A j A
j
0) − (∂0 − A j

0 ∂ j ) Y
2
1 + (A0 − Ai A

i
0) (2 Y 1

1 + divυ X) ,

0 = −(∂0X
0 − A j

0 ∂ j ) X
0 + (2 Y 1

1 + divυ X) ,

0 = (∂0 − A j
0 ∂ j ) X

i + Xλ ∂λA
i
0 − Gi j

0 ∂ j Y
2
1 + Ai

0 (2 Y 1
1 + divυ X) ,

0 = Xλ ∂λG
i j
0 − Ghj

0 ∂h X
i − Gih

0 ∂h X
j + Gi j

0 (2 Y 1
1 + divυ X) . �

Theorem 6 The infinitesimal symmetries of L and dt are the η-hermitian quantum
vector fields generated by time preserving conserved special phase functions

Yη = Yη[ f ] , with f ∈ tim cns spe (J1E, R) .
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Thus, they are of the type Yη = f 0 ∂0 − f i ∂i + i ( f̆ + A0 f 0 − Ai f i ) I , where
the functions f 0 ∈ R , f i , f̆ ∈ map(E, R) fulfill the conditions

0 = f 0 ∂0G
0
hk − f i ∂iG

0
hk + ∂h f

i G0
ik + ∂k f

i G0
ih ,

0 = ∂h f̆ − f 0 (∂0Ah − ∂h A0) + f i (∂i Ah − ∂h Ai ) + ∂0 f
i G0

ih ,

0 = ∂0 f̆ − f i (∂0Ai − ∂i A0) .

Proof The proof follows from the coordinate expressions of LY1L and Yη[ f ] . QED

Corollary 2 For each f ∈ tim spe (J1E, R), we have the equivalences:

LYη 1[ f ] L = 0 ⇔ LYη 1[ f ]Θ[L] = 0 ⇔ f ∈ tim cns spe (J1E, R).

Proof The 1st equivalence follows from a general result of variational calculus
[42]. QED

It is remarkable that the R-Lie algebra of infinitesimal symmetries of (Ω , dt)
(see [34, 36]), of (h↑ , Q↑ , dt) and of (L , dt) (see [35]) be generated by the same
Lie subsheaf of special phase functions tim cns spe (J1E, R) ⊂ spe (J1E, R) .

The above classifications of quantum infinitesimal symmetries can be used as the
source of further developments.

In particular, the classification of η-hermitian quantum vector fields yields, in
a covariant way, the quantum operators associated with projectable special phase
functions O[ f ] = i

(
Yη[ f ] − f ′′ �S

) : sec(E, Q) → sec(E, Q), with coordinate
expression

O[ f ](Ψ ) =
((

f̆ − Ai f
i − i

(
f i ∂i + 1

2

∂i ( f i
√|g|)√|g|

)
− 1

2 f 0 Δ0

)
ψ

)
b .

For instance,

O[xλ](Ψ ) = xλ ψ b , O[P j ](Ψ ) = −i
(
∂ jψ + 1

2
∂ j

√|g|√|g| ψ
)
b ,

O[H0](Ψ ) = −(
1
2 Δ0 ψ + A0 ψ

)
b .

Moreover, we obtain, in a covariant way, for each f ∈ pro spe (J1E, R) and
Ψ ∈ sec(E, Q), the quantum current

jη[ f ](Ψ ) := − ( j1Ψ )∗(iYη 1[ f ] Θ[L]) ∈ sec(E,∧3T ∗E).

For instance, the quantum current associated to the special phase function f = 1
turns out to be just the probability current.

These objects will be the subject of another paper.
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The Quantum Detection Problem: A
Survey

Sara Botelho-Andrade, Peter G. Casazza, Desai Cheng, John Haas
and Tin T. Tran

Abstract We will look at the development of the quantum detection problem and
its equivalent forms. We conclude with a complete solution to the POVM version of
the problem, recast in terms of frame theory, as in [7].

1 Introduction and Preliminaries

At the beginning of the 20th century, quantum theory arose to deal with results of
physical measurements which could not be explained [20]. Retrieving data from
quantum systems is carried out according to quantum measurement theory [43].
A measurement is performed by a quantum instrument. The goal is to precisely
determine a quantum state which is necessary for quantum information processing
devices such as quantum teleporters and quantum computers [23, 41].

A drawback of quantum theory is that the predictions are probabilistic. Quantum
theory tries to predict the probability of observing outcomes from a sequence of
measurements of the system in an unknown state. This process is called quantum
state tomography [45]. The outcome statistics are described by a positive operator-
valued measure (POVM) [9, 16, 35, 40, 46].
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Important Notation. Throughout the paper we will let {ei }ni=1 be the canonical
orthonormal basis of Rn or Cn and {ei }∞i=1 will denote the canonical orthonormal
basis of real or complex �2. Also, ι will be used to denote the complex unit.

For a vector xk in Rn or Cn , we denote its coordinates as

xk = (xk1, xk2, . . . , xkn).

Similarly, for xk belonging to �2, we write

xk = (xk1, xk2, . . . , xki , . . .).

To explain exactly what the quantum detection is, we need to introduce the basics of
quantum detection. Let L∞(H) be the space of bounded linear operators on a finite or
infinite dimensional (real or complex) Hilbert spaceH. Let {ei }i∈I be an orthonormal
basis for H. For an operator T ∈ L0(H), the finite rank operators on H, the trace
of T is given by: tr(T ) = ∑

i∈I 〈T ei , ei 〉, which is finite and independent of the
orthonormal basis. The trace induces a scalar product by 〈T, S〉HS = tr(T S∗). The
closure of L0(H)with respect to this scalar product, denoted L2(H) is the space of the
Hilbert-Schmidt operators onH. For any T ∈ L∞(H)wedenote by |T | = √

T T ∗, the
positive square root of T T ∗. We say that T is a trace class operator if tr(|T |) < ∞.
The set of all trace class operators is denoted by L1(H) and forms a Banach space
under the trace norm ‖T ‖1 = tr(|T |).

Let
Sym(H) = {T : T ∈ L∞(H), T = T ∗},

denote the real Banach space of self-adjoint operators on H and let

Sym+(H) = {T = T ∗ ≥ 0},

denote the real cone of positive self-adjoint operators on H. The main objects to
analyze these operators are the positive operator-valued measures.

Let X denote a set of outcomes (e.g. this could be a finite or infinite subset of Zd

or Rd ). Let β denote a sigma algebra of subsets of X .

Definition 1 A positive operator-valuedmeasure (POVM) is a functionΠ : β →
Sym+(H) satisfying:

1. Π(∅) = 0 (the zero operator).
2. For every disjoint family {Ui }i∈I ⊂ β, x, y ∈ H we have

〈Π (∪i∈IUi ) x, y〉 =
∑

i∈I
〈Π(Ui )x, y〉.

3. Π(X) = I (the identity operator).

A quantum system is defined as a von Neumann algebra A of operators acting
on H. The set of states on H is
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S(H) = {T ∈ L1(H), T = T ∗ ≥ 0, tr(T ) = 1},

and it represents the reservoir of quantum states for any quantum system. The set of
quantum states S(A) associated to a quantum system A is obtained by identifying
states that differ by a null state with respect toA. Thus, the set of quantum states are
in one-to-one correspondance with the linear functionals on A of the form:

ρ : A → C, for some S ∈ S(H), ρ(T ) = tr(T S), for every T ∈ A.

Given a quantum state ρ, the quantummeasurement performed by the POVMΠ

is themap p : β → R defined by p(U ) = ρ(Π(U )) = tr(Π(U )T ), where T ∈ S(H)

is in the equivalence class associated to ρ.
Let L(β,R) denote the set of bounded functions defined on β. Given a POVM

Π associated to a von Neumann algebra A, the quantum detection problem asks
if there is a unique quantum state ρ ∈ S(A) compatible with the set of quantum
measurements performed by the POVM Π? Specifically, the quantum detection
problem asks two questions.

Quantum State Separability Problem: Is the following map injective?

M : S(A) → L(β,R), M(ρ)(U ) = ρ(Π(U ))?

A POVM is informationally complete (IC-POVM) if every quantum state is
uniquely determined by its measurement statistics [8, 9, 18, 19, 24, 28, 48, 52]. I.e.
Does it give quantum state separability?

Quantum State Estimation Problem: Assume M is injective. Then, given a map
p ∈ L(β,R), determine if p is in the range ofM, and hence is of the form p = M(ρ)

for some unique ρ ∈ S(A). If not, find a quantum state ρ that best approximates p
in some sense (e.g. robustness to noise).

POVMs have a natural, and very valuable, subset which comes from Hilbert
space frame theory [12, 14, 15]. For a background on frame POVMs we recommend
[3, 22, 27, 42].

Definition 2 A family of vectors {xk}k∈I is a frame for a real or complex, finite or
infinite dimensional Hilbert spaceH if there are constants 0 < A ≤ B < ∞ satisfy-
ing:

A‖x‖2 ≤
∑

k∈I
|〈x, xk〉|2 ≤ B‖x‖2, for all x ∈ H.

We have

1. A, B are the lower and upper frame bounds of the frame.
2. If A = B = λ this is a λ-tight frame. If λ = 1 this is a Parseval frame.
3. If we only assume we have 0 < B < ∞, this is called a B-Bessel sequence. Note

that ‖xk‖2 ≤ B, for all k ∈ I .
4. The frame is bounded if there is a C > 0 so that ‖xk‖ ≥ C for all k ∈ I .
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5. The frame is unit norm if ‖xk‖ = 1, for all k ∈ I .
6. The frame is equiangular if it is unit norm and there is some α > 0 so that

|〈x j , xk〉| = α, for all j �= k.

We define the analysis operator of the frame as T : H → �2(I ) by

T (x) = (〈x, x1〉, 〈x, x2〉, . . .) =
∑

k∈I
〈x, xk〉ek .

The synthesis operator T ∗ is given by:

T ∗ ({ak}k∈I ) =
∑

k∈I
ak xk .

The frame operator is S = T ∗T . This is a positive, self-adjoint, invertible operator
on H satisfying:

S(x) =
∑

k∈I
〈x, xk〉xk .

That is,
S =

∑

k∈I
xk x

∗
k .

It is known that for any frame {xk}k∈I , {S−1/2xk}k∈I is a Parseval frame. It is also
known that a frame is Parseval if and only if its frame operator is the identity operator.
Frames are spanning sets of vectors which allow stable expansion and reconstruction
of vectors. But, in contrast to orthonormal bases, frame vectors need not be linearly
independent. This gives designflexibility not available to orthonormal bases. Parseval
frames alsohave the advantage that theygive immediate reconstruction.These objects
are as close as possible to being orthonormal bases for quantum states. Parseval
frames have wide application to quantum measurements and encryption schemes
[14, 21, 22, 46, 47].

If {xk}k∈I is a Parseval frame for a Hilbert space H, it naturally induces a POVM
Π on X = I with β = 2I (the power set of I ):

Π(U ) =
∑

k∈U
xkx

∗
k , where x∗

k : H → C, x∗
k (x) = 〈x, xk〉,

with strong convergence for any U ⊂ I . So from now on we will refer to a positive
operator-valued measure as a Parseval frame given by rank-1 operators {πk}mk=1.

Parseval frames have broad application to engineering problems such as A/D
conversion [4, 5, 26], multiple description coding [25, 50], wireless communication
[30], matched filtering in the quantum setting [29], and detection of radar and laser
signals [29, 37–39], and applications to astronomy [29, 51]. Parseval frames have
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also been shown to be optimal for linear quantum state tomography andmeasurement
based quantum cloning [49].

Given a state T ∈ S(H) (i.e. a unit-trace, trace class, positive, self-adjoint operator
on H), the frame induced quantum measurement is given by the function

p : β → R, p(U ) =
∑

k∈U
tr(T xkx

∗
k ) =

∑

k∈U
〈T xk, xk〉.

For the von Neumann algebra A = L∞(H), the quantum states coincide with the
convex set of states S(H). In this case, the state separability problem and the state
estimation problem ask:

QuantumStateSeparabilityProblem: Is there aParseval frameX = {xk}k∈I so that
the map M : S(H) → L(β,R) defined by M(T )(U ) = ∑

k∈U 〈T xk, xk〉 for U ⊂ I
is injective? That is, given T, S ∈ S(H), if

〈T xk, xk〉 = 〈Sxk, xk〉, for all k,

then T = S.

Quantum State Estimation Problem: Given a separable Parseval frame {xk}k∈I and
a function p : β → R, is there any T ∈ S(H) so thatM(T ) = p? If not, find a quan-
tum state T that best approximates p. In the finite case, this means, given separable
Parseval frame {xk}mk=1 onH

n and a measurement vector a = (a1, a2, . . . , am) ∈ R
m ,

can we find a positive self-adjoint trace one operator T so that

〈T xk, xk〉 = ak, for all k?

And if not, find the T that best approximates a solution.

2 The Frame Optimization Problem

The goal for the frame optimization problem is to construct a tight frame which
minimizes the error in quantum detection [3]. In quantum physics this has the inter-
pretation of the probability of a detection error. Solutions to this problem can also
be viewed as a generalization of classical matched filtering solutions. Thus, this is a
generalization of fundamental detection techniques in radar [3].

Frame Optimization Problem: Let H be an n-dimensional Hilbert space. Given
a sequence {xk}mk=1 ⊂ H of unit normed vectors and a sequence {wk}mk=1 ⊂ R of
positive weights that sums to one, the frame optimization problem is to construct a
Parseval frame {ek}mk=1 that minimizes the quantity:
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Pe({ek}mk=1) = 1 −
m∑

k=1

wk |〈xk, ek〉|2.

Kennedy et al. [54] gave necessary and sufficient conditions on a POVM so that it
minimizes Pe. Helstrom [29] solved the problem completely for the case in which the
quantum system is limited to be in one of two possible states. The solution appears in
[3] and relies on the solution for Newton’s equation of motion that minimizes energy
[3].

3 The Solution to the Finite Dimensional Quantum
Detection Problem

In this section we look at the solution to the finite dimensional cases of the quan-
tum detection problems and simple methods for constructing unlimited numbers of
solutions.

3.1 The Solution to the Quantum State Separability Problem

As we have seen, the solution to the state separability problem is the informationally
complete positive operator-valued measures (IC-POVMs). This problem was first
solved by Scott [49] (See also [6]).

Theorem 1 Apositive operator-valuedmeasure {πk}mk=1 is informationally complete
if and only if the real span of {πk}mk=1 spans the space of Hermitian operators.

It follows that

Corollary 1 If a POVM {πk}mk=1 on a n-dimensional complex Hilbert space is infor-
mationally complete, then m ≥ n2 (and m ≥ n(n+1)

2 in the real case).

The spanning property above is equivalent to {πk}mk=1 being a frame for the Her-
mitian operators which is an inner product space with the Hilbert-Schmidt inner
product. In this case, the pseudo-inverse of the Gram matrix gives reconstruction.
The Gram matrix for a family of vectors {xk}mk=1 is given by:

G = (〈x j , xk〉
)m
j,k=1 .

If H,K are Hilbert spaces and U : K → H is a bounded operator with closed range
R, then there exists a bounded operator (the pseudo-inverse of U ) U † : H → K

satisfying
UU †x = x, for all x ∈ R.
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In [7], a different approach is taken for solving the separability problem. This
approach has the advantage that it generalizes to infinite dimensions and it gives
a simple method for constructing unlimited numbers of solutions. First we need a
definition.

Definition 3 To a vector x = (x1, x2, . . . , xn) ∈ R
n , we associate a vector x̃ in

R
n(n+1)

2 by:

x̃ = (x1x1, x1x2, . . . , x1xn; x2x2, x2x3, . . . , x2xn; . . . ; xn−1xn−1, xn−1xn; xnxn),

and for x = (x1, x2, . . . , xn) ∈ C
n , we define

x̃ = (|x1|2,Re(x̄1x2), Im(x̄1x2), . . . ,Re(x̄1xn), Im(x̄1xn);

|x2|2,Re(x̄2x3), Im(x̄2x3), . . . ,Re(x̄2xn), Im(x̄2xn); . . . ;

|x |2n−1,Re(x̄n−1xn), Im(x̄n−1xn); |xn|2) ∈ R
n2 .

The solution to the separability problem then becomes [7]:

Theorem 2 LetX = {xk}mk=1 be a frame forR
n orCn. The following are equivalent:

1. X gives separability.
2. We have that {x̃k}mk=1 spans R

(n(n+1)
2 in the real case and Rn2 in the complex case.

The class of (IC-POVMs) are the same as the class of weighted 2-designs in
complex projective space [17]. Spherical t-designs were first extended to projective
space by Neumaier [44], and were extensively studied in [1, 2, 31–34].

Definition 4 A sequence of rank-one projections {πk}mk=1 with weights {wk}mk=1 on
a n-dimensional Hilbert space is a weighted projective 2-design if

m∑

k=1

w jπ jπ
∗
j = 2

n(n + 1)
Πsym,

where Πsym is the projection onto the symmetric subspace of H ⊗ H. That is,

Πsym = 1

2

n∑

j,k=1

(E j, j ⊗ Ek,k + E j,k ⊗ Ek, j ),

where E j,k = e j e∗
k .

Scott [49] showed the connection with POVMs.

Theorem 3 Given a POVM {Ak}mk=1 on a n-dimensional Hilbert space H and its
operator valued canonical dual {Bk}mk=1, we have
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m∑

k=1

tr[ Ak

n
]tr[B2

k ] ≥ 1

n
+ (n2 − 1)(n + 1)

n
.

Moreover, equality holds if and only if {Ak}mk=1 is a rank-one POVM and wk =
tr[Ak ]

n , πk = Ak

tr[Ak ] forms a weighted projective 2-design.

3.2 Examples of (IC-POVMs)

An optimal class of (IC-POVMs) are the maximal classes of mutually unbiased
bases [49].

Definition 5 Two orthonormal bases for an n-dimensional Hilbert spaceH, {xk}nk=1
and {yk}nk=1 is a pair of mutually unbiased bases (MUBs) if

|〈xk, y j 〉|2 = 1

n
, for all j, k = 1, 2, . . . , n.

If B is a family of pairwise mutually unbiased bases for Cn then |B| ≤ n + 1 [17].
It is rare that this bound can be met. Cameron and Seidel [10] showed that maximal
sets of MUBs exist for Cp if p is a prime number. Later this was extended to prime
powers [11, 53]. In general, little is known about the existence of maximal numbers
of MUBs. For example, the answer is not known even for C6 although numerical
evidence suggests it can have only 3 MUBs [36].

Another class that solves the quantum state separability problem are the (SIC-
POVMs) - Symmetric Informationally Complete Positive Operator-Valued Mea-
sures). For one, these are minimal in the sense that they contain n2 elements in
an n-dimensional Hilbert space which we know is the required minimal number.
These objects correspond to the maximal equiangular tight frames. Very few exam-
ples of this type exist. Zauner’s Conjecture [55, 56] asserts that there should exist a
SIC-POVM in Cn for all n = 1, 2, . . .. Actually, Zauner conjectured that these exist
in theWeyl-Heisenberg groups.

In [7],many concrete constructions of IC-POVMsare given. Tohelpwith this, they
show several simplifying assumptions for the constructions. First, since applying an
invertible operator does not change a solution to the quantum separability problem,
one does not need a Parseval frame here since given a frame, we can turn it into a
Parseval frame by applying S−1/2, where S is the frame operator of the frame. They
then show that we do not really have to assume our operators are positive, or trace
one since this can be made up for later. Their construction becomes in the real case
(a similar construction works in the complex case):

Theorem 4 Let {xk}nk=1 be a linearly independent set inR
n such that the first coordi-

nates of these vectors are non-zero. Now choose (n − 1) linearly independent vectors
{xk}2n−1

k=n+1 in R
n such that each vector is zero in the first coordinate and is non-zero
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in the second coordinate. Continuing this procedure we get a frame {xk}
n(n+1)

2
k=1 which

gives separability.

In [7] there is also a direct construction of large classes of Parseval frames giving
separability.

Theorem 5 Let {λi j } n n
i=1, j=i be non-negative numbers satisfying:

1. λi j = 0 if and only if j < i.
2. For each j = 1, 2, . . . , n we have

∑n
i=1 λi j = 1.

Let E = {e j }nj=1 be the canonical basis of R
n. Let {xk}

n(n+1)
2

k=1 be vectors in R
n which

satisfy:

1. {xk}nk=1 is a linearly independent set with xk1 �= 0 for all k = 1, . . . , n and it has
frame operator S1 with eigenvectors E and respective eigenvalues {λ1 j }nj=1 (See
[13].)

2. {xk}2n−1
k=n+1 is a linearly independent set with xk1 = 0, for all k, xk2 �= 0 for all

k, and it has frame operator S2 with eigenvectors E and respective eigenvalues
{λ2 j }nj=1.

3. continue.

Then the vectors {xk}
n(n+1)

2
k=1 form a Parseval frame for Rn which gives separability.

It is also shown in [7] that there are an unlimited number of solutions to the
separability problem.

Theorem 6 The family of all m-element frames on H
n that give injectivity in the

frame quantum detection problem is open and dense in the space of all m-element
frames on H

n.

We also have:

Corollary 2 The set of all m-element Parseval frames which give injectivity is dense
in the set of all m-element Parseval frames.

3.3 The Solution to the Quantum State Estimation Problem

For the real state estimation problem we have [7].

Theorem 7 Let X = {xk}
n(n+1)

2
k=1 ⊂ R

n be an separable Parseval frame. Then the
state estimation problem has a unique solution for all choices of vectors a =
(a1, a2, . . . , a n(n+1)

2
).
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There is a similar theorem for the complex case. There is a technical problemwith
the state estimationproblem. If themeasurement vector is larger than the dimensionof
theHilbert space, this problem is rarely solvable. For example, if we are given {xk}mk=1
with m > n(n + 1)/2 in the real case or m > n2 in the complex case with x1 = x2
and ameasurement vector a = (a1, a2, . . . , am)with a1 �= a2, then we clearly cannot
solve the state estimation problem. However, in these cases we can find the best
approximation to a solution.

We consider the real case. Note that there always exists a subset I ⊂ {1, 2, . . . ,m}
of size n(n+1)

2 , and a self-adjoint operator T so that 〈T xk, xk〉 = ak , for all k ∈ I .
Therefore, if the state estimation problem is not solvable, it is natural to find such T
so that the distance to the measurement vector a:

m∑

k=1

|〈T xk, xk〉 − ak |2

is minimum.
To do this, let S be the set of all bases ofR

n(n+1)
2 that are subsets of {x̃k}mk=1.This set

is obviously finite. Since each element {x̃k}k∈I in S determines a unique self-adjoint
operator T satisfying 〈T xk, xk〉 = ak , for all k ∈ I , we can find the quantum state T
that gives the best approximation to the measurement vector a by choosing the set
which minimizes the distance above.

4 The Solution to the Infinite Dimensional Quantum
Detection Problem

The infinite dimensional case of the quantum detection problem was solved in [7].
Here there is a list of technical problems which we do not have in the finite dimen-
sional case:

1. In the finite dimensional cases we often show that our POVM vectors span by
showing we have enough to span the operator space and they are independent.
This does not work in the infinite dimensional case.

2. There are unending problems with it convergence of the necessary series.
3. Trace class operators are much harder to construct with additional properties than

self-adjoint operators.

4.1 The Solution to the Quantum State Separability Problem

In infinite dimensions the quantum state separability problem becomes:

Quantum State Separability Problem: For what frames {xk}∞k=1 in real or complex
infinite dimensional Hilbert space H do we have the property: Whenever T, S are
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Hilbert-Schmidt positive self-adjoint operators on H and 〈T xk, xk〉 = 〈Sxk, xk〉, for
all k = 1, 2, . . ., then T = S.

Remark 1 If in the problem we switch to the operator L = T − S, then the problem
asks if L is a Hilbert-Schmidt, self-adjoint operator, and 〈Lxk, xk〉 = 0, for all k =
1, 2, . . ., then L = 0.

We need a definition.

Definition 6 We define a subspace of the real space �1 as follows:

W :=
⎧
⎨

⎩
(λ1,λ2, . . .) ∈ �1 :

∞∑

j=1

λ j = 0

⎫
⎬

⎭
.

The first solution to the problem is difficult to check except in certain special
circumstances.

Theorem 8 LetX = {xk}∞k=1 be a frame for an infinite dimensional real or complex
Hilbert space H. The following are equivalent:

1. If T is a trace class self-adjoint operator of trace zero such that

〈T xk, xk〉 = 0, for all k,

then T = 0.
2. For every λ = (λ1,λ2, . . .) ∈ W and for every orthonormal basis {e j }∞j=1 for H,

if
∑∞

j=1 λ j |〈xk, e j 〉|2 = 0 for all k then λ = 0.

The next solution has the advantage that the needed Parseval frames can be con-
structed.

Definition 7 Denote by H̃ the direct sum of the real Hilbert spaces �2:

H̃ =
( ∞∑

i=1

⊕�2

)

�2

.

A vector in this direct sum will be written in the form:

x = (x1, x2, . . . , xn, . . .),

and we have

〈x, y〉 =
∞∑

i=1

〈xi , yi 〉.
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We also need another definition:

Definition 8 For x = (x1, x2, . . .) ∈ �2, we define

x̃ = (x1, x2, . . . , xn, . . .) ∈ H̃,

where

x1 = (x1x1, x1x2, . . .); x2 = (x2x2, x2x3, . . .); . . . ; xn = (xnxn, xnxn+1, . . .); . . .

One first has to show that these vectors are actually in H̃. Now we will give the
solution to the infinite dimensional state separability problem in the real case.

Theorem 9 Let X = {xk}∞k=1 be a frame in the real Hilbert space �2. The following
are equivalent:

1. X is separable.
2. span{x̃k}∞k=1 = H̃.

The complex case is similar with slight adjustments.

Definition 9 For x = (x1, x2, . . .) ∈ �2, we define

x̃ = (x1, x2, . . . , xn, . . .),

where
x1 = (|x1|2,Re(x̄1x2), Im(x̄1x2),Re(x̄1x3), Im(x̄1x3), . . .);

x2 = (|x2|2,Re(x̄2x3), Im(x̄2x3),Re(x̄2x4), Im(x̄2x4), . . .); . . . ;

xn = (|xn|2,Re(x̄nxn+1), Im(x̄nxn+1),Re(x̄nxn+2), Im(x̄nxn+2), . . .); . . . .

The solution to the complex separability problem is now:

Theorem 10 Let X = {xk}∞k=1 be a frame in the complex Hilbert space �2. The
following are equivalent:

1. X gives separability.
2. span{x̃k}∞k=1 = H̃.

4.2 Constructing Solutions to the Quantum State Separability
Problem

It is difficult, but possible to give a concrete construction of the solutions to the
separability problem.
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Theorem 11 Let {ei }∞i=1 be the canonical basis for the real Hilbert space �2 and let
ai �= 0 for i = 1, 2, . . . be such that

∑∞
i=1 a

2
i < ∞. Define

xk = ak(e1 + ek+1), for k = 1, 2, . . . .

Let L be the right shift operator on �2. Then the family

{ei }∞i=1 ∪
{
1

2i
Li xk

}∞, ∞

i=0,k=1

is a frame for �2 which gives state separability.

The complex case is an adjustment of this.
It is further shown in [7] that the solutions to the state separability problem are

neither open nor dense in the family of frames. It is also shown that the solutions
{xk}∞k=1 can never have the property that {x̃k}∞k=1 is a frame for H̃.

4.3 The Solution to the State Estimation Problem

The infinite dimensional state estimation problem has an unlimited number of prob-
lems since the problems for the finite dimensional case can appear infinitely often
here. The following result points out a major problemwith state estimation in infinite
dimensions.

Theorem 12 There is no separable frameX = {xk}∞k=1 in the real or complex space
�2 so that for every a = {ak}∞k=1 ∈ �2, there is a Hilbert-Schmidt operator T so that

〈T xk, xk〉 = ak, for all k = 1, 2, . . . .

However, if we drop the requirement that the vectors form a frame for �2, then
the problem is solvable.

A case where we always have solutions will now be addressed. For the solution of
the state estimation problem we will need the notion of a separated sequence in �2.

Definition 10 A family of vectors {xi }∞i=1 in �2 is separated if for every j ∈ N,

x j /∈ span{xi }i �= j .

It is δ-separated if the projection Pj onto span{xi }i �= j satisfies

‖(I − Pj )x j‖ ≥ δ.
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Theorem 13 Let X = {xk}∞k=1 be a frame for the real or complex space �2. The
following are equivalent:

1. For every real vector a = (a1, a2, . . .) ∈ �1, there is aHilbert-Schmidt self-adjoint
operator T so that

〈T xk, xk〉 = ak, for all k = 1, 2, . . . .

2. The sequence {x̃k}∞k=1 is δ-separated.
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Possible Alternative Mechanism
to SUSY: Conservative Extensions
of the Poincaré Group

András László

Abstract A group theoretical mechanism is outlined, which can indecomposable
extend the Poincaré group by the compact internal (gauge) symmetries at the price
of allowing some nilpotent (or, more precisely: solvable) internal symmetries in
addition. Due to the presence of this nilpotent part, the prohibitive argument of
the well known Coleman-Mandula, McGlinn no-go theorems do not go through. In
contrast to SUSY or extended SUSY, in our construction the symmetries extending
the Poincaré group will be all internal, i.e. they do not act on the spacetime, merely
on some internal degrees of freedom — hence the name: conservative extensions
of the Poincaré group. Using the Levi decomposition and O’Raifeartaigh theorem,
the general structure of all possible conservative extensions of the Poincaré group is
outlined, and a concrete example group is presented with U(1) being the compact
gauge group component. It is argued that such nilpotent internal symmetries may be
inapparent symmetries of some more fundamental field variables, and therefore do
not carry an ab initio contradiction with the present experimental understanding in
particle physics. The construction is compared to (extended) SUSY, since SUSY is
somewhat analogous to the proposed mechanism. It is pointed out, however, that the
proposed mechanism is less irregular in comparison to SUSY, in certain aspects. The
only exoticity needed in comparison to a traditional gauge theory setting is that the
full group of internal symmetries is not purely compact, but is a semi-direct product
of a nilpotent and of a compact part.

Keywords GUT · Unification · Poincaré group · Gauge group · O’Raifeartaigh
theorem · Levi decomposition theorem

1 Introduction

In Lagrangian field theories it is well understood that larger amount of symme-
tries of the Lagrangian gives less room for variants of the theory. In particular, the
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larger amount of direct-indecomposable (unified) symmetries reduce the number of
possible free coupling parameters. This phenomenonmotivated the search for unified
symmetries in field theory, meaning that a plausible direct-indecomposable symme-
try group was being searched for, which contained the known symmetry groups
as subgroups. When it comes to building relativistic field theories to be applied
in particle physics, the known symmetry groups are the Poincaré group and the
compact internal (gauge) symmetries of the Standard Model, commuting with each-
other. Therefore, a rather plausible idea was to try to find a direct-indecomposable
symmetry group, which contains Poincaré symmetries and compact internal sym-
metries, indecomposably. In 1964 it was realized by McGlinn [1] that whenever
the compact internal symmetries are semi-simple, i.e. purely non-abelian, this is
group theoretically impossible. This motivated the work of O’Raifeartaigh in 1965
[2] to try to understand all possible group extensions of the Poincaré symmetries.
The pertinent O’Raifeartaigh theorem made it clear that the Lie group theoretical
possibilities for a direct-indecomposable extension of the Poincaré group is rather
limited. Historically, at the time of the publication of O’Raifeartaigh theorem, no
constructive examples for the potentially allowed direct-indecomposable Poincaré
group extensions were known. For instance supersymmetry (SUSY) was not known
at the time, and the conformal Poincaré group, being a direct-indecomposable exten-
sion of the Poincaré group, was not in the physics folklore. Therefore, the potentially
allowed Poincaré group extensions by means of the O’Raifeartaigh theorem were
talked away by a littlebit handwaving physics arguments. Not much later, in 1967 the
famous Coleman-Mandula theorem [3] was published, stating that given some plau-
sible assumptions, a unification of the Poincaré group with purely compact internal
symmetries is not possible in the framework of quantum field theory. These attempts
were historically reviewed in [4]. A few years later, the famous paper of Wess and
Zumino was published [5], implicitly providing an example Lie group (the super-
Poincaré group) which is an indecomposable extension of the Poincaré group, and
thus providing an explicit example for one of the cases of O’Raifeartaigh theorem,
allowing a direct-indecomposable extension of the Poincaré group.Motivated by this,
Haag, Lopuszański and Sohnius [6] generalized the Coleman-Mandula theorem also
allowing for super-Poincaré transformations. Since that work, the so called super-Lie
algebra view of those transformations is the most popular in the literature, making it
less obvious to see the underlying ordinary Lie group structure of the super-Poincaré
transformations, and their relations to O’Raifeartaigh theorem. In the recent years
it was re-understood that there do exist also other direct-indecomposable extensions
of the Poincaré group. A rather well-understood example is the conformal Poincaré
group, being isomorphic to SO(2, 4), but also others have been found [7–10], some
of which can lead to field theories which may not be ab initio pathological. They
bypass the Coleman-Mandula theorem by weakening some of its assumptions, for
instance allowing for symmetry breaking.

In this paper a newly found direct-indecomposable Poincaré group extension
[11, 12] is discussed,which contains a Poincaré component, a compact internal group
component, and a nilpotent internal group component. From the Lie group theoretical
point of view, it resembles to the (extended) super-Poincaré group, since in its Levi
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decomposition its radical is a nilpotent Lie algebra. However, in contrast to SUSY,
this group respects vector bundle structure of fields, i.e. all the non-Poincaré symme-
tries act spacetime pointwise on some internal degrees of freedom. This implies that
symmetry breaking is not necessary in order to make this new symmetry concept to
harmonize with a gauge-theory-like setting, where vector bundle structure of funda-
mental fields is essential to preserve. Hence, we call these constructions conservative
extensions of the Poincaré group.

The outline of the paper is as follows. In Sect. 2 the general structure of Lie groups
is recalled in the light of Levi decomposition theorem. In Sect. 3 the O’Raifeartaigh
classification theorem on Poincaré group extensions is recalled. In Sect. 4 the struc-
ture of conservative extensions of the Poincaré group is outlined. In Sect. 5 the Lie
algebra of the concrete conservative Poincaré group extension defined in [11, 12] is
presented.

2 General Structure of Lie Groups: Levi Decomposition

In every finite dimensional real Lie algebra, one has the Killing form, being a real
valued bilinear form defined by the formula x · y := Tr

(
adx ady

)
for two elements

x, y of the Lie algebra. The Levi decomposition theorem [13, 14] states that the
structure of a generic real finite dimensional connected and simply connected Lie
group is as follows:

E︸︷︷︸
Lie group

= R︸︷︷︸
degenerate directions of Killing form

(called to be the radical)

�

(
L1 × · · · × Ln

)

︸ ︷︷ ︸
non−degenerate directions of Killing form

(called to be the Levi f actor)

(1)

A subgroup spanned by the non-degenerate directions of the Killing form is called
the Levi factor or semisimple part. It falls apart to direct product of subgroups which
contain no proper normal subgroups, and are called the simple components. The
normal (invariant) subgroup spanned by the degenerate directions of the Killing
form is called the radical or solvable part. The radical R can also be equivalently
characterized by the property that the Lie algebra r of R has terminating derived
series. Namely, with the definition r0 := r , rk := [

rk−1, rk−1
]
, there exists a finite k

such that rk = {0}. A special case is when R is said to be nilpotent: in this case there
exists a finite k such that for all x1, . . . , xk ∈ r one has adx1 . . . adxk = 0. The extreme
case is when R is said to be abelian: in this case for all x ∈ r one has adx = 0.

Whenever also non-simply connected or non-connected Lie groups are consid-
ered, their generic structure can be slightly more complex:

E︸︷︷︸
Lie group

=
((

R︸︷︷︸
radical

�

(
L1 × · · · × Ln

)

︸ ︷︷ ︸
Levi factor

)/
I︸︷︷︸

discrete

)
� J︸︷︷︸

discrete

(2)



356 A. László

where I is some discrete normal subgroup of R � (L1 × · · · × Ln) and J is some
discrete subgroup of the outer automorphisms of the quotient group
(R � (L1 × · · · × Ln)) /I. It is not complicated to see that whenever a Lie group is
injectively embedded into another, then its Lie algebra must be injectively embedded
into the Lie algebra of the other. Thus, for studying necessary condition for injective
embedding of Lie groups, one first needs to study the injective embeddings of Lie
algebras, or equivalently, of connected and simply connected Lie groups. From now
on, by Lie groups we shall always mean connected and simply connected ones, i.e.
the universal covering groups.

Levi decomposition theorem can be illustrated with the Poincaré group:

P︸︷︷︸
Poincaré group

= T︸︷︷︸
translations (radical)

� L︸︷︷︸
Lorentz group (Levi factor)

(3)

3 A Classification of Poincaré Group Extensions

Aclassification scheme of Poincaré group extensionswas outlined byO’Raifeartaigh
[2], using the Levi decomposition theorem. It is based on the simple observation
that when injectively embedding a finite dimensional real Lie algebra into another,
then the Levi factor of the smaller Lie algebra cannot intersect with the radical of
the larger one. This implies the following disjoint possibilities for a connected and
simply connected extension E = R � (L1 × · · · × Ln) of the Poincaré symmetries
P = T � L.
A One has E = P × {some other Lie group}, i.e. no unification occurs.
B One has not A and T ⊂ R and L ⊂ L1, meaning that the translations T are

injected into the radical R and the homogeneous Lorentz group L is injected
into one of the simple components L1 of E .

C One has (T �L) ⊂ L1, i.e. the entire Poincaré group is injected into one of the
simple components L1 of E .

Examples for case B are detailed in [12], namely the super-Poincaré group or the
extended super-Poincaré group [5, 15, 16], as well as the extensions of the Poincaré
group proposed by us [12]. Example for case C is the conformal Poincaré group,
being isomorphic to SO(2, 4). However, also more complicated examples are being
constructed [7–9] in the literature.

Knowing O’Raifeartaigh theorem, the argument of Coleman-Mandula theorem in
case of a finite dimensional Poincaré group extension can be greatly simplified. First,
Coleman-Mandula assumes implicitly that symmetry breaking is not present, which
excludes caseC. Secondly, it implicitly assumes that one has a positive definite invari-
ant scalar product on the non-Poincaré directions of the Lie algebra, which excludes
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caseB (alongwith SUSY, for instance). In case of SUSYor our Poincaré group exten-
sions, the pertinent invariant scalar product is merely positive semidefinite, which
provides a backdoor to the otherwise prohibitive argument.

4 Conservative Extensions of the Poincaré Group

As outlined in [12], the super-Poincaré group or extended super-Poincaré group
cannot be considered as a vector bundle automorphism group with the spacetime
being the base manifold. This implies that in a supersymmetric model a heavy
symmetry breaking needs to be introduced in order to recover a gauge-theory-
like setting, so characteristic to the Standard Model. Also in [12] the question is
asked: what are those finite dimensional direct-indecomposable extensions E of the
Poincaré groupP = T � L, which respect the vector bundle structure of fundamen-
tal fields as well as the Lorentz metric of the spacetime? Technically, this means
that one has E = T � {some pointwise acting symmetries} with a surjective homo-
morphism {some pointwise acting symmetries} → L onto the Lorentz group. The
answer [12] is a simple consequence of the Levi decomposition / O’Raifeartaigh
theorem and of the definition of semidirect product:

E = (
T︸︷︷︸

translations

× N︸︷︷︸
solvable

internal symmetries

)
�

(
G1× · · · ×Gm︸ ︷︷ ︸

semisimple
internal symmetries

× L︸︷︷︸
Lorentz

symmetries

)
(4)

must hold, where the semisimple internal symmetries G1× · · · ×Gm commute with
the translations T , the Lorentz symmetriesL have the canonical adjoint action on the
translations T , but the invariant subgroup of solvable internal symmetriesN does not
commute with the Lorentz symmetries nor with the semisimple internal symmetries.
If one requires in addition that there exists a positive semidefinite invariant bilinear
form on the Lie algebra of the non-Poincaré symmetries, then it also follows that
G1× · · · ×Gm is compact. (Such a requirement is motivated by the positive energy
condition for gauge fields.) With this requirement, the full internal symmetry group
of such a Poincaré group extension shall have the structure {solvable} � {compact}.
These kind of Poincaré group extensions we named conservative extensions, and
are seen to have a number of rather favorable properties [12]: they are direct-
indecomposable, preserve causal structure of the spacetime, preserve vector bundle
structure of fundamental fields, obey positive energy condition etc. Ideally, one could
look for such a setting in which case the group of compact internal symmetries is
identical to the Standard Model gauge group U(1)×SU(2)×SU(3).

It is not difficult to see that conservative extensions of the Poincaré group do exist,
i.e. that our definition is not empty. Take, for instance, the complexified Schrödinger
Lie group, which is isomorphic to H3(C) � SL(2, C). Here H3(C) denotes the com-
plexified Heisenberg Lie group with three generators, being the lowest dimensional
complex non-abelian nilpotent Lie group. Clearly, from this there exists a homomor-
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phism onto SL(2, C) and therefore also onto the homogeneous Lorentz group L,
which acts canonically on the group of spacetime translations T in its adjoint rep-
resentation. With these subgroup actions, the group (T × H3(C)) � L is uniquely
well-defined and is direct-indecomposable. (Note that from the Lie algebra point of
view, one has SL(2, C) ≡ L). This provides the simplest conservative extension of
the Poincaré group, and the non-Poincaré symmetries span a nilpotent Lie group
H3(C), being part of the radical.

An other example is constructed in [11, 12], which is expected to bemore interest-
ing for physics. It contains a Poincaré component, a compact internal group compo-
nent (U(1) in the example), and unavoidably a nilpotent internal group component. In
particular, it has the group structure (T × N ) � (U(1) × L), where N is a 20 dimen-
sional real nilpotent Lie group, the Lorentz group L acts with the canonical adjoint
action on the translations T , and both the compact U(1) component and the Lorentz
group componentLhas non-vanishing adjoint action on N , which provides the direct-
indecomposability. Clearly, it is essential in the construction that the radical T of the
Poincaré group is extended by N , without which such a direct-indecomposability is
not possible according to O’Raifeartaigh theorem. Also note, that the construction
resembles to (extended) super-Poincaré group as outlined in [12], with the impor-
tant difference that in case of the (extended) super-Poincaré group the translations
are direct-indecomposably part of the nilpotent symmetries, called to be the group
of supertranslations, forming a direct-indecomposable two-step nilpotent Lie group.
In case of our construction, however, the translations are direct-decomposable from
other symmetries within the radical, which makes it a conservative extension of the
Poincaré group, in contrast to (extended) SUSY. It is also an important piece of
information that the concrete conservative extension of the Poincaré group proposed
in [11, 12] can be shown to have faithful unitary representations on some separable
complex Hilbert space.

An important feature of the conservative extensions of the Poincaré group P is
that there exists a homomorphism:

N︸︷︷︸
solvable

internal symmetries

�

(
G1× · · · ×Gm︸ ︷︷ ︸

compact
internal symmetries

× P︸︷︷︸
Poincaré

symmetries

)

︸ ︷︷ ︸
direct−indecomposable conservative extension of the Poincaré group,

acting on fundamental field degrees of freedom

−→ G1× · · · ×Gm︸ ︷︷ ︸
compact

internal symmetries

× P︸︷︷︸
Poincaré

symmetries
︸ ︷︷ ︸

observed direct−decomposable symmetries,
acting on some derived field quantities

which are function of fundamental degrees of freedom

(5)

and potentially can explain a StandardModel-like gauge theory setting from a direct-
indecomposable fundamental symmetry, without a breaking of it.
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5 Commutation Relations of the Concrete Example

In this section the commutation relations of the generators of the Lie algebra of our
concrete example group [11, 12] is outlined. The pertinent direct-indecomposable
conservative extension of the Poincaré group is the automorphism group of some
finite dimensional unital associative algebra valued classical fields over the four
dimensional spacetime. Similar algebra valued field construction was tried by Anco
and Wald in the end of ’80s [17], but they could not achieve the goal of direct-
indecomposability due to the too simple structure of the algebra of fields which they
applied.

In the followings S shall denote a complex two-dimensional vector space (“spinor
space”), and S∗, S̄, S̄∗ shall denote its dual, complex conjugate, complex conjugate
dual vector space, respectively. Let us consider the complex unital associative algebra
Λ(S̄∗) ⊗ Λ(S∗), where Λ() denotes exterior algebra formation. Observe that this
algebra also has an antilinear involution defined by the complex conjugation, which
is compatible with the algebraic product in the sense that x y = x̄ ȳ holds for any two
algebra elements x, y. We shall call a finite dimensional complex unital associative
algebra A together with an antilinear involution (·)+ obeying (x y)+ = x+ y+ a

spin algebra whenever the pair
(
A, (·)+)

is isomorphic to
(
Λ(S̄∗) ⊗ Λ(S∗), (·)

)
.

The antilinear involution (·)+ (or, (·)) shall be referred to as charge conjugation.
Thus, a spin algebra A is (not naturally) isomorphic to the concrete spin algebra
Λ(S̄∗) ⊗ Λ(S∗) with spinorial realization. In the followings, we shall often use a
representation A ∼= Λ(S̄∗) ⊗ Λ(S∗) so that the simple formalism of traditional two-
spinor calculus can be used.

For the sake of simplicity, we shall give our construction in the flat spacetime
limit. LetM denote a four real dimensional affine space, modeling a (flat) spacetime
manifold, and let T be its underlying vector space (“tangent space”). Take the trivial
vector bundle A(M) := M × A. Our direct-indecomposable conservative Poincaré
group extension containing also U(1) shall be nothing but the automorphism group
of the algebra of the sections of the A(M), i.e. of the spin algebra valued fields [11,
12]. In the followings Penrose abstract indices shall be used for the spacetime degrees
of freedom and for the spinor degrees of freedom, as usual in the General Relativity
literature [18, 19]. The symbol ∇a shall denote the affine covariant derivation of the
affine spaceM. Also, given a point o (“origin”) ofM, the symbol Xo shall denote the
vectorization map against o, which is the vector field Xo : M → T, x 
→ (x−o).
Let in the spinorial representation σ AA′

a denote the usual Infeld-Van der Waerden
symbol, also called Pauli injection, or soldering form. It is some preferred injective
linear map T → Re

(
S̄ ⊗ S

)
, and is shown in [11, 12] to be Aut(A)-invariant. Its

inverse map is denoted by σ a
AA′ . Let ω[A′B ′][CD] be a positive maximal form from A.

Then, it is well-known that g(σ, ω)ab := σ AA′
a σ BB ′

b ω[A′B ′][AB] is a Lorentz signature
metric on T , and its inversemetric is denoted by g(σ, ω)ab. The symbolΣ(σ)a

b
B
A :=

i
(
σ AC ′
a σ b

BC ′ − g(σ, ω)cbg(σ, ω)daσ
AC ′
c σ d

BC ′
)
is called the spin tensor in the literature,

and can be considered as the generators of the SL(2, C) group, as it is well-known.
It can uniquely act on the full mixed tensor algebra of S, S∗, S̄, S̄∗ by requiring
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vanishing action on scalars, commutativity with duality form, realness of iΣ(σ)a
b,

and Leibniz rule over tensor product. Given a concrete spinorial representation A ≡
Λ(S̄∗) ⊗ Λ(S∗), thus the spin tensor can be uniquely extended to A as an algebra
derivation valued tensor Σ(σ)a

b, and it shall have vanishing action on scalars, shall
obey Leibniz rule against algebra multiplication of A, and shall have realness of
iΣ(σ)a

b against the charge conjugation within A. The spin tensorΣ(σ)a
b, however,

is not invariant to the full action of Aut(A): the nilpotent normal subgroup within
Aut(A) which do not preserve the subspaces Λ p̄q := ∧p S̄∗ ⊗ ∧q S∗ of pure p, q-
forms do not preserve Σ(σ)a

b. That is, the definition of Σ(σ)a
b is relative to a

concrete spinorial representation A ≡ Λ(S̄∗) ⊗ Λ(S∗), which is also not preserved
by the pertinent nilpotent normal subgroup.

Introduce the differential operators Jo
ab := (

Xo
a i∇b − Xo

bi∇a
) + 1

2Σ
ab and

Pa := i∇a over the sections of the spin algebra bundle A(M), i.e. over the spin alge-
bra valued fields. They are called the o-angularmomentumandmomentumoperators,
respectively, and are known to provide a faithful representation of the Poincaré Lie
algebra in the Lie algebra of differential operators of the sections of A(M). Given
a concrete spinorial representation A ≡ Λ(S̄∗) ⊗ Λ(S∗), for each complex number
c introduce the unique algebra derivation operator which acts as ζc(ξ̄A′) := c ξ̄A′ for
all ξ̄A′ ∈ Λ1̄0 ≡ ∧1 S̄∗ ⊗ ∧0 S∗. By construction, the map i ϕ 
→ ζi ϕ (ϕ ∈ R) pro-
vides a faithful representation of the Lie algebra of the U(1) group on the algebra
derivations of the spin algebra A, and thus on the algebra derivations of the spin
algebra valued fields. Similarly to the spin tensor Σab, the definition of the operator
ζ depends on a concrete chosen spinorial representation A ≡ Λ(S̄∗) ⊗ Λ(S∗). By
construction, the operators Pa , Jo ab, ζ provide a faithful representation of the Lie
algebra of P × U(1).

The direct-indecomposable unification of P and of U(1) shall happen because
Aut(A) has a nilpotent normal subgroup on which both P and U(1) has nonvanish-
ing adjoint action. The generators of this nilpotent normal subgroup shall be detailed
as follows. Take a concrete chosen spinorial representation A ≡ Λ(S̄∗) ⊗ Λ(S∗).
Take any element β ∈ Re

(
Λ1̄2 ⊗ Λ∗

1̄0
⊕ Λ2̄1 ⊗ Λ∗

0̄1

)
⊂ Re (Lin(A)). Such an ele-

ment, in the spinorial notation, can be represented as
(
βB ′[CD]A

′
, β̄B[C ′D′]A

)
, uniquely

determined by the spinor tensor βB ′[CD]A
′
. Such an element β defines a Λ1̄0 → Λ1̄2

linear operator via the formula ξ̄A′ 
→ βB ′[CD]A
′
ξ̄A′ . Direct verification shows that this

can be uniquely extended as an algebra derivation operator νβ of A, via requiring van-
ishing on scalars Λ0̄0, realness, and Leibniz rule. Also, for all elements a ∈ Re (A),
the linear map ada : A → A is an algebra derivation of A, called inner derivation.
They can be uniquely parameterized by real elements not in the center of A, i.e. with
elements a ∈ Re

(
Λ1̄0 ⊕ Λ0̄1 ⊕ Λ1̄1 ⊕ Λ2̄1 ⊕ Λ1̄2

)
.

Let β, β ′ ∈ Re
(
Λ1̄2 ⊗ Λ∗

1̄0
⊕ Λ2̄1 ⊗ Λ∗

0̄1

)
⊂ Re (Lin(A)) and take the elements

a, a′ ∈ Re
(
Λ1̄0 ⊕ Λ0̄1 ⊕ Λ1̄1 ⊕ Λ2̄1 ⊕ Λ1̄2

)
and ϕ, ϕ′ ∈ R, regarded as constant

fields over the spacetime manifold M. Then the relations
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[ada, ada′] = ad[a,a′],[
ada, νβ ′

] = − adνβ′ (a),
[
ada, ζiϕ′

] = − adζiϕ′ (a),
[
ada, Jo cd

] = − adJo cd (a),

[ada, Pc] = 0,
[
νβ, νβ ′

] = 0,
[
νβ, ζiϕ′

] = −ν[ζiϕ′ ,β],
[
νβ, Jo cd

] = −ν[Jo cd ,β],[
νβ, Pc

] = 0,
[
ζiϕ, ζiϕ′

] = 0,
[
ζiϕ, Jo cd

] = 0,
[
ζiϕ, Pc

] = 0,
[
Jo cd , Jo e f

] = i gde Jo c f − i gce Jo d f + i gc f Jo de − i gd f Jo ce,[
Jo cd , Pe

] = i gde Pc − i gce Pd ,

[Pc, Pd ] = 0 (6)

are seen to hold, where the operators ada , νβ , ζiϕ , Jo cd , Pe are regarded as acting on
the smooth sections of A(M), i.e. on spin algebra valued fields. These operators are
algebra derivation valued on the algebra of smooth sections of A(M), where in a
concrete spinor representation A ≡ Λ(S̄∗) ⊗ Λ(S∗), these fields can be regarded as
a 9-tuple of spinor tensor fields

(
ϕ, ξ(+) A′ , ξ(−) A′ , ε(+) [B ′C ′], vDD′ , ε(−) [BC],

χ(+) [B ′C ′]A, χ(−) A′[BC], ω[A′B ′][CD]
)

(7)

in the usual spinor index notation. The symmetry generators in Eq. (6) respect the
vector bundle structure of A(M), the spin algebra structure of the fibers of A(M),

as well as the soldering form σ AA′
a viewed as a T ∗ ⊗ Re

(
Λ∗

1̄1

)
valued constant field

over the affine space M. They also happen to preserve the constant maximal forms
ω[A′B ′][CD], i.e. constant sections of value in Λ2̄2 ≡ ∧2 S̄∗ ⊗ ∧2 S∗. If an additional
generator, i.e. the operator ρ 
→ ζρ (ρ ∈ R) is also included among the Lie algebra
generators of Eq. (6), then also the generators of the constant Weyl (conformal)
rescalings of the flat spacetime metric gab is included in the Lie algebra, and in that
case the maximal forms are not preserved, but acted on with the Weyl rescalings.
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Noether’s Theorem and Its Complement
in Multi-Particle Systems

Walter Smilga

Abstract Noether’s theorem has gained outstanding importance in theoretical
particle physics, because it leads to basic conservation laws, such as the conser-
vation of momentum and of angular momentum. Closely related to this theorem, but
unnoticed so far, is a complementary law, which requires the (virtual) exchange of
momentum between the particles of an isolated multi-particle system. This exchange
ofmomentum determines an interaction. For a two-particle system defined by an irre-
ducible representation of the Poincaré group, this interaction is identified as the elec-
tromagnetic interaction. This sheds new light on the particle interactions described
by the Standard Model. It resolves long-standing questions about the value of the
electromagnetic coupling constant, and about divergent integrals in quantum elec-
trodynamics.

Keywords Noether’s theorem · Multi-particle systems · Poincaré group
Momentum entanglement · Electromagnetic interaction · Fine-structure constant

1 Introduction

Since quantum electrodynamics (QED) was cast in its present form in 1949–50, we
have been faced with two problems. The first problem concerns the mathematical
inconsistencies of the perturbation algorithm, which become apparent in divergent
integrals as soon as higher-order approximations to the perturbation series are con-
sidered. Although we have learned to remove these divergences by a mathematical
trick called renormalization, this trick has neither made the mathematics consistent
nor contributed to a better understanding of QED. The second problem is that QED
cannot determine the value of the electromagnetic coupling constant, which indicates
that QED in its current form is not a closed theory of the electromagnetic interaction
but merely its phenomenological description.
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The central question to be answered concerns the phenomenon of interaction
itself. The Feynman rules in momentum space [1] assert that for the construction
of the S matrix, a factor (2π)4 δ(4)(p − p′ + k) has to be inserted at each vertex,
where p and p′ are the momenta of the fermion lines and k is that of a photon
line, and one is to integrate over the momenta of all internal lines. The integration
leads to momentum-entangled structures, describing a ‘virtual exchange of momen-
tum’ between the particles while conserving the total momentum. A short analysis
of S-matrix elements, calculated by Feynman rules, shows that it is this exchange
of momentum that is de facto responsible for the interaction described by QED,
irrespective of the physical or mathematical cause of the entanglement.

The Standard Model suggests that the reason for entanglement is the exchange
of virtual gauge particles, their existence being postulated by the principle of gauge
invariance. Considering, however, that the structure of not only single- but also two-
particle states is largely determined by their symmetry group, that is, the Poincaré
group,we can expect group theory to provide a different, strictlymathematical answer
to the question: What physical or mathematical conditions can force two single
particles into a momentum-entangled two-particle state?

In answering this question, the following group theoretical approach will pro-
vide unexpected insights into the quantum mechanics of multi-particle systems and,
as a by-product, give answers to the issues raised about divergences and coupling
constants.

2 The Complement to Noether’s Theorem

Let me start with Noether’s theorem, which, on a very basic level, links continu-
ous symmetry groups with conservation laws. In quantum mechanics, this linkage
is especially close, because the generators of unitary symmetry transformations are,
at the same time, self-adjoint operators that represent observables. In the case of
translation symmetry, the generators of the translations represent the (conserved)
momentum; in the case of rotational symmetry, the generators of the rotations rep-
resent the (conserved) angular momentum. In the Heisenberg picture, the proof of
Noether’s theorem is extremely simple: the invariance of the Hamiltonian H with
respect to unitary symmetry transformations means that it commutes with the gen-
erator X of the symmetry operations. According to the Heisenberg equation

dX

dt
= i [H, X ] , (1)

the self-adjoint operator X , now understood as the representation of an observable,
is therefore conserved in time.

Consider an isolated multi-particle system that is composed of independent
(“free”) particles. According to the axioms of quantum mechanics the state space
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of this system is the direct product of the state spaces of the particles; the total
momentum P is given by the sum of the individual particle momenta Pj :

P =
n∑

j=1

Pj . (2)

Being an isolated system, its Hamiltonian H is invariant under translations of the
whole system. Therefore, according to Noether’s theorem, the total momentum P is
conserved in time:

dP

dt
= i [H, P] = 0 . (3)

This does not imply that the system is also invariant under translations of a single
particle. If it is not invariant, the Heisenberg equation (1), applied to the generator Pj

of such a transformation, states that the momentum of this particle is not conserved
in time:

dPj

dt
= i

[
H, Pj

] �= 0 . (4)

In general terms, this can be formulated as follows:

Theorem 1 (Complement to Noether’s theorem) If the Hamiltonian is not invari-
ant with respect to a continuous unitary transformation, then the generator of the
transformation is not conserved in time.

Proof The proof follows analogously to the proof of Noether’s theorem from the
Heisenberg equation (1).

Although the mathematical basis of this theorem is the same as that of Noether’s
original theorem, its physical implications are quite different. Because in the above-
mentioned configuration the total momentum is conserved in time, a possible change
of the momentum of particle j must be compensated for by an opposite change of
momentum of (at least) one other particle k:

dPj

dt
= i

[
H, Pj

] �= 0 , (5)

dPk
dt

= i [H, Pk] �= 0 . (6)

With Eqs. (2) and (3) we have

dPj

dt
+ dPk

dt
= dP

dt
= 0 (7)

and, therefore,
dPj

dt
= − dPk

dt
. (8)
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Relation (8) can be interpreted as (modelled by) an exchange of momentum
between particles j and k. Hence, instead of a conservation law, the complement
of Noether’s theorem causes an interaction law:

Proposition 1 (Interaction law) If the Hamiltonian of an isolated multi-particle
system composed of independent particles is not invariant under translations of the
individual particles, the particles are correlated by exchange of momentum.

Proof The proof follows from Eqs. (2)–(8).

Here and in the following, the term ‘exchange of momentum’ is to be understood in
the sense of Eq. (8).

Two questions have to be answered: Can we find a realistic multi-particle system
where the condition for the application of this law is fulfilled, namely, the existence
of a Hamiltonian that is not invariant under translations of the individual particles?
What are the physical consequences of this law? The following Sect. 3 will show
how this condition is actually met for a simple two-particle system. Section4 will
illustrate the practical consequences of this law.

3 Two-Particle States and Interaction

According to the axioms of quantummechanics in combination with Poincaré invari-
ance, two independent particleswith 4-momenta p1 and p2 are described by a product
representation of the Poincaré group. A product representation can be reduced to the
direct sum of irreducible representations.

The irreducible representations of the Poincaré group are characterized by fixed
eigenvalues of two Casimir operators [2]

P = pμ pμ and W = −wμwμ , with wσ = 1

2
εσμνλM

μν pλ . (9)

Here, pμ and Mμν are the operators of 4-momentum and angular momentum.
The state space HI of an irreducible representation is a subspace of the state

space HP of the corresponding product representation. In HI there exists a basis of
eigenstates |p,m〉 of the total 3-momentum p = p1 + p2 and of a component of Mμν

with eigenvaluem [2]. The translations of a single particle, generated by the operators
of the individual particle momenta, are well-defined unitary transformations within
HP , but, in contrast to HP , they are (in general) not symmetry transformations of
HI . In other words, they lead out of HI . This follows from the commutation relations
between pμ and Mμν [2]

[
pσ, Mμν

] = i (gμσ pν − gνσ pμ) , (10)

which are equal to 0 only if σ �= μ, ν. If the total momentum p points in the direction
σ, then Mμν commutes with p, but does not commute with p1 and p2, unless p1
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and p2 are parallel or anti-parallel to p. This means the basis states are, in general,
not eigenstates of the individual particle momenta: in consequence, they are not
invariant with respect to translations of a single particle. Hence, with the exception
of the parallel/anti-parallel cases, the following lemma applies.

Lemma 1 Two-particle eigenstates of total momentum and orbital angular momen-
tum are not invariant with respect to translations of the individual one-particle states.

One can say that based on the commutation relations of the Poincaré group, the
conservation of total and angular momentum breaks the translation invariance of the
individual particles.

Lemma 1 determines the general structure of the basis states |p,m〉: They are a
momentum-entangled superposition of product states |p1,p2〉 with the same total
momentum p

|p,m〉 =
∫

Ω

d3p1d3p2 c(p,m,p1,p2) |p1,p2〉 . (11)

The coefficients c(p,m,p1,p2) are the analogues of the Clebsch–Gordan coeffi-
cients, as known from the coupling of angular momenta. The domain of integration
Ω is a finite subspace of the two-particle mass shell. The product states are (in
general) momentum-entangled, because otherwise the basis states would be eigen-
states also of the individual particle momenta, which (in general) is excluded by
Lemma 1.

The product states |p1,p2〉 are normalized with respect to the parameter space
R

3 × R
3 of the product representation:

〈p1,p2|p′
1,p

′
2〉 = δ(p1 − p′

1) δ(p2 − p′
2) . (12)

In an irreducible two-particle representation, the constancy of the first Casimir oper-
ator P restricts the parameter space to the two-particle mass shell

(p01 + p02)
2 − (p1 + p2)2 = m2

tot . (13)

The constancy of the second Casimir operatorW gives the mass shell the topological
structure of a fibre space with circle fibres over the mass hyperboloid of the total
momentum [3]. The circle fibres correspond to rotations generated by the component
of angular momentum that commutes with the total momentum. The restriction of
the parameter space requires that the two-particle states (11) are re-normalized by a
factor ω = V (Ω)− 1

2 , where V (Ω) is the (finite) volume of the domain of integration
Ω . Together, d3p1d3p2 and ω form an infinitesimal volume element that ensures the
correct normalization.

For expository reasons, I will not include ω in the two-particle states, but write
ω |p,m〉 for the normalized states.

Given this basis, the Hamiltonian of the two-particle system can be written in the
form
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H = ω2
∑

m

∫
d3p

∣∣p,m〉h pm〈p,m
∣∣ . (14)

Note that H cannot be made ‘diagonal’ with respect to the product states |p1,p2〉 ,

H �=
∫
d3p1 d3p2

∣∣p1,p2〉h p1 p2〈p1,p2
∣∣ , (15)

because the product states do not belong to the state space of the considered irre-
ducible representation.

Since the basis states are eigenstates of theHamiltonian (14), they do not change in
time – except for a phase factor. They describe a stable configuration with conserved
total and angular momenta: in other words, they describe an isolated system. On
the other side, the basis states and, therefore, the Hamiltonian, are not invariant
under translations of the individual particles. Since these translations arewell-defined
unitary transformations of the underlying product state space, Proposition 1 can be
applied, leading, together with Lemma 1, to the following statement.

Corollary 1 In two-particle systems described by an irreducible representation of
the Poincaré group, the particles exchange (virtual) quanta of momentum.

Note that the ‘exchange ofmomentum’ does not necessarily imply a dynamic process:
in the first place, it refers to the static entangled structure of two-particle states, which,
however, bears the potential for a dynamic process. Relating to such structures,
Feynman used the phrase ‘exchange of virtual quanta’ [4].

The (virtual or real) exchange of momentum between two particles defines an
interaction; the similarity to the electromagnetic interaction as described in the Intro-
duction is obvious. However, this interaction mechanism is not based on a purposely
constructed model, as in the case of the Standard Model, but is rooted in the princi-
ples of quantum mechanics. The particles interact directly and necessarily, without
any mediating particles or fields, thanks to the entangled structure of the two-particle
states [5].

Alternatively, Lemma 1 and Corollary 1 can be obtained directly from the fact that
an eigenstate of angular momentum must have a rotational symmetry, which means
that it must be a superposition of product states |p1,p2〉 such that along with any
pure product state, the rotated versions of this state also contribute to the eigenstate.
This necessarily gives the eigenstate a momentum-entangled structure.

4 Illustration: A Scattering Experiment

The following thought experiment, describing a scattering process, will illustrate the
interaction mechanism.
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Fig. 1 Geometry of the scattering experiment

Figure1 shows an incoming plane wave of particles, some apertures, a target, and
a detector.

Between the first and second aperture, an incoming particle and a particle of the
target form a two-particle state. The apertures of the collimator in front of the detec-
tor select an outgoing plane wave. The total momentum p is equal to the incoming
momentum p1. In the semi-classical view, p1, together with the perpendicular dis-
tance d between the beam and the target, define an angular momentumm = d × p1.
Therefore the experimental setup can be considered a filter that selects intermediate
eigenstates of angular momentum such as ω |p,m〉 .

Note the similarities with the diffraction of a plane wave at a pin hole: both here
and there, the basic scattering mechanism becomes visible when essential parts of
the incoming plane wave are blocked by an aperture. Here, the momentum-entangled
two-particle state is left, there, the spherical elementary wave.

The scattering amplitude from the incoming product state |p1,p2〉 to the outgoing
product state |p1 − k,p2 + k〉 is given by

S(k) = ω2〈p1,p2|p,m〉〈p,m|p1 − k,p2 + k〉 . (16)

Since the intermediate state |p,m〉 is momentum-entangled, it connects incoming
and outgoing states also for non-zero values of k. There is, in fact, an interaction by
an exchange of momentum.

In the thought experiment, only the value of the Casimir operator P is determined
by the momentum of the incoming plane wave. The second Casimir operator W is
determined by the geometry of the setup.

In Eq. (16), the square of the normalization factor ω of the intermediate two-
particle state acts like a coupling constant between the incoming and the outgoing
states.

The numerical value of ω2 is determined by the geometry of the two-particle mass
shell (13). It has been calculated [3, 5] with the result:

ω2 = 9

16π3

( π

120

)1/4 = 1/137.03608245 . (17)
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This value matches the value of the fine-structure constant α, the square of the
electromagnetic coupling constant, with the empirical CODATA value [6] of

α = 1/137.035999139 . (18)

This agreement provides strong evidence that the exchange of momentum within
the states of an irreducible two-particle representation manifests itself as the electro-
magnetic interaction. This can be formulated as

Corollary 2 (Conjecture) The electromagnetic interaction is a model-independent
property of irreducible two-particle representations of the Poincaré group.

5 Conclusions

Noether’s theorem in connection with its complement provides a new and unbiased
view on the electromagnetic interaction; this view is mathematically well founded on
the principles of quantum mechanics, is independent of any model, and is physically
supported by thematching of the calculated and empirical values of the fine-structure
constant α. It simply says: In an isolated multi-particle system with well-defined and
conserved total and angular momenta, the translation invariance of the individual
particles is broken; therefore, the corresponding multi-particle states cannot be plain
product states, but must be momentum-entangled; this is synonymous with a virtual
exchange of momentum between the individual particle states.

In contrast to the standard formulation of QED, the group theoretical approach
uniquely determines the electromagnetic coupling constant, which is identified as
the normalization factor for two-particle states of an irreducible two-particle repre-
sentation of the Poincaré group.

Noether’s theorem and its complement basically confirm the interaction mech-
anism of the Standard Model, which is an interaction by exchange of momentum.
However, in the Standard Model, the exchange of momentum is modelled by the
exchange of virtual gauge bosons; this approach does not take note of the special
topology of the fibered two-particle mass shell: In a correctly defined two-particle
state, the exchange of momentum is controlled by a one-dimensional and bounded
parameter on a circle fibre. In contrast, gauge particles come along with three inde-
pendent components of momentum. The Feynman rules prescribe integration over
these three (unbounded) parameters, rather than — as would be correct — over a
single parameter on a circle fibre. An inspection of the integrals of the standard per-
turbation algorithm (cf., e.g. [7]) clearly shows that it is the excessive number and
ranges of integration variables that are responsible for the well-known divergences.

The crucial insight of the foregoing analysis is that the structure of the Poincaré
group, via its irreducible representations, completely determines not only the basic
properties of single particles, but also their (electromagnetic) interaction. There is
no need for phenomenological interaction terms or additional physical principles,
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such as gauge invariance, which the developers of the Standard Model considered an
indispensable prerequisite of interaction. As far as the electromagnetic interaction is
concerned, Poincaré invariance alone provides the rules for the complete description
of multi-particle configurations. This presents us with the challenge to comprehend
also the weak, strong, and, finally, gravitational interactions, as inherent structural
properties of multi-particle states – instead of merely modelling them.
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SU(2), Associated Laguerre Polynomials
and Rigged Hilbert Spaces

Enrico Celeghini, Manuel Gadella and Mariano A. del Olmo

Abstract We present a family of unitary irreducible representations of SU (2) real-
ized in the plane, in terms of the associated Laguerre polynomials. These functions
are similar to the spherical harmonics defined on the sphere. Relations with a space
of square integrable functions defined on the plane, L2(R2), are analyzed. We have
also enlarged this study using rigged Hilbert spaces that allow to work with discrete
and continuous bases like is the case here.

Keywords Lie group representations · Special functions · Rigged Hilbert spaces

1 Introduction

The representations of a Lie algebra are usually considered as ancillary to the algebra
and developed starting from the algebra, i.e. from the generators and their commuta-
tion relations. The universal enveloping algebra (UEA) is constructed and a complete
set of commuting observables selected, choosing between the invariant operators of
the algebra and of a chain of its subalgebras. The common eigenvectors of this com-
plete set of operators are a basis of a vector space where the Lie algebra generators
are realized as operators.

We propose here an alternative construction that allows to add to the representa-
tions obtained following the reported recipe, new ones not achievable following the
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previous approach. Starting from a concrete vector space of functions with discrete
labels and continuous variables, we consider the recurrence relations that allow to
connect functions with different values of the labels. These recurrence relations are
not operators but allow us to introduce, for each label and for each continuous vari-
able, an operator that reads its value. In this way, recurrence relations are rewritten in
terms of rising and lowering operators built by means of the above defined operators.
These rising and lowering operators are often genuine generators of the Lie algebras
considered by Miller [1] and the procedure gives simply the representations of the
algebras in a well defined function space [2, 3]. However it can happen that the com-
mutators, besides the values required by the algebra, have additional contributions.
The essential point of this paper is that these additional contributions (as exhibited
here) can be proportional to the null identity that defines the starting vector space.
As this identity is zero on the whole representation, the Lie algebra is well defined
and a new representation in a space of functions has been found.

We do not discuss here the general approach, but we limit ourselves to a simple
examplewhere all aspects are better understandable.We start thus from the associated
Laguerre polynomials (ALP) and, following the proposed construction, we realize
the algebra su(2) in terms of the appropriate rising and lowering operators. The
ALP support in reality a larger algebra [4] but we prefer to consider here only
the subalgebra su(2). The reasons for this choice are twofold: first in this way the
technicalities are reduced at the minimum and second it has been very nice for us
to discover that not all representations of a so elementary group like SU (2) where
known.

As discussed in [5–7] the presence of operators with spectrum of different cardi-
nality implies that, as considered for the first time in Lie algebras in [8], the space
of the group representation is not a Hilbert space but a rigged Hilbert space (RHS)
[9]. Thus, we introduce the above setting within the context of RHS since the RHS
is the perfect framework where discrete and continuous bases coexist. In addition,
the same RHS serves as a support for a representation on it of a Lie algebra as con-
tinuous operators as well as for its UEA. Therefore, the connection between discrete
and continuous bases and Lie algebras with RHS is well established.

2 Associated Laguerre Polynomials

The ALP [10], L(α)
n (x), depend from a real continuous variable x ∈ [0,∞) and from

two other real labels (n,α) : n = 0, 1, 2, . . . and α (usually assumed as a fixed
parameter) continuous and > −1 . They reduce to the Laguerre polynomials for
α = 0 and are defined by the second order differential equation

[
x
d2

dx2
+ (1 + α − x)

d

dx
+ n

]
L(α)
n (x) = 0 . (1)
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From the many recurrence relations that can be found in literature [10, 11], we
consider the following ones, all first order differential recurrence relations:

[
x
d

dx
+ (n + 1 + a − x)

]
L(α)
n (x) = (n + 1)L(α)

n+1(x) ,[
−x

d

dx
+ n

]
L(α)
n (x) = (n + α)L(α)

n−1(x) ,[
− d

dx
+ 1

]
L(α)
n (x) = L(α+1)

n (x) ,[
x
d

dx
+ α

]
L(α)
n (x) = (n + α)L(α−1)

n (x) .

(2)

Starting from L(α)
n (x), by means of repeated applications of equations (2), L(α+h)

n+k (x)
–with h and k arbitrary integers– can be obtained through a differential relation of
higher order. But, by means of Eq. (1), every differential relation of order two or
higher can be rewritten as a differential relation of order one. In particular we can
obtain [

d

dx
+ n

α + 1

]
L(α)
n (x) = − α

α + 1
L(α+2)
n−1 (x),[

x(α − 1)
d

dx
− x

(
n + 3

α

2

)
+ α(α − 1)

]
L(α)
n (x)

= ( j + α)(α + 1) L(α−2)
n+1 (x),

(3)

that are the recurrence relations we employ in this paper.
The ALP L(α)

n (x) are –for α > −1 and fixed– orthogonal in n with respect the
weight measure dμ(x) = xα e−x dx [10]:

∫ ∞

0
dx xα e−x L(α)

n (x) L(α)
n′ (x) = Γ (n + α + 1)

n! δnn′ ,

∞∑
n=0

xα e−x L(α)
n (x)L(α)

n (x ′) = δ(x − x ′) .

(4)

The parameter α can be extended to arbitrary complex values [10] and, in partic-
ular, for α integer and such that 0 ≤ |α| ≤ n, we have the relation

L(−α)
n (x) = (−x)α

(n − α)!
n! L(α)

n−α(x) . (5)

Here we assume consistently that n ∈ N , α ∈ Z and n − α ∈ N , and we also
consider α as a label, like n, and not a parameter fixed at the beginning. Following
the approach of [2], we introduce now a set of alternative variables and include the
weight measure inside the functions, in such a way to obtain the bases we are used in
quantum mechanics. We define indeed j := n + α/2 and m := −α/2 that are such
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that j ∈ N/2 , j − m ∈ N and |m| ≤ j . Note that they look like the parameters j
and m used in SU (2). Now we write

Lm
j (x) :=

√
( j + m)!
( j − m)! x−m e−x/2 L(−2m)

j+m (x)

so that, from Eq. (5), Lm
j (x) is symmetric/antisymmetric in the exchange m ↔ −m

since Lm
j (x) = (−1)2 j L−m

j (x). From Eq. (4), we see that the Lm
j (x) verify, for m

fixed, the following orthonormality and completeness relations

∫ ∞

0
Lm

j (x) Lm
j ′(x) dx = δ j j ′ ,

∞∑
j=|m|

Lm
j (x) Lm

j (x
′) = δ(x − x ′) , (6)

and are thus, for any fixed value of m, an orthonormal basis of L2(R+).
Note that, in the algebraic description of the spherical harmonics, the functions

Tm
j (x) =

√
( j−m)!
( j+m)! P

m
j (x), related to the associated Legendre functions Pm

l (x) and

introduced in [2], satisfy Tm
j (x) = (−1)m T−m

j (x)which is a relation similar to those
verified by the Lm

j (x) . Moreover the Tm
j (x), like the Lm

j (x) on the half-line, are
orthogonal –for fixed m– in the interval (−1,+1) ⊂ R and a basis for L2[−1, 1].

3 SU(2) Representations in the Plane

Following now Ref. [2], we define four operators X , Dx , J and M such that

X Lm
j (x) = x Lm

j (x), Dx Lm
j (x) = Lm

j (x)
′ ,

J Lm
j (x) = j Lm

j (x), M Lm
j (x) = m Lm

j (x),
(7)

and we can rewrite Eq. (1) in terms of the Lm
j (x) and in operatorial form as

E Lm
j (x) ≡

[
X D2

x + Dx − 1

X
M2 − X

4
+ J + 1

2

]
Lm

j (x) = 0 . (8)

Thus, the identity E ≡ 0 defines L2(R+).
The relations (3) can now be rewritten on terms of the Lm

j (x) as

K+ Lm
j (x) = √

( j − m)( j + m + 1) Lm+1
j (x) ,

K− Lm
j (x) = √

( j + m)( j − m + 1) Lm−1
j (x) ,

(9)
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where

K+ = −2Dx

(
M + 1

2

)
+ 2

X
M

(
M + 1

2

)
−

(
J + 1

2

)
,

K− = 2Dx

(
M − 1

2

)
+ 2

X
M

(
M − 1

2

)
−

(
J + 1

2

)
.

(10)

Since, from Eq. (9), we have [K+, K−] Lm
j (x) = 2m Lm

j (x) and defining K3 :=
M (i.e. K3 Lm

j (x) = m Lm
j (x)) we get the relations

[K+, K−] Lm
j (x) = 2 K3 Lm

j (x), [K3, K±] Lm
j (x) = ± K± Lm

j (x) , (11)

that display the fact that, for fixed j , under the action of K± and K3 , the Lm
j (x)

supports the irreducible representation of dimension 2 j + 1 of su(2).
However, while as exhibited by (6) the space {Lm

j (x)} has an inner product for m
fixed and j ≥ |m| (thus supporting a set of UIR of SU (1, 1) [4]), the representation
(11) of SU (2) is not faithful, since Lm

j (x) = (−1)2 j L−m
j (x), and not unitary. The

definition of a scalar product is indeed one of the problems we have in the connec-
tion of hypergeometric functions and Lie algebras. Hence, we have two problems:
the Lm

j (x) are not orthonormal for j fixed and functions with opposite m are not
independent (as it happens also with the Pm

j (x)). Following the same approach of
the spherical harmonics to construct the inner product space for j fixed and |m| ≤ j
we, thus, introduce a new real variable φ (−π < φ ≤ π) and the new objects

Zm
j (r,φ) := ei m φ Lm

j (r
2),

that verifyZm
j (r,φ + 2π) = (−1)2 j Zm

j (r,φ).Under the change of variable x → r2

equation (8) becomes for Zm
j (r, 0)

[
d2

dr2
+ 1

r

d

dr
− 4m2

r
− r2 + 4

(
j + 1

2

)]
Zm

j (r, 0) = 0. (12)

The functions Zm
j (r,φ) are the analogous on the plane of the spherical harmonics

Ylm(θ,φ) on the sphere. The orthonormality and completeness of the Zm
j (r,φ) is

similar to that of Ym
j (θ,φ)

1

π

∫ π

−π

dφ

∫ ∞

0
r dr Zm

j (r,φ)∗ Zm ′
j ′ (r,φ) = δ j, j ′ δm,m ′ ,∑

j,m

Zm
j (r,φ)∗ Zm

j (r ′,φ′) = π

r
δ(r − r ′) δ(φ − φ′) .

(13)

This means that {Zm
j (r,φ)} is a basis of the space L2(R2) with measure dμ(r,φ) =

r dr dφ/π like {Ym
j (θ,φ)} is a basis of L2(S2) with dΩ .
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Now we consider an abstract Hilbert spaceH supporting the 2 j + 1 dimensional
IR of su(2) spanned by the eigenvectors of J and M (see Eq. (7))

J | j,m〉 = j | j,m〉 , M | j,m〉 = m | j,m〉 , 2 j ∈ N, |m| ≤ j .

These vectors | j,m〉 constitute a basis ofH verifying the properties of orthogonality
and completeness

〈 j,m| j ′,m ′〉 = δ j, j ′ δm,m ′ ,

∞∑
j=0

j∑
m=− j

| j,m〉〈 j,m| = I.

Any | f 〉 ∈ H may be written as | f 〉 = ∑∞
j=0

∑ j
m=− j f j,m | j,m〉 if and only if

∞∑
j=0

j∑
m=− j

| f j,m |2 < ∞ , fl,m = 〈l,m| f 〉 . (14)

A canonical injection S : H → L2(R2) can be defined by | j,m〉 → Zm
j (r,φ) and

extended by linearity and continuity to the whole H. One can easily check that S is
unitary. For any | f 〉 ∈ H we have the following expression

S| f 〉 =
∞∑
j=0

j∑
m=− j

f j,m S | j,m〉 =
∞∑
j=0

j∑
m=− j

f j,m Zm
j (r,φ) .

We now introduce a continuous basis, {|r,φ〉}, depending on the values of the
variables r and φ with the help of the discrete basis {| j,m〉} by

〈r,φ| j,m〉 := Zm
j (r,φ) . (15)

In reality, because of the different cardinality of r and j , we are not dealing with
a Hilbert space but with a rigged Hilbert space (see next Section). The Zm

j (r,φ)

can be seen as the transformation matrices from the irreducible representation states
{| j,m〉} to the localized states in the plane {|r,φ〉}, like Ym

j (θ,φ) = 〈 j,m|θ,φ〉 are
the corresponding ones to the localized states {|θ,φ〉} in the sphere [7, 12]. Indeed

| j,m〉 = 1

π

∫
R2

|r,φ〉Zm
j (r,φ)rdrdφ, | j,m〉 =

∫
S2

|θ,φ〉√ j + 1/2Ym
j (θ,φ)dΩ.

We continue with the analogy and, from K± and K3 (10), we define

J± := e±iφ K±, J3 := K3, (16)
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with act on the Zm
j (r,φ) as

J+ Zm
j (r,φ) = √

( j − m)( j + m + 1) Zm+1
j (r,φ),

J− Zm
j (r,φ) = √

( j + m)( j − m + 1) Zm−1
j (r,φ),

J3 Zm
j (r,φ) = m Zm

j (r,φ) .

(17)

The functionsZm
j (r,φ)with j fixed and |m| ≤ j , are orthonormal and determine the

representation of dimension 2 j + 1 of su(2) as it happens for the Ym
j (θ,φ). However

there is a essential difference between the operators {J±, J3} that act on the sphere
S2 that are true generators of su(2) and the {J±, J3} of (16), defined in R

2, that do
not close a Lie algebra. Indeed, when we calculate the commutator [J+, J−] in terms
of the differential operators defined in the Eqs. (10) and (16), we obtain [J+, J−] =
2 J3 + 8

R2
J3 E , and only when E ≡ 0, i.e. only in the unitary space L2(R2) , the

su(2) algebra is recovered. On the other hand, E is related to the su(2) Casimir C

E = − R2

4J 2
3 + 1

[C − J (J + 1)] ≡ − R2

4J 2
3 + 1

[
J 2
3 + 1

2
{J+, J−} − J (J + 1)

]
,

so equation E = 0 is equivalent to the su(2) Casimir condition C − J (J + 1) = 0,
that entails the usual Lie algebra in each su(2) representation space.

4 Rigged Hilbert Space Formulation

A RHS (or Gelf’and triplet) is a triplet of spaces Φ ⊂ H ⊂ Φ× , where H is an
infinite dimensional separable Hilbert space, Φ is a dense subspace of H endowed
with its own topology, and Φ× is the dual (or the antidual) space of Φ [9, 13, 14].
The topology considered on Φ is finer (contains more open sets) than the topology
that Φ has as subspace of H, and Φ× is equipped with a topology compatible with
the dual pair (Φ,Φ×) [15], usually the weak topology. The topology of Φ [16, 17]
allows that all sequences which converge on Φ, also converge onH but the converse
is not true. The difference between topologies gives rise that Φ× is bigger than H,
which is self-dual.

Here, any F ∈ Φ× is a continuous linear mapping from Φ into C.
An essential property is that if A is a densely defined operator onH, such that Φ

be a subspace of its domain and that Aϕ ∈ Φ for all ϕ ∈ Φ, we say thatΦ reduces A
or thatΦ is invariant under the action of A, (i.e., AΦ ⊂ Φ). Then Amay be extended
unambiguously to Φ× by the duality formula

〈A× F |ϕ〉 := 〈F |Aϕ〉 , ∀ϕ ∈ Φ , ∀ F ∈ Φ× . (18)

Moreover if A is continuous on Φ, then A× is continuous on Φ×.
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The topology on Φ is given by an infinite countable set of norms {|| − ||∞n=1}. A
linear operator A on Φ is continuous if and only if for each norm || − ||n there is a
Kn > 0 and a finite sequence of norms || − ||p1 , || − ||p2 , . . . , || − ||pr such that for
any ϕ ∈ Φ, one has [18]

||Aϕ||n ≤ Kn
(||ϕ||p1 + ||ϕ||p2 + · · · + ||ϕ||pr

)
. (19)

Now let us go to define and use the RHS G ⊂ H ⊂ G× where discrete and con-
tinuous bases coexist and the meaningful operators are well defined and continuous.
Since we have a representation in terms of theZm

j (r,φ), it would be more convenient
to start with an equivalent RHS D ⊂ L2(R2) ⊂ D× , such as D is a test functions
space with f (r,φ) ∈ L2(R2), which therefore admit the span

f (r,φ) =
∞∑
j=0

j∑
m=− j

f j,m Zm
j (r,φ) , (20)

where the series converges in the sense of the norm in L2(R2). A necessary and
sufficient condition for it is

∑∞
j=0

∑ j
m=− j | f j,m |2 < ∞ . Thus, from (20), we define

D as the space of functions f (r,φ) in L2(R2) such that

|| f (r,φ)||2n :=
∞∑
j=0

j∑
m=− j

( j + |m| + 1)2n | f j,m |2 < ∞ , n = 0, 1, 2, . . . . (21)

Obviously, all the finite linear combinations of the Zm
j (r,φ) are in D, hence D is

dense in L2(R2). Thus, the family of norms || − ||n onD (21) gives a topology such
that D is a Frèchet space (metrizable and complete). Since for n = 0 we have the
Hilbert space norm, the canonical injection from D into L2(R2) is continuous.

Because j goes from0 to∞, the operators J±, J3 are all unbounded and, therefore,
their respective domains are densely defined on L2(R2), but not on thewhole L2(R2).
We can prove that all these operators are defined on the wholeD and are continuous
with the topology on D. The proof is simple and it is essentially the same for all
operators. As an example, let us give the proof for J+. For any function f in D, we
have J+ f , i.e.,

J+
∞∑
j=0

j∑
m=− j

f j,m Zm
j (r,φ) =

∞∑
j=0

j∑
m=− j

f j,m
√

( j − m)( j + m + 1)Zm+1
j (r,φ) .

To show that J+ f ∈ D we have to prove that for any n ∈ N, it satisfies (21). So
taking into account the shift on the index m (17) we have
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∞∑
j=0

j∑
m=− j

| f j,m |2 ( j − m)( j + m + 1) ( j + 1 + |m| + 1)2n . (22)

The following two inequalities are straightforward:

( j − m)( j + m + 1) ≤ ( j + |m| + 1)2 , ( j + 1 + |m| + 1)2n ≤ 22n ( j + |m| + 1)2n .

Using these inequalities we see that (22) is bounded by

22n
∞∑
j=0

j∑
m=− j

| f j,m |2 ( j + 1 + |m| + 1)2n+2 , (23)

which converges after (21). Hence, J+ f ∈ D. In order to show the continuity of J+
on D, we use (19). Thus, applying J+ to any f (r,φ) ∈ D we get

||J+ f (r,φ)||2n ≤ 22n || f (r,φ)||2n+1 =⇒ ||J+ f (r,φ)||n ≤ 2n || f (r,φ)||n+1 ,

which satisfies (19) for all n = 0, 1, 2, . . .. Hence, the continuity of J+ on D has
been proved. By means of the duality formula, we extend J+ to a weakly continuous
operator on D×. Same properties can be proved for J− and J3.

Now we are able to define the abstract RHS G ⊂ H ⊂ G× using the unitary
mapping S : H → L2(R2) introduced in the previous section. Thus, we defineG :=
S−1D. Hence the topology on G is the transported topology fromD by S, so that if
f ∈ G, the semi-norms are

|| f ||2n =
∞∑
j=0

j∑
m=− j

( j + |m| + 1)2n | f j,m |2 < ∞ , n = 0, 1, 2, . . . .

The topology onG uniquely definesG×. Moreover there exists a one-to-one contin-
uous mapping from G onto D with continuous inverse. It is given by an extension,
S̃, of S defined via the duality formula 〈S̃ f |S̃F〉 = 〈 f |F〉, with f ∈ G and F ∈ G×.

On the other hand, if an operator O satisfies OD ⊂ D with continuity, the same
property works for Ô = S−1OS on G.

5 Conclusions

Starting from the recurrence relations (3) we obtained the operators {J±, J3} (16).
Their general linear algebra is not a Lie algebra. However its representation on
L2(R2), characterized by the eigenvalue zero of the operator E , is isomorphic to
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the regular representation {| j,m〉} of su(2) and it has therefore a stronger symmetry
than the general linear operator structure itself.

We are used in Lie algebra theory to representations that preserve the symmetry
of the algebra and to algebras that have the same symmetry of the space where the
representation is defined. This is exactly what happens with the spherical harmonics,
that are solution of Laplace equation and, thus, have the same intrinsic symmetry of
the group SU (2) of which they are representation bases. However, here the situation
is different since we represent SU (2) in the planeR2 which geometry preserves only
the subgroup SO(2) of SU (2). Indeed {J±, J3} (16) are defined for arbitrary E , but
they generate su(2) only under the assumption E ≡ 0, i.e. whenwe restrict ourselves
to functions f verifying the Casimir condition C f = J (J + 1) f,, i.e. that belong
to L2(R2).

Reversing the connection, the representations of a Lie algebra have been related
not only to the Lie algebra itself but also to a set of operators that do not close a Lie
algebra in an universal way but reduce to a Lie algebra only when applied to well
defined vector spaces.

This paper offers a method to introduce representations of Lie groups in spaces
that are not symmetric under the group action and in situations where the general
linear group of operators is not a Lie group in a universal way.

We have also constructed two RHS (G ⊂ H ⊂ G× and D ⊂ L2(R2) ⊂ D×)
supporting two UIR of SU (2), the first one is related with the discrete basis {| j,m〉}
and the other RHS with the continuous one {|r,φ〉}. Both are related by the unitary
map S : | j,m〉 → Zm

j (r,φ) that also transports the topologies of the first RHS and
other properties to the second RHS.
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Nonrelativistic and Classical Theories



Metage Symmetry Group of
Non-barotropic Magnetohydrodynamics
and the Conservation of Cross Helicity

Asher Yahalom

Abstract Standard cross helicity is not conserved in non-barotropic magnetohydro-
dynamics (MHD) (as opposed to barotropic or incompressible MHD). It was shown
that a new kind of cross helicity which is conserved in the non barotropic case can
be introduced. The non barotropic cross helicity reduces to the standard cross helic-
ity under barotropic assumptions. Here we show that the new cross helicity can be
deduced from a variational principle using the Noether’s theorem. The symmetry
group associated with the new cross helicity is related to translation in a labelling of
the flow elements connected to the magnetic field lines known as magnetic metage.

Keywords Symmetry group · Magnetohydrodynamics · Topological conservation
laws · Metage · Cross helicity
1 Introduction

The theorem of Noether dictates that for every continuous symmetry group of an
Action the system must possess a conservation law. For example time translation
symmetry results in the conservation of energy, while spatial translation symmetry
results in the conservation of linear momentum and rotation symmetry in the conser-
vation of angular momentum to list some well known examples. But sometimes the
conservation law is discovered without reference to the Noether theorem by using
the equations of the system. In that case one is tempted to inquire what is the hidden
symmetry associated with this conservation law and what is the simplest way to
represent it.

The concept of metage as a label for fluid elements along a vortex line in ideal
fluids was first introduced by Lynden-Bell and Katz [1]. A translation group of this
label was found to be connected to the conservation of Moffat’s [2] helicity by
Yahalom [3]. The concept of metage was later generalized by Yahalom and Lynden-
Bell [4] for barotropic MHD, but now as a label for fluid elements along magnetic
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field lines which are comoving with the flow in the case of ideal MHD. Yahalom and
Lynden-Bell [4] have also shown that the translation group of the magnetic metage
is connected to Woltjer [5, 6] conservation of cross helicity for barotropic MHD.
Recently the concept of metage was generalized also for non barotropic MHD in
which magnetic field lines lie on entropy surfaces [7]. This will be generalized in
this paper by dropping the entropy condition on magnetic field lines.

Cross Helicity was first described by Woltjer [5, 6] and is give by:

HC ≡
∫

B · vd3x, (1)

in which B is the magnetic field, v is the velocity field and the integral is taken
over the entire flow domain. HC is conserved for barotropic or incompressible MHD
and is given a topological interpretation in terms of the knottiness of magnetic and
flow field lines. A generalization of barotropic fluid dynamics conserved quantities
including helicity to non barotropic flows including topological constants of motion
is given by Mobbs [13]. However, Mobbs did not discuss the MHD case.

Both conservation laws for the helicity in the fluid dynamics case and the
barotropic MHD case were shown to originate from a relabelling symmetry through
the Noether theorem [3, 4, 8, 9]. Webb et al. [10] have generalized the idea of
relabelling symmetry to non-barotropic MHD and derived their generalized cross
helicity conservation law by using Noether’s theorem but without using the simple
representation which is connected with the metage variable. The conservation law
deduction involves a divergence symmetry of the action. These conservation laws
were written as Eulerian conservation laws of the form Dt + ∇ · F = 0 where D is
the conserved density and F is the conserved flux. Webb et al. [11] discuss the cross
helicity conservation law for non-barotropicMHD in amulti-symplectic formulation
of MHD. Webb et al. [10, 11] emphasize that the generalized cross helicity conser-
vation law, in MHD and the generalized helicity conservation law in non-barotropic
fluids are non-local in the sense that they depend on the auxiliary nonlocal variable
σ, which depends on the Lagrangian time integral of the temperature T (x, t). Notice
that a potential vorticity conservation equation for non-barotropic MHD is derived
by Webb, G. M. and Mace, R.L. [12] by using Noether’s second theorem.

It should be mentioned that Mobbs [13] derived a helicity conservation law for
ideal, non-barotropic fluid dynamics, which is of the same form as the cross helicity
conservation law for non-barotropic MHD, except that the magnetic field induc-
tion is replaced by the generalized fluid helicity � = ∇ × (v − σ∇s). Webb et al.
[10, 11] also derive the Eulerian, differential form of Mobbs [13] conservation law
(although they did not referenceMobbs [13]).Webb andAnco [14] show howMobbs
conservation law arises in multi-symplectic, Lagrangian fluid mechanics.

Variational principles for magnetohydrodynamics were introduced by previous
authors both in Lagrangian and Eulerian form. Sturrock [15] has discussed in his
book a Lagrangian variational formalism for magnetohydrodynamics. Vladimirov
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and Moffatt [16] in a series of papers have discussed an Eulerian variational prin-
ciple for incompressible magnetohydrodynamics. However, their variational princi-
ple contained three more functions in addition to the seven variables which appear
in the standard equations of incompressible magnetohydrodynamics which are the
magnetic field B the velocity field v and the pressure P . Kats [17] has general-
ized Moffatt’s work for compressible non barotropic flows but without reducing
the number of functions and the computational load. Sakurai [18] has introduced
a two function Eulerian variational principle for force-free magnetohydrodynamics
and used it as a basis of a numerical scheme, his method is discussed in a book by
Sturrock [15]. Yahalom and Lynden-Bell [4] combined the Lagrangian of Sturrock
[15] with the Lagrangian of Sakurai [18] to obtain an Eulerian Lagrangian prin-
ciple for barotropic magnetohydrodynamics which depends on only six functions.
The variational derivative of this Lagrangian produced all the equations needed to
describe barotropic magnetohydrodynamics without any additional constraints. The
equations obtained resembled the equations of Frenkel, Levich and Stilman [30] (see
also [19]). Yahalom [32] have shown that for the barotropic case four functions will
suffice. Moreover, it was shown that the cuts of some of those functions [20] are
topological local conserved quantities.

Previous workwas concerned only with barotropicmagnetohydrodynamics. Vari-
ational principles of non barotropicmagnetohydrodynamics can be found in thework
of Bekenstein and Oron [21] in terms of 15 functions and V.A. Kats [17] in terms
of 20 functions. Morrison [22] has suggested a Hamiltonian approach but this also
depends on 8 canonical variables (see table 2 [22]). The variational principle intro-
duced in [23, 24] show that only five functions will suffice to describe non barotropic
MHD in the case that we enforce a Sakurai [18] representation for the magnetic field
(see also [29] for the stationary case).

The plan of this paper is as follows: First we introduce the basic quantities and
equations of non-barotropicMHD. Thenwe describe the concept ofmagneticmetage
for non-barotropic MHD. This is followed by a description of a Lagrangian varia-
tional principle for non-barotropic MHD. Finally we derive a non-barotropic cross
helicity conservation law for non-barotropic MHD using Noether’s theorem.

2 Basic Equations

Consider the equations of non-barotropic MHD [15, 23]:

∂B
∂t

= ∇ × (v × B), (2)

∇ · B = 0, (3)

∂ρ

∂t
+ ∇ · (ρv) = 0, (4)
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ρ
dv
dt

= ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇p(ρ, s) + (∇ × B) × B
4π

, (5)

ds

dt
= 0. (6)

In the above the following notations are utilized: ∂
∂t is the temporal derivative, d

dt is
the temporal material derivative and ∇ has its standard meaning in vector calculus.
ρ is the fluid density and s is the specific entropy. Finally p(ρ, s) is the pressure
which depends on the density and entropy (the non-barotropic case). Equation (2)
describes the fact that the magnetic field lines are moving with the fluid elements
(“frozen” magnetic field lines), Eq. (3) describes the fact that the magnetic field is
solenoidal, Eq. (4) describes the conservation ofmass andEq. (5) is theEuler equation
for a fluid in which both pressure and Lorentz magnetic forces apply. Equation (6)
describes the fact that heat is not created (zero viscosity, zero resistivity) in ideal
non-barotropicMHD and is not conducted, thus only convection occurs. The number
of independent variables for which one needs to solve is eight (v,B, ρ, s) and the
number of equations (2), (4), (5), (6) is also eight. Notice that Eq. (3) is a condition
on the initial B field and is satisfied automatically for any other time due to Eq. (2).

In non-barotropic MHD one can calculate the temporal derivative of the cross
helicity (1) using the above equations and obtain:

dHC

dt
=

∫
T∇s · Bd3x, (7)

in which T is the temperature. Hence, generally speaking cross helicity is not con-
served.

3 Load and Metage

The following section follows closely a similar section in [4, 31]. Consider a thin
tube surrounding a magnetic field line as described in Fig. 1,

the magnetic flux contained within the tube is:

ΔΦ =
∫

B · dS (8)

and the mass contained with the tube is:

ΔM =
∫

ρdl · dS, (9)
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Fig. 1 A thin tube
surrounding a magnetic field
line

in which dl is a length element along the tube. Since the magnetic field lines move
with the flow by virtue of Eqs. (2) and (4) both the quantities ΔΦ and ΔM are
conserved and since the tube is thin we may define the conserved magnetic load:

λ = ΔM

ΔΦ
=

∮
ρ

B
dl, (10)

in which the above integral is performed along the field line. Obviously the parts of
the line which go out of the flow to regions in which ρ = 0 have a null contribution
to the integral. Notice that λ is a single valued function that can be measured in
principle. Since λ is conserved it satisfies the equation:

dλ

dt
= 0. (11)

By construction surfaces of constant magnetic load move with the flow and contain
magnetic field lines. Hence the gradient to such surfaces must be orthogonal to the
field line:

∇λ · B = 0. (12)

Now consider an arbitrary comoving point on the magnetic field line and denote it by
i , and consider an additional comoving point on the magnetic field line and denote
it by r . The integral:

μ(r) =
∫ r

i

ρ

B
dl + μ(i), (13)
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Fig. 2 Surfaces of constant
load

is also a conservedquantitywhichwemaydenote followingLynden-Bell andKatz [1]
as the magnetic metage. μ(i) is an arbitrary number which can be chosen differently
for each magnetic line. By construction:

dμ

dt
= 0. (14)

Also it is easy to see that by differentiating along the magnetic field line we obtain:

∇μ · B = ρ. (15)

Notice that μ will be generally a non single valued function, we will show later
in this paper that symmetry to translations in μ; will generate through the Noether
theorem the conservation of the magnetic cross helicity.

At this point we have two comoving coordinates of flow, namely λ,μ obviously in
a three dimensional flow we also have a third coordinate. However, before defining
the third coordinate we will find it useful to work not directly with λ but with a
function of λ. Now consider the magnetic flux within a surface of constant load
Φ(λ) as described in Fig. 2 (the figure was given by Lynden-Bell and Katz [1]).
The magnetic flux is a conserved quantity and depends only on the load λ of the
surrounding surface. Now we define the quantity:

χ = Φ(λ)

2π
. (16)
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Obviously χ satisfies the equations:

dχ

dt
= 0, B · ∇χ = 0. (17)

Let us now define an additional comoving coordinate η∗ since ∇μ is not orthogonal
to the B lines we can choose ∇η∗ to be orthogonal to the B lines and not be in the
direction of the ∇χ lines, that is we choose η∗ not to depend only on χ. Since both
∇η∗ and ∇χ are orthogonal to B, B must take the form:

B = A∇χ × ∇η∗. (18)

However, using Eq. (3) we have:

∇ · B = ∇A · (∇χ × ∇η∗) = 0. (19)

Which implies that A is a function of χ, η∗. Now we can define a new comoving
function η such that:

η =
∫ η∗

0
A(χ, η

′∗)dη
′∗,

dη

dt
= 0. (20)

In terms of this function we obtain the Sakurai (Euler potentials) presentation:

B = ∇χ × ∇η. (21)

And the density is now given by the Jacobian:

ρ = ∇μ · (∇χ × ∇η) = ∂(χ, η,μ)

∂(x, y, z)
. (22)

It can easily be shown using the fact that the labels are comoving that the above
forms of B and ρ satisfy Eqs. (2), (3) and (4) automatically.

Notice however, that η is defined in a non unique way since one can redefine η
for example by performing the following transformation: η → η + f (χ) in which
f (χ) is an arbitrary function. The comoving coordinates χ, η serve as labels of the
magnetic field lines. Moreover the magnetic flux can be calculated as:

Φ =
∫

B · dS =
∫

dχdη. (23)

In the case that the surface integral is performed inside a load contour we obtain:

Φ(λ) =
∫

λ

dχdη = χ

∫
λ

dη =
{

χ[η]
χ(ηmax − ηmin)

(24)
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There are two cases involved; in one case the load surfaces are topological cylinders;
in this case η is not single valued and hence we obtain the upper value for Φ(λ). In a
second case the load surfaces are topological spheres; in this case η is single valued
and has minimal ηmin and maximal ηmax values. Hence the lower value of Φ(λ) is
obtained. For example in some cases η is identical to twice the latitude angle θ. In
those cases ηmin = 0 (value at the “north pole”) and ηmax = 2π (value at the “south
pole”).

Comparing the above equation with Eq. (16) we derive that η can be either single
valued or not single valued and that its discontinuity across its cut in the non single
valued case is [η] = 2π.

The triplet χ, η,μ will suffice to label any fluid element in three dimensions. But
for a non-barotropic flow there is also another label s which is comoving according
to Eq. (6). The question then arises of the relation of this label to the previous three.
As one needs to make a choice regarding the preferred set of labels it seems that the
physical ones are χ, η, s in which we use the surfaces on which the magnetic fields
lie and the entropy, each label has an obvious physical interpretation. In this case
we must look at μ as a function of χ, η, s. If the magnetic field lines lie on entropy
surface then μ regains its status as an independent label. The density can now be
written as:

ρ = ∂μ

∂s

∂(χ, η, s)

∂(x, y, z)
. (25)

Now as μ can be defined for each magnetic field line separately according to Eq. (13)
it is obvious that such a choice exist in which μ is a function of s only. One may also
think of the entropy s as a functions χ, η,μ. However, if one change μ in this case
this generally entails a change in s and the symmetry described in Eq. (13) is lost.

4 Lagrangian variational principle of MHD

ALagrangian variational principle for barotropicMHDhas been discussed by a num-
ber of authors (see for example [4, 15]), we repeat the derivation with the necessary
modifications which are required for the non-barotropic case. Consider the action:

A ≡
∫

Ld3xdt,

L ≡ ρ

(
1

2
v2 − ε(ρ, s)

)
− B2

8π
, (26)

In the above ε is the specific internal energy (internal energy per unit of mass). The
reader is reminded of the following thermodynamic relations which will become
useful later:
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dε = Tds − Pd
1

ρ
= Tds + P

ρ2
dρ

∂ε

∂s
= T,

∂ε

∂ρ
= P

ρ2

w = ε + P

ρ
= ε + ∂ε

∂ρ
ρ = ∂(ρε)

∂ρ

dw = dε + d

(
P

ρ

)
= Tds + 1

ρ
dP (27)

in the above T is the temperature and w is the specific enthalpy. A variation in any
quantity F for a fixed position r is denoted as δF hence:

δA =
∫

δLd3xdt,

δL = δρ

(
1

2
v2 − w(ρ)

)
− ρT δs + ρv · δv − B · δB

4π
, (28)

A change in a position of a fluid element located at a position r at time t is given by
ξ(r, t). A change involving both a local variation coupled with a change of element
position of the quantity F is given by:

ΔF = δF + (ξ · ∇)F, (29)

hence
Δv = δv + (ξ · ∇)v. (30)

However, since:

Δv = Δ
dr
dt

= dΔr
dt

= dξ

dt
. (31)

We obtain:

δv = dξ

dt
− (ξ · ∇)v = ∂ξ

∂t
+ (v · ∇)ξ − (ξ · ∇)v. (32)

For any of the labels χ, η,μ a change in a specific spatial location is only possible by
the displacement of the fluid element to a new position. However, if one takes into
account both the spatial change in value and change due to the displacement then
obviously the total change is zero as each fluid element retains its labels. Hence:

Δχ = δχ + (ξ · ∇)χ = 0 ⇒ δχ = −(ξ · ∇)χ,

Δη = δη + (ξ · ∇)η = 0 ⇒ δη = −(ξ · ∇)η,

Δμ = δμ + (ξ · ∇)μ = 0 ⇒ δμ = −(ξ · ∇)μ, (33)
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Now since s is a comoving quantity depending only on the fluid element labels we
have:

Δs = 0 ⇒ δs = −(ξ · ∇)s. (34)

Using Eqs. (22) and (33) we obtain a mass conserving variation of ρ:

δρ = −∇ · (ρξ) (35)

Using Eqs. (21) and (33) a magnetic flux conserving variation takes the form:

δB = ∇ × (ξ × B). (36)

Introducing the result of Eqs. (32), (34), (35), (36) into (28) and integrating by parts
we arrive at the result:

δA =
∫

d3xρv · ξ|t1t0

+
∫

dt

{∮
dS ·

[
−ρξ

(
1

2
v2 − w(ρ)

)
+ ρv(v · ξ) + 1

4π
B × (ξ × B)

]

+
∫

d3xξ ·
[
−ρ∇w + ρT∇s − ∂(ρv)

∂t
− ∂(ρvvk)

∂xk
− 1

4π
B × (∇ × B)

] }
, (37)

in which a summation convention is assumed. Taking into account the continuity
equation (4) we obtain:

δA =
∫

d3xρv · ξ|t1t0

+
∫

dt

{ ∮
dS ·

[
−ρξ

(
1

2
v2 − w(ρ)

)
+ ρv(v · ξ) + 1

4π
B × (ξ × B)

]

+
∫

d3xξ ·
[
−∇P − ρ

∂v
∂t

− ρ(v · ∇)v − 1

4π
B × (∇ × B)

] }
, (38)

hence we see that if δA = 0 for a ξ vanishing at the initial and final times and on the
surface of the domain but otherwise arbitrary then Euler’s equation (5) is satisfied
(taking into account that ∇w − T∇s = ∇p

ρ
).

The Lagrangian density given in Eq. (26) does not admit a μmodification symme-
try since we assume that the entropy s = s(χ, η,μ) is a given function of the labels.
This problem can be overcome by taking s as a dynamical variable and enforcing its
conservation by using aLagrangemultiplier. In this approach the variational principle
takes the form:
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A ≡
∫

Ld3xdt,

L ≡ ρ

(
1

2
v2 − ε(ρ, s)

)
− B2

8π
− ρσ

ds

dt
, (39)

A variation with respect to the Lagrange multiplier σ will obviously result in Eq. (6).
A variation with respect to s will result in:

δs A =
∫

d3xdtδs

[
∂(ρσ)

∂t
+ ∇ · (ρσv) − ρT

]

+
∫

dt
∮

dS · ρσvδs −
∫

d3xρσδs|t1t0 , (40)

Taking into account the continuity equation (4) we obtain for locations in which the
density ρ is not null the result:

dσ

dt
= T, (41)

provided that δs A vanished for an arbitrary δs. Now let us turn our attention to the
variation with respect to the fluid element displacement which takes the form:

δAξ =
∫

δLξd
3xdt,

δLξ = δρ

(
1

2
v2 − w(ρ)

)
− ρσδv · ∇s + ρv · δv − B · δB

4π
, (42)

As most of the terms were calculated previously we will only calculate the term
−ρσδv · ∇s which is equal to:

− ρσδv · ∇s = ξ · ρT∇s − ∂(ρσ∇s · ξ)

∂t
− ∇ · (ρσ(∇s · ξ)v) . (43)

The above result was obtained using Eqs. (32), (6) and (41). Hence the variation of
the action with respect to a displacement of the fluid elements is:

δξA =
∫

d3xρ(v − σ∇s) · ξ|t1t0

+
∫

dt

{ ∮
dS ·

[
−ρξ

(
1

2
v2 − w(ρ)

)
+ ρv ((v − σ∇s) · ξ) + 1

4π
B × (ξ × B)

]

+
∫

d3xξ ·
[
−ρ∇w + ρT∇s − ∂(ρv)

∂t
− ∂(ρvvk)

∂xk
− 1

4π
B × (∇ × B)

]}
, (44)

in which a summation convention is assumed. Taking into account the continuity
equation (4) and the thermodynamic identities given in Eq. (27) we obtain:
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δξA =
∫

d3xρ(v − σ∇s) · ξ|t1t0

+
∫

dt

{∮
dS ·

[
−ρξ

(
1

2
v2 − w(ρ)

)
+ ρv((v − σ∇s) · ξ) + 1

4π
B × (ξ × B)

]

+
∫

d3xξ ·
[
−∇P − ρ

∂v
∂t

− ρ(v · ∇)v − 1

4π
B × (∇ × B)

]}
, (45)

Hence we obtain the correct dynamical equations for an arbitrary ξ. Now suppose
that the equations and boundary conditions hold. Then:

δξA =
∫

d3xρ(v − σ∇s) · ξ|t1t0 (46)

If in addition ξ is a small symmetry displacement such that δξA = 0 we obtained a
conserved Noether current:

δJ =
∫

d3xρ(v − σ∇s) · ξ (47)

5 Non Barotropic Cross Helicity Conservation
via the Noether Theorem

It is obvious that the choice of fluid labels is quite arbitrary. However, when enforcing
the χ, η,μ coordinate system such that:

ρ = ∂(χ, η,μ)

∂(x, y, z)
. (48)

The choice is restricted to χ̃, η̃, μ̃:

∂(χ̃, η̃, μ̃)

∂(χ, η,μ)
= 1. (49)

Moreover the Euler potential magnetic field representation:

B = ∇χ × ∇η, (50)

reduces the choice further to:

∂(χ̃, η̃)

∂(χ, η)
= 1. (51)
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In what follows we consider the transformation (see also Eq. (13)):

χ̃ = χ, η̃ = η, μ̃ = μ + a(χ, η) (52)

Hence a is a label displacementwhichmay be different for eachmagnetic field line, as
the field line is closed one need not worry about edge difficulties. This transformation
satisfies trivially the conditions (49), (51). If a = δμ is small we can use Eq. (33) to
calculate the associated fluid element displacement with this relabelling.

ξ = − ∂r
∂μ

δμ = −δμ
B
ρ

. (53)

Inserting this expression into the boundary term in Eq. (45) will result in:

δAB =
∫

dt
∮

dS ·
[
B

(
1

2
v2 − w(ρ)

)
− v((v − σ∇s) · B)

]
δμ = 0, (54)

which is the condition for magnetic cross helicity conservation. Inserting Eq. (53)
into (47) we obtain the conservation law:

δJ =
∫

d3xρ(v − σ∇s) · ξ = −
∫

d3xδμ(v − σ∇s) · B (55)

In the simplest case we may take δμ to be a small constant, hence:

δJ = −δμ

∫
d3x(v − σ∇s) · B = −δμHCNB (56)

Where HCNB is the non barotropic global cross helicity [11, 25, 26] defined as:

HCNB ≡
∫

d3x(v − σ∇s) · B =
∫

d3xvt · B (57)

in which vt ≡ v − σ∇s is the topological velocity field. We thus obtain the conser-
vation of non-barotropic cross helicity using the Noether theorem and the symmetry
group of metage translations. Of course one can perform a different translation on
each magnetic field line, in this case one obtains:

δJ = −
∫

d3xδμvt · B = −
∫

dχdηδμ

∮
χ,η

dμρ−1vt · B (58)

Now since δμ is an arbitrary (small) function of χ, η it follows that:

I =
∮

χ,η

dμρ−1vt · B (59)
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is a conserved quantity for each magnetic field line. Along a magnetic field line the
following equations hold:

dμ = ∇μ · dr = ∇μ · B̂dr = ρ

B
dr (60)

in the above B̂ is an unit vector in the magnetic field direction an Eq. (15) is used.
Inserting Eq. (60) into (59) we obtain:

I =
∮

χ,η

drvt · B̂ =
∮

χ,η

dr · vt . (61)

which is just the circulation of the topological velocity along the magnetic field lines.
This quantity can be written in terms of the generalized Clebsch representation of
the velocity [23]:

v = ∇ν + α∇χ + β∇η + σ∇s. (62)

as:

I =
∮

χ,η

dr · vt =
∮

χ,η

dr · ∇ν = [ν]. (63)

[ν] is the discontinuity of ν. This was shown to be equal to the amount of non
barotropic cross helicity per unit of magnetic flux [25, 26].

I = [ν] = dHCNB

dΦ
. (64)

6 Conclusion

We have shown the connection of the translation symmetry group of labels which is
a subgroup of the relabelling group to both the global non barotropic cross helicity
conservation law and the conservation law of circulations of topological velocity
along magnetic field lines. The latter were shown to be equivalent to the amount of
non barotropic cross helicity per unit of magnetic flux [25, 26]. Possible applications
of the generalized cross helicity conservation law (both local and global) may arise
in solar MHD, where rotation, and the baroclinic instability can give rise to magnetic
tornadoes, in which vorticity of the fluid is generated in part by the baroclinic term
∇T × ∇s (see for example [12] eqn. (4.54) and also [27]). Other possible applica-
tions for MHD constraints of the current constants of motion are described in [26].
The importance of constants of motion for stability analysis is also discussed in [28].
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Three Quarks Confined
by an Area-Dependent Potential
in Two Dimensions

Igor Salom and V. Dmitrašinović

Abstract We study the low-lying parts of the spectrum of three-quark states with
definite permutation symmetry bound by an area-dependent three-quark potential.
Such potentials generally confine three quarks in non-collinear configurations, but
classically allow for free (unbound) collinear motion. We use our previous work
to evaluate the low-lying parts of the spectrum in a non-adiabatic approximation.
We show that the eigen-energies are positive and discrete, i.e., that the system is
quantum-mechanically confined in spite of the classically allowed free collinear
motion.

Keywords Potential models · Baryons · Y-junction string

1 Introduction

In a recent series of papers we have developed an algebraic theory of quantum
mechanical three-body bound states in two [1–3] and in three dimensions [4–6].
This theory is based on the O(4) and O(6) symmetries, respectively, of the relativistic
kinetic energy and the corresponding O(4) and O(6) hyperspherical harmonics. One
expands the three-body potential and the wave functions in these hyperspherical
harmonics and then uses the O(n) algebra to simplify the Schrödinger equation.

If the three-body potential is homogenous, then, under certain conditions on the
expansion coefficients v of the three-body potential, allow for an energy spectrum
that depends essentially only on the said coefficients. This fact leads to a well-known
theorem [7–12] about energy-level ordering in the lower shells of the spectrum.
Most three-body confining potentials, such as the Δ- and Y-string ones, satisfy these
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conditions, and consequenty their states have the “universal” ordering properties, so
that their low-lying spectra look alike.

In continuation of our previous work on the quantum mechanics of three-particle
bound states, here we present an example of a potential that is homogenous and
generally confines classically, except under (very) special circumstances, and yet
does not satisfy the aforementioned conditions. Consequently its energy spectrum is
not readily calculable using our previous (adiabatic) formulae/results and does not
have the “universal” properties. We present the results of a non-adiabatic calculation
for low-lying parts of the spectrum in two dimensions.1 We show that the ordering
of states is significantly distorted, as compared with the conventional one, but the
energy spectrum remains discrete and positive, i.e., it corresponds to a quantum-
mechanically confined system.

2 An Area-Dependent Potential

We define the model potential as an harmonic oscillator perturbed by an “area term”,
with the coupling strength vb,

VHY = k

2

(
va(ρ

2 + λ2) + vb|ρ × λ|) . (1)

This potential is homogenous with homogeneity coefficient α = 2. It can be viewed
as harmonic (α = 2) generalization of the Y-string potential, which is homogenous
with α = 1, so we may call it the “harmonic Y-string”.

In the limit va > 0, vb = 0 this potential turns into the standard harmonic oscilla-
tor, with the well-known discrete, equidistant energy spectrum. In the limit va = 0,
vb > 0 the potential is still harmonic in the sense that it is proportional to the square
of the hyper-radius R2, but it depends only on the area of the triangle |ρ × λ|. Man-
ifestly, this area vanishes for all collinear quark configurations, i.e. whenever vector
ρ is parallel with the vector λ, thus making such collinear classical motions free,
i.e., unconfined.

An interesting question is what happens to this one unconfined mode of classical
motion?2 In other words, can such a “deformation” of the harmonic oscillator poten-
tial change the discrete nature of the original harmonic oscillator energy spectrum?
In order to try and answer that question we shall solve the full (i.e. non-adiabatic)
Schrödinger equation, Ref. [3]. The three-body potential Eq. (1) can be expanded in
terms of L = 0 SO(4) hyper-spherical harmonics Y J

0M(α,φ, Φ), Ref. [3]

V3−body (α,φ) =
√

π

2

∞∑

J,M

v
3−body
JM Y J

0M(α,φ, Φ) (2)

1The three-dimensional calculation will be shown elsewhere.
2which has measure zero as compared with the set of all three-body configurations - “shape space”.
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which is equivalent to an expansion in SO(3) hyper-spherical harmonics,

V3−body (α,φ) =
∞∑

J,M

v
3−body
JM YJM(α,φ) (3)

that are functions of the two hyper-angles (α,φ). The fact that the potential does not
depend on the angle φ implies that only SO(3) hyper-spherical harmonics with M =
0 enter the expansion, which is equivalent to an expansion in Legendre polynomials
of the variable x = cosα, see the Appendix.

In the followingwe shall keep only the first two terms in theLegendre expansion of
the potential, Eq. (10) and then use it to solve the Schrodinger equation numerically
for an arbitrarily large ratio of strengths of the area- and harmonic potentials vb

va
→ ∞,

which corresponds to the va → 0 limit, while keeping vb finite.
In that limit, the ratio of the two“harmonicYstring” effective potential coefficients

limk→0
(
vHY
20 /vHY

00

) =
√
5
4 remains finite, however, as can be seen in the Appendix,

and thus ensures that there remains an effective harmonic oscillator component in
the effective potential and thus preserves confinement.

3 Low-Lying Energy Spectrum

The Hilbert space of this problem naturally separates into the even- and odd-parity
parts, that are fully disconnected from each other. Moreover, other conserved quan-
tities, (“good quantum numbers”), such as the total angular momentum L and the
permutation symmetry multiplets, also provide other “super-selection rules” that fur-
ther split the Hilbert space into smaller subsets. One particularly interesting Hilbert
sub-space is the L = 0 space: this iswhere the deconfined (“continuum”) states ought
to appear, provided that they exist at all. This is because collinear motion implies
vanishing angular momentum, but not vice versa.

Following Sect. IV.A in Ref. [3] we may use m1 = 1
2

(
lρ + lλ

) = L
2 = 0 and

m2 = G3 = 0 as the definition of the invariant sub-space. This condition means
that these are the [SU (6), LP ] = [56, 0+] and [SU (6), LP ] = [20, 0+] states (in the
spectroscopy notation), the former appears first in the K = 0 band and the latter in
the K = 2 band. They re-appear at even K ’s, with increasing multiplicity.

We look at the strongly perturbed spectrum of the first 21 even-K states (K =
0, 2, 4, 6, 8, 10) sub-space satisfying the m1 = m2 = 0, i.e., L = 0 = G3 condition.
For convenience we (re)define the Hamiltonian as

H = H0 + Cpot
R2

√
2π

(
Y J=0
00 + 2√

5
Y J=2
00

)
(4)

where H0 is the harmonic oscillator Hamiltonian, with eigenvalues that are multiples
of C0 = h̄ω and Cpot is the coefficient multiplying the area term, i.e., Cpot � vb.
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Equation (4) contains the Y J=0
00 term which is the part of the area-term and due to

the presence of this term in expansion there is no appearance of artificial negative
eigenvalues.

Thus, we need the Hamiltonian matrix for the 21-dimensional even-K state (K =
0, 2, 4, . . . , 10) sub-space of the full Hilbert space satisfying the condition m1 =
m2 = 0.Wemust diagonalize the corresponding 21× 21 Hamiltonian matrix; below
we show the upper-left-hand corner 6 × 6 submatrix, corresponding to K = 0, 2, 4
states, of the full 21 × 21 matrix

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

Cpot

2λπ2 + 2C0 0
√

3
2 Cpot

5λπ2 0 0 0
0 9Cpot

10λπ2 + 4C0 0 0 0 0√
3
2 Cpot

5λπ2 0 11Cpot

14λπ2 + 6C0

√
3Cpot

5λπ2 0 Cpot

5λ
√
2π2

0 0
√
3Cpot

5λπ2
Cpot

2λπ2 + 4C0 0 0
0 0 0 0 9Cpot

10λπ2 + 6C0 0

0 0 Cpot R2

5
√
2π2 0 0 Cpot

2λπ2 + 6C0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

(5)

where λ = mω
h̄

and ω =
√

k
m . In the vanishing “area interaction” coupling constant

limit Cpot

C0
∝ vb

ω
→ 0 we recover the usual harmonic oscillator spectrum together

with its characteristic degeneracy, see Fig. 1top. As we increase the ratio of the “area
interaction” coupling constant and the harmonic one, first to unity, Cpot

C0
∝ vb

va
→ 1

Fig. 1middle, and then to seven Cpot

C0
∝ vb

va
→ 7, Fig. 1bottom, one can see that the

states are shifted, at first a little, and then much more into a more-or-less smooth
distribution of states, with no degeneracies, or manifest accumulation points.

Another interesting limit is vb
va

→ ∞, i.e., va → 0, when this Hamiltonian does
not confine all three-body configurations: the collinear classical motion is free in
this potential. What this means in the quantized case is not yet clear: naively one
might expect to see (at least) one continuum in the spectrum, corresponding to the
unconfined (“free”) collinear motion.

The lowest-lying such continuum ought to correspond to states with vanishing
total angularmomentum L = 0 and high values of K , as the collinearmotion implies:
1) vanishing total angular momentum L = 0; 2) one (hyper)-angle in the triangle
always being precisely equal to Φ = π. The second requirement leads to the vanish-
ing of the (hyper)-angular uncertainty ΔΦ = 0, which, in turn demands, an infinite
uncertainty in the corresponding (hyper)angular momentum ΔK → ∞. That can
be fulfilled only by states with vanishing total and very large/infinite/ values of the
hyper-angular momentum K. In other words, one might expect the (binding) energy
of some high hyper-angular momentumK states to decrease and ultimately to vanish
in the infinite angular momentum limit. If there are sufficiently many such states,
they may form something that resembles a continuum.
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Fig. 1 The spectrum of the
first six even-K bands (K =
0, 2, 4, 6, 8, 10) of the
three-body harmonic
oscillator perturbed by the
area-dependent three-body
potential with coupling
constant Cpot

C0
equal to 0, 1

and 7. This is a
21-dimensional sub-space of
the full Hilbert space
consisting of states satisfying
the conditions m1 = m2 = 0,
or L = 0 = G3, equivalent
to [SU (6), LP ] = [20, 0+]
in the spectroscopy notation.
Note the rearrangement of
the levels until the K-shells
become practically
indiscernible
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In order to check this limit numericallywe increase the “area interaction” coupling
constant ratio vb

v0
to e.g. Cpot

C0
(∝ vb

va
) → 10, 100, and 1000, and show the results in

Fig. 2.
There one sees a spectrum consisting of discrete, positive energy eigen-values. Of

course, one cannot expect to find a “true” continuumwith a finite number of states N ,
but one might see some hints thereof, if the number of states N and the off-diagonal
matrix elements are large enough: our results shown in Fig. 2 do not give even a hint
of such a continuum at N = 19 and Cpot

C0
= 1000.
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Fig. 2 The spectrum of the
first six even-K bands (K =
2, 4, 6, 8, 10, 12) of the
three-body harmonic
oscillator perturbed by the
area-dependent three-body
potential with coupling
constant Cpot

C0
equal to 10,

100 and 1000. This is a
21-dimensional sub-space of
the full Hilbert space
consisting of states satisfying
the conditions m1 = m2 = 0,
or L = 0 = G3, equivalent
to [SU (6), LP ] = [20, 0+]
in the spectroscopy notation.
We show only N = 19
levels, as the last two seem to
be adversely affected by the
boundary. Note that the
pattern of the levels is
essentially unchanged, only
the scale on the ordinate is
different
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4 Summary

In this paper we have reported our calculation of three-quark energy spectrum in a
three-body potential that depends only on the area of the triangle subtended by the
three quarks. The spectrum shows no signs of deconfinement in spite of classically
allowed unbound one-dimensional motion.
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Appendix

Equation (1) can be re-written as a function of (the absolute value of) only one O(3)
(hyper-)spherical harmonic in the shape (hyper-)space: the |Y10(α,φ)|:

2

R2
|ρ × λ| = | cosα| =

√
4π

3
|Y10(α,φ)|. (6)

Now, the absolute value of |Y10(α,φ)| can be expressed as √
Y ∗
10(α,φ)Y10(α,φ) and

the O(3) Clebsch–Gordan expansion can be applied to Y ∗
10(α,φ)Y10(α,φ), which

contains only the (obviously even) values of L = 0, 2, as in Eq. (A12) of Ref. [3].

2

R2
|ρ × λ| =

√
1

3

√

1 + 2√
5

Y20(α,φ)

Y00(α,φ)
. (7)

The square root can be expanded in a Taylor-like series, the first two terms of which
coincide with the expansion in Legendre polynomials, or O(3) spherical harmonics,
and for L = 0, even in O(4) hyper-spherical harmonics

2

R2
|ρ × λ| =

√
1

3

(
1 + 1√

5

Y20(α,φ)

Y00(α,φ)
+ · · ·

)
. (8)

Manifestly the Legendre polynomial expansion, Eq. (8) is limited to even-order
J = 0, 2, 4, . . . terms only,

VHY(R,α,φ) = k

2

(
va(ρ

2 + λ2) + vb|ρ × λ|) . (9)

= k

2
R2

(

va + vb
1

2

√
1

3

(
1 + 1√

5

Y20(α,φ)

Y00(α,φ)
+ · · ·

))

= k

2
R2 vHY

0√
4π

(
1 + vHY

2

vHY
0

√
4πY20(α,φ) + · · ·

)
. (10)

Note, however, that vb/va �= vHY
2 /vHY

0 . In particular the additive constant in the
expansion Eq. (8) is important, as it ensures the (overall) positivity of this potential
and leads to the change of “effective couplings”

vHY
00 = √

4π

(

va + vb
1

2

√
1

3

)

,
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and

vHY
2 = vb

1

2

√
4π

15
.

These two equations in turn lead to

vHY
20

vHY
00

=
vb

1
2

√
4π
15

√
4π

(
va + vb

1
2

√
1
3

) = vb

2
√
15

(
va + vb

1
2

√
1
3

) ,

and in particular in the va → 0 limit, this ratio for the HY potential equals that of
the pure area potential:

limva→0

(
vHY
20

vHY
00

)
= 1√

5
.
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3. V. Dmitrašinović and Igor Salom, J. Math. Phys. 55, 082105 (16) (2014).
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A Group Action Principle for Nambu
Dynamics of Spin Degrees of Freedom

Stam Nicolis, Pascal Thibaudeau and Thomas Nussle

Abstract We describe a formulation of the group action principle, for linear Nambu
flows, that explicitly takes into account all the defining properties of Nambumechan-
ics and illustrate its relevance by showing how it can be used to describe the off–shell
states and superpositions thereof that define the transition amplitudes for the quanti-
zation of Larmor precession of amagnetic moment. It highlights the relation between
the fluctuations of the longitudinal and transverse components of the magnetization.
This formulation has been shown to be consistent with the approach that has been
developed in the framework of the non commutative geometry of the 3–torus. In this
way the latter can be used as a consistent discretization of the former.

Keywords Nambu mechanics · Magnetization dynamics · Finite dimensional
phase spaces

1 Introduction

Nambu mechanics is the generalization of Hamiltonian mechanics to phase spaces
of arbitrary dimension [1]. The reason it is useful to consider such spaces at all
is to describe the dynamics of extended objects [2] (which was Nambu’s original
motivation [3]). It represents, in fact, the generalization of the area preserving dif-
feomorphisms of Hamiltonian mechanics to the corresponding group(s) of transfor-
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mations that preserve the volume in spaces of odd dimension, too [4]. In this regard
it appears much less “exotic” and, indeed, has found many applications in classi-
cal fluid mechanics, where the study of incompressible flows is the natural context
[5, 6].

While it became the subject of interest in the effort to understand the dynamics
of multiple M2–branes [7], it was quickly realized that there were conceptual issues
that remain to be clarified for the description of their quantum effects. A workaround
that used only generalized Poisson brackets, i.e. a purely Hamiltonian formulation
in a non-flat metric, was found to be sufficient for many cases of practical interest
[8]; however a deeper understanding of the properties of the models proposed for
M2–branes must solve the problem of the consistent definition of the quantization
of the Nambu bracket [9–11], which is a generalization of the Poisson bracket with
more than 2 elements. To this end it is useful to understand the properties of simpler
quantum systems, that can be described with the framework of Nambu mechanics.
Such examples are provided by magnetic systems [12], where the three components
of the magnetization, are, naturally, identified with the canonical variables of Nambu
mechanics.

In this contribution we shall show that a recently proposed quantization scheme
[13] can be applied to describe the quantum dynamics of Larmor precession of a
magnetic moment in an external field and can describe the off–shell states in a way
that provides insights that are much harder to grasp using the traditional Hamiltonian
formalism.

What has been lacking, indeed, is a consistent group action principle, that leads
to the definition of consistent unitary, linear, evolution operators that, acting on
the space of states, describe consistent superpositions of states and their transition
probabilities. While the proposal was set forth in Ref. [13], it does require fleshing
out for concrete applications, such as the one discussed here.

Therefore, in the following section, we shall review the salient properties of clas-
sical linear Nambu flows in the continuum, focusing on the volume preserving dif-
feomorphisms; we shall, then, show how the consistent quantization of these can
be understood in terms of the properties of the non–commutative 3–torus. We shall
then construct the unitary evolution operators on it, implementing a regularization
in terms of finite dimensional matrices and show that the size of the matrices has
a physical basis. We conclude with a discussion of further avenues of inquiry, in
particular, regarding consistent coupling to baths.

2 Linear Nambu Flows for Classical and QuantumMagnets

In 3-dimensional Nambu mechanics, linear Nambu flows are defined by the time
evolution equations for each component of the vector of dynamical variables

dx I

dt
= {

x I , H1, H2
} = MI J x J (t), (1)
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withM a constant antisymmetric matrix and the Nambu 3-bracket is defined as

{ f, g, h} = εI J K∂I f ∂Jg∂K h, (2)

where f , g, h are functions of x, ∂I ≡ ∂/∂x I and εI J K is the fully anti-symmetric
Levi-Civita pseudo-tensor of rank 3.

The solution of equation (1) can be written as

x(t) = eMt x(0) ≡ A(t)x(0) (3)

Since M is traceless, A(t) ≡ eMt , the classical, one–step evolution operator, can be
shown to be an element of the group SL(3, R).

Linear systems can be defined by two conserved quantities, H1 = a · x with a
a constant vector and H2 = (1/2)xTBx, with B a constant symmetrical matrix. In
the framework of Nambu mechanics, these systems define the simplest systems to
consider [13] and are formal analogues of the harmonic oscillator from Hamiltonian
mechanics.

Such systems are not only toy models, but can be considered as prototypes for
modeling dynamics ofmagnets, dominated by the exchange interaction. For instance,
if an anti-ferromagnetic material is defined by a magnetic crystalline cell that can be
mapped on two sublattices with spins s1 and s2, then for each spin in its first neighbor
cell, without any further interaction, we have the following equations of motion:

ds I1
dt

= εI J K J12s
J
2 s

K
1 (4a)

ds I2
dt

= εI J K J12s
J
1 s

K
2 (4b)

The average ferromagnetic magnetization vector M ≡ 1
2 (s1 + s2) and the anti-

ferromagnetic Néel vector m ≡ 1
2 (s1 − s2) can be defined, and for these vectors we

immediately have

dM I

dt
= 0 (5a)

dmI

dt
= 2J12ε

I J K M JmK (5b)

Because M is then a constant of motion, Eq. (5b) describes a linear Nambu flow for
the antiferromagnetic vector m, associated with a traceless matrix M introduced in
Eq. (1).

As in Hamiltonian mechanics, this flow is on the phase space of the system and
describes, through Liouville’s theorem, a flow for the probability density ρ(x, t)
therein:

∂ρ(x, t)

∂t
= {ρ(x, t), H1, H2} (6)
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Of particular interest are the moments of this probability density and their evolu-
tion in time, since they can be related to observable quantities.

For linear Nambu flows this equation takes the form

∂ρ(x, t)

∂t
= εI J KωJ BK L∂Iρ(x, t)x L = det (∇ρ(x, t),ω,∇H2) (7)

and describes, also, the classical dynamics in phase space, i.e. the properties of the
solutions of the classical equations of motion.

The problem here is that, in Hamiltonian mechanics, it is known that Poisson
brackets are the classical limits of commutators [14]. In Nambu mechanics what is
the quantum structure that preserves all its properties, whose classical limit would
be the Nambu bracket, is not known [11].

In Ref. [13] the off–shell states and consistent evolution operators for classical
and quantum, linear Nambu flows were constructed.

Let us review the idea of the construction. It is based on introducing an infrared
cutoff, by compactifying the phase space on a 3–torus,T3; and on introducing a short–
distance (“ultraviolet”) cutoff, by considering only points with rational coordinates
and common denominator, N .

In this way the differential equations become linear recurrences on the finite field,
ZN

xn+1 = Axn mod N (8)

which can display quite complex, indeed, deterministic chaotic, behavior as N varies.
Already, at the classical level, this means that the system possesses a finite number of
states and how these are visited during the evolution is of interest. If there is periodic
behavior, the period, T (N ), satisfiesAT (N ) ≡ I mod N ; and the quantumcounterpart,
U (A) shares this property, by construction, since U (AT (N )) = [U (A)]T (N ). What
happens as N → ∞ is a quite delicate issue, that has been investigated in the context
of quantum chaos [15], but there is, still, much to be clarified.

The integer N controls in this way the fluctuations at both ends, infrared and
ultraviolet and 2π/N plays, indeed, the role of Planck’s constant for describing the
quantum fluctuations [13].

The construction of the quantum evolution operator, U (A), on the 3–torus pro-
ceeds, in fact, in complete analogy to the Hamiltonian quantization of toroidal phase
spaces. The idea will be to construct a unitary operator, U (A), that realizes a con-
sistent quantization, of the classical evolution operator, A ∈ SL(3, R), in the sense
that it satisfies the correspondence principle–which means that it realizes the meta-
plectic representation –and provides a faithful representation, in the sense that, for
any classical evolution operators, A and B, we have the composition rule that

U (A ◦ B) = U (A) ◦U (B) (9)
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This property is necessary to ensure that time evolution is well–defined, that it
depends only on the endpoints in phase space and not on the parametrization of
the path(s).

For a finite-dimensional representation N of the operator A, as sketched in
Ref. [13], the construction of an N × N matrixU (A)with these properties is realized
by showing that it can be mapped exactly to the construction of the corresponding
unitary operator of a Hamiltonian system.

This proceeds as follows: first, the linear Nambu flow has the property that ω is
an eigenvector of the one–step evolution operator, A, with eigenvalue 1:

Aω = ω ⇔ ωT = ωTA (10)

The convention of multiplication from the right was used (i.e for the dual vectors) in
Ref. [13]; in the present contribution we use the, perhaps, more familiar convention
of multiplication from the left. Because one deals with finite dimensional ordinary
and possibly complex valued vectors, it does not really matter, up to transposition
and conjugate. The property (10) is also true for the any collinear vector λω that
form an infinite collection of fixed vector with 1 as eigenvalue.

The property that the vector of the linear Hamiltonian is left invariant by the flow
implies, in turn, for Eq. (8), that

[x × ω]n+1 = A[x × ω]n (11)

for any time step n.
This expression can now be shown to be equivalent to

[x × ω]n+1 =
(
Ã 0
ω̃ 0

)
[x × ω]n (12)

which provides a definition of the 2 × 2 evolution operator Ã. It has been shown in
Ref. [16] that one can construct a basis using the initial magnetization state x(0),
the precession vector ω and their vector product x(0) × ω, and it is possible to
decompose the time evolution of the solution on this basis as

x(t) = A(t)x(0) + B(t)
ω

‖ω‖ + C(t)x(0) × ω

‖ω‖ (13)

As long as the precession vector ω is constant, one can always choose a reference
frame such that said vector is aligned with the z-axis. If we now consider the time
evolution of x(t) × ω one can see that this vector remains in the (x, y) plane. As such
the last component remains null over time. Hence one can restrain Eqs. (11)–(12).

This can be shown to be symplectic, therefore the corresponding quantum evolu-
tion operator,U (Ã), can be constructed by known techniques. It is this operator that
we shall define as the unitary evolution operator of the quantum Nambu evolution.
In subsequent sections we shall show that our construction passes a non–trivial test,
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by checking that it provides results that are consistent with those obtained by the
canonical quantization of the Larmor precession.

The off–shell states are, therefore, those that are defined by the action of operators
mod N , whereas the on–shell states are those that do not require themod N operation.
However, quantum effects are, also, described by superpositions of pure states. We
shall show the relevance of such superpositions in the following section.

3 Computing Transition Probabilities la Nambu

In this section we shall show how to use the unitary evolution operator, U (A) to
compute transition probabilities for Larmor precession, from any initial to any final
state of the magnetic moment.

Our starting point is the identification of the Larmor precession equation as a
linear Nambu flow, following the notation of Ref. [13]

dx I

dt
= εI J K aJ BK L x

L ⇔ ds I

dt
= εI J KωJ sK ≡ MI K sK (14)

where H1 ≡ a · x = ω · s and H2 ≡ (1/2)(x,Bx), with B = �.
For Larmor precession around an external field described by ω we, thus, have

M = ω × . =
⎛

⎝
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞

⎠ (15)

If Larmor precession happens around a fixed vector ω, we can always choose our
reference frame such that only the component along the z-axis is non-zero ω =
(0, 0,ω3).

Its exponential, A = exp(M) is the one–step evolution operator. This acts on a
finite set of states, labeled by the integers mod N [13], which means that the matrix
A ∈ SL(3, ZN ), which, also, has integer entries, mod N , has the form

A =
⎛

⎝
a b 0

−b a 0
0 0 1

⎞

⎠ (16)

where a and b are integers mod N , which satisfy a2 + b2 ≡ 1 mod N . We may,
hence, work out the form of the “reduced” evolution operator Ã ∈ SL(2, ZN )

Ã =
(

a b
−b a

)
(17)
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If the three–component states are labeled by the vector s, then the “reduced” states
are labeled by the vector s̃

s̃ = (ω3s1 − ω1s3,ω3s2 − ω2s3) (18)

Now by choosing the unit of time appropriately, we may set ω3 ≡ 1mod N .
The previous expression thus becomes

s̃ = (s1, s2)mod N (19)

This means that all the interesting dynamics happens on a plane, orthogonal to the
magnetization vector ω and as such, once we choose an initial state with fixed value
for s3 we have to satisfy s21 + s22 = (1 − s23 ) mod N .

What is interesting in this expression is that, if 1 − s23 is a quadratic residue mod
N , this expression can be reduced to σ2

1 + σ2
2 ≡ 1mod N . If not, we must work in

the quadratic extension of the number field. In this way the transverse fluctuations,
described by s1 and s2 are related to the longitudinal fluctuations, described by s3.
We now have a way to count all the states which are accessible from any one initial
state and as such we can label them.

All that remains to be computed, therefore, is the quantum evolution operator
U (Ã), whose classical limit would be Ã.

According to reference [13],

[
U (Ã)

]
k,l = (2b|N )√

N
�

ak2−2kl+dl2

2b
N (20)

where �N = e2πi/N is the N th root of unity, and (2b|N ) is the Jacobi symbol, for 2b
and N , equal to 1 if 2b is a quadratic residuemod N ,−1 if not and 0 if 2b ≡ 0mod N .

While these expressions were originally derived for N prime, it has been shown
that the matrices factorize over the prime factorization of N [17].

Both the time evolution of the quantum states |s̃〉 and the transition probabilities
between them are given by the evolution operator as

|s̃〉n ≡ U (Ãn)|s̃〉0 (21)

Pn(s̃′, s̃) = |〈s̃′|U (Ãn)|s̃〉|2 (22)

Let us illustrate this abstract framework with a specific example by taking N = 5,
ω3 = 1, and the initial magnetization state to be normal to the external field described
by ω (i.e in the (x, y) plane, so that s3 ≡ 0). This means all the accessible states are
those for which

s21 + s22 ≡ 1mod 5 (23)

To count and label them we have
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|1〉 = (1, 0) |2〉 = (0, 1) |3〉 = (4, 0) |4〉 = (0, 4)

We note that these are, also, “classical” states. Quantum effects are described by their
superpositions, that don’t have a classical analog.

Furthermore, the only three, non–trivial, evolution operators, Ã, satisfying the
constraint a2 + b2 ≡ 1mod 5 are

Ã1 =
(
0 1
4 0

)
, Ã2 =

(
0 4
1 0

)
and Ã3 =

(
4 0
0 4

)
= ( Ã1)

2

These matrices describe rotations by ±90o in phase space–the Fourier transform.
This means that the quantum evolution operator,U (Ã) is, in fact, the Discrete Fourier
Transform, over five states. This, apparently, is one more state than necessary, since
Ã4 = �2×2 ⇔ U (Ã)4 = U (Ã4) = U (�2×2) = �5×5. This, of course, means that the
states are degenerate–their degeneracies were studied in detail by Mehta [18].

However, any state |s̃〉, can be expanded in the basis of the eigenstates of U (Ã)

|s̃〉 =
N−1∑

k=0

ck |ψk〉 (24)

These states are superpositions of the states of definite magnetization. This, however,
means that there are only N − 1 independent, relative phases, since the evolution
operator is unitary. Therefore there are only N − 1 = 4, in the case at hand, “non–
trivial” states. So, let us label the additional state as |0〉. To define a more convenient
way of dealing with the superposition of states, we will use the following notation

|α,β, γ, δ, ε〉 ≡ α|0〉 + β|1〉 + γ|2〉 + δ|3〉 + ε|4〉 (25)

To compute transition probabilities depending on time (the integer n playing the
role of a discrete time evolution here, hence a “kicked”-precession), if we start with
an initial state |0, 1, 0, 0, 0〉 ≡ |1〉, in the basis of the position operator, after one
time-step, the next state is given by

|s̃〉1 = U ( Ã)|s̃〉0 (26)

The evolution operatorU (Ã1), describing theDiscrete Fourier Transform, applied
to the initial state |1〉

U ( Ã1)|1〉 = 1√
5

[
−1|0〉 + e

3ıπ
5 |1〉 + e

4ıπ
5 |2〉] − e

1ıπ
5 |3〉 − e

2ıπ
5 |4〉

]
(27)

wherewehave highlighted the relative phases, of the other pure stateswrt the state |0〉.
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Fig. 1 Transition
probability Pn(|1〉, |1〉) =
|〈1|U ( Ãn

1)|1〉|2 as function
of the time-step 0 ≤ n ≤ 10
highlighting the periodicity

0 2 4 6 8 10
n (discrete timestep)
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0.4

0.6
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1

P n(|1
>,

|1
>)

The time evolution of the transition probability between the same initial and final
pure state, say |1〉, as a function of the discrete time-step n

Pn(|1〉, |1〉) = |〈1|U ( Ã1)
n|1〉|2 (28)

computes the Nambu path integral and should display the appropriate periodicity,
viz.

U ( Ã1)
T (N ) = �5×5

Results are displayed in Fig. 1.

4 Conclusion and Outlook

In this contribution we have proposed a group action principle for linear Nambu
flows, that is consistent with the properties of classical Nambu mechanics, as well as
the correspondence principle of quantum mechanics and can, thus, be considered as
a consistent quantization of linear Nambu flows. Our formalism provides an explicit
prescription for the space of states, both “on–shell” and “off–shell” and linear super-
positions, that are the hallmark of non–classical behavior. Such flows are relevant
for describing the Larmor precession of the magnetization of nanamagnets and, thus,
their quantization is relevant for describing its quantumfluctuations.We have applied
our framework to the calculation of transition probabilities and computing the time
evolution of a simple model for quantum Larmor precession mod 5, that is relevant
for a spin 2 nanomagnet.

The semi–classical limit can be obtained, as N , therefore the number of spin states
becomes large, as might be expected and is quite subtle.
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When Gilbert damping is taken into account, the equations of motion become
non–linear, but can, still be solved; their solutions can be interpreted as describ-
ing instantons. Interestingly the damped linear Nambu flow admits a continuous
evolution solution [16] that it would be of practical interest to set in the presented
framework.
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Newton–Cartan Trace Anomalies
and Renormalization Group Flows

Roberto Auzzi

Abstract I will discuss trace anomalies for non-relativistic Schrödinger theories in
2 + 1 dimensions coupled to a Newton–Cartan gravity background, which is used
as a source of the energy-momentum tensor. The motivation is to identify candidates
for a possible non-relativistic version of the a-theorem for theories with RG flows
interpolating between an UV and an IR Schroedinger-invariant non-relativistic con-
formal fixed points. I will first discuss the general structure of the anomaly, which
is determined by the Wess–Zumino consistency condition. Then I will present an
explicit calculation for the anomaly in the case of a free scalar and of a free fermion,
using heat kernel. There is a type A anomaly which is proportional to 1/m, where
m is the mass of the particle. In analogy with the relativistic case, the irreversibil-
ity properties of the renormalization group can also be investigated by studying the
Wess–Zumino consistency conditions for the trace anomaly of the theory in aNewton
Cartan background with space-time dependent couplings.

Keywords Nonrelativistic field theories · Anomalies · Renormalization group
flow

1 Introduction

A renormalization group (RG) flow is a trajectory in the space of theories, induced by
a change of scale. In the case of (unitary) relativistic theories in even dimension, the
trace anomaly gives us an useful measure of the degrees of freedom at a conformal
fixed point and a powerful universal constraint on the possible infrared dynamics
which can emerge from an ultraviolet theory, valid also in the regime of strong
coupling. In 2 dimensions this comes from Zamolodchikov c theorem [1]. In 4
dimensions this comes from the a-theorem, which was first conjectured in [2]; a

R. Auzzi (B)
Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,
Via Musei 41, 25121 Brescia, Italy
e-mail: roberto.auzzi@unicatt.it

© Springer Nature Singapore Pte Ltd. 2018
V. Dobrev (ed.), Quantum Theory and Symmetries with Lie Theory
and Its Applications in Physics Volume 2, Springer Proceedings
in Mathematics & Statistics 255, https://doi.org/10.1007/978-981-13-2179-5_33

421

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2179-5_33&domain=pdf


422 R. Auzzi

perturbative proof was given by [3–5] with the local renormalization group (RG)
equations. A proof using dispersion relations was given in [6, 7].

The local RG equations [3–5] can be derived imposing the Wess–Zumino (WZ)
consistency conditions for the trace anomaly [8, 9] of the theory in a gravity back-
ground with spacetime-dependent couplings. It is a useful tool to study relativistic
RG flows nearby conformal fixed points in various dimensions [10–15] and it can be
applied to the supersymmetric case [12, 16, 17]. For reviews see [18, 19].

It would be interesting, for condensedmatter applications, to extend similar results
to the case of non-relativistic theories. Non-relativistic fixed points allow for different
scaling in time and in space,which canbeparameterizedby the dynamical exponent z:

xi→eσxi , t→ezσt . (1)

The details of the trace anomaly depend also on the symmetry content of the theories,
in particular if we require or not boost invariance. The case of theories without boost
invariance (Lifshitz) were studied by several authors, e.g. [20–25]. It turns out that,
in all the cases that have been studied so far, the scheme-independent trace anomalies
at the fixed point have vanishing Weyl variation (type-B anomalies [26]).

Here we will consider the case of non-relativistic theories with galilean boost
invariance, and we will focus for concreteness with the case of 2 + 1 dimensions
and z = 2. The natural background to which the non-relativistic theory is coupled is
provided by the Newton–Cartan (NC) gravity. Two different perspectives concerning
trace anomalies can be taken:

• The case where causality is not required on the gravity background; this setting
was first studied by [27]. Note that causality is not a fundamental ingredient here,
because the gravity background is not dynamical and it is just used as a source
to define operators in the energy-momentum tensor multiplet. In principle the
anomaly has a very rich structure, because an infinite number of terms can be
written by dimensional analysis. All these terms live in separated sectors, which
are labelled by the integer Nn; the sector in not changed by Weyl variations. In
particular, in the simplest sector Nn = 0 the anomaly structure is identical to the
trace anomaly of relativistic theories in 4 dimensions:

A = T i
i − 2T 0

0 = σ
(−a E4 + c W 2 + bR2

) + Act + . . . . (2)

with b = 0 due to Wess–Zumino consistency conditions. A natural type-A can-
didate for a monotonicity theorem is the coefficient of the E4 term. In Eq. (2)
the curvatures are computed in term of an auxiliary relativistic 4 dimensional
space, using the null-reduction trick (see Sect. 2); Act indicates terms which can
be removed by local counterterms, such as D2R. The dots in Eq. (2) correspond
to possible extra terms from other sectors with Nn �= 0.

• The case in which causality is imposed on the background metric (and conse-
quently the Frobenius condition is imposed on the NC geometry) has a much
simpler anomaly structure. The number of terms allowed by dimensional analysis
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is finite [28] and the only scheme-independent anomaly turns out to be of type B
[24, 28]. The structure of the anomaly is:

A = 2T 0
0 + T i

i = A = bσJ 2 + Act , (3)

where J 2 is an anomaly term with zero Weyl variation, see [28] for the definition.

The anomaly with the Frobenius condition does not have any interesting candi-
dates for an a-theorem; on the other hand the one without Frobenius condition has an
interesting analog of the four dimensional a coefficient, which is a type A anomaly
and is constrained by Wess–Zumino consistency condition in a non-trivial way. An
analysis using the local RG approach, analog to the one performed in the relativis-
tic case by [3–5], was performed in [29]; the outcome is that the same consistency
conditions which give the perturbative a-theorem for four-dimensional relativistic
theories can be written. On the other hand, we did not manage to prove that some
anomaly coefficients which are positive-definite in the relativistic case are still posi-
tive definite, and so we were not able to extend Osborn’s proof to the non-relativistic
case.

In Sect. 2 I will review some basic elements of the Newton–Cartan gravity back-
ground, which here is used as a source to define the energy-tensor multiplet. In Sect. 3
I will discuss the calculation of the anomaly for free scalars and fermions, recently
done in [30] and [31]. I conclude in Sect. 4.

2 Newton–Cartan Gravity Background

ANewton–Cartan (NC)gravity background ind + 1 spacetimedimensions is defined
by a 1-form nμ (which corresponds to the local time direction), by a positive-definite
symmetric tensor hμν with rank d (which corresponds to the space metric) for which
nμ is a zero eigenvector

nμh
μα = 0 , (4)

and by a background gauge field Aμ for the particle number symmetry. A vector
field vμ, with property nμv

μ = 1 , is also introduced; once vμ is fixed, it is possible
to uniquely define a degenerate rank d symmetric tensor hμν , which corresponds to
the metric along the spatial directions, which satisfies:

hμαhαν = δμ
ν − vμnν = Pμ

ν , hμαvα = 0 , (5)

where Pμ
ν is the projector onto the spatial directions. TheNCgeometrywas originally

introduced as a tool to write newtonian gravity in a diffeomorphism-invariant way;
for a review see [32]. Recently it was realized in [33–36] that it is a very useful tool
for condensedmatter physics, because it is a very convenient way to parameterize the
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sources of the non-relativistic energy-momentum tensor. Useful recent references on
NC geometry include [37–43].

The local version of the Galilean boost symmetry, which is usually called Milne
boost, acts in a rather non-trivial way on the NC gravity fields. This makes the
classification of geometrical invariants complicated. For this reason it is convenient to
use an extra-dimensional null reduction (x−, xμ) froma relativistic parent space [44]:

GMN =
(

0 nμ

nν nμAν + nν Aμ + hμν

)
,

GMN =
(
A2 − 2v · A vμ − hμσAσ

vν − hνσAσ hμν

)
. (6)

Diffeomorphism-invariant scalars in d + 2 dimensions are automaticallyMilne boos
invariants in the non-relativistic d + 1 dimensional theory. We denote by DA the
covariant derivative defined by the Levi-Civita connection from the metric in Eq. (6),
and by RABCD , RAB , R the corresponding Riemann, Ricci and scalar curvatures. It is
important to stress that, even ifwe are often using this extra-dimensional trick,wewill
compute the anomaly of the non-relativistic theory in d + 1 spacetime dimensions,
and not of the d + 2 dimensional relativistic parent theory.

The anomaly then can be written [27] in term of the well-known four dimensional
relativistic expression, see Eq. (2). Here there is a subtlety: extra type A terms in
the anomaly may be present, because dimensional analysis allows for an infinite
number of terms, divided in sectors which are not linked by Weyl transformations.
An analysis of one of these sectors was done in [29]; no extra terms in the anomaly
was found.

The null-reduction trick is also useful towrite the action for non relativisticmatter.
For example, the action of the non-relativistic scalar comes form the null reduction
of the relativistic one. Indeed, from the relativistic action

S = 1

4π

∫
dd+2x

√− det GAB
(−GMN∂MΦ†∂NΦ − ξRΦ†Φ

)
, (7)

using the following ansatz along the null direction x−:

Φ(x−, xμ) = φ(xμ)eimx−
. (8)

and considering the reduction on a circle x− with radius 4π, we get the non relativistic
action of a scalar coupled to background NC geometry:

∫
d3x

√
g

{
imvμ

(
φ†Dμφ − Dμφ

†φ
) − hμνDμφ

†Dνφ − ξRφ†φ
}

. (9)

Here the covariant derivative includes just the gauge part:

Dμφ = ∂μφ − imAμφ . (10)



Newton–Cartan Trace Anomalies and Renormalization Group Flows 425

A similar null-reduction trick can be used towrite the covariant non-relativistic action
for a fermion (see e.g. [31] for details).

3 Calculation of the Anomaly for Scalars and Fermions

Here I shall review the calculation of the trace anomaly for the free non relativistic
scalar and fermion recently done in [30] and [31] by the heat kernel method. We
denote by W the vacuum functional of our theory:

eiW =
∫

Dφ† Dφ ei SD [φ†, φ] (11)

where SD is the classical action specified by a differential operator D. In the bosonic
case, the path integral is evaluated in terms of the functional determinant of the
operator D as

iW = − log det(D) . (12)

We can compute the anomaly in perturbation theory from the flat background, which
corresponds to a differential operator D = �:

� = (−2im∂t + ∂2
i

) =
(

−2m
√

−∂2
t + ∂2

i

)
. (13)

The free flat-space heat kernel (which was introduced in [45] for the purpose to study
entanglement entropy) is:

K�(s) = 〈xt |es�|x ′t ′〉 = 1

2π

ms

m2s2 + (t−t ′)2
4

1

(4πs)d/2
exp

(
− (x − x ′)2

4s

)
. (14)

The diagonal matrix elements in the coordinate basis of the curved-space heat
kernel can be expanded in powers of s as:

K̃�̂(s) = 〈xt |es�̂|xt〉g = 1

sd/2+1

(
a0(�̂) + a2(�̂)s + a4(�̂)s2 + . . .

)
. (15)

This defines the De Witt–Seeley–Gilkey coefficients a2k(�̂) of the problem. In non-
relativistic 2 + 1 dimensional theories, the trace anomaly is proportional to the a4
coefficient [30].

One can then evaluate the heat kernel in curved spacetime as a perturbative
expansion from the flat case. The techniques can be borrowed from the relativis-
tic case, as explained in the textbook [46]. A simple choice of background, that was
used in [30], is:
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nμ =
(

1

1 − η(xi )
, 0, 0

)
, vμ = (

1 − η(xi ), 0, 0
)

, hi j = δi j , (16)

with Aμ = 01. We refer to [30] for the technical details of the calculation.
The result for the anomaly coefficients in Eq. (2) in the scalar case is:

a = 1

8mπ2

1

360
, c = 1

8mπ2

3

360
, b = 1

8mπ2

1

2

(
ξ − 1

6

)2

. (17)

The the case of a fermionic spin doublet was studied in [31] with similar methods.
The result for the anomaly coefficients is:

a = 1

8mπ2

1

360

11

2
, c = 1

8mπ2

9

360
, b = 0 . (18)

Up to an overall 1/m factor, the anomaly coefficients in Eqs. (17), (18) are the
same as the ones in the relativistic case in 4 dimensions, respectively for a free scalar
and a free fermion. It would be interesting to understand the origin of this numerical
coincidence.

The results in Eq. (17) have been recently reproduced with Fujikawa’s method in
[47]. On the other hand, we do not agree with the result found in [49].

4 Conclusions

It is tempting to conjecture that an analog of the a-theorem may hold for the E4

coefficient of Schrödinger-invariant theories in 2 + 1 dimensions; indeed this is the
simplest type A anomaly candidate which naturally occurs if we couple the theory to
a NC background geometry. In the simple example where both the elementary (UV)
and the composite (IR) degrees of freedom would be free scalars and fermions with
spin 1/2, it would give the following non-trivial constraint:

aUV ∝
UV∑

scalars

1

m
+ 11

2

UV∑

fermions

1

m
≥

IR∑

scalars

1

m
+ 11

2

IR∑

fermions

1

m
∝ aIR . (19)

InGalilean-invariant theories themass is a conservedquantity and themass of a bound
state is equal to the sum of the masses of the elementary constituents. Contrarily to
the relativistic case, no bound-state contribution to the mass is present. As proposed
in [30], the 1/m dependence is non-trivially consistent with the physical intuition
that bound states form in the infrared: as energy is added, bound states tend to be
broken and degrees of freedom cease to be frozen.

1The backgrounds with non-vanishing Aμ has some interesting subtleties: the anomaly contains
some terms with are not U (1) gauge-invariant, see Refs. [47, 48].
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Several interesting issues call for further investigation:

• In the relativistic case, the anomaly coefficients are directly related to the the
correlation functions of the energy-momentum evaluated at non-coincident points.
For example, in four dimension c can be extracted from the two points functions
and a from the three points functions of energy-momentum tensor. In the non-
relativistic case, these correlators have support just at coincident points. It would
be interesting to understand if the anomaly coefficients can be related to correlation
function of energy momentum tensor also in the non-relativistic case.

• Another interesting direction is to attempt a perturbative proof of the non-
relativistic a-theorem using Osborn’s local renormalization group approach [29].
There is still a missing ingredient in the proof: one should show that some anomaly
coefficients, whose relativistic analog turn out to be proportional to the Zamolod-
chikov metric, are positive.

• It might be interesting to study the relation between the anomaly and the dilaton
effective action; in the relativistic case, this leads to a non-perturbative proof of
the a-theorem [6]. Non-relativistic dilaton was recently studied in [50].

• The anomaly coefficients for anyons coupled to NC backgrounds should be com-
puted. This might have condensed matter applications for the quantum Hall effect.

• For relativistic theories in four dimension at a fixed point, the trace anomaly
coefficients and superconformal R-charges are related [51]: this is a powerful exact
result which can be used to determine anomalous dimension of chiral operators in
strongly coupled theories. It would be interesting to understand if a similar relation
exists also in the non-relativistic case. The supersymmetric local RG formalism,
investigated in [16], might be a convenient framework to investigate these issues.
Newton–Cartan supergravity was studied in [52].

Acknowledgements I’m grateful to Stefano Baiguera, Francesco Filippini and Giuseppe Nardelli
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Evolution Operator Method
and a Non-relativistic Particle
in the Time-Dependent Homogeneous
Field

E. I. Jafarov and S. M. Nagiyev

Abstract A unitary equivalence between the free non-relativistic particle problem
and aparticle in the time-dependent homogeneousfield is established.Coherent states
of a non-relativistic free particle and particle with a mass M(t) in the time-dependent
homogeneous field are constructed by the use of the evolution operator method.Main
properties of the constructed coherent states, including time-dependent evolution of
the corresponding probability density are discussed in detail. Explicit expressions of
the oscillator-like wavefunctions for the systems under consideration are obtained,
too.

Keywords Unitary equivalence · Evolution operator method · Time-dependent
homogeneous field

1 Introduction

Explicit non-stationary solutions of quantum systems with time-dependent mass are
of great interest among physicists due to number of applications of such solutions in
various fields of modern physics [1–7]. It is well known that an attempt to solve the
non-stationary Schrödinger equation or its relativistic generalizations does not lead
always to the explicit solutions. Then, one needs to clarify, what kind of approaches
can be used to obtain time-dependent explicit solution of the differential or finite-
difference equation under consideration in terms of certain orthogonal polynomials
or other special functions. Application of the evolution operator method is one of
such powerful methods. Beauty of this method is that through knowledge of some
initial state ψ0 (x) of quantum dynamical system under consideration, one can find
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time evolution of it by computing explicit form of state ψ (x, t) at some other time
t as action of Û (x, t) evolution operator to initial state ψ0 (x) as follows

ψ (x, t) = Û (x, t)ψ0 (x) . (1)

Main goal of present work is study ofmain properties of a non-relativistic free par-
ticle and particle with a mass M(t) in the time-dependent homogeneous field by the
use of the evolution operator method. We construct coherent states of these dynami-
cal systems and discuss in detail main properties of them, including time-dependent
evolution of the corresponding probability density. Thereafter, explicit expressions
of the oscillator-like wavefunctions for the systems under consideration are obtained,
too. A unitary equivalence between the free non-relativistic particle problem with
a time-dependent mass and a particle in the time-dependent homogeneous field is
established.

Our paper is structured as follows: in Sect. 2, we discuss time evolution of a
free non-relativistic particle and a particle in a homogeneous field. We show, how
unitary equivalence between the free non-relativistic particle problem with a time-
dependent mass and a particle in the time-dependent homogeneous field easily can
be established. Further, in Sect. 3, we construct generalized coherent states for a free
non-relativistic particle problem with a time-dependent mass and extend explicit
expressions to the case of the non-relativistic particle in a time-dependent homoge-
neous field. Section4 is devoted to the unitary equivalence for oscillator-like solutions
of a free non-relativistic particle with time-dependent mass and a particle in a time-
dependent field. By the use of evolution operator method, we compute explicitly
oscillator-like wavefunctions of both problems under consideration. In Sect. 5, we
briefly discuss obtained results.

2 Time Evolution of a Free Non-relativistic Particle
and a Particle in a Homogeneous Field

Our starting point for study of time evolution of a free non-relativistic particle and
a particle in a time-dependent homogeneous field is the Schrödinger equation with
the time-dependent mass that has the following form for both problems under con-
sideration:

ŜF (x, t)ψF (x, t) = 0, ŜF (x, t) = i�∂t + �
2

2M(t)
∂2
x , (2a)

ŜL (x, t)ψL (x, t) = 0, ŜL (x, t) = i�∂t + �
2

2M(t)
∂2
x + F(t)x, (2b)

where, M(t) and F(t) are time-dependent mass and external field, respectively.
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Then, evolution operators corresponding to Eqs. (2a) and (2b) have the following
form:

UF (x, t) = ei�S2(t)∂
2
x , (3a)

UL(x, t) = eixδ(t)/�e
− i

�

t∫

0

1
2M(t ′) [−i�∂x+δ(t ′)]2dt ′

. (3b)

By the use of (3a), one can rewrite (3b) in terms of the evolution operator of a
free particle with time-dependent mass as follows:

UL(x, t) = Ul(x, t)UF (x, t), (4)

where
Ul(x, t) = eiϕ0(x,t)e−S1(t)∂x , (5)

and

δ(t) =
t∫

0

F(t ′)dt ′, ϕ0(x, t) = 1

�
[xδ(t) − S0(t)] , (6)

S0(t) =
t∫

0

δ2(t ′)
2M(t ′)

dt ′, S1(t) =
t∫

0

δ(t ′)
M(t ′)

dt ′, S2(t) =
t∫

0

dt ′

2M(t ′)
.

In case, when M(t) = m = const , our notations become simpler as follows:

S0(t) = δ2(t)
2m , S1(t) = δ1(t)

2m , S2(t) = t
2m ,

δ1(t) =
t∫

0
δ(t ′)dt ′, δ2(t) =

t∫

0
δ2(t ′)dt ′.

Now, based on definition (1), one can write that

ψF (x, t) = UF (x, t)ψ0 (x) , (7a)

ψL (x, t) = UL(x, t)ψ0 (x) . (7b)

It is obvious that by choosing different values of initial stationary state ψ0 (x),
we will come to different expressions for time evolution of the non-stationary state
ψF (x, t) orψL (x, t). Also, one easily observes thatUl(x, t) defined in (5) is an oper-
ator that transforms explicit solution of the Schrödinger equation for a free particle
with time-dependent mass to the solution of a particle in a time-dependent external
field, whereas,U−1

l (x, t) plays the role of the operator performing inverse transform
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of the solution of a particle in a time-dependent external field to the solution for a
free particle with time-dependent mass. Symbolic expressions for both transforms
are the following:

ψL (x, t) = Ul(x, t)ψF (x, t) , (8a)

ψF (x, t) = U−1
l (x, t)ψL (x, t) . (8b)

In the momentum representation, the Schrödinger equation corresponding to both
problems under consideration is written down as follows:

ŜF (p, t)φF (p, t) = 0, ŜF (p, t) = i�∂t − p2

2M(t)
, (9a)

ŜL (p, t)φL (p, t) = 0, ŜL (p, t) = i�∂t − p2

2M(t)
+ i�F(t)∂p. (9b)

Then, evolution operators (3a) and (3b) are also simpler than in the position
representation and first one is multiplication operator, whereas, second one is simply
shift operator:

UF (p, t) = e−i S2(t)p2/�, (10a)

UL(p, t) = e
− i

�

t∫

0

1
2M(t ′) [p−δ(t)+δ(t ′)]2dt ′

e−δ(t)∂p = Ul(p, t)UF (p, t), (10b)

with the following notations:

Ul(p, t) = e−iϕ1(p,t)e−δ(t)∂p , ϕ1(p, t) = 1

�
{S0(t) + S1(t) [p − δ(t)]} .

3 Generalized Coherent States

In order to construct generalized coherent states [9], first of all, we introduce two
creation and annihilation operators

a+ = 1√
2�

(
λ∗
1 x̂ − iλ∗

2 p̂
)
, a− = 1√

2�

(
λ1 x̂ + iλ2 p̂

)
. (11)

Here, λ1 and λ2 are complex parameters. It follows from commutation relation[
a−, a+] = 1 that the condition

Re
(
λ∗
1λ2

) = 1
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should be satisfied. Then, using (11), it is easy to show that operators of the integrals
of motion of a free non-relativistic particle have the following forms:

Â+
F (t) = UF (x, t)a

+U−1
F (x, t) = 1√

2�

[
λ∗
1 x̂ − iε∗(t) p̂

]
, (12a)

Â−
F (t) = UF (x, t)a

−U−1
F (x, t) = 1√

2�

[
λ1 x̂ + iε(t) p̂

]
, (12b)

where, ε(t) = λ2 + 2iλ1S2(t). From (12a) and (12b), it is clear that

x̂ =
√

�

2

[
ε∗(t) Â−

F (t) + ε(t) Â+
F (t)

]
, (13)

p̂ = i

√
�

2

[
λ1 Â

+
F (t) − λ∗

1 Â
−
F (t)

]
. (14)

Now, we can introduce generalized coherent states |z, t〉F of a free non-relativistic
particle with time-dependent mass as eigenstate of operator A−

F (t) as follows:

Â−
F (t) |z, t〉F = z |z, t〉F , (15)

with eigenvalue z being a complex number.We compute explicit form of the coherent
states of a free non-relativistic particle by the use of evolution operator method and
it has the following explicit form:

ψF
z (x, t) = UF (x, t)ψz(x) = N0 exp

{

−λ1 [x − x̄F (t)]
2

2�ε(t)
− i

�
p0 [x − p0S2(t)]

}

,

(16)
where, ψF

z (x, t) ≡ 〈x |z, t〉F , ψz(x) ≡ 〈x |z〉 and the normalization factor being

equal to N0 = (π�)−
1
4 [ε (t)]−

1
2 is found from the condition

∞∫

−∞

∣
∣ψF

z (x, t)
∣
∣2 dx = 1.

Also, here

x̄F (t) ≡ F 〈z, t | x̂ |z, t〉F = x0 + 2p0S2 (t) , p̄F (t) ≡ F 〈z, t | p̂ |z, t〉F = p0,

z = F 〈z, t | Â−
F (t) |z, t〉F = 1√

2�
[λ1x0 + iλ2 p0] , a |z〉 = z |z〉 ,

x0 ≡ 〈z| x̂ |z〉 =
√

�

2

(
λ∗
2z + λ2z∗) , p0 ≡ 〈z| p̂ |z〉 = i

√
�

2

(
λ1z∗ − λ∗

1z
)
.

Now, as a next step one can easily compute probability density of position gener-
ated by coherent states (16) as follows:

ρF
z (x, t) = ∣

∣ψF
z (x, t)

∣
∣2 = 1√

π� |ε (t)| exp
{

− [x − x̄F (t)]
2

� |ε (t)|2
}

. (17)
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Explicit expression of the coherent states can be computed also by the use
of Glauber method [8], which is based on action of shift operator DF (z, t) =
exp

[
z Â+

F (t) − z∗ Â−
F (t)

]
to the ground state ψF

0 (x, t):

ψ̃F
z (x, t) = DF (z, t)ψ

F
0 (x, t) = exp

(

−1

2
|z|2

) ∞∑

n=0

zn√
n!ψ

F
n (x, t). (18)

Here

ψF
n (x, t) =

[
Â+
F (t)

]n

√
n! ψF

0 (z, t) = Nn

(
ε∗

ε

)n/2

Hn

(
x√
� |ε|

)

e− λ1x
2

2�ε , (19)

with Hn(x) being Hermite polynomials and Nn = N0/
√
2nn!.

One observes that the difference between two explicit expressions (16) and (18)
is the phase factor, i.e. ψF

z (x, t) = exp (i p0x0/2�) ψ̃F
z (x, t).

We can do similar computations and find explicit expression of the coherent states
of a free non-relativistic particle in the momentum representation, too. In this case,
explicit expression will have the following form:

ϕF
z (p, t) = N ′

0 exp

{

− ε (t)

2�λ1
(p − p0)

2 − i x F (t)

�
(p − p0) − i p20

�
S2 (t)

}

, (20)

where, N ′
0 = (π�)−1/4 λ

−1/2
1 .

Probability density of momentum computed by the use of coherent states (20)
will lead to the expression

ρF
z (p, t) = ∣

∣ϕF
z (p, t)

∣
∣2 = ∣

∣N ′
0

∣
∣2 exp

{

− (p − p0)
2

� |λ1|2
}

. (21)

Here, one observes that (21) does not depend on time t .
Now, having complete information about the coherent states of a free non-

relativistic particlewith the time-dependentmass, it is possible to generalize obtained
results to the case of the non-relativistic particle in a time-dependent external field.
It is possible to show that integrals of motion of position and momentum operators x̂
and p̂ should be defined through integrals of motion of a free non-relativistic particle
(12a) and (12b) as follows:

Â−
L (t) = Ul Â

−
F (t)U−1

l = 1√
2�

[
λ1 x̂1 (t) + iε (t) p̂1 (t)

]
, (22a)

Â+
L (t) = Ul Â

+
F (t)U−1

l = 1√
2�

[
λ∗
1 x̂1 (t) − iε∗ (t) p̂1 (t)

]
, (22b)
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where, x̂1 (t) = x̂ − S1 (t) and p̂1 (t) = p̂ − δ (t). Hence, one easily finds that

x̂ = S1 (t) +
√

�

2

[
ε∗ (t) Â−

L (t) + ε (t) Â+
L (t)

]
, p̂ = δ (t) + i

√
�

2

[
λ1 Â

+
L (t) − λ∗

1 Â
−
L (t)

]
. (23)

We introduce generalized coherent states of the non-relativistic particle in a time-
dependent external field as eigenfunction of operator Â−

L (22a):

Â−
L (t) |z, t〉L = z |z, t〉L . (24)

Taking into account a unitary equivalence between the free particle problem and a
particle in the time-dependent homogeneous field, explicit form of the coherent state
in position representation ψL

z (x, t) is computed as an action of operatorUl(x, t) (5)
to coherent state of the free non-relativistic particle ψF

z (x, t) (16) as follows:

ψL
z (x, t) = Ul (t)ψ

F
z (x, t) = N0 exp

{

−λ1 [x − x̄L (t)]2

2�ε (t)
+ i

�
p0 [x1 (t) − p0S2 (t)] + iϕ0 (x, t)

}

,

(25)
where, x1 (t) = x − S1 (t) and

x̄L (t) ≡ L 〈z, t | x̂ |z, t〉L = x̄F (t) + S1 (t) ,
p̄L (t) ≡ L 〈z, t | p̂ |z, t〉L = p0 + δ (t) .

Like the case of free non-relativistic particle with time-dependent mass, gen-
eralized coherent states of a non-relativistic particle in a time-dependent exter-
nal field in position representation can be computed explicitly by the use of
Glauber method through the action of shift operator DL (z, t) = UlDF (z, t)U

−1
l =

exp
[
z Â+

L (t) − z∗ Â−
L (t)

]
to the ground state ψL

0 (x, t) [8]:

ψ̃L
z (x, t) = DL (z, t)ψ

L
0 (x, t) = exp

(

−1

2
|z|2

) ∞∑

n=0

zn√
n!ψ

L
n (x, t), (26)

where

ψL
n (x, t) =

[
Â+
L (t)

]n

√
n! ψL

0 (x, t) = Nn

(
ε∗

ε

)n/2

Hn

(
x1 (t)√

� |ε|
)

e− λ1x
2
1 (t)

2�ε +iϕ0(x,t).

Probability density of the position corresponding to coherent state (25) equals to

ρL
z (x, t) = ∣

∣ψL
z (x, t)

∣
∣2 = 1√

π� |ε (t)| exp
{

− [x − x̄L (t)]
2

� |ε (t)|2
}

. (27)
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4 Unitary Equivalence for Oscillator-Like Solutions
of a Free Non-relativistic Particle with Time-Dependent
Mass and a Particle in a Time-Dependent Field

By the use of the evolution operator method, one can obtain various solutions of a
free non-relativistic particle with time-dependent mass and then easily show that evo-
lution operator easily transforms obtained solutions to similar oscillatory solutions
for a non-relativistic particle in a time-dependent homogeneous field. We choose the
following function as our initial wavefunction [10]:

ψn(x) =
(
a+)n
√
n! ψ0(x) = cn

(
λ∗
2

λ2

)n/2

Hn

(
x√

� |λ2|
)

e− λ1x
2

2�λ2 , (28)

where
cn = c0/

√
2nn!, c0 = (π�)−1/4 λ

−1/2
2 , n = 0, 1, 2, . . . .

Then, simple straightforward computations through the action of the evolution
operator of a free non-relativistic particle with the time-dependent mass UF (x, t)
(3a) to (28) allow us to obtain the following explicit expression of the oscillator-like
non-stationary wavefunctions of a problem under consideration:

ψF
n (x, t) = UF (x, t)ψn(x) = Nn

(
ε∗

ε

)n/2

Hn

(
x√

�|ε(t)|
)

e− λ1x
2

2�ε(t) , (29)

which one completely overlaps with (19). The probability density of position corre-
sponding to (29) also can be computed easily as follows:

ρF
n (x, t) = ∣

∣ψF
n (x, t)

∣
∣2 = |Nn|2 H 2

n

(
x√

�|ε(t)|
)

e− x2

�|ε(t)| . (30)

Now, we are able to extend these results to the case of a non-relativistic particle
in a time-dependent homogeneous field. In this case, it is sufficient to act byUl(x, t)
to the oscillator-like wavefunctions of a free non-relativistic particle with the time-
dependent mass (29):

ψL
n (x, t) = Ul(x, t)ψ

F
n (x, t) = Nn

(
ε∗

ε

)n/2

Hn

(
x1(t)√
�|ε(t)|

)

eiϕ0(x,t)− λ1x
2
1 (t)

2�ε(t) . (31)

Further, the probability density of position corresponding to (31) also can be
computed easily as follows:

ρL
n (x, t) = ∣

∣ψL
n (x, t)

∣
∣2 = |Nn|2 H 2

n

(
x1(t)√
�|ε(t)|

)

e− x21 (t)

�|ε(t)| . (32)
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5 Conclusions

In this paper, a unitary equivalence between the free non-relativistic particle prob-
lem and a particle in the time-dependent homogeneous field is established. We were
able to compute explicitly generalized coherent states of a non-relativistic free par-
ticle and particle with a mass M(t) in the time-dependent homogeneous field F(t).
For our computations, we used evolution operator method and simply extended our
results for a free non-relativistic particle with a time-dependent mass to the case
of a non-relativistic particle in a time-dependent external field. Some basic proper-
ties of the generalized coherent states for these problems are discussed, too. Then,
we also computed explicitly oscillator-like wavefunctions for both systems under
consideration.

Evolution operator method is extremely fruitful being applied to non-relativistic
quantum (both stationary and non-stationary) systems. This is explained by the fol-
lowing reasons:

• Evolution operator greatly simplifies the procedures for obtaining solutions of the
non-stationary Schrödinger equation for a free particle and a particle in a time-
dependent homogeneous field;

• Explicit expressions of the evolution operators for a free particle with a time-
dependent mass and a particle in the time-dependent homogeneous field makes it
possible to establish a unitary equivalence between these systems;

• Evolution operator method is the simplest direct method for finding the solutions
with given property (for example, quadratically integrable and non-integrable). In
fact, it is sufficient for this that the initial wave function possesses this property.
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