
Chapter 9
Principal Component Analysis

9.1 Introduction

Under the high-dimensional setup with p variables, the problem that often arises is
the critical nature of the correlation or covariance matrix. When p is moderately or
very large it is generally difficult to identify the true nature of relationship among the
variables as well as observations from the covariance or correlation matrix. Under
such situations, a very commonway to simplify the matter is to reduce the dimension
by considering only those variables (components) those are truly responsible for the
overall variation.

Principal component analysis (PCA) is a dimension reduction procedure. PCA
was developed in 1901 by Karl Pearson, as an analogue of the principal axis theo-
rem in mechanics. It was later independently developed by Harold Hotelling (1933,
1936). Several authors considered PCA in different forms (Joliffe 1982, 2002). There
are several case studies and applications (Jeffers 1967; Chattopadhyay and Chat-
topadhyay 2006). The method is useful when we have a large number of variables,
and some variables are of less or no importance. In this case, redundancy means
that some of the variables are highly correlated with one another, possibly because
they are measuring the same phenomenon. Because of this redundancy, it should be
possible to reduce the observed variables into a smaller number of principal compo-
nents (derived variables) that will account for most of the variance in the observed
variables.

Being a dimension reduction technique, principal component analysis has similar-
itieswith exploratory factor analysis. The steps followedwhen conducting a principal
component analysis are almost the same as those of exploratory factor analysis. How-
ever, there are significant conceptual differences between the reduction procedure
that gives a relatively small number of components those account for most of the
variance in a set of observed variables. In summary, both factor analysis and principal
component analysis have important roles to play in social science research, but their
conceptual foundations are quite different.
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More recently, Independent component analysis (ICA) has been identified as a
strong competitor for principal component analysis and factor analysis. ICA finds
a set of source data that are mutually independent (not only with respect to the
second moment), but PCA finds a set of data that are mutually uncorrelated and
the principal components become independent only under Gaussian setup. ICA was
primarily developed for non-Gaussian data in order to find independent components
responsible for a larger part of the variation. ICA separates statistically independent
original source data from an observed set of data mixtures.

9.1.1 Method

In PCA, primarily1 it is not necessary to make any assumption regarding the under-
lying multivariate distribution but if we are interested in some inference problems
related to PCA then the assumption of multivariate normality is necessary (Chat-
topadhyay andChattopadhyay 2014). The eigenvalues and eigenvectors of the covari-
ance or correlation matrix are the main contributors of a PCA. Of course, the eigen-
values of covariance and correlationmatrices are different and they coincidewhenwe
work with standardized values of the variables. So the decision whether one should
start work covariance or correlation matrix is important. Normally, when all the vari-
ables are of equal importance, one may start with the correlation matrix. The eigen-
vectors determine the directions of maximum variability, whereas the eigenvalues
specify the variances. In practice, decisions regarding the quality of the principal com-
ponent approximation should be made on the basis of eigenvalue–eigenvector pairs.
In order to study the sampling distribution of their estimates, the multivariate nor-
mality assumptions became necessary as otherwise it is too difficult. Principal com-
ponents are a sequence of projections of the data. The components are constructed in
such a way that they are uncorrelated and ordered in variance. The components of a
p-dimensional data set provide a sequence of best linear approximations. As only a
few of such linear combinations may explain a larger percentage of variation in the
data, one can take only those components instead of p variables for further analysis.

A PCA is concerned with explaining the variance–covariance structure through
a few linear combinations of the original variables. Its general objectives are data
reduction and interpretation. Reduce the number of variables from p to k < (kp).
Let the random vector X ′ = (X1 . . . X p) have the covariance matrix � (or correla-
tion matrix R) with ordered eigenvalues λ1 ≥ λ2 · · · ≥ λp ≥ 0 and corresponding
eigenvectors e′

1, e
′
2, . . . , e

′
p, respectively.

1This section draws from one of the authors’ published work, ‘Statistical Methods for Astronomical
Data Analysis,’ authored by Asis Kumar Chattopadhyay and Tanuka Chattopadhyay, and published
in 2014 by Springer Science+Business Media New York.
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Consider the linear combinations

Y1 = l11X1 + l21X2 + · · · + l p1X p = e′
1X

Y2 = l12X1 + l22X2 + · · · + l p2X p = e′
2X

.

.

Yp = l1p X1 + l2p X2 + · · · + l pp X p = e′
p X

Then we have the following result:

Result: Let X ′ = (X1 . . . X p) have covariancematrix� with eigenvalue–eigenvector
pairs (λ1, e1) . . . (λp, ep) where λ1 ≥ λ2 · · · ≥ .λp ≥ 0.

Let Y1 = e′
1X,Y2 = e′

2X . . . Yp = e′
p X.

Then
var(Yi ) = λi (i = 1, 2, . . . p) and

σ11 + σ22 · · · + σpp =
∑p

1
var(Xi)

= λ1 + · · · + λp

=
∑p

1
var(Y i)

Here Y1,Y2, . . . ,Yp are called principal components. In particular, Y1 is the first
principal component (having the largest variance), Y2 is the second principal com-
ponent (having the second largest variance), and so on.

(For proof of the above result, one may consult any standard textbook.)

Here instead of original p variables X1 . . . X p, only a few principal components
Y1,Y2, . . . ,Yk(k < p) are used which explains maximum part of the total variation.
There are several methods to find the optimum value of k.

The specific aim of the analysis is to reduce a large number of variables to a
smaller number of components by retaining the total variance (sum of the diagonal
components of the covariance matrix) almost same among the observations. The
analysis therefore helps us to determine the optimum set of artificial variables (viz.
linear combinations) explaining the overall variations in the nature of objects.

Many criteria have been suggested by different authors for deciding how many
principal components (k) to retain. Some of these criteria are as follows:

1. Include just enough components to explain some arbitrary amount (say 80%) of
the total variance which is the sum of the variances (diagonal elements of the
covariance matrix) of all the variables.

2. Exclude those principal componentswith eigenvalues below the average. For prin-
cipal components calculated from the correlation matrix, this criterion excludes
components with eigenvalues less than 1.
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3. Use of the screen plot (plotting eigenvalues against components) technique.2

Example9.1.1 (http://openmv.net/) The following data set gives the relative con-
sumption of certain food items inEuropean andScandinavian countries. The numbers
represent the percentage of the population consuming that food type corresponding
to 15 countries and 9 food types. As there are 9 food types corresponding to only 15
countries, it is necessary to reduce the dimension in order to search for major food
types.

Instant Powder
Country coffee Tea Biscuits soup
Germany 49 88 57 51
Italy 10 60 55 41
France 42 63 76 53
Holland 62 98 62 67
Belgium 38 48 74 37
Luxembourg 61 86 79 73
England 86 99 91 55
Portugal 26 77 22 34
Austria 31 61 29 33
Switzerland 72 85 31 69
Denmark 17 92 66 32
Norway 17 83 62 51
Finland 12 84 64 27
Spain 40 40 62 43
Ireland 52 99 80 75

Frozen
Country Potatoes fish Apples Oranges Butter
Germany 21 27 81 75 91
Italy 2 4 67 71 66
France 23 11 87 84 94
Holland 7 14 83 89 31
Belgium 9 13 76 76 84
Luxembourg 7 26 85 94 94
England 17 20 76 68 95
Portugal 5 20 22 51 65
Austria 5 15 49 42 51
Switzerland 17 19 79 70 82
Denmark 11 51 81 72 92
Norway 17 30 61 72 63
Finland 8 18 50 57 96
Spain 14 23 59 77 44
Ireland 2 5 57 52 97

2A significant part of ‘Chattopadhyay and Chattopadhyay (2014). Statistical methods for Astro-
nomical Data Analysis, Springer Series in Astrostatistics, Springer’ is reproduced in this part.

http://openmv.net/
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Table 9.1 Eigen analysis of the correlation matrix

Components PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Eigenvalue 3.4129 1.5591 1.3412 1.0164 0.7587 0.3294 0.2633 0.2027 0.1162

Proportion 0.379 0.173 0.149 0.113 0.084 0.037 0.029 0.023 0.013

Cumulative 0.379 0.552 0.701 0.814 0.899 0.935 0.965 0.987 1.000

Table 9.2 Coefficients of 15 variables in 9 principal components

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Instant 0.383 −0.367 −0.035 −0.247 −0.335 −0.360 −0.573 0.140 0.258

Tea 0.241 −0.229 0.596 −0.326 −0.274 0.000 0.441 0.304 0.256

Biscuits 0.368 0.062 0.069 0.571 −0.249 −0.650 0.135 −0.058 −0.155

Powder s 0.389 −0.467 −0.053 −0.170 −0.047 0.225 0.119 −0.561 −0.467

Potatoes 0.284 0.412 −0.078 −0.219 0.667 −0.144 0.476 −0.058 −0.032

Frozen f 0.079 0.575 0.305 −0.452 −0.298 −0.155 −0.377 −0.248 −0.221

Apples 0.465 0.174 −0.205 0.057 −0.108 0.360 −0.123 0.632 −0.389

Oranges 0.394 0.208 −0.424 −0.013 −0.340 0.201 0.058 −0.258 0.629

Butter 0.224 0.134 0.561 0.471 0.297 0.427 −0.240 −0.197 0.169

From the screen plot and Table9.1, it is clear that 4 components have variances (i.e.,
eigenvalues of the correlation matrix) greater than one and these four components
explainmore than 80% of the total variation, i.e., the sum of the variances of all
the variables. Hence, one can work with four principal components instead of the
original nine variables.

From Table9.2, it is clear that most of the variables have similar importance in
all the first four components so that it is difficult to associate a particular component
to a subset of variables. So here it is not possible to identify the physical nature of
the components. This feature is generally true for principal component analysis. In
order to find inherent factors, one can take help of factor analysis if the nature of the
covariance matrix admits (Figs. 9.1 and 9.2).

9.1.2 The Correlation Vector Diagram (Biplot, Gabriel 1971)

A matrix of rank 2 can be displayed as a biplot consisting of a vector for each row
and a vector for each column, chosen so that each element of the matrix is exactly the
inner product of the vectors corresponding to its row and its column (Gabriel 1971).
If a matrix is of higher rank, one may display it approximately by a biplot of a matrix
of rank 2 that approximates the original matrix. In PCA, a biplot can show inter-unit
distances and indicate the clustering of units, as well as displaying the variances and
correlations of the variables.
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Fig. 9.1 Screen plot used to decide about the number of significant principal components. The
components with eigenvalues greater than 1 are usually taken as significant

Fig. 9.2 Biplot for the data used in Example9.1.1. The vector lengths represent variances of
corresponding variables, and the angles show correlations of the variables (smaller angles indicate
higher correlations). Dot points indicate the positions of the 15 countries with respect to their first
and second component values. The origin represents the average value for each variable; that is, it
represents the object that has an average value in each variable

Any matrix of observations y of order mXn can be written by singular value
decomposition as

y = �r
1λi piqi

′(λ1 ≥ λ2 · · · ≥ λr )
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where r is the rank of the matrix y and λi , pi , and q ′
i are the singular value, singular

column, and singular row, respectively. Then by the method of least-squares fitting
a matrix of rank 2, an approximation of y is given by

y = �2
1λi piqi

′

and the corresponding measure of goodness of fit is given by

ρ(2) = λ2
1 + λ2

2

σr
1λi

2

If ρ(2) is near to 1, then such a biplot will give a good approximation to y. If we
denote by

SmXm = (1/n) y′ y = (si j ) = variance–covariance matrix and
RmXm = (ri j ) = correlation matrix

then it can be shown that

ynXm ∼ GnX2H ′2Xm

where

GnX2 = (p1′ p2′)
√
n = (gnX11 gnX12 )

and

HmX2 =
(

1√
n

)
(λ1q1λ2q2) = (hmX1

1 hmX1
2 ).

Further,
si j ∼ h′

i h j

s2j ∼ ||h j ||2

ri j ∼ cos(hih j ).

9.2 Properties of Principal Components

In PCA, the first component extracted explains themaximumamount of total variance
in the observed variables. Under some conditions, this means that the first component
will be correlated with at least some of the observed variables. It may be correlated
with many. The second component will have two important characteristics. First,
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this component explains a maximum amount of variance in the data set that was not
accounted for by the first component. Again under some conditions, this means that
the second component will be correlated with some of the observed variables that
did not display strong correlations with the first component.

The second characteristic of the second component is that it will be uncorrelated
(orthogonal) with the first component. The remaining components that are extracted
in the analysis display the same two characteristics: Each component accounts for a
maximum amount of variance in the observed variables which was not accounted for
by the preceding components, and is uncorrelated with all of the preceding compo-
nents. A principal component analysis proceeds in this fashion, with each new com-
ponent accounting for progressively smaller and smaller amounts of variance (this
is why only the first few components are usually retained and interpreted). When
the analysis is complete, the resulting components will display varying degrees of
correlation with the observed variables (https://support.sas.com/publishing/pubcat/
chaps/55129.pdf), but are completely uncorrelated with one another.

Since no correlation does not generally imply that the components are indepen-
dent, principal components are not generally independent except for normal distribu-
tion under which zero correlation implies independence. This is the reason why PCA
works more successfully for Gaussian data. For non-Gaussian data, the independent
component analysis is a better option.
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