
Chapter 8
Cluster and Discriminant Analysis

8.1 Introduction

Under multivariate analysis, two very important techniques are clustering and
classification. Under the problem of clustering, we try to find out the unknown num-
ber of homogeneous inherent groups in a data set as well as the structure of the
groups. But under classification, the basic problem is discrimination of objects into
some known groups. One of the most basic abilities of living creatures involves the
grouping of similar objects to produce a classification. Classification is fundamental
to most branches of science.

Cluster analysis has a variety of objectives. It is focussed on segmenting a collec-
tion of items (also called observations, individuals, cases, or data rows) into subsets
such that thosewithin each cluster aremore closely related to one another than objects
assigned to different clusters. The main focus in cluster analysis is on the notion of
degree of similarity (or dissimilarity) among the individual objects being clustered.
The two major methods of clustering are hierarchical clustering and k-means clus-
tering. Most of the clustering methods are exploratory in nature and do not need any
model assumption.

Different statistical techniques are available for clustering and classification
(Fraix-Burnet et al. 2015; De et al. 2013 and references there in). But depending
on the nature of the different types of data, several problems often arise and in some
cases a proper solution is still not available.

Sometimes the data set under consideration has a distributional form (usually
normal), and sometimes it is of non-normal nature. Based on the above point, there
is a justification needed about which clustering or classification technique should
be used so that it reflects the proper nature of the data set provided. This problem
is more relevant for classification as most of the classification methods are model
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based. For clustering, most of the methods are nonparametric in nature and as such
the above problem is not very serious. But here also basic assumption is that the
nature of the variables under study is continuous, whereas under practical situations,
these may be categorical like binary, nominal, ordinal, and even directional (par-
ticularly for environmental and astronomical data). Under such situations, standard
similarity/dissimilarity measures will not work.

The clustering techniques which require an inherent model assumption are known
as model-based methods, whereas the clustering technique where no modeling
assumption or distributional form is needed may be termed as non-model-based
methods. Hence based on the nature of data set, one has to decide about proper
application of the two types of techniques.

At present, big data issues related to data size are quite common. In statistical
terms, these problems may be tackled in terms of both the number of observations
and the variables considered. Many standard clustering techniques fail to deal with
such big data sets. Thus, some dimension reduction methods may be applied at first
and then clustering may be performed on the reduced data set. Some data mining
techniques are very helpful under such situations.

Finally andmost importantly, after all these considerations, the similarity of group-
ing of objects obtained from different methods should be checked in terms of some
physical properties.

8.2 Hierarchical Clustering Technique

There are two major methods of clustering, viz. hierarchical clustering and k-means
clustering. In hierarchical clustering, the items are not partitioned into clusters in
a single step. Instead, a series of partitions takes place, which runs from a single
cluster containing all objects to n clusters each containing a single object. Hierar-
chical clustering is subdivided into agglomerative methods, which proceed by series
of combinations of the n objects into groups, and divisive methods, which sepa-
rate n objects successively into smaller groups. Agglomerative techniques are more
commonly used. Hierarchical clustering may be represented by a two-dimensional
diagram known as dendrogram which illustrates the additions or divisions made at
each successive stage of analysis.

8.2.1 Agglomerative Methods

An agglomerative hierarchical clustering procedure produces a series of partitions of
the data, Gn;Gn−1; :::::::; G1. The first Gn consists of n single-object ‘clusters,’ and
the lastG1 consists of single group containing all n cases. The structure of the groups
is not unique and depends on several factors like choice of the dissimilarity/similarity
measure, choice of the linkage measure.
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At each particular stage, the method adds together the two clusters which are most
similar. At the first stage, we join together two objects that are closest together, since
at the initial stage each cluster has only one object. Differences between methods
arise because of the different ways of defining dissimilarity or similarity between
clusters.

Hierarchical clustering is largely dependent on the selection of such a measure.
A simple measure is Manhattan distance, equal to the sum of absolute distances for
each variable. The name comes from the fact that in a two-variable case, the variables
can be plotted on a grid that can be compared to city streets, and the distance between
two points is the number of blocks a person would walk.

The most popular measure is Euclidean distance, computed by finding the square
of the distance between each variable, summing the squares, and finding the square
root of that sum. In the two-variable case, the distance is analogous to finding the
length of the hypotenuse in a triangle. Besides Manhattan and Euclidian distances,
there are other dissimilarity measures also based on the correlation coefficients
between two observations on the basis of several variables.

Alternatively, onemay use a similaritymeasure which is complementary in nature
and under the normalized set up, it may be obtained by subtracting the dissimilarity
measure from one.

8.2.2 Similarity for Any Type of Data

The above-mentioned dissimilarity/similaritymeasures are applicable to continuous-
type data only. But generally, we work with mixed-type data sets those include
different types like continuous, discrete, binary, nominal, ordinal. Gower (1971) has
proposed a general measure as follows:

The Gower’s Coefficient of Similarity:

Two individuals i and j may be compared on a character k and assigned a score sijk.
There are many ways of calculating sijk, some of which are described below.

Corresponding to n individuals and p variables, Gower’s similarity index Sij is
defined as

Sij = �
p
k=1sijk/�

p
k=1δijk(i, j = 1, 2, . . . n)

where δijk = 1 when character k can be compared

for observations i and j

= 0 otherwise

For continuous (quantitative) variables with values x1k , x2k , . . . , xnk for the kth
variable

sijk = 1− | xik − xjk | /Rk



78 8 Cluster and Discriminant Analysis

where Rk is the range of the variable k and may be the total range in population or
the range in the sample.

For a categorical (qualitative) character with m categories (m = 2 for binary
variable)

sijk = 0 if i and j are totally different

= q (positive fraction) if there is some degree of agreement

= 1 when i and j are same

8.2.3 Linkage Measures

To calculate distance between two clusters, it is required to define two representative
points from the two clusters (Chattopadhyay and Chattopadhyay 2014). Different
methods have been proposed for this purpose. Some of them are listed below.1

Single linkage: One of the simplestmethods is single linkage, also known as the near-
est neighbor technique. The defining feature of the method is that distance between
clusters is defined as the distance between the closest pair of objects, where only
pairs consisting of one object from each cluster are considered.

In the single linkage method, drs is computed as drs =Min dij, where object i is in
cluster r and object j is in cluster s and dij is the distance between the objects I and j.
Here the distance between every possible object pair (i, j) is computed, where object
i is in cluster r and object j is in cluster s. The minimum value of these distances is
said to be the distance between clusters r and s. In other words, the distance between
two clusters is given by the value of the shortest link between the clusters. At each
stage of hierarchical clustering, the clusters r and s, for which drs is minimum, are
merged.

Complete linkage: The complete linkage, also called farthest neighbor, clustering
method is the opposite of single linkage. Distance between clusters is now defined
as the distance between the most distant pair of objects, one from each cluster. In the
complete linkage method, d − rs is computed as drs = Max dij, where object i is in
cluster r and object j is cluster s. Here the distance between every possible object
pair (i, j) is computed, where object i is in cluster r and object j is in cluster s and the
maximum value of these distances is said to be the distance between clusters r and s.
In other words, the distance between two clusters is given by the value of the largest
distance between the clusters. At each stage of hierarchical clustering, the clusters r
and s, for which drs is minimum, are merged.

Average linkage: Here the distance between two clusters is defined as the aver-
age of distances between all pairs of observations, where each pair is composed
of one object from each group. In the average linkage method, drs is computed as

1A significant part of ‘Chattopadhyay and Chattopadhyay (2014). Statistical methods for Astro-
nomical Data Analysis, Springer Series in Astrostatistics, Springer’ is reproduced in this part.
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drs = Trs/(Nr × Ns) where Trs is the sum of all pair-wise distances between cluster
r and cluster s. Nr and Ns are the sizes of the clusters r and s, respectively. At each
stage of hierarchical clustering, the clusters r and s, for which drs is the minimum,
are merged.

Minimax Linkage: This was introduced by Bien and Tibshirani (2011). For any
point x and cluster G, define

dmax(x,G) = maxy∈G d(x, y)

as the distance to the farthest point in G from x. Define the minimax radius of the
cluster G as

r(G) = minx∈G dmax (x,G)

that is, find the point x ∈ G from which all points in G are as close as possible. This
minimizing point is called the prototype for G. It may be noted that a closed ball of
radius r(G) centered at the prototype covers all of G. Finally, we define the minimax
linkage between two clusters G and H as

d(G,H ) = r(GUH )

that is, we measure the distance between clusters G and H by the minimax radius of
the resulting merged cluster.

8.2.4 Optimum Number of Clusters

Usually, the number of clusters is determined from the dendrogram and validated
by the physical properties. We specify a horizontal line for a particular similar-
ity/dissimilarity value, and the clusters below this line are selected as optimum. But
somemathematical rules (thumb rules) are also available which are based on between
cluster and within cluster sum of squares values. If we denote by k, the number of
clusters and define byW(k) the sum of the within cluster sum of squares for k clusters
then the values of W(k) will gradually decrease with increase in k and that ‘k’ may
be taken as optimum where W(k) stabilizes. For detailed discussion, one may follow
the link http://www.cc.gatech.edu/~hpark/papers/cluster_JOGO.pdf.

8.2.5 Clustering of Variables

The hierarchical clustering method can also be used for clustering of variables on
the basis of the observations. Here instead of the distance matrix, one may start
with the correlation matrix (higher correlation indicating similarity of variables).

http://www.cc.gatech.edu/~hpark/papers/cluster_JOGO.pdf
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The linkage measures as listed in the previous section will not be applicable for
variable clustering. In order to measure similarity/dissimilarity between two clusters
of variables, one may either use the correlation between first principal components
corresponding to the two clusters or the canonical correlations.

8.3 Partitioning Clustering-k-Means Method

The k-means algorithm (MacQueen 1967) assigns each point to the cluster whose
center (also called centroid) is nearest. The center is the average of all the points in the
cluster that is, its coordinates are the arithmetic mean for each dimension separately
over all the points in the cluster. This method can be used for clustering of objects
and not variables.

This method starts with a value of k. We will discuss later the method of selection
of the value of k. Then we randomly generate k clusters and determine the cluster
centers, or directly generate k seed points as cluster centers. Assign each point to
the nearest cluster center in terms of Euclidian distance. Re-compute the new cluster
centers. Repeat until some convergence criterion ismet, i.e., there is no reassignment.
The main advantages of this algorithm are its simplicity and speed which allows it
to run on large data sets. Its disadvantage is that it is highly dependent on the initial
choice of clusters. It does not yield the same result with each run, since the resulting
clusters dependon the initial randomassignments. Itmaximizes inter-cluster variance
and minimizes intra-cluster variance.

The advantages of partitioning method are as follows (Chattopadhyay and
Chattopadhyay 2014):

(a) A partitioning method tries to select best clustering with k groups which is not
the goal of hierarchical method.

(b) A hierarchical method can never repair what was done in previous steps.
(c) Partitioning methods are designed to group items rather than variables into a

collection of k clusters.
(d) Since a matrix of distances (similarities) does not have to be determined and the

basic data do not have to be stored during the computer run, partitioningmethods
can be applied to much larger data sets.

For k-means algorithms, the optimum value of k can be obtained in different ways.
On the basis of the method proposed by Sugar and James (2003), by using k-

means algorithm first determine the structures of clusters for varying number of
clusters taking k = 2, 3, 4, etc. For each such cluster formation, compute the values
of a distance measure

dK = (1/p)minx E[(xk − ck)
′(xk − ck)]

which is defined as the distance of the xk vector (values of the parameters) from
the center ck (which is estimated as mean value), p is the order of the xk vector.
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Then the algorithm for determining the optimum number of clusters is as follows.
Let us denote by d ′

k the estimate of dk at the kth point which is actually the sum of
within cluster sum of squares over all k clusters. Then d ′

k is the minimum achievable
distortion associated with fitting k centers to the data. A natural way of choosing
the number of clusters is plot d ′

k versus k and look for the resulting distortion curve.
This curve is always monotonic decreasing. Initially, one would expect much smaller
drops, i.e., a leveling off for k greater than the true number of clusters because past
this point adding more centers simply partitions within groups rather than between
groups.

According to Sugar and James (2003) for a large number of items the distortion
curvewhen transformed to an appropriate negative power, will exhibit a sharp “jump”
(if we plot k versus transformed d ′

k ). Then calculate the jumps in the transformed
distortion as

Jk = (d ′−(p/2)
k − d ′−(p/2)

k−1 )

Another way of choosing the number of clusters is plot Jk versus k and look for the
resulting jump curve. The optimum number of clusters is the value of k at which the
distortion curve levels off as well as its value associated with the largest jump.

The k-means clustering technique depends on the choice of initial cluster cen-
ters (Chattopadhyay et al. 2012). But this effect can be minimized if one chooses
the cluster centers through group average method (Milligan 1980). As a result, the
formation of the final groups will not depend heavily on the initial choice and hence
will remain almost the same according to physical properties irrespective of initial
centers. In MINITAB package, the k-means method is almost free from the effect of
initial choice of centers as they have used the group average method.

8.4 Classification and Discrimination

Discriminant2 analysis and classification are multivariate techniques concerned with
separating distinct sets of objects and with allocating new objects to previously
defined groups. Once the optimum clustering is obtained by applying the method
discussed under previous section, one can verify the acceptability of the classifi-
cation by computing classification/misclassification probabilities for the different
objects. Although the k-means clustering method is purely a data analytic method,
for classification it may be necessary to assume that the underlying distribution is
multivariate normal. The method can be illustrated as follows for two populations
(clusters). The method can be easily generalized for more than two underlying pop-
ulations.

2A significant part of ‘Chattopadhyay and Chattopadhyay (2014). Statistical Methods for Astro-
nomical Data Analysis, Springer Series in Astrostatistics, Springer’ is reproduced in this part.
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Let f1(x) and f2(x) be the probability density functions associated with the p × 1
random vector X for the populations π1 and π2 respectively. Let � be the sample
space, i.e., collection of all objects. Let us denote by x the observed value of X . Let
R1 be that set of x values for which we classify objects as π1 and R2 = �R1 be the
remaining x values for which we classify objects as π2. Since every object must be
assigned to one and only one of the two groups, the sets R1 and R2 are disjoint and
exhaustive. The conditional probability of classifying an object as π2 when in fact it
is from π1 (error probability) is,

P(2 | 1) = P[X ∈ R2 | π1] = fR2f1(x)dx

Similarly, the other error probability can be defined. Let p1 and p2 be the prior
probabilities of π1 and π1, respectively, (p1 + p2 = 1). Then the overall probabilities
of correctly and incorrectly classifying objects can be derived as

P (correctly classified asπ1) =P (Observation actually comes fromπ1 and is correctly
classified as π1) = P[X ∈ R1 | π2]p2.
P (misclassified as π1) = P[X ∈ R1 | π2]p2.

The associated cost of misclassification can be defined by a cost matrix

Classified as
True population π1 π2

π1 0 C(2 | 1)
π2 C(1 | 2) 0

For any rule, the average or Expected Cost of Misclassification (ECM) is given by

ECM = C(2 | 1)P(2 | 1)p1 + C(1 | 2P(1 | 2)p2
A reasonable classification rule should have ECM as small as possible.

Rule: The regions R1 and R2 that minimize the ECM are defined by the value of x
for which the following inequalities hold.

R1 : f1(x)
f2(x)

>
C(1 | 2)p2
C(2 | 1)p1

R2 : f1(x)
f2(x)

<
C(1 | 2)p2
C(2 | 1)p1
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If we assume f1(x) and f2(x) are multivariate normal with mean vectors μ1 and
μ2 and covariance matrices �1 and �2, respectively, then a particular object with
observation vector x0 may be classified according to the following rule (under the
assumption �1 = �2)

Allocate x0 to π1 if

(μ1 − μ2)
′�−1x0 − 1

2
(μ1 − μ2)

′�−1(μ1 + μ2) ≥ C(1 | 2)p2
C(2 | 1)p1

allocate x0 to π2 otherwise.
If we chooseC(1 | 2) = C(2 | 1) and p1 = p2, then the estimatedminimumECM

rule for two Normal populations will be as follows:
Allocate x0 to π1 if

(m1 − m2)
′Spooled − 1x0 − 1

2
(m1 − m2)

′�−1(m1 + m2) ≥ 0

where m1 and m2 are sample mean vectors of the two populations and Spooled is
pooled (combined) sample covariance matrix. Allocate x0 to π2 otherwise. The LHS
is known as the linear discriminant function. One can easily generalize the method
for more than two groups.

8.5 Data

Example 8.5.1 The Fisher’s Iris data set is a multivariate data set introduced by
Fisher (1936). It is also known as Anderson’s Iris data set because Edgar Anderson
collected the data to quantify themorphologic variation of Iris flowers of three related
species. The data set consists of 50 samples from each of three species of Iris (Iris
setosa (type-3), Iris versicolor (type-2), and Iris virginica (type-1)). Four features
were measured from each sample: the length and the width of the sepals and petals,
in centimeters (Table8.1).

We have performed k-means clustering of the data on the basis of the first four
variables, viz. sepal length, sepal width, petal length, and petal width. Choosing
k = 3, we have divided the 150 observations into three groups in order to verify
whether we can identify three groups corresponding to three species. From columns
6 and 7, it is clear that k-means method has correctly identified Iris setosa (type-3)
species for all the 50 cases, whereas there are some errors corresponding to types 1
and 2. For type 2, three cases and for type 1 fourteen cases had wrongly identified.
The summary result for k-means clustering is given below:



84 8 Cluster and Discriminant Analysis

Table 8.1 Results of k-means clustering for Iris data

Sepal length Sepal width Petal length Petal width Species Type k-means
Clus no.

5.1 3.5 1.4 0.2 I. setosa 3 3

4.9 3 1.4 0.2 I. setosa 3 3

4.7 3.2 1.3 0.2 I. setosa 3 3

4.6 3.1 1.5 0.2 I. setosa 3 3

5 3.6 1.4 0.2 I. setosa 3 3

5.4 3.9 1.7 0.4 I. setosa 3 3

4.6 3.4 1.4 0.3 I. setosa 3 3

5 3.4 1.5 0.2 I. setosa 3 3

4.4 2.9 1.4 0.2 I. setosa 3 3

4.9 3.1 1.5 0.1 I. setosa 3 3

5.4 3.7 1.5 0.2 I. setosa 3 3

4.8 3.4 1.6 0.2 I. setosa 3 3

4.8 3 1.4 0.1 I. setosa 3 3

4.3 3 1.1 0.1 I. setosa 3 3

5.8 4 1.2 0.2 I. setosa 3 3

5.7 4.4 1.5 0.4 I. setosa 3 3

5.4 3.9 1.3 0.4 I. setosa 3 3

5.1 3.5 1.4 0.3 I. setosa 3 3

5.7 3.8 1.7 0.3 I. setosa 3 3

5.1 3.8 1.5 0.3 I. setosa 3 3

5.4 3.4 1.7 0.2 I. setosa 3 3

5.1 3.7 1.5 0.4 I. setosa 3 3

4.6 3.6 1 0.2 I. setosa 3 3

5.1 3.3 1.7 0.5 I. setosa 3 3

4.8 3.4 1.9 0.2 I. setosa 3 3

5 3 1.6 0.2 I. setosa 3 3

5 3.4 1.6 0.4 I. setosa 3 3

5.2 3.5 1.5 0.2 I. setosa 3 3

5.2 3.4 1.4 0.2 I. setosa 3 3

4.7 3.2 1.6 0.2 I. setosa 3 3

4.8 3.1 1.6 0.2 I. setosa 3 3

5.4 3.4 1.5 0.4 I. setosa 3 3

5.2 4.1 1.5 0.1 I. setosa 3 3

5.5 4.2 1.4 0.2 I. setosa 3 3

4.9 3.1 1.5 0.2 I. setosa 3 3

5 3.2 1.2 0.2 I. setosa 3 3

5.5 3.5 1.3 0.2 I. setosa 3 3

4.9 3.6 1.4 0.1 I. setosa 3 3

4.4 3 1.3 0.2 I. setosa 3 3

(continued)
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Table 8.1 (continued)

Sepal length Sepal width Petal length Petal width Species Type k-means
Clus no.

5.1 3.4 1.5 0.2 I. setosa 3 3

5 3.5 1.3 0.3 I. setosa 3 3

4.5 2.3 1.3 0.3 I. setosa 3 3

4.4 3.2 1.3 0.2 I. setosa 3 3

5 3.5 1.6 0.6 I. setosa 3 3

5.1 3.8 1.9 0.4 I. setosa 3 3

4.8 3 1.4 0.3 I. setosa 3 3

5.1 3.8 1.6 0.2 I. setosa 3 3

4.6 3.2 1.4 0.2 I. setosa 3 3

5.3 3.7 1.5 0.2 I. setosa 3 3

5 3.3 1.4 0.2 I. setosa 3 3

7 3.2 4.7 1.4 I. versicolor 2 1

6.4 3.2 4.5 1.5 I. versicolor 2 2

6.9 3.1 4.9 1.5 I. versicolor 2 1

5.5 2.3 4 1.3 I. versicolor 2 2

6.5 2.8 4.6 1.5 I. versicolor 2 2

5.7 2.8 4.5 1.3 I. versicolor 2 2

6.3 3.3 4.7 1.6 I. versicolor 2 2

4.9 2.4 3.3 1 I. versicolor 2 2

6.6 2.9 4.6 1.3 I. versicolor 2 2

5.2 2.7 3.9 1.4 I. versicolor 2 2

5 2 3.5 1 I. versicolor 2 2

5.9 3 4.2 1.5 I. versicolor 2 2

6 2.2 4 1 I. versicolor 2 2

6.1 2.9 4.7 1.4 I. versicolor 2 2

5.6 2.9 3.6 1.3 I. versicolor 2 2

6.7 3.1 4.4 1.4 I. versicolor 2 2

5.6 3 4.5 1.5 I. versicolor 2 2

5.8 2.7 4.1 1 I. versicolor 2 2

6.2 2.2 4.5 1.5 I. versicolor 2 2

5.6 2.5 3.9 1.1 I. versicolor 2 2

5.9 3.2 4.8 1.8 I. versicolor 2 2

6.1 2.8 4 1.3 I. versicolor 2 2

6.3 2.5 4.9 1.5 I. versicolor 2 2

6.1 2.8 4.7 1.2 I. versicolor 2 2

6.4 2.9 4.3 1.3 I. versicolor 2 2

6.6 3 4.4 1.4 I. versicolor 2 2

6.8 2.8 4.8 1.4 I. versicolor 2 2

(continued)
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Table 8.1 (continued)

Sepal length Sepal width Petal length Petal width Species Type k-means
Clus no.

6.7 3 5 1.7 I. versicolor 2 1

6 2.9 4.5 1.5 I. versicolor 2 2

5.7 2.6 3.5 1 I. versicolor 2 2

5.5 2.4 3.8 1.1 I. versicolor 2 2

5.5 2.4 3.7 1 I. versicolor 2 2

5.8 2.7 3.9 1.2 I. versicolor 2 2

6 2.7 5.1 1.6 I. versicolor 2 2

5.4 3 4.5 1.5 I. versicolor 2 2

6 3.4 4.5 1.6 I. versicolor 2 2

6.7 3.1 4.7 1.5 I. versicolor 2 2

6.3 2.3 4.4 1.3 I. versicolor 2 2

5.6 3 4.1 1.3 I. versicolor 2 2

5.5 2.5 4 1.3 I. versicolor 2 2

5.5 2.6 4.4 1.2 I. versicolor 2 2

6.1 3 4.6 1.4 I. versicolor 2 2

5.8 2.6 4 1.2 I. versicolor 2 2

5 2.3 3.3 1 I. versicolor 2 2

5.6 2.7 4.2 1.3 I. versicolor 2 2

5.7 3 4.2 1.2 I. versicolor 2 2

5.7 2.9 4.2 1.3 I. versicolor 2 2

6.2 2.9 4.3 1.3 I. versicolor 2 2

5.1 2.5 3 1.1 I. versicolor 2 2

5.7 2.8 4.1 1.3 I. versicolor 2 2

6.3 3.3 6 2.5 I. virginica 1 1

5.8 2.7 5.1 1.9 I. virginica 1 2

7.1 3 5.9 2.1 I. virginica 1 1

6.3 2.9 5.6 1.8 I. virginica 1 1

6.5 3 5.8 2.2 I. virginica 1 1

7.6 3 6.6 2.1 I. virginica 1 1

4.9 2.5 4.5 1.7 I. virginica 1 2

7.3 2.9 6.3 1.8 I. virginica 1 1

6.7 2.5 5.8 1.8 I. virginica 1 1

7.2 3.6 6.1 2.5 I. virginica 1 1

6.5 3.2 5.1 2 I. virginica 1 1

6.4 2.7 5.3 1.9 I. virginica 1 1

6.8 3 5.5 2.1 I. virginica 1 1

5.7 2.5 5 2 I. virginica 1 2

(continued)
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Table 8.1 (continued)

Sepal length Sepal width Petal length Petal width Species Type k-means
Clus no.

5.8 2.8 5.1 2.4 I. virginica 1 2

6.4 3.2 5.3 2.3 I. virginica 1 1

6.5 3 5.5 1.8 I. virginica 1 1

7.7 3.8 6.7 2.2 I. virginica 1 1

7.7 2.6 6.9 2.3 I. virginica 1 1

6 2.2 5 1.5 I. virginica 1 2

6.9 3.2 5.7 2.3 I. virginica 1 1

5.6 2.8 4.9 2 I. virginica 1 2

7.7 2.8 6.7 2 I. virginica 1 1

6.3 2.7 4.9 1.8 I. virginica 1 2

6.7 3.3 5.7 2.1 I. virginica 1 1

7.2 3.2 6 1.8 I. virginica 1 1

6.2 2.8 4.8 1.8 I. virginica 1 2

6.1 3 4.9 1.8 I. virginica 1 2

6.4 2.8 5.6 2.1 I. virginica 1 1

7.2 3 5.8 1.6 I. virginica 1 1

7.4 2.8 6.1 1.9 I. virginica 1 1

7.9 3.8 6.4 2 I. virginica 1 1

6.4 2.8 5.6 2.2 I. virginica 1 1

6.3 2.8 5.1 1.5 I. virginica 1 2

6.1 2.6 5.6 1.4 I. virginica 1 1

7.7 3 6.1 2.3 I. virginica 1 1

6.3 3.4 5.6 2.4 I. virginica 1 1

6.4 3.1 5.5 1.8 I. virginica 1 1

6 3 4.8 1.8 I. virginica 1 2

6.9 3.1 5.4 2.1 I. virginica 1 1

6.7 3.1 5.6 2.4 I. virginica 1 1

6.9 3.1 5.1 2.3 I. virginica 1 1

5.8 2.7 5.1 1.9 I. virginica 1 2

6.8 3.2 5.9 2.3 I. virginica 1 1

6.7 3.3 5.7 2.5 I. virginica 1 1

6.7 3 5.2 2.3 I. virginica 1 1

6.3 2.5 5 1.9 I. virginica 1 2

6.5 3 5.2 2 I. virginica 1 1

6.2 3.4 5.4 2.3 I. virginica 1 1

5.9 3 5.1 1.8 I. virginica 1 2
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Number of clusters: 3

Number Within Average Maximum
of cluster distance distance

observations sum of from from
squares centroid centroid

Cluster1 39 25.414 0.732 1.552
Cluster2 61 38.291 0.731 1.647
Cluster3 50 15.151 0.482 1.248

We have also performed linear discriminant analysis by considering types as the
true groups.

Linear Method for Response: Type
Predictors: Sepal le Sepal wi Petal le Petal wi
Summary of Classification

Put into ....True Group....
Group 1 2 3

1 49 2 0
2 1 48 0
3 0 0 50

Total N 50 50 50

Summary of Classification with Cross-validation

Put into ....True Group....
Group 1 2 3

1 49 2 0
2 1 48 0
3 0 0 50

Total N 50 50 50
N Correct 49 48 50
Proportion 0.980 0.960 1.000

N = 150 N Correct = 147 Proportion Correct = 0.980
Squared Distance Between Groups

1 2 3
1 0.000 17.201 179.385
2 17.201 0.000 89.864
3 179.385 89.864 0.000
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Linear Discriminant Function for Group

1 2 3
Constant −103.27 −71.75 −85.21
Sepal le 12.45 15.70 23.54
Sepal wi 3.69 7.07 23.59
Petal le 12.77 5.21 −16.43
Petal wi 21.08 6.43 −17.40

Variable Pooled Means for Group

Mean 1 2 3
Sepal le 5.8433 6.5880 5.9360 5.0060
Sepal wi 3.0573 2.9740 2.7700 3.4280
Petal le 3.7580 5.5520 4.2600 .4620
Petal wi 1.1993 2.0260 1.3260 0.2460

Variable Pooled StDev for Group

StDev 1 2 3
Sepal le 0.5148 0.6359 0.5162 0.3525
Sepal wi 0.3397 0.3225 0.3138 0.3791
Petal le 0.4303 0.5519 0.4699 0.1737
Petal wi 0.2047 0.2747 0.1978 0.1054

Pooled Covariance Matrix
Sepal le Sepal wi Petal le Petal wi
Sepal le 0.26501
Sepal wi 0.09272 0.11539
Petal le 0.16751 0.05524 0.18519
Petal wi 0.03840 0.03271 0.04267 0.04188
Here we see that only three observations are wrongly classified. The corresponding
probabilities are given by

Observation True Pred Group Probability
Group Group Predicted

71 ** 2 1 1 0.75
2 0.25
3 0.00

84 ** 2 1 1 0.86
2 0.14
3 0.00

134 ** 1 2 1 0.27
2 0.73
3 0.00
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Example 8.5.2 The following data are related to a survey on environmental pollution
level. The following variables were observed in suitable units at 111 selected places.
The four variables under study were Ozone content, Radiation, Temperature, and
Wind speed in some proper units. We have performed hierarchical clustering with
Euclidian distance and single linkage. The data set as well as the cluster membership
is shown in the following table.

The summary of results and the dendrogram are given below the table. By con-
sidering similarity level at 93, six clusters were found of which three (4, 5, and 6)
may omitted as outliers containing 2, 1, and 1 observations. Hence clusters 1, 2, and
3 are the main clusters. Figures corresponding to radiation, temperature, wind speed,
ozone content and H-cluster number of 111 places.

Table 8.2 Results of hierarchical clustering for pollution data

Radiation Temperature Wind speed Ozone content H-cluster number

190 67 7.4 41 1

118 72 8 36 2

149 74 12.6 12 2

313 62 11.5 18 1

299 65 8.6 23 1

99 59 13.8 19 2

19 61 20.1 8 3

256 69 9.7 16 1

290 66 9.2 11 1

274 68 10.9 14 1

65 58 13.2 18 3

334 64 11.5 14 1

307 66 12 34 1

78 57 18.4 6 3

322 68 11.5 30 1

44 62 9.7 11 3

8 59 9.7 1 3

320 73 16.6 11 1

25 61 9.7 4 3

92 61 12 32 2

13 67 12 23 3

252 81 14.9 45 1

223 79 5.7 115 1

279 76 7.4 37 1

127 82 9.7 29 2

291 90 13.8 71 1

(continued)
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Table 8.2 (continued)

Radiation Temperature Wind speed Ozone content H-cluster number

323 87 11.5 39 1

148 82 8 23 2

191 77 14.9 21 1

284 72 20.7 37 1

37 65 9.2 20 3

120 73 11.5 12 2

137 76 10.3 13 2

269 84 4 135 4

248 85 9.2 49 1

236 81 9.2 32 1

175 83 4.6 64 1

314 83 10.9 40 1

276 88 5.1 77 1

267 92 6.3 97 1

272 92 5.7 97 1

175 89 7.4 85 1

264 73 14.3 10 1

175 81 14.9 27 1

48 80 14.3 7 3

260 81 6.9 48 1

274 82 10.3 35 1

285 84 6.3 61 1

187 87 5.1 79 1

220 85 11.5 63 1

7 74 6.9 16 3

294 86 8.6 80 1

223 85 8 108 1

81 82 8.6 20 3

82 86 12 52 3

213 88 7.4 82 1

275 86 7.4 50 1

253 83 7.4 64 1

254 81 9.2 59 1

83 81 6.9 39 3

24 81 13.8 9 3

77 82 7.4 16 3

255 89 4 122 4

229 90 10.3 89 1

207 90 8 110 1

(continued)
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Table 8.2 (continued)

Radiation Temperature Wind speed Ozone content H-cluster number

192 86 11.5 44 1

273 82 11.5 28 1

157 80 9.7 65 1

71 77 10.3 22 3

51 79 6.3 59 5

115 76 7.4 23 2

244 78 10.9 31 1

190 78 10.3 44 1

259 77 15.5 21 1

36 72 14.3 9 3

212 79 9.7 45 1

238 81 3.4 168 6

215 86 8 73 1

203 97 9.7 76 1

225 94 2.3 118 1

237 96 6.3 84 1

188 94 6.3 85 1

167 91 6.9 96 1

197 92 5.1 78 1

183 93 2.8 73 1

189 93 4.6 91 1

95 87 7.4 47 3

92 84 15.5 32 3

252 80 10.9 20 1

220 78 10.3 23 1

230 75 10.9 21 1

259 73 9.7 24 1

236 81 14.9 44 1

259 76 15.5 21 1

238 77 6.3 28 1

24 71 10.9 9 3

112 71 11.5 13 2

237 78 6.9 46 1

224 67 13.8 18 1

27 76 10.3 13 3

238 68 10.3 24 1

201 82 8 16 1

238 64 12.6 13 1

14 71 9.2 23 3

(continued)
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Table 8.2 (continued)

Radiation Temperature Wind speed Ozone content H-cluster number

139 81 10.3 36 2

49 69 10.3 7 3

20 63 16.6 14 3

193 70 6.9 30 1

191 75 14.3 14 1

131 76 8 18 2

223 68 11.5 20 1

Fig. 8.1 Dendrogram of pollution data

Number of main clusters: 3

Number Within Average Maximum
of cluster distance distance

observations sum of from from
squares centroid centroid

Cluster1 71 202337.219 48.851 101.003
Cluster2 12 5151.429 18.929 35.732
Cluster3 24 26269.208 30.505 58.654

Cluster Centroids

Variable Cluster1 Cluster2 Cluster3 Grand centroid
Radiatio 240.7606 123.9167 46.6250 184.8018
Temperat 80.1831 73.5833 71.9167 77.7928
Wind spe 9.6577 10.2583 11.5292 9.9387
Ozone Co 49.2535 22.1667 17.7500 42.0991
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The dendrogram of the pollution data is shown below. The centroids of the first
three clusters are widely separated corresponding to all the variables; the 24 places
falling in cluster 3 may be considered to be least polluted, whereas the 71 places
falling in cluster 1 are most polluted (Fig. 8.1).
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