
Chapter 6
Statistical Assessment of Agreement

6.1 General Introduction to Agreement

Researchers have become increasingly aware of the problem of assessing agreement
since more than one and a half century in the past. There are numerous examples
that illustrate these situations, and here we list some of them. In clinical and medical
measurement comparison of a newly developed measurement method with an estab-
lished one, it is often desired to check whether they agree sufficiently and accurately
enough for the new to replace the old. The new method of measurement is most
often cheaper, quicker, and suboptimal; however, it needs a thorough and careful
examination to see if it can effectively replace the old one. In criminal trials, a group
of jurors are used and sentencing depends on the complete agreement among the
jurors. Hotels receive five-star recognition only after several experts and designated
visitors agree on the services and facilities rendered by the hotels. The medals and
ranking in sport games are based on the ratings provided by several judges.

It has now become generally accepted thatmeasurements of agreement are needed
to assess the acceptability of new or generic process, methodology, and formulation
in both science and non-science fields of laboratory performance, instrument or assay
validation, method comparisons, statistical process control, goodness of fit, and indi-
vidual bioequivalence. Examples include the agreement of laboratory measurements
collected through various laboratory instruments, the agreement of a newly devel-
oped method with gold standard method, the agreement of manufacturing process
measurements with specifications, the agreement of observed values with predicted
values, and the agreement in bioavailability of a new or generic formulation with a
commonly used formulation. By the way, measuring agreement has been used very
often to designate the level of agreement between different data-generating sources,
commonly referred to as observers or raters. A rater could be a chemist, a psychol-
ogist, a radiologist, a clinician, a nurse, a rating system, a diagnosis, a treatment, an
instrument, a method, a process, a technique or a formula, to mention a few. Elemen-
tary to advanced statistical methods have been used over time to assess the level of
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agreement between different data-generating sources referred to above as observers
or raters.

Cohen’s Kappa statistic (1960) and weighted Kappa (1968) are the most popular
indices for measuring agreement when the responses are nominal. Weighted Kappa
statistic has been proposed by Landis and Koch (1977), and it is appropriate for
assessing agreement when the categories of response are ordinal. Several authors
have proposed guidelines for the interpretation of kappa statistic. Vide, for example,
Landis and Koch (1977), Fleiss (1981), Bland and Altman (1986), and Kraemer et al.
(2002). A comprehensive review paper is also worth reporting (Banerjee et al. 1999).
Recently, some studies have been undertaken to critically examine certain aspects
of Cohen’s Kappa. These relate to its attaining the negatively extreme value and its
standardization. See Pornpis et al. (2006).

Extensions have also been made to allow for more than two raters, more than two
possible ratings, ordinal data and continuous data. In addition, many other applica-
tions of kappa statistic in a variety of different contexts can be found in the literature.
A reference book in this area is by Eye and Mun (2005). Another book dealing
with both categorical and continuous measurements for multiple raters and multiple
ratings is by Shoukri (2004).

Lin (1989) introduced the concordance correlation coefficient (CCC) for measur-
ing agreement which ismore appropriate when the data aremeasured on a continuous
scale. A weighted CCC was proposed by Chinchilli et al. (1996) for repeated mea-
surement designs and a generalized CCC for continuous and categorical data was
introduced by King and Chinchilli (2001). Lin (2000) also introduced total devia-
tion index (TDI) for measuring individual agreement with applications in laboratory
performance and bioequivalence. Further to this, Lin et al. (2002) proposed meth-
ods for checking the agreement in terms of coverage probability(CP) when the two
measurements are quantitative in nature.

When the study of agreement involves three or more raters on a continuous scale,
there are different approaches to follow. Two most recent references are (i) Barnhart
et al. (2007) and (ii) Lin et al. The authors broadly follow (i) ANOVA and (ii)
modeling approach to examine the extent of agreement. The approach proposed and
studied in Lin et al. (2002) has been extended in Hedayat et al. (2009) for the case
of multiple raters.

We will touch upon some of the techniques developed for study of agreement
involving both types of data.

6.2 Cohen’s Kappa Coefficient and Its Generalizations:
An Exemplary Use

There are many instances of applications of the basic technique for assessing agree-
ment between two raters, in case the subjects are rated according to a binary feature,
to be designated as Yes and No. Cohen’s Kappa (1960) was suggested in the agree-
ment literature with this specific purpose. Generalizations and extensions to other
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contexts were brought in from time to time. We will discuss at length one study
carried out in a hospital in Bangkok [Pornpis et al. (2006)].

Rajavithi Hospital, Bangkok, Thailand houses Thai Screening for Diabetic
Retinopathy Study Group in its Department of Ophthalmology. Three MD doctors
Dr. Paisan Ruamviboonsuk, Dr. Khemawan Teerasuwanajak, and Dr. Kanokwan
Yuttitham carried out a revealing diagnostic study in this specialist eye hospital hav-
ing [in-house and confined to hospital beds] 600+ diabetic patients. All the patients
were under treatment for diabetic retinopathy of different degrees of severity. The
study was based on randomly selected 400/600+ diabetic patients and from each
selected patient, one good single-field digital fundus image was taken with signed
consent and with due approval by Ethical Committee on Research with Human Sub-
jects.

The purpose was to extract information from each image on three major features:
(i) Diabetic Retinopathy Severity [6 options]:
No Retinopathy/Mild/Moderate NPDR/Severe NPDR/PDR/Ungradable;
(ii) Macular Edema [2 options]: Presence/Absence/Ungradable;
(iii) Referral to Ophthalmologists [2 options]: Referrals / Non-Referrals / Uncer-

tain.
These features were extracted by (i) Retina Specialists [3], (ii) General Oph-

thalmologists [3], (iii) Photographers [3] and (iv) Nurses [3]—all engaged in their
respective meaningful professions within the hospital. It thus transpires that alto-
gether 12 raters collected data on each of the 3 features mentioned above and from
each of the 400 images so collected. Therefore, the study group was loaded with
massive amount of data.

The objective of the research study was to examine the extent of agreement within
and between different Expert Groups and to provide adequate interpretation of the
results. It is believed that all the 12 experts/raters examined the images independently
of one another.

As noted from the above, items (ii) and (iii) deal mostly with binary response
[Presence versus Absence or Referral versus Non-Referral] data while item (i) deals
withmulti-response categorical data.Wewill slightlymodify item response for (ii) to
give it a shapeof binary responsedata. It is revealed that thefirst twoRetinaSpecialists
RS1 and RS2 independently counted the respective Presence–Absence responses [in
respect of the Feature: Macular Edema] as: 337 versus 40 and 344 versus 33. This
indeed showed remarkable agreement among them upfront [89 versus 11 percent
and 91–9 percent]! It was too good to be acceptable. The study group wondered
about the validity of the findings and contacted Dr Montip Tiensuwan, Statistics
Faculty, Department of Mathematics, Mahidol University, Bangkok. Dr Tiensuwan
had already studied the literature on Statistical Assessment ofAgreement andworked
with one of the authors of this article [Sinha]. Her collaboration with the Hospital
Study Group was successful, and it eventually resulted in a good journal publication.
We will now elaborate on the major findings of their study.

It is clear that each image was inspected by each of the three RSs, and hence, it
is possible to examine the scope of agreement more closely before deciding on its
extent. As is stated above, RS1 and RS2 largely agreed on classification of patients
into Presence–AbsenceCategoriesw.r.t.Macular Edema. But this only reflectedwhat
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is called marginal nature of binary classification. We are also in a position to check
case by case the nature of agreement or otherwise of RS1 and RS2. For example,
when pairwise ratings given by RS1 and RS2 are considered for each of the 377
patients, we find that

[(Y,Y ) : 326/377; (Y, N ) : 11/377; (N ,Y ) : 18/400; (N , N ) : 22/377]

- the ‘marginal’ totals being [RS1(Y ) : 337/377; RS2(Y ) : 344/377], as was
specified above. It transpires that there are altogether 29/377 = 89 percent cases
of disagreement between the two raters. In effect, therefore, RS1 and RS2 are in
very good agreement. And this Cohen designated as observed agreement, denoted
by θ0. According to Cohen, this is only half of the story and it could as well be due to
what he assigned as chancy agreement! The idea is that two so-called experts could
purely agree by chance—by making assessments independently. Using elementary
probability formula, he computed the contribution from chancy agreement as:

θe = P[Y,Y ] + P[N , N ] = P[Y, .]P[.,Y ] + P[N , .]P[., N ]

by referring to the ‘marginal probabilities.’ According to this formula, for the above
data set, chancy agreement, denoted by θe is computed as 82.50 percent! Cohen then
suggested ‘chance-corrected’ agreement index as

κ = θ0 − θe

1 − θe
.

Computation yields κ = 56 percent which suggests amoderate level of agreement
only. Likewise, it is a routine task to compute κ coefficient between RS1 and RS3
or, between RS2 and RS3. It may be noted that the κ coefficients do not obey any
transitivity law.

This study became instantly famous because of the following special feature. For
any group of 3 Experts [Retina Specialists/General Ophthalmologists/etc/etc], the
purview of the study also captured Consensus Rating [CR] of the raters for each
feature. Thus, for example, in respect of Macular Edema, there was a Consensus
Rating given collectively by the 3 RSs as follows: [Presence: 355/400; Absence:
35/400; Ungradable: 10/400]. Subsequently, κ coefficient was computed for the
RSs as against the CR[RS] one by one.

Also for that matter, we can compute κ values in respect of the feature (iii), by
restricting to the 2 × 2 case of binary response, neglecting the uncertain category.
We will skip the details.

So far as the feature in item (i) is concerned, we need to be careful in assessing
the extent of agreement between any two raters [or between a rater of a category and
the CR of the same category]. This is because we are now dealing with six categories
of response in respect of the status of Diabetic Retinopathy [DR] as mentioned in
(i). Cohen’s original idea of computation of κ, based on θ0 and θe, does not pose any
difficulty anyway. First of all, we can visualize the response count data for a pair of
experts as forming a table of order 6 × 6 with the percentage counts along the main
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diagonal [say, fii/n for the i th category of response] serving as constituents of θ0. By
the same token, products of percentage counts [based on the notion of independence]
such as ( fi,./n)( f.,i/n) will add up to the computation for θe. Then the formula for
κ can be routinely applied. This was done and sooner or later, it drew criticism! We
will take up the data set for RS1 versus RS2 and examine the matter below.

We will follow the codes: Code I - No Retinopathy; Code I I - Mild; Code I I I -
Moderate NDPR; Code I V Severe NPDR; Code V PDR and Code V I : Ungradable.

Along the main diagonal, the percentage of observed agreement θ0 amounts to
80.50 percent. Further, direct computation yields for θe = 48.60 percent. Hence,
κ = 62 percent a very moderate level of agreement. The criticism has been based on
the following arguments: Pairwise categories

[(Code I,Code I I ), (Code I I,Code I ), (Code I I,Code I I I ), (Code I I I,Code I I )etcetc]

represent what may be termed as ‘narrowly missed’ cases. Cohen’s κ does not take
cognizance of these narrowlymissed cases/classes and attributes no creditwhatsoever
to the raters. It is argued that one should make a case of allowing for partial credits
to be attributed to such and similar categories. In contrast to Cohen’s original κ—
termed henceforth as Unweighted κ—weights were assigned to all the categories
and κ was modified to Weighted κ, written as κ(W ). It is computed along similar
lines as

κ(W ) = (θ(W )0 − θ(W )e)/(1 − θ(W )e)

where fi jWi j s are used in the computation of θ(W )0 and fi. f. jWi j s are used in
the computation of θ(W )e. The choice of the weight matrix W = ((Wij)) has not
been any smooth matter. Reasonable and acceptable choice of the weight matrix of
dimension R have the elements Wi j = 1 − (i − j)2/(R − 1)2.

Weighted κ statistics were calculated for pairs of raters, including comparison
against the CR in respect of all the three features listed in (i), (ii), and (iii). The
results are shown in the Appendix.

This study also covered another important aspect of comparisonof expertise across
different specialist groups. In the published literature, there are formulae available
to account for this kind of comparison. Applied to this case, a measure of composite
performance of 3 Retina Specialists/3 Ophthalmologists/3 Technicians/3 Nurses for
each of the 3 features was computed. For example, for DR, it was revealed that
composite performance indices are

RS − 0.58; Oph. − 0.36; T ech. − 0.37, Nurses − 0.26.

Likewise, for Macular Edema, the values are: [0.58, 0.19, 0.38, 0.20] and for Refer-
ral, these are: [0.63, 0.24.0.30, 0.20].

It transpired that except for the Retina Specialists, no other categories of so-called
experts showed any visible mode of agreement in any of the features. Of all 400
cases, 44 warranted Referral to Ophthalmologists due to Retinopathy Severity and
5 warranted Referral to Ophthalmologists due to uncertainty in diagnosis. Fourth
Retina Specialist carried out dilated fundus examination of these 44 patients, and
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substantial agreement [κ = 0.68]was noticed forDRseverity examination confirmed
Referral of 38/44 cases.

In conclusion, it is stated that Retina Specialists are all in active clinical practice
and hence are most reliable for digital image interpretation of images. Individual
Raters’ background and experience play roles in digital image interpretation exper-
tise. Unusually, high percentage of images were declared as ungradable by nonphysi-
cian raters, though only 5 out of 400 were declared as ungradable by consensus of
the Retina Specialists Group. Lack of confidence of non-physicians, rather than true
image ambiguity, is likely to be a realistic reason for this. For this study, other factors
[blood pressure, blood sugar, cholesterol, etc.] had not been taken into account.

6.3 Assessment of Agreement in Case of Quantitative
Responses

In this section, we focus on the feature of agreement involving data for two competing
ratersmeasured on a continuous scale. There are several usual approaches for evaluat-
ing agreement for such paired data such as Pearson correlation coefficient, regression
analysis, paired t-tests, least-squares analysis for slope and intercept, within subject
coefficient of variation, and intra-class correlation coefficient.

The concordance correlation coefficient (CCC) was first proposed by Lin (1989)
for assessment of agreement in continuous data. It represents a breakthrough in
assessing agreement between two raters for continuous data in that it appears to
avoid all the shortcomings associated with usual approaches in some situations. In
short, Lin (1989) expresses the degree of concordance between two variables X and
Y by the Mean Squared Deviation (MSD), E(X − Y )2 and defines the CCC as

ρc = 1 − E(Y − X)2

EIndep(Y − X)2
= 2σxy

σ2
x + σ2

y + (μx − μy)2
(6.3.1)

where EIndep(.) represents expectation under the assumption of independence of X
and Y , μx = E(X), μy = E(Y), σ2

x = Var(X), σ2
y = Var(Y), and σxy = Cov(X,Y) =

ρσxσy .
It is readily seen that ρc can be expressed as

ρc = ρ × 2σ1σ2

(μx − μy)2 + (σ2
x + σ2

y)

Further to this, it follows that

ρc = 1 i f and only i f [ρ = 1,μx = μy;σx = σy].

Lin (1989) estimates this CCC [ρc]with data by substituting the sample moments
of bivariate sample into above formula to compute the sample counterpart of CCC
(ρc). The CCC translates the MSD into a correlation coefficient that measures the
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agreement along the identity line. It has the properties of a correlation coefficient in
that it ranges between −1 and +1, with −1 indicating perfect reversed agreement
(Y = −X), 0 indicating no agreement, and +1 indicating perfect agreement (Y =
X). Lin et al. (2002) gave a review and comparison of various measures, including
the CCC, of developments in this field by comparing the powers of the tests:

(1) μx = μy , (2) σx = σy , and (3) ρ = ρ0, where ρ0 is a given value, assumed to
be substantially high.

Their calculation is illustrated using a real data example. This work was further
extended in Hedayat et al. (2009) involving multiple raters. In another direction,
Yimprayoon et al. (2006) extended the work of Lin et al. (2002) by combining
the problems of testing for μx = μy , σx = σy , and ρ ≥ ρ0 into one overall testing
problem under bivariate normal setup and then they presented the result based on
simulation study.

An intuitively clear measurement of agreement is a measure that captures a large
proportion of data within a predetermined boundary from the line of agreement, i.e.,
X = Y . In other words, we want the probability of the absolute value of D = Y − X
less than the specified boundary, k, to be large. This probability is termed in the
literature as coverage probability (CP) (cf. (Lin et al. 2002)), and it is defined as

CP(k) = P[|D| < k], (6.3.2)

where X and Y denote random variables representing paired observations for assess-
ing the agreement. It is generally assumed that X and Y have a bivariate normal
distribution with means μx and μy , variances σ2

x and σ2
y and correlation coefficient

ρ so that the covariance of X and Y is σxy = ρσxσy .
The multiparameter hypothesis involving (6.3.1), (6.3.2), and (6.3.3) displayed

above is too demanding for agreement between the two raters. Therefore, a more
appropriate and plausible null hypothesis can be formulated as

H0 : |μx − μy | ≥ ε0,
σx

σy
or

σy

σx
≥ η0, ρ ≤ ρ0 (6.3.3)

where ε0 is close to zero and η0 and ρ0 are close to unity—all are assumed to be
specified. A large sample test [known as Likelihood Ratio Test] of this hypothesis
has been worked out in Dutta and Sinha (2013).
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