
Chapter 2
Randomized Response Techniques

2.1 Introduction

Almost half a century back, randomized response technique/methodology
[RRT/RRM] was first introduced and popularized by Warner. The idea is to be able
to elicit a truthful response on sensitive issues(s) from the sampled respondents, so
that eventually reliable estimates of some of their feature(s) can be estimated for the
population as a whole. Since then, survey theoreticians and survey practitioners have
contributed significantly in this area of survey methodological research.

Warner (1965) introduced an ingenious device to gather reliable data relating to
such issues that may attach unethical stigmas in a civilized society. Therefore, direct
questionnaire method is likely to result in refusal/denial or occasionally masked
untruthful response. In the context of a society, issues such as abortions, spouse-
mishandling, finding HIV tests positive, underreporting income tax returns, false
claims for social benefits may have sensitive/unethical stigmas attached. People gen-
erally tend to hide public revelations of such vices.

In such circumstances, Warner suggested a way to avoid attempting to collect
direct responses (DRs) from the selected respondents—either individually or in
groups. Instead, he recommended implementation of what is termed as random-
ized response technique (RRT) in order to collect information from each sampled
respondent when a stigmatizing issue is under contemplation in a study.

There is a huge amount of the published literature in this area of applied research.
We refer to an excellent expository early book on RRT by Chaudhuri and Mukerjee
(1988). Hedayat and Sinha (1991), Chap.11, also provides a fairly complete account
of RRTs. Twomost recent books (Chaudhuri 2011; Chaudhuri andChristofides 2013)
are worth mentioning as well.
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2.2 Warner’s Randomized Response Technique [RRT]

To fix ideas, we consider sampling of individuals from a reference survey population
in order to estimate the population proportion of a specific feature such as false
claims for social benefits which is likely to be stigmatizing in nature. Therefore,
direct questionnaire procedure is likely to be ruled out. In this context,Warner (1965)
suggested the following approach.

Note that we are addressing the issue of eliciting truthful information on a sen-
sitive qualitative feature [SQlF], with exactly one of the binary responses [yes/no]
attached to each individual in the population, and we are interested in estimation of
the population proportion P of ‘yes’ response(s) based on our study of the sampled
respondents. The problem is to provide (i) amethod of ascertaining truthful responses
from the respondents facing the SQlF in the surveyed population and (ii) (unbiased)
estimator of P. Generally, simple random sampling with replacement of respondents
from the reference population [presumably large] is contemplated.

With reference to a single SQlF, its possession [yes]will be denoted by the attribute
Q and its non-possession [no] will be denoted by the negation of Q, that is, Q̄.
The simplest related question technique of Warner (1965) refers to preparation of
two identical and indistinguishable decks of cards with known multiple but unequal
number of copies of both. One set [Set I] will have the instruction on the back of each
card: Answer Q truthfully. Naturally, the truthful response should be ‘yes’ in case
the respondent possesses the attribute Q and ‘no’ otherwise. The other set [Set II]
deals with the instruction: Answer Q̄ truthfully. This time a response of ‘yes’ would
mean the respondent does not possess Q; otherwise, the response is ‘no’ implying
that the respondent does possess Q. We may denote by p the known proportion of
cards of Q category so that 1 − p is the proportion of cards of Q̄ category. A general
instruction is given to all respondents: Each respondent is to select one card at random
and with replacement out of the full deck and act as per the instruction given at the
back of the selected card. The respondents are supposed to report only the yes/no
answers—without divulging what kind of card had been selected by them. Naturally,
this randomization device of selection of a card ensures that a respondent can make a
choice ofQwith probability p or a choice of Q̄with probability 1 − p, 0 < p �= 0.5 <

1, being known beforehand. It is believed that this randomization mechanism will
convince the respondent about retaining the confidentiality of the response [yes/no]
provided by him/her, without disclosing the choice of the card bearing the labelQ or
Q̄ to the interviewer! In otherwords, the investigator is not to be told about the specific
question chosen/answered by the respondent. For obvious reason, this method is also
known asmirrored question design. See Blair et al. (2015) for descriptions of this and
a few more RRMs. Routine formulae are there to work out the details of estimation,
etc., in this and various other complicated randomization frameworks. In this simple
randomized response framework, we proceed as follows toward unbiased estimation
of P:

Note that a ‘yes’ answer has two sources: choice of one card from Set I, followed
by ‘yes’ response, or choice of one card from Set II, followed by ‘yes’ response.
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Therefore, P[yes] = pP + (1 − p)(1 − P) = P(2p − 1) + (1 − p). This we equate
to the sample proportion of ‘yes’ responses among the total number of responses.

If there are n respondents and out of them, eventually, some f of them report ‘yes,’
then we have the defining equation:

f /n = P(2p − 1) + (1 − p)

whence

P̂ = f /n − (1 − p)

2p − 1
.

It is seen from the above why we need the condition: p �= 0.5. It follows that

(i)V (P̂) = P(1 − P)/n + p(1 − p)/n(2p − 1)2

(ii)V̂ = p(1 − p)/n(2p − 1)2

+ [(1 − p)2 + P̂(2p − 1) − f ( f − 1)/n(n − 1)]/n(2p − 1)2.

This last expression, when square-rooted, gives what is known as the estimated
standard error (s.e.) of P̂.

Remark 2.1 The above results are based on the fact that f follows binomial distribu-
tion with parameters (n, θ) where n is the sample size [number of respondents] and
θ = P(2p − 1) + (1 − p), being the probability of ‘yes’ response by a respondent
under the RRM in use. It is known that f /n serves as an unbiased estimate for θ
and f ( f − 1)/n(n − 1) serves as an unbiased estimate for θ2. The rest are simple
algebraic manipulations. We will refer to this method as RRM1.

Illustrative Example 2.1 We choose n = 120 and p = 0.40. Suppose the survey
yields f = 57. This suggests

P̂ = [57/120 − 0.60]/[−0.20] = 0.625; s.e.
(P̂) = √

24/48 + [.36 − .125 − .2235]/48 = 0.0724.

Remark 2.2 Use of both versions [affirmative and negative] of the sensitive question
Q may, at times, lead to confusion among the respondents. This was soon realized,
and the RRT was accordingly modified by introducing what is called unrelated ques-
tionnaire method. We will designate this method as RRM2. This is described below.

Once again, we are in the framework of eliciting truthful response on the sensitive
question Q but using a modified version of the RRT described above. This time,
again, we form two sets of cards, and for the Set I, we keep the same instruction on
the back of each card. For Set II, we rephrase the instruction by introducing a simple-
minded question like: Were you born in the first quarter of a year? This question is
denoted by the symbolQ∗ so that it also has two forms of the true reply: ‘yes’ for the
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affirmative reply and ‘no’ for its negation. When this RRT of eliciting response is
executed, the chance of a ‘yes’ response is given by: pP + (1 − p)/4. This is because
in a random sample of respondents about 1/4th are likely to have been born in the
first quarter of a year. As in the above, this is equated to the sample proportion of
‘yes’ responses, i.e., f /n, and thereby, we obtain P̂ = [ f /n − (1 − p)/4]/p. It is a
routine task to work out V (P̂), and this is given below:

V (P̂) = (1 − p + 4pP)(3 + p − 4pP)/16np2

= [(1 − p)(3 + p) + 8p(1 + p)P − 16p2P2]/16np2.

To compute V̂ (P̂), in the above expression,we have to replaceP by P̂which is already
shown above. Further, also we need to replace P2 in the above by an expression to
be derived from the defining equation:

f ( f − 1)/n(n − 1) = [ pP + (1 − p)/4]2

upon expansion of the RHS expression and replacement of P by P̂ derived earlier.
Once estimated variance estimate is obtained, we compute s.e. of the estimate by
taking the square root of the above quantity. Note that this time the distribution of f
is binomial with parameters (n, η = pP + (1 − p)/4).

Illustrative Example 2.2 We choose n = 120 and p = 0.40. Suppose survey yields
f = 57. This suggests

P̂ = [57/120 − 0.15]/[0.40] = 0.8125.
Estimating equation for P̂2 is given by

0.2235 = p2P2 + p(1 − p)P/2 + (1 − p)2/16 = 0.16P2 + 0.0975 + 0.0225;
0.1035 = 0.16P2; P̂2 = 0.6469.

V̂ (P̂) = [2.04 + 1.56 − 1.6560]/307.2 = 0.0063; s.e. = 0.0795.

Remark 2.3 In the above and in many such similar contexts, use of stack of cards
of different colors can be conveniently replaced by use of spinner wheels marked
with different colors in different parts. Thus, for example, red color may occupy 40
percent of the area in the wheel. Naturally, we are referring to the back side of the
wheel for coloring purposes. This should be understood, and we will not dwell with
this version of the randomization.
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2.3 Generalizations of RRMs

We now introduce several generalizations of the above RRMs—these are dictated
by real-life applications. Always, the idea is to provide increased and perceived
protection to the respondents from the perspective of protecting their confidentiality.
In RRM2,we replaced Q̄ by a completely simple-minded questionwhich had nothing
to do with the stigmatizing question Q. It was at times felt that this might still throw
some doubt in the minds of the respondents. It is advisable that we utilize a question
in the Set II which is not too far removed from Q which was taken to be false claims
for social benefits. What about using ‘My family makes 2 or more out-of-state trips
on an average every year’ whose affirmative version we may denote by Q∗ while
the negation is denoted by Q̄∗? This may not be totally stigmatizing in nature, and
the respondents may not feel like either abstaining or giving a wrong answer if a
card from Set II is actually selected in the randomization process. However, the true
proportion of respondents (in the population as a whole) belonging to the category of
Q∗ may not be known beforehand. That simplymeans that this time f will still follow
binomial distribution with parameters (n, η) where η = pP + (1 − p)P∗ where P∗
stands for the chance ofQ∗, the affirmative version of the choice placed in the cards of
Set II. Therefore, we may still develop the defining equation f /n = pP + (1 − p)P∗.
Whereas in the cases of RRM1 and RRM2, in this kind of equation, P was the only
unknown proportion to be estimated, this time we have two unknowns, viz., P and
P∗. Therefore, we need one more equation involving these two unknown parameters.
This calls for the following RRM3.

We divide thewhole collection of respondents into two equal/almost equal groups,
say of sizes n1 and n2. For Group I, we collect information by using a version of
RRM2, viz., by replacing the question related to birth by the question related to Q∗
on family trips. This results in the pair ( f 1, n1) upon implementation. For notational
simplicity and for ease of making generalizations, we use p1 for p. Therefore, f 1 is
distributed as binomial (n1, η1 where η1 = p1P + (1 − p1)P∗. Likewise, for Group
II, based on the data of the form ( f 2, n2), from the cards drawn from Set II, it turns
out that f 2 is binomial with parameters (n2, η2) where η2 = p2P + (1 − p2)P∗.
Note that η1 and η2 are, respectively, the proportions of cards in the two Sets I and
II bearing the affirmative versions of Q and Q∗, respectively.

We have generated two equations, viz.,

f 1/n1 = η1 = p1P + (1 − p1)P∗ : f 2/n2 = η2 = p2P + (1 − p2)P∗.

From the above, we may easily solve the primary parameter P [as well as the other
parameter P∗].

The solutions are linear functions of the sample proportions f 1/n1 and f 2/n2.
Therefore, we can work out variance estimates and estimated variances in a routine
manner. It must be noted that the solutions exist only when our choice is such that
p1 �= p2.
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Illustrative Example 2.3 We choose n1 = n2 = 120 and p1 = 0.40 and p2 =
0.60. Suppose survey yields f 1 = 57 and f 2 = 75. This leads to the equations:

57/120 = 0.40P + 0.60P∗; 75/120 = 0.60P + 0.40P∗.

Therefore, the estimates for P and P∗ are 0.925 and 0.175, respectively. Before
proceeding further with other approaches/methods, we will digress for a moment to
discuss a source of non-response and its follow-up studies.

2.4 Not-at-Homes: Source of Non-response

While extracting information through a direct response survey on some features
[qualitative or quantitative] from the respondents in a survey population, it is gener-
ally believed that there would be cooperation from the respondents—at least when
the features are non-sensitive in nature. Of course, for sensitive features, we need to
develop RRTs. However, there are instances where we encounter non-response for
various reasons evenwhen the features are non-evasive in nature. One of such sources
is attributed to ‘Not-at-homes.’ Survey sampling researchers attempted to study this
phenomenon. Notable contributors are: Yates (1946), Hansen and Hurwitz (1946),
Hartley (1946), Politz and Simmons (1949), and Deming (1953). Their studies were
essentially geared toward regular features of the survey questions. The technique for
extraction of ‘response’ is known as Hartley–Politz–Simmons technique.

Much later, Rao (2014) considered the case of handling situations, wherein it is
unlikely for a respondent to reveal truthful answer(s) even when it is non-sensitive
in nature. It was followed up by yet another follow-up paper by Rao et al. (2016).
We will not elaborate on this issue further.

2.5 RRMs—Further Generalizations

Following Blair et al. (2015), we will now briefly discuss two more generalizations
of the basic RRM.

(i) Forced Response Designs [FRD]: This RRM incorporates a forced response of
yes as well as a forced response of no. The idea is to label forced yes (no) to the
outcome 1(6), while for any other outcome of the throw of a regular [unbiased]
six-faced die the respondent is supposed to give truthful response in terms of
yes/no for possession of the sensitive stigmatizing feature. Thus eventually, we
have only yes or no response from each respondent.

(ii) Disguised Response Design [DRD]: The yes response to the sensitive feature is
meant to be identified as the YES Stack of black and red cards. Likewise, the no
response to the sensitive feature is to be identified as the NO Stack of black and
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red cards. Total number of cards is the same for both types of stacks. Further, ifwe
have 80 percent red cards inYESStack, thenwemust have 20 percent red cards in
the NO Stack. This may be arbitrary but must be predetermined and be the same
for all respondents. Every respondent is supposed to truthfully implement his
choice of the correct stack by referring to the sensitive stigmatizing feature under
study. Once this is done, he/she is supposed to draw a card at random from the
correctly selected stack and only disclose the color of the card drawn—without
any mention of the stack identified. Whether the respondent belongs to yes/no
category [in respect of the feature under study] is his/her truthful confession to
himself/herself.

Illustrative Example 2.4 Here, we discuss about FRD. We take n = 300, and sup-
pose after implementation of the FRD, we obtain: yes count = 180 and no count
= 120. Let P be the true proportion of persons possessing the sensitive feature in
the population. Then, the chance of yes response from a respondent is given by
1/6 + 4P/6 and we equate this to the sample proportion = 180/300. This yields
P̂ = 0.65. Further, it can be shown that

V̂ (P̂) = 9[ f (n − f )/n2(n − 1)]/4 = 0.0018,

upon simplification. Hence, s.e. of the estimate = 0.0424.

Illustrative Example 2.5 We take upDRDnow.We startwithn = 300 respondents,
and suppose, upon implementation of theDRD,we obtain: red count= 180 and black
count = 120. Let P be the true proportion of persons possessing the sensitive feature
in the population. Then, the chance of red card being drawn is given by 0.8P +
0.2(1 − P) = 0.2 + 0.6P. We equate this to the sample proportion = 180/300. This
yields P̂ = 0.6667. Further,

V̂ (P̂) = 25[ f (n − f )/n2(n − 1)]/9 = 0.0021,

upon simplification. Hence, s.e. of the estimate 0.0458.

2.6 RRMs for Two Independent Stigmatizing Features

In case there are two or more sensitive qualitative features of a population to be stud-
ied, one can always study them separately. However, a joint study makes more sense
since less effort will be spent to capture incidence. The RRM2 discussed above can
be conveniently generalized to cover this situation. In the deck of cards, we accom-
modate cards of three different colors: black, red, and yellow. Black [red/yellow]
cards read: Answer Q1 [Q2/Q3] truthfully where Q1 refers to SQlF1: underreport-
ing income tax returns; Q2 refers to SQlF2: false claims for social benefits; and Q3
refers to a simple-minded innocent statement like on an averagemy familymakes 2 or
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more out-of-state trips per year. All the three questions seek truthful binary response:
yes/no. We presume that apart from the unknown proportions P1,P2 referring to
chances of underreporting of IT returns and making false claims for social benefits,
respectively, the other parameter P3 referring to asserting the statement about family
trips is also unknown [and, may be incidentally estimated]. Thus, we are in the frame-
work of three unknown parameters, and hence, we need three different [technically
called linearly independent] estimating equations. We proceed by dividing the total
number of respondents into three equal/almost equal groups. Also, we need three
sets of cards with three different proportions of color compositions.

Illustrative Example 2.6 We start with n = 301, n1 = n2 = 100, n3 = 101. Fur-
ther, color distribution of the cards in the three sets is taken as

Set I : B : R : Y : : 25, 30, and 45 percents;
Set II : B : R : Y : : 30, 45, and 25 percents;
Set III : B : R : Y : : 45, 25, and 30 percents.

Each respondent from Group I will pick up a card at random from Set I and will
only communicate the truthful answer: yes/no—without divulging the color of the
card drawn. Likewise, for respondents from the other two groups, same conditions
apply. Suppose the proportions of yes answers are: 55/100, 43/100, and 51/101. Then,
the defining equations are:

0.55 = 0.25P1 + 0.30P2 + 0.45P3; 0.43 = 0.30P1 + 0.45P2 + 0.25P3;

0.52 = 0.45P1 + 0.25P2 + 0.0.30P3.

From the above, we derive the estimates as

P̂1 = 0.5155; P̂2 = 0.1454; P̂3 = 0.8385.

Remark 2.4 In the above example, it is tacitly assumed that the two sensitive fea-
tures are independently distributed over the reference population. Otherwise, the two
should be jointly studied in terms of 2 × 2 classification: [(Yes, Yes), (Yes, No), (No,
Yes), (No, No)]. This and much more are discussed in the published literature. See,
for example, Hedayat and Sinha (1991).

2.7 Toward Perception of Increased Protection
of Confidentiality

Since the introduction of RRT, survey sampling practitioners/theoreticians have paid
due attention to this area of survey methodological research. As has been mentioned,
the purpose is to be able to elicit a truthful response on sensitive feature(s) from the
sampled respondents, so that eventually the population proportion of incidence of
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the sensitive feature can be unbiasedly estimated. Toward this, a novel technique was
introduced by Raghavarao and Federer (1979) and it was termed block total response
[BTR] technique. A precursor to this study was undertaken by Smith et al. (1974).
We propose to discuss the basic BTR technique with an illustrative example.

As usual, we start with one SQlF, sayQ [with an unknown incidence proportion P
to be estimated from the survey] and along with it we also consider a collection of 8
RQlFs [Q1,Q2, . . . ,Q8] which are simple-minded and yet binary response queries.
We thus have a total collection of nine QlFs, including the SQlF. The steps to be
followed are:

(i) We prepare several blocks of questions, i.e., a questionnaire involving, say some
4 of the RQlFs and the SQlF in each block. The only condition to be satisfied in
the formation of the blocks is that each RQlF must appear the same number of
times in the entire collection of blocks. Additionally, we also prepare a Master
Block Bl∗ : [Q1,Q2, . . . ,Q8] comprising of all the RQlFs.
For example, we may choose

Bl 1 : [Q1,Q2,Q4,Q6;Q];Bl 2 : [Q1,Q3,Q6,Q7;Q],

Bl 3 : [Q2,Q3,Q5,Q8;Q];Bl 4 : [Q4,Q5,Q7,Q8;Q].

(ii) Since we have a total of five blocks, we need five groups of respondents. The
first four groups for dealing with blocks Bl 1 − Bl 4 are assumed to have the
same size, say 50 each. In addition, we will go for some 30 respondents, for
example, for the block Bl∗. So, we are dealing with a collection of say 230
respondents—randomly divided into these five groups.

(iii) Each member of the first group of respondents is exposed to the questions
contained inBl 1, and he/she is told to respond truthfully to each of the RQlFs as
also to theQ. However, he/she is supposed to report/divulge only the block total
response [BTR]—the total score in terms of yes responses. This is continued
for all other blocks as also for the Master Block Bl∗.

(iv) The above completes the survey aspect of the BTR technique. Suppose we end
up with the following summary data in terms of average score in each block
per respondent:

Bl 1 : 0.285;Bl 2 : 0.354;Bl 3 : 0.328;Bl 4 : 0.396;Bl∗ : 0.395.

(v) An estimate of the incidence proportion P of the SQlF is given by the compu-
tational formula:

(a) Sum of average scores in the first four blocks = 1.363, and this is equated
to [2∑

Pi + 4P]/5.
(b) The average score of 0.395 in the last block is equated to

∑
Pi/8.

(c) From the above, P̂ = [5 × 1.363 − 2 × 8 × 0.395]/4 = 0.324.
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Remark 2.5 The above illustration arises out of a very general approach toward BTR
technique. Naturally, once a respondent is told to provide only the BTR without
divulging any kind of details as to the nature of individual responses, the investigator
may be assured of increased cooperation from the respondents. This basic BTR
technique has been extended further with an aim to provide enhanced protection of
privacy to the respondents. The details may be found in Nandy et al. (2016) and
Sinha (2017).

2.8 Confidentiality Protection in the Study of Quantitative
Features

Consider a situation wherein we are dealing with a finite [labeled] population of
size N and there is a sensitive qualitative study variable Y for which the ‘true’
values are Y1,Y2, . . . ,YN for the units in their respective orders. To start with, these
values are unknown and we want to unbiasedly estimate the finite population mean
Ȳ = ∑

i Yi/N .
We may adopt SRSWOR(N , n) or any other suitably defined fixed size (n) sam-

pling design and draw a random sample of n respondents. Had the study variable
been non-sensitive in nature, we could take recourse to ‘direct questioning’ involv-
ing the sampled respondents. In a very general setup, we may make use of the
Horvitz–Thompson estimate [HTE, for short]. It simplifies ȳ when SRSWOR(N , n)
is adopted. However, we are dealing with a sensitive characteristic [such as ‘income
accrued through illegal profession’] and we need to use a suitably defined RRT. Here,
we propose an RRT for this purpose.

Assume that the true Y -values are completely covered by a pool of K known
quantities like M1,M2, . . . ,MK . The set of M -values may even comprise a larger
set. Therefore, in effect, we are assuming that the N population values are discrete
in nature.

We choose a small fraction δ and proceed to deploy RRT as is explained in the
following example with K = 10 and δ = 0.2.

We prepare 25 identical cards, and at the back of the cards we give instructions:
For each of five cards, it reads at the back: ‘Report your true income accrued through
illegal profession.’ For the rest of the 20 cards, we use them in pairs, and for the ith
pair, it reads at the back of both the cards: ‘Report Mi’; i = 1, 2, . . . , 10.

Each respondent chooses a card at random out of the 25 cards, reads out the back
side, and acts accordingly. We assume that the respondents act honestly and provide
‘truthful’ figure—no matter which card is chosen—without disclosing in any way
the nature of the card.

Note that the chance of choosing a card with marking as ‘Report your true
income. . .’ is 5/25 = 0.20 which coincides with the chosen value of δ. On the
other hand, chance of picking up a card corresponding to any specified value Mi

is 2/25 = 0.08 which is equal to (1 − δ)/K .
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Using the notations δ andK , for the chosen sample of n respondents, we have thus
collected the responses to be denoted by R1,R2, . . . ,Rn. Each response is random in
nature and

E(Ri) = δYi + (1 − δ)M̄ (2.8.1)

where M̄ = ∑
i Mi/K and Yi is the true [unknown] response of the ith sampled

respondent. From this, it follows that Yi can be unbiasedly estimated as

Ŷi = [Ri − (1 − δ)M̄ ]/δ. (2.8.2)

Hence, an unbiased estimate for the finite population mean, based on estimates of
Yi’s, is obtained by referring to HTE in general and to the sample mean of estimated
Y ’s in case SRSWOR has been implemented during sample selection. The proof of
this claim rests on the formula: E = E1E2. Therefore,

ˆ̄Y =
∑

i

Ŷi/n. (2.8.3)

In the above, for K = 10 and δ = 0.2, Ŷi = [5Ri − 4M̄ ] and hence ˆ̄Y = 5R̄ − 4M̄
is the estimate of population mean, under SRSWOR sampling. Here, R̄ refers to the
sample mean of the sampled R’s and M̄ refers to the mean of the given M ’s.

Remark 2.6 Itmaybenoted that in the above it is tacitly assumed that eachYi matches
with one of the given values Mi’s. However, no sampled respondent is supposed to
divulge which M -value matched his/her true value of Y .

Below, we proceed to work out a formula for the estimated standard error [s.e.]
of the estimate of the population mean based on the above procedure. In addition to
E(Ri) displayed in (2.8.1), we have

E(R2
i ) = δY 2

i + (1 − δ)Q̄M (2.8.4)

where Q̄M = ∑
i M

2
i /K is the mean of squares of theM -values.

These suggest

V (Ri) = δ(1 − δ)Y 2
i + (1 − δ)[Q̄M − (1 − δ)M̄ 2] − 2δ(1 − δ)YiM̄ . (2.8.5)

From (2.8.4), it follows that

Ŷ 2
i = [R2

i − (1 − δ)Q̄M ]/δ (2.8.6)

Using (2.8.6), we may deduce that
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V̂ (Ri) = (1 − δ)[R2
i − (1 − δ)Q̄M ]+

(1 − δ)[Q̄M − (1 − δ)M̄ 2] − 2(1 − δ)M̄ [Ri − (1 − δ)M̄ ] (2.8.7)

which simplifies to

(1 − δ)[Ri − M̄ ]2 + δ(1 − δ)[Q̄M − M̄ 2] (2.8.8)

We now proceed to work out estimated standard error for the estimate of the finite
population mean under SRSWOR(N , n). Clearly, under SRSWOR(N , n),

ˆ̄Y =
∑

i

Ŷi/n; Ŷi = [Ri − M̄ (1 − δ)]/δ (2.8.9)

Moreover,

V [ ˆ̄Y ] = V1E2 + E1V2 (2.8.10)

Note that

V1E2 = V1

(
∑

i

Yi/n

)

= (1/n − 1/N )S2
Y (2.8.11)

whereS2
Y refers to the populationvarianceofY -valueswith divisorN − 1.To estimate

this, we usually employ the sample counterpart of S2
Y , viz., s

2
Y = sumi(Yi − Ȳ )2/

(n − 1). Here, of course, Yi’s are unknown and are being estimated in terms of the
R’s by an application of RRT. The expression for s2Y involves square terms, i.e., Y 2

i ’s
and cross-product terms, i.e., YiYj’s. From (2.8.6), we deduce expressions for Ŷ 2

i ’s.
Since the respondents act independently, estimates of the product terms YiYj’s are
also derived by the product of terms of the form (2.8.4). This takes care of estimate
for V1E2 term.

Next, note that for every sampled respondent such as the ith, V2 refers to variance
of Ŷi. From (2.8.4), it follows that V (Ŷi) = V (Ri)/δ

2. From (2.8.7), we readily have
an expression for estimate of V (Ri). Therefore,

Ê1V2 =
∑

i

V̂ (Ŷi)/n
2 =

∑

i

V̂ (Ri)/n
2δ2 (2.8.12)

Illustrative Example 2.7 As before, we take K = 10 and δ = 0.2. Let our choice
ofM ’s be [expressed in units of thousand rupees]: 1, 2, . . . , 10. We consider a small
population and adopt SRSWOR(N = 20, n = 5). Let the sampled R’s [as per the
respondents’ reporting] be: 3, 7, 4, 8, 5, that is our data. We show the necessary
computations below.
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Example 2.7 : Computational details

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R − values Y − estimates Y 2 − estimates
3 −7 −109
4 −2 −74
5 3 −29
7 13 91
8 18 166

Total 25 45

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

From (2.8.4), we obtain an estimate of the populationmean of Y -values as the sample
mean computed as Rs. 25/5 = 5 thousand. To compute estimated s.e. of the estimate,
we proceed as follows:

From the discussion below (2.8.11), it follows that an estimate of V1E2 is given
by (1/n − 1/N ) times an unbiased estimate of s2Y based on the computations in
Example2.7 above. Since s2Y = [(n − 1)

∑
i Y

2
i − ∑ ∑

inej YiYj]/n(n − 1)], we do
term by term estimation by using relevant square terms and product terms from
Example2.7. This yields:

ŝ2Y = [4 × 45 − 80]/20 = 5 and hence, an unbiased estimate of V1E2 is given by
(1/5 − 1/20) × 5 = 3/4 = 0.75.

For the other term, viz.,E1V2, an unbiased estimate is to be computed from (2.8.12)
in combination with (2.8.7). For the computations, note that Q̄M = 38.5. In (2.8.7),

Term 1[with positive sign]:

V̂ (Ri) = (1 − δ)[R2
i − (1 − δ)Q̄M ] = 0.8[R2

i − 30.8]

Term 2 [with positive sign]:

(1 − δ)[Q̄M − (1 − δ)M̄ 2] = 14.3

Term 3 [with negative sign]

2(1 − δ)M̄ [Ri − (1 − δ)M̄ ] = 8.8[Ri − 4.4]

Example 2.7 : Computational details

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R − values Term 1 = 0.8[R2i − 30.8] Term 2 = 14.3 Term 3 = 8.8[Ri − 4.4]
3 −17.44 14.3 −12.32
4 −11.84 14.3 −3.52
5 −4.64 14.3 5.28
7 14.56 14.3 22.88
8 26.56 14.3 31.68

Total 7.20 71.5 44.00

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Therefore, unbiased estimate of E1V2 is computed as [7.20 + 71.50 − 44.00]/16 =
34.70. Finally, adding the two components, an unbiased estimate of the variance =
0.75 + 34.70 = 35.45 so that estimated s.e. = √

(35.45) = 5.95.

Remark 2.7 In a similar study, Bose (2015) took up the case of SRSWR(N , n) and
derived expression for the estimate of the population mean and an expression for its
variance. The above study is quite general in nature and applies to any fixed size (n)
sampling design.

Remark 2.8 The BTR technique discussed in the context of sensitive qualitative fea-
ture canbe extended to the case of sensitive quantitative feature—without the assump-
tion of ‘closure’ w.r.t. a given set of known quantities such as [M1,M2, . . . ,MK ].
This has been taken up recently in Nandy and Sinha (2018). We omit the details.

2.9 Concluding Remarks

The topic of RRT is vast and varied in terms of the published literature in the form
of papers, books, and reports. We have simply introduced the basic ideas and initial
methodologies that were suggested in the context of estimation of a population pro-
portion of a sensitive feature of the members of a population. We have also presented
one method w.r.t. quantitative feature. There are similar methodologies dealing with
(i) more than one sensitive qualitative features, (ii) one or more sensitive quantitative
features, and so on.
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