
Chapter 10
Factor Analysis

10.1 Factor Analysis

Factor analysis (Chattopadhyay andChattopadhyay 2014) is a statisticalmethod used
to study the dimensionality of a set of variables. In factor analysis, latent variables
represent unobserved constructs and are referred to as factors or dimensions. Factor
analysis attempts to identify underlying variables or factors that explain the pattern
of correlations within a set of observed variables. Factor analysis is often used in
data reduction to identify a small number of factors that explain most of the variance
that is observed in a much larger number of manifest variables.

Suppose the observable random vector X with p components has mean vector μ
and covariancematrix�. In the factor model, we assume that X is linearly dependent
upon a few unobservable random variables F1, F2 . . . Fp called common factors and
p additional sources of variation∈1,∈2, . . . ,∈p called the errors (or specific factors).
Then the factor model is

p×1
X = p×1

μ + p×m
L

m×1
F + p×1∈ (10.1.1)

X1 − μ1 = l11F1 + l12F2 + · · · + l1mFm+ ∈1

X2 − μ1 = l21F1 + l22F2 + · · · + l2mFm+ ∈2
...

X p − μp = l p1F1 + l p2F2 + · · · + l pm Fm+ ∈p

The coefficients li j s are called the loading of the i th variable on the j th factor so
the matrix L is the matrix of factor loadings. Here ∈i is associated only with the i th
response Xi . Here the p deviations X1 − μ1 . . . X p − μp are expressed in terms of
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p + m random variables F1, F2, . . . , Fm,∈1, . . . ∈p which are unobservable (but in
multivariate regression independent variables can be observed).

With same additional assumption on the random vectors F and ∈, the model w

implies certain covariance relationships which can be checked.
We assume that

E(P) = 0m×1 cov(F) = E(FP ′) = I m×m

E(∈) = 0p×1 cov(∈) = E(∈∈′) = ψ =
⎛
⎝

ψ1 0 . . . 0
0 ψ2 . . . 0
0 0 . . . ψp

⎞
⎠

and cov(∈, F) = E(∈, F) = 0p×m (10.1.2)

The model X − μ = LF+ ∈ is linear in the common factors. If the p response of
X are related to the underlying in factors in a nonlinear form [X1 − μ1 = F1F3+ ∈1]
Then the covariance structure LL ′ + ψ may not be adequate. The assumption of
linearity is inherent here.
These assumption and the relation (10.1.1) constitute the orthogonal factor model.

The orthogonal factor model implies a covariance structure for X .

Here (X − μ)(X − μ′) = (LF+ ∈)(LF+ ∈)′

= (LF+ ∈)((LF)′+ ∈′)
= LF(LF)′+ ∈ (LF)′ + LF ∈′ + ∈∈′

= LFF ′L ′+ ∈ F ′L ′ + LF ∈′ + ∈∈′

� = covariance matrix of X

= E(X − μ)(X − μ)′

= LE(FF ′)L ′ + E(∈ F)′L ′ + LE(F ∈′) + E(∈∈′)
= L I L ′ + ψ = LL ′ + ψ

Again (X − μ)F ′ = (LF+ ∈)F ′ = LFF ′+ ∈ F ′

or, cov(X, F) = E(X − μ)F ′ = E(LF+ ∈)F ′ = LE(FF ′) + E(∈ F ′) = L

Now � = LL ′ + ψ implies

var(Xi ) = li12 + · · · + lim2 + ψi

cov(Xi Xk) = li1lk1 + · · · + limlkm

}
(10.1.3)

cov(XF) = L ⇒ cov(Xi Fj ) = li j
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⇒ V (Xi ) = δi i = li1
2 + · · · + lim

2 + ψi

Let i th communality = hi
2 = li1

2 + · · · + lim
2

Then δi i = hi 2 + ψi (i = 1 . . . p)
hi

2 = sum of squares of loadings of i th variable on the m common factors.

Given a random sample of observations
b×1
x1 , x2 . . .

p×1
xp . The basic problem is to decide

whether � can be expressed in the form (10.1.3) for reasonably small value of m,
and to estimate the elements of L and ψ.

Here the estimation procedure is not so easy. Primarily, we have from the sample
data estimates of the p(p+1)

2 distinct elements of the upper triangle of � but on the
RHSof (10.1.3)we have pm + p parameters, pm for L and p forψ. The solutionwill
be indeterminate unless p(p+1)

2 − p(m + 1) ≥ 0 or p > 2m. Even if this condition
is satisfied L is not unique.

Proof Let
m×m
T be any ⊥ matrix so that T T ′ = T ′T = I

Then (10.1.1) can be written as

X − μ = LF+ ∈= LT T ′F+ ∈= L∗F∗+ ∈ (10.1.4)

where L∗ = LT and F∗ = T ′F

Since E(F∗) = T ′E(F) = 0

and cov(F∗) = T ′Cov(F)T = T ′T = I

It is impossible to distinguish between loadings L and L∗ on the basis of the observa-
tions on X . So the vectors F and F∗ = T ′F have the same statistical properties and
even if the loadings L and L∗ are different, they both generate the same covariance
matrix �, i.e.,

� = LL ′ + ψ = LT T ′L ′ + ψ = L∗L∗′ + ψ (10.1.5)

The above problem of uniqueness is generally resolved by choosing an orthogonal
rotation T such that the final loading L satisfies the condition that L ′ψ−1L is diagonal
with positive diagonal elements. This restriction requires L to be of full rankm. With
a valid ψ viz. one with all positive diagonal elements it can be shown that the above
restriction yields a unique L . �
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10.1.1 Method of Estimation

Given n observations vectors x1 . . . xn on p generally correlated variables, factor
analysis seeks to verify whether the factor model (10.1.1) with a small number of
factors adequately represent the data.

The sample covariance matrix is an estimator of the unknown covariance matrix
�. If � appears to deviate significantly from a diagonal matrix, then a factor model
can be used and the initial problem is one of estimating the factor loadings li j and
the specific variances. ψi .

Principal Component Method1

Let � has eigenvalue–eigenvector pairs (λi , ei ) with λ1 ≥ λ2 ≥ · · · λp ≥ 0. Then
by specified decomposition

� = λ1e1e1
′ + λ2e2e2

′ + · · · + λpepep
′

= (
√

λ1e1 · · · √λpep)

⎛
⎜⎝

√
λ1e1′
...√

λpep ′

⎞
⎟⎠ e1

√
λ1 · · · ep

√
λp (10.1.6)

= p×p
L

p×p

L ′ + 0p×p

[in (10.1.6) m = p and j th column of L = √
λ j e j ].

Apart from the scale factor
√

λ j , the factor loadings on the j th factor are the ppn

j th principal component.
The approximate representation assumes that the specific factors ∈ are of minor

importance and can be ignored in factoring �. If specific factors are included in the
model, their variances may be taken to be the diagonal elements of � − LL ′.

Allowing for specific factors, the approximation becomes

� = LL ′ + ψ

= (
√

λ1e1
√

λ2e2 · · ·√λmem)

⎛
⎜⎜⎜⎝

√
λ1e1′√
λ2e2′
...√

λmem ′

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

ψ1 0 . . . 0
0 ψ2 . . . 0
...

...
...

...

0 0 . . . ψp

⎞
⎟⎟⎟⎠ (10.1.7)

where m ≤ p.
(we assume that last p − m eigenvalues are small)

and ψi i = δi i −
m∑
j=1

li j
2 for i = 1 . . . p.

1A significant part of ‘Chattopadhyay and Chattopadhyay (2014). Statistical methods for Astro-
nomical Data Analysis, Springer Series in Astrostatistics, Springer’ is reproduced in this part.
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For the principal component solution, the estimated factor loadings for a given
factor do not change as the number of factors is increased. If m = 1

L =
(√

λ1ê1
)

if m = 2

L =
(√

λ̂1ê1

√
λ̂2ê2

)

where (λ̂1, ê1) and (λ̂2, ê2) are the first two eigenvalue–eigenvector pairs for S (or R).
By the definition of ψ̂i , the diagonal elements of S are equal to the diagonal

elements of L̂ L̂
′ + ψ. How to determine m?

The choice of m can be based on the estimated eigenvalues.
Consider the residual matrix S − (LL ′ + ψ)

Here the diagonal elements are new and if the off-diagonal elements are also small
we may take that particular value of m to be appropriate.

Analytically, we chose that m for which

Sum of squared entries of (S − (LL ′ + ψ)) ≤ λ̂2
m+1 + · · · + λ̂2

p (10.1.8)

Ideally, the contribution of the first few factors to the sample variance of the
variables should be large. The contribution to the sample variance sii from the first
common factor is lii 2. The contribution to the total sample variance s11 + · · · spp =
h(S) from the first common factor is

l̂211 + l̂221 + · · · + l̂2p1 = (
√

λ1ê1)
′(
√

λ1ê1) = λ̂1

Since the eigenvectors ê1 has unit length.

In general,

⎛
⎝

Propertion of total
sample variance due

to the factor

⎞
⎠ =

⎧⎪⎨
⎪⎩

λ̂ j

s11+···+spp
for a factor analysis of S

λ̂ j

p for a factor analysis of R

(10.1.9)

Criterion (10.1.9) is frequently used as a heuristic device for determining the appro-
priate number of common factors. The value of m is gradually increased until a
suitable proportion of the total sample variance has been explained.

Other Rules Used in Package

No. of eigenvalue of R greater than one (when R is used)
No. of eigenvalue of S that are positive (when S is used).
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10.1.2 Factor Rotation

If L̂ be the p × m matrix of estimated factor loadings obtained by any method, then

L∗ = L̂T where T T ′ = T ′T = I

is a p × m matrix of rotated loadings.
Moreover, the estimated covariance (or correlation) matrix remains unchanged

since
L̂ L̂ ′ + ψ̂ = L̂T T ′ L̂ ′ + ψ̂ = L̂∗ L̂∗′ + ψ̂

The above equation indicates that the residualmatrix Sn − L̂ L̂ ′ − ψ̂ = Sn − L̂∗ L̂∗′ −
ψ̂ remains unchanged. Moreover, the specific variances ψ̂i and hence the communi-
cation ĥ2i are unaltered. Hence, mathematically it is immaterial whether L̂ or L∗ is
obtained.

Since the original loadings may not be readily interpretable, it is usual practice to
rotate them until a ‘simple structure’ is achieved.

Ideally, we should like to see a pattern of loadings of each variable loads highly
on a single factor and has small to moderate loading on the remaining factors.

The problem is to find an orthogonal rotation which compounds to a ‘simple
structure.’

There can be achieved if often rotation the orthogonality of the factor still exists.
This is maintained of we perform orthogonal rotation. Among these (1) Variance
rotation, (2) Quartimax rotation, (3) Equamax rotation are important.

Oblique rotation does not ensure the orthogonality of factors often rotation. There
are several algorithms like oblimax, Quartimax.

10.1.3 Varimax Rotation

Orthogonal Transformation on L

L∗ = LT T T ′ = I

L∗ is thematrix of orthogonally rotated loadings and let d j =
p∑

i=1

l∗2i j j = 1 . . .m

Then the following expression is maximized

m∑
j=1

{
p∑

i=1

(
l∗4i j − d j

2/p
)}
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Such a procedure tries to give either large (in absolute value) or zero values in
the columns of Ł∗. Hence, the procedure tries to produce factors with either a stray
association with the responses or no association at all.

The communality

hi
2 =

m∑
j=1

l∗2i j =
m∑
j=1

li j
2 remains constant under rotation.

10.2 Quartimax Rotation

The factor pattern is simplified by forcing the variables to correlate highly with one
main factor (the so-called G-factor of 1Q studies) and very little with remaining
factors. Here all variables are primarily associated with a single factor.
Interpretation of results obtained from factor analysis. It is usually difficult to inter-
pret. Many users should significant coefficient magnitudes on many of the retained
factors (coefficient greater than —.60— are often considered large and coefficients
of —0.35— are often considered moderate). And especially on the first factor.

For good interpretation, factor rotation is necessary. The objective of the rotation
is to achieve the most ‘simple structure’ though the manipulation of factor pattern
matrix.

The most simple structure can be explained in terms of five principles of factor
rotation.

1. Each variable should have at least one zero (small) loadings.
2. Each factor should have a set of linearly independent variables where factor

loadings are zero (small).
3. For every pair of factors, there should be several variables where loadings are

zero (small) for one factor but not the other.
4. For every pair of factors, a large proportion of variables should have zero (small)

loading on both factors whenever more than about four factors are extracted.
5. For every pair of factors, there should only be a small number of variables with

nonzero loadings on both.

In orthogonal rotation,

(1) Factors are perfectly uncorrelated with one another.
(2) Less parameters are to be estimated.

10.3 Promax Rotation

Factors are allowed to be correlated with one another.

Step I. Rotate the factors orthogonally.
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Step II. Get a target matrix by raising the factor coefficients to an exponent (3 or
4). The coefficients secure smaller but absolute distance increases.
Step III. Rotate the original matrix to a best-fit position with the target matrix.

Here many moderate coefficients quickly approaches zero [.3 × .3 = .09] then the
large coefficients (≥ .6).

Example 10.1 Consider the data set related to the relative consumption of certain
food items in European and Scandinavian countries considered in the chapter of
principal component analysis.

If we do factor analysis with varimax rotation, then the output is as follows:
Rotated Factor Loadings and Communalities Varimax Rotation

Variable Factor1 Factor2 Factor3 Factor4 Communality
coffee 0.336 0.807 0.018 −0.095 0.774
Tea −0.233 0.752 0.330 0.370 0.866

Biscuits 0.502 0.124 0.712 −0.177 0.806
Powder 0.317 0.856 0.047 −0.230 0.889
Potatoes 0.595 0.047 0.060 0.485 0.595

Frozen fish 0.118 −0.100 0.050 0.918 0.869
Apples 0.832 0.284 0.251 0.097 0.846
Oranges 0.903 0.148 0.004 0.036 0.839
Butter −0.004 0.089 0.900 0.172 0.847
Variance 2.3961 2.0886 1.4969 1.3480 7.3296
% Var 0.266 0.232 0.166 0.150 0.814

Factor Score Coefficients

Variable Factor1 Factor2 Factor3 Factor4
coffee 0.038 0.408 −0.144 −0.040
Tea −0.311 0.456 0.119 0.319

Biscuits 0.165 −0.141 0.506 −0.252
Powder 0.026 0.426 −0.109 −0.144
Potatoes 0.253 −0.047 −0.089 0.331

Frozen fish 0.006 −0.019 −0.072 0.692
Apples 0.339 −0.008 0.045 0.006
Oranges 0.431 −0.064 −0.129 −0.026
Butter −0.132 −0.080 0.674 0.029

We see that according to percentage of variation about 80% variation is explained by
first four components (as in case of PCA). But here the advantage id unlike PCA we
can physically explain the factors. According to rotated factor loading, we can say
that the first factor is composed of ‘apples, oranges, and potatoes,’ similarly the other
three factors are composed of ‘coffee, tea, and powder soup,’ ‘butter and biscuits,’
and ‘potatoes and frozen fish,’ respectively.

Except Potato there is no overlapping, and the groups are well defined and may
correspond to types of customers preferring ‘fruits,’ ‘hot drinks,’ ‘snacks’ and ‘pro-
teins, vitamins, and minerals.’
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The most significant difference between PCA and factor analysis is regarding
the assumption of an underlying causal structure. Factor analysis assumes that the
covariation among the observed variables is due to the presence of one or more
latent variables known as factors that impose causal influence on these observed
variables. Factor analysis is used when there exit some latent factors which impose
causal influence on the observed variables under consideration. Exploratory factor
analysis helps the researcher identify the number and nature of these latent factors.
But principal component analysis makes no assumption about an underlying causal
relation. It is simply a dimension reduction technique.
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