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Fourier-Based Function Secret Sharing
with General Access Structure

Takeshi Koshiba

Abstract Function secret sharing (FSS) scheme is a mechanism that calculates a
function f (x) for x ∈ {0, 1}n which is shared among p parties, by using distribut-
ed functions fi : {0, 1}n → G (1 ≤ i ≤ p), where G is an Abelian group, while the
function f : {0, 1}n → G is kept secret to the parties. Ohsawa et al. in 2017 observed
that any function f can be described as a linear combination of the basis functions
by regarding the function space as a vector space of dimension 2n and gave new FSS
schemes based on the Fourier basis. All existing FSS schemes are of (p, p)-threshold
type. That is, to compute f (x), we have to collect fi(x) for all the distributed functions.
In this paper, as in the secret sharing schemes, we consider FSS schemes with any
general access structure. To do this, we observe that Fourier-based FSS schemes by
Ohsawa et al. are compatible with linear secret sharing scheme. By incorporating the
techniques of linear secret sharing with any general access structure into the Fourier-
based FSS schemes, we propose Fourier-based FSS schemes with any general access
structure.

Keywords Function secret sharing · Distributed computation · Fourier basis
Linear secret sharing · Access structure · Monotone span program

1 Introduction

Secret sharing (SS) schemes are fundamental cryptographic primitives, which were
independently invented by Blakley [4] and Shamir [21]. SS schemes involve several
ordinary parties (say, p parties) and the special party called a dealer. We suppose
that the dealer has a secret information s and partitions the secret information s
into share information Si (0 ≤ i ≤ p) which will be distributed to the ith party. In
(n, p)-threshold SS scheme, the secret information S can be recovered from n shares
(collected if any n parties get together), but no information on s is obtained from
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at most n − 1 shares. This threshold property can be discussed in terms of access
structures. An access structure (A,B) consists of two classes of sets of parties such
that (1) if all parties in some setA ∈ A get together, then the secret information can be
recovered from their shares; (2) even if all parties in any set B ∈ B get together, then
any information of the secret s cannot be obtained. For example, the access structure
(A,B) of the (n, p)-threshold SS scheme can be defined as A = {A ⊆ {1, . . . , p} :
|A| ≥ n} and B = {B ⊆ {1, . . . , p} : |B| < n}. Besides the access structure of the
threshold type, many variants have been investigated in the literature [3, 6, 7, 13,
15, 17]. As a standard technique for constructing access structures, monotone span
programs [10, 11, 14, 18] are often used.

The idea where a secret information is secretly distributed to several parties can be
applied to a function. The idea of secretly distributing a function has an application
in private information retrieval (PIR) [8, 9, 16] as demonstrated in [12]. Gilboa
et al. [12] consider to distribute point functions (DPFs) fa,b : {0, 1}n → G, where
fa,b(x) = b if x = a for some a ∈ {0, 1}n and fa,b(x) = 0 otherwise. In a basic DPF
scheme, the function f is partitioned into two keys f0, f1 and each key is distributed
to the respective party of the two parties. Each party calculates the share yi = fi(x)
for common input x by using the key fi. On the other hand, each fi does not give
any important information (e.g., the value a for fa,b) on the original function. The
functional value of the point function fa,b can be obtained by just summing up two
shares y0 and y1 of the two parties. Boyle et al. [5] investigate the efficiency in the
key size and extend the two-party setting into the multi-party setting. Moreover, they
generalize the target functions (i.e., point functions) to other functions and propose
an FSS scheme for some function family F in which functions f : {0, 1}n → G can
be calculated efficiently. In the multi-key FSS scheme, we partition a function f ∈ F
into p distributed functions (f1, . . . , fp). Likewise, an equation f (x) = ∑p

i=1 fi(x) is
satisfied with respect to any x, and the information about the secret function f (except
the domain and the range) does not leak out from at most p − 1 distributed functions.
Moreover, distributed functions fi can be described as short keys ki, and it is required
to be efficiently evaluated.

In [20], Ohsawa et al. observed that any function f from {0, 1}n to {0, 1} can
be described as a linear combination of the basis functions by regarding the func-
tion space as a vector space of dimension 2n. While the point functions fa,1 (for
all a ∈ {0, 1}n) constitute a (standard) basis for the vector space, any function
f : {0, 1}n → {±1} can be represented as a linear combination of the Fourier ba-
sis functions χa(x) = (−1)〈a,x〉, where 〈a, x〉 denotes the inner product between vec-
tors a = (a1, . . . , an) and x = (x1, . . . , xn). Based on the above observation, Ohsawa
et al. gave new FSS schemes based on the Fourier basis. If we limit our concern to
polynomial-time computable FSS schemes, functions for which the existing schemes
are available would be limited. Since polynomial-time computable functions repre-
sented by combinations of point functions are quite different from ones represent-
ed by the Fourier basis functions, point function-based FSS schemes and Fourier
function-based FSS schemes are complementary.

We note that properties of some functions are often discussed in the technique
of the Fourier analysis. Akavia et al. [1] introduced a novel framework for proving
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hard-core properties in terms of Fourier analysis. Any predicates can be represented
as a linear combination of Fourier basis functions. Akavia et al. show that if the
number of nonzero coefficients in the Fourier representation of hard-core predicates
is polynomially bounded, then the coefficients are efficiently approximable. This fact
leads to the hard-core properties. Besides hard-core predicates, it is well known that
low-degree polynomials are Fourier-concentrated [19].

Contribution

Since the existing FSS schemes are of (p, p)-threshold type, it is natural to consider
the possibility of FSS schemes with any threshold structure of (n, p)-type and even
general access structures as in the case of SS schemes.

In this paper, we affirmatively answer this question. As mentioned, Fourier-based
FSS schemes in [20] are quite simpler than the previous FSS schemes. This is because
Fourier basis functions have some linear structure. Shamir’s threshold SS scheme
can be seen as an application of the Reed–Solomon code, which is a linear code.
Both the distribution phase and the reconstruction phase can be described in a linear
algebraic way. From this viewpoint, we construct an (n, p)-threshold Fourier-based
FSS scheme. Moreover, SS schemes with general access structure can be discussed
in terms of monotone span program (MSP). The underlying structure of SS schemes
by using MSP is similar to the linear algebraic view of Shamir’s (n, p)-threshold
SS scheme, and we can similarly construct Fourier-based FSS schemes with general
access structure.

Technically speaking, Ohsawa et al. [20] consider a function from {0, 1}n to C.
That is, they consider Fourier transform over n-dimensional vector space of F2. On
the other hand, we consider a function from a finite field Fq (of prime order q) to
C. So, in this paper, we consider the Fourier transform over Fq rather than (F2)

n.
The shift of the underlying mathematical structure enables to construct FSS schemes
with general access structure.

2 Preliminaries

2.1 Access Structure and Monotone Span Program

Let us assume that there are p parties in an SS (or, FSS) scheme. A qualified group is
a set of parties who are allowed to reconstruct the secret, and a forbidden group is a
set of parties who should not be able to get any information about the secret. The set
of qualified groups is denoted byA and the set of forbidden groups byB. The setA is
said to bemonotonically increasing if, for any set A ∈ A, any set A′ such that A′ ⊇ A
is also included inA. The set B is said to be monotonically decreasing if, for any set
B ∈ B, any set B′ such that B′ ⊆ B is also included in B. If a pair (A,B) satisfies that
A ∩ B = ∅,A is monotonically increasing and B is monotonically decreasing, then
the pair is called a (monotone) access structure. If an access structure (A,B) satisfies
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thatA ∪ B coincides with the power set of {1, . . . , p}, we say that the access structure
is complete. If we consider a complete access structure, we may simply denote the
access structure byA instead of (A,B), since B is equal to the complement set ofA.

As mentioned, there are several ways to realize general access structures. Mono-
tone span program (MSP) is a typical way to construct general access structures.
Before mentioning theMSP, we prepare some basics and notations for linear algebra.

Anm × d matrixM over a field F defines a linear map from F
d to F

m. The kernel
ofM , denoted by ker(M ), is the set of vectors u ∈ F

d such thatMu = 0. The image
of M , denoted by im(M ), is the set of vectors v ∈ F

m such that v = Mu for some
u ∈ F

d .
A monotone span program (MSP) M is a triple (F,M , ρ), where F is a finite

field, M is an m × d matrix over F, and ρ : {1, . . . ,m} → {1, . . . , p} is a surjective
function which labels each row of M by a party. For any set A ⊆ {1, . . . , p}, let MA

denote the submatrix obtained by restricting M to the rows labeled by parties in A.
We say that M accepts A if e1 = (1, 0, . . . , 0)T ∈ im(MT

A ); otherwise, we say M
rejects A. Moreover, we say that M accepts a (complete) access structure A if the
following is equivalent: M accepts A if and only if A ∈ A.

When M accepts a set A, there exists a recombination vector λ such that
MT

A λ = e1. Also, note that e1 /∈ im(MT
B ) if and only if there exists a vector ξ such

that MBξ = 0 and the first element of ξ is 1.

2.2 Function Secret Sharing

The original definition in [5] of FSS schemes are tailored for threshold schemes. We
adapt the definition for general access structures. In an FSS scheme, we partition
a function f into keys ki (the succinct descriptions of fi) which the corresponding
parties Pi receive. Each party Pi calculates the share yi = fi(x) for the common input
x. The functional value f (x) is recovered from shares yA in a qualified set A of parties,
which is a subvector of y = (y1, y2, . . . , yp), by using a decode function Dec. Any
joint keys ki in a forbidden set B of parties do not leak any information on function
f except the domain and the range of f . We first define the decoding process from
shares.

Definition 1 (Output Decoder) An output decoder Dec, on input a set T of parties
and shares from the parties in T , outputs a value in the rangeR of the target function f .

Next, we define FSS schemes. We assume that A is a complete access structure
among p parties and T ⊆ {1, 2, . . . , p} is a set of parties.
Definition 2 For any p ∈ N, T ⊆ {1, 2, . . . , p}, an A-secure FSS scheme with re-
spect to a function class F is a pair of PPT algorithms (Gen,Eval) satisfying the
following.

– The key generation algorithm Gen(1λ, f ), on input the security parameter 1λ and
a function f : D → R in F , outputs p keys (k1, . . . , kp).
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– The evaluation algorithm Eval(i, ki, x), on input a party index i, a key ki, and an
element x ∈ D, outputs a value yi, corresponding to the ith party’s share of f (x).

Moreover, these algorithms must satisfy the following properties:

– Correctness: For all A ∈ A, f ∈ F and x ∈ D,

Pr[Dec(A, {Eval(i, ki, x)}i∈A) = f (x) | (k1, . . . , kp) ← Gen(1λ, f )] = 1.

– Security: Consider the following indistinguishability challenge experiment for a
forbidden set B of parties, where B /∈ A:

1. The adversary D outputs (f0, f1) ← D(1λ), where f0, f1 ∈ F .
2. The challenger chooses b ← {0, 1} and (k1, . . . , kp) ← Gen(1λ, fb).
3. D outputs a guess b′ ← D({ki}i∈B), given the keys for the parties in the forbidden

set B.

The advantage of the adversary D is defined as Adv(1λ,D) := Pr[b = b′] − 1/2.
The scheme (Gen,Eval) satisfies that there exists a negligible function ν such that
for all non-uniform PPT adversariesD which corrupts parties in any forbidden set
B, it holds that Adv(1λ,D) ≤ ν(λ).

2.3 Basis Functions

The function space of functions f : Fq → C can be regarded as a vector space of
dimension q. Therefore, the basis vectors for the function space exist, and we let
hi(x) be each basis function. Any function f in the function space is described as a
linear combination of the basis functions

f (x) =
∑

j∈Fq

βjhj(x),

where βjs are coefficients in C.

The Fourier basis
Let f : Fq → C, where q is an odd prime number. The Fourier transform of the
function f is defined as

f̂ (a) = 1

q

∑

x∈Fq

f (x)e−2π(ax/q)i, (1)

where i is the imaginary number. Then, f (x) can be described as a linear combination
of the basis functions χa(x) = e2π(ax/q)i, that is,
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f (x) =
∑

a∈Fq

f̂ (a)χa(x).

In the above, f̂ (a) is called Fourier coefficient of χa(x). By using ωq = e(2π/q)i, the
primitive root of unity of order q, we can denote each Fourier basis function by

χa(x) = (ωq)
ax

and let BF = {χa | a ∈ Fq} be the sets of all the Fourier basis functions.
It is easy to see that the Fourier basis is orthonormal since

1

q

∑

x∈Fq

χa(x)χb(x) =
{
1 if a = b,

0 otherwise.
(2)

In this paper, we consider only Boolean-valued functions and assume that the range
of the boolean function is {±1} instead of {0, 1} without loss of generality. That is,
we regard boolean functions as mappings from Fq to {±1}. Also, we have

χa+b(x) = χa(x)χb(x).

This multiplicative property plays an important role in this paper.

3 Linear Secret Sharing

3.1 Shamir’s Threshold Secret Sharing

First, we give a traditional description of Shamir’s (n, p)-threshold SS scheme [21],
where p ≥ n ≥ 2. Let s be a secret integer which a dealer D has. First, the dealer
D chooses a prime number q > s and a polynomial g(X ) ∈ Fq[X ] of degree n − 1.
Then, the dealer D computes si = (i, g(i)) as a share for the ith party Pi and sends
si to each Pi. For the reconstruction, n parties get together and recover the secret s
by the Lagrange interpolation from their shares.

The above procedure can be equivalently described as follows. LetM be an n × p
Vandermonde matrix and mi be the ith row in M . That is, mi = (1, i, i2, . . . , in−1).
Let b = (b0, b1, . . . , bn−1)

T be an n-dimensional vector such that b0 = s and b1, . . . ,
bn−1 are randomly chosen elements inFq. Let y = (s1, s2, . . . , sp)T = M b. The share
si forPi is the ith element of y, that is, si = 〈mT

i , b〉, where 〈·, ·〉denotes the inner prod-
uct. Let A be a subset of {1, 2, . . . , p}which corresponds to a set of parties. LetMA be
a submatrix ofM obtained by collecting rowsmj for all j ∈ A. We similarly define a
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subvector yA by collecting elements sj for all j ∈ A. Let e1 = (1, 0, 0, . . . , 0)T ∈
(Fq)

n. Then, we can uniquely determine λ such thatMT
A λ = e1 by solving an equa-

tion system if and only if |A| ≥ n. Then, we have

s = 〈b, e1〉 = 〈b,MT
A λ〉 = 〈MAb,λ〉 = 〈yA,λ〉.

Since yA corresponds to all shares for Pj (j ∈ A), we can reconstruct the secret s by
computing the inner product 〈yA,λ〉.

3.2 Monotone Span Program and Secret Sharing

Here, we give a construction of linear secret sharing (LSS) based on monotone span
program (MSP). Here, we do notmention how to constructMSP. For the construction
of MSP, see the literature, e.g., [6, 10, 11, 14]. In this paper, we will use the LSS
schemes. Since the LSS schemes imply MSPs [2, 22], it is sufficient to consider
MSP-based SS schemes.

Let s ∈ Fq be a secret which the dealer D has and M = (Fq,M , ρ) be an M-
SP which corresponds to a complete access structure A. The dealer D considers to
partition s into several shares. In the sharing phase, the dealer D chooses a random
vector r ∈ (Fq)

p−1 and sends a share 〈mT
i , (s, r)T 〉 to the ith party. In the reconstruc-

tion phase, using the recombination vector λ, any qualified set A ∈ A of parties can
reconstruct the secret as follows:

〈λ,MA(s, r)T 〉 = 〈MT
A λ, (s, r)T 〉 = 〈e1, (s, r)T 〉 = s.

Regarding the privacy, let B be a forbidden set of parties, and consider the joint
information held by the parties in B. That is, MBb = yB, where b = (s, r)T . Let
s′ ∈ Fq be an arbitrary value, and let ξ be a vector such that MBξ = 0 and the first
element in ξ is equal to 1. Then, yB = MB(b + ξ(s′ − s)), where the first coordinate
of the vector b + ξ(s′ − s) is now equal to s′. This means that, from the viewpoint of
the parties in B, their shares yB are equally likely consistent with any secret s′ ∈ Fq.

4 Our Proposal

As mentioned, any function can be described as a linear combination of basis func-
tions. If the function is described as a linear combination of a super-polynomial
number of basis functions, then the computational cost for evaluating the function
might be inefficient.We say that a function has a succinct description (with respect to
the basis B) if the function f is described as f (x) = ∑

h∈B′ βhh(x) for some B′ ⊂ B
such that |B′| is polynomially bounded in the security parameter. If we can find a
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good basis set B, some functions may have a succinct description with respect to B.
We consider to take the Fourier basis as such a good basis candidate.

We will provide an FSS scheme for some function class whose elements are
functions with succinct description with respect to the Fourier basis BF . Since the
Fourier basis has nice properties, our FSS scheme with general access structure can
be realized.

In what follow, we assume that the underlying basis is always the Fourier basis
BF . Moreover, we assume that M = (Fq,M , ρ) is an MSP which corresponds to a
general complete access structure A. We will consider Fourier-based FSS schemes
with this access structure.

4.1 FSS Scheme for the Fourier Basis

In this subsection,we consider to partition eachFourier basis functionχa(x) = (ωq)
ax

into several keys. That is, we give an FSS scheme with general access structure with
respect to the function class BF .

Our FSS scheme with respect to BF consists of three algorithms GenF1
(Algorithm 1), EvalF1 (Algorithm 2), and DecF1 (Algorithm 3). GenF1 is an algorithm
that divides the secret a (for χa(x)) into p keys (k1, . . . , kp) as in the SS scheme with
the same access structure. Each key ki is distributed to the ith party Pi. Note that the
secret a can be recovered from the keys ki for all i in a qualified set A ∈ A.

In EvalF1 , each party obtains the share by feeding x to the function distributed as
the key. DecF1 is invoked in order to obtain the Fourier basis function χa(x) from the
shares.

The correctness follows from

χa(x) = (ωq)
ax

= (ωq)
〈yA,λ〉x

= (ωq)
(
∑

kiλi)x

=
∏(

(ωq)
kix

)λi
.

For the security, we assume that an adversary D chooses (f0, f1) where f0 = χa

and f1 = χb. Then, the challenger chooses a random bit c to select fc and invokes
GenF1 (1λ, a) if c = 0 and GenF1 (1λ, b) if c = 1. If c = 0, then a is divided into p
keys. If c = 1, then b is divided into different p keys. From the argument in Sect. 3.2,
the guess for the secret information a (resp., b) is a perfectly random guess. That
is, the inputs to the adversary D are the same in the two cases. Thus, the adversary
D cannot decide if the target function is either χa(x) or χb(x). It implies that only
D can do for guessing the random bit c selected by the challenger is just a random
guess. So, Adv(1λ,D) = 0. This concludes the security proof.
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4.2 General FSS Scheme for Succinct Functions

Since we do not know how to evaluate any function efficiently, we limit ourselves to
succinct functions with respect to the Fourier basis BF . Note that succinct functions
with respect to BF do not coincide with succinct functions with respect to point
functions. Simple periodic functions are typical examples of succinct functions with
respect to BF , which might not be succinct functions with respect to point functions.
Asmentioned, somehard-core predicates of one-way functions are succinct functions
with respect to BF .

LetFBF ,� be a class of functions f which canbe represented as a linear combination
of � basis functions (with respect to BF ) at most, where � is a polynomial in the
security parameter. That is, f has the following form:

f (x) =
�∑

i=1

βiχai (x).

We construct an FSS scheme with general access structure (GenF≤�,Eval
F
≤�,Dec

F
≤�)

for a function f ∈ FBF ,� as follows. Note that the construction is a simple adaptation
of the Fourier-based FSS scheme over (F2)

n in [20].

Algorithm 1 GenF1 (1λ, a)

Choose a random vector r ∈ (Fq)
p−1 uniformly ;

for i = 1 to p do
mi ← the i-th row of M ;
ki ← 〈mi, (a, r)T 〉

end for
Return (k1, . . . , kp).

Algorithm 2 EvalF1 (i, ki, x)

vi ← (ωq)
kix ;

Return (i, vi).

Algorithm 3 DecF1 (A, {(i, vi)}i∈A)
Compute a recombination vector λ = (λ1, . . . ,λp)

T from A ;
Return w = ∏

i∈A(vi)
λi .

– GenF≤�(1
λ, f ) : On input the security parameter 1λ and a function f , the key gen-

eration algorithm (Algorithm 4) outputs p keys (k1, . . . , kp).
– EvalF≤�(i, ki, x) : On input a party index i, a key ki, and an input string x ∈ Fq, the
evaluation algorithm (Algorithm 5) outputs a value yi, corresponding to the ith
party’s share of f (x).
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– DecF≤�(A, {yi}i∈A) : On input shares {yi}i∈A of parties in a (possibly) qualified set
A, the decryption algorithm (Algorithm 6) outputs a solution f (x) for x.

In the above FSS scheme (GenF≤�,Eval
F
≤�,Dec

F
≤�) for succinct functions f ∈ FB,�,

we invoke FSS scheme (GenF1 ,EvalF1 ,DecF1 ) for basis functions BF , since f can be
represented as a linear combination of at most � basis functions. In this construction,
we distribute each basis function χai (x) and each coefficient βi as follows.We invoke
(GenF1 ,EvalF1 ,DecF1 ) to distribute each basis function χai (x) and use any SS scheme
with the same access structure to distribute each coefficient βi.

The correctness of (GenF≤�,Eval
F
≤�,Dec

F
≤�) just comes from the correctness of

each FSS scheme (GenF1 ,EvalF1 ,DecF1 ) for the basis function χai (x) and the correct-
ness of each SS scheme for the coefficients. But some care must be done. From the
assumption, f ∈ FBF ,� has � terms at most. If we represent f as a linear combina-
tion of exactly � terms, some coefficients for basis functions must be zero. Since
the zero-function χ0(x) = (ωq)

0·x = 1 which maps any element x ∈ Fq to 1 can be
partitioned into several functions as the ordinary basis functions can be, we can apply
(GenF≤�,Eval

F
≤�,Dec

F
≤�) as well.

Algorithm 4 GenF≤�(1
λ, f (·) = ∑�

i=1 βiχai (·))
for i = 1 to � do

(ki1, k
i
2, . . . , k

i
p) ←GenF1 (1λ, ai) ;

(si1, s
i
2, . . . , s

i
p) ←iThe sharing phase of some SS scheme, given βi ;

end for
for j = 1 to p do
Set kj ← (k1j , k2j , . . . , k�

j ) ;

Set sj ← (s1j , s
2
j , . . . , s

�
j ) ;

end for
Return ((k1, s1), . . . , (kp, sp)).

Algorithm 5 EvalF≤�(i, (ki, si), x)
for j = 1 to � do
yij ←EvalF1 (i, kij , x) ;

end for
Set yi = (yi1, y

i
2, . . . , y

i
�) ;

Return (i, yi, si).

Algorithm 6 DecF≤�(A, {(i, yi, si)}i∈A)
for i = 1 to � do
gi ←DecF1 (A, {(j, yji)}j∈A) ;

βi ←The reconstruction phase of the SS scheme, on input {sji}j∈A ;
end for
Return g = ∑�

i=1 βigi .
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The security of (GenF≤�,Eval
F
≤�,Dec

F
≤�) can be discussed as follows. Without of

loss of generality, we assume that all parties in a forbidden set B (where |B| = m) get
((k1, s1), . . . , (km, sm)). For any i with 1 ≤ i ≤ �, the m-tuples of the ith elements
of k1, . . . , km are identical whatever the basis function for the ith term of the target
function is, because the advantage of any adversary against (GenF1 ,EvalF1 ,DecF1 ) is
0 as discussed in Sect. 4.1. Moreover, for any i with 1 ≤ i ≤ �, them-tuples of the ith
elements of s1, . . . , sm are identical whatever the coefficient for the ith term of the
target function is, because of the perfect security of the underlying SS scheme with
the same access structure. Furthermore, the outputs of several executions of GenF1
(even for the same target basis function) are independent because each GenF1 uses a
fresh randomness. Thus, the information that all the parties in B can get is always
the same regardless of the target function f ∈ FBF ,�. This guarantees the security of
(GenF≤ �,EvalF≤�,Dec

F
≤�).

Remark If we do not care about the leakage of the number of terms with nonzero
coefficients for f , we can omit the partitioning of zero-functions, which increases
the efficiency of the scheme.

5 Conclusion

By observing that Fourier-based FSS schemes by Ohsawa et al. [20] are compatible
with linear SS schemes, we have provided Fourier-based FSS schemes with general
access structure, which affirmatively answers the question raised in [20].
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