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A Fuzzy Random Continuous (Q, r,L)
Inventory Model Involving Controllable
Back-order Rate and Variable Lead-Time
with Imprecise Chance Constraint
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Abstract In this article, we analyze a fuzzy random continuous review inventory
system with the mixture of back-orders and lost sales, where the annual demand is
treated as a fuzzy random variable. The study under consideration assumes that the
lead-time is a control variable and the lead-time crashing cost is being introduced
as a negative exponential function of the lead-time. In a realistic situation, the back-
order rate is dependent on the lead-time. Significantly large lead-times might lead
to stock-out periods being longer. As a result, many customers may not be prepared
to wait for back-orders. Instead of constant back-order rate, we introduce the back-
order rate as a decision variable, which is a function of the lead-time throughout the
amount of shortage. Moreover, a budgetary constraint is imposed on the model in
the form of an imprecise chance constraint to capture the possible way of measuring
the imprecisely defined uncertain information of the budget constraint. We develop
a methodology to determine the optimum order quantity, reorder point, lead-time,
and back-order rate such that the total cost is minimized in the fuzzy sense. Finally,
a numerical example is presented to illustrate the proposed methodology.
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1 Introduction

Inventory control plays a significant role in every production house. The continuous
review inventory model is one of the most important and useful problems in indus-
trial applications. In the continuous review inventory system, the occurrence of the
shortage is a major concern. In most of the real-life situations, when such a condition
arises, back-orders and lost sales happen simultaneously. Thus, the inventory model,
which constitutes both back-order and lost sale cases, is more efficient than the ones
based on the individual cases. Montgomery et al. [23] first introduced the inventory
model with a mixture of back-orders and lost sales. After the pioneering work of
[23], numerous related studies have been developed considerably in the problem of
mixture of back-orders and lost sales (see, among others [16, 22, 31]).

In the earlier literature dealing with inventory systems, the lead-time is common-
ly considered as a prescribed constant or a stochastic variable. Hence, the lead-time
becomes uncontrollable [26]. But, production management philosophies like just in
time (JIT) show that there are advantages and benefits associated with the effort of
control of the lead-time. By shortening lead-time [35], we can decrease the safety
stock, minimize the loss due to stock-out, improve the service level to the customer,
and increase the competitive capability in business. Liao and Shyu [21] first intro-
duced the problem of lead-time reduction in a continuous review inventory model,
where the order quantity was predetermined, and the lead-time was assumed to be a
decision variable. Thereafter, several researchers (see, among others [2, 14, 20, 22,
25, 28–30]) have studied lead-time reduction in different types of inventory system.

In addition to lead-time, another key aspect of the inventory system is back-
orders. Most of the earlier work in the field of inventory control, it is assumed that
the back-order rate is constant. However, in a realistic situation, the back-order rate
is dependent on the lead-time. Bigger lead-times might lead to stock-out periods
being longer; and as a result, many customers may not be willing for back-orders.
This phenomenon reveals that under the longer length of the lead-time, the period
of shortage becomes longer. It signifies that the proportion of customers that can
wait goes down; as a result, back-order rate decreases. The interdependence between
the back-order rate and the lead-time has been proposed by Ouyang and Chuang
[28]. They have considered the back-order rate to be dependent on the length of the
lead-time through the amount of shortage and that the back-order rate is a control
variable. After the work of [28], researchers have been attracted on the problem of
controlling back-order rate, and they have extended the inventory control in various
directions (see, among others [20, 22, 33]).

On the other hand, most of the real-life business situation, the decision maker
has to work under limited budget. According to Hadley and Whitin [15], the most
significant real-world constraint is the budgetary restriction on the amount of capital
that can be contributed to procure the items of inventory. Keeping this in mind,
many inventory models (see, among others [1, 18, 24]) have been developed under
budgetary constraint in stochastic environment.
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During the mid-1980s, researchers have noticed that the fuzziness is also an in-
trinsic property of key parameters of the inventory system, particularly when given
or obtained data is undetectable, insufficient or partially ignorant. After that, fuzzy
set theory has been extensively employed in the problem of inventory system for
capturing the uncertainties in the non-probabilistic sense. Park [32] introduced the
fuzzy mathematics in the inventory system by developing economic order quantity
(EOQ) model in which trapezoidal fuzzy numbers were represented the ordering and
holding costs. Gen et al. [13] developed a continuous review inventory model where
the values of the parameters of inventory system are considered to be triangular fuzzy
numbers. Ouyang and Yao [27] extended min-max distribution-free procedure in the
fuzzy environment by developing a continuous review inventory model with variable
lead-time in which the annual demand was assumed as the triangular fuzzy number.
Tütüncü et al. [36] and Vijayan and Kumaran [37] studied the continuous review
inventory model by fuzzifying the cost parameters into fuzzy numbers. Tütüncü et
al. obtain the solution using a simulation-based analysis, while an iterative algo-
rithm was used to derive the optimal solution by Vijayan and Kumaran. Recently,
Shekarian et al. [34] presented a comprehensive review of the most relevant works
of fuzzy inventory model.

It can be noticed that the models, primarily the ones as mentioned above, capture
the uncertainty of the parameters of inventory system by characterizing the corre-
sponding variable as either fuzzy or random variable. In a real-life inventory system,
fuzziness and randomness often co-occur. Kwakernaak [19] first described the fuzzi-
ness and randomness of an event simultaneously. Dutta et al. [12] first incorporated
the mixture of fuzziness and randomness into annual demand and developed a single
periodic review inventory model. Chang et al. [5] and Dutta and Chakraborty [11]
analyzed and extended the continuous review inventory model into fuzzy random
circumstances. Chang et al. [5] treated the lead time as the fuzzy random vari-
able and annual expected demand as the fuzzy number. On the other hand, Dutta
and Chakraborty [11] considered both the lead-time and annual demand as discrete
fuzzy random variables. Dey and Chakraborty [10] considered the annual demand as
a fuzzy random variable for developing a periodic review inventory model. Dey and
Chakraborty [9] proposed a methodology for constructing a fuzzy random data set
from the partially known information. This method is applied on the fuzzy random
periodic review model developed by Dey and Chakraborty [10]. Moreover, Dey and
Chakraborty [8] also extended the model [10] by incorporating negative exponential
crashing cost and lead-time as a variable. Kumar and Goswami [17] extended the
min-max distribution-free approach in fuzzy random environments by developing
a continuous review production–inventory system. Now, with increased complexity
of inventory problem domain, it is hard to define budgetary constraint with proper
certainty and precision. Chance-constrained programming [6] can be providing a
procedure to construct the constraints in the presence of randomness. However, the
imprecision and randomness may appear combined in the information of the restric-
tion. Keeping the issue of vagueness in mind, Chakraborty [4] redefined the chance
constraint as the imprecise chance constraint in which the probability of satisfying
the imprecise constraint is considered to be vague in nature and to be imprecisely
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greater than or equal to a specified probability. Recently, Dey et al. [7] incorporated
imprecise chance constraint into a fuzzy random continuous review inventory model
with a mixture of back-orders and lost sales.

An analysis of the literature reveals that there are some studies of the continuous
review inventory system that consider both the fuzziness and randomness simul-
taneously. But, existing research does not assemble the controllable lead-time and
back-order rate in the mixed fuzzy random framework. Here, our intention is to ad-
dress this research gap of the continuous review inventorymodel under fuzzy random
environment.

Thus, in this paper, we consider a fuzzy random continuous review (Q, r,L)

inventory model inclusive of back-orders and lost sales by including the annual de-
mand as the fuzzy random variable. The lead-time is taken as a decision variable,
and the crashing cost is being introduced by the negative exponential function of the
lead-time. The back-order rate is also a decision variable, which is a function of the
lead-time through an amount of shortages. A budgetary constraint has been consid-
ered on the model in the form of an imprecise chance constraint. A methodology
has been developed to determine the optimal values of the decision-making variable
such that the annual cost of the inventory model is minimized in the fuzzy sense.
Finally, a numerical example is provided to illustrate the proposed methodology.

The rest of paper is organized as follows: Sect. 2 presents some basic concepts of
fuzzy set theory. In Sect. 3, development of proposed methodology is discussed. We
present a numerical example to illustrate the methodology in Sect. 4. Paper has been
summarized in Sect. 5.

2 Preliminaries

In this section, we review some basic concepts of the fuzzy set theory in which will
be used in this paper.

Definition 1 (Triangular fuzzy number [38]). A normalized triangular fuzzy number
Ã = (a, b, c) is a fuzzy subset of the real line R, whose membership function μÃ(x)
satisfies the following conditions:

(i) μÃ(x) is a continuous function from R to the closed interval [0, 1],
(ii) μÃ(x) = x−a

b−a is strictly increasing function on [a, b],
(iii) μÃ(x) = 1 for x = b,
(iv) μÃ(x) = c−x

c−b is strictly decreasing function on [b, c],
(v) μÃ(x) = 0 elsewhere.

Without any loss of generality, all fuzzy quantities are assumed as triangular fuzzy
numbers throughout this paper.
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Definition 2 (α-cut of fuzzy set [38]). Let Ã be a fuzzy set. The α-cut of the fuzzy
set Ã, denoted by Ãα = [A−

α ,A+
α ], is defined as follows:

Ãα =
{ {x ∈ R : μÃ(x) ≥ α} if α ∈ (0, 1]
cl{x ∈ R : μÃ(x) > 0} if α = 0.

(1)

Definition 3 (Fuzzy random variable [19]). Let (Ω,B,P) be a probability space
and F(R) be the set all all fuzzy numbers, then a mapping χ̃ : Ω → F(R) is said to
be a fuzzy random variable (or FRV for short) if for all α ∈ [0, 1], the two real-valued
mappings χ−

α : Ω → R and χ+
α : Ω → R are real-valued random variable.

Definition 4 (Expectation of fuzzy random variable [19]). If X̃ is a fuzzy random
variable, then the fuzzy expectation of X̃ is a unique fuzzy number. It is defined by

E(X̃ ) =
∫

X̃ dP =
{( ∫

X−
α dP,

∫
X+

α dP

)
: 0 ≤ α ≤ 1

}
, (2)

where the α-cut of fuzzy random variable is [X̃ ]α = [X−
α ,X+

α ] for all α ∈ [0, 1].
Definition 5 (Possibilistic mean value of a fuzzy number [3]). Let Ã be a fuzzy
number with α-cut Ãα = [A−

α ,A+
α ], and therefore, the possibilistic mean value of Ã

is denoted by M (Ã) and defined as

M (Ã) =
1∫

0

α(A−
α + A+

α )dα. (3)

3 Methodology

3.1 Model and Assumptions

The inventory position is reviewed continuously in the (Q, r) continuous review
inventory system. When the stock position falls to the reordering point r, an order
quantity Q is placed to order. In inventory system, a state is said to be the stock-out
state if inventory level falls to zero, at any point in time. Considering the simultaneous
occurrence of back-orders and lost sales in real-world scenario, the effect of both are
included in the model. The following notations have been used to develop the model:

Notations

P fixed ordering cost per order,
h holding cost per unit per year,
π stock-out cost per unit stock-out,
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π0 marginal profit per unit,
Q order quantity,
r reorder point,
β fraction of demand back-ordered during the stock-out period, (0 ≤ β ≤ 1),
L lead-time (in years),
R(L) lead-time crashing cost,
D̃(ω) annual demand (ω ∈ Ω where (Ω,B,P) is a probability space),
D̃L(ω) lead-time demand (ω ∈ Ω),
x+ max{0, x}.

In continuous review inventory system, the safety stockor buffer stock is defined as
the difference between reorder point r and the expected lead-time demand. Now, for
all practical purposes, none of themanufacturer wants to have a negative safety stock.
Therefore, nonnegative safety stock criterion is imposed on the model. To maintain
the safety stock at nonnegative level, r ≥ M (D̃L) has been considered, whereM (D̃L)

denotes the expected lead-time demand in possibilistic sense and defined by

M (D̃L) =
1∫

0

α

[
D−

L,α + D+
L,α

]
dα. (4)

In order to incorporate fuzziness and randomness simultaneously [11], the annu-
al demand is assumed to be a discrete fuzzy random variable D̃(ω) (ω ∈ Ω where
(Ω,B,P)). Let us suppose that the annual customer demand D̃(ω) is of the form
{(D̃1, p1), (D̃2, p2), . . . , (D̃n, pn)}, where each of D̃i’s are triangular fuzzy numbers
of the form (Di,Di,Di) with corresponding probabilities pi’s, i = 1, 2, . . . , n. More-
over, the lead-time demand is reflected by any fluctuation of the annual demand. Thus
instead of independent parameter, the lead-time demand is assumed to be connected
to the annual demand through the length of the lead-time in the following form [11]:

D̃L(ω) = D̃(ω) × L. (5)

Since annual demand D̃(ω) is a fuzzy random variable of the form D̃i =
(Di,Di,Di) with associated probability pi, i = 1, 2, . . . , n, the lead-time demand
is also fuzzy random variable. Thus, the lead-time demand is of the form D̃L,i =
(DL,i,DL,i,DL,i)with associated probability pi, i = 1, 2, . . . , n. Hence, the expected
lead-time demand can be expressed in triangular form. The triangular form of ex-
pected lead-time demand is given by E(D̃L(ω)) = D̃L = (DL,DL,DL). The annual
demand D̃(ω) and the lead-time demand D̃L(ω) can be represented by its α-cut as
[D̃(ω)]α = [D−

α (ω),D+
α (ω)] and [D̃L(ω)]α = [D−

L,α(ω),D+
L,α(ω)] where α ∈ [0, 1].

The α-cut representation of the expected lead-time demand is defined as follows:

D−
L,α(ω) = D−

L,α(ω) × L and D+
L,α(ω) = D+

L,α(ω) × L (6)
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⇒

⎧⎪⎪⎨
⎪⎪⎩
E

(
D−

L,α(ω)

)
=

n∑
i=1

D−
i,αpi × L

E

(
D+

L,α(ω)

)
=

n∑
i=1

D+
i,αpi × L

(7)

In this study, we consider the lead-time is a decision variable and the lead-time
crashing cost is assumed to be a negative exponential function [8] of the lead-time,
which is given by

Crashing cost R(L) = εe−δL (8)

where we can estimate the parameters ε, δ by some of known values of the lead-time
crashing cost for a few values of L.

A function of fuzzy random variable is itself a fuzzy random variable; therefore,
total cost function is also a fuzzy random variable. Thus, the fuzzy total cost function
is given by

C̃(Q, r,L) = h

[
Q

2
+ r − D̃(ω)L

]
+

[
h(1 − β) + {π + π0(1 − β)} D̃(ω)

Q

]
M (D̃L − r)+

+ D̃(ω)

Q
(R(L) + P) (9)

whereM (D̃L − r)+ denote the expected shortage at each cycle in possibilistic sense
and defined by

M

(
D̃L − r

)+
=

1∫
0

α

[(
(D̃L − r)+

)−

α

+
(

(D̃L − r)+
)+

α

]
dα. (10)

As mentioned earlier, in a realistic situation, the back-order rate is dependent on
the lead-time. Significantly large lead-times might lead to stock-out periods longer,
and as a result,many customersmaynot bewilling for back-orders. This phenomenon
reveals that with the longer length of lead-time, the time of shortage gets longer and
with the increase of shortage the proportion of customers that can wait goes down
resulting in the overall decrease of back-order rate. Therefore, we consider the back-
orders rate, β, which is a decision variable instead of constant. During the stock-out
period, the back-order rate β is a function of the lead-time through the amount of
shortage M (D̃L − r)+. The larger expected shortage quantity implies, the smaller
back-order rate. Thus, we consider β as β = 1

1+ αM (D̃L−r)+
, where α the back-order

parameter (0 ≤ α < ∞).
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Hence, the fuzzy total cost function can be written as

C̃(Q, r,L) =
[{

h + π0

(
D̃(ω)

Q

)}
α(M (D̃L − r)+)2

1 + αM (D̃L − r)+
+ π

(
D̃(ω)

Q

)
M (D̃L − r)+

]

+ h

[
Q

2
+ r − D̃(ω)L

]
+ D̃(ω)

Q
(P + εe−δL) (11)

In real-life situation, decision maker has to work under limited budget. Let us
consider that the cost of each item and the total available budget are c and C, respec-
tively. Then since the order quantities are Q when an order is placed, the following
inequality required to hold:

cQ ≤ C (12)

The information about the cost of each unit of the item and total budget available
is estimated from past data. Let ĉ ∼ N (mc, σ c) and Ĉ ∼ N (mC, σC) be normally
distributed and independent random variables of the cost of each unit of the item
and the total available budget, respectively. Further, the fulfillment of the budget
constraint is an individual, organizational decision. Again the decision maker allows
some relaxation of the restriction; i.e., both sides of the constraint may be tied with
the vague relationship ‘�’ which is the fuzzified version of ‘≤.’ As explained earlier,
the decision maker may be more confident to select the probability level in linguistic
terms. Thus, instead of crisp probability, a fuzzy probability measure, say around
p ∈ [0, 1] will be attached such that the constraint is satisfied with no less than this
imprecise probability level. Because of this, the budgetary constraint (12) may be
written in the form of the imprecise chance constraint as [4]

P̃rob

(
ĉQ � Ĉ

)
� p. (13)

The goal of the decision maker is to determine the optimal order quantity, reorder
point, lead-time, and back-order rate in order to minimize the total cost in fuzzy
sense. Since the total cost function is a fuzzy random variable thus the expectation
of total cost function is a unique fuzzy number. Let M (C̃(Q, r,L)(ω)) or simply
M (Q, r,L) be the defuzzified representation of the expectation of the total cost. So
mathematically, the problem can be formulated in the following optimization form:

(P3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
Q,r,L

M (Q, r,L)

such that P̃rob

(
ĉQ � Ĉ

)
� p

Q, r,L ≥ 0;
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where the value ofM (Q, r,L) is need to bedetermined.Therefore, the following steps
are required to find for obtaining the optimal solution of decision-making variables:

(i) The expected lead-time demand and the exact expression for expected shortage
M (D̃L − r)+ for a given r ∈ [DL,DL] in possibilistic sense;

(ii) The expected value of the total cost function, which are a fuzzy random variable
and the defuzzified representation of this fuzzy random variable;

(iii) The crisp equivalent form of the imprecise chance constraint;
(iv) The optimal values of order quantity Q∗, reorder point r∗, lead-time L∗, and

back-order rate β∗ in order to minimize the total cost.

3.2 Determination of the Expected Shortage

The expected lead-time demand is D̃L = (DL,DL,DL). Now, in order to maintain
the nonnegative safety or buffer stock, the lower bound of reorder point r isM (D̃L).
When the expected lead-time demand D̃L in each cycle is greater than r, then there
is a shortage of amount (D̃L − r). Since the lead-time demand D̃L is a triangular
fuzzy number, the upper bound of the reorder point r is DL due to the nonnegative
safety stock condition. Thus to determine the expected amount of shortage in each
cycle, two situations will arise depending upon the position of r ∈ [DL,DL] subject
to condition that the safety or buffer stock is nonnegative.

Situation 1. For r lying between DL and DL, we have the α-level set of the lead-
time demand as [11]

(D̃L)α =
{ [r,D+

L,α], α ≤ L(r)
[D−

L,α,D+
L,α], α > L(r)

which implies

(
(D̃L − r)+

)
α

=
{ [0,D+

L,α − r], α ≤ L(r)
[D−

L,α − r,D+
L,α − r], α > L(r)

(14)

Therefore, the possibilistic mean is obtained as follows:

M

(
D̃L − r

)+
=

1∫
0

α

[(
(D̃L − r)+

)−

α

+
(

(D̃L − r)+
)+

α

]
dα

=
1∫

0

αD+
L,αdα +

1∫
L(r)

αD−
L,αdα − (1 − 0.5L2(r)) (15)
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Situation 2. For r lying between DL and DL, we have the α-level set of the lead-
time demand as [11]

(D̃L)α =
{ [r,D+

L,α], α ≤ R(r)
φ, α > R(r)

which implies (
(D̃L − r)+

)
α

=
{ [0,D+

L,α − r], α ≤ R(r)
φ, α > R(r)

(16)

Therefore, the possibilistic mean is obtained as follows:

M

(
D̃L − r

)+
=

1∫
0

α

[(
(D̃L − r)+

)−

α

+
(

(D̃L − r)+
)+

α

]
dα

=
R(r)∫
0

αD+
L,αdα − 0.5rR2(r) (17)

3.3 Defuzzification of the Fuzzy Expected Total Cost
Function Using Possibilistic Mean Value

We have obtained the total cost function in (11), which is given by

C̃(Q, r,L) = h

[
Q

2
+ r − D̃(ω)L

]
+

[ {
h + π0

(
D̃(ω)

Q

)}
α(M (D̃L − r)+)2

1 + αM (D̃L − r)+

+ π

(
D̃(ω)

Q

)
M (D̃L − r)+

]
+ D̃(ω)

Q
(P + εe−δL) (18)

whereM (D̃L − r)+ is given byEqs. (15) or (17) according to the position of the target
inventory level r in the interval [DL,DL]. For computational purpose, we defuzzified
the fuzzy expected total cost function using its possibilistic mean value. Let E(C̃(ω))

be the fuzzy expectation of the total cost function. Then, the possibilistic mean value
of the fuzzy expected total cost function is given by

M (Q, r,L) =
1∫

0

α

(
E(C−

α (ω)) + E(C+
α (ω))

)
dα (19)

Now, the α-level set of E(C̃(ω)) is then given by
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ECα(ω) = E(Cα(ω) = [E(C−
α (ω),E(C+

α (ω)], α ∈ [0, 1], ω ∈ (Ω,B,P), where

E(C−
α (ω)) =

n∑
i=1

[
D−

α (ω)

Q

{
P + πM (D̃L − r)+ + π0

α(M (D̃L − r)+)2

1 + αM (D̃L − r)+
+ εe−δL

}

=
n∑

i=1

[ {Di + α(Di − Di)}
Q

{
P + πM (D̃L − r)+ + π0

α(M (D̃L − r)+)2

1 + αM (D̃L − r)+
+ εe−δL

}

+ h

{
Q

2
+ r − {Di − α(Di − Di)}L + α(M (D̃L − r)+)2

1 + αM (D̃L − r)+

} ]
pi (20)

and

E(C+
α (ω)) =

n∑
i=1

[
D+

α (ω)

Q

{
P + πM (D̃L − r)+ + π0

α(M (D̃L − r)+)2

1 + αM (D̃L − r)+
+ εe−δL

}

+ h

{
Q

2
+ r − D−

α (ω)L + α(M (D̃L − r)+)2

1 + αM (D̃L − r)+

} ]
pi

=
n∑

i=1

[ {Di − α(Di − Di)}
Q

{
P + πM (D̃L − r)+ + π0

α(M (D̃L − r)+)2

1 + αM (D̃L − r)+
+ εe−δL

}

+ h

{
Q

2
+ r − {Di + α(Di − Di)}L + α(M (D̃L − r)+)2

1 + αM (D̃L − r)+

} ]
pi (21)

Substituting the values of Eqs. (20) and (21) in (19), we find the possibilistic mean
value of the fuzzy expected total cost function M (Q, r,L), which is given by

M (Q, r,L) = 1

Q

[
P + πM (D̃L − r)+ + π0

α(M (D̃L − r)+)2

1 + αM (D̃L − r)+
+ εe−δL

]
{
1

6

n∑
i=1

(Di + Di)pi + 2

3

n∑
i=1

Dipi

}

+ h

[
Q

2
+ r −

{
1

6

n∑
i=1

(Di + Di)pi + 2

3

n∑
i=1

Dipi

}
L

+ α(M (D̃L − r)+)2

1 + αM (D̃L − r)+

]
(22)
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3.4 Crisp Equivalent Form of the Imprecise Chance
Constraint

The imprecise chance constraint is as follows:

P̃rob

(
ĉQ � Ĉ

)
� p, where ĉ ∼ N (mc, σ c) and Ĉ ∼ N (mC, σC) are normally

distributed and independent random variables of the cost of each unit of item and
the total available budget, respectively. Since this constraint cannot be dealt with this
form, hence the imprecise chance constraint is transformed to its crisp equivalent
form using the concept which is mentioned in [4].

Suppose Ẑ = ĉQ − Ĉ. Then, Ẑ follows the normal distribution with meanmZ and

standard deviation σ Z where mZ = mcQ − mC and σ Z =
[
(σ c)2Q2 + (σC)2

] 1
2

.

Resorting the fuzzy ordering between the left- and right-hand sides of ‘�’ in the

parenthesis (), Ẑ is then replaced by its standard normal variable

(
Ẑ−mZ

σ Z

)
as follows

P̃rob

(
Ẑ − mZ

σ Z
� −mZ

σ Z

)
� p. (23)

Now, for a fuzzy event (Z � z), the following proposition, as proved by [4], holds:

F(z) ≤ P̃rob(Z � z) ≤ F(z + Δz) (24)

where Δz is the extent of softness permitted and fixed by decision maker. Therefore
using the result of (24) in (23), we have

P̃rob

(
Ẑ − mZ

σ Z
� −mZ

σ Z

)
≤ φ

(−mZ ′

σ Z ′

)
(25)

where Ẑ ′ = ĉQ − (Ĉ + ΔC) ≤ Ẑ and φ(.) is the distribution function of standard
normal variable. Here, ΔC (non-random) is the range of tolerance allowed and fixed
by the decision maker for the fuzzy events ĉQ � Ĉ. Hence, we get the following
fuzzy relation

φ

(−mZ ′

σ Z ′

)
� p. (26)

Assuming the following linear membership function of the above fuzzy relation with
Δp assumed to be range of tolerance permitted,

μφ(·)(p) =
⎧⎨
⎩
1 ifφ(·) > p
φ(·) − (p − Δp)

Δp if p − Δp ≤ φ(·) ≤ p
0 otherwise

(27)
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Hence, the crisp equivalent form of the imprecise chance constraint is given as

mZ ′ + σ Z ′
φ−1(p − Δp) ≤ 0. (28)

3.5 Optimal Solution

Our main goal is to find the optimal solution. In order to find the optimal order quan-
tity, reorder point, lead-time, and back-order rate for decision making, the following
steps are required to execute.

Step (i): Input the values of P, h, π, π0, ĉ, Ĉ, p, α, ε, δ.
Step (ii): Calculate the possibilisticmean value of the fuzzy expected shortage using

either (15) or (17) with the condition 0 ≤ L(r) ≤ 1 and 0 ≤ R(r) ≤ 1,
respectively.

Step (iii): Determine the safety stock criteria, i.e., r − M (DL) ≥ 0.
Step (iv): Calculate the possibilistic mean value of the fuzzy expected total cost

from (22).
Step (v): Find the crisp equivalent form of imprecise chance constraint using (28).
Step (vi): Use the Lingo, Lindo, orMathematica to solve the followingminimization

problem

(P3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Q,r,L

M (Q, r,L)

such that mZ ′ + σ Z ′
φ−1(p − Δp) ≤ 0

r ≥ M (D̃L)

r ≤ DL

Q, r,L ≥ 0.

4 Numerical Example

A Leather Good’s company in a city, say X Leather private limited, sells a particular
type of handbags. The cost of placing an order is assumed to be Rs. 200. The holding
cost is Rs. 20 per item per year. The fixed penalty cost for the shortage is Rs. 50,
and the cost of lost sales including marginal profit is Rs. 100. Suppose it is estimated
that the expense of each handbag is normally distributed with mean Rs. 375 and
standard deviation Rs. 5. The total budget available to the private limited is also
normally distributed with mean Rs. 30,000 and standard deviation Rs. 75. The lead-
time reduction cost is a negative exponential function of the lead-time, i.e., R(L) =
εe−δL with ε = 156 and δ = 114. Now, the manager of X private limited is quite
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Table 1 Demand
information

Demand Probability

(825, 1130, 1270) .25

(775, 977, 1275) .22

(1120, 1325, 1450) .27

(1240, 1352, 1560) .26

satisfied if the budgetary constraint attains to the probability of ‘around 0.8’. The
information about annual demand is given in Table 1.

Thence, the problem is to determine the optimal order quantity Q∗, reorder point
r∗, lead-time L∗, and back-order rate β∗ in such a way that the expected annual
inventory cost incurred is minimum. From the above problem, we have the order
cost P = 200, the inventory holding cost h = 20, the fixed shortage cost π = 50, the
marginal profit π0 = 100, the lead-time reduction cost R(L) = 156e−114L, the cost of
each handbag ĉ ∼ N (375, 5), the total budget Ĉ ∼ N (30000, 75) and the probability
p =′ around 0.8′. Thus, the expected lead-time demand and possibilistic mean value
of lead-time are given by

D̃L = (1001.55, 1206.71, 1373.1)L and, (29)

M (D̃L) =
{
1

6

n∑
i=1

(Di + Di)pi + 2

3

n∑
i=1

Dipi

}
L = 1200.248L. (30)

Then, the defuzzified fuzzy expected total cost function is obtained as

M (Q, r,L) = 20

[
Q

2
+ r − 1200.248L + α(M (D̃L − r)+)2

1 + αM (D̃L − r)+

]

+ 1200.248

Q

[
200 + 50M (D̃L − r)+ + 100

α(M (D̃L − r)+)2

1 + αM (D̃L − r)+
+ 156e−114L

]

(31)

Thus, mathematically, we need to solve the following optimization problem for de-
termining the optimal solutions:

(P4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Q,r,L

M (Q, r,L)

such that 140607.29Q2 − 22575000Q + 906006016 ≥ 0

r ≥ 1200.248L

r ≤ 1373.1L

r − 1001.55L

205.16L
≤ 1

Q, r,L ≥ 0.
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Table 2 Optimal solutions of optimization problem (P4) for different values of α

α Q∗ r∗ β∗ L∗(in yearr) R(L) Total cost

0.0 79.36030 26.52812 1.0000000 0.02198384 12.00000 4467.313

0.5 79.36030 20.88508 0.8064689 0.01730796 20.85363 4641.311

1.0 79.36030 18.99215 0.6961684 0.01573879 24.93852 4730.848

10 79.36030 15.20582 0.2225064 0.01260105 35.66305 5039.961

∞ 79.36030 14.84971 0.0000000 0.01230594 36.88325 5158.792

whereM (D̃L − r)+ = (1200.248L − r)+ (r − 1001.55L)2
{
1.18791×10−5r

L2 − .01187542
L

}
− 7.91942×10−6

L2 (r − 1001.55L)3,Δp = .01 andΔC = 100. For the different values of
α, the optimal solutions are presented in Table 2. Through numerical solutions, we
have seen that as the back-order parameter α increases, the back-order rate decreases,
and with the decreases of back-order rates, the total cost increases. It is also observed
that the lead-time crashing cost increases as the length of the lead-time declines.

5 Conclusions

In this paper, we have proposed a fuzzy random continuous review inventory system
with a mixture of back-orders and lost sales. The model is developed under the
consideration that the order quantity, reorder point, back-order rate, and lead-time
are the decision variables. We have considered the negative exponential function of
lead-time and introduced a function of lead-time through an amount of shortages
for controlling the lead-time and back-order rate, respectively, in the fuzzy random
framework. We have considered the annual demand as a fuzzy random variable to
capture the fuzziness and randomness simultaneously. To quantify the imprecise
information, a budgetary constraint has been imposed on the model in the form of an
imprecise chance constraint.Wedeveloped amethodology for obtaining the optimum
decision-making variables in such a way that the total annual cost is minimized in the
fuzzy sense.Anumerical example has illustrated the proposedmethodology. In future
research on this model, it would be interesting to deal with imprecise probabilities.
On the other hand, a possible extension of this model can be achieved by inclusion
of the service-level constraint.
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