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On Love Wave Frequency Under the
Influence of Linearly Varying Shear
Moduli, Initial Stress, and Density
of Orthotropic Half-Space
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Abstract The present work studies Love wave propagation in an inhomogeneous
anisotropic layer superimposed over an inhomogeneous orthotropic half-space under
the influence of rigid boundary plane. The layer exhibits inhomogeneity which varies
quadraticallywith depth,whereas the half-space has inhomogeneity in the shearmod-
uli, density, and initial stresswhich varies linearly downward. The frequency equation
is deduced in the closed form. It has been found that the dispersion equation is a func-
tion of phase velocity, wave number, inhomogeneity parameters, and initial stress. To
analyze the result more profoundly, numerical simulation and graphical illustrations
have been effectuated to depict the pronounced impact of the affecting parameters on
the phase velocity of Love wave. As a special case, the procured dispersion relations
have been found in well agreement with the standard Love wave equation.

Keywords Love wave · Inhomogeneous · Orthotropic · Anisotropic
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1 Introduction

It is very interesting to study Love wave propagation in an anisotropic media because
the dispersion of seismic waves in anisotropic and orthotropic media is elementarily
different from their dispersion in isotropic media. As the crustal layer of earth and
mantle are not found to be homogeneous, it is very interesting to know the dispersion
pattern of Love wave in an inhomogeneous medium as is studied sufficiently by
Shearer [13]. It has been noticed that the propagation of Love wave is mostly affected
by the elastic properties and the characteristic of themediumwhich it travels through.
The earths’ mantle (half-space) contains some hard and soft rocks or materials that
may exhibit orthotropic property and porosity. In orthotropic medium, the thermal or
mechanical properties being unique and independent in three mutually perpendicular
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directions make it an interesting medium. These facts motivated us to investigate
further on Lovewave propagation where the bearing of linear variation in the rigidity,
density, and initial stresses can be studied. Destrade [5] studied in detail surface
waves in orthotropic being incompressible in nature, whereas Kumar and Rajeev
[11] analyzed the seismic wave motion to show the effect of voids at the boundary
surface of orthotropic thermoelastic material. Ahmed and Dahab [1] demonstrated
the remarkable effect of orthotropic granular layer on Love wave propagation, while
a clear picture has been explained by Kumar and Choudhury [10] about the behavior
and the response of orthotropic micropolar elastic medium via various sources.

Many problems in field of theoretical seismology are likely to be solved by demon-
strating the earth as a layered medium with certain finite thickness and mechanical
properties. An accurate and precise study on dispersion of elastic wave and its gen-
eration had been made by Chapman [4]. Propagation of surface seismic waves in
the earths’ crust due to its multiple applications in the field of geophysics, seismol-
ogy, and applied mathematics has always been the subject of discussion along with
various investigations. Vishwakarma et al. [14] demonstrated about the influence of
the rigid boundary playing on the Love wave propagation in the elastic layer with
void pores, while an interesting study made by Ke et al. [9] on Love wave dispersion
under the effect of linearly varying properties of an inhomogeneous fluid saturated
porous-layered half-space. In the theoretical study of seismic waves, mathematical
expression provides the bridge between modeling results and field application. The
propagation of elastic/seismic waves through the interior part of earth is governed
by mathematical laws similar to the laws of light waves in optics.

The propagation of surface seismic wave such as Love waves in various inho-
mogeneous media has importance in multiple branches of engineering and applied
science, like geophysics, seismology, earth science. Several studies have been carried
out to understand the propagation technique of seismic waves in the inhomogeneous
medium. Theories related to Love wave propagation in the anisotropic and inhomo-
geneous media have significant practical importance. It not only helps to investigate
the internal structure of the earth and exploration of natural resources buried in the
earths’ surface but also about the composition of several layers under immense stress
owing to different physical causes, i.e., presence of overlying layers, variation in tem-
perature and gravitational field. This wave disperses when the solid medium near the
surface has inhomogeneous elastic properties. Fortunately, Biot [2] developed the
incremental deformation theory for pre-stressed medium. Adapting the same theory,
earth being a spherical body with finite dimension, there exist remarkable influence
of earths’ crust on seismic surface waves. This phenomenon motivated us to inves-
tigate boundary waves or surface waves, i.e., waves that remain confined to certain
surfaces during their dispersion. The formulations, solutions, and numerical simula-
tions of many problems related to linear wave propagation for variety of geomedia
may be found in the work of Gupta et al. [7, 8].

However, no attempt has been made to show the influence of inhomogeneous or-
thotropic half-space under initial stress on Love wave propagation. Therefore, in the
present study, the half-space has been taken as inhomogeneous orthotropic medium
followed by an inhomogeneous anisotropic layer resting over it. The inhomogeneity
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taken in the orthotropic mantle varies linearly along depth down toward the cen-
tral core of the earth. This linear inhomogeneity has been taken in shear moduli,
density, and initial stress of the half-space whereas the layer exhibits a quadratic
variation in directional rigidities along horizontal and vertical direction and density.
Suitable boundary condition under the assumption of rigid boundary plane has been
considered and imposed on the displacement of the wave which have been found
for individual layers. The frequency equation (dispersion equation) has been derived
in closed form along with various particular cases. When all the inhomogeneities
vanish, the frequency equation reduces to a classical equation of Love wave given
by Love [12]. Numerical magnitude of the phase velocity has been calculated with
the help of values of the material constants given by Biot [2] from experiments, and
the effect of inhomogeneity parameter associated with directional rigidities, density,
and initial stress is discussed and demonstrated using graphs.

2 Statement of the Problem

The geometry of the problem consists of an inhomogeneous anisotropic earth crust
of finite thickness H resting over an inhomogeneous orthotropic half-space under
the influence of linearly varying initial stress. Cartesian coordinate system has been
employed with z-axis directed downwards and origin being at the interface where
crustal layer and half-space meet as shown in the 3D diagram of Fig. 1. The upper
boundary plane of the layer has been kept rigid where displacement of the wave
vanishes. The inhomogeneities considered in the layer are as follows:

N = N (1 + az)2 ,L = L (1 + az)2 , ρ = ρ (1 + az)2 (1)

where N and L are the values of directional rigidities along x and z directions and ρ
is the density at z = 0, a is called inhomogeneity parameter with dimension same as
that of inverse of length.

The inhomogeneities taken in the anisotropic half-space are

Q1 = Q1 (1 + αz) ,Q3 = Q3 (1 + βz) ,P = P (1 + γz) , ρ1 = ρ1 (1 + δz) (2)

where Q1, Q3, P, and ρ1 are shear moduli, initial stress, and density of the medium
at the interface z = 0 and α, β, γ, and δ are the inhomogeneity parameter associ-
ated with it having dimension equal to that of inverse length. Variation of rigidity,
density, and initial stress along the depth inside the earth effects the propagation of
seismic waves to a great extent. The inhomogeneity that exists is caused by variation
in rigidity and density. The crust region of our planet is composed of various inho-
mogeneous layers with different geological parameters. As pointed out by Bullen
[3], the density inside the earth varies at different rates with different layers within
the earth. He approximated density law inside the earth as a quadratic polynomial
in depth parameter for 413–984km depth. For depth from 984km to central core,
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Fig. 1 Three-dimensional geometry of the problem

Bullen approximated the density as a linear function of depth parameter, and hence
based on these theories, we have taken quadratic and linear variations.

3 Solution

3.1 Finding Displacement in Anisotropic
Inhomogeneous Layer

Let u1, v1 and w1 be the displacement components in the x, y, and z direction,
respectively. Starting from the general equation of motion and using the conventional
Love waves conditions, viz. u = 0,w = 0 and v = v1(x, z, t), the only y component.
Then, the equation of motion in the absence of body force can be written as Biot [2]

N
∂2v1

∂x2
+ ∂

∂z

(
L

∂v1

∂z

)
= ρ

∂2v1

∂t2
(3)

For a wave propagation along x-direction, we may assume

v1 = V (z)eik(x−ct) (4)

Using Eqs. (3) and (4) takes the form
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d2V

dz2
+ 1

L

dL

dZ

dV

dz
+ K2

L

(
c2ρ − N

)
V = 0 (5)

After putting V = V1
L in equation, we get

d2V1

dz2
− 1

2L

d2L

dz2
V1 + 1

4L2

(
dL

dz

)2

V1 + K2

L

(
c2ρ − N

)
V1 = 0 (6)

Using the inhomogeneity taken in Eqs. (1) and (6) changes to

d2V1

dz2
+ m2

1V1 = 0 (7)

where, m2
1 = K2

L

(
c2ρ − N

)
(8)

The solution of Eq. (7) may be assumed as

V1 = A1e
im1z + B1e

−im1z

Thus, Eq. (4), the displacement in the inhomogeneous anisotropic layer may be
taken as

v1 = A1eim1z + B1e−im1z

√
L (1 + az)

eiK(x−ct) (9)

3.2 Finding Displacement for Inhomogeneous Orthotropic
Half-Space

The half-space taken in the problem is inhomogeneous orthotropic in nature under
the influence of initial stress P along x direction as shown in Fig. 1. The system of
equation pertaining to wave motion when there is no body forces is given by Biot [2]

∂σ11
∂x

+ ∂σ12
∂y

+ ∂σ13
∂z

− P

(
∂wz

∂y
− ∂wy

∂z

)
= ρ1

∂2u2
∂t2

∂σ21
∂x

+ ∂σ22
∂y

+ ∂σ23
∂z

− P

(
∂wz

∂x

)
= ρ1

∂2v2

∂t2
,

∂σ31
∂x

+ ∂σ32
∂y

+ ∂σ33
∂z

− P

(
∂wy

∂x

)
= ρ1

∂2w2

∂t2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(10)

where u2, v2, and w2 are the displacement components while wx, wy, and wz are the
rotational components along x, y, and z direction. Here, σij are the incremental stress
components and ρ1 is the density of orthotropic medium. The relations between the
strain and the incremental stress components are
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σ11 = B11e11 + B12e22 + B13e33, σ12 = 2Q3e12, σ22 = B21e11 + B22e22 + B23e33
σ23 = 2Q1e23, σ33 = B31e11 + B32e22 + B33e33, σ31 = 2Q2e31

}

(11)

where Bij and Qi are the incremental normal elastic coefficients and shear moduli,
respectively. Here eij are the strain components, which is defined by

eij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, where i, j = 1, 2, 3.

Now, as per the characteristic of Love wave propagation, u2 = 0, w2 = 0, and
v2 = v2(x, z, t). Also, the inhomogeneity taken in Eq. (2) in Eq. (10) reduces to

Q3 (1 + βz)
∂2v2

∂x2
+ Q1α

∂2v2

∂z2
+ Q1 (1 + αz)

∂2v2

∂z2
− P

2
(1 + γz)

∂2v2

∂x2
= ρ1 (1 + δz)

∂2v2

∂t2
(12)

We may now use separation of variable, i.e., v2 = V2 (z) eik(x−ct), where k is the
wave number and c is the phase velocity. Eq. (12) may now be written as

d2V2

dz2
+ α

(1 + αz)

dV2

dz
+ k2

{
A1

(1 + γz)

(1 + αz)
+ A2

(1 + δz)

(1 + αz)
− A3

(1 + βz)

(1 + αz)

}
V2 = 0

(13)

where, A1 = P

2Q1

, A2 = c2

c21
, A3 = Q3

Q1

, c21 = Q1

ρ1
(14)

Now, substituting V2 = ψ(z)
(1+αz)1/2

in Eq. (13) to eliminate dV2
dz , we get

d2ψ

dz2
+ k2

{
A1

(1 + γz)

(1 + αz)
+ A2

(1 + δz)

(1 + αz)
− A3

(1 + βz)

(1 + αz)
+ 1

4

(a
k

)2 1

(1 + αz)2

}
ψ = 0

(15)

Putting n = 2 (1 + αz)
(
k
α

)√
A3

(
β
α

)
− A1

( γ
α

)− A2
(

δ
α

)
, we will get

d2ψ

dη2
+
(

1

4η2
+ R

η
− 1

4

)
ψ = 0 (16)

where, R = 1
2

(
k
α

) {
A3

(
β
α

)
− A1

( γ
α

)+ A2
(

δ
α

)} 1
2

{
A1
( γ

α
− 1
)+ A2

(
δ
α

− 1
)+ A3

(
1 − β

α

)}
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Equation (16) is a well-known Whittakers’ equation, and the solution of which
can be written as

ψ = A2WR,0 (η) + B2W−R,0 (−η)

where WR,0 (η) is Whittakers’ function and the general expansion of WR,m (η) may
be written as Whittaker and Watson [15]

WR,m (η) = e− η
2 .Rη

⎡
⎣1 +

{
m2 − (R − 1

2

)2}
1!z +

{
m2 − (R − 1

2

)2} {
m2 − (R − 3

2

)2}
2!z2 + . . .

⎤
⎦
(17)

Thus, the displacement in inhomogeneous orthotropic half-space becomes

v2 =
{
A2WR,0 (η) + B2W−R,0 (−η)

}
(1 + αz)

1
2

eik(x−ct) (18)

But, as we go down deep toward the center of earth, the displacement vanishes,
i.e, as z → ∞, ν2 → 0, and therefore, the displacement in Eq. (18) reduces to

v2 = A2WR,0 (η)

(1 + αz)
1
2

eik(x−ct) (19)

4 Boundary Conditions and Dispersion Equation

(1) Due to the presence of rigid boundary plane at Z = −H , the displacement van-
ishes

v1 = 0 at z = −H (20a)

(2) Displacement being continuous at the interface implies that

v1 = v2 at z = 0 (20b)

(3) At the contact plane z = 0, the continuity of the stress requires that

L
∂v1

∂z
= Q1

∂v2

∂z
at z = 0 (20c)

Using the above boundary conditions one by one, and eliminating the arbitrary
constants A1, B1, and A2 for nontrivial solution, we will have the following determi-
nant.
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∣∣∣∣∣∣∣∣∣∣∣

e−im1H eim1H 0

1√
L

1√
L

−WR,0 (η)

√
L (im1 − a) −

√
L (im1 + a) −Q1

[
∂WR,0(η)

∂η
.
dη
dz

]
z=0

∣∣∣∣∣∣∣∣∣∣∣
= 0 (21)

Expanding the above determinant, we get the following:

cot(m1H ) =
(

a

m1

)(
1 + 2

(
Q1

L

)(
k

a

){
A3

(
β

α

)
− A1

(γ

α

)
− A2

(
δ

α

)}1/2)

[
−1

2
+ R

η
+ (R − 0.5)2

η2

{
1 − (R − 0.5)2

η

}−1
]

Substituting the value of m1 in the above expansion, it reduces to

cot

⎛
⎝kH

√√√√c2

c20
− N

L

⎞
⎠ =

(
1 + 2

(
Q1

L

)(
k

a

){
A3

(
β

α

)
− A1

( γ

α

)
− A2

(
δ

α

)}1/2)

⎡
⎣−1

2
+ R

η
+ (R − 0.5)2

η2

{
1 − (R − 0.5)2

η

}−1
⎤
⎦
⎛
⎝a

k

(
c2

c20
− N

L

)−1/2
⎞
⎠
(22)

where c20 = L
ρ
.

Equation (22) is the required frequency equation of Love wave propagation in an
inhomogeneous anisotropic layer resting over an inhomogeneous orthotropic medi-
um with rigid boundary plane at the top. We find that Eq. (22) is a function of

dimensionless phase velocity
(
c2

c20

)
, dimensionless wave number kH along with the

inhomogeneity parameters m, α, γ, and δ associated with the rigidities, densities,
and initial stress of the medium taken in to consideration.
Particular Case:
Case-I:When there is no inhomogeneity in the layer a → 0, then Eq. (22) reduces to

cot

⎛
⎝kH

√√√√c2

c20
− N

L

⎞
⎠ = 2

(
Q1

L

){
A3

(
β

α

)
− A1

( γ

α

)
− A2

(
δ

α

)}1/2

⎡
⎣−1

2
+ R

η
+ (R − 0.5)2

η2

{
1 − (R − 0.5)2

η

}−1
⎤
⎦
(
c2

c20
− N

L

)−1/2

which is the frequency equation of Love wave in a homogeneous anisotropic layer
over inhomogeneous orthotropic half-space.
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Case-II:When the half-space is stress-free, i.e., P → 0, then Eq. (22) becomes

cot

⎛
⎝kH

√√√√ c2

c20
− N

L

⎞
⎠ =

(
1 + 2

(
Q1

L

)(
k

a

){
A3

(
β

α

)
− A2

(
δ

α

)}1/2)

⎡
⎣− 1

2
+ R

η
+ (R − 0.5)2

η2

{
1 − (R − 0.5)2

η

}−1
⎤
⎦
⎛
⎝a

k

(
c2

c20
− N

L

)−1/2
⎞
⎠ ,

which is the frequency equation of Lovewave in an inhomogeneous anisotropic layer
resting over inhomogeneous orthotropic half-space with no initial stress.
Case-III:When N = L, Q1 = Q2, a → 0, α → 0, β → 0, δ → 0 and P → 0, then
the frequency Eq. (22) becomes

cot

(
kH

√
c2

c20
− 1

)
= Q1

L

√
c2

c21
− 1√

c2

c20
− 1

which is the standard classical dispersion equation of Love wave given by Love [12]
and therefore validated the solution of the problem discussed.

5 Numerical Computations, Graphs, and Discussion

In order to illustrate the theoretical results obtained in the preceding sections, the data
havebeen fetched fromGubbins [6] to studygraphically the impact of inhomogeneity,
rigid boundary, and the various elastic constants on the propagation of Love wave
using frequency equation as obtained in Eq. (22). We will use the asymptotic linear
expansion of Whittakers’ function as given in Eq. (17). In all the graphs, horizontal
axis has been taken as dimensionless wave number kH while vertical axis has been

taken as dimensionless phase velocity
(

c
c0

)2
. Numerical values taken are as follows:

1. Inhomogeneous anisotropic layer: N = 7.34 × 1010N/m2, L = 5.98 × 1010

N/m2N/m2, ρ = 3195 kg/m3

2. Inhomogeneous orthotropic half-space:Q1 = 5.82 × 1010N/m2, Q3 = 3.99 ×
1010N/m2, ρ1 = 4500 kg/m3

Figure2 reflects the effect of inhomogeneity parameter
(
a
k

)
associated with the

directional rigidities and density in the anisotropic layer. The value of
(
a
k

)
for curve

no.1, curve no. 2, curve no. 3, and curve no. 4 has been taken as 0.1, 0.3, 0.5, and 0.7,
respectively, whereas the value of P

2Q
, α
k ,

β
k ,

γ
k and δ

k are 0.2, 0.1, 0.2, 0.2, and 0.1,
respectively. The following observations and effects are obtained under the above
considered values.
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Fig. 2 Variation of dimensionless phase velocity against dimensionless wave number for different

values of (m/k) when P
2Q1

= 0.2, α
k = 0.1, β

k = 0.2, γ
k = 0.2, δ

k = 0.1

2a. The phase velocity decreases as the wave number increases for all the values of(
a
k

)
.

2b. While at a particular wave number as the value of
(
a
k

)
increases from 0.1 to 0.7,

the phase velocity decreases.
2c. Toward low wave number, the curves seem accumulating which reveals that the

phase velocity remains unaffected as inhomogeneity changes.
2d. Toward higher wave number, the phase velocity decreases gradually, whereas it

decreases rapidly for low wave number.
2e. Seeing the pattern of the curve, we can claim that the inhomogeneity present in

the layer bears a remarkable effect on the phase velocity of Love wave.

Figure 3 has been drawn to analyze the bearing of dimensionless inhomogeneity
parameter

(
α
k

)
on the phase velocity of Love wave. Curve no. 1 has been plotted

for α
k = 0.2, curve no. 2 for α

k = 0.4, curve no. 3 for α
k = 0.6 and curve no. 4 for

α
k = 0.8. The value of P

2Q
, a
k ,

β
k ,

γ
k and δ

k are 0.2, 0.1, 0.2, 0.2, and 0.1, respectively.
The following results are obtained.

3a. The pattern of curves obtained here is quite similar to one obtained in Fig. 2.
3b. As the magnitude of

(
α
k

)
increases from 0.2 to 0.8, the phase velocity decreases

at a fixed wave number.
3c. Curves being equally apart, a periodic effect of inhomogeneity parameter β

k may
be found throughout the figure.

Figure 4describes the influenceof inhomogeneity parameter
(

β
k

)
for its increasing

magnitude from 0.1 to 0.4 for curve no. 1–4. The following observations and effects
are found.
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Fig. 3 Variation of dimensionless phase velocity against dimensionless wave number for different

values of (α/k) when P
2Q1

= 0.2, a
k = 0.1, β

k = 0.2, γ
k = 0.2, δ

k = 0.1

Fig. 4 Variation of dimensionless phase velocity against dimensionless wave number for different

value of (β/k) when P
2Q1

= 0.2, a
k = 0.1, α

k = 0.1, γ
k = 0.2, δ

k = 0.1
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Fig. 5 Variation of dimensionless phase velocity against dimensionless wave number for different

value of (γ/k) when P
2Q1

= 0.2, a
k = 0.1, α

k = 0.1, γ
k = 0.2, δ

k = 0.1

4a. Unlike Figs. 2 and 3, the phase velocity increases for the increases in the inho-

mogeneity parameter
(

β
k

)
associated with shear Modulus Q3.

4b. The curves are becoming closer as the magnitude of
(

β
k

)
increases.

4c. The impact of the inhomogeneity is more pronounced for its least value.
4d. It can also be said that phase velocity may attain a constant magnitude as the

inhomogeneity increases further.

Figure5 illustrates a clear picture of the variation of phase velocity against wave
number when initial stress in the half-space increases. Curves have been plotted for
γ
k equals to 0.2, 0.4, 0.6, and 0.8 for curve no. 1, curve no. 2, curve no. 3, and curve

no. 4, respectively. The values of other parameter such as P
2Q
, a
k ,

α
k ,

β
k ,

γ
k , and

δ
k have

been taken as 0.2, 0.1, 0.1, 0.2, 0.1. We can enlist the following points about Fig. 5.

5a. The pattern is similar to some extent as that of one obtained in Fig. 4.
5b. Here the phase velocity diminishes as the magnitude of the inhomogeneity pa-

rameter linked with initial stress increases.
5c. The phase velocity for curve no. 3 and curve no. 4 is restricted upto to kH = 3.5

and kH = 2, respectively, thereby showing a significant effect of inhomogeneity
in the half-space.

In Fig. 6, attempt has beenmade to show the influence of inhomogeneity parameter
δ
k present in the density of the orthotropic half-space. We find that

6a. there is an decrement in the magnitude of phase velocity as the wave number
diminishes for all the values of δ

k .
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Fig. 6 Variation of dimensionless phase velocity against dimensionless wave number for different

value of (δ/k) when P
2Q1

= 0.2, a
k = 0.1, α

k = 0.1, β
k = 0.2, γ

k = 0.2

Fig. 7 Variation of dimensionless phase velocity against dimensionless wave number for different

values of compressive initial stress
(

P
2Q1

> 0
)
when a

k = 0.1, α
k = 0.1, β

k = 0.2, γ
k = 0.0, δ

k = 0.1
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6b. At a particular wave number, the phase velocity also decreases for the increasing
magnitude of inhomogeneity parameter in the density of orthotropic medium.

6c. When the phase velocity is least, the curves appearing closer to each other at
high wave number showing a prominent effect of inhomogeneity parameter δ

k .

Figure7 depicts the impact of initial stress P
2Q1

when γ
k = 0 shows the effect of

compressive initial stress
(

P
2Q1

> 0
)
on the phase velocity of Love wave propagating

in an inhomogeneous anisotropic layer. It has been observed that as the magnitude
of compressive initial stress becomes larger, the phase velocity decreases while it
increases as the tensile stress increases.

6 Conclusion

Propagation of Love waves in an inhomogeneous anisotropic layer resting over an
inhomogeneous orthotropic half-spacewith linearly varying inhomogeneity has been
studied in details. Solutions in terms of displacement of the wave in the layer and
half-space have been derived separately. We have used asymptotic linear expansion
of Whittakers’ function and obtained the dispersion relation (frequency equation) in
compact form. Numerical investigations have been made on phase velocity against
wave number and the effect of each one of the linearly varying inhomogeneity param-
eters associated with anisotropic layer and orthotropic half-space has been studied
and discussed in detail. We observed that

I. Under the assumed condition, phase velocity
(

c
c0

)2
increases with decrease in

dimensionless wave number.
II. The phase velocity of Love wave decreases as the inhomogeneity parameter

(
a
k

)
associated with directional rigidity and density of the layer increases.

III. The increasing magnitude of β
k increases the phase velocity whereas α

k ,
γ
k and δ

k
decreases the phase velocity as it increases.

IV. At a fixed wave number, the increasing value of compressive initial stress(
P

2Q1
> 0
)
decreases the velocity while increasing tensile stress

(
P

2Q1
> 0
)
in-

creases.
V. In the absence of all inhomogeneity and initial stress, the dispersion equation

turns into the classical form of equation of Love wave and therefore revealing
the validation of current work.

The consequences of the present study gives a theoretical framework for the adopt-
ed model, which may likely to be utilized to collect, investigate, and recognize the
propagation pattern Love wave propagation in anisotropic layer over orthotropic
half-space, which may further help in accessing the resources buried inside the earth
such oils, gases, minerals, deposits, and other useful hydrocarbons. Apart from these,
the outcomes of the present studymay also be used widely in the design and develop-
ment of heavy civil construction projects involving steel structures, disaster-resistant
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buildings, bridge, and towers, etc. Precisely the study may also be useful in the inter-
departmental fields like rock mechanics, soil mechanics, geotechnical engineering,
and applied science.
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