
Chapter 9
Future of Neural Interfaces

Farah Laiwalla and Arto Nurmikko

Abstract The technological ability to capture electrophysiological activity of
populations of cortical neurons through chronic implantable devices has led to
significant advancements in the field of brain-computer interfaces. Recent progress
in the field has been driven by developments in integrated microelectronics, wireless
communications, materials science, and computational neuroscience. Here, we
review major device development landmarks in the arena of neural interfaces from
FDA-approved clinical systems to prototype head-mounted and fully implantable
wireless systems for multi-channel neural recording. Additionally, we provide an
outlook toward next-generation, highly miniaturized technologies for minimally
invasive, vastly parallel neural interfaces for naturalistic, closed-loop
neuroprostheses.

Keywords Brain-computer interfaces · Wireless neural interfaces · Spatially
distributed neural sensors · Neuroprostheses

9.1 Overview: Where We Are Now

This volume contains many illustrative examples of the early development and
specific applications, across a spectrum of contemporary techniques, whereby direct
electronic access to brain circuits, primarily from/to the neocortex, offers opportu-
nities for basic brain science, emergence of medical devices for assisting and/or
correcting neurological deficits, as well as discovering potential device-based ther-
apies as an alternative to pharmaceuticals. The emergence of electronic neural
interfaces, in particular, reflects outcomes of worldwide multidisciplinary work
over the past two decades whereby device engineering, neuroscience, and clinical
needs have met at the intersection of fundamental and applied brain science. Here,
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we consider progress—and challenges ahead—for the development of brain-
computer interfaces for neural prostheses. We narrow the focus to cortical brain-
computer interfaces (BCI) in offering a subjective view of future assistive technol-
ogies, particularly those applicable to severe neurological injury to the motor system
such as in case of paralysis from neuromotor diseases, stroke, or spinal cord injury.
To gain a broader perspective, the reader is referred elsewhere for reviews of neural
interfaces including those which engage deeper brain structures such as deep brain
stimulation (DBS) which has reached medical device maturity in widespread treat-
ment of, e.g., Parkinsonian disorder [33]. The DBS technology is one example of
neuromodulation application of electrical stimulation; many other approved electri-
cal stimulation-based medical devices are also in widespread clinical use, such as
spinal cord treatment for chronic pain.

When compared to maturity of the DBS-like neuromodulation technologies,
and leaving questions about their therapeutic efficacy to clinicians, cortical BCIs
are still at relative infancy, limited at this writing to perhaps up to a dozen human
pilot trials worldwide. The fundamental challenges are, in our opinion, consider-
ably more difficult than devices which deploy electrical stimulation from a handful
of electrodes near/at the anatomical central or peripheral nervous system target. In
particular, for BCIs, one must be able to record cortical circuit activity at sufficient
level of detail and then decode typically many parallel channels of electrophysio-
logical activity (action potentials, field potentials, etc.). The decoding, in turn, for
essentially reconstructing cortical network activity in a predictive context requires
sophisticated computational models and tools to decipher, e.g., a subject’s inten-
tion to move a limb.

One set of illustrative examples of progress is from research where intracortical
microelectrode arrays (MEA) are used to record population dynamics from (<1 cm2

area) cortical patches at single neuron-level and subsequent application of stochastic
state-space dynamical models to decode, e.g., movement planning intention of a
subject. The genesis and progress have been well documented in a number of review
articles and book chapters. Suffice it to say here that from early discoveries in
non-human primates [9, 21, 30, 51], the adaptation of these methods has enabled
tetraplegic subjects to control communication devices and electromechanical
devices such as robotic arms and hands [3, 13, 22, 23, 46, 52]. The cortical locations
where such recordings are made have typically involved primary and/or premotor
and parietal areas where, e.g., direction and velocity tuning is distinctly encoded in
subsets of neurons. While specific tuning properties of neurons can be helpful across
a population which is part of an interconnected network with manifolds of internal
state representation (e.g., motor and visual cortices), new decoding techniques are
emerging using, e.g., deep learning methods, where presence of such tuning prop-
erties is not necessary for successful decoding.

While it follows from biophysical fundamentals that intracortical probes with
their inherently single-neuron space-time resolution offer the most direct means to
communicate with neuronal populations and their associate networks, they are by no
means the only, and not always necessary, requirement for building electronic neural
interfaces for prosthetic and other assistive use. As shown elsewhere in this volume,
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whether scalp-based (EEG) electrode arrays [36], epidural or subdural
electrocorticography (ECoG) [34, 50], peripheral nerves, or elsewhere, there are
multiple means to acquire meaningful control signals for assistive use. Broadly, for
any assistive medical technology, the overall cost-to-benefit calculations must weigh
in many factors: engineering and technological complexity, required medical pro-
cedures (such as surgery), safety and reliability—and above all, the level of required
performance of the neural interface from the user’s point of view.

This chapter examines electrophysiological BCIs only. While the brain is an
electrical (electrochemical) biological machine with remarkable level of perfor-
mance (e.g., per Watt of metabolic power) and lends itself readily to electrophysi-
ology, active research is being pursued to search for neural interfaces relying on
recording/stimulation modalities which range from optical to acoustic (ultrasound),
to magnetic to chemical modalities, and combinations thereof. Time will tell if these
alternative biophysical agents/modalities can compete or augment the direct electri-
cal/electronic approaches.

We summarize in Sect. 2 some recent progress where innovation of wireless
neural interfaces can now be envisioned to enable mobile BCIs, for untethered
movement of subjects. In Sect. 3, we peek into the early ambitious efforts to develop
very large-scale neural recording and microstimulation systems where scaling the
electrophysiological access to, say, thousands of cortical points requires entirely new
ways of approaching the problem, from developing new types of neural probes to
re-examining systems level neuroengineering concepts.

9.2 Examples of State-of-the-Art Electronic Brain
Interfaces

From a systems level perspective, a brain-computer interface may be broadly
partitioned into (i) the physical neural probe (electrodes), (ii) an electronic custom
integrated circuit (IC) core for signal acquistion, (iii) the (generally noisy) signal
conditioning and telemetry, and (iv) the computing modules with dedicated back-
end hardware embedding computational algorithms specific to the neural decoding
task. The last decade has seen significant advances in each of these areas, even if a
challenging road still lies ahead to meet the overarching goal of developing versatile
BCI systems that can adaptively engage with the underlying non-stationary neural
circuits in a closed-loop fashion, while compatible with long-term chronic implan-
tation of neural probes in a (future) mobile subject without eliciting significant
immune response.

The fundamental challenges of chronic intracortical or deep-brain neural probe
design are manyfold. First, it is arguably desirable that the spatial scale and density of
microscale probes reach close to single neuron resolution (say, ~20–100 μm electrode
proximity for a layer V pyramidal neural cell body). Second, the probe material in
direct electrical contact with tissue must enable high signal to noise ratio (SNR)
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recordings and high-charge-density biphasic microstimulation (the latter being critical
for eventual fully closed-loop BCIs) while maintaining designed form factor (rigidity,
etc.) and microscale surface characteristics that hopefully limit unavoidable immuno-
logic response. There have been multiple recent reports of successful refinement of
electrode microfabrication methodologies to yield, for example, high-density surface
ECoG electrodes [26, 49], as well as penetrating 3-D probes [40] approaching an
electrode pitch of tens of microns for high-density neural sampling. In contrast to
traditional epi and intracortical approaches, Oxley et al. [37] have described a mini-
mally invasive intravascular approach for the placement of a “stentrode” in cortical
veins to access neural information at high spatial resolution (where the latter approach
is currently being commercialized by Synchron med). Meanwhile, material science
research has provided several promising candidates for the integration of next-
generation BCI probes in addition to established work horses of Pt and IrOx, from
silicon-carbide [15, 16], carbon nanotubes [12], nanoelectronic threads [32] to hybrids
of conductive polymers like poly(3,4-ethylenedioxythiophene) (PEDOT) [10, 11,
27]. Success of optical techniques such as optogenetics has led to the development
of hybrid probes integrating, for example, optical stimulation and electronic recording
onto the same intracortical platform [22, 28, 45], where the latter target closed-loop
hybrid optoelectronic BCIs in rodents and non-human primates. Successful
transitioning of these novel experimental probe technologies for a chronic implantable
BCI is the next major challenge and goal.

The electronic core of a BCI system invariably includes signal amplifiers, condi-
tioning (filters) and dedicated analog-to-digital neural signal conversion. A number
of groups worldwide have been developing custom IC solutions for low-power and
low-noise neural signal acquisition, particularly focusing on channel scalability
(from a handful to >100) and ease of physical integration with the typically mono-
lithic multi-element neural probe. While it is not possible to review these develop-
ments exhaustively here, we highlight one recent work, namely, the “Neuropixel”
probe system where up to 1356 recording channels were microfabricated within one
silicon shank with integrated CMOS signal preconditioning [25, 39]. Systems such
as these which allow high-resolution, sub-acute (up to a few months) of robust,
wired access to the brain are instrumental in driving neuroscientific knowledge
forward, yet are limited for translational chronic use by the complex percutaneous
connectors in terms of full subcutaneous implantation. In general, adding a wireless
telecommunication capability to neural probes defines one crucial need to extend the
utility of these methods to freely moving animals and clinical applications.

9.2.1 BCI Going Wireless: General Considerations

In designing wireless neural interfaces, it is important to consider the requirements
and constraints in the full ecosystem context. Relevant questions to ask up front
might include, e.g., how a given intracortical MEA or subdural ECoG array may be
interfaced with the electronic payload, the latter now located within the hermetically
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sealed envelope of the wireless device system. A key question is where within or on
the body will the electronics package locate. We start with the design where the
system electronics are configured as a head-mounted compact package whereby
percutaneous/transcranial connectorization from, e.g., an MEA, is required. One
rationale for this configuration as a starting choice on the wireless path is that
silicon-based commercial intracortical MEAs are now widely available with a
variety of channel counts compatible with small-animal (rodent) as well as
non-human and human primate models, including reasonable chronic robustness
demonstrated in clinical trials.

Given that contemporary intracortical (or subdual ECoG) sensor arrays typically
sample on the order of 100 nodes (single neurons for MEAs, summated field
potentials for ECoGs), it is remarkable how such pronounced under-sampling of
neuronal population can be successful in enabling subjects to control, e.g., a robotic
hand/arm with multiple degrees of freedom of motion. The good news is that
this limited amount of neural data sets not unreasonable requirements for wireless
telemetry. As also noted elsewhere in this volume, much credit to BCI development
must be assigned to (scalable) sophisticated statistical models of neuronal dynamics
which have produced powerful algorithms for effective decoding of, e.g., patient’s
movement intention, from this under-sampled pool of “noisy” brain signals, for real-
time assistive device use. Since the “noise” typically hides valuable neural informa-
tion, it is important that the signal fidelity of a wireless link be maintained (use of
data compression techniques must thus be approached judiciously). The wire-
less neural population data provides direct inputs to the neuro-computational
decoding models. There are numerous approaches to neural decoding; one
representative example is state-space dynamical modeling, which distils
multidimensional neural data (spikes and field potentials) to lower dimensional
cortical state representation, suitable for interpretation both by visualization
(graphics algorithms), as well as for prosthetic use through forwarding the outputs
to assistive electronic devices (e.g., direct cortically operated laptops). The role of
machine learning applied to neural decoding and encoding is a rapidly evolving new
area of computational neuroscience, with very promising preliminary results sug-
gestive of significant performance and efficiency benefits for real-time BCIs. We
bypass the field of neural decoding/encoding in this article and refer the reader to the
rich literature, which by now exists for this topic.

From a generic system level view, a fully wired BCI instrumentation collects the
raw neural (multi-channel) data via multi-wire cables into electronic neural signal
processors (composed of combinations of analog and digital electronics). The
digitized data is fed to computers where even today’s desktop machines have enough
on-board processing power to carry out much of neural decoding to run a simple set
of assistive devices. Figure 9.1 shows a block diagram of the basic electronic
ecosystem which is more or less common to most (non-human and human) primate
researchers in the field.

The next level of significance in advancing this type of electronic brain interface
neurotechnology (even if still in early days) is to “untether the patient” by engineer-
ing direct wireless access to neural probes such as depicted in Fig. 9.2. While for
external body wearable biosensors (whether EEG, EKG, etc.), the transition to a
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Fig. 9.1 A block diagram view of a multi-channel neural recording system for brain-computer
interface applications. Multi-channel implantable microelectrode arrays are connectorized using
wire bundles, and external cabled electronics and computers are used for signal acquisition and
processing

Fig. 9.2 Block diagram and representative device view of a head-mounted wireless neural record-
ing system [55]. Integrated microelectronics are placed within a compact package powered by a
replaceable Li-ion battery
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wireless system for enhancing subject’s mobility is already possible by adapting any
number of wireless electronics developed in the past decade for consumer and
industrial use, the situation for implanted wireless BCIs poses a number of chal-
lenges. These include the following which must be designed and ultimately inte-
grated seamlessly into one viable medical grade implant device system:

• Very low-power and high-fidelity analog and digital (custom) application specific
integrated circuits (ASICs) for broadband (spikes, field potentials) neural signal
acquisition and electrical microstimulation.

• Very low-power radio frequency transmitter capable of high data rate transmis-
sion (~100 MBits/s and beyond), custom designed as an integrated circuit (“RF
ASIC”).

• Connectorization of the multi-element neural probe front-end (such as one or
more MEAs) to and integration with the on-board ASICs.

• Packaging the electronics within a compact housing which is hermetically viable
for long-term chronic use.

• Designing external RF receivers which capture the wirelessly emitted, digitally-
encoded signals for inputs to computational devices for decoding.

• Strategy for powering the implant electronics (internal battery or RF inductive
coupling by external coils).

These engineering challenges are further bound by the first priority in any medical
device candidate—safety—which overrides even the main functional claim of the
device, here the neurotechnological performance. In the wireless device system
which we use here as an example (from our laboratories), safety has multiple
components such as (and revisited further below):

• Electrical safety: the electrical energy required by the active ASICs in the implant
must have zero accidental probability of discharging into the body/brain tissue.

• Mechanical safety: if the implant unit locates, for example, in the subject’s head,
the packaging of the electronics must be correspondingly impact-proof.

• Chemical safety: the hermetic sealing of the electronics package must ensure that
there is no leakage of toxic or other chemically harmful materials into tissue.

• Thermal safety: ensure that maximum temperature, e.g., in the subcutaneous
vicinity of the implant during operation (or recharging batteries), does not exceed
ΔT < 2.0 �C and that corresponding temperature rise in the cortical space are kept
at ΔT < 0.1 �C.

• Electromagnetic (EM) safety: RF (or similar wireless) signal and power trans-
mission of the device are secure, and are not susceptible to external EM interfer-
ence by ambient RF traffic and vice versa.

Most of these requirements follow the footsteps of established protocols, such as
those for pacemakers or cochlear implants for human use, thereby mirroring
established regulatory guidelines determined by FDA in the USA. We note, how-
ever, that at the frontiers of neurotechnology such as discussed in this volume, the
device systems involve considerably complex electronics and require orders of
magnitude larger wireless data rates so that early discussions by the technology
developers with regulatory agencies is very important.
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A number of neurotechnology research groups have developed compact, exter-
nally head-mounted wireless neural recording systems as the first step, whereby this
approach has allowed leveraging commercially available microelectronics for the
development of proof-of-concept wireless BCI systems. Among some of the earliest
innovation in this arena, a set of contributions came from the Shenoy group at
Stanford. This team has built a series of incrementally sophisticated “Hermes” series
of wireless neural recording platforms [12, 19, 30, 38] beginning from a two-channel
Hermes-B [41] to a 96-channel battery-operated Hermes-E [17]. In the laboratories
of the authors of this chapter, we have similarly developed an external battery-
operated, 96-channel broadband neural recording system, featuring custom ICs for
neural signal capture and conditioning as well as a dedicated RF IC for 3.5 GHz
short-range (~4 m), very-low power wireless transmission with a net power con-
sumption of 61.2 mW [55]. The latter is now a licensed technology which is
commercially available, allowing animal researchers to conduct studies on freely
moving animals, for example in the context of foraging and naturalistic locomotion.

In addition to the systems level achievements highlighted above, new research
is particularly focused at pushing the limits of microelectronic technology to attain
improved performance for wireless neural recording with ever-shrinking power
budgets. This research extends from subsystems utilizing commercial technologies
such as UWB radios, WiFi, and Zigbee to highly optimized low-power integrated
approaches. For example, a 4096 channel multiplexed ECoG recording chip with
64-channel amplifiers and 5.12 Mbps data rata, transmitted at 7.8 GHz using UWB
radio has been described by Ando et al. [2] with a net power consumption of
1400 mW. Schwarz et al. [42] similarly describe a 128-channel head-mounted
system working with microwire array implants, but now integrating the capability
for on-board neural signal processing and bidirectional communications with a
power consumption of 264 mW, or ~2 mW per channel. Several other groups have
described multi-channel ASICs with sub-milliwatt power consumptions per chan-
nel while representing various trade-offs between signal compression and power
budgets [5, 8]. Finally, multi-modal sensing and stimulation, for example, inte-
grating dopamine sensing and electrical stimulation alongside electrical neural
recording [7, 22], and approaches incorporating optogenetic approaches, are
increasingly building a niche in the BCI component level landscape which is
anticipated to grow significantly in future.

9.2.2 Fully Implanted Wireless Devices—A Case Example

The development of head-mounted and other outside-body wireless neural record-
ing systems has provided a new BCI tool for neuroscience research by enabling
more complex and naturalistic animal experiments. However, the need for a
percutaneous connection still poses a limitation for BCI use of these systems, in
particular, limiting their translation into the human/clinical BCI domain. In con-
sidering the bridge from a head-mounted to a fully implanted wireless neural
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interface device system, we reiterate key challenges which have to be addressed,
typically through extensive animal testing and performance validation:

• Implantation of the system’s electronic components within the body in a hermet-
ically encapsulated unit, and choice for the anatomical location of this payload
relative to the actual neural probes, where the electronic package has a form factor
compatible with subcutaneous placement, for example, in the epicranial space.

• ASIC design and optimization for ultra-low power, consistent with thermal safety
guidelines defined by FDA for active brain implants (maximum of 0.5 �C incre-
ment in tissue temperature). Extensive thermal simulations and metrology of
implants in animal models are typically required.

• Implant power management (rechargeable batteries or continuous inductive cou-
pling) and transcutaneous wireless communication, mitigating the impact of
tissue RF absorption, and keeping within the specific absorption rate (SAR) limits
prescribed by IEEE Std C95.1–2005.

The basic microelectronic building blocks of a fully implantable neural interface
system are nearly identical to those described in previous sections; the caveat is that
now the spatial scale and performance metrics and requirements (such as those listed
above) for a fully implantable device are far more stringent. As the case example for
this chapter, the authors’ labs have developed a 100-channel hermetically-sealed, fully
implantable broadband wireless neural recording system utilizing a 100-channel
neural amplifier ASIC, 12-bit SAR ADCs, and a custom RF transmitter IC. The
components mirror those developed for the head-mounted system described previ-
ously, but now focus on a system architecture with a titanium (Ti)-based hermetic
enclosure. The Ti-enclosure has been equipped with a sapphire window to provide full
electromagnetic transparency for wireless charging and telecommunications. Further,
a custom planar interconnect interface has been built to feed the 100 microwires from
the intracortical MEA to the active electronics via multi-channel custom high-density
hermetic feedthroughs as shown in Fig. 9.3 [6]. In keeping with the need for further

Fig. 9.3 A fully implantable wireless device for neural recording using titanium hermetic enclo-
sure, ceramic feedthroughs, and a sapphire window for broadband wireless communication. Device
is powered using a rechargeable Li-ion battery, with multi-hour operation between recharges
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electronic integration, there have been several recent efforts to develop system on chip
electronics (SoC), where a single chip solution provides neural recording in conjunc-
tion with wireless charging, compressive sensing or spike detection, electrical stimu-
lation and bidirectional telecommunications [4, 31, 36]. These advancements are
important elements for the further development of fully-implantable systems, but the
most critical current bottle-neck for these devices is the availability of scalable
hermetic packaging solutions. Hermetic sealing approaches being further studied
include ceramic, metallic, or thin-film materials, among others. In addition to the
materials choice, a major engineering challenge is to microfabricate the large number
of electrical “feedthroughs” without compromising the hermeticity of the implant.

9.3 New Horizons: Large-Scale Neural Interfaces to 10,000
Nodes and Beyond

There has been significant progress in enhancing and maintaining neural access
through dense-electrode arrays and biocompatible surface modifications as
described in previous sections, yet the scalability of practical neural interfaces to
orders of magnitude higher numbers of recording and/or stimulating nodes (thou-
sands and tens of thousands) remains a persistent challenge. As we move from the
realm of highly controlled, experimental BCIs to more naturalistic, deployable
systems, neural task complexity (NTC) is expected to grow. To gauge the expected
number of microelectrode sites with increasing NTC, Gao et al. [18] have postulated
that neural decoding would be critically dependent on access to significantly higher
numbers of neurons at high densities, ideally from an anatomically diverse neural
population. Figure 9.4 represents the outcome from a high-dimensionality neural
state-space dynamical theoretical model. Current monolithic multi-electrode con-
structs are, in our view, inherently incompatible with large-scale implementations of
BCIs due to a variety of anatomical and fabrication constraints. For example,

Fig. 9.4 A dimensionality frontier in motor cortical data. Allowed possibilities of dimensionality D
and neural task complexity, NTC, exhibit three distinct regimes: (i) the number of recorded neurons
M but not NTC restricts dimensionality, (ii) NTC but not M restricts D, and (iii) D is far less than
both M and NT C, reflecting an unexplained circuit constraint beyond smoothness and task
simplicity. (Courtesy of [18])
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traditional hermetic sealing approaches require bulky Ti or ceramic cases, which add
significant volume overhead to device size. The intricacy of interconnect design,
particularly in the case of a multi-areal implant, is an added complication. While the
short tethers between intracortical arrays and the wireless electronics described in the
previous section represent a significant improvement over percutaneous tethers, they
are still relying on the traditional monolithic intra- or epicortical electrode arrays.
Looking forward, one needs to consider paradigm shifts in approaching future
BCI-compatible neural interface designs to mitigate these issues in the design of
vastly scalable systems. One such approach is to split individual recording and/or
neurostimulation electrodes into separate autonomous microscale active electronic
chiplets, each with its own internal electronics and (wireless) means to communicate
with a central information processing hub. The idea takes advantage of the remark-
able progress made by silicon microelectronics in the past 20 years which has pushed
component and transistor sizes deep into the sub-100 nm regime. For neural and BCI
applications, having access to such CMOS technologies is very attractive provided
that commensurate expertise is available for custom design of “mixed-signal”
CMOS chips (analog-digital-RF).

Among contemporary work is the concept of free-floating individual “neural
dust” sensors in conjunction with a sub-cranial interrogator which was proposed
by a number of neuroengineering researchers, most notably Seo et al. [43] (we show
concrete examples from our own work below to illustrate a related approach for
wireless microsensors and stimulators). The proposed system by Seo et al. [43]
involves ultrasonic power and telemetry to circumvent the challenges of efficient
electromagnetic energy coupling at millimeter-scale and has been demonstrated at
the level of a single 1 mm3 recording node in the peripheral nervous system
[44]. While the concept is presented as an ultra-miniaturizable sensor system, the
authors identify several fabrication and materials challenges requiring further
advances in CMOS die post-processing completion of microscale implantable
microdevices. Elsewhere, a purely electromagnetic-based distributed neural sensor
has been demonstrated by Yeon et al. [53], where a three-coil resonant near field
inductively coupled system is used to improve the efficiency of wireless power
transfer to a millimeter-sized free-floating wireless implantable neural recording
system (FF-WINeR). The approach to assembling the FF-WINeR sensor node by
manual techniques is also described by Yeon et al. [54] including integration of
microwire electrodes, ASICs with through-silicon vias (TSVs), discrete microcoils,
and surface mount components. Finally, hermetic sealing with polymeric film
deposition (parylene in this case) was applied to form a single “push-pin” recording
node measuring 1.05 � 1.05 � 0.3 mm3. Here too, the authors outline a number of
challenges ahead in scaling to many devices given the number of heterogeneous
materials and the complexity plus fabrication requirements comprising each
sensor node.

With these snapshots of recent early work, we support the view that spatially
distributed sensor systems, once developed as full-fledged medical devices can
contribute to future breakthroughs in the field of BCIs while providing new tools
for brain science. There are, however, several caveats for the development of a truly
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scalable distributed sensor system. First, it is imperative that it be possible to pursue
the fabrication of sensors in a uniform, high throughput batch process. Second,
sophisticated and ultra-miniaturized sensor node electronics are needed to support
semi-autonomous operation including critical functions such as memory and net-
working. Third, the full neural interface system needs to be defined in the context of
a highly-efficient multi-node telecom network. This includes the design and imple-
mentation of a compact wearable telecommunications hub that would drive and tune
the performance specifications of individual sensor nodes in an adaptive fashion,
depending on the specific neural interface application. Fourth, the next frontier in
BCI development beyond neural recording for decoding must include neural
encoding implemented as patterned cortical microstimulation by a spatially distrib-
uted ensemble. This capability needs to be integrated into the individual nodes to
form an independent, bidirectional neural interfacing element. Fifth, for chronic
implants, it is critical to develop the means for (thin film) hermetic seals which
provide a chemically impermeable envelope for the microdevices over decades in
the body environment. Finally, the implementation of any neural interface system for
use in a human subject requires a real-time neural encoding/decoding using a
wearable neurocomputational processor with wireless telemetry to supporting com-
putational platforms, including cloud computing. The concept image of Fig. 9.5
shows schematically the general approach (with some specifics to the approach
adopted in the authors’ laboratories).

Designing a system to meet the above-mentioned caveats is a challenging prop-
osition on multiple levels. Recent work in our laboratories has focused on develop-
ing a spatially distributed implantable wireless “cortical communication” system
toward these aspirations, which is built around 500 � 500 μm individually address-
able custom microelectronic “neurograins” chiplets (see Fig. 9.6, which also

Fig. 9.5 Overview diagram of the spatially distributed implanted wireless neurograin read-out-
write-in network—in full deployable system context. Here, two cortical areas are targeted. The
external telecom hub in this representation is synonymous with neural computation engine
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compares several other recent microdevices). Each chiplet integrates RF-energy
harvesting, broadband neural recording or cortical microstimulation. Ensembles of
neurograins operate as a synchronized, networked bidirectional RF telecommunica-
tion network, scalable in principle across populations of nodes up to tens of
thousands. We have chosen to utilize near-field electromagnetic coupling at
~1 GHz to mitigate RF tissue absorption for SAR compliance and designed a single
RF-channel simultaneous power-data link for network level simplicity. An external
RF telecommunications hub, implemented as a wearable module, wirelessly man-
ages implant performance, and is envisioned also to integrate real-time data
processing for neural decoding [19, 20]. Further, we have addressed the microscale
packaging challenge by utilizing a batch-process stacked multi-layer thin-film depo-
sition process which is able to yield packaged individual devices that are <0.01 mm3

in physical volume. This thin film hermetic sealing technique using atomic layer
epitaxy, has been demonstrated to provide implant impermeability in accelerated
lifetime tests exceeding 10 years [24]. These features have been validated in the
context of ex vivo rodent brain slices as well as acute in vivo experiments [29], and
now mature for transition to a specific application context.

The above-described system from our labs is one example of an approach for a
completely untethered neural interface system that is minimally invasive from the
perspective of implant volume burden. Alternative approaches involve flexible,
floating epicortical probes with very high channel counts [48] versus integration of
genetic approaches to modify neural responsiveness (optogenetics, etc.) toward the
realization of next-generation highly efficient, integrated neural interface systems.

Fig. 9.6 Comparison of some mm-scale neural microdevices using electrical and/or ultrasound
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9.4 Summary: Outlook for High-Performance BCIs

In this chapter, we have described approaches to high data rate neural interfaces via
examples of technical solutions to intracortical/intracranial recording systems. While
early clinical trials are under way, and mainly use well-established, but bulky cabled
systems, there is a need and opportunity to invest resources to pursue innovative
approaches across the entire ecosystem from micro- and optoelectronic probe arrays
to chipscale integration of tailored on-chip signal processing and storage functions,
to name two areas.

The microminiaturization approaches reviewed here offer a particular opportunity
to enhance the functionality of the wireless interfaces by adding neuromodulation/
stimulation capabilities. Among such functions is the implementation of patterned
electrical (e.g., [14, 47]) or/and optical microstimulation for enabling truly bidirec-
tional communication opportunities with the brain. Efforts to develop such multi-
node targeted microstimulation tools are being pursued in several academic and
commercial laboratories and are likely to reach primates in the near term. These
efforts must link closely with neural decoding/encoding models using combination
of theoretical neuroscience and machine learning tools.

We re-emphasize the importance of close synergy between closed-loop sense/
stimulate-based algorithms which have recently made progress in deep brain stim-
ulation [1]; however, the challenges encountered herein, for bidirectional interfaces
comprising hundreds of channels (nodes) and beyond require that large amounts of
real-time data, recorded from the nervous system, must be processed and decoded
(e.g., [38, 52]). Among the many challenges to this aspiration are the inherent
variability and statistical entropy-driven fluctuations in neural circuits, the latter
requiring approaches which can adapt to such “non-stationarities.”

Acknowledgments The authors are very grateful to many members, past and present, in their
laboratory. These include Jihun Lee, Joonsoo Jeong, David Borton, Ming Yin, Y.-K. Song, William
R. Patterson III, Naubahar Agha, and Chris Heelan, among others. At Brown University, the authors
are part of a synergistic brain science and neurotechnology effort with many colleagues including
John Donoghue, Leigh Hochberg, David Rosler, John Simeral, and Carlos Vargas-Irwin whom we
thank for their continuing input and expertise. Special thanks are also extended to Krishna Shenoy
and his colleagues at Stanford for providing early leadership in the field.

All animal procedures referred in this chapter were conducted according to protocols approved
by Institutional Animal Care and Use Committee (IACUC) at each institution. Research in the
authors’ laboratory was supported by US National Institutes of Health, Defense Advanced Projects
Agency and the National Science Foundation.

References

1. Afshar P, Khambhati A, Stanslaski S, Carlson D, Jensen R, Dani S, . . ., Denison T (2013) A
translational platform for prototyping closed-loop neuromodulation systems. Front Neural
Circuits 6:117

238 F. Laiwalla and A. Nurmikko



2. Ando H, Takizawa K, Yoshida T, Matsushita K, Hirata M, Suzuki T (2016) Wireless
multichannel neural recording with a 128-mbps UWB transmitter for an implantable brain-
machine interfaces. IEEE Trans Biomed Circuits Syst 10(6):1068–1078

3. Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K, . . ., Liu C (2015) Decoding motor imagery
from the posterior parietal cortex of a tetraplegic human. Science 348(6237):906–910

4. Biederman W, Yeager DJ, Narevsky N, Leverett J, Neely R, Carmena JM, . . ., Rabaey JM
(2015) A 4.78 mm 2 fully-integrated neuromodulation SoC combining 64 acquisition channels
with digital compression and simultaneous dual stimulation. IEEE J Solid State Circuits
50(4):1038–1047

5. Bonfanti A, Ceravolo M, Zambra G, Gusmeroli R, Borghi T, Spinelli AS, Lacaita AL (2010) A
multi-channel low-power IC for neural spike recording with data compression and narrowband
400-MHz MC-FSK wireless transmission. In: 2010 Proceedings of ESSCIRC, September.
IEEE, pp 330–333

6. Borton DA, Yin M, Aceros J, Nurmikko A (2013) An implantable wireless neural interface for
recording cortical circuit dynamics in moving primates. J Neural Eng 10(2):026010

7. Bozorgzadeh B, Schuweiler DR, Bobak MJ, Garris PA, Mohseni P (2016) Neurochemostat:
a neural interface SoC with integrated chemometrics for closed-loop regulation of brain
dopamine. IEEE Trans Biomed Circuits Syst 10(3):654–667

8. Brenna S, Padovan F, Neviani A, Bevilacqua A, Bonfanti A, Lacaita AL (2016) A 64-channel
965-$\mu\text {W} $ neural recording SoC with UWB wireless transmission in 130-nm
CMOS. IEEE Trans Circuits Syst Express Briefs 63(6):528–532

9. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, . . ., Nicolelis
MA (2003) Learning to control a brain–machine interface for reaching and grasping by
primates. PLoS Biol 1(2):e42

10. Castagnola E, Maiolo L, Maggiolini E, Minotti A, Marrani M, Maita F, . . ., Fadiga L (2015a)
PEDOT-CNT-coated low-impedance, ultra-flexible, and brain-conformable micro-ECoG
arrays. IEEE Trans Neural Syst Rehabil Eng 23(3):342–350

11. Castagnola V, Descamps E, Lecestre A, Dahan L, Remaud J, Nowak LG, Bergaud C (2015b)
Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and
recording. Biosens Bioelectron 67:450–457

12. Chen G, Dodson B, Hedges DM, Steffensen SC, Harb JN, Puleo C, . . ., Davis RC (2018)
Fabrication of high aspect ratio millimeter-tall free-standing carbon nanotube-based microelec-
trode arrays. ACS Biomater Sci Eng 4(5):1900–1907

13. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, . . ., Schwartz
AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet
381(9866):557–564

14. Dadarlat MC, O’doherty JE, Sabes PN (2015) A learning-based approach to artificial sensory
feedback leads to optimal integration. Nat Neurosci 18(1):138

15. Deku F, Cohen Y, Joshi-Imre A, Kanneganti A, Gardner TJ, Cogan SF (2018) Amorphous
silicon carbide ultramicroelectrode arrays for neural stimulation and recording. J Neural Eng
15(1):016007

16. Diaz-Botia CA, Luna LE, Neely RM, Chamanzar M, Carraro C, Carmena JM, . . ., Maharbiz
MM (2017) A silicon carbide array for electrocorticography and peripheral nerve recording.
J Neural Eng 14(5):056006

17. Gao H, Walker RM, Nuyujukian P, Makinwa KA, Shenoy KV, Murmann B, Meng TH (2012)
HermesE: a 96-channel full data rate direct neural Interface in 0.13μm CMOS. IEEE J Solid
State Circuits 47(4):1043–1055

18. Gao P, Trautmann E, Byron MY, Santhanam G, Ryu S, Shenoy K, Ganguli S (2017) A theory
of multineuronal dimensionality, dynamics and measurement. bioRxiv 1:214262

19. Heelan C, Komar J, Vargas-Irwin CE, Simeral JD, Nurmikko AV (2015) A mobile embedded
platform for high performance neural signal computation and communication. In: 2015 IEEE
biomedical circuits and systems conference (BioCAS), October. IEEE, pp 1–4

9 Future of Neural Interfaces 239



20. Heelan C, Nurmikko AV, Truccolo W (2018) FPGA implementation of deep-learning recurrent
neural networks with sub-millisecond real-time latency for BCI-decoding of large-scale neural
sensors (104 nodes). In: 2018 40th annual international conference of the ieee engineering in
medicine and biology society (EMBC), July. IEEE, pp 1070–1073

21. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, . . ., Donoghue JP
(2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature
442(7099):164

22. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, . . ., Donoghue JP
(2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
Nature 485(7398):372

23. Jarosiewicz B, Sarma AA, Bacher D, Masse NY, Simeral JD, Sorice B, . . ., Cash SS (2015)
Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer
interface. Sci Trans Med 7(313):313ra179

24. Jeong J, Laiwalla F, Lee J, Ritasalo R, Pudas M, Larson L, . . ., Nurmikko A (2019) Conformal
hermetic sealing of wireless microelectronic implantable Chiplets by multilayered atomic layer
deposition (ALD). Adv Funct Mater 29(5):1806440

25. Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B et al (2017) Fully
integrated silicon probes for high-density recording of neural activity. Nature 551(7679):232

26. Khodagholy D, Gelinas JN, Thesen T, Doyle W, Devinsky O, Malliaras GG, Buzsáki G (2015)
NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci 18(2):310

27. Kozai TD, Catt K, Du Z, Na K, Srivannavit O, Razi-ul MH, . . ., Cui XT (2016) Chronic
in vivo evaluation of PEDOT/CNT for stable neural recordings. IEEE Trans Biomed Eng
63(1):111–119

28. Kwon KY, Lee HM, Ghovanloo M, Weber A, Li W (2015) Design, fabrication, and packaging
of an integrated, wirelessly-powered optrode array for optogenetics application. Front Syst
Neurosci 9:69

29. Lee J, Mok E, Huang J, Cui L, Lee AH, Leung VW, Mercier P, Shellhammer S, Larson L,
Asbeck A, Song YK, Nurmikko A, Laiwalla F (2019) An implantable wireless network of
distributed microscale sensors for neural applications. IEEE EMBS conference on neural
engineering 2019

30. Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain–computer
interface using electrocorticographic signals in humans. J Neural Eng 1(2):63

31. Liu X, Zhang M, Xiong T, Richardson AG, Lucas TH, Chin PS, . . ., Van der Spiegel J (2016) A
fully integrated wireless compressed sensing neural signal acquisition system for chronic
recording and brain machine interface. IEEE Trans Biomed Circuits Syst 10(4):874–883

32. Luan L, Wei X, Zhao Z, Siegel JJ, Potnis O, Tuppen CA, . . ., Dunn AK (2017) Ultraflexible
nanoelectronic probes form reliable, glial scar–free neural integration. Sci Adv 3(2):e1601966

33. McDermott H (2016) Neurobionics: treatments for disorders of the central nervous system. In:
Neurobionics: the biomedical engineering of neural prostheses. Wiley, Hoboken, pp 213–230

34. Mestais CS, Charvet G, Sauter-Starace F, Foerster M, Ratel D, Benabid AL (2015)
WIMAGINE: wireless 64-channel ECoG recording implant for long term clinical applications.
IEEE Trans Neural Syst Rehabil Eng 23(1):10–21

35. Mirbozorgi SA, Bahrami H, Sawan M, Rusch LA, Gosselin B (2016) A single-chip full-duplex
high speed transceiver for multi-site stimulating and recording neural implants. IEEE Trans
Biomed Circuits Syst 10(3):643–653

36. Müller-Putz GR, Schwarz A, Pereira J, Ofner P (2016) From classic motor imagery to complex
movement intention decoding: the noninvasive Graz-BCI approach. In: Progress in brain
research, vol 228. Elsevier, pp 39–70

37. Oxley TJ, Opie NL, John SE, Rind GS, Ronayne SM, Wheeler TL, . . ., Steward C (2016)
Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of
cortical neural activity. Nat Biotechnol 34(3):320

240 F. Laiwalla and A. Nurmikko



38. Park YS, Hochberg LR, Eskandar EN, Cash SS, Truccolo W (2013) Early detection of human
epileptic seizures based on intracortical local field potentials. In: 2013 6th international IEEE/
EMBS conference on neural engineering (NER), November. IEEE, pp 323–326

39. Raducanu BC, Yazicioglu RF, Lopez CM, Ballini M, Putzeys J, Wang S et al (2016) Time
multiplexed active neural probe with 678 parallel recording sites. In: 2016 46th European solid-
state device research conference (ESSDERC). IEEE, pp 385–388

40. Rios G, Lubenov EV, Chi D, Roukes ML, Siapas AG (2016) Nanofabricated neural probes for
dense 3-D recordings of brain activity. Nano Lett 16(11):6857–6862

41. Santhanam G, Linderman MD, Gilja V, Afshar A, Ryu SI, Meng TH, Shenoy KV (2007)
HermesB: a continuous neural recording system for freely behaving primates. IEEE Trans
Biomed Eng 54(11):2037–2050

42. Schwarz DA, Lebedev MA, Hanson TL, Dimitrov DF, Lehew G, Meloy J, . . ., Ramakrishnan A
(2014) Chronic, wireless recordings of large-scale brain activity in freely moving rhesus
monkeys. Nat Methods 11(6):670

43. Seo D, Carmena JM, Rabaey JM, Alon E, Maharbiz MM (2013) Neural dust: an ultrasonic, low
power solution for chronic brain-machine interfaces. arXiv preprint arXiv:1307.2196

44. Seo D, Neely RM, Shen K, Singhal U, Alon E, Rabaey JM, . . ., Maharbiz MM (2016) Wireless
recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91(3):529–539

45. Seymour EÇ, Freedman DS, Gökkavas M, Özbay E, Sahin M, Ünlü MS (2014) Improved
selectivity from a wavelength addressable device for wireless stimulation of neural tissue. Front
Neuroeng 7:5

46. Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR (2011) Neural control of cursor
trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical
microelectrode array. J Neural Eng 8(2):025027

47. Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ, Bensmaia SJ (2013)
Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci
110(45):18279–18284

48. Tsai D, Sawyer D, Bradd A, Yuste R, Shepard KL (2017) A very large-scale microelectrode
array for cellular-resolution electrophysiology. Nat Commun 8(1):1802

49. Viventi J, Kim DH, Vigeland L, Frechette ES, Blanco JA, Kim YS, . . ., Wulsin DF (2011)
Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity
in vivo. Nat Neurosci 14(12):1599

50. Wang W, Collinger JL, Degenhart AD, Tyler-Kabara EC, Schwartz AB, Moran DW, . . ., Kelly
JW (2013) An electrocorticographic brain interface in an individual with tetraplegia. PLoS One
8(2):e55344

51. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, . . ., Nicolelis MA
(2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates.
Nature 408(6810):361

52. Wodlinger B, Downey JE, Tyler-Kabara EC, Schwartz AB, Boninger ML, Collinger JL (2014)
Ten-dimensional anthropomorphic arm control in a human brain� machine interface: difficul-
ties, solutions, and limitations. J Neural Eng 12(1):016011

53. Yeon P, Mirbozorgi S, Ash B, Eckhardt H, Ghovanloo M (2016) Fabrication and
microassembly of a mm-sized floating probe for a distributed wireless neural interface.
Micromachines 7(9):154

54. Yeon P, Gonzalez JL, Zia M, Rajan SK, May GS, Bakir MS, Ghovanloo M (2017)
Microfabrication, assembly, and hermetic packaging of mm-sized free-floating neural probes.
In 2017 IEEE biomedical circuits and systems conference (BioCAS), October. IEEE, pp 1–4

55. Yin M, Borton DA, Komar J, Agha N, Lu Y, Li H, . . ., Larson L (2014) Wireless neurosensor
for full-spectrum electrophysiology recordings during free behavior. Neuron 84(6):1170–1182

9 Future of Neural Interfaces 241


	Chapter 9: Future of Neural Interfaces
	9.1 Overview: Where We Are Now
	9.2 Examples of State-of-the-Art Electronic Brain Interfaces
	9.2.1 BCI Going Wireless: General Considerations
	9.2.2 Fully Implanted Wireless Devices-A Case Example

	9.3 New Horizons: Large-Scale Neural Interfaces to 10,000 Nodes and Beyond
	9.4 Summary: Outlook for High-Performance BCIs
	References


