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Abstract As an integral part of the body, the limb poses dexterous and fine motor
grasping and sensing capabilities that enable humans to effectively communicate
with their environment during activities of daily living (ADL). Hence, limb
loss severely limits individuals’ ability especially when they need to perform tasks
requiring their limb functions during ADL, thus leading to decreased quality of life.
To effectively restore limb functions in amputees, the advanced prostheses that are
controlled by electromyography (EMG) signal have been widely investigated and
used. Since EMG signals reflect neural activity, they would contain information on
the muscle activation related to limb motions. Pattern recognition-based myoelectric
control is an important branch of the EMG-based prosthetic control. And the
EMG-based prosthetic control theoretically supports multiple degrees of freedom
movements that allows amputees to intuitively manipulate the device. This chapter
focuses on EMG-based prosthetic control strategy that involves utilizing intelligent
computational technique to decode upper limb movement intentions from which
control commands are derived. Additionally, different techniques/methods for
improving the overall performance of EMG-based prostheses control strategy were
introduced and discussed in this chapter.
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6.1 Introduction

Human upper limb represent an integral part of the body that provides incredible array
of functionalities during activities of daily living (ADL). In addition to possessing
dexterous and fine motor grasping/sensing capabilities, the upper limb enables indi-
viduals to freely and effectively communicate with their natural environments through
artistic expressions, sign languages, and greetings (handshake/hand gesture), among
others. Therefore, the loss of one or both arms severely limits individuals’ ability
especially when they need to perform tasks requiring their arm functions during ADL,
thus leading to decreased quality of life [1]. Limb loss also has profound negative
impact on amputees including stump pain or phantom limb pain, or perhaps even both,
depression, changes in body image, and psychological burden [1–5]. Under certain
circumstance, upper limb loss may also affect amputees’ stability (dis-balance) during
mobility, thus making them prone to falls or collisions with other individuals/objects.
To this end, limb loss causes a devastating experience necessitating the need for proper
psychological and physical rehabilitation strategy for arm amputees.

A large number of the commercially available upper limb prostheses are either
mechanically (body-powered) or electrically (motorized) driven. Meanwhile, body-
powered upper limb prosthetic devices were primarily developed as alternative to aid
amputees in carrying out ADL requiring their arm functions [6]. Fundamentally, these
prostheses operate by using cables to link the movement of the body to the device and
thus actuating simple hand tasks such as opening or closing of the hook/gripper. To
achieve simple hand grasp tasks, the amputee would need to possess a significant
amount control over his/her shoulder, chest, and even the residual limb which should
be long enough to support the motion. Although body-powered prostheses have fine
cosmetic appearances that are comparable to the human natural arm [7], they are
nonintuitive and require significant amount of efforts (burdensome) to perform simple
hand tasks and as well support only single degree of freedom (DOF) movement per
time [7]. With these limitations, motorized upper limb prostheses are considered as
viable alternative for intuitive restoration of multiple DOF arm functions in amputees.
At the forefront of this technology are the prostheses that utilize electromyography
(EMG) recordings to characterize upper limb movement intentions of the amputees
[8–12]. Thus, the properties of the EMG signals are encoded in form of control
commands to the prosthetic controller which then actuates the device accordingly. It
is noteworthy that in the last two to three decades, the motorized upper limb prosthetic
technology has progressively advanced leading to the development of better control
methods as well as designs. Hence, this article focuses on the EMG-based prosthetic
control with emphases on methods/technologies that could help improve the overall
performance and acceptability of the prostheses system.
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The remaining part of the chapter is organized as follows: Section 6.2 discusses
different EMG-based prosthetic control methods; Section 6.3 introduces some poten-
tial techniques for improving the performance of EMG-based prosthetic control;
Section 6.4 presents the concluding remarks.

6.2 EMG-Based Prosthetic Control Methods

6.2.1 Background

Fundamentally, EMG signals represent electrical manifestation of neuromuscular
activation associated with a contracting muscle. Such signals have been proven to
contain rich set of neural information from which different types of upper limb
movements could be accurately decoded, thus making them useful control input to
prosthetic devices as well as other forms of rehabilitation robots [8, 13]. Additionally,
EMG signals carry significant information for diagnosis of neuromuscular disorders
and other muscle-related diseases. It has been established that EMG signal patterns
for a specific limb movement are repeatable over time and distinct from the patterns
of other limb movements. By exploring this phenomenon, researchers have been
able to decode a range of arm movements from EMG recordings using intelligent
computational methods. To this end, dozens of previous studies have reiterated the
potential of EMG-based method in the control of multifunctional prostheses [14–
16]. Thus, the following section will focus on discussing the currently applied
EMG-based prosthetic control schemes including: pattern recognition (PR) control
method and the simultaneous and proportional control (SPC) method.

6.2.2 Pattern Recognition-Based Prosthetic Control

Although the concept of EMG pattern recognition (EMG-PR) is by no means new, it
has been proven over time to be promising especially for improving the dexterity of
control in upper limb prosthetic devices in comparison with the conventional
amplitude-based methods. It is noteworthy that the first generation of pattern
recognition-driven prosthetic controllers was built in the late 1960s/early 1970s
[17–19]. Since then, advancement in signal processing, multichannel recording,
and microprocessor technology has expedited implementation of EMG-PR method
in embedded control systems. Also, with a lot of synergistic efforts from the
academia and industries, EMG-PR-based prosthetic arms have been recently made
available for commercial use.

EMG-PR prosthetic control method is primarily based on the assumption that
EMG signal patterns corresponding to a particular class of limb movement are
consistently repeatable across trials and as well distinct from EMG signal patterns
of the other classes. Due to the promising nature of this control method, it has been
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widely explored in the last two to three decades with significant progress reported in
terms of its robustness. The control schemes as a whole consist of a sequence of steps
beginning with: EMG signal acquisition, preprocessing of the recorded signals,
extraction of feature set, classification of the extracted features, and issuing of
control commands to drive prosthesis. Figure 6.1 shows the schematic diagram of
a typical EMG-PR-based prosthetic control system.

In the above represented control scheme, myoelectric signals are collected via
electrodes placed on the skin surface underlying the arm muscles. Often times, the
electrodes are integrated with miniaturized amplifier to improve the quality of the
recorded signals through standard amplification and filtering procedures. After-
wards, the acquired EMG recordings are subjected to preprocessing procedure, so
as to attenuate inherent interferences. In this regard, the 50/60 Hz notch filter is
usually applied to the raw acquired signals to minimize interferences resulting from
power line noise. In addition to the notch filter, a band-pass filter with cut of
frequency between 10/20 Hz and 500 Hz is often applied to the EMG signals to
obtain the most useful spectrum with high motor information content.

EMG signals recorded during targeted limb movements are continuous in nature,
thus for a specific length of recording, a decision corresponding to a subset of the
observed limb movements may be required to actuate the prosthesis. Therefore, the
use of data segmentation technique in handling the preprocessed data prior to feature
extraction is necessary. This step helps increase the probability of the prosthetic
control system achieving high accuracy as well as quick response time. Ideally in
real life applications, a response time of no more than 300 ms is required [20]. Note
that the response time (which is a function of the segment length and the processing
time) is the time required to produce the control commands that drive the prostheses.
In a study conducted by Englehart and Hudgins [21], it was shown that by adopting
continuous segmentation on a steady-state EMG signal, the segment length can be
reduced to about 128 ms without a significant reduction in classification accuracy.
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Fig. 6.1 Schematic diagram of EMG-PR-based prosthetic control system
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Also, it has been shown previously that segmented steady-state EMG signals
achieved better accuracy compared to segmented transient EMG signals, and less
degradation were recorded with shorter segments of the steady-state EMG data.
After considering the segment length and the state of the data, the third important
data segmentation factor is the windowing technique adopted. Data segmentation is
often achieved via either of the following windowing techniques: sliding analyses
windowing and adjacent windowing method [20]. The adjacent windowing method
uses disjoint segments of predefined length for its feature extraction; and the
intended limb movement is classified after a certain processing delay. Because the
processing time often denotes a small fraction of segment length, the processor is
found to be mostly idle during the remaining time of the segment length. Meanwhile,
in the sliding windowing method, the new window segment slides over the current
window segment, with an increment time less than the segment length. In compar-
ison, this sliding windowing method takes advantage of the processor’s idle time in
adjacent windowing method to produce more classified outputs. Thus, the sliding
windowing technique has been widely applied to steady-state EMG signals for
enhanced feature extraction process in most recent studies on EMG-PR-based
prosthetic control.

Aside from the feature extraction stage, the choice of classification algorithm has
been reported to be another important factor in EMG-PR-based prosthetic control
systems. Thus, choosing an efficient classifier becomes necessary to ensure accurate
and consistent classification performance. In this regard, a number of classification
schemes have been examined with respect to their performance in identifying
different upper limb movements. For instance, classification schemes based on
Bayesian statistics [22], adaptive neural networks (ANN) [23], fuzzy logic [24],
support vector machine [25], and linear discriminant analysis (LDA) [11–26] were
previously studied. The ANN-based classifier and the LDA classifier were found to
be more accurate for the prediction of limb movement intention. However, the LDA
has been widely applied because it is relatively less complex in terms of implemen-
tation and performs well in comparison with the ANN and other complex classifi-
cation Schemes [26].

After reaching a decision on the classification scheme to adopt, a classifier is
developed by utilizing part of extracted EMG feature vector. Afterwards, the per-
formance of the built classifier in identifying multiple classes of limb movement
intent is evaluated using the testing set as obtained from the remaining part of the
feature vector. The performance of the EMG-PR-driven prostheses in terms of its
controllability is mostly examined in both off-line and real-time metrics. In general,
metrics including recognition rate (classification accuracy) of limb movements/sub-
jects, the time taken to complete a motion (motion completion time), number of
successfully completed motion (motion completion rate), and the time taken to select
the target motion (motion selection time) are often considered. Also, the perfor-
mance of the device could be assessed based on the number success recording
reaching and grasping tasks.

6 Realizing Efficient EMG-Based Prosthetic Control Strategy 153



6.2.3 Simultaneous and Proportional EMG-Based Prosthetic
Control

Multiple DOF pattern recognition-based prostheses control schemes have recently
been implemented to enable upper limb amputees perform the usual arm function
tasks during ADL. Even with this remarkable achievement, the available EMG-PR-
based controlled prostheses do not support simultaneous control of multiple DOFs
[27, 28]. This limitation prevents upper limb prostheses users from having the
natural feel of the coordinated joint control often associated with an intact limb.
Although advanced prosthetic arms [29, 30], including multiple DOF wrists, offer
the mechanical means to restore arm movements, there is still a significant need for
systems that enable simultaneous control of such devices.

To develop a simultaneous prosthetic control scheme which offers multiple DOF
movements, different approaches have been proposed in the recent years. These
approaches include the use of artificial neural networks for joint kinematics pre-
dictions during upper limb movements [31], analysis of the muscle synergies
underlying a range of upper limb movements [32], and the utilization of joint
kinetics [33]. While these methods have been reported to be promising toward
clinical realization of upper limb prostheses, they however mostly focus on provid-
ing control for limited classes of limb movements such as wrist without hand or have
imposed identical velocities on all active degrees of freedom movements and thus do
not provide independent proportional control of individual degrees of freedom.

Additionally, toward achieving simultaneous and proportional control scheme,
some investigators developed a model of muscle synergy driven by nonnegative
matrix factorization (NMF) method to resolve myoelectric signal factorization issue
that is capable of hindering continuous control [32, 34]. The NMF technique often
utilizes a DOF-wise training approach, based on which simultaneous control of
multi-DOF is achieved via linearly combined single degree of freedom. This kind
of strategy supports simultaneous and proportional myoelectric-based control
[32, 34]. Despite the promising results of this scheme, there are still some short-
comings that have hindered its real life implementation. The most critical disadvan-
tage of the NMF-driven EMG-based prostheses is that it needs a DOF-wise
calibration during which requires a user to activate precisely single DOF in a specific
manner, e.g., firstly, trigger DOF1 for several trials followed by DOF2. Besides the
inconvenience and the time needed for the execution of this phase, more notably, if
the prostheses users are unable to trigger an individual DOF (i.e., the activation
patterns during the training session are not exactly of single DOF), the DOF-wise-
driven NMF approach will produce inadequate muscle synergy matrix that may
result in poor control outcome. This behavior could be attributed to the fact that the
classical NMF-based scheme lacks the ability to produce a factorization that is sparse
enough for efficient control of multiple DOF [35, 36]. Hence, we proposed an
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alternative approach to the classical NMF that identifies the factorization which
separates the generated basis functions robustly and concurrently in a quasi-
unsupervised way to simultaneously and proportionally control the prostheses.

In the proposed approach, the subject does not need to follow a predefined
sequence to activate single DOF in the calibration phase, and can even activate
more than one DOF simultaneously in the training stage, which is not allowed in the
classical NMF method. Nevertheless, the idea of the synergy matrix could be realized
in one step, which is contrary to the conventional NMF approach that attempts to
sequentially extract the bases for each DOF. For this reason, constraints were included
in the factorization method and the method is at maximizing the sparseness of the
resulting control outcome. The constraints associated with the sparseness limits the
space of possible NMF solutions. Precisely, the solution with bases functions associ-
ated to single DOF, which is the target solution, represents the sparsest of the other
solutions. In this regard, the factorization with constraints usually does not need prior
calibrations/activations of single DOF and could be utilized to any set of target tasks
carried out by the user with no any form of strict labeling. The proposed sparse
nonnegative matrix factorization (SNMF)-based simultaneous and proportional
myo-control scheme is presented mathematically as follows.

In myoelectric control, multiple DOF limb movements could be re-represented as a
linearly combined individual DOFs, and the synergy basis and control input are
nonnegative [34]. Suppose we represent the root mean square (RMS) values of an
N-channel with T-length surface myoelectric signal as Z, in which the t-th column is
the myoelectric signal at a given time t and m represents the number of DOFs. Thus,
the multichannel observation can be approximated by the product of a N � 2m latent
nonnegative synergy matrixW and a 2m� T latent nonnegative control signal matrix.

F is expressed in the following equation:

ZN�T � WN�2mF2m�T ð6:1Þ

While the sparseness of the solution is obtained by imposing a specific single
DOF activation sequence for calibration, the above factorization problem can be
solved in a semi-supervised way with the summation property of DOFs in the muscle
signal domain.

A mathematical way to generate a sparse solution without the need for the specific
set of calibration data for individual DOF activation is utilized. Meanwhile, this is
achieved by imposing a sparseness constraint on the control signals, which leads to
the proposed SNMF Scheme [37].

Mathematically, the extent (degree) of sparseness could be controlled by utilizing
either 11-norm or l0-norm. To build a computationally efficient system, we chose the
l1-norm-based sparse NMF scheme, SNMF [37]. Meanwhile, the objective function
of the SNMF method is expressed mathematically as follows:
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where F (:, t) is the t-th column vector of F [Eq. (6.1)], Fro is the Frobenius norm,
and λ > 0 is a regularization parameter to balance the accuracy of the factorization
and the degree of sparseness of F. In the experiment, we choose the optimalλ through
cross-validation with the value of m ¼ 2. The superscripts “+” and “–” denote the
positive and negative direction of each DOF, respectively. The above formulation
can be rewritten as:

min
W,F

Wffiffiffi
λ

p
e1�2m

� �
F� Z

01�T

� �����
����2
Fro

s:t: W,F � 0, ð6:3Þ

where e1 � 2mrepresent a row vector that contains values equal to 1 and 01 � Trepresent
entries with values equal to 0. Equation (6.3) could be adequately solved via the
alternating nonnegative least squares (ANLS) approach. Meanwhile, for the ANLS
method, F and W are iteratively updated by adjusting the other one:

F kþ1ð Þ ¼ argmin
F

W kð Þffiffiffi
λ

p
e1�2m

� �
F� Z

01�T

� �����
����2
Fro

ð6:4Þ

W kþ1ð Þ ¼ argmin
F

WF kþ1ð Þ � Z
�� ��2

Fro
ð6:5Þ

It could be seen that Eqs. (6.4) and (6.5) represent the classical least square
problem, and either of the equation has a closed-form solution. Meanwhile, the
derivation in [37] reveals that the SNMF method could converge to a stationary
point. The SNMF method can equally extract all the basis functions in a single step
from the EMG recordings produced via arbitrary combinations of DOFs per user.
Only the ordering of the control input signals (basis functions) would be
undetermined using this method, but this issue could be simply addressed. In
practice, the labels of the first two single DOFs need to be recorded in order to
decide the sequence of the basis in the matrix (F) from which control signal is
obtained, thus making the method quasi-unsupervised instead of completely
unsupervised.
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Having computed the synergy basis matrix W from the recorded myoelectric
signals, it is assumed to be a constant (at least over the period of the test experi-
ments). To estimate the control input signal associated with the intended DOF
activation level, a pseudo inverse of W (represented as W+) is applied, and it was
multiplied with the newly obtained surface myoelectric signals

�fZ 	
. Thus, the

estimated control input signal (~F
	
is defined as follows:

~F ¼ Wþ~Z ð6:6Þ

where

~F ¼ �
~Fþ
1 ; ~F

�
1 ; ~F

þ
2 ; ~F

�
2 ;
� ð6:7Þ

Toward ensuring that no components are surpassed by the others, the individual
component of ~F in (6.7) is subject to a normalization process based on its maximum
value. An estimate of the control input signal in (6.7) is thus scaled by the scalar
correction factorsτij that are utilized to account for the indetermination of the signal
power (range of control signals) during the factorization process:

~F1 ¼ τ11 ~F
þ
1 � τ12 ~F�

1
~F2 ¼ τ21 ~F

þ
2 � τ22 ~F�

2



ð6:8Þ

where we name ~F1 and ~F2the control signals for DOF1 and DOF2, respectively. The
multiplicative factors τijare determined for each subject so that the final control
signals, ~F ¼ �

~F1; ~F2
�
match the range of joint angles in the respective DOFs. The

tau-s parameters are manually set before operating online tasks according to different
subjects. The obtained control signals, low-pass filtered at 6 Hz (kinematic band-
width), are then used by the subjects for controlling the DOFs.

It is noteworthy that the proposed SNMF scheme is aimed at robust and concur-
rent extraction of basis functions for myo-control in upper limb prostheses with a
quasi-unsupervised scheme. This factorization scheme shown in our study has merits
compared to the classical NMF because it selects the sparsest solution among infinite
feasible solutions. To that end, there is no need for pre-calibration of the constraint
tasks by users but rather the constraint on the solution. The method has been
compared in similar conditions to the NMF and linear regression with results
proving it to be superior over these methods even when a single DOF activation
was used for the factorization which is an ideal condition for the NMF. Furthermore,
the approach could be used by factorizing the myoelectric signals from arbitrary
tasks by combining individual DOFs. The proposed factorization algorithm allows
robust simultaneous and proportional control and is superior to previous supervised
algorithms, and its minimal supervision characteristic paves the way to online
adaptation in myoelectric control.
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6.3 Neural Interfaces for Improvement of EMG-Based
Prosthetic Control

6.3.1 Background

The previously described sections show that EMG-based prostheses control method
could potentially allow amputees to intuitively manipulate the prosthetic arm with
high level of dexterity and as well achieve multiple DOF controls. Developing
EMG-based prostheses with these characteristics mainly depends on whether the
users have enough residual muscles which act as source of EMG control signals. For
instance, individuals with below the elbow amputation (transradial amputees)
generally have enough residual muscles for the control of wrist functions such as
wrist flexion/extension, wrist pronation/supination, and so on. Also, these category
of amputees could provide enough EMG signals from their residual forearm muscles
to control hand and even finger movements as reported in a number of previous
studies [7]. On the other hand, individuals with high-level amputations
(transhumeral or shoulder disarticulation) usually do not have enough residual
muscles to provide myoelectric signals for the successful control of the wrist and
hand movements although they can produce enough EMG signals for the control of
elbow functions (elbow flexion/extension). Thus, intuitively controlling multiple
DOF hand/wrist movements becomes a major challenge for these categories of
amputees. One possible means of addressing the issue of insufficient generation of
myoelectric control signals for these users would be to consider neural machine
interfaces approaches such as targeted muscle reinnervation (TMR) and targeted
nerve function replacement (TNFR). The theoretical background is that muscles can
be considered as the bio-amplifier of the neural signals.

6.3.2 Targeted Muscle Reinnervation Technology

Toward enabling high-level upper limb amputees producing sufficient myoelectric
control signals again, a neural machine interface technology known as TMR was
proposed by Todd Kuiken et al. [28]. TMR is a surgical procedure that involves the
transfer of residual nerves from an amputated limb unto alternative muscle group
usually located around the chest region. During the surgery, brachial plexus nerves
that provide motor control and sensory feedback prior to amputation are transferred
to the arm or chest muscles that are biomechanically nonfunctional. Afterward, a
functional link is established between the implanted nerves and the targeted muscles,
thereby inducing the contractility of targeted muscles and enabling the generation of
additional myoelectric signals. Importantly, this surgical technique is aimed at
restoring the peripheral nerve functions in amputees thus enabling the provision of
sufficient myoelectric control signals again. A schematic diagram of the TMR
surgical procedure is conceptualized in Fig. 6.2a. For the subject shown in

158 G. Li et al.



Fig. 6.2b, the surgery was performed on his right chest region, and it involves
transferring the median, ulnar, radial, and musculocutaneous nerves to the subject’s
pectoralis major muscle segmented into four parts, respectively.

The above described neural machine interface technology for upper limb pros-
theses control has been implemented and tested on a number of human subjects. The
test sessions conducted with a bilateral amputee (Fig. 6.2b) shows that the high-level
amputee could efficiently perform additional hand function tasks such as drinking
and eating which could not be achieved prior to the TMR surgery. Importantly, the
success of performing additional tasks was objectively linked to the realization of
more EMG control signals after the TMR surgery.

6.3.3 Targeted Nerve Function Reconstruction Technology

Despite the success recorded by the TMR technology, it still has some limitations
which have slowed down its widespread adoption. For instance, TMR surgery
involves establishing functional links between the nerves and targeted muscles
leading to two major challenges: First, the targeted muscle would atrophy with
time because it has been denied of the required nutrients provided by the original
nerve which has been replaced with the implanted nerve. Second, intramuscular
nerve distribution (a key indicator of the motor function recovery) will also degen-
erate after a while due to the lack of nutrients from the surrounding cell body.

Peripheral nerves which play an important role after TMR surgery have been
reported to have a slow growth rate. That is, it takes about 3~6 months or even more
after TMR for proper redistribution of the implanted nerve into the targeted muscle,
thus leading to atrophy of the targeted muscle. Aside the slow growth rate, the
absence of nerve supplements is another factor responsible for atrophy of the

Fig. 6.2 The schematic representation of the TMR technology. (a) TMR surgical procedure for
shoulder disarticulation amputee. (b) A bilateral amputee with successful TMR surgery controlling
a prosthetic arm [28]
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targeted muscle [38–40]. In such a situation, high-level upper limb amputees would
need training and treatment over an extended period for new functional connections
to be established between the targeted muscle and the implanted nerves. It is worth
noting that end-to-end anastomosis has been proven to be the best approach for
restoring the functions of injured nerves in patients [41]. Thus based on this
principle, targeted nerve function reconstruction (TNFR) technology is considered
to address the abovementioned problems associated with TMR. This is because
TNFR has the potential to better restore the motor functions associated with multiple
degrees of freedom upper limb movements. Aiming at improving intramuscular
nerve distribution as well as preventing muscle atrophy, TNFR establishes func-
tional links between the nerves of the targeted muscles and nerves from the ampu-
tated region/arm of the individual. A schematic representation of the TNFR
technology is shown in Fig. 6.3.

Shown in Fig. 6.3 is a male transhumeral amputee that underwent a TNFR
surgery. He actually got his left limb amputated in 2012 as a result of injury
sustained from a rolling machine. At the time of the surgery (2015), the amputee
was approximately 48 years old. Prior to the TNFR surgery, his residual limb was
subjected to a number of assessments to ensure that he meets up with the require-
ment. From the assessments, we found that the residual limb has a length of 22 cm
and has not been infected. In addition, the results of an MRI scan show that the
musculus biceps brachii and musculus triceps brachii of the residual limb were intact
with neuroma tissue formed at median nerve, ulnar nerve, and musculospiral nerve
terminals. Afterward, the TNFR surgery was performed on the subject by transecting
the MCN, MN, RN, and UN from the residual limb and implanting them into the
corresponding MCN, MN, RN, and UN on the amputee’s chest region.

About 7 days after the surgery, the operation regions were observed twice a week
for 8 consecutive weeks. Indexes, such as status of the incision (healing rate), skin
color and temperature, and limb peripheral circumference, were closely monitored.
The pre-surgery and post-surgery experiences of the subject were also utilized to
assess the limb status. These experiences include the subject’s feelings of missing
fingers, hand, and arm as well as his experience during observing different

Fig. 6.3 A representation of the TMR/TNFR technology. (a) TMR/TNFR surgical procedure for a
transhumeral amputee, (b) EMG recordings after undergoing a TNFR surgery when the subject was
doing different arm movements
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movements (finger, wrist, hand, and elbow). Subsequently, a TNFR testing envi-
ronment was setup to demonstrate the feasibility of our proposed technology. In the
testing environment shown in Fig. 6.3b, the amputee was able to control the virtual
prostheses reliably across a range of upper limb movements compared to his
pre-TNFR experience. It is noteworthy that the TNFR technology is proposed by
our research group and we hope it will revolutionize prostheses control technology
and other related EMG-based rehabilitation device technologies in the future.

We further built a number of animal models recently to compare the performance
of proposed TNFR technology with that of TMR and found the TNFR model
obviously demonstrates better intramuscular nerve distribution compared to the
TMR model. Additionally, we found out that bicep brachii muscles on the opera-
tional sides of the TNFR model achieved better wet mass compared to that of the
TMR model.

6.3.4 Restoration of Sensory Feedback

Tactile sensation is an essential element for a dexterous hand manipulation. In an
ideal bidirectional hand prostheses, the user’s intentions are first decoded through
the efferent pathway, and then a nearly “natural” sensory feedback is delivered
through the remnant afferent pathways, simultaneously in real time, as illustrated
in Fig. 6.4.

The lack of proper sensory feedback mechanism limits prostheses users in
grasping and manipulating objects, which makes the use of prostheses cumbersome
and uncomfortable, leading to prosthetic abandonment. In fact, lack of sensory
feedback schemes in the currently available multiple-DOF upper-limb prostheses
have slowed down its clinical and commercial success [42]. Improper feedback of
tactile perception may also lead to “over-grasp” causing damage to an object or
“under-grasp” causing slip of object. Report from previous survey indicated that
about 95% of male amputees desire to have force feedback in their prostheses and
88% placed more emphasis on grip force and proprioceptive information of pros-
thesis position and movement. With the rejection rate of upper limb prostheses
reaching 39% and the increasing rate of people living with the loss of a limb
projected to be doubled by the year 2050 [43], the need for integrating efficient
sensory feedback mechanism into the prostheses becomes more necessary.

To restore the lost sensory feedback, Raspopovic et al. [44] were able to
stimulate the median and ulnar nerve fascicles using transversal multi-channel
intrafascicular electrodes (TIMEs) connected to the artificial hand sensors. The
subject was able to control the prosthesis through information provided by the
artificial sensors. This feedback enabled users to effectively control the grasping
force of the prosthesis with no visual or auditory feedback. To restore a sense of
touch that is close to the natural perception, the artificial receptors known as
sensors need to first register the characteristics of the sensed object/environment
[45], which works in a similar way to the receptor organs in humans. These sensory
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receptors are broadly classified into pain receptors, cold receptors, warm receptors,
and four mechanoreceptors. Then, the receptors encode information into trains of
action potentials and also possess characteristic innocuous temperature variation
evoked by different afferents between ~5 and 48 �C [46]. The mechanoreceptors
are grouped into slow-adapting receptors (SA-I and SA-II) and fast-adapting
receptors (FA-I and FA-II) having different receptive fields to which they respond
to mechanical stimulus, as well as different rates of adaptation. Also, tactile stimuli
are transferred from the artificial receptors to the intact skin through the actuators.
At this stage, signals are transported from receptors through nerve fibers to the
brain where complex information are interpreted. The time taken for the signal to
get to the brain is less than tens of milliseconds [47]. And lastly, a learning process
is initiated by the central nervous system to adapt to the new type of afferent
signals. A closed loop architecture for restoring a sensory feedback is described in
Fig. 6.4. This figure shows the transduction and interfacing system which transmit
the electronic signals and the control system which performs signal processing and
interpretation.

To provide a sensory feedback mechanism, data are firstly acquired through the
use of tactile sensors that come in contact with the target object (Fig. 6.4). Secondly,
the analog-to-digital converter digitizes the signal at the signal transduction stage

Fig. 6.4 Closed loop architecture for restoring sensory feedback
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prior to further analysis. Before further signal processing, unwanted signal distur-
bances called artifact are removed by applying a wavelet transform and empirical
mode decomposition strategies to reduce the noise in the signal [48]. At the last
stage, the transmitted signal which mimics the real signal (action potential) is then
sent to the brain for interpretation.

With the invasive mechanism, action potentials traveling in the form of electrical
signals through the nervous systems could possibly regain all somatic sensory
information with modality matching by implanting neural electrodes in the periph-
eral nerves [49]. This approach is able to restore the sense of touch by means of
implantable nerve interfaces but always associated with risk of surgical procedure,
and their long-term usability needs to be fully investigated [50]. There are three
major approaches for invasive sensory feedback which are peripheral nervous
system (PNS) stimulation, targeted sensory reinnervation (TSR), and central nervous
system (CNS) stimulation. On the other hand, the promising noninvasive mechanism
could be realized through techniques such as mechanotactile, vibrotactile, or
electrotactile stimulations. To achieve any of these stimulation techniques, the
characteristics of the actuator (weight, size, and power consumption) would need
to be considered. Importantly, more research focus has been shifted toward the
noninvasive sensory feedback mechanism in the recent years with a lot of work
currently ongoing in this area.

In summary, integrating an efficient noninvasive sensory feedback mechanism
into the currently available multifunctional upper limb prostheses will not only
improve the control performance of the prostheses but also give users a feel of
their true natural environment during ADL.

6.4 Conclusion

The human upper limb is an important part of the body that enables the accomplish-
ment of a range of tasks in workplace, at home, and in social gathering during ADL.
The loss of this part of the body severely limits the capability of amputees while
undergoing ADL. In this regard, prosthetic device driven by different control
methods have been built to restore the lost limb functions in amputees. At the
forefront of these prostheses, control method is the EMG-based control which has
attracted considerable attention in both the academia and industry in the recent years.
Hence, this chapter focuses on EMG-based prostheses control methods with empha-
ses on pattern recognition-based control as well as simultaneous and proportional
control techniques, with details on the fundamental procedure of decoding limb
movement intents. Also, a number of techniques for improving the overall perfor-
mance of EMG-based prosthetic system were discussed with emphases on the
advantages and limitations.
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