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Preface

This volume is a collection of invited articles by some of the leading and very active
researchers in the theory of finite groups and their representations, and the Monster
group, with an emphasis on computational aspects. Among the authors are par-
ticipants who led workshops and delivered invited talks in the international program
“Group Theory and Computational Methods” held at the International Center for
Theoretical Sciences (ICTS), Bangalore, from November 05–14, 2016. The pro-
gram comprised of two parts: workshops (November 05–09, 2016) and discussion
meetings (November 11–14, 2016).

The workshops comprised of the following five minicourses of 6-h duration
each:

(1) Computational homological algebra
(2) Computational representation theory
(3) Computational aspects of finite p-groups
(4) Computer algebra system GAP
(5) Introduction to Monster simple group and Moonshine

The discussion meetings comprised of 20 invited talks by eminent mathematicians.
They presented recent developments and problems of current mathematical interest
on a variety of topics in group theory and related areas. Poster presentation session
consisted of 11 posters by young researchers.

The topics of the articles include finite loops, non-abelian tensor product, peri-
odic groups, character table of finite groups, computing subgroups using computer
algebra system GAP, Majorana theory related to the Monster group, groups with
abelian automorphism groups, unit groups of integral group rings, and Camina
groups and generalizations.

We thank the authors for writing the articles and our colleagues for carefully
refereeing them. We also thank the speakers and the participants of the workshops
and discussion meetings mentioned above whose participation helped closer
mathematical scrutiny of the themes discussed.

v



We thank ICTS, Bangalore, for the excellent facilities and support for the
smooth and successful conduct of the program. We also thank Springer for pub-
lishing this volume, and Shamim Ahmad, for his friendly and efficient handling
of the publication process.

Dharwad, India N. S. Narasimha Sastry
Allahabad, India Manoj Kumar Yadav
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On Right Conjugacy Closed Loops
of Twice Prime Order

Katharina Artic and Gerhard Hiss

2010 Mathematics Subject Classification 20N05 · 20B10 · 20E45

1 Introduction

A quasigroup L is a set with a binary operation ∗ : L × L → L, such that every
equation x ∗ a = b or a ∗ x = b with a, b ∈ L has a unique solution x . In this case,
for every a ∈ L, the right multiplication Ra : L → L, x �→ x ∗ a is a permutation
of L (and of course so is every left multiplication). A quasigroup is a loop, if it
contains an identity element. Thus, a group is just a loop, in which the operation is
associative, and we will indeed view groups as loops.

In the following, we will only consider finite loops. Let L be a (finite) loop,
whose identity element we denote by e. The right multiplication group of L is the
group G := 〈Ra | a ∈ L〉, a subgroup of the symmetric group on L. Clearly, G acts
faithfully and transitively on L and Re is the identity element of G, which we denote
by 1. Let H ≤ G denote the stabilizer in G of e ∈ L, and let T := {Ra | a ∈ L}.
Then, T is a transversal for H g\G := {H gx | x ∈ G} for every g ∈ G, the identity
element of G is contained in T , and 〈T 〉 = G. The triple (G, H, T ) is called the
envelope of L, a group theoretic object..

Conversely, starting from group theory, one defines a loop folder to be a triple
(G, H, T ) of a finite group G, a subgroup H ≤ G and a subset T ⊆ G with 1 ∈ T ,
such that T is a transversal for H g\G for every g ∈ G. Given a loop folder (G, H, T ),
one can construct a loop (L, ∗) on the set H\G of right cosets of H inG. However, the
envelope of L need not be equal to (G, H, T ). In contrast to the right multiplication
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2 K. Artic and G. Hiss

group ofL, in general, the group G will not act faithfully onL, and the transversal T
will not generate G. On the other hand, it is not difficult to construct the envelope
of L from (G, H, T ).

These results, as well as the notion of loop folder and envelope of a loop are con-
tained in [2, Section1]. However, the connection between loops and their envelopes
goes back to Baer [3].

Let L be a loop with envelop (G, H, T ). We say that L is right conjugacy closed,
or an RCC loop, if T = {Ra | a ∈ L} is closed under conjugation by itself. Clearly,
this is the case if and only if T is invariant under conjugation in G = 〈T 〉; in other
words, if T is a union of conjugacy classes ofG. We shortly say that T isG-invariant
in the following. Thus, an RCC loop gives rise to a G-invariant transversal of H ,
the stabilizer of e in G. (A G-invariant transversal of a subgroup H of a group G is
sometimes called a distinguished transversal in the literature.)On the group-theoretic
side, this leads to the notion of an RCC loop folder. This is a loop folder (G, H, T ),
where T is G-invariant. More definitions regarding loop folders are given at the
beginning of Sect. 3.

It has been shownbyDrápal [9] that an RCC loop of prime order is a group. In this
paper, we determine all RCC loops of order 2p, where p is an odd prime. In order
to achieve this, we first describe the possible envelopes (G, H, T ) of such loops. Our
approach is group theoretic. In Sects. 2 and 3, we show that if (G, H, T ) is an RCC
loop folder such that G acts faithfully on H\G and the index |G : H | is the product
of two distinct primes, thenG acts imprimitively on H\G (Theorem 3.1). This result
uses the classification of the finite simple groups and is based on the classification
of finite primitive permutation groups of square-free degree by Li and Seress, and
on the determination of the minimal degrees of permutation representations of finite
groups of Lie type by Patton, Cooperstein and Vasilyev. For the purpose of our
further investigation, it would suffice to enumerate the primitive permutation groups
of degree 2p for odd primes p; we are not aware of any result in this direction which
does not rely on the classification of the finite simple groups.

In Sect. 4, we continue with some basic results on permutation groups of
degree p and give a new proof of Drápal’s theorem on RCC loops of prime order
(Corollary4.2).

Let (G, H, T ) be the envelope of an RCC loop of order 2p, where p is an odd
prime. Using Theorem 3.1 mentioned above, we may now assume that there is a
subgroup K � G with H � K , and also that one of the indices |G : K | or |K : H |
is equal to 2, and the other index is equal to p. This configuration is analysed in
Sect. 5 with elementary group theoretical methods. It turns out that there are three
possible types for G. First, G can be isomorphic to the wreath product Cp 
 C2,
where Cp and C2 denote (cyclic) groups of order p and 2, respectively. Second, G
can be isomorphic to a subgroup of Aff(1, p), the affine group over Fp. Third, G can
be isomorphic to a group K × 〈a〉, where K is an odd order subgroup of Aff(1, p)
and a is an element of order 2 (Theorem5.13). In particular,G is soluble. Ultimately,
our results rely on the classification of the finite simple groups. One could avoid this
by assuming from the outset that G is soluble. This would lead to exactly the same
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list of RCC loops of order 2p, but of course without the guarantee to have found
them all.

In Sect. 6, we determine the number of isomorphism classes of loops of order 2p
(Theorem 6.5).

Finally, Sect. 7 introduces a series of examples of RCC loops of order q2 − 1
and multiplication groups GL(2, q) (Proposition7.1). For q = 4, we obtain a loop
of order 3 · 5, whose multiplication group is not soluble. These examples indicate
that a generalization of our results to RCC loops of order pq for distinct primes p
and q could be substantially more difficult.

This is a good place to discuss some related results. In [18, TheoremA], Stein
shows that if T is a conjugacy class in a finite group and at the same time, a tranversal
to a subgroup, then 〈T 〉 is soluble. This result uses the classificationof thefinite simple
groups. Without the classification, but with the help of the Odd Order Theorem,
Csőrgő and Niemenmaa in [5] obtain the solubility of the full multiplication group
of a loop under certain conditions on the stabilizer of a point. Their paper contains
further references for results along this line. In [6], Csőrgő and Drápal characterize
left conjugacy closed loops inside the class of nilpotent loops of nilpotency class two.
In the same paper, these authors also determine the nilpotent left conjugacy closed
loops of order p2 for primes p. In [14, Theorem 4.15], Kunen shows that for each
odd prime p there is exactly one non-associative conjugacy closed loop of order 2p,
up to isomorphism (a loop is conjugacy closed, if it is both left and right conjugacy
closed). Burn shows in [4] that every Bol loop of order p2 or 2p for a prime p is a
group. Finally, in [7, Theorem 7.1], Daly and Vojtěchovský determine the number
of nilpotent loops of order 2p, where again p is a prime, up to isomorphism.

This paper builds upon the PhD thesis of the first author [1], written under the
direction of the second author and Alice Niemeyer. Theorem 3.1 is contained in this
thesis, but also a complete classification of all RCC loops of order at most 30. These
have been incorporated into the GAP package Loops of Nagy and Vojtěchovský [16].
The classification of the RCC loops of order 2p is, to the best of our knowledge,
new. The examples computed in [1] were of considerable importance for confirming
our theoretical results of Sect. 6. The example of an RCC loop of order 15 and
multiplication group GL(2, 4) contained in [1], gave rise to the series of examples
constructed in Sect. 7.

Our group theoretical notation is standard. For example, we write G ′ for the
commutator subgroup of the group G. We do recall the notion of an almost simple
group and that of the core of a subgroup in the introductions to Sects. 2 and 3,
respectively. As already indicated above, a cyclic group of order n is denoted by Cn ,
and the symmetric and alternating groups of degree n are denoted by Sn and An ,
respectively.
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2 Primitive Permutation Groups of Square-free Degree

We begin with a remark on the sizes of conjugacy classes in almost simple groups.
Recall that a group G is almost simple, if there is a non-abelian finite simple group S
such that S ≤ G ≤ Aut(S) (where S is identified with the group of inner automor-
phisms of S). In this context, S is called the socle of G.

Remark 2.1 LetG be an almost simple groupwith socle S. Denoted by l the smallest
index of any proper subgroup of S. Since S is simple, l is a lower bound for the size
of those non-trivial conjugacy classes of G lying in S. Let g ∈ G \ S. Then, we have

|G : CG(g)| = |G|
|SCG(g)| · |S|

|S ∩ CG(g)|
= |G|

|SCG(g)| · |S|
|CS(g)| .

Notice that, if CS(g) = S, the element g acts trivially on S which implies that g = 1.
Hence, we have CS(g) � S. Thus, l is a lower bound on the size of all non-trivial
conjugacy classes of G.

The following theorem combines some major results by Li and Seress on finite
primitive permutation groups of square-free degree, and by Patton, Cooperstein and
Vasilyev on the minimal degrees of permutation representations of finite groups of
Lie type.

Theorem 2.2 Let G be a finite primitive permutation group of degree n (i.e. G acts
faithfully and primitively on a set of n points). Suppose that n is square free (i.e.
p2 � n for all primes p). Then every non-trivial conjugacy class of G has at least n
elements, or one of the following holds:

(a) We have n = p is a prime and G is isomorphic to a subgroup of Aff(1, p),
(b) We either have have G = S8 and n ∈ {35, 105}, or G = J1 and n = 2926, or

G = PGL(2, r) for an odd prime r and n = r(r + 1)/2,
(c) or G is almost simple and soc(G) and n occur in Table1. There, r denotes a

prime power.

Proof By [15, Theorem 1] we either have that n is a prime and G ≤ Aff(1, n) as in
Case (a), or G is almost simple and S := soc(G) as well as n appear in the paper
[15] by Li and Seress.

The cases when S is isomorphic to an alternating group, are listed in [15, Table 1].
If S is as in [15, Table 1, Line 1], then S = Ac and n = (c

k

)
with 1 ≤ k ≤ c − 1. For

reasons of symmetry it suffices to consider the case k ≤ c/2.Table2 lists the size s(G)

of the smallest non-trivial conjugacy class of G for all G with S ∈ {A5, A6, A7, A8}.
This table, easily compiled or verifiedwithGAP [20], proves our claim for 5 ≤ c ≤ 8.
If c ≥ 9, by [8, Theorems 5.2A,B], the subgroups of Ac or Sc which have an index
less then c(c − 1)/2 do not occur as centralizers of non-trivial elements. Hence, the
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Table 1 Primitive groups of degree n which might have a non-trivial conjugacy class of length less
than n

soc(G) n Restrictions

(i) Ac
(c
k

)
3 ≤ k ≤ c − 3

(ii) A2a
1
2

(2a
a

)
a ∈ {6, 9, 10, 12, 36}

(iii) PSL(m, r)
∏k−1

i=0 (rm−i−1)
∏k

i=1(r
i−1)

2 ≤ k ≤ m − 2,
(m, r) /∈ {(4, 2), (5, 2)}

(iv) PSL(m, r)
∏2k−1

i=0 (rm−i−1)

(
∏k

i=1(r
i−1))2

1 ≤ k < m/2, m ≥ 3,
(m, r) �= (3, 2)

(v) PSL(2, r)
√
r(r + 1)/2

√
r an odd prime,

soc(G) < G, r > 9

(vi) PSL(2, r) r(r2 − 1)/24 r a prime, r ≡ ±3 (mod 8),
r /∈ {5, 11}

(vii) PSL(2, r) r(r2 − 1)/48 r a prime, r ≡ ±1 (mod 8),
r /∈ {7, 17, 23}

(viii) PSL(2, r) r(r2 − 1)/120 r a prime, r ≡ ±1 (mod 10),
r /∈ {11, 19, 29, 31, 41, 59}

(ix) PSU(4, r) (r2 + 1)(r3 + 1)

(x) PSp(2m, 2) 4m − 1 m ≥ 3

(xi) PSp(2m, r) (r2m−1)(r2m−2−1)
(r2−1)(r−1)

m ≥ 3

(xii) �(2m + 1, r) (r2m−1)(r2m−2−1)
(r2−1)(r−1)

m ≥ 3

(xiii) P�−(2m, r) (rm+1)(r2m−2−1)(rm−2−1)
(r2−1)(r−1)

m ≥ 3, r even

(xiv) P�−(2m, r) (rm+1)(r2m−2−1)(r2m−4−1)(rm−3−1)
(r3−1)(r2−1)(r−1)

m ≡ 0 (mod 4), r even

(xv) P�+(2m, 2) (2m − 1)(2m−1 + 1) m ≥ 5 odd

(xvi) P�+(2m, r) (rm−1)(r2m−2−1)(rm−2+1)
(r2−1)(r−1)

m ≥ 3, r even

(xvii) P�+(2m, r) (rm−1)(r2m−2−1)(r2m−4−1)(rm−3+1)
(r3−1)(r2−1)(r−1)

m ≡ 3 (mod 4), r even

(xviii) E7(r)
(r18−1)(r14−1)(r4−r2+1)

(r2−1)(r−1)

Table 2 Smallest size of non-trivial conjugacy classes

G A5 S5 A6 S6 A6.22 A6.23 Aut(A6) A7 S7 A8 S8

s 12 15 40 15 36 45 30 70 21 105 28
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non-trivial conjugacy classes of Ac or Sc have at least c(c − 1)/2 elements, proving
our claim for k ≤ 2. The case 3 ≤ k ≤ c − 3 appears as Case (c)(i) in our statement.

In the remaining cases of [15, Table 1], a look at Table2 shows that all non-trivial
conjugacy classes of G have at least n elements except for

• G = S8 and n ∈ {35, 105},
• S = A2a and n = (2a

a

)
/2 with a ∈ {6, 9, 10, 12, 36}.

These cases appear as Case (b) and Case (c)(ii), respectively, in our statement.
The cases when S is a sporadic simple group are listed in [15, Table 2]. Using

GAP, we only find the one exception listed in Case (b).
In [15, Table 3], the case where S is a classical group are considered. For some

small parameter values, we have verified our claim directly with GAP. These cases
are listed in the column headed Restrictions of Table1, and are not commented on
any further below. In the following, we refer to the line numbers of [15, Table 3].
Suppose that S is as in Line 1. Then, S = PSL(m, r) and

n =
k−1∏

i=0

(rm−i − 1)/
k∏

i=1

(r i − 1)

with 1 ≤ k < m. For k = 1 or k = m − 1,we have n = (rm − 1)/(r − 1). If (m, r) ∈
{(2, 5), (2, 7), (2, 9), (2, 11), (4, 2)}, a computation with GAP shows that the non-
trivial conjugacy classes ofG havemore than n elements. Otherwise, n is the smallest
index of any proper subgroup of S by [13, Table 5.2.A]. Applying Remark2.1, we
see that the non-trivial conjugacy classes of G have at least n elements. The case
2 ≤ k ≤ m − 2 is listed as Case (c)(iii) in our statement.

The case when S is as in Line 2, is listed as Case (c)(iv) in our statement.
Suppose that S is as in Line 3 or 4. Then, S = PSL(2, r) and n = r(r ± 1)/2.

Since n is square free, we have r = 4 and n ∈ {6, 10} or r is an odd prime. If
r = 4, we have S ∼= A5, and Table2 proves our claim. If r is an odd prime, then
Aut(PSL(2, r)) = PGL(2, r) and henceG = PSL(2, r)orG = PGL(2, r). The con-
jugacy classes of these groups are well known. We find that only if G = PGL(2, r)
and n = r(r + 1)/2, there are non-trivial conjugacy classes of G with less than n
elements. This case appears in Case (b) in our statement.

Suppose that S is as inLine 5. Then, S = PSL(2, r) and n = √
r(r + 1)/2. Since n

is square free, r is the square of a prime number. The non-trivial conjugacy classes of
PSL(2, r) have at least n elements. Hence S � G. This case is listed as Case (c)(v)
in our statement.

Suppose that S is as in one of the Lines 6, 7 or 8. Then S = PSL(2, r) and
n = r(r2 − 1)/d with d ∈ {24, 48, 120}, and r ≡ ±3 (mod 8) if d = 24, respectively
r ≡ ±1 (mod 8) if d = 48, respectively r ≡ ±1 (mod 10) if d = 120. In particular, r
is odd. Since n is square free, r = 9 or r is an odd prime. If r = 9we have S ∼= A6, and
Table2 proves our claim. The cases where r is an odd prime, are listed as Case (c)(vi)
through Case (c)(viii) in our statement.

Suppose that S is as in Line 9. Then, S = PSU(m, r) with
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n = (rm − (−1)m)(rm−1 − (−1)m−1)

r2 − 1
.

If m = 2, we have S ∼= PSL(2, r) (see [19, Theorem 10.9]) and n = r + 1, a case
we have already considered above. For m = 3 and r = 5, our claim can be verified
with GAP. The case of m = 4 is listed as Case (c)(ix) in our statement. If 6 | m and
r = 2, then n = (2m − 1)(2m−1 + 1)/3 is not square free, as 26 − 1 divides 2m − 1
and 3 divides 2m−1 + 1. In the remaining cases, n is the smallest index of any proper
subgroup of S (see [13, Table 5.2.A]). Thus, byRemark 2.1, the non-trivial conjugacy
classes of G have at least n elements.

Suppose that S is as in Line 10. Then, S = PSp(2m, r) with (m, r) �= (2, 2)
and n = (r2m − 1)/(r − 1). (The case (m, r) = (2, 2) leads to S = A6 and n = 15,
which can be excluded by Table2.) Again, we have already considered the case
m = 1, where S ∼= PSL(2, r) (see [19, Theorem 8.1]). If m = 2 and r = 3, then
n = 40 is not square free. The case m ≥ 3 and r = 2 is listed as Case (c)(x) in our
statement. In the remaining cases, n is the smallest index of any proper subgroup
of S (see [13, Table 5.2.A]) and Remark2.1 proves our claim.

If S is as in Line 12 or 13, then S ∼= A6, and we are done with Table2.
Suppose that S is as in Line 14. Then S = �(2m + 1, r) and n = (r2m − 1)/

(r − 1). We may assume that m ≥ 3 and that r is odd, as otherwise S ∼= PSp(2m, r)
(see [19, Theorems 11.6, 11.9, Corollary 12.32]), a case already considered. If r = 3,
then n = (32m − 1)/2 is not square free. In the other cases, n is the smallest index
of any proper subgroup of S (see [13, Table 5.2.A]), and we are done as above.

Suppose that S is as in Line 16. Then,m is even and oncemore by [13, Table 5.2.A]
and Remark 2.1 we obtain our claim. (This includes the case m = 2, where S ∼=
PSL(2, q2) (see [19, Corollary 12.43]) and n = q2 + 1.)

Suppose that S is as in Line 19. Then S = P�+(2m, r) with m ≥ 3 odd and

n = (rm − 1)(rm−1 + 1)

r − 1
.

Ifm = 3, we have S ∼= PSL(4, r) (see [19, Corollary 12.21]) and n = (q2 + 1)(q2 +
q + 1). This case is already contained in Case (c)(iii) of our statement. If r �= 2 and
m ≥ 5, we conclude with [13, Table 5.2.A] and Remark 2.1. The case of m ≥ 5 and
r = 2 is included as Case (c)(xv) in our statement.

The remaining cases of [15, Table 3] are listed as Cases (c)(xi) through (c)(xiv)
and (c)(xvi) through (c)(xvii), respectively, in our statement.

Suppose that S is as in [15, Table 4], i.e. an exceptional group of Lie type. In
[21–23], A. V. Vasilyev lists the smallest index l of any proper subgroup of the
exceptional simple groups. By Remark2.1, the non-trivial conjugacy classes of G
have at least l elements. We find l = n except for

• S = G2(4) and n = 1365. We verified our claim for the two almost simple groups
with socle G2(4) with GAP.
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• S = E7(r) with n = (r18 − 1)(r14 − 1)(r4 − r2 + 1)/((r2 − 1)(r − 1)). This
case is listed as Case (c)(xviii) in our statement.

This completes our proof. �

Remark 2.3 For the purpose of this remark, let us call an example a pair (G, n) of
a primitive permutation group G of square-free degree n containing a non-trivial
conjugacy class with less than n elements.

Now, assume the hypotheses of Theorem2.2. Clearly, not all the instances (G, n)

listed there are examples.
If G is as in (a) of this theorem, then G has a conjugacy class of length p − 1. The

symmetric group S8 has a conjugacy class of length 28, and the sporadic simple group
J1 has a conjugacy class of length 1463. Thus the groups in (a) and the first three
instances of (b) provide examples. This fact also indicates that in order to enumerate
all examples one will have to use the classification of the finite simple groups.

The group G = PGL(2, r) has a conjugacy class of length r(r − 1)/2 for every
odd prime r . The group PGL(2, 3) is isomorphic to the symmetric group S4,
which does not have a primitive permutation representation of degree 6. Thus
(PGL(2, r), r(r + 1)/2) is an example, if and only if r ≥ 5 and (r + 1)/2 is square
free.

We expect that not many examples will arise from the pairs (G, n) listed in
Theorem2.2(c), but it would be a tedious task to enumerate all of them.One approach
could be to determine all subgroups of G of index less than n and show that most
of such subgroups are not centralizers of elements. Still, one has to decide whether
one of the remaining numbers n is indeed square free. This will most certainly lead
to difficult, if not intractible, number theoretical questions.

In the lemma below, we are going to make use of Zsigmondy primes, also known
as primitive prime divisors. Let r and d be integers greater than 1. We call a prime �

a Zsigmondy prime for rd − 1, if � divides rd − 1, but not r i − 1 for 1 ≤ i < d.
A Zsigmondy prime for rd − 1 exists whenever d > 2 and (r, d) �= (2, 6) (see [10,
Theorem IX.8.3]).

Lemma 2.4 Suppose that n = pq, where p and q are distinct primes, and that G
is a finite primitive permutation group of degree n such that G has a non-trivial
conjugacy class with less than n elements. Then, one of the following holds:

(a) We have G ∈ {A7, S7, S8} and n = 35.
(b) We have G = PGL(2, r) for an odd prime r and n = r(r + 1)/2.
(c) The group G is almost simple with PSL(2, r) = soc(G) � G, where

√
r is an

odd prime, r > 9, and n = √
r(r + 1)/2.

(d) We have G ∈ {PSL(2, 13),PGL(2, 13)} and n = 91.
(e) We have G ∈ {PSL(2, 61),PGL(2, 61)} and n = 1891.
(f) We have S = P�+(2m, 2), for m ≥ 3 and n = (2m − 1)(2m−1 + 1).

Proof We have to exclude those integers n in Theorem2.2 which are not the product
of two different primes. From Cases (a) and (b) of Theorem2.2, we obtain (part of)
Case (a) and Case (b) of our lemma.
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So, suppose that G is almost simple and that S := soc(G) occurs in Table1. In
Case (i), we have n = (c

k

)
with k ≥ 3. For reasons of symmetry, it suffices to consider

3 ≤ k ≤ c/2. By [17, Theorem 7], the total number (countingmultiplicities) of prime
factors of the binomial coefficient

(c
k

)
is greater than or equal to the total number of

prime factors of c, with equality only if (c, k) = (8, 4). Thus,
(c
k

)
is the product of

two different primes only if c is a prime. Consider the case k = 3 first. Then,

n = c · (c − 1)(c − 2)

6
.

If c = 7, we have n = 35. This is recorded in Case (a) of our lemma. So, assume
that c ≥ 11. Then, n = (c

3

)
has at least three different prime factors. But then by [17,

Theorem 3], the binomial coefficient
(c
k

)
with k > 3 also has at least three different

prime factors.
In Cases (ii), (ix) through (xiv) and (xvi) through (xviii) of Table1, the degree n

is clearly not the product of two different primes.
In Case (iii) of Table1, we have soc(G) = PSL(m, r) and

n =
k−1∏

i=0

(rm−i − 1)/
k∏

i=1

(r i − 1),

with 2 ≤ k < m. For reasons of symmetry, it suffices to consider the integers
k with 1 ≤ k ≤ m/2. Suppose first that m ≥ 5 and k ≥ 3. Consider the terms
(rm − 1), (rm−1 − 1) and (rm−2 − 1). They occur only in the numerator and not
in the denominator of n and, by Zsigmondy’s theorem, have pair-wise distinct prim-
itive prime divisors r1, r2 and r3 (which divide n) unless one of the pairs (m, r),
(m − 1, r) or (m − 2, r) is equal to (6, 2). But in these cases, i.e. if m ∈ {6, 7, 8}
and r = 2, we just compute that n is not the product of two different primes for all
3 ≤ k ≤ m/2. If m ≥ 4 and k = 2, then

n = (rm − 1)(rm−1 − 1)

(r2 − 1)(r − 1)
,

which is the product of two different primes if and only if m ∈ {4, 5} and r = 2. But
these cases have already been excluded.

In Case (iv) of Table1, we have S = PSL(m, r) and

n =
2k−1∏

i=0

(rm−i − 1)/(
k∏

i=1

(r i − 1))2,

withm ≥ 3 and 1 ≤ k < m/2. Suppose first we havem ≥ 5 and k ≥ 2. Then, again,
the terms (rm − 1), (rm−1 − 1) and (rm−2 − 1) occur only in the numerator and not
in the denominator of n and have pair-wise distinct primitive prime divisors r1, r2
and r3 (which divide n) unless one of the pairs (m, r), (m − 1, r) or (m − 2, r) is
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equal to (6, 2). But in these cases, i.e. if m ∈ {6, 7, 8} and r = 2, we just compute
that n is not the product of two different primes for all 2 ≤ k < m/2. Ifm is arbitrary
and k = 1 then,

n = (rm − 1)(rm−1 − 1)

(r − 1)(r − 1)

which is the product of two different primes if and only if (m, r) = (3, 2). But this
case has already been excluded.

Case (v) of Table1 is listed as Case (c) in our lemma.
In Cases (vi) through (viii) of Table1, we have n = r(r2 − 1)/d with d ∈

{24, 48, 120}. Clearly, n is not the product of two different primes if r > d + 1.
For r ≤ d + 1 and r not equal to one of the primes excluded in Table1, we have
that n is the product of two different primes if and only if (r, d) = (13, 24) or
(r, d) = (61, 120). We have S = PSL(2, r), and as r is a prime, G = PSL(2, r)
or G = PGL(2, r). These cases are listed as Case (d) and Case (e) of our lemma.

Finally, Case (xv) of Table1 is Case (f) of the lemma. �

3 The Action of the Right Multiplication Groups of Rcc
Loops of Twice Prime Order

The results of the previous section are now applied to RCC loops whose order is
the product of two distinct primes. Recall the notion of the envelope of a loop as
introduced in the second paragraph of Sect. 1 (which follows [2, p. 100]). Recall that
a loop folder is a triple (G, H, T ), where G is a finite group, H is a subgroup of G
and T is a transversal, with 1 ∈ T , for all coset spaces H g\G with g ∈ G (see the
third paragraph of Sect. 1, which follows [2, p. 101]). A loop folder (G, H, T ) is an
RCC loop folder, if T is invariant under conjugation by G (see also Sect. 1). We
will now introduce further notation, although only needed in later sections.

Let (G, H, T ) be a loop folder. By definition, the order of (G, H, T ) is the size
of T . We say that (G, H, T ) is faithful, ifG acts faithfully on H\G. This is the case if
and only if the core of H in G is trivial. Recall that the smallest normal subgroup C
of G contained in H is called the core of H in G. Thus, C is the intersection of
all the G-conjugates of H in G, i.e. C := ∩g∈GH g . The core of H in G is equal to
the kernel of the permutation representation of G on the (right or left) cosets of H .
Clearly, the envelope of a loop is a faithful loop folder.

Here is the main result of this section. It is only used in the setup of Sect. 5.1, and
nowhere else in this paper.

Theorem 3.1 Let (G, H, T ) denote the envelope of an RCC loop of order n = pq,
where p and q are distinct primes. Then, G acts imprimitively on H\G.

Proof Let n = pq = |H\G|. Suppose that G acts primitively on H\G. Since |T | =
n and T is a union of conjugacy classes one of which is the trivial class, G has a
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non-trivial conjugacy class with less than n elements. Hence, G is one of the groups
of Lemma2.4.

In Cases (a), (b), (d) and (e) of Lemma2.4, the concerned groups have at most two
non-trivial conjugacy classes with less than n elements. Elementary combinatorics
shows that in these cases, there is no union of conjugacy classes T with |T | = n.

Suppose that G is as in Case (c) of Lemma2.4. Then, G is almost simple with
S := soc(G) = PSL(2, r), where

√
r an odd prime, r > 9, and n = √

r(r + 1)/2.
Moreover, S � G. The subgroups of S = PSL(2, r), are classified in Dickson’s The-
orem; see [11, Hauptsatz II.8.27]. This shows that if r ≥ 17, then only the maximal
subgroups of index r + 1 have an index less then n = √

r(r + 1)/2. Consider the
non-trivial conjugacy classes ofG. Those which contain elements of S have at least n
elements as we already mentioned in the proof of Theorem2.2.

Let g ∈ G \ S. By Remark2.1 we have

|G : CG(g)| = a · |S : CS(g)|

for some positive integer a. Hence, |G : CG(g)| ≥ n except if CS(g) ≤ M , where M
is a maximal subgroup of S with |S : M | = r + 1. In this case, r + 1 | |S : CS(g)|.
Hence, if |G : CG(g)| is less than n, it is a multiple of r + 1. Thus, a union T of
conjugacy classes of sizes less than nwith 1 ∈ T has a size congruent to 1modulo r +
1 and is therefore not divisible by the prime (r + 1)/2. Therefore, it is not possible
to have |T | = n.

Finally, assume that G is as in Case (f) of Lemma 2.4. Then G is almost simple
with S := soc(G) = P�+(2m, 2), where m ≥ 3 and n = (2m − 1)(2m−1 + 1). In
order for n to be the product of two distinct primes, it is necessary that p := 2m−1 +
1 is a Fermat prime and q := 2m − 1 is a Mersenne prime. In particular, m is a
Fermat prime. By [13, Table 5.2.A], the smallest index of any proper subgroup of S
equals 2m−1(2m − 1). Remark 2.1 shows that any non-trivial conjugacy class of G
has at least 2m−1(2m − 1) elements. As twice this number is greater than n, we
conclude that T is the union of two conjugacy classes of G, one of which has length
2(22m−2 + 2m−2 − 1). We have m ≥ 5 and S = SO+(2m, 2) (in the notation of [19,
p. 160]). In particular, G ∈ {SO+(2m, 2), O+(2m, 2)}. For the order of G, see [19,
p. 141, 165].

Let � be a Zsigmondy prime for 22m−2 − 1. As � does not divide 2m−1 − 1, and as
p = 2m−1 + 1, we conlcude that � = p. Let t be a non-trivial element in T . Now, p
does not divide 2(22m−2 + 2m−2 − 1) = |G : CG(t)|, and so there is g ∈ CG(t) with
|g| = p. Let V denote the natural 2m-dimensional F2-vector space of G, equipped
with the quadratic form Q definingG. Since p is a Zsigmondy prime for 22m−2 − 1, it
follows that g acts irreducibly on some (2m − 2)-dimensional subspace V0 of V . As
the dimension of V0 is larger than 1, either V0 is totally singular or non-degenerate
with respect to Q (for these notions see [19, p. 56]). The maximal dimension of
a totally singular subspace of V equals m, and thus V0 is in fact non-degenerate.
It follows that g fixes V1 := V⊥

0 . In particular, g ∈ O(V0) × O(V1), where O(Vi )

denotes the orthogonal group with respect to the restriction Qi of Q to Vi , i =
0, 1. We may thus write g = g0 ⊕ g1, whith gi the restriction of g to Vi , i = 0, 1.
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Now O(V0) contains a cyclic, irreducible subgroup, and thus the Witt index of Q0

equals m − 2 by [12, Satz 3c)]. Hence V1 does not contain any non-trivial singular
vector with respect to Q1, and thus O(V1) ∼= S3, the symmetric group on three
letters (see [19, Theorem 11.4]). As |g| = p ≥ 17, we conclude that g acts trivially
on V1, i.e. g1 = 1 and V1 is the fixed space of g. It follows that CG(g) fixes V1

and V0 = V⊥
1 , and thus CG(g) ≤ CO(V0)(g0) × O(V1). As g0 acts irreducibly on V0,

its centralizer in O(V0) is cyclic and irreducible, and thus equals 〈g0〉, again by
[12, Satz 3c)]. In particular, t ∈ CG(g) ≤ 〈g0〉 × O(V1). If p | |t | or 3 | |t |, then
CG(t) ≤ O(V0) × O(V1).Otherwise, |t | = 2 and t has a (2m − 1)-dimensional fixed
space V ′ on V and CG(t) ≤ O(V ′). In any case, the 2-part of |CG(t)| is less than
2(m−1)2 , whereas the 2-part of |G| equals 2m(m−1)+1 (see [19, p. 141]). In particular,
the 2-part of |G : CG(t)| is larger than 2, a contradiction. �

Weend this sectionwith two general results on loop folderswith certain invariance
properties. The first will be used in an extension of a theorem of Drápal [9].

Lemma 3.2 Let (G, H, T ) be a loop folder such that T is invariant under conjuga-
tion by H. Suppose the t ∈ T is such that Ht is also a left H-coset in G, i.e. there
exist g ∈ G with Ht = gH (this is the case in particular if t normalizes H). Then
[t, H ] = 1.

Proof Let h ∈ H . Then

Ht = gH = gHh = Hth = Hh−1th.

This implies t = h−1th, as t, h−1th ∈ T . �

Lemma 3.3 Let (G, H, T ) denote an RCC loop folder. Let K ≤ G such that
HG ′ ≤ K. Then,

|G : CG(t)| ≤ |K : H | for all t ∈ T

(i.e. the length of the conjugacy classes of the elements in T are bounded above by
|K : H |).
Proof Let g ∈ G. Then, the right coset Kg is a union of exactly |K : H | right cosets
of H in G. Thus, |Kg ∩ T | = |K : H |.

Now, let t ∈ T and x ∈ G. Then, t x t−1 ∈ G ′ ≤ K . It follows that Ktx = Kt and
thus t x ∈ Kt for all x ∈ G. As t x ∈ T for all x ∈ G by assumption, we conclude that
|G : CG(t)| = |{t x | x ∈ G}| ≤ |K : H |. �

4 Right Conjugacy Closed Loops of Prime Order

In this section, we give a new proof of a theorem of Drápal [9] which states that left
conjugacy closed loops of prime order are groups. We prove the analogue for RCC
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loops, but as the opposite loop of a left conjugacy closed loop is an RCC loop, our
version is equivalent to Drápal’s result. Recall the notions related to loop folders
summarized at the beginning of Sect. 3.

We begin with an easy lemma.

Lemma 4.1 Let p be a prime and let G ≤ Sp with p | |G|. Then, the following
statements hold for every 1 �= g ∈ G.

(a) If p � |g|, then p | |G : CG(g)|.
(b) If p | |g|, then |CG(g)| = p.
(c) Suppose that |G : CG(g)| < p. Then G has a unique Sylow p-subgroup P and

g ∈ P. Moreover, if G �= P, then G is a Frobenius group with kernel P and a
Frobenius complement of order r dividing p − 1. In this case, P is the Frattini
subgroup of G.

(d) We have |G : CG(g)| �= 2(p − 1).

Proof In view of the cycle decomposition of g, the first two parts are trivial. So let
us assume that |G : CG(g)| < p or that |G : CG(g)| = 2(p − 1). By (a) and (b), we
have |CG(g)| = p, and in particular P := 〈g〉 is a Sylow p-subgroup of G. Under
the hypothesis of (c), we get |G : NG(P)| < p, and under the hypothesis of (d) we
get |G : NG(P)| | 2(p − 1). In each case, Sylow’s theorems imply P � G. Now (d)
and the last two statements of (c) follow from the fact that G embeds into NSp (P),
which is isomorphic to Aff(1, p). �

Corollary 4.2 (Drápal [9]) Let p be a prime and let (G, H, T ) denote the envelope
of an RCC loop L of order p. Then, H = 1, i.e. L is a group (isomorphic to G).

Proof We may assume that G ≤ Sp and we have p | |G|. Now T = {1} ∪ T ′ with
T ′ := T \ {1}. By assumption, T ′ is a union of conjugacy classes of G of lengths at
most p − 1. It follows from Lemma4.1(c) that G has a unique Sylow p-subgroup P
and that T ⊆ P . Hence, G = 〈T 〉 = P , i.e. H = 1. �

We will also need the following generalization of Corollary4.2.

Proposition 4.3 Let p be a prime and let (G, H, T ) be an RCC loop folder of
order p with 〈T 〉 = G. Then, G is abelian.

Proof Let

N :=
⋂

g∈G
H g

denote the kernel of the action of G on H\G and put Ḡ := G/N , H̄ := H/N and
T̄ := {Nt | t ∈ T } ⊆ Ḡ. Then (Ḡ, H̄ , T̄ ) is a faithful RCC loop folder of order p
with 〈T̄ 〉 = Ḡ. Thus, (Ḡ, H̄ , T̄ ) is the envelope of an RCC loop of order p (see
[2, 1.7.(4)]). By the result of Drápal (see Corollary 4.2), such a loop is a group. It
follows that T̄ = Ḡ and H̄ = 1. In particular, H = N is a normal subgroup of G of
index p.
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To show thatG is abelian, let t ∈ T . ByLemma3.2we have [t, H ] = 1, as H � G.
It follows that 〈H, t〉 ≤ CG(t). If t �= 1, we have 〈H, t〉 = G, as H is of index p inG.
Hence t ∈ Z(G) for all t ∈ T . The claim follows from 〈T 〉 = G. �

Notice that the above proposition is a generalization of Drápal’s theorem (see
Corollary 4.2); indeed, if (G, H, T ) is the envelope of a loop, then G = 〈T 〉, and if,
moreover, G is abelian, then H = 1, as the core of H in G is trivial.

5 The Right Multiplication Groups of Rcc Loops of Twice
Prime Order

We refer the reader to the introduction of Sect. 3 for the notions related to loop folders.

5.1 Generalities

Let p and q be distinct primes and let (G, H, T ) denote the envelope of an RCC loop
of order pq. This implies in particular that G acts faithfully on H\G, i.e. the core
of H in G is trivial. It is at this stage, and only here, where we impose an important
consequence of Theorem3.1. This states that G acts imprimitively on H\G, and
hence H is not a maximal subgroup of G. We let K � G such that H � K . We
choose notation such that |G : K | = q and |K : H | = p.

Put T1 := T ∩ K , K1 := 〈T1〉 ≤ K and H1 := H ∩ K1 ≤ H .
We collect first properties.

Lemma 5.1 Let the notation be as above. Then, (K1, H1, T1) is an RCC loop folder
of order p with K1 abelian. Also, K1 � K and K = HK1. Finally, H1 � K.

Proof Clearly, K is the disjoint union of the cosets Ht for t ∈ T1. Thus |T1| = p
and K1 is the disjoint union of the cosets H1t for t ∈ T1. As T1 is invariant under
conjugation in K , the first statement follows. The second statement follows from
Proposition4.3, and the next two statements are obvious. The last statement follows
from K = HK1 and the fact that H1 � H and that K1 is abelian. �

5.2 The Case q = 2

Let us assume throughout this subsection that q = 2. Then K � G. Moreover, K1 �
G, as K g

1 = 〈(T ∩ K )g〉 = 〈T ∩ K 〉 = K1 for all g ∈ G.

Lemma 5.2 Let L ≤ H with L � K. Then L ∩ La = 1 and LLa = L × La � G
for all a ∈ G \ K.
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Proof Let a ∈ G \ K . Clearly, L ∩ La and LLa are normal subgroups of G, as
a2 ∈ K , and L � K . Thus L ∩ La = 1 since L ∩ La ≤ H and the core of H in G is
trivial. As La � K , the product LLa is direct. �

We record two consequences which will be used later on.

Corollary 5.3 We have H1 ∈ {1, p} and K1 is elementary abelian of order p or p2.

Proof If H1 is trivial, K1 has order p by Lemma 5.1. Suppose that H1 is non-
trivial and let a ∈ T \ K . Then, H1 ∩ Ha

1 = 1 by Lemma5.2. As K1 � G, we have
H1Ha

1 ≤ K1. It follows that |H1|2 divides |K1| = p|H1|. This implies |H1| = p and
K1 = H1Ha

1 , yielding our claim. �

Corollary 5.4 Suppose that 1 �= H � K. Then, |H | = p and there is an involution
a ∈ G \ K such that K = H × Ha. In particular, G is isomorphic to the wreath
product Cp 
 C2.

Proof By Lemma5.2 we have H ∩ Ha = 1 and HHa ≤ K for every a ∈ G \ K .
As |K | = p|H |, this implies that |H | = p and K = H × Ha . It also follows that the
involutions in G are contained in G \ K and thus G ∼= Cp 
 C2. �

We now distinguish two cases.

5.2.1 Case 1

Assume that H �= 1 and that [s, K1] = 1 for all s ∈ T \ K .

Proposition 5.5 Under the assumptions of Sect. 5.2.1, we have H1 = 1 and K1 ≤
Z(G). Moreover, G is isomorphic to the wreath product Cp 
 C2.

Proof The fact that K1 is abelian and our hypothesis imply that T ⊆ CG(K1), and
hence G = 〈T 〉 ≤ CG(K1), i.e. K1 ≤ Z(G). Thus, H1 � G, which implies H1 = 1,
as H1 ≤ H and the core of H in G is trivial. Now K = HK1 by Lemma 5.1, and
thus H � K . The claim follows from Corollary 5.4. �

5.2.2 Case 2

Assume that there is s ∈ T \ K with [s, K1] �= 1. In this case, we put Z := K1 ∩
CG(s). Also, we let C := ∩k∈K Hk � K denote the kernel of the action of K on the
cosets of H in K .

Lemma 5.6 Under the assumptions and with the notation of Sect. 5.2.2, the follow-
ing statements hold.

(a) We have |G : CG(s)| = p and |Z | = |H1|.
(b) We have G = CG(s)K1 and Z ≤ Z(G).
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(c) The centralizer CG(s) is abelian and CG(s)/Z is cyclic.

Proof By assumption, K1 � CG(s). Corollary5.3 implies that |Z | ∈ {1, p}. By
Lemma5.1, we have |T1| = p, which implies that |T \ K | = p (recall that q = 2
and thus |T | = 2p). As T \ K is a union of conjugacy classes of G, we have
|G : CG(s)| ≤ p, i.e. |CG(s)| ≥ |G|/p.

Now if H1 = 1, i.e. |K1| = p, we also have |Z | = 1 and G = CG(s)K1. Thus all
statements of (a) and (b) hold in this case.

Now, assume that |H1| = p, i.e. K1 is elementary abelian of order p2. Then,
|Z | ≤ p and

|G| ≥ |CG(s)K1| ≥ |CG(s)||K1|
|Z | ≥ |G|

p
· p2

|Z | ≥ |G|,

andwemust have equality everywhere in the above chain of inequalities. This implies
|Z | = p and |CG(s)K1| = |G|, again yielding all the claims of (a) and the first claim
of (b).

In any case, the set T \ K is a conjugacy class of G, consisting of the elements
{sk | k ∈ K1}. Write ¯ : G → Ḡ := G/K1 for the canonical epimorphism. We have
Ḡ = 〈T̄ 〉 = 〈s̄〉 as T1 ⊆ K1. The natural isomorphism Ḡ → CG(s)/Z maps s̄ to Zs ∈
CG(s)/Z . Thus CG(s)/Z = 〈Zs〉 and CG(s) = 〈Z , s〉. In particular, CG(s)/Z is
cyclic andCG(s) is abelian, as Z ≤ CG(s). NowG = CG(s)K1 and Z = K1 ∩ CG(s)
imply that Z ≤ Z(G). �

The previous result implies, in particular that G is soluble. Indeed, K1 is a normal
subgroup of G, as we have remarked at the beginning of Sect. 5.2.2. Now, K1 is
abelian by Corollary5.3, and G/K1 = CG(s)K1/K1

∼= CG(s)/Z by Part (b) of the
lemma above and by the definition of Z . By Part (c) of the lemma,CG(s)/Z is cyclic,
hence G is soluble.

Corollary 5.7 Let the assumptions and notation be as in Sect.5.2.2. If H1 �= 1, then
H � K.

Proof Suppose that H1 �= 1. Then |Z | = p byCorollary 5.3 and Lemma 5.6(a). Now
Z ≤ Z(G) by Lemma 5.6(b), and thus Z ∩ H = 1, since the core of H inG is trivial.
It follows that K = H × Z , as |K : H | = p and Z ≤ K1 ≤ K .

Now, K/C is a soluble permutation group on p points. It follows from a theorem
of Galois (see [11, Satz II.3.6]) that K/C is isomorphic to a subgroup of the affine
group Aff(1, p).

We have K/C = (H × Z)/C = H/C × ZC/C ∼= H/C × Z . This implies
that H/C is trivial, i.e. H = C � K . �
Lemma 5.8 Let the assumptions and notation be as in Sect.5.2.2. If H1 = 1, then
C = 1 or H is a p-group.

Proof Put L := CG(s). Then L is cyclic, G = L � K1 and K = H � K1, with
|K1| = p (see Corollary5.3 and Lemma5.6). In particular, H is abelian, as it is
isomorphic to a subgroup of L .
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Let � be a prime different from p and let S ≤ H denote a Sylow �-subgroup of
G. As |G : L| = p, there is g ∈ G such that Sg ≤ L . As L is abelian, we have L ≤
CG(Sg). Suppose that CG(Sg) = G, i.e. Sg ≤ Z(G). Then S ≤ Z(G) wich implies
S = 1, as the core of H in G is trivial.

Now, assume that � | |H |. By the above, wemust haveCG(Sg) = L . Then,CG(S)

is a cyclic complement of K1 in G containing H . As C ≤ H ≤ CG(S) and C � K ,
it follows that C � G und thus C = 1. �

Corollary 5.9 Let the assumptions and notation be as in Sect.5.2.2. If H1 = 1, then
C = 1 or H � K.

Proof Suppose that C �= 1. Then K = HK1 is a p-group by Lemma5.8. As K/C
is isomorphic to a subgroup of the affine group Aff(1, p) by Galois’ theorem (see
[11, Satz II.3.6]), it follows that |K/C | = p. Now C ∩ Cs = 1 and CCs = C ×
Cs � G by Lemma 5.2. Thus Cs ∼= (C × Cs)/C ≤ K/C , and hence C has order p.
Therefore, |K | = p2 and hence K is abelian, proving our claim. �

5.3 The Case p = 2

Let us assume throughout this subsection that p = 2. Then H � K . Here, we put
D := ∩g∈GK g, the kernel of the action ofG on the set of right cosets of K . Then, D is
an elementary abelian 2-group, asG acts faithfully on the set of right cosets of H and
as H has index 2 in K . We write ¯ : G → Ḡ := G/D for the canonical epimorphism.
Then, Ḡ is a faithful permutation group on q letters, i.e. Ḡ is isomorphic to a subgroup
of Sq .

Lemma 5.10 We have |K ∩ T | = 2, and writing K ∩ T = {1, z}, we have z ∈
Z(K ). In particular, CG(z) ∈ {K ,G}.
Proof The first assertion follows from |K : H | = 2, and the second from the fact
that all K -conjugates of z again are in K ∩ T . �

5.3.1 Case 1

Here, we consider the case that K is normal in G. Let us keep the notation of
Lemma 5.10 in the following.

Lemma 5.11 Suppose that K � G. Then, G is abelian and H = 1.

Proof In this case zg ∈ K ∩ T for all g ∈ G, and thus 〈z〉 ≤ Z(G). Now, 〈z〉 ∩
H = 1, as the core of H in G is trivial. It follows that |z| = 2 and K = H × 〈z〉.
This implies that H ′ = K ′ � G, and thus K ′ = 1, i.e. K is abelian. In turn, K is a
2-group, as O2′(H) = O2′(K ) � G (recall that O2′(H) denotes the largest normal
subgroup of H of odd order). Thus, K is the unique Sylow 2-subgroup of G.
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Now, let t ∈ T \ K . Then, t is not a 2-element as otherwise t ∈ K . Let r be
an integer such that Q := 〈tr 〉 is a Sylow q-subgroup of G. As G/K is cyclic, we
haveG ′ ≤ K andwemay thus apply Lemma 3.3. This yields |G : CG(t)| ≤ 2. Hence
|G : CG(Q)| ≤ 2 and thusCG(Q) � G. Now, Q is abelian and hence Q ≤ CG(Q). It
follows that Q � CG(Q) and thus Q = Oq(CG(Q)). In particular, Q � G, implying
that G = Q × K is abelian. �

5.3.2 Case 2

Here, we consider the case that K is not normal in G. Again, we use the notation of
Lemma 5.10.

Proposition 5.12 Suppose that NG(K ) = K. Then there is M � G such that
|G : HM | = 2.

Proof Let Z denote the G-conjugacy class of z and put T ′ := T \ (Z ∪ {1}).
By Lemma 5.10, we have CG(z) ∈ {K ,G}. Suppose first that CG(z) = K . Then
|Z | = |G : K | = q, and thus |T ′| = q − 1. If CG(z) = G, then |T ′| = 2(q − 1). In
particular, q − 1 | |T ′|. Let X1, . . . , Xm denote the G-conjugacy classes contained
in T ′, numbered in such a way that |X1| ≤ · · · ≤ |Xm |. Thus |X1| ≤ q − 1, unless
m = 1 and CG(z) = G, in which case |X1| = 2(q − 1).

Let t ∈ T ′. Then t /∈ K , as t /∈ {1, z} = K ∩ T . In particular, t̄ �= 1, since D ≤ K .
Let X denote the G-conjugacy class of t . Then, X̄ is the Ḡ-conjugacy class of t̄
and |X̄ | divides |X |. Consider the case that X = X1. If |X | ≤ q − 1, then |X̄ | ≤
q − 1. If |X | = 2(q − 1), then |X̄ | is a proper divisor of 2(q − 1) by Lemma 4.1(d),
and thus, again, |X̄ | ≤ q − 1. Lemma 4.1(c) implies that Ḡ has a normal Sylow q-
subgroup Q. Moreover, |Ḡ : K̄ | = |G : K | = q, and K̄ �= 1, as otherwise K = D
would be normal in G. Thus, Ḡ is a Frobenius group of order qr with r | (q − 1),
again by Lemma 4.1(c).

Since Ḡ is a Frobenius group, every non-trivial conjugacy class of Ḡ has length q
or r , and the conjugacy classes of length r lie in Q. Suppose that there is some 1 ≤
j ≤ m such that |X̄ j | = q. Then, |X j | = q as |X̄ j | divides |X j | and |X j | ≤ 2(q − 1).
Also, X j is the unique conjugacy class of length q contained in T ′. If 1 ≤ i �= j ≤ m,
then |Xi | ≤ q − 1, and thus |X̄i | = r . In particular, r | |Xi |. Now, q − 1 divides |T ′|,
as we have already observed above. It follows that r divides q, a contradiction. This
shows that T̄ ′ ⊆ Q.

We have z ∈ Z(K ) and D ≤ K , and thus Z ⊆ CG(D) as D � G. Moreover, D
is abelian and hence 〈Z , D〉 ≤ CG(D). Now, Ḡ = 〈T̄ 〉 = 〈Z̄ ∪ T̄ ′〉 = 〈Z̄〉, as T̄ ′ ⊆
Q, the Frattini subgroup of Ḡ. Thus, G = 〈Z , D〉 ≤ ZG(D), i.e. D ≤ Z(G). This
implies that D ∩ H = 1, as the core of H in G is trivial. Hence, |H ||D| = |HD| ≤
|K | = 2|H |, and so |D| ∈ {1, 2}.

Let M denote the inverse image of Q in G. If D = 1, then |M | = q an thus
G = K � M and |G : HM | = 2 as claimed. Now suppose that D = 〈d〉 with |d| =
2. Then HM �= G as otherwise d ∈ HM and, in turn, d ∈ H . Now, G = KM as
Ḡ = K̄ M̄ , and thus G = KM = HM ∪ HMd, i.e. |G : HM | = 2, as claimed. �
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5.4 The Main Result

We can now summarize our results for envelopes of RCC loop folders of orders 2p
for odd primes p.

Theorem 5.13 Let (G, H, T ) be the envelope of an RCC loop of order 2p, where p
is an odd prime. Then, there is a subgroup K ≤ G with H ≤ K and |G : K | = 2 and
one of the following occurs.

(a) The group G is isomorphic to the wreath product Cp 
 C2.
(b) The group G is isomorphic to a subgroup of the affine group Aff(1, p).
(c) We have G = K × 〈a〉, and K has odd order and is isomorphic to a subgroup

of the affine group Aff(1, p).

In Cases (b) and (c), 〈T ∩ K 〉 is a normal subgroup of G of order p. The
Cases (a), (b) and (c) are disjoint.

Proof The first statement follows from Lemma5.11 and Proposition 5.12 (with q
replaced by p). In particular, we are in the situation of Sect. 5.2.

In the following,we resume to the notation introduced at the beginning of Sect. 5.1.
Suppose that G is not isomorphic to the wreath product Cp 
 C2. By Proposition 5.5,
wemay assume that we are in the situation of Sect. 5.2.2. Corollary 5.4 implies that H
is not a normal subgroup of K . Hence H1 = 1 and C = 1 by Corollaries 5.7 and 5.9.
In particular, |K1| = p by Corollary 5.3.

If CG(K1) = K1, then G/K1 injects into the automorphism group of K1, and
thus G is as in (b). Assume now that K1 � CG(K1). As K = HK1 by Lemma 5.1,
we haveCH (K1) ≤ C , and thus H ∩ CG(K1) = CH (K1) = 1. Hence |HCG(K1)| =
|H ||CG(K1)| > |H ||K1| = |K |, and thus HCG(K1) = G and |CG(K1)| = 2|K1|. It
follows that CG(K1) = K1 × 〈a〉 for some a ∈ G \ K of order 2. As K � G, and
〈a〉 = O2(CG(K1)) � G, we have G = K × 〈a〉. Now K acts faithfully on the set of
H -cosets in K , and thus K = HK1 is isomorphic to a subgroup of the affine group
Aff(1, p). Finally, K has odd order since G/K1 is cyclic by Lemma 5.6. �

6 The Rcc Loops of Twice Prime Order

Let p be an odd prime. In this section, we determine the number of isomorphism
classes of RCC loops of order 2p. Let L denote such a loop and let (G, H, T ) be
its envelope. By numbering the elements of L by the integers 1, . . . , 2p, where 1
numbers the identity element of L, we may and will view G as a subgroup of S2p,
and H as the stabilizer in G of 1. If L1 and (G1, H1, T1) is another such config-
uration, then L and L1 are isomorphic as loops, if and only if there is an element
of S2p, conjugating (G, H, T ) to (G1, H1, T1). The isomorphism types of the right
multiplication groups arising in RCC loops of order 2p have been described in The-
orem 5.13. For each of these groups G we have to determine their embeddings into
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S2p up to conjugation. This will yield the possible pairs (G, H) to be considered. For
each of these pairs, we have to determine the normalizer N in S2p of G and H , and
then find the distinct N -orbits ofG-invariant transversals T for H\G such that 1 ∈ T
and 〈T 〉 = G. We will refer to the three different types of G in Theorem 5.13(a), (b)
and (c) as Case (a), (b) and (c), respectively.

We begin with some preliminary results. As usual, the largest normal p-subgroup
of a finite group U is denoted by Op(U ), and its largest normal subgroup of odd
order by O2′(U ).

Lemma 6.1 Let π1,α ∈ S2p be defined by π1 := (1, 2, . . . , p) and α := (1, p +
1)(2, p + 2) · · · (p, 2p). Put π2 := πα

1 = (p + 1, p + 2, . . . , 2p). Let ν1 ∈ Sp be an
element of order p − 1 such that NSp (〈π1〉) = 〈π1, ν1〉. Put ν2 := να

1 and ν := ν1ν2.

(a) Let G := 〈π2,α〉. Then Z(G) = 〈π1π2〉, G ′ = 〈π−1
1 π2〉 and G = CS2p (Z(G)) ∼=

Cp 
 C2. Put N := NS2p (G). Then N = NS2p (Z(G)) = 〈ν〉 � G.
(b) Let U ≤ N with Op(U ) = Z(G) and U � G. Then, there is n ∈ N such that

NS2p (U
n) = A × 〈α〉 with A = 〈ν〉 � Z(G).

Proof (a) The statements about G are trivially verified. From G = CS2p (Z(G)) we
conclude that G � NS2p (Z(G)), and thus N = NS2p (Z(G)). Moreover, N/G is iso-
morphic to a subgroup of Aut(Z(G)), which is a cyclic group of order p − 1. Now
〈ν〉 ∩ G = 1, as the elements inG fixing the set {1, . . . , p} have order divisible by p.
Also, ν normalizes G, and thus N = 〈ν〉 � G.

(b) From Op(U ) = Z(G) we conclude that NS2p (U ) ≤ NS2p (Z(G)) = N , and
thus NS2p (U ) = NN (U ). Let V denote a complement to Z(G) in U , and let W
be a Hall p′-group of N containing V (see [11, Hauptsatz VI.1.7]). Then W is a
complement to Op(N ) in N . As α centralizes ν, we have 〈ν,α〉 = 〈ν〉 × 〈α〉, and
thus 〈ν〉 × 〈α〉 is another complement to Op(N ) in N . As all such complements are
conjugate in N , there is n ∈ N such that Wn = 〈ν〉 × 〈α〉 and Un = Z(G)V n . By
replacing U with Un , we may assume that V ≤ W = 〈ν〉 × 〈α〉. In particular, W
is abelian. It follows that WZ(G) normalizes U = V Z(G). As U � G, there is an
element ν iα j ∈ V such that ν i �= 1. Then [ν iα j ,π1] /∈ Z(G). In particular,U is not
normal in N . As WZ(G) has index p in N , we conclude that NN (U ) = WZ(G),
which proves our claim. �

Let n, d be positive integers, and let ζ ∈ Sn denote an n-cycle. Let us put

In,d := |{τ ∈ Sn | τ 2 = 1, τζd = ζdτ }| (1)

and
In := In,n . (2)

Thus, In,d is one more than the number of involutions in CSn (ζ
d) and In is one

more than the number of involutions in Sn . Notice that the definition of In,d does not
depend on the chosen n-cycle ζ, as all n-cycles are conjugate in Sn .
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It is not difficult to derive a formula for In,d , where the formula for In is certainly
well known. In the following result, n mod 2 ∈ {0, 1} denotes the remainder of the
division of n by 2.

Lemma 6.2 Let n, d, e and f be positive integers such that d | n and gcd(e, n/d) =
1. Then, In,de = In,d and In, f = In,gcd(n, f ). Moreover, we have

In,d =
�d/2�∑

k=0

d!(n/d)k(2 − (n/d mod 2))d−2k

2kk!(d − 2k)! .

In particular,

In =
�n/2�∑

k=0

n!
2kk!(n − 2k)! .

Proof Let ζ ∈ Sn be an n-cycle. As e is relatively prime to n/d, we have that
ζde = (ζd)e is the product of d cycles of length n/d. In particular, ζd and ζde

are conjugate in Sn and thus In,de = In,d . Writing f = de with d = gcd(n, f ) and
e = f/ gcd(n, f ), we obtain In, f = In,gcd(n, f ), as f/ gcd(n, f ) and n/ gcd(n, f ) are
relatively prime.

By definition, In,d equals the number of elements τ ∈ CSn (ζ
d) with τ 2 = 1. The

structure of CSn (ζ
d) is well known; it is a wreath product isomorphic to Cn/d 
 Sd ,

where Cn/d denotes a cyclic group of order n/d. We view the elements of CSn (ζ
d)

as (d + 1)-tuples (μ; c1, . . . , cd), where each ci lies in one of the d cycles of ζd , and
where μ ∈ Sd permutes the numbers {1, . . . , d}. We have

(μ; c1, . . . , cd)2 = (μ2; c1c1μ−1 , c2c2μ−1 , . . . , cdcdμ−1).

Let τ := (μ; c1, . . . , cd) ∈ CSn (ζ
d) satisfy τ 2 = 1. Then, μ2 = 1 and ciμ = c−1

i for
all 1 ≤ i ≤ d. Suppose that μ is a product of exactly k transpositions for some
0 ≤ k ≤ �d/2�. Then, c j = c−1

i , if (i, j) is a transposition of μ, and c2i = 1 if i is
a fixed point of μ. This way, a fixed μ gives rise to (n/d)k(2 − (n/d mod 2))d−2k

elements τ ∈ CSn (ζ
d)with τ 2 = 1. The centraliser ofμ in Sd has order 2kk!(d − 2k)!,

yielding our formula for In,d . The one for In follows from this by putting d = n. �

Proposition 6.3 There are exactly

Ip−1 − 1 + 1

p − 1

p−1∑

d=1

Ip−1,d

distinct isomorphism types of RCC loopswithmultiplication groupG as inCase (a).

Proof Let (G, H, T ) denote the envelope of an RCC loop of order 2p with G as in
Case (a), i.e. G is isomorphic to the wreath product Cp 
 C2. In this case, H is cyclic
of order p. By numbering the right cosets of H in G from 1 to 2p, we obtain an
embeddingG → S2p, andwe identifyG with its image in S2p from now on. Let π1,α
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and π2 be defined as in Lemma 6.1.Wemay choose the numbering of the cosets of H
in G in such a way that H = 〈π2〉 and G = 〈π2,α〉. From Lemma 6.1(a) we obtain
Z(G) = 〈π1π2〉, G ′ = 〈π−1

1 π2〉 and G = CS2p (Z(G)). Also, N := NS2p (G) equals
〈ν〉 � G with ν as in Lemma 6.1. Observe that N normalizes H .

Let T denote the set of G-invariant transversals for H\G containing 1. Put K :=
〈π1,π2〉 = Op(G) and let T1 denote the set of G-invariant transversals for H\K
containing 1. Let t ∈ G \ K . Then, |CG(t)| = 2p and thus t lies in a conjugacy class
of length p. As every conjugacy class ofG lies in some coset ofG ′, we find thatG ′t is
the conjugacy class ofG containing t . Hence, if T ∈ T , we have T = (K ∩ T ) ∪ G ′t
for some t ∈ G \ K , and K ∩ T ∈ T1. Conversely, if T1 ∈ T1, and if t is any element
of G \ K , then T1 ∪ G ′t ∈ T .

As K = H × Hα, we have K = ∪0≤ j≤p−1Hπ
j
1 . A transversal for H\K con-

tains exactly one element of each coset Hπ
j
1 , 0 ≤ j ≤ p − 1. As we insist that our

transversals contain the trivial element, a transversal T1 for H\K determines a map
τ : {1, . . . , p − 1} → {0, 1, . . . , p − 1} such that

T1 = {π jτ
2 π

j
1 | 1 ≤ j ≤ p − 1} ∪ {1}. (3)

Conjugating the element π
jτ
2 π

j
1 ∈ T1 \ {1} by α, we obtain π

jτ
1 π

j
2 = π

j
2π

jτ
1 . If T1

is G-invariant, we must have, first, that jτ �= 0 and, second, that π
j
2π

jτ
1 ∈ T1 \ {1}

for all 1 ≤ j ≤ p − 1. The latter condition implies that π
jτ 2

2 π
jτ
1 = π

j
2π

jτ
1 for all

1 ≤ j ≤ p − 1, and thus τ 2 = 1. In particular, τ is a permutation of order at most 2
of the set {1, . . . , p − 1}. Conversely, if τ is a permutation of the latter set with
τ 2 = 1, then T1 defined by (3) lies in T1. In particular, |T1| = Ip−1. As the number
of conjugacy classes of G in G \ K equals p, we conclude from

T = {T1 ∪ G ′t | T1 ∈ T1, t ∈ G \ K },

that

|T | = pIp−1.

We next determine the number of N -orbits on T . This is the same as the number
of 〈ν〉-orbits on T . To compute this number, put

T ′ := {T1 ∪ G ′α | T1 ∈ T1} ⊆ T .

Observe that T1 is 〈ν〉-invariant, as ν normalizes H . In addition, ν centralizes α, and
thus T ′ is 〈ν〉-invariant as well. As Z(G) is a set of representatives for the set of right
cosets ofG ′ in K , every conjugacy class ofG contained inG \ K is of the formG ′zα
for some z ∈ Z(G). As 〈ν〉 acts transitively on Z(G) \ {1}, we conclude that every
orbit of 〈ν〉 on T \ T ′ has length p − 1, and thus there are exactly Ip−1 such orbits.
We are thus left with the determination of the number of 〈ν〉-orbits on T ′, which
is the same as the number of 〈ν〉-orbits on T1. By the Burnside–Cauchy–Frobenius
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lemma, the latter number equals

1

p − 1

p−1∑

d=1

χd ,

whereχd is the number of fixed points of νd on T1. The action of 〈ν〉 on K determines
a (p − 1)-cycle ζ on the set {1, . . . , p − 1} such that ν−1π

j
i ν = π

jζ
i for i = 1, 2 and

all 1 ≤ j ≤ p − 1. Now let T1 ∈ T1 be given by (3) with respect to τ ∈ Sp−1 with
τ 2 = 1. Then, T1 is fixed by νd , if and only if ζd centralizes τ . Thus χd = Ip−1,d .

It remains to determine those N -orbits on T containing transversals that gener-
ateG. Let T ∈ T such that 〈T 〉 �= G. Then, 〈T 〉 is a normal subgroup ofG of index p.
Thus, G ′ ≤ 〈T 〉 and T = G ′ ∪ G ′zα for some z ∈ Z(G). Since 〈T 〉 �= G, we must
have z = 1, i.e. 〈T 〉 = T = G ′ ∪ G ′α. As this is N -invariant, our result follows. �

Proposition 6.4 Write p − 1 = 2nr with positive integers n and r and with r odd.
Then, there are exactly p − r − 1 distinct isomorphism types of RCC loops with
multiplication group G as in Case (b), and there are exactly r isomorphism types of
RCC loops with multiplication group G as in Case (c).

Proof Let (G, H, T ) denote the envelope of an RCC loop of order 2p with G as in
Case (b) or (c). If H = 1, then T = G is a group of order 2p, which is non-abelian
in Case (b), and cyclic in Case (c). In each case, we obtain a unique isomorphism
class of RCC loops.

Thus, let us assume that H �= 1 in the following.As in the proof of Proposition 6.3,
we identifyG with its image in S2p through an embedding obtained by numbering the
right cosets of H in G from 1 to 2p. Put P := Op(G), the unique Sylow p-subgroup
of G. Let π1, α and π2 be defined as in Lemma 6.1. We may choose the numbering
of the cosets of H in G in such a way that P = 〈π1π2〉, and that Z(G) = 〈α〉 in
Case (c). Put N := NS2p (G). We now apply Lemma 6.1(b) with our G taking the
role ofU of that lemma. As H �= 1, we haveG � 〈π2,α〉, and thus, replacingG by a
suitable conjugate within NS2p (P), we find that N = A × 〈α〉, with A ∼= Aff(1, p).
We have A = L � P , with L cyclic of order p − 1.

Assume that G is as in Case (b). Then, G ∩ L is a complement to P in G. As all
such complements are conjugate in G by Schur’s theorem (see [11, Satz I.17.5]), we
may assume that H ≤ L . In particular, G ≤ A, and H is N -invariant. Let T be a G-
invariant transversal for H\G. Then P ⊆ T by Theorem 5.13. Let τ ∈ T \ P . Then
|CG(τ )| = 2|H | and thus T \ P consists of the G-conjugacy class containing τ . If,
moreover, G = 〈P, τ 〉, we have 2p|H | = |G| = p|τ | and τ has even order larger
than 2. Every element τ ′ which is conjugate to τ in A gives rise to an isomorphic
loopwithmultiplication group 〈P, τ ′〉, as in Case (b). It follows that the isomorphism
types of RCC loops with a multiplication group as in Case (b) equals the number
of A-conjugacy classes of elements of A of even order larger than 2. As A has
(p − r − 2)p such elements, the result follows.

Assuming now thatG is as in Case (c), we haveG = K × 〈α〉, with K = O2′(G),
and thus K � N . In turn, K ≤ A as every Sylow subgroup of K is conjugate to a
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subgroup of A. Again, H is N -invariant. Let T be aG-invariant transversal for H\G.
As in Case (b), we have T = P ∪ C , where C is a G-conjugacy class of an element
τ ∈ G \ K . Every element τ ′ in the A-conjugacy class containing τ gives rise to an
isomorphic loop with multiplication group 〈P, τ ′〉. Now τ = τ1α for some τ1 ∈ K .
It follows that the isomorphism types of RCC loops with a multiplication group as
in Case (c) equals the number of A-conjugacy classes of elements of A of odd order
different from p. All these elements lie in the unique subgroup of A of order pr ,
and thus there are (r − 1)p non-trivial such elements. As the trivial element yields
a group, the result follows. �

We summarize our results in the following theorem.

Theorem 6.5 Let p be a prime. Then, the number of isomorphism types of RCC
loops of order 2p (including groups) equals

p − 2 + Ip−1 + 1

p − 1

p−1∑

d=1

Ip−1,d . (4)

Proof Every loop of order 4 is a group.As I1,1 = I1 = 1, formula (4) holds for p = 2.
For odd p it follows from Propositions 6.3 and 6.4, as the cases in Theorem 5.13 are
disjoint. �

The table below contains the numbers obtained by evaluating formula (4) for
small values of p. These numbers have also been obtained for p ≤ 13 in the PhD
thesis of the first author [1] by different methods.

p 2 3 5 7 11 13 17 19
(4) 2 5 18 99 10 489 151 973 49 096 721 1 052 729 657

One of the referees has kindly pointed out that formula (4) evaluates to an integer,
even if p is not a prime (and larger than 1). This follows from the fact that for
general positive integers n, d, the number In,d equals the number of fixed points of
the element ζd on the set {τ ∈ Sn | τ 2 = 1}, where the n-cycle ζ acts by conjugation.
Thus, by the Burnside–Cauchy–Frobenius lemma, the number of orbits of 〈ζ〉 on
{τ ∈ Sn | τ 2 = 1} equals 1/n ∑n

d=1 In,d , so that this number is an integer.

7 A Series of Examples

According to Theorem 5.13, the right multiplication group of an RCC loop of order
2p, where p is an odd prime, is soluble. This is no longer the case for right multi-
plication groups of RCC loops of order pq, where p and q are distinct primes. An
example is given in [1, Table B.7] of an RCC loop of order 15 with right multipli-
cation group isomorphic to GL(2, 4). This fits into an infinite series of examples.
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Proposition 7.1 Let q be a power of a prime with q > 2. Then, there is an RCC
loop of of order q2 − 1 and right multiplication group isomorphic to GL(2, q).

Proof Let G := GL(2, q), acting from the right on F1×2
q , and let

H :=
{(

α 0
β 1

)
| α ∈ F∗

q ,β ∈ Fq

}
.

Let Z := Z(G) denote the set of scalar matrices in G and let C be a G-conjugacy
class of elements of order q2 − 1, i.e. the elements of C are Singer cycles. Then,
|CG(t)| = q2 − 1 for all t ∈ C ; in particular |C | = q(q − 1). Now, put

T := C ∪ Z .

We claim that T is a G-invariant transversal for H\G. Clearly, T is G-invariant and
|T | = q2 − 1 = |G : H |. Let t, t ′ ∈ C . We have to show that t ′t−1 ∈ H if and only
if t = t ′. To see this, first observe that |CG(t)||H | = |G| and that CG(t) ∩ H = 1,
as |CG(t) ∩ H | divides gcd(|CG(t)|, |H |) = q − 1, and the only elements in CG(t)
of order dividing q − 1 are the elements of Z . We conclude that G = CG(t)H . It
follows that there is h ∈ H with t ′ = h−1th. Put h′ := t ′t−1 = h−1tht−1. Thus,

t−1hh′ = ht−1. (5)

Now, assume that h′ ∈ H . As det(h′) = det(t ′t−1) = 1, we have

h′ =
(
1 0
γ 1

)

for some γ ∈ Fq . Let

h =
(

α 0
β 1

)

with α ∈ F∗
q and β ∈ Fq , and let

t−1 =
(
a b
c d

)

with a, b, c, d ∈ Fq . Then

t−1hh′ =
(∗ b

∗ d

)
,

and
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ht−1 =
(∗ αb

∗ βb + d

)
,

wherewe do not need to specify the entries in the first columns of t−1hh′, respectively
ht−1. As t acts irreducibly on the natural vector space F1×2

q for G, we conclude that
b �= 0. Equation (5) yields α = 1 and β = 0, i.e. h = 1, and thus t = t ′. If z, z′ ∈ Z ,
then z′z−1 ∈ H if and only if z = z′. Now, let z ∈ Z and t ∈ C and assume that
t z−1 ∈ H . Then, t ∈ HZ ; but |HZ | = q(q − 1)2, whereas |t | = q2 − 1 � q(q − 1)2,
a contradiction.

Finally, it is easy to check that 〈T 〉 = G, by a direct computation if q = 3, and
using the fact that G/Z is almost simple if q �= 3. This completes the proof. �
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1 Introduction

R. Brown and J.-L. Loday [1, 2] introduced the non-abelian tensor product G ⊗ H
for a pair of groups G and H following the works of C. Miller [6], and A. S.-T. Lue
[5]. The investigation of the non-abelian tensor product from a group theoretical
point of view started with a paper by R. Brown, D. L. Johnson, and E. F. Robertson
[3].

The non-abelian tensor product G ⊗ H depends not only on the groups G and
H but also on the action of G on H and on the action of H on G. Usually, people
consider compatible actions (see the definition in Sect. 2). In the present paper, we
study the following question: What actions are compatible?

V. G. Bardakov (B)
Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
e-mail: bardakov@math.nsc.ru

V. G. Bardakov
Novosibirsk State University, Novosibirsk 630090, Russia

V. G. Bardakov
Novosibirsk State Agrarian University, Dobrolyubova Street, 160,
Novosibirsk 630039, Russia

M. V. Neshchadim
Sobolev Institute of Mathematics and Novosibirsk State University,
Novosibirsk 630090, Russia
e-mail: neshch@math.nsc.ru

© Springer Nature Singapore Pte Ltd. 2018
N. S. N. Sastry and M. K. Yadav (eds.), Group Theory and Computation,
Indian Statistical Institute Series, https://doi.org/10.1007/978-981-13-2047-7_2

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2047-7_2&domain=pdf


30 V. G. Bardakov and M. V. Neshchadim

The paper is organized as follows. In Sect. 2, we recall a definition of non-abelian
tensor product, formulate some its properties and give an answer on a question of
V. Thomas, proving that there are nilpotent group G and some group H such that
for G ⊗ H the derivative group [G, H ] is equal to G. In the Sect. 3, we study the
following question: Let a group H act on a group G by automorphisms, is it possible
to define an action of G on H such that this pair of actions is compatible? Some
necessary conditions for compatibility of actions will be given and in some cases
will prove a formula for the second action if the first one is given. In the Sect. 4, we
construct pairs compatible actions for arbitrary groups and for nilpotent groups of
class 2, that give a particular answer on the question from Sect. 3. In Sect. 5 we study
groups of the form G ⊗ Z2 and describe compatible actions.

2 Preliminaries

In this article, we will use the following notations. For elements x , y in a group
G, the conjugation of x by y is x y = y−1xy; and the commutator of x and y is
[x, y] = x−1x y = x−1y−1xy. We write G ′ for the derived subgroup of G, i.e., G ′ =
[G,G]; Gab for the abelianized group G/G ′; the second hypercenter ζ2G of G is
the subgroup of G such that

ζ2G/ζ1G = ζ1(G/ζ1G),

where ζ1G = Z(G) is the center of a group G.
Recall the definition of the non-abelian tensor product G ⊗ H of groups G and

H (see [1, 2]). It is defined for a pair of groups G and H where each one acts on the
other (on right)

G × H −→ G, (g, h) �→ gh; H × G −→ H, (h, g) �→ hg

and on itself by conjugation, in such a way that for all g, g1 ∈ G and h, h1 ∈ H,

g(hg1 ) =
((

gg
−1
1

)h
)g1

and h(gh1 ) =
((

hh
−1
1

)g)h1
.

In this situation, we say that G and H act compatibly on each other. The non-abelian
tensor product G ⊗ H is the group generated by all symbols g ⊗ h, g ∈ G, h ∈ H ,
subject to the relations

gg1 ⊗ h = (gg1 ⊗ hg1)(g1 ⊗ h) and g ⊗ hh1 = (g ⊗ h1)(g
h1 ⊗ hh1)

for all g, g1 ∈ G, h, h1 ∈ H .
In particular, as the conjugation action of a group G on itself is compatible, then

the tensor square G ⊗ G of a group G may always be defined. Also, the tensor
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product G ⊗ H is defined if G and H are two normal subgroups of some group M
and actions are conjugations in M .

The following proposition is well known. We give a proof only for fullness.

Proposition 2.1 (1) Let G and H be abelian groups. Independently of the action of
G on H and H on G, the group G ⊗ H is abelian.

(2) (See [2, Proposition 2.4]) Let G and H be arbitrary groups. If the actions of G
on H and H on G are trivial, then the group G ⊗ H ∼= Gab ⊗Z Hab is the abelian
tensor product.

Proof (1) We have the equality

(g ⊗ h)g1⊗h1 = g[g1,h1] ⊗ h[g1,h1],

where g[g1,h1] is the action of the commutator [g1, h1] ∈ G by conjugation on g, but
G is abelian and g[g1,h1] = g. Analogously, h[g1,h1] = h. Hence, G ⊗ H is abelian.

(2) From the previous formula and triviality actions, we have

g[g1,h1] = gg
−1
1 h−1

1 g1h1 =
(
gg

−1
1

)h−1
1 g1h1 =

(
gg

−1
1

)g1h1 =
(
gg

−1
1

)g1h1 = gh1 = g.

Analogously, h[g1,h1] = h. Hence, G ⊗ H is abelian. �

A subgroup of G called the derivative subgroup of G by H was introduce in [7].
It is defined as

DH (G) = [G, H ] = 〈g−1gh | g ∈ G, h ∈ H〉.

Also remind some approach to description of non-abelian tensor product (see [4]).
The map κ : G ⊗ H −→ DH (G) defined by κ(g ⊗ h) = g−1gh is a homomor-

phism, its kernel A = ker(κ) is the central subgroup ofG ⊗ H andG acts onG ⊗ H
by the rule (g ⊗ h)x = gx ⊗ hx , x ∈ G, i.e., there exists the short exact sequence

1 −→ A −→ G ⊗ H −→ DH (G) −→ 1.

In this case, A can be viewed as trivialZ[DH (G)]-module via conjugation inG ⊗ H .
The following proposition gives an answer on the following question: Is there

non-abelian tensor product G ⊗ H such that [G, H ] = G? which of V. Thomas
formulated in a private communication to the authors.

Proposition 2.2 Let G = Fn/γk Fn, k ≥ 2, be a free nilpotent group of rank n ≥ 2
and H = Aut(G) is its automorphism group. Then, DH (G) = [G, H ] = G.

Proof Let Fn be a free group of rank n ≥ 2 with the basis x1, . . . , xn , G = Fn/γk Fn

be a free nilpotent group of class k − 1 for k ≥ 2. Let G act trivially on H and
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elements of H act by automorphisms on G. It is easy to see that these actions are
compatible.

Let us show that in this case [G, H ] = G. To do it, let us prove that x1 lies in
[G, H ]. Take ϕ1 ∈ H = Aut(G), which acts on the generators of G by the rules:

xϕ1
1 = x1, xϕ1

2 = x2x1, xϕ1
3 = x3, . . . , x

ϕ1
n = xn.

Then,

x−1
1 xϕ1

1 = 1, x−1
2 xϕ1

2 = x1, x−1
3 xϕ1

3 = 1, . . . , x−1
n xϕ1

n = 1.

Hence, the generator x1 lies in [G, H ]. Analogously, x2, x3, . . . , xn lie in [G, H ].
This completes the proof. �

3 What Actions Are Compatible?

In this section, we study

Question 1 Let a group H acts on a group G by automorphisms. Is it possible to
define a non-abelian tensor product G ⊗ H with compatible actions of G on H and
H on G?

Consider some examples.

Example 3.1 Let us takeG = {1, a, a2} ∼= Z3, H = {1, b, b2} ∼= Z3. In dependence
on actions we have three cases.

(1) If the action of H onG and the action ofG on H are trivial, then by the second
part of Proposition 2.1 G ⊗ H = Z3 ⊗Z Z3

∼= Z3 is abelian tensor product.
(2) Let H acts nontrivially on G, i.e., ab = a2 and the action G on H is trivial.

It is not difficult to check that G and H act compatibly on each other. To find
DH (G) = [G, H ], we calculate

[a, b] = a−1ab = a2a2 = a.

Hence, DH (G) = G. But DG(H) = 1.
By the definition, G ⊗ H is generated by elements

a ⊗ b, a2 ⊗ b, a ⊗ b2, a2 ⊗ b2.

Using the defining relations

gg1 ⊗ h = (gg1 ⊗ hg1)(g1 ⊗ h), g ⊗ hh1 = (g ⊗ h1)(g
h1 ⊗ hh1),
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we find

a2 ⊗ b = (aa ⊗ ba)(a ⊗ b) = (a ⊗ b)2, a ⊗ b2 = (a ⊗ b)(ab ⊗ bb)

= (a ⊗ b)(a2 ⊗ b) = (a ⊗ b)3.

On the other side,

1 = a2a ⊗ b = (a2 ⊗ ba)(a ⊗ b) = (a ⊗ b)3.

Hence,

a ⊗ b2 = a2 ⊗ b2 = 1

and in this case, we have the same result: Z3 ⊗ Z3 = Z3.
(3) Let H act nontrivially on G, i.e., ab = a2 and G act nontrivially on H . In this

case, G and H acts non-compatibly on each other. Indeed,

a(ba) = ab
2 = (a2)b = a,

but
((

aa
−1

)b
)a

= (ab)a = (a2)2 = a2.

Hence, the equality

a(ba) =
((

aa
−1

)b
)a

does not hold.

Let G, H be some groups. Actions of G on H and H on G are defined by
homomorphisms

β : G → Aut(H), α : H → Aut(G),

and by definition

gh = gα(h), hg = hβ(g), g ∈ G, h ∈ H.

The actions (α, β) are compatible, if

gα(hβ(g1)) =
((

gg
−1
1

)α(h)
)g1
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and

hβ(gα(h1)) =
((

hh
−1
1

)β(g)
)h1

for all g, g1 ∈ G, h, h1 ∈ H . In this case,wewill say that the pair (α, β) is compatible.
Rewrite these equalities in the form:

α
(
hβ(g1)

) = ĝ1
−1α(h)ĝ1 (1)

and

β
(
gα(h1)

) = ĥ1
−1

β(g)ĥ1, (2)

where ĝ is the inner automorphism of G which is induced by conjugation of g, i.e.,

ĝ : g1 �→ g−1g1g, g, g1 ∈ G,

and analogously, ĥ is the inner automorphism of H which is induced by the conju-
gation of h, i.e.,

ĥ : h1 �→ h−1h1h, h, h1 ∈ H.

Theorem 3.2 (1) If the pair (α, β) defines compatible actions of H on G and G on
H, then the following inclusions hold

NAut(G)(α(H)) ≥ Inn(G), NAut(H)(β(G)) ≥ Inn(H).

Here, Inn(G) and Inn(H) are the subgroups of inner automorphisms.
(2) If α : H → Aut(G) is an embedding and NAut(G)(α(H)) ≥ Inn(G), then

defining β : G → Aut(H) by the formula

β(g) : h �→ α−1
(̂
g−1α(h)̂g

)
, h ∈ H,

we get the compatible actions (α, β).

Proof The first claim immediately follows from the relations (1), (2).
To prove the second claim, it is enough to check (2), or that is equivalent, the

equality

hβ(gα(h1)) =
((

hh
−1
1

)β(g)
)h1

. (3)
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Using the definition β, rewrite the left side of (3):

hβ(gα(h1)) = α−1

(
ĝα(h1)

−1
α(h)ĝα(h1)

)
. (4)

Rewrite the right side of (3):

((
hh

−1
1

)β(g)
)h1

= h−1
1 (h1hh

−1
1 )β(g)h1 = h−1

1 α−1(̂g−1α(h1hh
−1
1 )̂g)h1. (5)

From (4) and (5),

α−1

(
ĝα(h1)

−1
α(h)ĝα(h1)

)
= h−1

1 α−1(̂g−1α(h1hh
−1
1 )̂g)h1.

Using the homomorphism α

ĝα(h1)
−1

α(h)ĝα(h1) = α
(
h−1
1 α−1(̂g−1α(h1hh

−1
1 )̂g)h1

) =
= α(h1)

−1ĝ−1α(h1hh
−1
1 )̂gα(h1) =

= α(h1)
−1ĝ−1α(h1)α(h)α(h1)

−1)̂gα(h1) = ĝα(h1)
−1

α(h)ĝα(h1).

In the last equality, we used the formula

α(h1)
−1ĝα(h1) = ĝα(h1).

Hence, the equality (3) holds. �

Conjecture 1 Are the inclusions

NAut(G)(α(H)) ≥ Inn(G), NAut(H)(β(G)) ≥ Inn(H)

sufficient for compatibility of the pair (α, β)?

4 Compatible Actions for Nilpotent Groups

At first, let us give the following definition.

Definition 4.1 Let G and H be groups and G1 � G, H1 � H are their normal sub-
groups. We will say that G is comparable with H with respect to the pair (G1, H1),
if there are homomorphisms

ϕ : G −→ H, ψ : H −→ G,
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such that

x ≡ ψϕ(x)(modG1), y ≡ ϕψ(y)(mod H1)

for all x ∈ G, y ∈ H , i.e.,

x−1 · ψϕ(x) ∈ G1, y−1 · ϕψ(y) ∈ H1.

Note that if G1 = 1, H1 = 1, then ϕ, ψ are mutually inverse isomorphisms.
The following theorem holds.

Theorem 4.2 Let G, H be groups and there exist homomorphisms

ϕ : G −→ H, ψ : H −→ G,

such that

x ≡ ψϕ(x)(mod ζ2G), y ≡ ϕψ(y)(mod ζ2H)

for all x ∈ G, y ∈ H. Then, the action of G on H and the action of H on G by the
rules

x y = ψ(y)−1xψ(y), yx = ϕ(x)−1yϕ(x), x ∈ G, y ∈ H,

are compatible, i.e., the following equalities hold

x (yx1 ) = ((xx
−1
1 )y)x1 , y(x y1 ) = ((yy

−1
1 )x )y1 , x, x1 ∈ G, y, y1 ∈ H.

Proof Let us prove that the following relation holds:

x (yx1 ) = ((xx
−1
1 )y)x1 .

For this denote, the left-hand side of this relation by L and transform it

L = x (yx1 ) = xϕ(x1)−1 yϕ(x1) = ψ(ϕ(x1)
−1y−1ϕ(x1))xψ(ϕ(x1)

−1yϕ(x1)) =
= (ψϕ(x1))

−1ψ(y)−1(ψϕ(x1))x(ψϕ(x1))
−1ψ(y)(ψϕ(x1)) =

= (c(x1)
−1x−1

1 ψ(y)−1x1c(x1))x(c(x1)
−1x−1

1 ψ(y)x1c(x1)).

Here, ψϕ(x1) = x1c(x1), c(x1) ∈ ζ2 G. Since c(x1) ∈ ζ2 G, then the commutator
[x−1

1 ψ(y)x1, c(x1)] lies in the center of G. Hence,

L = xx
−1
1 ψ(y)x1 .
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Denote the right-hand side of this relation by R and transform it

R = ((xx
−1
1 )y)x1 = ((xx

−1
1 )ψ(y))x1 = xx

−1
1 ψ(y)x1 .

We see that L = R, i.e., the first relation from the definition of compatible action
holds. The checking of the second relation is the similar. �

From this theorem, we have a particular answer onQuestion 1 for nilpotent groups
of class 2.

Corollary 4.3 If G, H are nilpotent groups of class 2, then any pair of homomor-
phisms

ϕ : G −→ H, ψ : H −→ G

define the compatible action.

Problem 1 Let G and H be free nilpotent groups of class 2. By Corollary 4.3, any
pair of homomorphisms (ϕ, ψ), where ϕ ∈ Hom(G, H), ψ ∈ Hom(H,G) defines a
tensor product M(ϕ, ψ) = G ⊗ H . Give a classification of the groups M(ϕ, ψ).

Note that for arbitrary groups, Corollary 4.3 does not hold. Indeed, let G =
〈x1, x2〉, H = 〈y1, y2〉 be free groups of rank 2. Define the homomorphisms

ϕ : G −→ H, ψ : H −→ G

by the rules

ϕ(x1) = y1, ϕ(x2) = y2, ψ(y1) = ψ(y2) = 1.

Then

yx12 = yϕ(x1)
2 = yy12 �= y2,

i.e., the conditions of compatible actions does not hold.

5 Tensor Products G ⊗ Z2

Note that the groupAut(Z2) is trivial and hence, any groupG acts onZ2 only trivially.
This section is devoted to answer the following question.

Question 2 Let G be a group and ψ ∈ Aut(G) be an automorphism of order 2. Let
Z2 = 〈ϕ〉 and α : Z2 −→ Aut(G) such that α(ϕ) = ψ . Under what conditions the
pare (α, 1) is compatible?
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Ifψ ∈ Aut(G) is trivial automorphism, then by the second part of Proposition 2.1
G ⊗ Z2 = Gab ⊗Z Z2 is an abelian tensor product. In the general case, we have

Proposition 5.1 Let
(1) G be a group,
(2) Z2 = 〈ϕ〉 be a cyclic group of order two with the generator ϕ,
(3) α : Z2 −→ Aut(G) be a homomorphism, β = 1 : G → Aut(Z2) be the trivial

homomorphism,
Then, the pair of actions (α, β) is compatible if and only if for any g ∈ G holds

gα(ϕ) = gc(g),

where c(g) is a central element of G such that c(g)α(ϕ) = c(g)−1. In particular, if the
center of G is trivial, then G ⊗ Z2 = Gab ⊗Z Z2.

Proof Since Inn(G) normalizes α(Z2), then for every g ∈ G holds

ĝ−1α(ϕ)̂g = α(ϕ).

Using this equality for arbitrary element x ∈ G, we get

g−1gα(ϕ)xα(ϕ)(g−1gα(ϕ))−1 = xα(ϕ).

Since xα(ϕ) is an arbitrary element ofG, then c(g) is a central element ofG. Applying
α(ϕ) to the equality gα(ϕ) = gc(g), we have

g = gα(ϕ)2 = gα(ϕ)c(g)α(ϕ) = gc(g)c(g)α(ϕ),

that is c(g)α(ϕ) = c(g)−1. �

For an arbitrary abelian group A, we know that A ⊗Z Z = A. The following
proposition is some analog of this property for non-abelian tensor product.

Proposition 5.2 Let A be an abelian group, Z2 = 〈ϕ〉 is the cyclic group of order 2
and ϕ acts on the elements of A by the following manner:

aϕ = a−1, a ∈ A.

Then, the non-abelian tensor product A ⊗ Z2 is defined and there is an isomorphism

A ⊗ Z2
∼= A.

Proof It is not difficult to check that defined actions are compatible.
Since A acts on Z2 trivially and A is abelian, then the defining relations of the

tensor product
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aa1 ⊗ h = (aa1 ⊗ ha1)(a1 ⊗ h), a, a1 ∈ A, h ∈ Z2,

have the form

aa1 ⊗ h = (a ⊗ h)(a1 ⊗ h) = (a1 ⊗ h)(a ⊗ h). (1)

The relations

a ⊗ hh1 = (a ⊗ h1)(a
h1 ⊗ hh1), a ∈ A, h, h1 ∈ Z2,

give only one nontrivial relation

1 = a ⊗ ϕ2 = (a ⊗ ϕ)(a−1 ⊗ ϕ), a ∈ A,

which follows from (1).
Since the set of relations (1) is a full system of relations for A ⊗ Z2, then there

exists the natural isomorphism of A ⊗ Z2 on A that is defined by the formula

a ⊗ ϕ �→ a, a ∈ A.

�

Remark 5.3 If A = Z, then the claim of the proposition was noted in [4, Remark
4.9].
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On Zeros of Characters of Finite Groups

Silvio Dolfi, Emanuele Pacifici and Lucia Sanus

1 Introduction

Let G be a finite group. If the character table of G is known, then some very deep
structural information onG can be deduced; in fact, an important problem in character
theory is to determinewhich structural features ofG canbedetected by the knowledge
of the character table of G and, on the other hand, which aspects of the table are
significant for this purpose.

Many results in the literature show that the distribution of zeros in the character
table is relevant in this context. Our aim in this paper is to present an outline of this
research topic. We will discuss several aspects of the subject, from classical results
to recent developments, and point out some open problems that could be of interest.
(For the convenience of the reader, questions and conjectures are emphasized in
slanted text.)

The first and the second author are partially supported by the Italian INdAM-GNSAGA. The third
author is partially supported by the Spanish MINECO proyecto MTM2016-76196-P, partly with
FEDER funds, and PROMETEOII/2015/011-Generalitat Valenciana.

S. Dolfi (B)
Dipartimento di Matematica U. Dini, Università degli Studi di Firenze,
viale Morgagni 67/a, 50134 Firenze, Italy
e-mail: dolfi@math.unifi.it

E. Pacifici
Dipartimento di Matematica F. Enriques, Università degli Studi di Milano,
via Saldini 50, 20133 Milano, Italy
e-mail: emanuele.pacifici@unimi.it

L. Sanus
Departament de Matemàtiques, Facultat de Matemàtiques, Universitat de València,
Burjassot, 46100 Valencia, Spain
e-mail: lucia.sanus@uv.es

© Springer Nature Singapore Pte Ltd. 2018
N. S. N. Sastry and M. K. Yadav (eds.), Group Theory and Computation,
Indian Statistical Institute Series, https://doi.org/10.1007/978-981-13-2047-7_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2047-7_3&domain=pdf


42 S. Dolfi et al.

A large number of the results quoted in this paper rely on the classification of finite
simple groups. This holds for virtually all the statements discussed from Sects. 4–
9, except in some obvious situations (for instance, when the analysis involves only
solvable groups). As for Sects. 2 and 3, we indicate explicitly the cases in which the
classification comes into play.

In what follows, every group is assumed to be finite and, for the notation, we refer
to [16].

2 A Theorem by W. Burnside

As one of the triggers for the research concerning zeros of characters, we recall a
classical result by W. Burnside (Theorem 3.15 of [16]).

Theorem 2.1 Let G be a group, and χ an irreducible character of G which is
nonlinear (i.e., whose degree is larger than 1). Then there exists g ∈ G such that
χ(g) = 0.

This important theorem has been extended in several directions. The following
result by G. Navarro yields Burnside’s theorem if the subgroup N is chosen to be the
trivial subgroup of G.

Theorem 2.2 ([29], Theorem A) Let G be a group, χ an irreducible character of
G, and N a normal subgroup of G. Then the restriction χN , which is a character of
N , is not irreducible if and only if there exists g ∈ G such that χ(x) = 0 for every
x ∈ gN.

As another kind of extension for Burnside’s theorem, G. Malle, G. Navarro and
J.B. Olsson investigated the relationship between the “arithmetical structure” of the
degree of an irreducible character and that of an element on which the character
vanishes.

Theorem 2.3 ([23], Theorem B) Let G be a group, and χ an irreducible character
of G which is nonlinear. Then there exists a prime number p and a p-element g ∈ G
such that χ(g) = 0.

Now, let p be a prime number. Recalling that, whenever a character χ of the group
G vanishes on a p-element of G, then the degree of χ is a multiple of p [6, Corollary
2.2], the above theorem immediately yields the following nice corollary.

Corollary 2.4 ([23], Theorem A) Let G be a group, and χ an irreducible character
of G which is nonlinear. Assume that the degree of χ is a π-number, where π is a set
of primes. Then there exists a π-element g ∈ G such that χ(g) = 0.

The two aforementioned results of [23] rely on the classification of finite simple
groups.
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In view of the previous statements, one may wonder whether it is true that if
χ(1) is a p-power, then χ does not vanish on p′-elements. This is false in general;
for instance, the Mathieu group M11 has an irreducible character of degree 11 which
takes value 0 on an element of order 6.Moreover, a solvable example can be obtained
considering the wreath product G = C6 � C5 of a cyclic group of order 6 with a cyclic
group of order 5; it is not hard to check that G has an irreducible character of degree
5 (induced from the base group) which vanishes on an element of order 6.

Nevertheless, in the solvable context and for primitive characters, the situation is
quite neat.

Theorem 2.5 ([28], Corollary B) Let G be a solvable group, and χ a primitive
character of G which is nonlinear. Assume that the degree of χ is a π-number, where
π is a set of primes. Then, for x ∈ G, we have χ(x) = 0 if and only if χ(xπ) = 0,
where xπ denotes the π-part of the element x.

Finally, another question that may arise looking at Theorem 2.3 is the following:
Does a nonlinear irreducible character always have zeros of prime order? The answer
turns out to be affirmative for simple groups, as shown in [23] (inwhich simple groups
of Lie type and sporadic simple groups are treated) and in [2] (where the authors
consider alternating groups). On the other hand, the answer is negative in general:
it is enough to consider the quaternion group Q8, in which the unique element of
prime order is central and therefore not a zero for any irreducible character. The next
result yields some information in this context.

Theorem 2.6 ([24], Theorem A) Let χ be a faithful irreducible character of G, and
assume that χ(1) is a power of a prime p. If χ(x) �= 0 for every element x ∈ G of
order p, then the Sylow p-subgroups of G are either cyclic or generalized quaternion
groups.

Note that, if the degree of a faithful irreducible character χ is not a p-power,
the condition that every element of order p is not a zero for χ does not imply that
the Sylow p-subgroups of G are cyclic or generalized quaternion groups. In fact,
consider G = PSL(2, 7); then G, which has dihedral Sylow 2-subgroups, also has an
irreducible character χ of degree 6, such that χ(x) �= 0 for every involution x ∈ G.

3 Vanishing Elements

Another way of stating Theorem 2.1 is the following.
LetR be a row in the character table of a group G. ThenR contains zeros if and

only ifR corresponds to a nonlinear character.
(In fact, Theorem 2.1 provides the “if” part, whereas the “only if” part is an

elementary fact in character theory.) So, the problem of determining which rows in
the character table of a group actually contain zeros is completely solved.



44 S. Dolfi et al.

Now, if one considers the “dual” question of which columns in the character
table of a group may contain zeros, the situation is much more complicated. In this
context, the relevant objects are the so-called “vanishing elements”, introduced in an
important paper by I.M. Isaacs, G. Navarro and T.R.Wolf [17]: an element g ∈ G is a
vanishing element if there exists an irreducible character χ of G such that χ(g) = 0.
The questionwe are considering is therefore related to understandingwhich elements
of a group are vanishing elements.

Given the standard duality between results concerning rows (i.e., irreducible char-
acters) and columns (i.e., conjugacy classes) in the character table of a group, one
might naively ask whether the following holds.

Let C be a column in the character table of a group G. Is it then true that C contains
zeros if and only if C corresponds to a noncentral conjugacy class?

It is immediately clear that the “only if” part is true by elementary arguments, but
the “if” part fails in general. In order to see it, we can just consider a 3-cycle in the
symmetric group S3: such an element is obviously noncentral and also nonvanishing
in that group.

Certainly, there are special situations in which the “if” part is also true (for
instance, it holds for nilpotent groups, as shown in TheoremB of [17]), but in general
a nonvanishing element of G can even fail to lie in any abelian normal subgroup of G.
Actually, in Sect. 5 of [17], the authors provide the following family of examples: for
every prime p, they construct a solvable group G having nonvanishing p-elements
(also, elements of order p when p �= 2) which do not lie in any abelian normal
subgroup of G.

However, under some suitable assumptions, a nonvanishing element ofG is forced
to lie in a nilpotent normal subgroup of G (i.e., it lies in the Fitting subgroup F(G)).
In fact, the main result of [17] is as follows.

Theorem 3.1 ([17], Theorem D) Let G be a solvable group. If g is a nonvanishing
element of G, then the image of g under the natural homomorphism onto G/F(G)

has 2-power order.

In particular, in a solvable group G, the nonvanishing elements of odd order lie
in F(G).

In [17], the authors actually conjecture that every nonvanishing element of a
solvable group G lies in F(G). They point out that their methods would prove this
claim, if it can be proved that every nonvanishing element of order 2 of a solvable
group G lies in an abelian normal subgroup of G (recall that, in [17, Sect. 5], the
authors provide a counterexample to a similar statement where 2 is replaced by any
odd prime). However, in a recent paper [15], M. Grüninger constructs an example of
a solvable group having a nonvanishing involution which fails to lie in any abelian
normal subgroup, thus showing that the prime 2 is not an exception. In any case, at
the time of this writing, the conjecture by Isaacs, Navarro, and Wolf is still an open
problem.

On the other hand, the assumption of solvability is certainly crucial in Theo-
rem 3.1. If we look, for instance, at the character table of the alternating group A7
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(whose Fitting subgroup is of course trivial), we see that there are nonvanishing
elements of order 2 and 6, but also of odd order (namely, of order 3).

In fact, the primes 2 and 3 do play a distinguished role in this context.

Theorem 3.2 ([11], Theorem A) Let G be a group, and g ∈ G an element whose
order is coprime to 6. If g is a nonvanishing element of G, then g ∈ F(G).

(The proof of the above theorem uses the classification of finite simple groups.)
It seems natural to think that, for any group G, the nonvanishing elements of G
should always lie in the generalized Fitting subgroup F∗(G), but this is not true.
The group G = 211 : M24 has nonvanishing elements of order 2 and 4 not lying in
F(G) = F∗(G). However, we conjecture that any nonvanishing element of odd order
of a group G lies in F∗(G).

In order to give an idea of some methods that are relevant in the present context,
we close this section with two easy remarks and a last theorem.

Proposition 3.3 Let N be a normal subgroup of G, and let θ be an irreducible
character of N . Then every element of G not lying in

⋃
g∈G IG(θg) is a vanishing

element of G.

(In the above statement, IG(θ) denotes the inertia subgroup of θ in G, i.e., the
stabilizer of θ in the natural action of G on Irr(N ).)

Proposition 3.4 Let N be a normal subgroup of G, and p a prime. If there exists an
irreducible character of p-defect zero of N (i.e., a character θ ∈ Irr(N ) such that p
does not divide |N |/θ(1)), then every g ∈ N with p | o(g) is a vanishing element of
G.

Proposition 3.3 (whose proof is an immediate application of Clifford’s Theory)
is particularly useful in the case when N is an elementary abelian p-group for some
prime p (for instance, when N is an abelian minimal normal subgroup of G). In this
situation, the set Irr(N ) is an elementary abelian p-group as well, and the natural
action of G on this set can be regarded as a module action. By Proposition 3.3, an
element g ∈ G is a vanishing element provided, under this natural action, there exists
a deranged orbit for g, i.e., an orbit in which no element is fixed by g. So, the study
of certain orbit properties in module actions turn out to be crucial when dealing with
vanishing elements.

Also, Proposition 3.4 can be proved by means of elementary character theory,
taking into account that an irreducible character of p-defect zero takes value zero on
every element of the group whose order is divisible by p. This proposition comes
into play when N is a nonabelian minimal normal subgroup of G. In this case, in
fact, N is a direct product S1 × · · · × Sk of pairwise isomorphic nonabelian simple
groups and, given a prime divisor p of |N |, irreducible characters of p-defect zero
of N very often exist (this happens in particular whenever the Si are simple groups
of Lie type).

We note that as Proposition 3.4 may suggest, nonsolvable groups tend to have a
large number of vanishing elements (for instance, by the above remarks about the



46 S. Dolfi et al.

existence of characters of p-defect zero, every nontrivial element of a simple group
of Lie type is vanishing); in other words, a small ratio of vanishing elements in the
group should imply solvability. In fact, we conjecture that the smallest value of this
ratio among nonsolvable groups are attained by the alternating group A7, in which
the vanishing elements are 2134 out of 2520 (∼85%).

The two propositions above, together with some other techniques and ideas (and
the classification of finite simple groups), are used in order to prove the following
theorem, which is in turn very useful for locating vanishing elements.

Theorem 3.5 ([4], Corollary 4.4). Let A be an abelian minimal normal subgroup
of G. Let N/M be a chief factor of G such that |N/M | is coprime with |A| and
CN (A) = M. Then every element of N \ M is a vanishing element of G.

4 Ito–Michler Theorem and Vanishing Elements

An important object that can be “extracted” from the character table of a group G
is the set cd(G), whose elements are the degrees of the irreducible characters of G.
Even this relatively small set of positive integers, as shown by many results in the
literature, encodes nontrivial information about the structure of G; in particular, there
is a significant interplay between the group structure and the arithmetical structure
of cd(G) (i.e., the way in which the numbers in this set decompose into prime
factors). As a famous example of this relationship, we recall the celebrated Ito–
Michler Theorem.

Theorem 4.1 (Ito–Michler) Let G be a group, and p a prime. Then, every number in
cd(G) is not divisible by p if and only if G has an abelian normal Sylow p-subgroup.

The above statement can be regarded as a model for a certain kind of results that,
following G. Navarro, we call “Ito–Michler type” theorems (see [30]). The question
addressed in such theorems is the following (or a variation of it): consider a finite
nonempty set X of positive integers which is attached to a group G, and assume that
a given prime p does not divide any number in X ; which structural properties of G
can be derived as a consequence of this assumption?

Many sets of positive integers, related with a finite group G, have been considered
in the literature. Among them, some classical examples are the set o(G) of orders of
the elements of G, and the set cs(G) of conjugacy class sizes of G. Now, these sets
can be “filtered” by means of the irreducible characters of G, in terms of the zeros
appearing in the character table of G: namely, our following discussion will focus
on the sets

vo(G) = {o(g) | g is a vanishing element of G}

and
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vcs(G) = {|gG | | g is a vanishing element of G},

where by gG we denote the conjugacy class of the element g in G.

5 Ito–Michler Type Theorems: The Set vo(G)

In this section, we survey some Ito–Michler type theorems concerning the first of
the two sets introduced above (or theorems that, however, relate some arithmetical
properties of this set to the group structure). We start by considering the situation
when, given a prime p, the set vo(G) does not contain any p-power.

Theorem 5.1 ([10],TheoremA)Let G be a group, p a prime number, and P a Sylow
p-subgroup of G. Assume that, for every χ ∈ Irr(G) and x ∈ P, we have χ(x) �= 0
(i.e., assume that vo(G) does not contain any p-power). Then, G has a normal Sylow
p-subgroup.

The above statement (which is a consequence of Theorem 3.2 if p is larger than
3) is actually a bit stronger than a classical Ito–Michler type theorem, as the assump-
tion that p does not divide any number in vo(G) clearly implies the hypothesis of
Theorem 5.1.

Also the original Ito–Michler assumption that p does not divide any number in
cd(G) implies the hypothesis of Theorem 5.1, because, as recalled in the paragraph
following Theorem 2.3, an irreducible character of G which vanishes on a p-element
has a degree divisible by p. On the other hand, the converse is not true. For example,
let G be the normalizer of a Sylow 2-subgroup in the Suzuki group Suz(8); then
G is a Frobenius group with a Frobenius complement of order 7 and a nonabelian
Frobenius kernel of order 26. It turns out that vo(G) = {7}, and cd(G) = {1, 7, 14}.
More generally, [6, Example 1] shows that there is no bound on the derived length of
the Sylow p-subgroup of a group G such that vo(G) does not contain any p-power.

As an immediate consequence of Theorem 5.1, we get the following refinement
of another famous result by Burnside, the so-called pαqβ Theorem.

Theorem 5.2 ([10], Corollary B) Let G be a group, and let p, q be prime numbers.
If every vanishing element of G is a {p, q}-element, then G is solvable.

In the next result, the hypothesis of Theorem 5.1 is relaxed, assuming only that
vo(G) does not contain the prime p.

Theorem 5.3 ([10], Theorem 4.3) Let G be a group, and p a prime divisor of
|G|. Assume that either p is odd, or that p = 2 and G has no composition factor
isomorphic to M22, A7 or A15. If vo(G) does not contain p, then Op(G) �= 1.

Beforewe proceed in our discussion related to Ito–Michler type theorems, we take
some time to consider the opposite situation in which the set vo(G) only contains
p-powers, or it even reduces to a single prime number.
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Theorem 5.4 ([6], Theorem A) Let G be a nonabelian group, and p a prime. If
every number in vo(G) is a p-power, then one of the following holds.

(a) G is a p-group.
(b) G/Z(G) is a Frobenius group with a Frobenius complement of p-power order

and Z(G) = Op(G).

Theorem 5.5 ([6], Theorem B) Let G be a nonabelian group, and p a prime. If
vo(G) = {p}, then one of the following holds.

(a) G is a p-group of exponent p.
(b) G = E × F, where E is a (possibly trivial) elementary abelian p-group and F

is a Frobenius group with a Frobenius complement of order p.

Theorem 5.6 ([6], Theorem C) Let G be a nonabelian group. Then, vo(G) = {2}
if and only if G = E × F, where E is an elementary abelian 2-group and F is a
Frobenius group with a Frobenius complement of order 2.

Finally, we resume the discussion about Theorem 5.1 by observing that, as shown
by any nonabelian p-group, the converse of that statement is false. In other words,
Theorem5.1 does not provide a characterization of normality for a Sylow p-subgroup
in terms of the character table of G.

The problem of achieving such a characterization along this line was considered
byG.Malle andG. Navarro in [22]. In that paper, the authors introduce one particular
set of irreducible characters of a group: given a group G, a prime p and a Sylow
p-subgroup P of G, they define

Irr((1P)G) = {χ ∈ Irr(G) | 〈χP , 1P〉 �= 0},

i.e., the subset of Irr(G) whose elements are the irreducible constituent of the char-
acter of G obtained by inducing the principal character of P .

Our discussion concerning Theorem 5.1 yields

p � χ(1) for every χ ∈ Irr(G) ⇒ χ(x) �= 0 for every χ ∈ Irr(G) and x ∈ P ⇒ P � G.

Now, if every occurrence of Irr(G) in the previous line is replaced by Irr((1P)G),
then both the implications are in fact “if and only if”.

Theorem 5.7 ([22], Theorem B) Let G be a group, p a prime number, and P a
Sylow p-subgroup of G. Then, the following conditions are equivalent.

(a) For every χ in Irr((1P)G), the prime p does not divide χ(1).
(b) For every χ in Irr((1P)G) and x ∈ P, we have χ(x) �= 0.
(c) P � G.

Therefore, while Ito–Michler Theorem yields a characterization of normality and
abelianity of a Sylow p-subgroup in terms of the character table, the theorem above
provides a neat characterization of normality for a Sylow p-subgroup in terms of the
character table (namely, in terms of degrees and of the distribution of zeros in the
character table).
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6 Ito–Michler Type Theorems: The Set vcs(G)

In the same spirit as in the previous section, we now focus on the set of conjugacy
class sizes of a group. First of all, we state the classical Ito–Michler type theorem on
the whole set of class sizes, whose proof is an elementary exercise.

Theorem 6.1 Let G be a group, and p a prime number. Then p does not divide
any number in cs(G) if and only if G has a central Sylow p-subgroup (i.e., G has a
p-complement H that is a direct factor, and G/H is abelian).

What if the Ito–Michler assumption is required only for the sizes of the vanishing
conjugacy classes? In this case, the right idea is to focus on the principal p-block
(see for instance [27, p. 49]). In fact, the following lemma turns out to be a crucial
one.

Lemma 6.2 Let G be a group, p a prime, and B0 the principal p-block of G. If
χ is an (ordinary) irreducible character of G lying in B0, and x ∈ G is such that
χ(x) = 0, then p divides |xG |.
Proof Let R be the ring of algebraic integers in the complex field, and let M be a
fixed maximal ideal of R containing the ideal generated by p. Also, denote by ∗ the
natural homomorphism of R onto the field R/M .

By definition, since the irreducible character χ of G lies in B0, we get

( |gG | · χ(g)

χ(1)

)∗
= |gG |∗

for every g ∈ G. In particular, as χ(x) = 0, we have that |xG | is an integer lying in
pR; it follows that p divides |xG |, as claimed. �

Define now

Van(B0) = {x ∈ G | χ(x) = 0 for some χ ∈ Irr(B0)}.

As an immediate consequence of Lemma 6.2, we obtain the following result.

Theorem 6.3 Let G be a group, and p a prime number. Then, p does not divide |xG |
for every x ∈ Van(B0) if and only if G has a normal p-complement H and G/H is
abelian.

Proof If G has a normal p-complement H , then [27, Theorem 6.10] yields that H
is the intersection of the kernels of all the irreducible ordinary characters in B0.
Therefore, if G/H is assumed to be abelian, these characters are in fact linear, so
that Van(B0) is empty and nothing else needs to be proved.

Conversely, if p does not divide |xG | for every x ∈ Van(B0), then Lemma 6.2
(together with Burnside’s Theorem 2.1) yields that the irreducible characters in B0

are all linear. Now, again Theorem 6.10 of [27] implies that G ′ lies in Op′(G) (the
maximal normal p′-subgroup of G), and the desired conclusion easily follows. �
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Thus, if G is a group and p is a prime which does not divide any number in
vcs(G), then G has a normal p-complement H and G/H is abelian. In fact, in [5,
Theorem C], the author obtains a strengthening of this statement: if p does not divide
the class size of any vanishing p′-element of G, then G has a normal p-complement
with abelian factor group.

Observe that the structural information which is lost in this context, with respect
to the stronger assumptions of Theorem 6.1, concerns the normality of a Sylow p-
subgroup of G. In fact, in the symmetric group G = S3, the class of transpositions
is the unique vanishing conjugacy class. This class has size 3, therefore the prime
2 does not divide any number in vcs(G); nevertheless, G does not have a normal
Sylow 2-subgroup.

Assume now that, for a given prime p, the group G has a p-complement H , and
let us define

Van(G | 1H ) = {x ∈ G | χ(x) = 0 for some χ ∈ Irr(G) with 〈χH , 1H 〉 �= 0}.

Taking into account that every irreducible constituent of the induced character (1H )G

lies in B0 (see [27, Theorem 2.27]) and arguing along the line of Theorem 6.3, it is
not difficult to prove the following result, that is very much in the spirit of the work
by Malle and Navarro in [22].

Theorem 6.4 Let p be a prime, and G a group having a p-complement H. Then p
does not divide |xG | for every x ∈ Van(G | 1H ) if and only if H � G and G/H is
abelian.

We close this section remarking that, again in the spirit of the work by Malle and
Navarro in [22], it could be interesting to find a characterization of p-nilpotency for
a group G (i.e., the existence of a normal p-complement H ≤ G, but without any
extra condition on G/H ) in terms of vanishing conjugacy classes.

7 Vanishing Graphs

Given a nonempty finite set X of positive integers, a way to express the arithmetical
properties of the integers in X is as follows. Consider the so-called prime graph on
X , that is the simple undirected graph �(X) with vertex set

V(�(X)) = {p prime | there exists x ∈ X divisible by p},

and define two vertices p, q to be adjacent in �(X) if there exists an integer x ∈ X
such that pq divides x .

(Similarly, another graph that comes naturally into consideration is the “common
divisor graph” �(X), whose vertex set is X \ {1} and x, y ∈ X \ {1} are connected
if gcd(x, y) �= 1.)
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Themain general question in this context is how the group structure of G is related
to the structure of the corresponding graphs �(X), for various sets X of invariants
of a group G.

Asmentioned inSect. 3, oneof the earliest instances is the set X = o(G) consisting
of the orders of the elements of the group G. The corresponding graph �(G) =
�(o(G)) is called the Gruenberg–Kegel graph and it has been extensively studied
both in the solvable as well as in the nonsolvable case.

Among the various graph properties, the most commonly studied in the present
literature is related to the diameter and the number of connected components. In the
following discussion, given a graph �, we denote by n(�) the number of connected
components of � and by diam(�) its diameter. Finally, we denote by ι(�) the
independence number of �, that is the largest size of an independent set, i.e., a
subset of pairwise nonadjacent vertices of �.

We recall that a group G is said to be a 2-Frobenius group if there exist two normal
subgroups F and L of G such that L is a Frobenius group with kernel F , and G/F
is a Frobenius group with kernel L/F . For the Gruenberg–Kegel graph of solvable
groups, we have:

Theorem 7.1 ([20, 34]) Let G be a solvable group.

(a) n(�(G)) ≤ 2, i.e., �(G) has at most two connected components.
(b) If �(G) is disconnected, then G is either a Frobenius or a 2-Frobenius group

and each connected component of �(G) is a complete graph.
(c) For any choice of three vertices of �(G), at least two of them are adjacent in

�(G) (i.e., ι(�(G)) ≤ 2).

Aiming at filtering the elements of the set o(G) by properties related to character
values, in Sect. 4 we introduced the set vo(G) consisting of the orders of the vanish-
ing elements of G. Accordingly, one defines the vanishing Gruenberg–Kegel graph
�v(G) = �(vo(G)) of G as the prime graph on the set of the orders of the vanishing
elements of G. Clearly, �v(G) is a subgraph of �(G). Still, it is not an induced sub-
graph: as an example, consider G = S3 × D10, where 3 and 5 are vertices of �v(G)

which are linked in �(G), but not in �v(G).
In the process of comparing �(G) and �v(G), one can first ask about the differ-

ence between the vertex sets V(�(G)) and V(�v(G)).

Theorem 7.2 ([12]) Let G be a nonabelian group, p a prime number, and P ∈
Sylp(G). If p is a vertex of �(G) but not of �v(G), then P � G, G/Op′(G) is a
Frobenius group with kernel POp′(G)/Op′(G) and Op′(G) is nilpotent.

We say that a group G is a nearly 2-Frobenius group if there exist two normal
subgroups F and L of G with the following properties: F = F1 × F2 is nilpotent,
where F1 and F2 are normal subgroups of G, G/F is a Frobenius group with kernel
L/F , G/F1 is a Frobenius groupwith kernel L/F1, and G/F2 is a 2-Frobenius group.
The next result should be compared with Theorem 7.1.
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Theorem 7.3 ([13])Let G be a solvable group. Then the following conclusions hold.

(a) �v(G) has at most two connected components. If �v(G) is disconnected, then
each component is a complete graph, and G is a Frobenius or a nearly 2-
Frobenius group.

(b) diam(�v(G)) ≤ 4.

We remark that the bound diam(�v(G)) ≤ 4 is sharp [13, Example 5.2].
By contrast, the similarity of the ordinary and vanishing Gruenberg–Kegel graphs

breaks down when one considers independence numbers: while one has independent
sets of maximal size two, the other can have arbitrarily large independent sets.

Theorem 7.4 ([13], Theorem B) For every positive integer k, there exists a solvable
group G such that �v(G) has an independent set of size k.

Removing the assumption of solvability, from [18, 34] it is possible do derive the
following result.

Theorem 7.5 (a) If S is a nonabelian simple group, then n(�(S)) ≤ 6.
(b) Let G be a nonsolvable group. If �(G) is disconnected, then G has a unique non-

abelian composition factor S, and n(�(G)) ≤ n(�(S)). Hence, n(�(G)) ≤ 6.

Similarly, for the vanishing Gruenberg–Kegel graph:

Theorem 7.6 ([12], Theorem A) Let G be a finite group. Then, the following con-
clusions hold.

(a) �v(G) has at most six connected components.
(b) If �v(G) is disconnected, then G has a unique nonabelian composition factor

S, and n(�v(G)) ≤ n(�(S)) unless G is isomorphic to A7.

In fact, it turns out that A7 is the unique nonabelian simple group S such that
�v(S) �= �(S). Note that n(�v(A7)) = 4, while n(�(A7)) = 3.

We stress that notwithstanding the similarities among the two graphs, the edge
set in the graph �v(G) can be quite smaller than in the graph �(G); for any integer
k, there exists a (nonsolvable) group G such that �(G) has a complete subgraph on
k vertices, that instead induces an independent set in �v(G) [12, Example 6.5].

Other graph properties, like connectivity, chromatic number, or girth, might be
subjects for further investigation.

Also the arithmetical properties of the sets cd(G) and cs(G), that have been
introduced in Sect. 3, can be studied via the prime graph. Several properties of the
graphs�(cd(G)) and�(cs(G)), as well as their connection to the algebraic structure
of the group, have been studied in the last two decades. For an overview up to 2008,
we refer to the survey paper [19].

In the same spirit, we now focus on the set vcs(G) of the sizes of vanishing classes.
As we observed in Sect. 6, if a prime number p is not a vertex of �(vcs(G)), then G
has a normal p-complement and abelian Sylow p-subgroups. We also observed that
the vertex set of�(vcs(G)) can be smaller than that of�(cs(G)). Yet, if one assumes
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that G has a nonabelian minimal normal subgroup, then the two vertex sets coincide,
as proved in [4]. In this situation, the absence of an edge in the graph �(vcs(G))

reflects in the normal structure of G.

Theorem 7.7 ([4], Theorem A) Let G be a finite group, and suppose that G has
a nonabelian minimal normal subgroup. If p and q are vertices of �(vcs(G)), but
there is no vanishing conjugacy class of G whose size is divisible by pq, then G is
{p, q}-solvable.

We remark that the assumption concerning the existence of a nonabelian minimal
normal subgroup in G is critical in the above statement. In fact, whenever p and q are
primes such that p ≥ 7 and q ≡ 1 (mod 5p), it is possible to construct a Frobenius
group H whose kernel is elementary abelian of order q2 and whose complements
are isomorphic to C p × SL(2, 5); it is not difficult to see that p is not a vertex in
�(vcs(H)). Now, take p = 7, q = 71, and consider G = D10 × H (where D10 is the
dihedral group of order 10); clearly, 2 and 7 are nonadjacent vertices in �(vcs(G))

(although they are adjacent in �(cs(G))), nevertheless G is not 2-solvable. (The
authors whish to thank Victor Manuel Ortiz Sotomayor for pointing out this kind of
examples; a solvable one is G = D10 × A4, in which 2 and 3 are nonadjacent vertices
of �(vcs(G)) that are adjacent in �(cs(G)).)

A consequence of the previous theorem is that still assuming the existence of
a nonabelian minimal normal subgroup in G, if a vertex p of �(vcs(G)) is not
complete (i.e., adjacent to all other vertices), then the group G is p-solvable.

Moreover, if the group has no abelian normal subgroup, then the graph�(vcs(G))

is complete.

Theorem 7.8 ([4], TheoremB) Let G be a finite group with trivial Fitting subgroup.
Then, every prime divisor of |G| is a vertex of �(vcs(G)), and �(vcs(G)) is a
complete graph.

We are not aware of any examples where, under the assumption that G has a
nonabelian minimal normal subgroup, two primes p and q are vertices of�(vcs(G))

that are not adjacent in this graph, but adjacent in �(cs(G)). In other words, it is an
open question whether in this case �(vcs(G)) = �(cs(G)).

8 The Number of Conjugacy Classes of Vanishing Elements

Given an irreducible character χ of G, we define v(χ) = |{xG : χ(x) = 0}|, the
number of zero entries in the row corresponding to χ in the character table of G. By
Burnside’s theorem, v(χ) = 0 if and only if χ is a linear character.

It is natural to ask how the largest number

M(G) = max
χ∈Irr(G)

v(χ)

of zeros in a row of the character table of G is related to the structure of G.
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Theorem 8.1 ([25], Theorem A) There exist two real numbers c1 and c2 such that,
for every solvable group G with M(G) > 1,

h(G) ≤ c1 log log M(G) + c2 ,

where h(G) is the Fitting height.

In [25], Moretó and Sangroniz also prove that the index of suitable terms of the
Fitting series of a solvable group G can be bounded in terms of M(G) [25, Theorem
B]. Furthermore, the order of a nilpotent group can be bounded by some function of
M(G). This is not true in general, as the dihedral groups show.

Similarly, one can consider the minimum number of zeros

m(G) = min
χ∈Irr(G),χ(1)>1

v(χ)

appearing in the rows of the character table of a group G. Moretó and Sangroniz
prove that the derived length of a p-group P can be bounded by a function of m(P)

[25, Theorem E]. They also propose the following conjectures.

Conjecture 8.2 ([25], Conjectures F and G) Let G be a solvable group. Then

(a) the derived length dl(G) and the index |G : F(G)| can be bounded in terms of
M(G);

(b) the Fitting height h(G) can be bounded in terms of m(G).

The finite groups whose irreducible characters vanish on “few” conjugacy classes
have been classified.

Theorem 8.3 ([1], Theorem 5; [7], Proposition 2.7) M(G) = 1 if and only if G is
a Frobenius group with complement of order 2.

Theorem 8.4 ([3], Theorem 1.1; [25], Theorem H) M(G) = 2 if and only if G �
S4,A5,PSL(2, 7), or there is a normal subgroup N with M(G/N ) = 1 and |N | = 2
or G is a Frobenius group with complement of order 3 and abelian kernel.

Finally, a classification of the groups G such that M(G) = 3 is given in [31].
Dually, looking at the columns of the character table of a group G, one defines

v∗(g) = |{χ ∈ Irr(G) : χ(g) = 0}| and M∗(G) = maxg∈G{v∗(g)}.
Theorem 8.5 ([26, TheoremA]) The number of nonlinear irreducible characters of
G is bounded in terms of M∗(G). Hence, if G is solvable, the derived length dl(G)

is bounded above by M∗(G).

In [33], one finds a complete classification of the groups G such that M∗(G) < p,
where p is the smallest prime divisor of |G|; they are either isomorphic to A5 or they
belong to one of seven families of solvable groups [33, Theorem 1.1].
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A natural question in this context is about groups that have “few” orbits of van-
ishing conjugacy classes, or of conjugacy classes that are zeros for single irreducible
characters, under some natural actions (e.g., Galois conjugation).

Finally, we mention a result that outlines a connection between rows and columns
(from the point of view of zero entries) in a character table.

Theorem 8.6 ([32]) For any finite group G, the following conditions are equivalent.

(a) v(χ) ≤ 1 for all but one of the irreducible characters χ of G;
(b) v∗(xG) ≤ 1 for all but one of the conjugacy classes of G.

Moreover, G satisfies one of the above condiditions if and only if G is one of the
following groups:

• an extra special 2-group;
• SL(2, 3), S4 or A8;
• a Frobenius group which is either 2-transitive with an abelian complement or it

has a complement of order 2.

9 Brauer Characters

Unlike ordinary characters, it is possible that a nonlinear irreducible Brauer character
does not vanish on any element. For instance, in characteristic 7, the irreducible
Brauer characters of PSL(3, 2) of degree 5 and 7 do not take the value 0.

Even more, there exist nonabelian groups G whose Brauer character table, in
some characteristic p, does not contain any zeros: consider for instance G = S4 and
p = 3. However, for odd characteristic, this phenomenon can only happen when G
is a solvable group (see Theorem 9.2 below).

The next result shows that, for p odd, all nonabelian simple groups have an
irreducible p-Brauer character that vanishes on a full Aut(G)-orbit of p-regular
elements.

Theorem 9.1 ([21, Theorem 1.1]) Let G be a nonabelian simple group and p a
prime. Then, there exists a φ ∈ IBr p(G) and a p-regular g ∈ G such that φ(gα) = 0
for all α ∈ Aut(G), unless p = 2 and

• G = L2(2m), m ≥ 2;
• G = L2(q), q = 2m + 1, m ≥ 2;
• G = 2B2(22m+1), m ≥ 1;
• G = S4(2m), m ≥ 2.

In these cases, the degrees of all irreducible 2-Brauer characters of G are powers
of 2.

From the above result, one derives the following:
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Theorem 9.2 ([21, Theorem 1.3]) Assume that G is not solvable and p �= 2. Then
there exists an irreducible p-Brauer character of G which vanishes on some p-
regular element of G.

An open question in this context is whether the degrees of the irreducible Brauer
characters of a group G are necessarily all 2-powers if the 2-Brauer character table
of G has no zeros.

It is natural to guess that solvable groups whose p-Brauer character table has no
zeros, must have a structure of somewhat restricted type relatively to the prime p.
There are examples of such groups with both p-length (l p(G)) and p′-length (l p′(G))
equal to 2 [8, Example 4.1], but this is (for p �= 3) the worst it can get.

Theorem 9.3 ([8, 9]) Let p be prime and let G be a finite group such that the
p-Brauer character table of G contains no zeros. Then,

(a) If p ≥ 5, then the Hall p′-subgroups of the factor group G/F(G) are abelian;
so, l p′(G/F(G)) ≤ 1, l p′(G) ≤ 2 and lp(G/Op(G)) ≤ 2.

(b) If p = 3, then G/F(G) is a subgroup of a direct product A × B, where A is a
{2, 3}-group with elementary abelian Sylow 2-subgroups and 3′-length at most 1
and B � (Sym(3) � Sym(3)) � P, where P is a3-group. In particular, l3′(G) ≤ 3,
l3(G/O3(G)) ≤ 3.

(c) If p = 2 and G is solvable, then G/F(G) is a {2, 3}-group with elementary
abelian Sylow 3-subgroups; also, l2′(G) ≤ 2, l2(G/O2(G)) ≤ 2.

(d) If p = 2 and G is nonsolvable, then there exist normal subgroups R, N of G,
R ≤ N, with R solvable, l2′(R) ≤ 4, N/R a direct product of simple groups as
listed in Theorem 9.1 and G/N a group of 2-power order.

We remark that no examples are known of groups with no zeros in the 3-Brauer
character table and with 3′-length greater than 2. So, part (b) of the above theorem
can possibly be improved.

Let p be a prime; a p-regular element of a group G is called a p-nonvanishing
element of G if no irreducible p-Brauer character of G takes value zero on it. The fol-
lowing statement, which strengthens Theorem 9.3 for p > 7, locates p-nonvanishing
elements of a solvable group G with respect to the p-series of G. It should be com-
pared with Theorem 3.1.

Theorem 9.4 ([14, Theorem A]) Let p be a prime number greater than 3, let G be
a finite solvable group with Op(G) = 1, and let g be a p-regular element of G that
is p-nonvanishing. Then, g lies in Op′ pp′(G), unless p ∈ {5, 7} and the order of g is
divisible by 2 or 3.

It is unknown, at the moment, whether the assumption p > 7 is really needed in
the above statement. The ideas used in [14] break down for small primes, but other
methods could take over. Another issue that is wide open concerns the distribution
of p-nonvanishing elements in nonsolvable groups.
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Properties of Finite and Periodic Groups
Determined by Their Element Orders
(A Survey)

Marcel Herzog, Patrizia Longobardi and Mercede Maj

1 Introduction

Let G be a finite group. The function

ω(G) = {o(x) : x ∈ G}

assigns to G the set of orders of all elements of G. In this survey, we shall describe
results which answer the following question:

Question 1.1 What information about G can be derived by looking either at ω(G)

or at the complete list of orders of elements of G?

We shall accompany these results by numerous relevant open questions and con-
jectures. The information to which we shall refer includes the set ω(G), the subsets
Le(G) := {x ∈ G : xe = 1} of roots of unity in G for all divisors e of |G|, sum of
the orders of all elements of G denoted by ψ(G), product of these orders denoted by
P(G), and other functions of the orders of all elements of G. With respect to ω(G),
we shall also consider periodic groups. Recall that a group is called periodic if all of
its elements are of finite order.
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In this survey,G, n,Cn, and pwill denote a group, a positive integer, a cyclic group
of order n, and a prime number, respectively. Sn and An will denote the symmetric
and the alternating group on n letters, whileQ8 will be the quaternion group of order
8 and Dn the dihedral group of order n. We will refer to [56] for other notation. The
order of x ∈ G will be denoted by o(x).

This survey consists of the following sections:

1. Introduction
2. Properties of periodic groups G determined by ω(G)

3. Roots of unity in finite groups
4. Results concerning the function ψ(G)

5. Results concerning some other functions.

We conclude this introduction by listing some results, conjectures, and questions
of special interest, which will be discussed in this survey. In the first four entries of
the list, G denotes a periodic group.

Theorem 2.1.(2) If ω(G) = {1, 2, 3}, then G is (elementary abelian)-by-(prime
order).

Theorem 2.1.(3) If ω(G) ⊆ {1, 2, 3, 4}, then G is locally finite.
Question 2.2.(1) Does ω(G) = {1, 5} imply that G is locally finite?
Question 2.2.(2)Does ω(G) being finite imply G being locally finite? This is the

famous Burnside problem, which was answered negatively by Novikov and Adjan
in 1968 (see [54]).

In the following entries of the list, G will denote a finite group. Recall that

Le(G) := {x ∈ G : xe = 1} for e dividing |G|,

ψ(G) :=
∑

x∈G
o(x)

and

P(G) :=
∏

x∈G
o(x).

We shall also consider the functions

RG(r, s) :=
∑

x∈G

o(x)s

ϕ(o(x))r
,

where r, s are real numbers and ϕ denotes the Euler’s totient function and

RG(r) :=
∑

x∈G

( o(x)

ϕ(o(x))

)r
.
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In particular RG(0, 1) = ∑
x∈G o(x) = ψ(G) and

RG(1) =
∑

x∈G

o(x)

ϕ(o(x))
.

Question 3.2.4 Let G be a soluble group. Is it true that if H is a finite group
satisfying |Le(H )| = |Le(G)| for every e ∈ N, then H is soluble?

Theorem 4.2.1 If |G| = n then ψ(G) ≤ ψ(Cn), with equality if and only if G ∼=
Cn.

Theorem 4.3.1 If G is noncyclic and |G| = n, then ψ(G) ≤ 7
11ψ(Cn).

Theorem 4.3.3 If G is noncyclic, |G| = n and q is the smallest prime divisor of
n, then ψ(G) < 1

q−1ψ(Cn).

Corollary 4.3.4 If G is noncyclic group of odd order n, then ψ(G) < 1
2ψ(Cn).

Theorem 4.3.6 Let n be an integer larger than 1, with the largest prime divisor p
and the smallest prime divisor q. Then ϕ(n) ≥ q−1

p n.
Conjecture 4.6.5 If G is a soluble group and S is a simple group satisfying

|S| = |G|, then ψ(S) < ψ(G).
Theorem 5.2.5 If |G| = n then P(G) ≤ P(Cn), with equality if and only if G ∼=

Cn.
Theorem 5.2.7 If |G| = n and r < 0 is a real number, then RG(r) ≥ RCn(r), with

equality if and only if G is nilpotent.
Question 5.2.10 Are there reals (r, s) such that all finite groups G of order n

satisfying RG(r, s) = RCn(r, s) are soluble?
Corollary 5.3.2 If G is a nilpotent group of order n and r is a real number, then

RG(r) = RCn(r). In particular, RG(1) = RCn(1).
Conjecture 5.3.3 If |G| = n and RG(1) = RCn(1), then G is nilpotent.
Conjecture 5.3.4 RG(1) ≤ RCn(1) for all finite groups G of order n.

The authors would like to thank the anonymous referees of this paper for many
helpful comments and useful suggestions.

2 Properties of Periodic Groups G Determined by ω(G)

In this section,G denotes a periodic group. Recall thatω(G) denotes the set of orders
of all elements of G, the so-called spectrum of G.

2.1 Some Known Results About the Function ω(G)

It is well known thatω(G) = {1, 2} if and only ifG is an elementary abelian 2-group.
The following results are more complicated and their proofs may be found in the
quoted literature.
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Theorems 2.1.1 (1) If ω(G) = {1, 3}, then G is nilpotent of class ≤ 3, (F.Levi
and B.L. van der Waerden, 1933, (see [33])).

(2) If ω(G) = {1, 2, 3}, then G is (elementary abelian)-by-(prime order), (B.H.
Neumann, 1937, (see [52])).

(3) If ω(G) ⊆ {1, 2, 3, 4}, then G is locally finite (I.N. Sanov, 1940, (see [57])).
(4) If ω(G) = {1, 2, 3, 6}, then G is locally finite (M. Hall, 1958, (see [14])).
(5) If ω(G) = {1, 2, 3, 4, 6}, then G is locally finite (A.S. Mamontov, 2013, (see

[40])).
(6) If ω(G) = {1, 2, 5}, then G is locally finite (M.F. Newman 1979, E. Jabara

2004, (see [53] and [23])).
(7) If ω(G) = {1, 2, 3, 5, 6}, then G is soluble and locally finite (V.D. Mazurov,

A.S. Mamontov 2009, (see [41])).
(8) If ω(G) = {1, 2, 3, 4, 5, 6}, then G is locally finite (D.V. Lytkina,V.D. Mazurov,

A.S. Mamontov and E. Jabara, 2014, (see [27])).
(9) If ω(G) ⊆ {1, 2, 3, 4, 5, 6} and ω(G) �= {1, 5}, then G is locally finite (E.

Jabara, D.V. Lytkina,V.D. Mazurov and A.S. Mamontov, 2014, (see [27])).
(10) Ifω(G) = {1, 2, 3, 6, 7}, then either G is locally finite or an extension of a non-

trivial abelian 2-group by a groupwithout involutions (W.Guo, A.S.Mamontov,
2017 (see [12])).

(11) If ω(G) = {1, 2, 3, 4, 8}, then G is locally finite (V.D. Mazurov, 2011, (see
[44])).

(12) If ω(G) = {1, 2, 3, 4, 9}, then G is locally finite (E. Jabara, D. Lytkina, 2013,
(see [24])).

(13) If ω(G) = {1, 2, 3, 4, 8, 9}, then G is locally finite (E. Jabara, D. Lytkina, V.D.
Mazurov 2014, (see [25])).

(14) Ifω(G) = {1, 2, 3, 4, p, 9}, where p ∈ {5, 7}, thenG is locally finite (E. Jabara,
A.S. Mamontov, 2016, (see [29])).

2.2 Some Open Questions About the Function ω(G)

There are also many open questions related to the function ω(G).

Questions 2.2.1 Does the following assumption imply that G is locally finite?

(1) ω(G) = {1, 5};
(2) ω(G) = {1, 7};
(3) ω(G) = {1, 11};
(4) ω(G) = {1, 2, 5, 10};
(5) ω(G) = {1, 2, 4, 8};
(6) ω(G) = {1, 2, 3, 4, 5, 6, 7};
(7) ω(G) = {1, 2, 3, 4, 8, 16}.
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2.3 More Precise Results

In some cases, there are more precise results on the structure of G.

Theorems 2.3.1 (1) If ω(G) = {1, 2, 5}, then G is either an extension of an ele-
mentary abelian 2-group A by a group P of order 5 acting without fixed points
on A, or an extension of an elementary abelian 5-group P by a group of order
2 acting without fixed points on P (M.F. Newman, 1979, E. Jabara, 2004, (see
[53] and [23])).

(2) Ifω(G) = {1, 2, 3, 4}, thenG is either (elementary abelian 3-group)-by-(cyclic
or quaternion group) or (nilpotent 2-group of class 2)-by-(a subgroup of S3)
(D.V. Lytkina, 2007, (see [39])).

(3) If ω(G) = {1, 3, 4, 7}, then G ∼= L2(7) (A.A. Kuznetsov and D. Lytkina, 2007,
(see [34])).

(4) If ω(G) = {1, 2, 3, 4, 5, 8}, then G ∼= M10 (E. Jabara, D. Lytkina and A.S.
Mamontov, 2013, (see [26])).

(5) If ω(G) = {1, 2, 3, 4, 5, 7}, then G � L3(4) (E. Jabara and A.S. Mamontov,
2015, (see [28])).

(6) If G is a finite group and ω(G) = {1, 2, 3, 4, 5, 6, 7}, then G � A7 (R. Brandl
and W.J. Shi, 1991, (see [3])).

(7) Ifω(G) = {1, 3, 5}, then either G = FT where F is a normal 5-subgroupwhich
is nilpotent of class 2 and |T | = 3, or F is a normal 3-subgroup which is
nilpotent of class 3 and |T | = 5 (N.D. Gupta and V.D. Mazurov, 1999, (see
[13])).

(8) Ifω(G) = {1, 2, 4, 5}, then G = TDwhere T is an elementary abelian 2-group
andD is non-abelian of order 10, or G = FT,where F is an elementary abelian
normal 5-subgroup and T is isomorphic to a subgroup ofQ8, or G = TF,where
T is a nilpotent normal 2-subgroup of class at most 6 and |F | = 5 (N.D. Gupta
and V.D. Mazurov, 1999, and E. Jabara, 2004, (see [13] and [23])).

(9) If ω(G) = {1, 2, 3, 5, 6}, then G is an extension of an elementary abelian 5-
group by a cyclic group of order 6, or G is an extension of a 3-group of class
at most 3 by the dihedral group D10, or G is an extension of the direct product
of a 3-group of class at most 2 and an elementary abelian 2-group by a group
of order 5 (A.S. Mamontov and V.D. Mazurov, 2009, (see [41])).

(10) Ifω(G) = {1, 2, 3, 4, 5}, then either G � A6 or G = VC,where V is a nontriv-
ial elementary abelian normal 2-subgroup and C � A5 (V.D. Mazurov, 2000,
(see [45])).

(11) If ω(G) = {1, 2, 3, 4, 8}, then either (i) G = VQ where V is a nontrivial nor-
mal abelian 3-subgroup and Q is a 2-subgroup acting without fixed points on
V and either cyclic of order 8 or isomorphic to the quaternion group Q16, or
(ii) G = T 〈a〉 where T is a normal 2-subgroup nilpotent of class at most 2 and
exponent 8, |a| = 3 and a acts without fixed points on T , or (iii)G = TS where
T is a normal 2-subgroup which is nilpotent of class at most 2 and exponent 4
and S � S3 acts without fixed points on T (V.D. Mazurov 2011, (see [44])).
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It is still an open question if for every group G with ω(G) = {1, 2, 3, 4, 5, 6, 7}
we have G ∼= A7.

The reader can consult [22, 35–38, 41, 45, 46] for more results.

2.4 A Sketch of the Proof of a Theorem of Mazurov

We give a sketch of the proof of Theorem2.3.1(11) due to V.D. Mazurov (see [44])).
As for many other mentioned theorems, the proof will use methods of local analysis
as well as calculations in GAP.

Theorem 2.4.1 Let G be a group with ω(G) = {1, 2, 3, 4, 8}. Then G is locally
finite and one of the following holds:

(i) G = VQ where V is a nontrivial normal abelian 3-subgroup and Q is a 2-
subgroup acting freely on V and either cyclic of order 8 or isomorphic to the
quaternion group Q16,

(ii) G = T 〈a〉 where T is a normal 2-subgroup nilpotent of class at most 2 and
exponent 8, |a| = 3 and a acts without fixed points on T ,

(iii) G = TS where T is a normal 2-subgroup nilpotent of class at most 2 and
exponent 4 and S ∼= S3 acts without fixed points on T .

Sketch of the Proof Let R = 〈r〉 be a Sylow 3-subgroup of G.
First assume that, for every involution t of G, the product rt is an involution. We

claim that in this case G has the structure in (i).
Let t ∈ G be an involution. The subgroup V = CG(r) is a 3-group of exponent

3, by the hypothesis on ω(G). We have (rt)2 = 1; hence, rt = r−1, and thus 〈r〉 is
t-invariant and then V is t-invariant. Since CV (t) = 1, t acts on V as a fixed-point-
free automorphism of order 2; hence, V is abelian and then it is elementary abelian.
If y ∈ G is an involution, then ry = r−1, and hence ty ∈ V . Therefore, V 〈t〉 contains
all involutions ofG. For every x ∈ V , we have (xt)2 = 1 and x = xt · t; therefore, the
subgroup V 〈t〉 is generated by all involutions, and hence it is normal in G. It follows
that V is normal in G. Now, if g ∈ G, then we have tg ∈ V 〈t〉, a = ttg ∈ V and
tga = a−1tga = a−2tg = atg = ttg · tg = t, therefore ga ∈ CG(t). Hence, G = VQ
where Q = CG(t). Obviously, Q is a 2-group, and the group VQ is a Frobenius
group since G has no elements of order 6, and thus t is the unique involution in Q.
Hence, the group Q/〈t〉 is a group of exponent 4. By Sanov theorem, Q is locally
finite, and hence either is cyclic of order 8, or it is isomorphic to a generalized
quaternion group of order 16. Therefore, G has the structure in (i).

Now assume that there exists an involution y ∈ G such that ry has order 3, 4, or 8.
We show that, in this case, there exists a subgroup H of G containing R which is

either an extension of a nontrivial 2-group by a group of order 3 (we say in this case
that H is a subgroup of type 1), or an extension of a nontrivial 2-group by a group
which is isomorphic to S3 (we say in this case that H a subgroup of type 2).
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In fact, if ry has order 3, then from ryry = y−1r−1 we get r2yry = ry−1r−1; hence,
the element yry has order 2, yyr = yry and the group 〈y, r〉 = 〈y, yr〉〈r〉 � A4 is of
type 1.

Nowsuppose that ry has order≥ 4.Then (ry)2 = ryry is a product of twoelements,
r, ry, of order 3, such that (rry)4 = 1. CalculationwithGAP shows that, if k, l,m, n ∈
{3, 8}, the group 〈a, b | a3 = b3 = (ab)4 = (ab−1)8 = (abab−1)k = (baba−1)l =
(bab−1a−1)m = (abab−1a−1b−1)n〉 is trivial. It follows that (rr−y)3 = 1; hence,
1 = rryryrr−yr−1r−1r−y, thus rryryr = ryrrry, thus A = 〈rry, ryr〉 is an abelian
2-group. Moreover, (rry)y = ryr, (ryr)y = rry, (rry)r = ryr, (ryr)r = r−1ryr−1 =
(ryr)−1(rry)−1. Therefore, the subgroup A is normal in F = 〈r, y〉. Furthermore,
the element ryr−1 has order 3, and we have (ryr−1)y = rr−y, thus the subgroup
S = 〈ryr−1, y〉 � S3. Therefore, the subgroup F = AS is finite of type 2.

Now the proof of the theorem follows from the following two results, whose
proofs are quite intricate, and therefore we refer for them to the original paper.

(a) If there exists a subgroup of G of type 1 which contains R and if there does not
exist a subgroup of type 2 which contains R, then G has the structure in (ii).

(b) If there exists a subgroup of G of type 2 which contains R, then G has the
structure in (iii). �

2.5 Some More Questions and Results

A very well-known question is if G is locally finite, whenever ω(G) is finite; this
is the famous Burnside problem, which was answered negatively by Novikov and
Adjan in 1968 (see [54]). Another related question is the following: if it is known
that a group G with m generators and exponent n is finite, can one conclude that the
order of G is bounded by some constant depending only on m and n? Equivalently,
are there only finitely many finite groups with m generators of exponent n, up to
isomorphism? This is the Restricted Burnside problem. Efim Zelmanov showed in
[65, 66] that the answer is affirmative. He was awarded the Fields Medal in 1994 for
his work.

Another very famous problem related to ω(G) is the so-called recognizability by
spectrum. A periodic group G is said to be recognizable by spectrum in a class C if,
for every periodic groupH ∈ C, fromω(G) = ω(H ) it followsG ∼= H . For example,
as we mentioned before, ω(G) = ω(L2(7)) implies G ∼= L2(7) (see [34]), ω(G) =
ω(M10) implies G ∼= M10 (see [26]) and ω(G) = ω(L3(4)) implies G ∼= L3(4) (see
[28]); hence,L2(7),M10,L3(4) are recognizable by spectrum in the class of all groups.
On the other hand, V.D. Mazurov and W.J. Shi in 2012 proved the following result
(see [47]):
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Theorem 2.5.1 Let G be a finite group. If G contains a nontrivial normal solu-
ble subgroup, then there exist infinitely many non-isomorphic finite groups X with
ω(G) = ω(X ). Conversely, if there exist infinitely many non-isomorphic finite groups
X withω(G) = ω(X ), then there exists a group S, withω(S) = ω(G), which contains
a nontrivial normal soluble subgroup.

Proof Assume that G contains a nontrivial normal subgroup, then G contains a
nontrivial normal subgroup V which is an elementary abelian p-group for some
prime p. Let G1 be the semidirect product of V and G, where the action of G
on V is the conjugation in G. Write G1 = {(g, v) | g ∈ G, v ∈ V }. We claim that
ω(G1) = ω(G).

In fact, obviously ω(G) ⊆ ω(G1). Let (g, v) ∈ G1 and writem the order of (g, v).
Letnbe the order of g inG/V . Then gn ∈ V ,writeu = gn. Ifu �= 1, then the order of g
is np, but from (g, v)n = (u, w)withw ∈ V we get that the order of (g, v)n is equal to
p, thereforem = np = o(g) ∈ ω(G). Now suppose u = 1, then o(g) = n and assume
o(g, v) �= n. Then 1 �= (g, v)n = (1, vvg · · · vgn−1

); hence, (gv)n = vvg · · · vgn−1 �=
1. Therefore, the element gv of G has order np and m = np ∈ ω(G).

Therefore, ω(G) = ω(G1) and obviously |G| < |G1|.
The group G1 contains a nontrivial normal abelian subgroup and we can repeat

the process to construct a finite group G2 with ω(G2) = ω(G1) = ω(G), with a
nontrivial normal abelian subgroup. By induction, it is possible to construct infinitely
many finite non-isomorphic groups Gn with ω(Gn) = ω(G).

In order to prove the converse, first we show the following result.
(a) For everyfinite setω of natural numbers, there exists a natural number k = k(ω)

such that every group whose spectrum coincides with ω contains a subgroup X with
ω(X ) = ω and |X | < k.

Let ω = {n1, · · · , ns}, n = n1 · · · , ns, and xi be some element of order ni in G,
with i = 1, · · · , s. Suppose X = 〈x1, · · · , xs〉. Then ω(S) = ω and xn = 1 for any
x ∈ X . Now, the positive solution to the restricted Burnside problem (see [Z1] and
[Z2]) implies that there exists a number k = k(s, n) for which |X | < k, and obviously
s and n depend only on ω.

Now, suppose that there exist infinitely many pairwise non-isomorphic groups T
with ω(T ) = ω(G), none of which contains a nontrivial soluble normal subgroup.
Let H be such a group and denote by D the socle of H . Then D = P1 × · · · × Pr ,
where P1, · · · ,Ps are non-abelian simple groups and H acts on � = {P1, · · · ,Pr}
by conjugation. Write k = k(ω(G)) the integer defined in (a). We show that

(b) r ≤ k2.
Assume r > k2. LetM be a subgroup ofH such thatω(M ) = ω(H ) and |M | < k.

Then M acts on � by conjugation, and, since the length of each orbit is at most k
and r > k2, the group D is a direct product of at least k nontrivial normal sub-
groups N1, · · · ,Nt of DM . Since the subgroups Ni, i ∈ {1, · · · , t} have pairwise
trivial intersection and t ≥ k > |M |, there exists i for which Ni ∩ M = 1. Let P be
a nontrivial Sylow subgroup of Ni. By the Frattini’s argument, NiM = NiNNiM (P);
hence,M ∼= NiM /Ni

∼= (NNiM (P))/(NNiM (P) ∩ Ni). Since ω(M ) = ω(G), we have



Properties of Finite and Periodic Groups … 67

ω(NNiM (P)) = ω(G) and the group NNiM (P) contains the normal soluble subgroup
P, a contradiction. Therefore, r ≤ k2 and (b) is proved.

Now let π be the set of primes dividing the elements of ω(G). From the clas-
sification of finite simple groups, it follows that there exists a finite number of
non-isomorphic simple groups S with π(|S|) ⊆ π. Then, there exists a positive
integer s such that |Pi| ≤ s for every i ∈ {1, · · · , r} and |D| ≤ sk

2
, since r ≤ k2.

Since CH (D) = {1}, we obtain H isomorphic to a subgroup of Aut(D); hence,
|H | ≤ |Aut(D)| ≤ (sk

2
)!. Therefore, |H | is bounded by a function of ω(G), which is

in contradiction with the assumption that there exist infinitely many such groups H .
The theorem is proved. �

Theorem2.5.1 raises several questions. First of all you may ask whether a finite
group and a simple group must be isomorphic if they have the same set of orders of
elements. The answer is NO, since it is possible to see that ω(L3(5)) = ω(L3(5) : 2).
In fact, V.D. Mazurov in 1994, in the paper [43], proved that the only finite group
with ω(G) = ω(L3(5)) except L3(5) is (L3(5) : 2). This result also gives a negative
answer to Question 12.84 in the Kourovka Notebook (see [31]).

There is a large literature dealing with the recognizability problems for finite
simple and almost simple groups, in the class of all groups and in the class of all
finite groups. For example, if G is either a Suzuki simple group or G = L2(q) with
q �= 9, and H is a finite group, then ω(G) = ω(H ) implies G ∼= H (see, resp., [3,
4]), while it is possible to construct a finite group H with ω(H ) = ω((L2(9)) and
H non-isomorphic to L2(9) (see [3]). Some more examples of finite simple groups
recognizable by spectrum in the class of finite groups are the alternating groups An,
where n �= 6, 10, as I.B. Gorshkov proved in [11].

Notice that there are finite groups that are recognizable by spectrum in the class of
finite groups but not in the class of all groups; an example is the group L2(261 − 1),
as V.D. Mazurov, A.Yu Ol’shanskii and A.I. Sozutov proved in [48].

Another very interesting question was raised by C. Praeger and W.J. Shi in [55]
and byW.J. Shi in [59], which is also Question 12.39 in the Kourovka Notebook (see
[31]).

Question 2.5.2 Must a finite group and a finite simple group be isomorphic if they
have equal orders and the same set of orders of elements?

The answer is YES, as the following identification theorem of A.V. Vasil’ev, M.A.
Grechkoseeva, and V.D. Mazurov shows (see [60]).

Theorem 2.5.3 If S is a simple finite group and G is a finite group satisfying |G| =
|S| and ω(G) = ω(S), then G ∼= S.

We end this section with the following result by A.A. Buturlakin (see [5]), which
answers a question posed by A.V. Valisev (see Problem 16.25 in [31]).

Theorem 2.5.4 Three pairwise non-isomorphic finite non-abelian simple groups
with the same spectrum do not exist.
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3 Roots of Unity in Finite Groups

In this section, G denotes a finite group.

Definition 3.1 Let e be a divisor of |G|. Then

Le(G) := {x ∈ G : xe = 1}.

Thus Le(G) is the set of e-th roots of unity in G.
We shall deal with the following problem:
How do the sizes of the subsets Le(G) affect the structure of G?

3.1 A Result of Frobenius

The best known result in this direction is the following theorem of G. Frobenius from
1895 (see [9] and Chapter 9 in [15]).

Theorem 3.1.2 For every e dividing |G|, we have that e divides |Le(G)|.
Frobenius also made the following conjecture:

Conjecture 3.1.3 If e divides |G| and |Le(G)| = e, then Le(G) is a characteristic
subgroup of G.

M. Hall proved the conjecture when G is soluble (see [15]).

Proposition 3.1.3 Let G be a soluble group of order n and let e be a divisor of n
such that the equation xe = 1 has exactly e solutions, then these solutions form a
characteristic subgroup of G.

Proof Obviously, it is enough to show that Le(G) is a subgroup of G. If e is a prime,
the result is obviously true. By induction assume the result true for soluble groups
of order less than |G|. Let K be a minimal normal subgroup of G. Then, K is an
elementary abelian p-group, where p is a prime. Write |K | = pi. We consider two
cases, the case that p divides e and the case that (p, e) = 1.

Case 1: p divides e. In this case, xe = 1 for every x ∈ K , thus K ⊆ Le(G). Let
e = pje1, n = psn1 with (e1, p) = 1 = (n1, p). Then, G/K has order ps−in1 and has
order divisible by u = pj−ie1 if j ≥ i, u = e1 if j < i. By Frobenius’ theorem, there
exists a positive integer k such that there are ku elements z such that zu = 1 in G/K .
Nowwe show that if z = xK and zu = 1, then xe = 1. In fact, from (xH )u = H we get
xu ∈ K and then xup = 1, but up divides e, and thus xe = 1. Therefore, the elements
of ku cosets in G/K are in Le(G) and then there are at least kupi elements in Le(G).
Now, if j < i, then upi > e and we obtain a contradiction since |Le(G)| = e. Hence,
j ≥ i, then e = upi and there are ke elements in Le(G). Therefore, k = 1. Then in
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G/K there are u elements z such that zu = 1. By induction, these elements form a
normal subgroup H/K of order u. Therefore, H is a normal subgroup of G of order
e = piu and its elements are exactly the e solutions of xe = 1.

Case 2: p does not divide e. In this case, e divides |G/K | and, by Frobenius’
theorem, there exists a positive integer k such that in G/K there are ke elements z
such that ze = 1. If z = yK and ze = 1, then (yK)e = K and ye ∈ K , and thus yep = 1.
Hence, in G/K there are ke cosets consisting of elements y satisfying yep = 1. Now
we show that each coset yK such that (yK)e = K yields a solution of xe = 1, and
that different cosets solutions of (yK)e = K yield different solutions of xe = 1. In
fact, if (yK)e = K , then yep = 1 and x = yp satisfies xe = 1; moreover, if y1K , y2K
are different and such that (y1K)e = K = (y2K)e, then x1 = yp1, x2 = yp2 are different
otherwise from yp1K = yp2K and (p, e) = 1 we would have y1K = y2K . Therefore,
if there are ke solutions of ze = 1 in G/K , we have at least ke solutions of xe = 1.
Thus, k = 1 and by induction the solutions of ze = 1 in G/K form a subgroupU/K .
Then, the group U has order pie with (p, e) = 1. But U is soluble; hence, by Hall’s
Theorem, there exists a subgroup of U , say H , of order e. Then the elements h of H
satisfy he = 1 and are exactly the elements of Le(G). Therefore, Le(G) is a subgroup
and we have the result. �

The full conjecture was proved in 1991 by N. Iiyori and H. Yamaki (see [21]).

Theorem 3.1.4 Let G be a finite group of order n and let e be a divisor of n such
that the equation xe = 1 has exactly e solutions. Then, these solutions form a char-
acteristic subgroup of G.

We omit the proof that uses the classification of finite simple groups and some
previous results by H. Yamaki (see [61–64]).

3.2 More Results Concerning |Le(G)|

It is easy to see that the following result holds:

Proposition 3.2 |Le(G)| = e, for every e dividing |G|, if and only if G is cyclic.

Proof If G is a finite cyclic group, then for every e dividing |G| there exists exactly
one subgroup H of G of order e, and we have H = {x ∈ G |xe = 1}.

Conversely, suppose that |Le(G)| = e for every e dividing |G|. First, we show
that every Sylow p-subgroup P of G is cyclic, for every prime p. In fact, if |P| =
pn and exp(P) ≤ pn−1, then P ⊆ {x ∈ G | xpn−1 = 1}, and thus pn = |P| ≤ pn−1, a
contradiction. Therefore exp(P) = pn. Moreover, from P ⊆ {x ∈ G | xpn = 1}which
is of order pn, it follows P = {x ∈ G |xpn = 1}. Hence, every Sylow p-subgroup is
also normal in G. Therefore, G is the direct product of its Sylow p-subgroups, and
then it is cyclic. �
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In 2011, W. Meng and J. Shi (see [50]) introduced the following problem.
Inverse Problem to Frobenius’ Theorem For a small positive integer k, give a
complete classification of all groups G with |Le(G)| ≤ ke for every e.

If m is a positive integer, denote by Div(m) the set of all divisors of m. The
following function between positive integers is defined in [16] and in [50]:

b : e ∈ Div(|G|) �−→ b(e) = |Le(G)| ∈ N.

For example, if G ∼= S3, then b(2) = 4, b(3) = 3, b(6) = 6; if G ∼= Q8, then
b(2) = 2, b(4) = 8.

H. Heineken and F. Russo introduced in [16] the following generalization of the
previous problem.
Generalized Inverse Problem to Frobenius’ Theorem Classify all finite groups G
such that b(e) ≤ f (e) for all e ∈ Div(exp(G)), where f : e ∈ Div(|G|) �−→ f (e) ∈
N is a prescribed arithmetic function depending only on e.

Meng and Shi in [50] classified all groups G satisfying

|Le(G)| ≤ 2e for every e dividing |G|,

i.e., they solved the generalized inverse problem if f (e) = 2e.
They proved the following theorem.

Theorem 3.2.1 Let G be a finite group. Then b(e) ≤ 2e for all e dividing |G| if and
only if one of the following statements holds:

(1) G is cyclic;
(2) G ∼= Cm × C2k−1 × C2 with m odd and k ≥ 2;
(3) G ∼= Cm × Q8 with m odd;
(4) G ∼= Cm × SD2t where SD2t = 〈a, b | a2t−1 = b2 = 1, b−1ab = a1+2t−2〉with t ≥

4 is the semidihedral 2-group of order 2t and m odd;
(5) G ∼= Cm × 〈a, b | a3 = b2

s = 1, b−1ab = a−1〉 with s ≥ 1 and (m, 6) = 1.

Corollary 3.2.2 Let G be a finite group. Then b(e) = 2e for all e dividing |G| if and
only if one of the following statements holds:

(1) G ∼= C2k−1 × C2 where k ≥ 2;
(2) G ∼= SD2t where SD2t = 〈a, b | a2t−1 = b2 = 1, b−1ab = a1+2t−2〉 with t ≥ 4 is

the semidihedral 2-group of order 2t .

In 2015, H. Heineken and F. Russo (see [16]) described groups G satisfying

|Le(G)| ≤ e2 for every e dividing |G|.

Among many other results, they proved that all groups with this property are soluble
and of fitting length at most 3. In the paper [17], H. Heineken and F. Russo introduced
the symbol B(G), the global breath of G in the sense of Frobenius, or, briefly, the
global breath of G, as follows:
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B(G) = max
{ |Le(G)|

e
| e ∈ Div(exp(G))

}
.

For example, B(G) = 1 if and only if G is cyclic, B(Q8) = 2, B(D2n) = 2n−2 + 1.
Theorem3.2.1 describes groups G with B(G) = 2. Groups G with B(G) = 3 have
been completely described by W. Meng, J. Shi and K. Chen in [51]. For example, if
G is a p-group, p a prime, they proved the following result.

Theorem 3.2.3 Let G be a group of order pn, p a prime. Then, B(G) = 3 if and only
if one of the following holds:

(1) (i) G ∼= C3k−1 × C3 where k ≥ 2;
(2) (ii) G ∼= 〈a, b | a3t−1 = b3 = 1, b−1ab = a1+3t−2〉 where t ≥ 3;
(3) (iii) G ∼= Q24 , the generalized quaternion group of order 16;
(4) (iv) G ∼= D8, the dihedral group of order 8;
(5) (v) G ∼= QD24 = 〈a, b | a8 = b2 = 1, b−1ab = a3〉.

Recently,W.Meng in [49] investigated the groupG withB(G) = 4. Amongmany
other results, he proved that a group with this property is soluble and of even order.

If G ∼= A4 × C2, then b(2) = b(4) = b(8) = 8, b(3) = 9 and b(6) = b(12) =
b(24) = 24. Therefore, B(A4 × C2) = 4, and thus there exists a non-supersolvable
group G with B(G) = 4 (see [49]).

We end this section with the following question posed by J.G. Thompson, which
is Question 12.37 in the Kourovka Notebook (see [31]):

Question 3.2.4 Let G be a soluble group. Is it true that ifH is a finite group satisfying
|Le(H )| = |Le(G)| for every e ∈ N, then also H is soluble?

This question is still open.

4 Results Concerning the Function ψ(G)

4.1 Basic Facts About the Function ψ(G)

Recall that G denotes a finite group, p denotes a prime number and

ψ(G) :=
∑

x∈G
o(x).

We shall deal with the following problem:
How does the value of ψ(G) affects the structure of G?
In order to get acquainted with the function ψ(G), we shall present its values for

some small groups and for the cyclic p-groups. First notice that

ψ(Cp) = 1 + (p − 1)p,
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so

ψ(C2) = 3, ψ(C3) = 7, ψ(C5) = 21 and ψ(C7) = 43.

Moreover, it is easy to check that

ψ(C4) = 1 + 2 + 2 · 4 = 11 and ψ(C6) = 1 + 2 + 2 · 3 + 2 · 6 = 21.

For groups of exponent p, we have ψ(G) = p|G| − (p − 1). In particular, ψ(C2 ×
C2) = 7. Finitely, we mention that

ψ(S3) = 1 + 3 · 2 + 2 · 3 = 13.

As shown above, ψ(C5) = 21 = ψ(C6). Therefore, the value of ψ(G) does not
determine the group G. Moreover, the values of ψ(G) and |G| still do not determine
the group G. Indeed, let A = C8 × C2 and B = C8 � C2, where C8 = 〈a〉, C2 = 〈b〉
and ab = a5. Then, |A| = |B| = 16 and it can be shown that ψ(A) = ψ(B) = 87.

Notice, however, that S3 is the only group satisfying ψ(G) = ψ(S3) = 13.
In the following theorem, we collect some simple, but important, results concern-

ing the function ψ(G).

Theorem 4.1.1 Let r denote a positive integer. Then, the following statements hold.

(1) If G = A × B for some subgroups of G of coprime orders, then ψ(G) =
ψ(A)ψ(B).

(2) If P is a cyclic group of order pr, then

ψ(P) = p2r+1 + 1

p + 1
= p|P|2 + 1

p + 1
>

p

p + 1
|P|2.

(3) Let q = p1 < p2 < · · · < pt = p be the prime divisors of the integer n and let
the corresponding Sylow subgroups of Cn be P1,P2, . . . ,Pt. Then

ψ(Cn) =
t∏

i=1

ψ(Pi) ≥ q

p + 1
n2 ≥ 2

p + 1
n2.

Proof (1) It is easy to see that if G = A × B and (|A|, |B|) = 1, then ψ(G) =
ψ(A)ψ(B).

(2) If P is a cyclic group of order pr , then
ψ(P) = 1 + pϕ(p) + p2ϕ(p2) + · · · + prϕ(pr) = 1 + (p − 1)(p + p3 + p5

+ · · · + p2r−1) =

p2r+1 + 1

p + 1
= p|P|2 + 1

p + 1
>

p

p + 1
|P|2,
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where ϕ denotes the Euler’s function.
(3) Since Cn = P1 × P2 × · · · × Pt , it follows by (1) that ψ(Cn) = ∏t

i=1 ψ(Pi).
Since pi+1 ≥ pi + 1 for all i and p1 = q ≥ 2, it follows by (2) that

ψ(Cn) >

t∏

i=1

pi
pi + 1

|Pi|2 ≥ p1
pt + 1

n2 = q

p + 1
n2 ≥ 2

p + 1
n2.

�

4.2 The Theorem of Amiri, Jafarian Amiri, and Isaacs

The notationψ(G)was introduced by H. Amiri, S.M. Jafarian Amiri, and I.M. Isaacs
in their paper [1] from 2009. In that paper, they proved the following basic theorem.

Theorem 4.2.1 If G is a noncyclic finite group of order n and if Cn denotes the
cyclic group of order n, then

ψ(G) < ψ(Cn).

Recently, R. Shen, G. Chen, and C. Wu in [58] and S.M. Jafarian Amiri and M.
Amiri in [30] studied noncyclic finite groups G of order n with the largest value of
ψ(G), and obtained information about the structure of such groups in certain cases.

4.3 The Main Results of Herzog, Longobardi, and Maj

In a recent paper (see [18]), the authors of this survey continued to study the function
ψ(G). Our main result determines the best possible upper bound for the value of
ψ(G) for noncyclic groups of order n. We proved the following theorem.

Theorem 4.3.1 If G is a noncyclic finite group of order n, then

ψ(G) ≤ 7

11
ψ(Cn).

This upper bound is the best possible. Indeed, as shown in the following proposi-
tion, for each n = 4k, where k denotes an odd integer, there exists a noncyclic group
G of order n satisfying ψ(G) = 7

11ψ(Cn).

Proposition 4.3.2 Let k be an odd integer and let n = 4k. Then, |C2k × C2| = n
and

ψ(C2k × C2) = 7

11
ψ(Cn).
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Proof Since n = 4k and (4, k) = 1, we have

ψ(Cn) = ψ(C4 × Ck) = ψ(C4)ψ(Ck) = 11ψ(Ck).

Thus, ψ(Ck) = 1
11ψ(Cn).

Next notice that C2k × C2 = Ck × C2 × C2. Hence,

ψ(C2k × C2) = ψ(C2 × C2)ψ(Ck) = 7 · 1

11
ψ(Cn),

as required. �
Our second major result is the following theorem.

Theorem 4.3.3 Let G be a noncyclic group of order n and let q be the smallest
prime divisor of n. Then,

ψ(G) <
1

q − 1
ψ(Cn).

For groups of even order q = 2 and Theorem4.3.3 only implies that ψ(G) <

ψ(Cn), as shown already in Theorem4.2.1. But for groups of odd order q ≥ 3 and
Theorem4.3.3 implies the following important corollary.

Corollary 4.3.4 Let G be a noncyclic group of odd order n. Then

ψ(G) <
1

2
ψ(Cn).

Notice that for groups of odd order Corollary 4.3.4 is stronger than our Theo-
rem4.3.1, which only claims that ψ(G) ≤ 7

11ψ(Cn).
A significant ingredient of our proofs is the following result of H. Amiri, S.M.

Jafarian Amiri, and I.M. Isaacs.

Theorem 4.3.5 (Corollary B in [1]) If P is a cyclic normal Sylow p-subgroup of a
finite group G, then

ψ(G) ≤ ψ(P)ψ(G/P),

with equality if and only if P is central in G.

Another important ingredient in our proofs is the following lower bound for the
Euler’s function ϕ(n). We proved the following theorem.

Theorem 4.3.6 Let n be an integer larger than 1, with the largest prime divisor p
and the smallest prime divisor q. Then

ϕ(n) ≥ q − 1

p
n.
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Proof Let

n = pr11 p
r2
2 · · · prkk ,

where the pi’s are primes, the ri’s are positive integers, and p = p1 > p2 > · · · >

pk = q. Our proof is by induction on k.
If k = 1, then n = pr1 and

ϕ(n) = ϕ(pr1) = p − 1

p
pr1 = p − 1

p
n,

as required.
Suppose now that k > 1 and that the theorem holds for all integers nwith less than

k distinct prime divisors. Setm = pr22 · · · prkk . Then n = pr11 m,ϕ(n) = ϕ(pr11 )ϕ(m) and
since p2 ≤ p1 − 1, it follows by induction that

ϕ(m) ≥ pk − 1

p2
m ≥ pk − 1

p1 − 1
m.

As ϕ(pr11 ) = p1−1
p1

pr11 , it follows that

ϕ(n) ≥ p1 − 1

p1
pr11

pk − 1

p1 − 1
m = pk − 1

p1
n

or equivalently ϕ(n) ≥ q−1
p n, as required. The proof is now complete. �

In the following subsection, we shall sketch the proof of Theorem4.3.3. This
proof is simpler than that of Theorem4.3.1, but it includes the main ingredients of
the proof of Theorem4.3.1.

4.4 A Sketch of the Proof of Theorem4.3.3

Theorem 4.3.3 Let G be a noncyclic group of order n and let q be the smallest
prime divisor of n. Then

ψ(G) <
1

q − 1
ψ(Cn).

Proof We need to prove that if G is a noncyclic group of order n, then ψ(G) <
1

q−1ψ(Cn), where q denotes the smallest prime divisor of n.
In other words, we need to prove that if G is a group of order n satisfying
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ψ(G) ≥ 1

q − 1
ψ(Cn),

then G = Cn.
Recall thatϕ(n) is the number of elements ofCn of order n. Hence,ψ(Cn) > nϕ(n)

and by Theorem4.3.6ϕ(n) ≥ (q − 1)n/p, where p denotes the largest prime divisor
of n. Thus, by our assumptions

ψ(G) ≥ 1

q − 1
ψ(Cn) >

n

q − 1
ϕ(n) ≥ n2

p
.

Hence, ψ(G) > n2

p , which implies that there exists x ∈ G of order o(x) > n/p.
Thus, [G : 〈x〉] < p, so 〈x〉 contains a cyclic Sylow p-subgroup P of G.

Since P is normal in 〈x〉, it follows that NG(P) ≥ 〈x〉, which implies that [G :
NG(P)] < p. Hence, NG(P) = G and P is a cyclic normal Sylow p-subgroup of G.

Thus, the assumptions of Theorem4.3.5 are satisfied and it follows that ψ(G) ≤
ψ(P)ψ(G/P). On the other hand, since n = |G| = |P| n

|P| and (|P|, n
|P| )= 1, it follows from our assumptions that

ψ(G) ≥ 1

q − 1
ψ(Cn) = 1

q − 1
ψ(C|P|)ψ(C n

|P| ).

The two inequalities concerning ψ(G) imply that

ψ(P)ψ(G/P) ≥ ψ(G) ≥ 1

q − 1
ψ(C|P|)ψ(C n

|P| ),

and cancelation by ψ(P) = ψ(C|P|) yields

ψ(G/P) ≥ 1

q − 1
ψ(C n

|P| ).

If n = pr , p a prime, then the existence of x ∈ G satisfying o(x) > n/p implies
that o(x) = n andG is cyclic, as required. Sowemay assume that n = |G| is divisible
by exactly k different primes with k > 1. Applying induction with respect to k, we
may assume that the theorem holds for groups of order which has less than k distinct
prime divisors.

Now |G/P| has k − 1 distinct prime divisors, |G/P| = n
|P| and as shown above,

G/P satisfies ψ(G/P) ≥ 1
q−1ψ(C n

|P| ), which is our assumption. Therefore, by our
inductive hypothesis, G/P is cyclic. Denoting by F the cyclic complement of P in
G, we deduce that

G = P � F .

Since P and F are cyclic, |P||F | = |G| = n and (|P|, |F |) = 1, it follows that
ψ(Cn) = ψ(P)ψ(F).
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The rest of the proof is technical. Recall that G = P � F and (|P|, |F |) = 1. If
CF(P) = F , then G = P × F and G is cyclic, as required.

So it suffices to prove that if CF(P) = Z < F , then ψ(G) < (1/(q − 1))ψ(Cn),
contrary to our assumptions. We showed that if CF (P) = Z < F , then

ψ(G) = ψ(P)ψ(Z) + |P|ψ(F \ Z),

which implies that ψ(G) < ψ(P)ψ(Z) + |P|ψ(F). Thus

ψ(G) < ψ(P)ψ(F)
(ψ(Z)

ψ(F)
+ |P|

ψ(P)

)

and since ψ(Cn) = ψ(P)ψ(F), it follows that

ψ(G) < ψ(Cn)
(ψ(Z)

ψ(F)
+ |P|

ψ(P)

)
.

We concluded the proof by showing that if CF (P) = Z < F , then

ψ(Z)

ψ(F)
+ |P|

ψ(P)
<

1

q − 1
.

Hence, ψ(G) < ψ(Cn)
1

q−1 , a final contradiction. The proof is now complete. �

4.5 Other Results of Herzog, Longobardi, and Maj

Let G be a noncyclic group of order n and let q be the least prime divisor of n. As
stated before, our main results were

Theorem4.3.1. ψ(G) ≤ 7
11ψ(Cn).

Theorem4.3.3. ψ(G) < 1
q−1ψ(Cn).

But what can we say about groups of order n satisfying

ψ(G) ≥ 1

q
ψ(Cn)?

There exist noncyclic groups satisfying this condition. For example, ψ(S3) = 13 >
1
2ψ(C6) = 21

2 .
We tackled a more general problem: which groups satisfy ψ(G) ≥ 1

2(q−1)ψ(Cn)?
Our result was the following theorem:
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Theorem 4.5.1 Let |G| = n and let q and p be the smallest and the largest prime
divisors of n, respectively. Suppose that G satisfies

ψ(G) ≥ 1

2(q − 1)
ψ(Cn).

Then, G is soluble and either its Sylow p-subgroups or its Sylow q-subgroups are
cyclic.

Theorem4.5.1 implies the following corollary:

Corollary 4.5.2 The conclusions of Theorem4.5.1 hold under each of the following
conditions:

(a) |G| = n and ψ(G) ≥ 1
qψ(Cn).

(b) |G| = n is odd and ψ(G) ≥ 1
q+1ψ(Cn).

Proof (a) Since q ≥ 2, it follows that 2(q − 1) ≥ q and hence

ψ(G) ≥ 1

q
ψ(Cn) ≥ 1

2(q − 1)
ψ(Cn).

(b) Since q ≥ 3, it follows that 2(q − 1) ≥ q + 1 and hence

ψ(G) ≥ 1

q + 1
ψ(Cn) ≥ 1

2(q − 1)
ψ(Cn).

�

Notice that the condition ψ(G) ≥ 1
2(q−1)ψ(Cn) of Theorem4.5.1 implies that

ψ(G) ≥ 1

2(q − 1)
ψ(Cn) >

1

2(q − 1)
nϕ(n)

and byTheorem4.3.6ψ(G) > n
2(q−1)

q−1
p n = n2

2p . Hence, there exists x ∈ G satisfying
o(x) > n

2p and consequently [G : 〈x〉] < 2p.
Concerning groups satisfying [G : 〈x〉] < 2p, we obtained the following result:

Proposition 4.5.3 If there exists x ∈ G such that

[G : 〈x〉] < 2p,

where p is the maximal prime divisor of |G|, then one of the following statements
holds:

(i) G has a normal cyclic Sylow p-subgroup,
(ii) G is soluble and 〈x〉 is a maximal subgroup of G of index either p or p + 1.
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Finally, we mention our ψ(G)-based sufficient condition for solubility of finite
groups.

Theorem 4.5.4 Let |G| = n and suppose that G satisfies the following inequality:

ψ(G) ≥ 3

5
nϕ(n).

Then, G is soluble and G ′′ ≤ Z(G).

This condition is certainly not necessary for the solubility of G. For example, for
n = 8, we have ψ(C2 × C2 × C2) = 15 < 3

5 · 8 · 4 = 3
5nϕ(n).

On the other hand, for n = 60, the simple group A5 satisfies ψ(A5) = 211 >
1
5nφ(n) = 192. Thus, the statement “If |G| = n and ψ(G) ≥ 1

5nϕ(n), then G is sol-
uble” is incorrect.

The reader can consult papers [19, 20] for some recent results.
For the proof of Theorem4.5.4, we used the following identity of Ramanujan (see

[32], p. 46):

Theorem 4.5.5 (Ramanujan) If

q1 = 2, q2, · · · , qn, · · ·

is the increasing sequence of all primes, then

∏

i=1,··· ,∞

q2i + 1

q2i − 1
= 5

2
,

What we needed was the following lemma:

Lemma 4.5.6 Let p2, p3, . . . , ps be primes satisfying p2 < p3 < · · · < ps. If p2 > 3,
then

s∏

i=2

p2i − 1

p2i + 1
>

5

6
.

Proof Since p2 > 3, Theorem4.5.5 implies that

22 + 1

22 − 1

32 + 1

32 − 1

s∏

i=2

p2i + 1

p2i − 1
= 5

3

10

8

s∏

i=2

p2i + 1

p2i − 1
<

5

2
.

Thus

s∏

i=2

p2i + 1

p2i − 1
<

6

5
,
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yielding

s∏

i=2

p2i − 1

p2i + 1
>

5

6
,

as required. �

4.6 The Minimal Value of ψ(G)

As we have seen, the maximal value of ψ(G) for groups of order n is attained by
the unique group Cn.

Theminimal value of ψ(G) for groups of order n had been also investigated. For
p-groups of order pr , the minimal value of ψ(G) is attained by groups of exponent p.
Thus, for 2-groups of order 2r , the group attaining the minimal value is unique, the
elementary abelian group of order 2r . But for p > 2, groups of order pr > p2 and of
exponent p are not uniquely determined. Therefore, in these cases, groups with the
minimal value of ψ(G) are not uniquely determined. For example, the two groups of
order 33 and exponent 3 are both groups with minimal value of ψ(G) among groups
of order 27.

What can we say in the general case of groups of order n? Very little is known
in that direction. The following result was obtained in 2011 by H. Amiri and S. M.
Jafarian Amiri in [2]:

Theorem 4.6.1 Let G be a nilpotent group of order n and suppose that there are
non-nilpotent groups of order n. Then, there exists a non-nilpotent group K of order
n satisfying ψ(K) < ψ(G).

They also proved the following proposition.

Proposition 4.6.2 Among all nilpotent groups of order n, the groups with the mini-
mal value of ψ(G) are those with all Sylow subgroups of prime exponent.

The problem of the minimal value of ψ(G) for groups of order n was also inves-
tigated in relation to the non-abelian simple groups. For the six simple groups of the
smallest orders:

|A5| = 60, |PSL(3, 2)| = 168, |A6| = 360, |PSL(2, 8)| = 504,

|PSL(2, 11)| = 660 and |PSL(2, 13)| = 1092,

the values of ψ(G) are

ψ(A5) = 211, ψ(PSL(3, 2)) = 715, ψ(A6) = 1411, ψ(PSL(2, 8)) = 3319,

ψ(PSL(2, 11)) = 3741 and ψ(PSL(2, 13)) = 7281.
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In all these cases, the ψ(G) of these simple groups is the unique minimum of the
values of ψ(G) for groups of the corresponding orders. This observation raised
several questions.

Question 4.6.3 If S is a simple group of order n, is ψ(S) the minimal value of ψ(G)

for groups of order n?

The answer is “NO”. For example, there are two simple groups of order 20160: A8

and PSL(3, 4). Nowψ(A8) = 137047, whileψ(PSL(3, 4)) = 103111. Hence,ψ(A8)

is not minimal. We do not know if the value ψ(PSL(3, 4)) = 103111 is minimal.

Question 4.6.4 If S is a finite simple group and G is a non-simple group satisfying
|G| = |S|, does it follow that ψ(S) < ψ(G)?

Here also the answer is “NO”. It was shown by Y. Marefat, A. Iranmanesh and
A. Tehranian in 2013 (see [42]) that if S = PSL(2, 64) and G = 32 × Sz(8), then
|G| = |S| and ψ(G) ≤ ψ(S).

We still conjecture that the following is true:

Conjecture 4.6.5 If S is a simple group and G is a soluble group satisfying |G| =
|S|, then ψ(S) < ψ(G).

5 Results Concerning Some Other Functions

5.1 The Theorems of Ladisch and of Jafarian Amiri
and M. Amiri

Definitions 5.1.1 (a) LetA andB be finite sets such that |A| = |B| and for each a ∈ A
and b ∈ B the orders of a and b, denoted by o(a) and o(b), are defined. A bijection
σ : A → B is called an order multiplying bijection, or an OM -bijection in short, if
for each a ∈ A, σ(a) satisfies

o(a) | o(σ(a)).

The following conjecture is still open, and it is Question 18.1 in the Kourovka
Notebook (see [31]):

Conjecture 5.1.2 If G is a finite group of order n, then there exists an OM -bijection

σ : G → Cn.

We shall now present in detail the Frieder Ladisch’s proof of the conjecture for
soluble groups (see [6]).
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Theorem 5.1.3 Let G be a finite soluble group of order n. Then, there exists an
OM -bijection

σ : G → Cn.

Proof Let G be a minimal counterexample. Then, |G| > 1 and there exists a normal
elementary abelian p-subgroup N of G. By the minimality of G, there exists an
OM -bijection

σ : G/N → C|G/N |,

and it suffices to prove that σ can be lifted to an OM -bijection between G → Cn.
SinceC|G/N | is isomorphic toC|G|/C|N |, wemay assume thatσ is anOM -bijection

σ : G/N → C|G|/C|N |.

We shall use overbars to denote the canonical epimorphisms G → G/N andC|G| →
C|G|/C|N |. Since σ is an OM -bijection, for each g ∈ G and c ∈ C|G| such that c̄ =
σ(ḡ) we have

o(ḡ) | o(c̄). (1)

Thus, it suffices to find for every g ∈ G an OM -bijection between the cosets

gN → cC|N |,

where c ∈ C|G| and c̄ = σ(ḡ).
For our proof, we need the following three preliminary results:
(a) If g ∈ G, then either o(g) = o(ḡ) or o(g) = po(ḡ).
(b) If p � |c̄|, then the orders of elements in cC|N | are o(c̄)pk , where pk | |N | and

o(c̄) occurs exactly once.
(c) If p | o(c̄), then all elements in cC|N | have order o(c̄)|N |.
First, we prove (a). Since o(ḡ) is the minimal positive integer such that go(ḡ) ∈ N

and N is an elementary abelian p-group, it follows that either o(g) = o(ḡ) or o(g) =
po(ḡ).

Nowwe prove (b). Let o(c̄) = m and p � m. Then, cm ∈ C|N | and for each x ∈ C|N |,
m is the minimal positive integer such that (cx)m ∈ C|N |. Hence, m | o(cx) and

o(cx) = mo((cx)m) = o(c̄)pk

for some pk | |N |. Since (cx)m = cmxm and x ∈ C|N |, our assumption that (m, p) = 1
implies that there is a unique x ∈ C|N | satisfying (cx)m = 1. Hence, the orders of
elements in cC|N | are as claimed.
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Finally, we prove (c). Let o(c̄) = pm and letw ∈ cC|N |. Then, o(w̄) = o(c̄) = pm
and wm ∈ C|G| \ C|N |. Since (wm)p ∈ C|N |, it follows that |〈wm〉C|N || = p|N | and
o(wm) = p|N |. Since pm isminimal such thatwpm ∈ C|N |, it follows thatm isminimal
such that wm ∈ Cp|N |, and hence o(w) = mo(wm) = mp|N | = o(c̄)|N |, as claimed.

We return now to the proof of the theorem. The proof will be divided into two
cases:

Case 1: p � o(c̄).
Case 2: p | o(c̄).
We beginwithCase 1. Since p � o(c̄) and by (1) o(ḡ) | o(c̄), it follows that p � o(ḡ).

Let o(ḡ) = m, where p � m. Then, gm ∈ N , say gm = y ∈ N and gy = yg.
Since y is a p-element and p � m, there exists a unique element u ∈ 〈y〉 such

that um = y−1. For this u ∈ N , we have 1 = gmy−1 = gmum = (gu)m and gu ∈ gN
satisfies p � o(gu). We map gu to the unique element of cC|N | of order o(c̄) (see (b)).
It follows from (a) that o(gu) = o(ḡ), and as by (1) o(ḡ) | o(c̄), we may conclude
that o(gu) | o(c̄), as required.

The rest of gN we map arbitrarily onto the rest of cC|N |, which by (b) consists of
element of order o(c̄)pk > o(c̄). By applying (a) and (1) to each such gw ∈ gN , we
get

o(gw) | po(ḡ) | po(c̄) | o(c̄)pk ,

as required. Therefore, this mapping is an OM -bijection.
Finally, we approach Case 2. Since p | o(c̄), it follows by (c) that all elements in

cC|N | have order o(c̄)|N |. Let h ∈ gN . Then, (a) and (1) again imply that

o(h) | po(h̄) | po(c̄) | |N |o(c̄).

Hence, any mapping of gN onto cC|N | is an OM -bijection, as required.
The proof of the theorem is complete. �

In addition to the abovementioned Conjecture 5.1.2, it is worthwhile to consider
the following related questions:

Question 5.1.4 Does the Conjecture 5.1.2 hold for finite simple groups?

Question 5.1.5 If Conjecture 5.1.2 holds for finite simple and soluble groups, does
it imply that it holds for all finite groups?

OM -bijections were also considered in the recent paper [30] of S. M. Jafarian
Amiri and M. Amiri. They introduced the following definition.

Definition 5.1.6 Let H be a finite group. Then, [H ] denotes the set of all finite
groups G for which there is an OM -bijection f : G → H .

Remark 5.1.7 If Conjecture 5.1.2 holds, then [Cn] consists of all groups of order n.
By Theorem5.1.3, [Cn] certainly contains all soluble groups of order n.
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Remark 5.1.8 Let π be a set of primes and let Gπ denote the set of π-elements in
the finite group G. If G ∈ [H ], then |Hπ| ≤ |Gπ|, since if f : G → H is an OM -
bijection, then f −1(Hπ) ⊆ Gπ . In particular, since |G| = |H |, it follows that if the
Sylow p-subgroup of G is normal in G, then so is the Sylow p-subgroup of H .

The main result of [30] is the following theorem.

Theorem 5.1.9 Let G be a soluble group of order n which is divisible by the prime
p and suppose that a Sylow p-subgroup P of G is neither cyclic nor generalized
quaternion. Then, G ∈ [Cn

p
× Cp].

ConcerningTheorem5.1.9, notice that ifG has a cyclic Sylow p-subgroup of order
pa > p, then G /∈ [Cn

p
× Cp] since G contains an element of order pa, but Cn

p
× Cp

does not contain such an element. Moreover, if Q2n is the generalized quaternion
group, thenQ2n /∈ [C2n−1 × C2] sinceQ2n has only one involution, butC2n−1 × C2 has
three involutions.

The authors of [30] raised the following questions:

Question 5.1.10 Let G be a non-soluble group of order n which is divisible by the
prime p and suppose that a Sylow p-subgroup of G is neither cyclic nor generalized
quaternion. Is it true that G ∈ [Cn

p
× Cp]?

Question 5.1.11 Let S be a finite simple group and let G ∈ [S]. Is G necessarily
simple?

They also proved the following related proposition.

Proposition 5.1.12 Suppose that G is a finite group satisfying G ∈ [H ]. Then, the
following statements hold.

(1) If G is nilpotent, then also H is nilpotent.
(2) If G is p-nilpotent, then also H is p-nilpotent.

Notice that (1) follows immediately by Remark 5.1.8. The proof of (2) is a bit
more complicated.

5.2 The Results of Garonzi and Patassini

In their paper [10], M. Garonzi andM. Patassini considered other problems related to
the orders of elements of finite groups G. In particular, they dealt with the function

P(G) :=
∏

x∈G
o(x)
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and with the functions

RG(r, s) :=
∑

x∈G

o(x)s

ϕ(o(x))r
,

where r, s are real numbers and ϕ denotes the Euler’s totient function. If r = s, then
the function RG(r, r) is denoted by RG(r).

Notice that

RG(0, s) =
∑

x∈G
o(x)s.

In particular, RG(0, 1) = ∑
x∈G o(x) = ψ(G).

Recall the statement of Theorem4.2.1 of H. Amiri, S. M. Jafrian Amiri and I. M.
Isaacs:

Theorem 4.2.1 If |G| = n, then ψ(G) ≤ ψ(Cn), with equality if and only if G is
cyclic.

In [10], this result is generalized in two directions.
First, we mention Theorem5(3) of [10]:

Theorem 5.2.1 If |G| = n, r ≤ s − 1 and s ≥ 1, then RG(r, s) ≤ RCn(r, s), with
equality if and only if G is cyclic.

This theorem implies the following.

Corollary 5.2.2 If |G| = n, s ≥ 1 and r = 0, then

∑

x∈G
o(x)s = RG(0, s) ≤ RCn(0, s) =

∑

x∈Cn

o(x)s,

with equality if and only if G is cyclic.

The case s = 1 corresponds to Theorem4.2.1.
Next, we mention a weaker version of Theorem5(1) in [10]:

Theorem 5.2.3 If |G| = n, s < r and s ≤ 0, then RG(r, s) ≥ RCn(r, s), with equality
if and only if G is cyclic.

This theorem implies the following.

Corollary 5.2.4 If |G| = n, r = 0 and s < 0, then

∑

x∈G
o(x)s = RG(0, s) ≥ RCn(0, s) =

∑

x∈Cn

o(x)s,

with equality if and only if G is cyclic.
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Thus, for negative powers of orders of group elements, the direction of the inequal-
ity is opposite to that which occurs for powers greater or equal to 1.

Notice that Conjecture 5.1.2 would immediately imply the inequalities in Corol-
laries5.2.2 and 5.2.4. By Laudisch’s Theorem5.1.3, this is the case if G is a soluble
group.

The authors also proved the following result, which is similar to Theorem4.2.1.

Theorem 5.2.5 If |G| = n then P(G) ≤ P(Cn), with equality if and only if G is
cyclic.

Notice also that if G is an arbitrary finite group and x ∈ G, then the cyclic group
〈x〉 has ϕ(o(x)) generators. This observation implies that

RG(1) =
∑

x∈G

o(x)

ϕ(o(x))

is equal to the sum of the sizes of the cyclic subgroups of G and

RG(1, 0) =
∑

x∈G

1

ϕ(o(x))

is equal to the number of cyclic subgroups of G. In that direction, the authors proved
the following interesting theorem. Let d(n) denote the number of positive divisors
of the integer n.

Theorem 5.2.6 Let G be a finite group. Then, G has at least d(|G|) cyclic subgroups
and G has exactly d(|G|) cyclic subgroups if and only if G is cyclic.

The authors also constructed for each positive integer γ infinitely many finite
groups G with exactly d(|G|) + γ cyclic subgroups.

Finally, we mention a very interesting characterization of nilpotency which was
proved in [10].

Theorem 5.2.7 If |G| = n and r < 0 is a real number, then

∑

x∈G

( o(x)

ϕ(o(x))

)r = RG(r) ≥ RCn(r) =
∑

x∈Cn

( o(x)

ϕ(o(x))

)r
,

with equality if and only if G is nilpotent.

Thus, we may detect the nilpotency of a finite group by looking at the functions
RG(r, s) on the orders of all its elements. It follows by Corollary 5.2.4 that also the
cyclicity can be detected in a similar way. The following question, related to the
question 3.2.4, was raised by John Thompson:

Question 5.2.8 Can the solubility of a finite group be detected by looking at the
functions RG(r, s) on the orders of all its elements?
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As far as we know, this question is still open.
Garonzi andPatassini also proved the following result concerning noncyclic nilpo-

tent groups (see Theorem5.4 in [10]).

Proposition 5.2.9 If G is a noncyclic nilpotent group of order n, then the following
statements hold.

(1) If r > s, then RG(r, s) > RCn(r, s).
(2) If r < s, then RG(r, s) < RCn(r, s).

We conclude this section with the following two questions raised in [10].

Question 5.2.10 Let |G| = n. Does the equation

∑

x∈G

o(x)s

ϕ(o(x))r
=

∑

x∈Cn

o(x)s

ϕ(o(x))r
(2)

detect solubility of G for some (r, s)? (This is a stronger version of Question 5.2.8).

Question 5.2.11 Let |G| = n. What other structural properties of G can be detected
by the equation (2) (for fixed (r, s))?

The proofs of the abovementioned results are quite intricate, and therefore we
refer the interested readers to the original paper.

5.3 The Results of De Medts and Tarnauceanu

In [7], T. De Medts and M. Tarnauceanu proved the following theorem.

Theorem 5.3.1 If G is a nilpotent group of order n, then the multisets { o(x)
ϕ(o(x)) : x ∈

G} and { o(x)
ϕ(o(x)) : x ∈ Cn} are identical.

Indeed, if P is a Sylow p-subgroup of G and Q is a Sylow p-subgroup of Cn, then
the corresponding multisets { o(x)

ϕ(o(x)) : x ∈ P} and { o(x)
ϕ(o(x)) : x ∈ Q} are both equal to

the multiset {1, (|P| − 1) · p
p−1 }. Since the functions o and ϕ are multiplicative, the

statement of the theorem follows.
This observation yields the following corollary.

Corollary 5.3.2 If G is a nilpotent group of order n and r is a real number, then

∑

x∈G

( o(x)

ϕ(o(x))

)r =
∑

x∈Cn

( o(x)

ϕ(o(x))

)r
.

In particular

∑

x∈G

o(x)

ϕ(o(x))
=

∑

x∈Cn

o(x)

ϕ(o(x))
.
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We conclude this survey with a couple of conjectures of De Medts and Tar-
nauceanu. In [7], they conjectured that if RG(1) = RCn(1), then G is nilpotent:

Conjecture 5.3.3 If |G| = n and

∑

x∈G

o(x)

ϕ(o(x))
=

∑

x∈Cn

o(x)

ϕ(o(x))
,

then G is nilpotent.

Moreover, in [8], they conjectured that RG(1) ≤ RCn(1) for all groups of order n:

Conjecture 5.3.4 If |G| = n, then

∑

x∈G

o(x)

ϕ(o(x))
≤

∑

x∈Cn

o(x)

ϕ(o(x))
.
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Calculating Subgroups with GAP

Alexander Hulpke

1 Introduction

One of the earliest questions posed for the development of group-theoretic algorithms
have been the determination of the subgroups of a finite group G, as well as the
associated lattice structure.

Since G acts on its subgroups, an obvious storage improvement is to store the
subgroups as conjugacy classes, representing each class by a subgroup U and a
transversal of coset representatives of NG(U ) in G.

The purpose of this article is to survey the methods that are currently in use for
such computations, not with an aim to supersede the original descriptions [12, 25,
27, 38] or to give an implementable description, but to give an overview of the
methods employed. This should allow the reader to understand the interplay of the
methods employed, computational tools required, scope of calculations, and potential
for adaption or modifications by users.

On the way, we will indicate a number of open problems, whose solution would
lead to improvements of theoretical or practical aspects of the algorithms.

While we shall point to the GAP functions that implement the respective func-
tionality, we shall stop short of printing transcripts of system sessions, instead the
reader is referred to the system documentation.

Neither is this paper intended as a complete survey of Computation Group theory
over its history of at least 60 years. We thus do not aim to cite every relevant work but
give preference to handbooks or summary articles that are often easier accessible.

We will illustrate the scope of calculations by assuming a contemporary (as of
2017) standard desktop machine with a 3.5GHz processor (utilizing just a single
core) and 8GB of memory.
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2 Tools Required

In general, we will represent a subgroup S of the finite groupG by a set of generators,
given as elements of G. One may think of G as the group containing all transforma-
tions of a given kind—for example, in the case of permutations a symmetric group
Sn or even the finitary symmetric group on positive integers. Similarly, in the case
of matrices, this group might be the full general linear group.

We thus need methods that allow us to determine for such a subgroup S:

• The order of S.
• Test whether an element of G is contained in S, and if so:
• Express an element of S as a word in the given generators of S, thus enabling us
to evaluate homomorphisms.

• Write a presentation for S in a given generating set, thus testing whether a map on
generators is a homomorphism. (In practice, one often does not use an arbitrary
generating set, but a specific one that allows for a nicer presentation.)

• Determine a composition series, a chief series, and the radical Rad(G) (the largest
solvable normal subgroup) of G, as well as a representation of G/Rad(G) as a
permutation or matrix group.

For permutation groups, such functionality is obtained through a stabilizer chain
data structure [24, Chap. 4], respectively [43]. For matrix groups, such functionality
is provided by the data structure of a composition tree [2, 39]. These tools can be
extended to groups of other classes of invertible transformations of a finite object
using the “black-box” paradigm [6].

For solvable groups, polycyclic generating sets (that is a set of generators that
is adapted to a composition series and allows for an effective normal form) provide
such functionality [31], see also [24, Chap. 8].

2.1 Complexity

For solvable groups, polynomial-time algorithms are known for all of these tasks.
For permutation groups, the known algorithms are proven to be polynomial time,

as long as no composition factor of type 2G2(q) occurs (in which case the result will
still be correct, but the time bound is not known to hold.). In fact, the algorithms
are almost linear (linear up to logarithmic factors) time in a Las Vegas probabilistic
setting (see Sect. 2.2 below).

Open Problem 1 Show that the groups 2G2(q) have a short presentation (formally
defined in the sense of [5]). Such a result will allow the removal of the qualifier in
the previous paragraph.

The complexity situation for matrix groups [6] is as with permutation groups with
one further complication: GLn(q) contains cyclic subgroups (Singer cycles) of order
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qn − 1, and calculations in these groups are equivalent to Discrete Logarithm prob-
lems. The proven complexity is therefore also up to a Discrete Logarithm “oracle”,
that is the cost of discrete logarithm calculations is not accounted for.

These polynomial-time algorithms for solvable and for permutation groups have
been fully implemented in GAP and in Magma. The available implementations
for the matrix group algorithms involve many, but not all, of the polynomial-time
methods. The reason for this is that there are number of algorithms for subtasks that
perform better in practice than the generic black-box algorithm, but so far no proof
of polynomial time has been found.

Arbitrary finitely presented groups will require the use of a faithful representation
in one the representations discussed before.

2.2 Random Elements

Some of the algorithms utilize random selections of elements. It thus seems appro-
priate to briefly address this issue.

First, on the computer random selection is always based on a random number
generator, and thus is inherently pseudo-random.

Second, once we can test membership of elements, the underlying data structures
allow us to construct a bijection between G and the numbers 1, . . . , |G| and thus
select elements of the same randomquality as the randomnumber generator provides.

Someof the functions to build basic data structures also utilize pseudo-randomele-
ments which are obtained as pseudo-random products of generators and inverses [4,
15]. All of these calculations then involve verification steps that ensure the returned
result is always correct, regardless of the random choices or the quality of random-
ness.

As far as complexity is concerned, any such algorithm then lies in a class denoted
by “Las Vegas”: That is the algorithm will always return a correct result and will,
with a user-chosen probability 0 < ε < 1, terminate in the given time. However, with
probability 1 − ε, the calculation will take longer (but will eventually terminate with
a correct result).

2.3 Mid-level Tools

Building on these tools, a number of mid-level tools obtain structural group-theoretic
information

• For S ≤ G, representatives of the cosets of S in G [17].
• The centralizer CG(g) of elements g ∈ G as well as conjugating elements x that
for a given g, h ∈ G satisfy gx = h (if they exist). (For permutation groups, this
is a backtrack search, following [33]).
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• The normalizer NG(S) of a subgroup S ≤ G as well as conjugating elements x
that for a given S, T ≤ G satisfy that Sx = T [32].

• Representatives of the conjugacy classes of elements of G [8, 11, 26, 28, 37].
• Representatives of Sylow subgroups of G for a chosen prime.
• For a normal subgroup N � G, representatives of the G-classes of complements
to N in G, provided that N is solvable [14]. This algorithm is based on cohomo-
mology through a presentation for G/N .
If G/N is solvable, complements can be computed in a combination of cohomol-
ogy and reduction to subgroups [27].

• Determine an effective1 isomorphism between two groups G and H (or show that
no such isomorphism can exist) [9, 40].

These algorithms are typically not of polynomial, but exponential worst-case time
complexity. However, in most cases of practical interest, they tend to work well,
allowing for them to be used as building blocks for larger calculations.

3 The Basic Structure

The basic structure underlying most subgroup calculations and the one we shall use
is based on the solvable radical (or trivial fitting) paradigm [3, 8, 22], as depicted in
Fig. 1:

Let G be a finite group, R = Rad(G) and ϕ : G → G/R =: F . Then, S =
Soc(F) = ∏

Ti must be the direct product of nonabelian simple groups Ti . We thus
can assume that F is represented as a subgroup of Aut(Soc(F)); that is as a subgroup
of a direct product of groups of the form Aut(Ti ) � Smi for Ti simple and

∑
i mi the

number of simple factors of S.
The action of F on the socle factors has a kernel denoted by Pker , the factor

Pker/S is a direct product of subgroups of outer automorphisms. We denote by S
and Pker the full preimages of these subgroups in G.

We now determine subgroups in the following way.

1. Subgroups of the simple socle factors Ti .
2. Combine these to subgroups of Soc(F).
3. Calculate the subgroups of F/Soc(F) (which will be a much smaller group than

F).
4. Extend the subgroups of Soc(F) to subgroups of F using the subgroups of

F/Soc(F).
5. Determine a series of normal subgroups R = R0 > R1 > R2 > · · · > Rk = 〈1〉

with Ri � G and Ri/Ri+1 elementary abelian.
6. Determine subgroups of G/Ri+1 from subgroups of G/Ri (initialized for i = 0

with G/R0 = F) and the G-module action on Ri/Ri+1. Iterate.

1Meaning that it, and its inverse can be applied to group elements to obtain the image.
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Fig. 1 Subgroups related to
the solvable radical data
structure

Typically, we will store not all subgroups of a groupG, but only representatives of
the conjugacy classes under G, since this saves substantially on the memory require-
ments. This enumeration up to conjugacy can be translated for each of these steps
to conjugacy under suitable actions. For example, in step 1, it is conjugacy by the
subgroup of Aut(Ti ) induced through the action of NF (Ti ). Finding representatives
up to conjugacy can, in general, mean that we have to do explicit subgroup conjugacy
tests. In some steps of the algorithm (say when calculating complements by cohomo-
logical methods) such tests can be preempted or reduced using other equivalences
amongst the objects constructed.

In the following more detailed description, we shall focus on the task of finding
all groups rather than the elimination of conjugates.

Methods similar to Sect. 5.1 can then be used to determine the incidence structure
of the full subgroup lattice.

4 The Steps of the Algorithm

We now describe the different steps of the algorithm in more detail:
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4.1 Factor Groups

A fundamental paradigm of the approach is to work in homomorphic images. This
raises the question of how to represent factor groups of G in a suitable way. While
this is difficult, in general, for the particular factor groups required here effective
solutions exist:

• It has been shown [22, 35] that for permutation groups G, the factor G/Rad(G)

can be (constructively) represented with permutation degree not exceeding that of
G. (In GAP this is a call to NaturalHomomorphismByNormalSubgroup
(G,RadicalGroup(G)).More generically, the special structure ofG/Rad(G)

as a subgroup of a direct product of wreath products allows for a representation of
moderate degree, using imprimitive wreath products.

• By Schreier’s conjecture (as proven in [20]), for a simple group T , the outer
automorphism group Aut(T )/T is small. Thus F/Soc(F) (which embeds into a
direct product of groups of the form (Aut(Ti )/Ti ) � Smi ) is comparatively small
and can be easily represented in an ad-hoc way.

• In many cases, it is not necessary to represent a factor group G/N faithfully, but
it is sufficient to use representatives of elements and full preimages of subgroups.
In particular, we can use this to perform linear algebra with coefficient vectors for
the abelian factors Ri/Ri+1 of the radical.

The question of the minimal permutation degree of factor groups of permutation
groups have been studied also theoretically, and one can ask for other classes of
normal subgroups for which such degree bounds hold:

Open Problem 2 Extending the work of [18], describe (constructively) cases in
which for permutation groups or matrix groups G and N � G one can represent the
factor group G/N in degree not exceeding that of G.

4.2 Subgroups of Simple Groups

Step 1 (from p. 4) asks us to determine the subgroups of a simple group T .
The basic method for this is the “cyclic extension” algorithm, dating back to [38]:

A subgroup S ≤ T is either perfect, or there is a smaller subgroup S′ ≤ U < S such
that S = 〈U, n〉 with n ∈ NG(U ). Thus:

(a) Initialize the perfect subgroups of T . This requires a precomputed list of iso-
morphism types of perfect groups such as [23] for groups of order at most 106.
(By now, due to the rapid progress in computer engineering, the same methods
would allow us to build such lists for larger orders.)
Then, in an approach close to isomorphism test algorithms, search for isomor-
phic copies of each of these groups as subgroups of T .
In GAP, the operation RepresentativesPerfectSubgroups can be
used to obtain such a list.
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(b) For every subgroup U listed so far, classify the U -orbits of elements of NG(U )

outsideU . If for an orbit representative n the group 〈U, n〉 is not yet known (i.e.,
not conjugate to a known group) then add it to the list. Iterate.

To allow for an efficient storage/comparison of subgroups, the algorithm maintains
a list of cyclic subgroups of prime power order (called zuppos by their German
acronym2). It then represents every subgroup as a bit list indicating which zuppos it
contains.

Simple groups tend to have relatively few subgroups, enabling the calculation of
subgroups even for large group orders. The assumed standard computer will calculate
the subgroups of a simple group of order 105 in under a minute, order 106 about 5–10
min and (provided the potential perfect subgroups are available) order 107 about 90
min. (This is assuming that the group is given as a permutation group of minimal
degree.)

The algorithm of course also will work for groups that are not simple, but in this
case is often not competitive.

In GAP, this algorithm is implemented by the command LatticeByCyclic
Extension.

In practice, we can (using this algorithm) create a database of subgroups of simple
groups T up to a certain order limit once, and then store them. If the algorithm then
is called for one of these simple groups, one then simply can fetch subgroups from
the database.

GAP does exactly this, the databases used to obtain subgroup information is the
library of tables of marks, provided by the tomlib package (which will be loaded
automatically, if available). As of writing, this library contains full subgroup data
for most of the simple groups in the ATLAS of order roughly up to 107. Some
information about maximal subgroups of symmetric and alternating groups are also
obtained through the library of primitive groups.

This approach requires an isomorphism between the concrete simple group T and
its incarnation D in the database. Such an isomorphism can be facilitated in many
cases through the use of so-called standard generators [44]: For a simple group T ,
this is a pair of elements a, b ∈ T such that

• T = 〈a, b〉. (By [1] every finite simple group can be generated by two elements.)
• The pair (a, b) (that is its Aut(T )-orbit) is characterized by simple relations, such
as orders of a and b or short product expressions in a and b, or T -class member-
ships of a and b. This implies that if T1 ∼= T2 ∼= T an isomorphism T1 → T2 is
obtained by finding instances of standard generators a1, b1 ∈ T1 and a2, b2 ∈ T2
and constructing the homomorphism that maps a1 to a2 and b1 to b2.

• In a given instance of T , such a pair (a, b) can be found quickly by only using
basic group operations such as product and inverse (thus allowing for pseudo-
random elements) and element order. A typical property achieving this is if the
elements lie in small conjugacy classes that are powers of large conjugacy classes:

2“Zyklische Untergruppen von Primzahl-Potenz Ordnung”.
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A (pseudo-)random element will likely lie in a large class, by powering we get an
element in the small class and only few conjugates to consider.

For example, |a| = 2, |b| = 3, |ab| = 5 could be used as such a generating set for
A5.

Such standard generators have been defined for all sporadic groups and many
groups of Lie type of small order.

Open Problem 3 Generalize “standard generators” to all quasisimple groups of
Lie type.

The concept of standard generators can be generalized to constructive recognition,
that is the task to find an isomorphism from a simple group T to its stored database
incarnation D, without relying on the need to find specific generators, but rather
“rebuilding” natural combinatorial structures from within the group. For example, if
the group T is a matrix group isomorphic to An , one might want to find a subspace
of the natural module that has an orbit of length n under T , thus providing such an
isomorphism through the action on the subspaces in the orbit. See the survey [16]
for formal definitions and details.

4.3 Subdirect Products

Step 2 combines the subgroups of direct factors to those of a direct product. By
induction, it is sufficient to consider the case of a direct product of two groups,
G × H . Let S ≤ G × H and denote the projection from S to G by α and that from
S to H by β. The image groups A = Sα and B = Sβ then are subgroups of G,
respectively H .

Given such subgroups A and B, the construction of a subdirect product (which
dates back at least to [41]) then allows to construct all groups S (see Fig. 2):

Denote by D � A the image of ker β under α and by E � B the image of ker α
under β. Then, by the isomorphism theorem

Fig. 2 Subdirect product construction
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A/D ∼= S/〈ker α, ker β〉 ∼= B/E .

If χ : A/D → B/E is this isomorphism, and we denote the natural homomorphisms
by � : A → A/D and σ : B → B/E , then

S = {(a, b) ∈ G × H | a ∈ A, b ∈ B, (a�)χ = bσ } .

To construct all subdirect products S corresponding to the pair A, B, we thus
classify pairs of normal subgroups D � A, E � F together with isomorphisms
χ : A/D → B/E .

Conjugacy of subgroups by NG(A) × NG(B) will induce equivalences on the
normal subgroups and amongst the isomorphisms.

In the case we consider—subgroups of Soc(F)—furthermore, there may be a
conjugation action of F on the direct factors of its socle that causes further fusion of
subgroups.

4.4 Normal Subgroups and Complements

In steps 4 and 6 of the calculation, we have a normal subgroup N � G and know the
subgroups of G/N as well as the subgroups of N . (In step 6, the normal subgroup
N is a vector space whose subgroups are easily enumerated.) From these we want to
construct the subgroups of G.

Wefirst analyze the situation:Let S ≤ G and set A = 〈N , S〉 and B = S ∩ N � B.
(See Fig. 3, left.)
(A) Abelian Normal subgroup We consider first the case that N is abelian (which
arises in step 6). Then B � N and thus B � 〈S, N 〉 = A.

Thus, S/B is a complement to N/B in A/B. As N/B is elementary abelian,
such complements can be obtained through cohomological methods, following [14].

Fig. 3 Complement situations for subgroups
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The input to such a computation is the linear action of A on N/B, together with a
presentation for A/N .

To find all subgroups ofG, we iterate through all A (as subgroups ofG/N ) and for
each A determine candidates for B as submodules of N under the action of A [36].

As step 6 then iterates over a series, a crucial step towards efficiency is to extend
a presentation for A/N to a presentation for S, if S/B is such a complement. This is
easy, as B is elementary abelian.
(B) Nonabelian Normal subgroup If N is not abelian (as it will be in step 4), the
situation is more complicated, as B is not necessarily normal in A, and there is no
algorithm to easily determine complementing subgroups. In this case, following [27],
we iterate through the possible subgroups B ≤ N and for each such B determine the
groups S such that S ∩ N = B:

As N ≤ 〈N , S〉 = A, we have that NN (B) ≤ NA(B) = 〈S, NN (B)〉 ≤ NG(B).
Furthermore, NG(B)/NN (B) is isomorphic to a subgroup of G/N . (See Fig. 3,
right.) In this situation, S/B is a complement to NN (B)/B in NA(B)/B.

Given a subgroup B ≤ N , we thus determine the subgroups of NG(B)/NN (B)

(e.g., from the subgroups of G/N ) and for each subgroup NA(B)/NN (B) determine
the candidates for S/B as complements. If NN (B)/B is solvable, this again can be
done using cohomology calculations.

The group NN (B)/B does not need to be solvable—if the factor group, however, is
solvable (which will be the case unless Soc(F) contains a single simple factor at least
quintuply, in which case there will be storage problems already for the subgroups
of Soc(F)), [27] describes an approach for complements that reduces to p-groups,
corresponding to a chief series of the factor.

GAP contains a function ComplementClassesRepresentatives(G,N )
that determines representatives of the classes of complements to N in G, up to
conjugacy by G, provided that N or G/N are solvable.

In the case that neither G and G/N are solvable, no algorithm for complements
exists yet:

Open Problem 4 Find a good algorithm for determining complements, if both nor-
mal subgroup and factor groups are not solvable. This also has relevance to maximal
subgroup computations [10].

4.5 Implementation

InGAP, the algorithmdescribed in the previous sections is obtained through the oper-
ation ConjugacyClassesSubgroups (which used a number of variant meth-
ods, depending on the representation of the groups). It takes as argument a group and
returns a list of conjugacy classes of subgroups. For each class Representative
will return one subgroup; AsList applied to a class will return all subgroups in this
class, thus
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Fig. 4 Subgroup Lattice for S4 (produced using DotFileLatticeSubgroups and then visu-
alized using the graphics software OmniGraffle)

Concatenation(List(ConjugacyClassesSubgroups(G),AsList));

returns all subgroups of a group G. In general, such an enumeration of all subgroups
are not recommended as it is very costly in terms of memory.

It is also possible to visualize the full lattice of subgroups of a group G. For this,
the command

DotFileLatticeSubgroups(LatticeSubgroups(G),"filename.dot");

produces a text file, called filename.dot (or whatever file name is given) that
describes the incidence structure of the subgroup lattice in the graphviz format
(see www.graphviz.org for a description and for viewer programs for this format.
There also are programs to convert this format into others, e.g., dot2tex converts
to TikZ or PSTricks format.

Figure 4 illustrates the result in the example of the symmetric group S4. Rectan-
gles represent normal subgroups, circles ordinary subgroups and their conjugates. A
number a − b indicates group number b in class a (there is no b-part if the group is
normal, as it will default to b = 1).

This group can be obtained in GAP then as cl[a][b] (that is cl[8][3] for
a = 8 and b = 3) where cl:=ConjugacyClassesSubgroups(G).

Caveat: Theordering (botha andb-parts) of subgroups can involve ad-hoc choices
within the algorithm.When creating the group G a second time with the same gener-
ators, it is possible that a different numbering is chosen. It thus is not safe to use the
a − b indices for specifying a concrete subgroup outside a particular run of GAP.

www.graphviz.org
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4.6 Practicality and Modifications

With the construction process proceeding through layers, in each step proceeding
through all subgroups found in the previous step, the limiting factor to calculation
is (as timings in [27] indicate) the total number of subgroups, rather than the group
order.

If only some subgroups are desired, and calculation of the full lattice is infeasible,
it might be possible to restrict the calculations to certain subgroups, as long as a
filter can be defined that is appropriate to the construction process and will iterate
the construction only for subgroups with certain properties. (For example, the cyclic
extension algorithm might be instructed to not calculate subgroups larger than a
prescribed limit.)

At the moment, GAP provides options to define such filters in a few cases (see
the manual for details):

• The operation LatticeViaRadical implements the general algorithm
described here. If given two groups as argument it calculates subgroups of the
second group up to conjugacy by the first group.

• LatticeByCyclicExtension allows for limiting the extension step to sub-
groups with a particular property.

• SubgroupsSolvableGroup, an implementation of the algorithm described
for the case of solvable groups (in which case only step 6 is needed) allows to limit
the determination of complements to specified cases, depending on properties of
A, N , and B.

• In a different restriction, SubgroupsSolvableGroup also allows for deter-
mination of only those subgroups that are fixed (as subgroups) under a prescribed
set of automorphisms, generalizing the concept of submodules [25].

5 Maximal, Low Index, and Intermediate Subgroups

A different class of algorithms is obtained by considering maximal subgroups.
If M ≤ G is a maximal subgroup, the action of G on the cosets of M is primitive.

The classification of primitive groups under the label O’Nan–Scott theorem [42]
(see [34] for a full proof with corrections) thus can be used to describe possible
maximal subgroups—one needs to search for quotient groups of G that have the
correct structure to allow a primitive action, the point stabilizers for these actions
will be maximal subgroups.

An approach to determine representatives of the conjugacy classes of maximal
subgroups of a finite group, using this idea, is described in [11, 19]. The funda-
mental ingredients of these calculations again are the simple factors of Soc(F), and
complements.

Taking again a series as described in Sect. 3, the algorithm then identifies factor
groups of G that can have a faithful primitive representation. This is done via the
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socle of these subgroups, that is chief factors (or combinations of chief factors) of
G:

• Maximal subgroups intersecting the radical lead to primitive actions of affine type
and thus are obtained as complements. This is the only case of a solvable socle.

• Nonsolvable chief factors are obtained as part of Soc(F). Isomorphisms between
the simple factors can be used to construct the different types of primitive actions,
according to the diagonal and product action cases of the O’Nan–Scott theorem.

• The base case is maximal subgroups of simple groups, for which classifications
exist in [30] and (far more explicitly) [7].

Open Problem 5 Extend the concrete classification of maximal subgroups in [7] to
larger degrees.

As in the case of using stored tabulated information about subgroups, an explicit
isomorphismneeds to be found using constructive recognition or standard generators.

InGAP, representatives of the classes ofmaximal subgroups canbeobtainedusing
the function MaximalSubgroupClassReps. (Be aware that while
MaximalSubgroups also exists, it will enumerate all maximal subgroups, often
at significant cost.) Again tabulated information about maximal subgroups of simple
groups is used.

5.1 Small Index and Intermediate Subgroups

Themaximal subgroup functionality can be used to determine themaximal subgroups
of a subgroup, thus obtaining maximal inclusion. (This also is used in general to
provide the maximality relations required for the subgroup lattice structure.)

Iterating maximal subgroups (while avoiding recalculation of transferrable infor-
mation) can be used to find subgroups that have bounded index [13]. One also could
simply iterate the computation of maximal subgroups for all subgroups obtained so
far to find subgroups that are k-step maximal in G. To reduce the cost, it will be
natural to fuse conjugates under the action of the whole group.

In GAP, such latter functionality will be provided (starting with the 4.9 release)
by a function LowLayerSubgroups that for a given group G and step limit k
determines the subgroups of G, up to conjugacy, that is at most k-step maximal in G.
It is possible to limit the calculation to obtain only subgroups of specified bounded
index.

A further variant is to determine the intermediate subgroups U < V < G for a
given subgroup U ≤ G [29]: Instead of choosing an arbitrary representative M for
each class of maximal subgroups, we determine in each step which conjugates of M
contain the chosen subgroup U and then iterate.

This variant is implemented in GAP by the function Intermediate
Subgroups (again this will see a significant performance improvement with the 4.9
release).
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6 Summary

We have described the various methods that can be used in GAP to determine the
subgroups of a given finite group. Different approaches provide different options to
adapt the calculation. The methods also rely on a significant framework for basic
operations that is essentially invisible to a user who does not look into the inner
workings. While a calculation of subgroups is mostly limited by the size of the
output set, there are still open research problems whose solution would improve this
(and other) group-theoretic algorithms.

Acknowledgements The author’s work has been supported in part by Simons Foundation Collab-
oration Grant 244502.
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The Future of Majorana Theory

Alexander A. Ivanov

During most of my mathematical career, I was directly involved in the construction
of the Monster group M , proof of its uniqueness, and understanding of its origins
and structure. The study of the Monster group through its 2-local diagram geometry
culminated in the simple connectedness proof for this geometry, reported in an invited
45-minute talk at the InternationalCongress ofMathematicians inKyoto in 1990 [14].

The simple connectedness result has played a key role in justification in my
paper [15] and in S.P. Norton’s [33] of the long-standing Y -conjecture, posed by
B. Fischer and attacked by many prominent mathematicians including J.H. Conway,
St. Linton, L.H. Soicher, and J. Tits. During the Durham Symposium on “Groups and
Geometries” in July 1990, this conjecture became a theorem which John Conway
called NICE (where “N” is for Norton, “I” is for Ivanov, “C” is for Conway, and “E”
is for everyone else involved). The proof was the most spectacular example of the
so-called “Geometric Presentations of Groups”, the classical version of which is the
Steinberg presentation for a group of Lie type.

The proof of the Y -conjecture made an important landmark in the theory of the
Monster and gave a strong confidence in the power of the method of group amalgams
in comparison with traditional tools. When I reported the proof of the Y -conjecture
at an Oberwolfach meeting in early 1990s B. Fischer, present at this meeting, at first
could not believe that such a proof was at all possible given the enormous size of
the Monster group. In fact, the proof of the Y -conjecture was very conceptual in the
sense that it applied the simple connectedness notion, familiar in algebraic topology
to the study of groups defined via generators and relations.

Writing down the full proof of the simple connectedness result for the Monster
geometry (personally inspired by JohnThompson), including similar results for other
geometries of sporadic groups and numerous consequences, took almost 20 years
and resulted in a series of four monographs [16, 17, 19, 26]. The general procedure
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of the amalgammethod involves two principal steps. On the first step, one constructs
an amalgam which is going to generate the target group. In the case of the Monster,
this step was accomplished in [18] and was praised by J. Tits in his personal letter
as an ultimate accomplishment of the approach he proposed earlier. The second step
involves analysis of cycles in the so-calledMonster graph, which is a graph on the set
of 2A-involutions in the Monster, where two such involutions are adjacent whenever
their product is again a 2A-involution. A great deal of the structural information
on the Monster graph was unearthed by S.P. Norton while proving the uniqueness
of the Monster, which some consider as the final step in CFSG. The information
in the uniqueness paper by S.P. Norton was sufficient to establish the first simple
connectedness proof for the Monster in [14] but, in order to obtain a self-contained
proof from basic principles it required a significant refinement. I always believed
that in order to get hold of the cycles in the Monster graph one should consider the
vertices as vectors in the Monster algebra. This expectation came true within the
Majorana Theory. John Conway expressed his admiration for the Majorana Theory
at the Conference in Princeton in his honor in 2015 after the plenary lecture given
by me.

I always maintained close scientific cooperation with the Japanese mathematical
community. These contacts started in 1983, when still being a postgraduate student I
received a signed copy of the famousmonograph by E. Bannai and T. Ito on algebraic
combinatorics as an acknowledgment of a crucial contribution in [13] to the proof of
the famous Bannai–Ito conjecture. In the supplement to the Russian translation of the
monograph, publishedbyme,E.Bannai andT. Ito referred to themain theoremof [13]
as the “epoch-making result”. By that time I was involved in the study of theMonster
group, I had established close contacts with the school of M. Miyamoto working on
Vertex Operator Algebras (VOAs). The discovery of Miyamoto involutions [29] was
fascinating indeed and for many years I tried to deduce their existence directly from
the properties of the Monster algebra. At a first glance, this looks like an impossible
task, since the Miyamoto involution is deduced from the fusion rules of the Virasoro
algebra of central charge one half. This is an infinite- dimensional algebra and the
Monster algebra viewed as the algebra on the homogeneous elements at level 2 is just
the tip of the iceberg. Meanwhile the amalgam approach to the Monster, developed
in [15], enabled M. Miyamoto [31] to give a new construction of the Moonshine
Module.

The situation gained a dramatic twist when in 2007 while on a sabbatical leave at
the University of Tokyo, I learned from M. Miyamoto about a result of S. Sakuma
[37], a former student of his. A detailed study of the rather short, but extremely
condensed paper of Sakuma convinced me that Sakuma’s result based on the fusion
rule of aVirasoro algebra, couldbe fully translated in termsof theMonster algebra and
that the properties of the algebra required for the proof have already been unearthed
by J.H. Conway [4] and S.P. Norton [34]. This is the moment when the Majorana
Theory was born. Back in London, the fusion rules were recognized by Alexander
Gogolin (1965–2011), who was a great expert in the theory of elementary particles,
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as the fusion rules of the Majorana Fermion, this is how the name for the new theory
was coined.

I maintained close mathematical cooperation with C.E. Praeger from the Univer-
sity of Western Australia for almost 20 years. This cooperation resulted in a number
of joint publications including an exceptionally highly cited paper [23], which serves
as a model for numerous further applications of the CFSG to algebraic graph theory,
and an important paper [24] on locally projective graphs of girth 5. Recently, we
have published a paper [10] on weakly locally projective graphs where the famous
examples related to the sporadic groups M24 and He were characterized. It would
be very important to extend this characterization to include the collinearity graph of
the 2-local geometry of the Monster group, whose geometric girth 5.

1 The Tilde Geometry of the Monster

According to the Classification of Finite Simple Groups (CFSG), a finite non-abelian
simple group is either an alternating group, a group of Lie type, or one of the 26
sporadic simple groups. The Lie-type groups enjoy a uniform theory of buildings
and BN -pairs, while each of the sporadic simple groups has a story of its own. The
fundamental question is “what is the purpose of the sporadic groups to exist” has
both mathematical a philosophical flavor. For some groups, the answer can be found
in J.Tits’ brilliant survey [39] and in a later paper on the Monster group [40]. The
Witt’s design and the Golay code are the canonical tools to study theMathieu groups.
These structures pave the way to Conway groups through the Leech lattice and while
Fischer’s groups are best viewed as 3-transposition groups. The largest and most
remarkable sporadic simple group, theMonster group was discovered independently
by B. Fischer and R. Griess around 1973 and constructed by R. Griess in 1980 [11].
Michael Atiyah famously said that “the discovery of the Monster alone is the most
exciting output of the classification of finite simple groups.”

It is extremely desirable to locate the point, where sporadic groups diverged from
the groups of Lie type. A Borel subgroup B related to the fixed prime p is the nor-
malizer of a Sylow p-subgroup so it exists in any group G as long as p divides its
order. Next one considers parabolic subgroups Pi where i runs through some in-
dex set. These are the subgroups containing B, and one considers the coset geometry
G(G) ofG associated with the subamalgam inG formed by the parabolic subgroups.
If G is of Lie type and p is its natural characteristic then G(G) will be the corre-
sponding building and its crucial feature is hidden in apartments stabilized by the
Weyl subgroup, which, in turn, leads to the subgroup N in the BN -pair definition.
The apartments keep the whole structure together, in particular, they force the coset
geometry to be simply connected. This can be considered as a story with a happy
end. For sporadic groups, the story is just the beginning.The parabolic subgroups can
be defined as 2-local subgroups containing a given Sylow 2-subgroup, although the
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absence of apartments allows the parabolic subgroups to grow along with G, which
might or might not be the universal completion of the amalgam.

The construction outlined in the previous paragraph applied to the Monster group
leads to the tilde geometry M discovered by M. Ronan and St. Smith [36] and
belonging to the following diagram:

1

2
◦ ∼ 2

2
◦ 3

2
◦ 4

2
◦ 5

2
◦,

where the leftmost edge stands for the famous triple cover (known as the Foster graph)
of the generalized quadrangle of order 2. The automorphism group of the generalized
quadrangle of order 2 is the symplectic group Sp4(2), which is isomorphic to the
symmetric group S6 of degree 6, while the diagram is just the double edge. The
tilde above this edge in the diagram of G(M) stands for the triple cover, whose
automorphism group is the non-split extension 3 · S6. The diagram without the tilde
belongs to a unique geometry G(Sp10(2)). The point stabilizers in the latter classical
geometry and in the Monster group are of the form

210.25.L5(2) and 2.25.25.210.210.25.L5(2),

respectively.

The Monster group geometry G(M) was proved to be simply connected in [15]
and it is an ongoing research to turn the simple connectedness result into a new
completely self-contained construction for the Monster as was done for the Fourth
Janko’s group J4 in [17]. The crucial step in the simple connectedness proof of
G(M) is to prove that the fundamental group of the Monster graph is generated
by the homology classes of the paths along the triangles. The Monster graph is a
graph on the class of 2A-involutions in the Monster, where two vertex-involutions
are adjacent whenever their product is again a 2A-involution. In order to turn this into
a construction of the Monster, one needs to show that �(M) is uniquely recovered
from its local structure. A major goal of my research is to accomplish this task,
making essential use of the Majorana Theory described in the next section.

2 Majorana Algebras

Let V be a real vector space endowed with a non-associative commutative algebra
product · and an inner product ( , ) which associate with each other, in the sense that
(u, v · w) = (u · v,w) for all u, v, w ∈ V . A vector a ∈ V is said to be aMajorana
axis if it is idempotent of length 1 and

(i) V is a direct sum of the eigenspaces of (the adjoint action of) a, every eigenvalue
of a is in the set {1, 0, 1

4 ,
1
32 }, and 1 is a simple eigenvalue;



The Future of Majorana Theory 111

(ii) the transformation τ(a) of V , which negates every 1
32 -eigenvector of a and fixes

the remaining eigenvectors, preserves the algebra product;
(iii) the transformation σ(a) of CV (τ (a)) which negates every 1

4 -eigenvector of a
and fixes the 1- and 0-eigenvectors, preserves the restriction to CV (τ (a)) of the
algebra product.

If V contains a set A of Majorana axes which generates V as an algebra, then
(V, A, · , ( , )) is said to be aMajorana algebra. The algebra automorphism τ(a) as
in (ii) is said to be aMajorana involution. IfG is the isomorphism type of the subgroup
in GL(V ) generated by the Majorana involutions τ(a) taken for all a ∈ A, then the
natural homomorphism ϕ : G → GL(V ) is said to be a Majorana representation
of G.

The Majorana algebras and Majorana representations were introduced by me in
[19] via axiomatization of some properties of the Monster. These properties were
unearthed by J.H. Conway [4] and S.P. Norton [34], and proved in [19] as a step
in constructing the Monster via group amalgams. Thus, it was shown in [19] that
the famous 196,884-dimensional Conway–Griess–Norton algebra of theMonster is a
Majorana algebra and that the action of theMonster on its algebra realizes aMajorana
representation of the Monster. In this setting, the Majorana axes are the 2A-axial
vectors while the Majorana involutions are just the 2A-involutions. In the context of
Vertex Operator Algebras, theMajorana axes are conformal vectors of central charge
one half and theMajorana involutions are the restrictions of theMiyamoto involutions
to the homogeneous subalgebra at level 2. The theorem of Sakuma [37] gives the
classification of the subalgebras generated by a pair of Majorana axes. The list of the
possible subalgebras exactly matches such subalgebras in the Monster algebra, thus
deducing the 6-transposition property of the 2A-involutions in the Monster directly
from the Majorana axioms.

The book [19] ignited a dramatic development which led to the formation of a
totally new research area under the name Majorana Theory. Over a short period of
time, through a number of important publications (cf. [1, 2, 6, 20, 21, 25, 27, 28,
38]) the theory gained its shape. An immediate outcome is an explicit construction of
a number of important subalgebras in theMonster algebras, including two algebras of
dimension 20 and 26 related to the 2A-generated A5-subgroups in the Monster [25].
The dimensions of these algebras were conjectured already in [19], although their
identification could only be achieved within the Majorana Theory, since calculating
in the whole of the 196,884-dimensional space is an impossible task.

The Majorana algebras constructed and classified so far, illuminate a remarkable
tendency to embed into theMonster algebra. Some non-embeddable examples appear
as Griess algebras of a new Vertex Operator Algebra (VOA), whose construction
was motivated by the Majorana Theory [2]. A 70-dimensional Majorana algebra of
the alternating group of degree 6 [21] is not embeddable into the Monster algebra
and does not appear in any known VOA. This example, which probably could not
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be constructed outside of the Majorana Theory, demonstrates the diversity of the
theory. The attempts to draw a clear borderline between the Monster embeddable
and non-embeddable Majorana algebras inspired me to pose the following Straight
Flush Conjecture.

Conjecture Suppose that A is an indecomposable Majorana algebra in which for
every i ∈ {2, 3, 4, 5, 6} there exists a pair of Majorana involutions τ1 and τ2, such
that the order of the product τ1τ2 is i . Then A embeds into the Monster algebra.

A proof of the Straight Flush Conjecture will place the Monster algebra as the uni-
versal object in the class of Majorana algebras. The universality of the Monster will
bring about a conceptual explanation of its numerousmysterious properties and even-
tually will provide an efficient tool for recognizing its subgroups and for performing
transparent calculations with its elements.

Currently, we foresee a number of specific accomplishable goals toward the proof
of the Straight Flush Conjecture, which have indisputable independent importance.
These goals constitute the essential steps in attacking the conjecture and they are
outlined in Sect. 4 after a brief review of the Monster algebra and its two-generated
subalgebras in the next section.

3 The Monster Algebra and Norton–Sakuma Subalgebras

The Monster group M contains two conjugacy classes of involutions with represen-
tatives t and z, and respective centralizers

C ∼= 2 · BM and D ∼= 21+24
+ .Co1,

where BM is the BabyMonster sporadic simple group andCo1 is the largest Conway
sporadic simple group, whose double cover is the automorphism group of the Leech
lattice. In a certain sense t resembles the behavior of a semi-simple element in an
algebraic group, while z resembles that of a nilpotent element. The M-conjugates of
t and z are called 2A- and 2B-involutions, respectively.

The minimal nontrivial complex representation of M has dimension 196883 and
it can be realized over the real numbers. It was noticed by Simon Norton, that (up
to rescaling) the underlying vector space carries a unique M-invariant inner product
and a unique M-invariant algebra product. The algebra product is non-associative,
but it associates with the inner product. There is a special way of adjoining a trivial
1-dimensional submodule and rescaling the inner and algebra product to obtain a
triple (V, · , ( , )), which is called the Conway–Griess–Norton algebra, or simply
the Monster algebra of dimension 196884.

It was shown in Chap. 8 of [19] that (V, A, · , ( , )) is a Majorana algebra, where
A is the set of the 2A-axial vectors. This enabled me to apply Sakuma’s theorem
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[37] to deduce that every Majorana algebra with two generating Majorana axes is
embedded in the Monster algebras. Thus, the two-generated Majorana algebras are
naturally indexed by the conjugacy classes in the Monster, which are products of
pairs of 2A-involutions:

2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A.

The dimensions of these algebras are 3, 2, 4, 3, 5, 5, 6, 8, respectively. Inside theMon-
ster, these algebras were calculated by S.P.Norton in [34] and in the abstract setting
we call them Norton–Sakuma algebras. The important consequence of Sakuma’s
theorem is that a set of Majorana involutions is a 6-transposition set in the sense
that the product of any two such involutions has order at most 6. Recall that the 6-
transposition property of the 2A-involutions in the Monster was the starting impulse
of its discovery by B. Fischer.

4 Goals

Subalgebras with few generators. It is a natural question to ask about the structure
of a subalgebra in aMajorana algebra generated by threeMajorana axes, say a, b, and
c. In complete generality the question is too complicated, since S.P.Norton has shown
that the Monster algebra is 3-generated in many different ways. On the other hand, if
a and b generate a 2A-Sakuma–Norton algebra then by [32] the subgroup generated
by the corresponding Majorana involutions τa and τb is a proper subgroup in the
Monster (there are 27 such subgroups in the Monster up to conjugation). Madeleine
Whybrow [41] has made a remarkable progress in the classification of the Majorana
representations of such groups. She consideredMajorana algebras generated by three
Majorana axes a0, a1, and a2 such that a0 and a1 generate a dihedral algebra of type
2A. We show that such an algebra must occur as a Majorana representation of one of
27 groups. These 27 groups coincide with the subgroups of the Monster which are
generated by three 2A-involutions a, b, and c such that ab is also a 2A-involution,
which were classified by S. P. Norton in [32]. Madeleine’s work relies on that of
S. Decelle [5] and consists of showing that certain groups do not admit Majorana
representations. In all but one case, she has shown that the groups in question contain
2A-pure elementary abelian subgroups of order eight which are well known not to
admit a Majorana representation.

Inspired by the progress in the classification of the triangle subalgebras, we tried to
attempt the casewhen a and b generate a 3A-algebra. Although here the classification
might be too complicated for the available techniques. The reason for this statement
is that even a rough estimate gives a huge number of such configurations (even up
to conjugation) in the Monster group. What we will try to do, is to classify the
(2A, 3A)-configurations, which are subalgebras in a Majorana algebra generated by
a Majorana axis and a 3A-axis, the latter being the famous idempotent of squared
length 8/5 in the algebra of type 3A. Inside theMonster algebra, these configurations
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are indexed by the pairs (t, u) where t is a 2A-element, u is a 3A-element (taken up
to inversion). Simon Norton in [34] has listed all such pairs (up to conjugation) and it
turned out that there are 22 of them. We aim to perform a similar classification in an
arbitrary Majorana algebra. This requires the search of 6-transposition quotients of
the modular group. This problem is certainly of great independent interest. To start,
we will go through Norton’s list of 22 pairs and study the subgroups in the Monster,
generated by these pairs. It is another remarkable feature of the Monster that these
groups are relatively small. The 3A-axes satisfy the fusion rules of the 3-state Potts
model described in [30] in the context of VOAs, where level 3 operators are explicitly
involved. Lim Chien reformulated these rules in terms of Majorana axioms and used
them to classify the (2A, 3A)-configurations in the Majorana algebra supporting the
standard representation of A12 [3].

Majorana representations of groups. We start with a group G and address the
existence question of a Majorana algebra (V, ( , ), · ) and a set X of Majorana axes
in V such that G is (isomorphic to) the group generated by the Majorana involutions
τ(a) taken for all a ∈ X . Notice that G might act on the algebraic closure AC(X) of
X with a nontrivial kernel K contained in the center of G. If such an algebra exists,
we say it is aMajorana representation ofG. In these terms, Sakuma’s theorem can be
viewed as the classification of the Majorana representations of the dihedral groups.
Since

τ(aτ(b)) = τ(b)−1τ(a)τ (b),

it is natural to assume that T := {τ(a) | a ∈ X} is a union of conjugacy classes of
involutions in G. When constructing a Majorana representation, at every stage we
know some part of V , some values of the inner product and know how to multiply
some vectors from the part we know. The procedure leads to a representation where
the algebra product is shown to be closed. If the representation exhibits the uniqueness
feature and there is an embedding ϕ : G → M of G into the Monster group such
that ϕ(T ) consists of 2A-involutions, we are able to conclude that V is precisely the
subalgebra in the Monster algebra generated by the Majorana axes corresponding to
ϕ(T ).

Thus, we have chosen a groupG and a generating set T of its involutions such that
g−1T g = T for every g ∈ G. First, for every t ∈ T , we produce a vector at , which
should become a Majorana axis with τ(at ) = t . Any two such vectors, say at and as
generate a Norton–Sakuma algebra with the numerical part of the name equal to the
order of ts. Thus, it is necessary for T to be a set of 6-transpositions. If the numerical
part is 5 or 6, then the algebra is uniquely determined, otherwise there is a dichotomy.
The assignment S, whichmaps each pair of elements of T to the isomorphism class of
the Norton–Sakuma algebra they generate, is called the shape of the representation.
This shapemust respect the conjugation and the following inclusions amongNorton–
Sakuma algebras: 2A ⊂ 4B, 2B ⊂ 4A, 2A ⊂ 6A, 3A ⊂ 6A. When the shape is
determined (or assigned), we know the set X and the restriction of ( , ) to X , in
particular, we can determine the dimension of the linear span LC(X) as the rank of
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the Gram matrix � := ||(at , as)||t,s∈T . The matrix � must be positive definite since
( , ) is an inner product and the failure of this condition immediately demonstrates the
nonexistence of the representation. If LC(X) = AC(X) (so that the algebra product
is closed on LC(X)) then we say that the algebra is 1-closed. The Monster algebra
is 1-closed, although the Norton–Sakuma algebras 3A, 4A, 5A, and 6A are not.
In each of the four cases, it is sufficient to adjoin one specific vector to make the
product closed, these vectors are known as 3A, 4A, 5A, and 3A axes (recall that the
6A-algebra contains the 3A-algebra, so there are no such thing as “6A;-axes). By
adjoining such axes for all Norton–Sakuma algebras corresponding to pairs from X
and taking the linear span, we obtain the space LC(X2)which is called the 2-closure
of X . If the algebra product is closed on LC(X2), the algebra is said to be 2-closed
and this is the situation in which Á. Seress has made spectacular progress in [38].

Standard Representation of A12. The Majorana representation of A12 with respect
to the class T of bi-transpositions (which are products of pairs of commuting trans-
positions) has been at the center of our attention for a long time. There are a number
of reasons for this including the fact that it is the largest (2A-generated) alternat-
ing subgroup in the Monster which contains most of the 2A + 1 and (2A, 3A)-
configurations. Many important properties of this representation were found in [1]
including the fact that whenever the product of two bi-transpositions is a 3-cycle, the
product of the corresponding Majorana axes is contained in LC(A12). This fact was
used in [8] to deduce that the algebra product in the Monster algebra is closed on
the axes contained in the Harada–Norton group, so that the Majorana representation
of the latter group is 1-closed. In [9], it was proved that 12 is the largest degree of
an alternating group which possesses a Majorana representation with respect to the
class of bi-transpositions. These results brought us close to the explicit description
of the Majorana representation of A12 with respect to the class of bi-transposition.
This will make a crucial break through in the whole Majorana Theory and will pave
the way for a new independent construction of the Monster group. Therefore, this
description is one of the main goals of our future research.

Weakly locally projective graphs. Returning to the geometrical foundation, we
would like to obtain a stronger characterization of the collinearity graph of the 2-local
parabolic geometry G(M) of the Monster in the class of weakly locally projective
graphs of type (5, 2, 2, 2) on the sense of [10]. It turns out that large Goldschmidt’s
amalgams (with Borel subgroup of order greater than 16) do not appear as the actions
on planes and that the locally projective subgraphs can be defined in a functorial
way. This is how the inevitability of the tilde geometry (along with the generalized
quadrangle of order 2) will be established. A comparison of the classical examples
against the Monster geometry will exhibit the Majorana algebras as non-associative
analogs of the root system with Y -diagram being analogous to the Dynkin diagram.

The Mathieu Groups. It is planned to classify the Majorana representations of the
five Mathieu groups M11, M12, M22, M23, and M24 and of their perfect central exten-
sions. The former two groups are known to possess Majorana representations, while
for the latter three the existence is questionable, since they are not 2A-generated
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subgroups in the Monster and the latter two are not contained in the Monster at all.
Although the Mathieu groups were around for a century and a half, and although
there are more than five hundred papers dedicated to them, every time one needs
some information about these group one has to take the challenge of performing own
calculations.We took this chance to present amodern approach to theMathieu groups
based of the method of group amalgams [22]. The method which proved to be the
best one when applied to the large sporadic simple groups including Baby Monster,
the Fourth Janko Group, and the Monster, also works perfectly well for the Mathieu
groups. The amalgam method as it crystallized by now involves a particular com-
plex representation of the target group. Usually, this is the nontrivial representation
of the smallest possible degree, but the main feature is the validity of the Thomp-
son uniqueness criterium with respect to the amalgam under consideration. For the
largest Mathieu group M24, this is one of two complex conjugate 45-dimensional
irreducible complex representations. The direct sum of the two conjugates obviously
has dimension 90 and this is precisely the linear coefficient of the mock modular
form associated with M24 by Tohru Eguchi [7] in a mysterious way. In [22], we
include a self-contained construction of the 45-dimensional representations of M24.
Toward to the proof of the Straight Flush Conjecture, the knowledge of the Majo-
rana representations of the Mathieu groups together with their extensions by outer
automorphism and Schur multipliers is very important. Just to mention one of the
features: according to SimonNorton, the smallest subalgebra of theMonster algebra,
which accommodates all the eight types of Norton–Sakuma algebras is related to one
of the Mathieu groups.

The axial algebras. The theory of axial algebras can be viewed as an offspring of
the Majorana Theory which explores various generalizations of the fusions rules
and leads to interesting theorems and examples (cf. [12], which is just the tip of the
iceberg of preprints and papers).
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1 Introduction

All the groups considered here are finite groups.
Any cyclic group has abelian automorphism group. By the structure theorem for

finite abelian groups, it is easy to see that among abelian groups, only the cyclic
ones have abelian automorphism groups. A natural question, posed by H. Hilton
[19, Appendix, Question 7] in 1908, is:

Can a non-abelian group have abelian group of automorphisms?
An affirmative answer to this question was given by G. A. Miller [33] in 1913. He

constructed anon-abelian groupof order 26 whose automorphismgroup is elementary
abelian of order 27. Observe that a non-abelian group with abelian automorphism
group must be a nilpotent group of nilpotency class 2. Hence, it suffices to study the
groups of prime power orders. Investigation on the structure of groups with abelian
automorphism groups was initiated by C. Hopkins [20] in 1927. He, among other
things, proved that such a group cannot have a nontrivial abelian direct factor, and
if such a group is a p-group, then, so is its automorphism group, where p is a prime
integer.

Unfortunately, the topic was not investigated for about half a century after the
work of Hopkins. But days came when examples of such odd prime power order
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groups were constructed by D. Jonah andM. Konvisser [26] in 1975 and a thesis was
written on the topic by B. E. Earnley [10] during the same year, in which, attributing
to G. A. Miller, a group with abelian automorphism group was named as “Miller
group”. Following Earnley, we call a group to be Miller, if it is non-abelian and its
automorphism group is abelian. Earnley pointed out that the former statement of
Hopkins is not true as such for 2-groups. He constructed Miller 2-groups admitting
a nontrivial abelian direct factor. However, the statement is correct for odd order
groups. He also presented a generalization of examples of Jonah-Konvisser, which
implies that the number of elements in a minimal generating set for a Miller group
can be arbitrarily large. But he obtained a lower bound on the number of generators,
which was later improved to an optimal bound by M. Morigi [34]. He also gave
a lower bound on the order of Miller p-groups, which was again improved to an
optimal bound by M. Morigi [35].

Motivated by the work done on the topic, various examples of Miller groups were
constructed by several mathematicians via different approaches during the next 20
years, which were mostly special p-groups. A p-group G is said to be special if
Z(G) = G ′ is elementary abelian, where Z(G) and G ′ denote the center and the
commutator subgroup of G, respectively. These include the works by R. Faudree
[12], H. Heineken and M. Liebeck [15], D. Jonah and M. Konvisser [26], B. E.
Earnley [10], H. Heineken [16], A. Hughes [21], R. R. Struik [36], S. P. Glasby [13],
M. J. Curran [7], and M. Morigi [35]. The existence of non-special Miller groups
follows from [26, Remark 2].

The abelian p-groups of minimum order, which can occur as automorphism
groups of some p-groups were studied by P. V. Hegarty [17] in 1995 and G. Ban and
S. Yu [2] in 1998. More examples of Miller groups were constructed by A. Jamali
[23] and Curran [8].

Neglecting Remark 2 in [26], A. Mahalanobis [30], while studying Miller groups
in the context of MOR cryptosystems, conjectured that Miller p-groups are all spe-
cial for odd p. Again neglecting [26, Remark 2], non-special Miller p-groups were
constructed by V. K. Jain and the second author [24], V. K. Jain, P. K. Rai and the
second author [25], A. Caranti [5] and the authors [28].

The motivation for many of the examples comes from some natural questions or
observations on previously known examples. The construction of examples of Miller
groups of varied nature has greatly contributed to complexify the structure of aMiller
group. The structure of a general Miller group has not yet been well understood.

We record, here, the known information about structure of Miller p-groups and
their automorphism groups. Let G be a Miller p-group, and assume that it has no
abelian direct factor. Then, the following holds:

(1) |G| ≥ p6 if p = 2 and |G| ≥ p7 if p > 2.
(2) Minimal number of generators of G is 3 for p even, and 4 for p odd.
(3) The exponent of G is at least p2.
(4) If |G ′| > 2, then G ′ has at least two cyclic factors of the maximum order in its

cyclic decomposition.
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(5) IfAut(G) is elementary abelian, then�(G) is elementary abelian,G ′ ≤ �(G) ≤
Z(G) and at least one equality holds. There are Miller p-groups in which only
one equality holds.

(6) For p > 2 (resp. p = 2), the abelian p-groups of order < p12 (resp. < 27) are
not automorphism groups of any p-group.

The aim of this article is to present an extensive survey on the developments in
the theory of Miller groups since 1908, and pose some problems and further research
directions. There are, at least, three survey articles on automorphisms of p-groups
and related topics (see [18, 29, 32]); the present one does not overlap with any of
them.

We conclude this section with setting some notations for amultiplicatively written
groupG. We denote by�(G), the Frattini subgroup ofG. For an element x ofG, 〈x〉
denotes the cyclic subgroup generated by x , and o(x) denotes its order. For subgroups
H, K of a group G, H < K (or K > H ) denotes that H is proper subgroup of K .
The exponent of G is denoted by exp(G). By Cn , we denote the cyclic group of order
n. For a p-group G and integer i ≥ 1, �i (G) denotes the subgroup of G generated
by those x in G with x pi = 1, and �

i (G) denotes the subgroup generated by x pi for
all x in G. By Inn(G), Autcent(G) and Aut(G) we denote, respectively, the group
of inner automorphisms, central automorphism, and all automorphisms of G. Let a
group K acts on a group H by automorphisms, then H � K denotes the semi-direct
product of H by K . All other notations are standard.

2 Reductions

Starting from the fundamental observations ofHopkins, in this section,we summarize
all the known results (to the best of our knowledge) describing the structure of Miller
groups. Although we preserve the meaning, no efforts are made to preserve the
original statements from the source.

As commented in the introduction, a non-abelian Miller group must be nilpotent
(of class 2), and therefore, it is sufficient to study Miller p-groups. The following
result is an easy exercise.

Proposition 1 (Hopkins, [20]) Every automorphism of a Miller group centralizes
G ′.

An automorphism of a group G is said to be central if it induces the identity
automorphism on the central quotient G/Z(G). Note that Autcent(G), the group of
all central automorphisms of G, is the centralizer of Inn(G) in Aut(G).

A group G is said to be purely non-abelian, if it has no nontrivial abelian direct
factor. Hopkins made the following important observation:

Theorem 2 (Hopkins, [20]) A Miller p-group is purely non-abelian.

Unfortunately, the statement, as such, is not true for p = 2 as shown by Earnley
[10] (see Theorem5 below for the correct statement).
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In a finite abelian groupG, there exists a minimal generating set {x1, . . . , xn} such
that 〈xi 〉 ∩ 〈x j 〉 = 1 for i �= j . Hopkins observed that Miller groups possess a set of
generators with a property similar to the preceding one. More precisely, he proved
the following result.

Theorem 3 (Hopkins, [20]) If G is aMiller p-group, then there exists a set {x1, . . . ,
xn} of generators of G such that

(1) for p > 2, 〈xi 〉 ∩ 〈x j 〉 = 1 for all i �= j ;
(2) for p = 2, 〈xi 〉 ∩ 〈x j 〉 is of order at most 2, for all i �= j .

In fact, the theorem is true for any p-group of class 2, as shown below. Let G be a
p-group of class 2. Choose a set {y1, . . . , yk} of generators of G with the property

∏

i

o(yi ) is minimum. (∗)

Let p > 2 and o(yi ) = pni , 1 ≤ i ≤ k. If 〈y1〉 ∩ 〈y2〉 �= 1 then y pn2−1

2 ∈ 〈y1〉. As-
suming that o(y1) ≥ o(y2), we can write y

pn2−1

2 = (y pn2−1

1 )a for some integer a. Take
y′
2 = y2y

−a
1 . Then, {y1, y′

2, y3, . . . , yk} is a generating set forG and o(y′
2) ≤ pn2−1 <

o(y2), which contradicts (*). The case p = 2 can be handled in a similar way.

Theorem 4 (Hopkins, [20]) If G is a Miller p-group, then Aut(G) is a p-group.

This can be proved easily in the following way. In the case when G is purely
non-abelian, by a result of Adney-Yen [1, Theorem 1], Autcent(G) (= Aut(G)) has
order equal to |Hom(G,Z(G))|, which is clearly a power of p. Now, consider the
case when G has an abelian direct factor, which occurs only when p = 2 and it must
be cyclic of order at least 22 (see Theorem5). Let G = H × C2n , where H is purely
non-abelian and n ≥ 2. By the main theorem in [4],

|Aut(G)| = |Aut(H)| · |Aut(C2n )| · |Hom(H,C2n )| · |Hom(C2n , Z(H))|,

and each factor on the right side has order a power of 2.
The investigation of structure of Miller groups remained unattained for about half

a century until it was revisited by Earnley [10] in 1974. He pointed out that a Miller
2-group can have an abelian direct factor. So, the correct form of Theorem2 is

Theorem 5 (Earnley, [10]) Let G be a finite p-group such that G = A × N with
A �= 1 an abelian group and N a purely non-abelian group. Then, G is a Miller
group if and only if p = 2 and A, N satisfy the following conditions:

(1) A is cyclic of order 2n > 2;
(2) N is a special Miller 2-group.
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Theorem 6 (Earnley, [10]) If G is a Miller p-group, then the following holds.

(1) The exponent of G is greater than p;
(2) If p > 2, then Z(G) ∩ �(G) is noncyclic.

For the first statement of the preceding theorem, we can assume that p > 2 and
the proof now follows by noting that if exp(G) = p, then the map x �→ x−1 is a
noncentral automorphism of G. The second statement follows from the following
result of Adney-Yen.

Theorem 7 (Adney-Yen, [1]) If G is a p-groups, p > 2, of class 2 such that G ′ has
only one cyclic factor of maximum order in the direct product decomposition, then
G possesses a noncentral automorphism.

Since, in p-group of class 2, G ′ ≤ Z(G) ∩ �(G), the preceding theorem restricts
the structure of the commutator subgroup of a Miller p-group.

Theorem 8 If G is a Miller p-group, p odd, then G ′ possesses at least two cyclic
factors of maximum order in the direct product decomposition.

This raises a natural question for p = 2. The analog of the preceding theorem
for p = 2 holds except when |G ′| = 2. This can be obtained from the following
generalization of Theorem7.

Theorem 9 (Faudree, [11]) Let G be a p-group of class 2 with the following con-
ditions:

(1) G ′ = 〈u〉 × U, where o(u) = pm1 > pm
′ = exp(U).

(2) [g, h] = u and h pm1+m′ = 1,
(3) m ′′ = m ′ if p is odd, and m ′′ = max(1,m ′) if p = 2.

Let H = 〈g, h〉 and L = {x ∈ G : [g, x], [h, x] ∈ U}. Then G = HL and the map

g �→ gh pm
′′
, h �→ h, x �→ x (x ∈ L)

defines an automorphism of G which centralizes Z(G).

Notice that if p = 2 and the exponent of G ′ is at least 4, then the automorphism
defined in the preceding theorem is noncentral, and therefore G is not Miller. But if
|G ′| = 2, then the theorem is no longer applicable to produce a noncentral automor-
phism of G. So, the following question remains open.

Question 1 Can a finite 2-group G with G ′ cyclic of order 2 be Miller?

Earnleyobtained lower bounds for the order and theminimumnumber of generator
of a Miller group, which were later sharpened to the optimal level by Morigi [34,
35]

Theorem 10 Let G be a Miller p-group.
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(1) For any prime p, G is generated by at least 3 elements. (Earnley, [10])
(2) If p is odd, then G is generated by at least 4 elements. (Morigi, [35])

The example of a Miller 2-group constructed by Miller is minimally generated
by 3 elements (see Sect. 3 (3.1)). For p odd, Jonah-Konvisser constructed Miller
p-groups which are minimally generated by 4 elements (see Sect. 4 (4.3) for more
details).

Theorem 11 Let G be a Miller p-group.

(1) For any prime p, |G| ≥ p6. (Earnley, [10])
(2) If p is odd, then |G| ≥ p7 and there exists a Miller group of order p7. (Morigi,

[34])

Again, the Miller 2-group constructed by Miller is of order 26 having automor-
phism group of order 27. Morigi constructed a special Miller p-group G of order
p7 with Aut(G) elementary abelian of order p12. In fact, it is one among an infinite
family of Miller groups constructed by Morigi (see Sect. 4 (4.6) for more details).

The question whether an abelian p-group of order smaller than p12 for an odd
prime p can occur as the automorphism group of a p-group, was addressed by
Hegarty [17] and Ban and Yu [2] independently. They proved

Theorem 12 For p odd, there is no abelian p-group of order smaller than p12 which
can occur as the automorphism group of a p-group.

Finally, we state some results on the structure of Aut(G) for a Miller group
G. Many known examples of Miller groups are special p-groups. Certainly, for
such groups, the automorphism group is elementary abelian. The following problem
appears as an old problem in [3, problem 722].

Problem 2 Study the p-groups with elementary abelian automorphism groups.

Let G be a p-group. If Aut(G) is elementary abelian, then so is G/Z(G); hence,
G ′ ≤ �(G) ≤ Z(G). In fact, it is interesting to see that at least one equality always
holds.

Theorem 13 (Jain-Rai-Yadav, [25]) Let G be a p-group, p odd, such that Aut(G)

is elementary abelian. Then, �(G) is elementary abelian, and one of the following
holds:

(1) Z(G) = �(G).
(2) G ′ = �(G).

Jain-Rai-Yadav [25] constructed p-groupswith elementary abelian automorphism
group, in which exactly one of the above two conditions holds.

For 2-groups with elementary abelian automorphism groups, there are analogous
necessary conditions, stated below. Since a Miller 2-group can have abelian (cyclic)
direct factor, we consider two cases.

An abelian p-group of type (pn, p, . . . , p) with n > 1 is called a ce-group. If
G = A × B with A ∼= Cpn (n > 1) and B ∼= Cp × · · · × Cp, then call A cyclic part
and B elementary part of G.
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Theorem 14 (Jafari, [22])LetG beapurely non-abelian2-group. Then,Autcent(G)

is elementary abelian if and only if one of the following holds.

(1) G/G ′ is of exponent 2.
(2) Z(G) is of exponent 2.
(3) gcd

(
exp(G/G ′), exp(Z(G))

) = 4 and G/G ′, Z(G) are ce-groups such that el-
ementary part of Z(G) is contained in G ′ and there is an element z of or-
der 4 in cyclic part of Z(G) with zG ′ lying in cyclic part of G/G ′ satisfying
o(zG ′) = exp(G/G ′)/2.

In particular, ifG is a purely non-abelian 2-groupwithAut(G) elementary abelian,
then one of the above three conditions holds. The example constructed by Miller
shows that it satisfies only condition (3). Jain-Rai-Yadav [25] constructed purely non-
abelianMiller 2-groupswhich satisfy only condition (1) or only condition (2). Finally,
for 2-groups G with abelian direct factor, the following theorem gives necessary
conditions for Aut(G) to be elementary abelian.

Theorem 15 (Karimi-Farimani, [27]) Let G = A × N with A cyclic 2-group and
N purely non-abelian 2-group of class 2. Then, Autcent(G) is elementary abelian if
and only if

(1) |A| is 4 or 8.
(2) N is special 2-group.

With the notations of the preceding theorem, if G is Miller with Aut(G) elementary
abelian, then (1) and (2) hold.

Theorem5 tells us that a Miller p-group, p odd, cannot admit a non-abelian
direct factor. It is natural to ask whether a Miller p-group can occur as a direct
product of non-abelian groups. This situation has been considered by Curran [8]. He
determined necessary and sufficient conditions on a direct product H × K to have
abelian automorphism group. Note that for any nontrivial group H , Aut(H × H) is
non-abelian. Before we state the result of Curran, we set some notations.

Let H be a p-group of class 2.

(1) Let a, b, c, d denote the exponents of H/H ′, H/Z(H), Z(H), and H ′, respec-
tively.

(2) If H ′ and Z(H) have the same rank, then define ds to be the largest integer
(≤ exp(Z(H)) such that �ds (H

′) = �ds (Z(H)).
(3) If H/Z(H) and H/H ′ have the same rank, then define bt to be the largest integer

(≤ exp(H/H ′)) such that �bt (H/Z(H)) ∼= �bt (H/H ′).
(4) Let �i (H) denote the subgroup of H with �i (H)/H ′ = �

i (H/H ′).

Replacing H by K in (1)–(4), the corresponding terms a′, b′, c′, d ′, d ′
s ′ , b′

t ′ and�i (K )

are similarly defined. For simplicity, we denote by r(A), the rank of an abelian group
A. With this setting, we have

Theorem 16 (Curran, [8]) Let G = H × K, where H, K are p-groups of class 2
with no common direct factor. Then Aut(G) is abelian if and only if Aut(H) and
Aut(K ) are abelian and one of the following holds:
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(1) Z(H) = H ′ and Z(K ) = K ′.
(2) Z(H) > H ′ and Z(K ) = K ′, where r(Z(H)) = r(H ′), a′ ≤ ds ≤ a ≤ c and

�a(Z(H)) ≤ �c′
(H).

(3) Z(H) = H ′ and Z(K ) > K ′, where r(Z(K )) = r(K ′), a ≤ d ′
s ′ ≤ a′ ≤ c′ and

�a′(Z(K )) ≤ �c(K ).
(4) Z(H) > H ′ and Z(K ) > K ′, where r(Z(H)) = r(H ′), r(Z(K )) = r(K ′) and

a = ds = d ′
s ′ = a′.

(5) Z(H) > H ′ and Z(K ) = K ′, where r(H/Z(H)) = r(H/H ′), a′ ≤ bt ≤ c ≤ a
and �a′(Z(H)) ≤ �c(H).

(6) Z(H) = H ′ andZ(K ) > K ′, where r(K/Z(K )) = r(K/K ′), a ≤ b′
t ′ ≤ c′ ≤ a′

and �a(Z(K )) ≤ �c′
(K ).

(7) Z(H) > H ′ and Z(K ) > K ′, where r(H/Z(H)) = r(H/H ′), r(K/Z(K )) =
r(K/K ′) and c = bt = b′

t ′ = c′.

Remark 17 Observe that in the above theorem, if Aut(H × K ) is abelian then either
H ′ and Z(H) have the same rank or H/H ′ and H/Z(H) have the same rank; the
same is true for the other component K .

An analogous problem for central product may be stated as follows.

Problem 3 Find necessary and/or sufficient condition such that central product of
two Miller groups is again a Miller group.

3 Examples of Miller 2-Groups

In this section, we discuss examples of Miller 2-groups in chronological order.

(3.1) As mentioned above several times, the first example of a Miller 2-group was
constructed by Miller himself, which comes as a semi-direct product of the cyclic
group of order 8 by the dihedral group of order 8, and presented by

G1 = C8 � D8 = 〈x, y, z | x8, y4, z2, zyz−1 = y−1, yxy−1 = x5, zxz−1 = x〉.

Miller proved that each coset of Z(G1) is invariant under every automorphism of
G1 and that every automorphism has order dividing 2. Thus Aut(G1) is elementary
abelian, and it can be shown that its order is 27.

By Theorem11, the order of a Miller 2-group is at least 64. Having an example
of order 64, a natural idea which peeps in ones mind is to explore groups of order 64
to find more Miller groups. This was done by Earnley [10], who proved that there
are (exactly) two more Miller groups of the minimal order, which are presented as
follows.
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G2 = (C4 � C4) � C4 = 〈x, y, z | yxy−1 = x−1, zxz−1 = xy2, zyz−1 = y〉,
G3 = (C4 × C4 × C2) � C2 = 〈x, y, z, t | x4, y4, z2, t2, xy = yx, xz = zx, yz = zy,

t xt−1 = xy2, t yt−1 = t z, t−2zt = z〉.

Note that, in all the groups G1,G2 and G3, the center and Frattini subgroups
coincide and are elementary abelian of order 8, whereas the commutator subgroup is
elementary abelian of order 4. Further, Aut(G2) and Aut(G3) are elementary abelian
of order 29.

A generalization of G1 appears, as an exercise, in the book [31, Exercise 46, Page
237] by Macdonald, written in 1970. For n ≥ 3, the group is presented as follows.

G1,n = 〈a, b, c |a2n = b4 = c2 = 1, b−1ab = a1+2n−1
, c−1bc = b−1, [c, a] = 1〉.

The group G1,n is of order 2n+3 and its automorphism group is an abelian 2-group of
type (2n−2, 2, 2, 2, 2, 2, 2). In 1982, Struik [36], independently, obtained the same
example with a different presentation.

A generalization of G2 and G3 has also been obtained by Glasby [13], which
is described as follows. For n ≥ 3, let G2,n denotes the 2-group of class 2 with
generators x1, x2, . . . , xn with following additional relations:

x4i = 1, (1 ≤ i ≤ n), [xi , xn] = x2i+1, (1 ≤ i ≤ n − 1),

and set [xk, xl ] = 1 in the remaining cases. Here, Aut(G2,n) is elementary abelian
group of order 22n . If n = 3 then G2,n is isomorphic to G2.

Again for n ≥ 3, let G3,n denotes the 2-group of class 2 with generators y0, y1,
. . ., yn with the following additional relations:

y20 = y4i = y2n = 1, (1 ≤ i ≤ n − 1), [yi , yn] = y2i+1, (1 ≤ i ≤ n − 2)

and set [yk, yl ] = 1 in the remaining cases. Here alsoAut(G3,n) is elementary abelian
group of order 22n . If n = 3, then G3,n is isomorphic to G3.

(3.2) It should be noted that, in 1974, Jonah and Konvisser constructed special Miller
groups of order p8, which were generalized to an infinite family of Miller p-groups
by Earnley, and those groups include the case p = 2 too (see Sect. 4 (4.3) and (4.4)).

(3.3) Heineken and Liebeck (see Sect. 4 (4.2) for details) proved that given a finite
group K , there exists a special p-group G, p odd, with Aut(G)/Autcent(G) ∼= K .

In particular, if K = 1, then the corresponding group G is a Miller p-group.
In 1980, A. Hughes [21] proved that one can construct a special 2-group as

well with the above property. The method of Hughes is a modification of the
graph-theoretic method of Heineken-Liebeck. It should be noted that the method
of Heineken-Liebeck uses digraphs, whereas that of Hughes considers graphs, and
is described below.
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Let K be any finite group and associate to K a connected graph D(K ) which
satisfies the following conditions:

(1) Each vertex of the graph has degree at least 2.
(2) Every cycle in the graph contains at least 4 vertices.
(3) Aut(D(K )) ∼= K .

Associate a special 2-group G to D(K ) as follows. If the graph has n vertices
v1, . . . , vn , then consider the free group Fn on x1, . . . , xn . Let R be the normal
subgroup of Fn generated by x2i , [xi , [x j , xk]] (for all i, j, k) and [xr , xs] whenever
the vertices vr and vs are adjacent. Define G to be the group Fn/R; it is a special 2-
group of order 2n+(n2)−e, where n is the number of generators of G (so |G/G ′| = 2n)
and e is the number of edges of the graph. It turns out that Aut(G)/Autcent(G) ∼= K
(see [21] for proof).

(3.4) In 1987, Curran [7] studied automorphisms of semi-direct product, and sug-
gested a method to construct many more examples of Miller 2-groups similar to G1.
We describe the method briefly and see that the aboveG1,n can be constructed by this
method. Let A = 〈a〉 be a cyclic group of order 2n , n ≥ 3 and N a special 2-group
acting on A in the following way: a maximal subgroup J ≤ N acts trivially, and any
x ∈ N \ J acts by

xax−1 = a1+2n−1
.

Let G = A � N be the semi-direct product of A and N with this action. Then, we
get

Theorem 18 (Curran, [7]) Let G = A � N be as above along with the following
conditions:

(1) A × J is characteristic in A � N.
(2) Any automorphism of N leaving J invariant is central automorphism of N.

Then A � N is a Miller group.

To elaborate, consider A = 〈a〉, the cyclic group of order 2n , n ≥ 3 and N =
〈b, c | b4, c2, [b, c] = b2〉, the dihedral group of order 8. Consider the action of N
on A by

b−1ab = a1+2n−1
, c−1ac = a.

Define G = A � N , the semi-direct product with this action. Note that, Z(G) =
〈a2, b2〉 = �(G), and G/�(G) is elementary abelian of order 8.
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Take J = 〈b2, c〉, the largest subgroup of N acting trivially on A. Then, A × J is
characteristic in A � N , since it is the unique abelian subgroup of index 2 (if there
were more than one abelian subgroups of index 2, then the center would have index
4). Also, in N , the subgroup 〈b〉 is characteristic. Hence, if ϕ ∈ Aut(N ) leaves J
invariant, then it leaves invariant the subgroup J ∩ 〈b〉 = 〈b2〉 (the center of N ), and
one can see that ϕ is central automorphism of N . The group A � N is, therefore, a
Miller group by Theorem18. Note that, this group is isomorphic to G1,n described
above.

(3.5) After a considerable time gap, Jamali [23] in 2002 constructed the following
infinite family ofMiller 2-groups inwhich, the number of generators and the exponent
of the group can be arbitrarily large. For integers m ≥ 2 and n ≥ 3, let Gn(m) be the
group generated by a1, . . . , an, b, subject to the following relations:

a21 = a2
m

2 = a4i = 1 (3 ≤ i ≤ n)

a2n−1 = b2,

[a1, b] = [ai , a j ] = 1 (1 ≤ i < j ≤ n),

[an, b] = a1, [ai−1, b] = a2i (3 ≤ i ≤ n).

The group Gn(m) has order 22n+m−2 and its automorphism group is abelian of type
(2, 2, . . . , 2︸ ︷︷ ︸

n2

, 2m−2). For n = 3 and m = 2, the group G3(2) is isomorphic to G3 (see

Sect. 3 (3.1)).

4 Examples of Miller p-Groups, p-Odd

This section, a lifeline for Miller groups in a sense, presents evolution of the topic.
We will see the influence of examples of varied nature on Miller groups towards
understanding the structure. Some examples of Miller groups occurred in other re-
lated contexts without any pointer to the topic. The deriving force behind many of
the examples comes from natural questions on previously known Miller groups or
certain natural optimistic expectations on the structure of such groups. The evolu-
tion process certainly helped, although minimally, in studying the structure of Miller
groups, especially, in turning down the natural optimistic expectations.

During 1971–1979, there were three occasions, in which certain p-groups were
constructed with a specific property, and these groups turned out to beMiller groups.
Themotive of the construction of these groups had no obvious connectionwithMiller
groups.
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(4.1) We now start the discussion of the (possibly) first example of Miller group of
odd order. It was conjectured that a finite group in which every element commutes
with its epimorphic image is abelian. It was disproved by R. Faudree [12] in 1971.
He constructed a non-abelian group G in which every element commutes with its
epimorphic image. The group G is a special p-group, and therefore one can easily
deduce that Aut(G) is abelian. The group G is described as follows.

Let G = 〈a1, a2, a3, a4〉 be the p-group of class 2 with the following additional
relations:

[a1, a2] = a p
1 , [a1, a3] = a p

3 , [a1, a4] = a p
4 ,

[a2, a3] = a p
2 , [a2, a4] = 1, [a3, a4] = a p

3 .

The group G is a special p-group of order p8 and Z(G) = G ′ is elementary abelian
of order p4. If p is odd, then Aut(G) is elementary abelian of order p16.

(4.2) In 1974, Heineken-Liebeck [15], constructed a p-groupG of class 2, p odd, for
a given finite group K such that Aut(G)/Autcent(G) ∼= K . Associate to the finite
group K , a connected digraph (directed graph) X as follows. If K is cyclic of order
> 2, then take X to be the cyclic digraph with |K | vertices. In the remaining cases,
we associate a digraph X with the following conditions:

(1) X is strongly connected,
(2) Any two non-simple vertices are not adjacent,
(3) Every vertex belongs to a (directed) cycle of length at least 5,
(4) Every non-simple vertex has at least two outgoing edges,
(5) Aut(X) ∼= K ,

where by a simple vertex, we mean a vertex with exactly one incoming and exactly
one outgoing edge. Associate to such X , a p-group GX of class 2 as follows. If X
has n vertices, we take n generators for GX . If the vertex i has outgoing edges to
j1, . . . , jr precisely, then we put the relation x p

i = [xi , x j1 · · · x jr ]. Finally, we put
[[xi , x j ], xk] = 1 for all i, j, k, making GX of class 2. It is easy to show that GX is
a special p-group of order pn+(n2).

The conditions (1)–(4) imply that Aut(G)/Autcent(G) is isomorphic to the auto-
morphism group of X , which is isomorphic to K (by (5)).

Before proceeding for the example of Miller p-group by this method, we make
some comments. If |K | ≥ 5, then there is a systematic procedure to construct graph
X satisfying conditions (1)–(5); it is obtained by a specific subdivision of a Cayley
digraph of K . If |K | < 5, then one constructs X satisfying (1)–(5) by some ad-hoc
method.

For K = 1, the following digraph satisfies conditions (1)–(5).
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The group GX associated to this digraph is a special Miller p-group of order
p9+(92) = p45, p odd.

(4.3) The existence of Miller 2-groups of order 26 served as a base to the belief that
p45 is too big to be a minimal order for a Miller p-group for odd p. This motivated
Jonah and Konvisser [26] to construct Miller p-groups of smaller orders. In 1975,
they constructed, for each prime p, p + 1 non-isomorphic Miller p-groups of order
p8 as described below. Let λ = (λ1, λ2) be a non-zero vector with entries in field
Fp and Gλ = 〈a1, a2, b1, b2〉 be the p-group of class 2 with the following additional
relations:

a p
1 = [a1, b1], a p

2 = [a1, bλ1
1 bλ2

2 ], bp
1 = [a2, b1b2],

bp
2 = [a2, b2], [a1, a2] = [b1, b2] = 1.

The proof of the fact that Gλ is Miller group is very elegant. We briefly describe the
idea here as it will be useful in later discussions.

Fix a nonzero vector λ and write G = Gλ. Note that, G is special p-group of
order p8 and G ′ is of rank 4 with generators [ai , b j ], i, j = 1, 2.

The subgroups A = 〈a1, a2,G ′〉 and B = 〈b1, b2,G ′〉 are the only abelian nor-
mal subgroups such that [A : G ′] = p2 = [B : G ′]; hence, they are permuted by
every automorphism of G. There exists x ∈ A such that Ap ≤ [x,G], but there is
no y ∈ B with Bp ≤ [y,G]; hence, A, B are characteristic in G. The only x ∈ A
with Ap ≤ [x,G] are ai1z with p � i and z ∈ G ′; they generate characteristic sub-
group 〈a1,G ′〉. Similarly, those x ∈ A with Bp ≤ [x,G] generate a characteristic
subgroup, namely 〈a2,G ′〉 and those x ∈ B with x p ∈ [x,G] generate the charac-
teristic subgroup 〈b2,G ′〉. Thus, if ϕ ∈ Aut(G), then

ϕ(a1) ≡ ai1, ϕ(a2) ≡ a j
2 , ϕ(b1) ≡ bk11 b

k2
2 , ϕ(b2) ≡ bl2 (mod G ′),

where i, j, l are integers not divisible by p, and k1, k2 are integers, not simultaneously
divisible by p. Using relations inG, it is now easy to deduce that i ≡ j ≡ k1 ≡ l ≡ 1
(mod p) and k2 ≡ 0 (mod p). Therefore, every automorphism of G is central. Since
G ′ = Z(G), it follows that Aut(G) is abelian.
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The groupsGλ andGμ, for nonzero vectors λ,μ ∈ Fp × Fp, are isomorphic only
if these vectors are dependent.

Remark 19 Note that in the group Gλ, replacing, in the power relations, all the p-th
power by pk-th power, it can be shown by the same arguments that the resulting
groups are still Miller. If k > 1, then G ′

λ = Z(Gλ) and has exponent pk > p; hence
Gλ is a non-special Miller group.

Wemust emphasize the negligence of the preceding remark [26, Remark 2] by the
authors of many recent papers claiming the existence of non-special Miller groups
was not known in the literature until recently.

(4.4) Examples of Jonah and Konvisser were generalized by Earnley [10], during
the same year, by increasing number of generators, in the following way. Fix n ≥ 2
and a nonzero n-tuple (λ1, . . . , λn) with λi ∈ Fp. Let Gλ = 〈x1, x2, y1, y2, . . . , yn〉
be the p-group of class 2 with the following additional relations:

x p
1 = [x1, y1], x p

2 = [x1, yλ1
1 . . . yλn

n ],
y p
i = [x2, yi yi+1], i = 1, 2, . . . , n − 1,

y p
n = [x2, yn], [x1, x2] = [yi , y j ] = 1 for all i, j.

It can be shown easily that G ′
λ = Z(Gλ) is elementary abelian and generated by

the 2n elements [xi , y j ] for i = 1, 2 and j = 1, 2, . . . , n; hence, order of Gλ is
p(n+2)+2n = p2+3n .

For Aut(Gλ) to be abelian, the obvious necessary condition is that every auto-
morphism should be central, but since Gλ is special, this is sufficient too. We briefly
describe the beautiful linear algebra techniques evolved by Earnley to prove that
every automorphism of Gλ is central as, with a little variation, these techniques have
been used in different contexts by Morigi [35], Hegarty [17] and Earnley himself.

For simplicity, fix nonzero vector λ and write G = Gλ. Let f : G/G ′ → G ′ de-
note the map xG ′ �→ x p, which is a homomorphism for odd p. An automorphism α

of G/G ′ determines its action on G ′ by

α̂ : G ′ → G ′, α̂([x, y]) = [α(xG ′), α(yG ′)].

The automorphism α of G/G ′ is induced by an automorphism ϕ of G if and only if
α̂ ◦ f = f ◦ α, i.e., the following diagram commutes:

G/G ′

G/G ′

G ′.

G ′

f

f

α α̂
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Consequently, every automorphism of G is central if and only if identity is the
only automorphism of G/G ′ which fits in the above commutative diagram.

Note that, G/G ′ and G ′ can be considered as vector spaces over Fp; hence,
the automorphisms α̂ and α in the above diagram can be considered as (invertible)
linear maps. However, if p = 2, the map f may not be linear. But, in the group
G under consideration, consider the abelian subgroups A = 〈x1, x2,G ′〉 and B =
〈y1, . . . , yn,G ′〉; they generate G and the restriction of f to A/G ′ and B/G ′ are
homomorphisms, and therefore linear.

Next, A and B are the only abelian subgroups containing G ′ such that modulo
G ′ each of them have order at least p2. For n > 2, both A and B are characteristic
as their orders are different. But even for n = 2, they are characteristic, since, in
this case, A contains an element t such that Ap ≤ [t,G], but B has no element with
similar property.

Thus, consider an automorphism α = (α1, α2) of G/G ′ = A/G ′ ⊕ B/G ′, where
α1 ∈ Aut(A/G ′) andα2 ∈ Aut(B/G ′). As a vector space,G ′ = [A, B] is isomorphic
to A/G ′ ⊗ B/G ′, the tensor product of A/G ′ and B/G ′. Hence, the automorphism
induced by α on G ′ is nothing but α1 ⊗ α2. Then, α is induced by an automorphism
of G if and only if the following diagrams commute:

A/G ′

A/G ′

G ′

G ′

f

f

α1 α1 ⊗ α2

B/G ′

B/G ′

G ′

G ′

f

f

α2 α1 ⊗ α2

For the first diagram, consider the following ordered bases:

{x1G ′, x2G ′} for A/G ′ and {[x1, y1], [x2, y1], . . . , [x1, yn], [x2, yn]} for G ′.

Also for the second diagram, consider the following bases:

{y1G′, . . . , ynG′} for B/G′ and {[x1, y1], . . . , [x1, yn], [x2, y1], . . . , [x2, yn]} for G′.

The matrix of f with respect to these bases can be easily written from the power-
commutator relations in G. Writing the matrices of α1, α2, α1 ⊗ α2 with respect to
these bases, one expresses the commutativity of above diagram in terms of twomatrix
equations, and a simple matrix computation shows that α1 = 1 and α2 = 1 are the
only solutions. This implies that every automorphism of G is central. Note that, this
also covers the case p = 2 as the restrictions of f to A/G ′ and B/G ′ are linear.

For more detailed module-theoretic formulation of the above arguments for arbi-
trary special p-groups, one may refer to [5].
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(4.5) The third instance of examples of Miller groups, not in the context of the topic,
is by Heineken [16] in 1979. He constructed a family of p-groups in which every
normal subgroup is characteristic. The groups, actually, possess more interesting
properties, which force the groups actually become Miller. The construction is as
follows. Let Fq (q = pn) be the field of order pn and U(3, Fq) denote the group of
3 × 3 unitriangular matrices over Fq . Identify the elements of U(3, Fq) as triples
over Fq by

(x, y, z) �

⎡

⎣
1 x z

1 y
1

⎤

⎦ , x, y, z ∈ Fq .

The sets A = {(x, 0, z) : x, z ∈ Fq} and B = {(0, y, z) : y, z ∈ Fq} constitute
abelian subgroups of order q2 = p2n and exponent p; they generate U(3, Fq) and
their intersection is the center of U(3, Fq). Also, the commutator of an element of A
with that of B is given by

[(x, 0, z1), (0, y, z2)] = (0, 0, xy).

Heineken constructed a group G by a little modification in the commutator and
power relations of U(3, Fq) as follows. The group G consists of triples (x, y, z) over
Fq , in which

A∗ = {(x, 0, z) | x, z ∈ Fq} and B∗ = {(0, y, z) | y, z ∈ Fq}

constitute abelian subgroups of order q2 = p2n . The power relations are

(x, 0, z)p = (0, 0, x p − x),

(0, y, z)p = (0, 0, y + y p + · · · + y pn−1
).

For a fixed generator t of the multiplicative group of Fq , the commutator relations
between A∗ and B∗ are defined as

[(x, 0, z1), (0, y, z2)] = (0, 0, xy − t x p y p2).

Then, G = {(x, y, z) | x, y, z ∈ Fq} is a group, which is the product of abelian
subgroups A∗ and B∗, and Z(G) = {(0, 0, z) | z ∈ Fq} = A∗ ∩ B∗. Fix x �= 0 and
vary y ∈ Fq , then the elements xy − t x p y p2 exhaust whole Fq . It follows that G ′ =
Z(G), and therefore G is a special p-group of order p3n . With the above setup, we
have

Theorem 20 Let n be odd positive integer. If n ≥ 5, p > 2 or n = 3, p ≥ 5, then
every automorphism of G is identity on Z(G) as well as on G/Z(G); hence,Aut(G)

is abelian.
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The groups G in the preceding theorem have the following remarkable property:
for every x ∈ G − G ′, the conjugacy class of x in G is xG ′. The groups satisfying
this property are called Camina groups. The readers interested in Camina groups are
referred to [9] and the references therein.

An automorphism α of a group is said to be class-preserving if it takes each
element of the group to its conjugate. It is an easy exercise to show that each auto-
morphism of the group G is class-preserving. This is not only true for the groups G
considered above, but also for any Camina p-group which is Miller as well.

Theorem 21 Let G be a p-group which is Miller as well as a Camina group. Then
automorphisms of G are all class-preserving.

As a simple consequence, we have

Corollary 22 Let G be a p-group which is Miller as well as a Camina group. Then
normal subgroups of G are all characteristic.

We remark that the examples of Jonah-Konvisser are not Camina groups and extra
special p-groups are Camina groups but not Miller. As the structure of Camina p-
groups of class 2 in general is not well understood, it will be interesting to study
p-groups which are both Camina as well as Miller.

Problem 4 Determine the structure of p-groups which are Camina as well asMiller.

This structural information will also, on the one hand, help in understanding p-
groups of class 2 whose automorphisms are all class-preserving and, on the other
hand, shed some light on the study of p-groups of class 2 in which all normal
subgroups are characteristic.

(4.6) Note that, the Miller groups constructed by Heineken in the preceding dis-
cussion are of order at least p9. But, as we already mentioned, the lower bound on
the order of Miller groups is p7 for odd p. This was Morigi [35], who, in 1994,
constructed examples of Miller groups of minimal order as a part of a general con-
struction of an infinite family of such groups. The construction is briefly described as
follows. For any natural number n, let Gn denote the p-group of class 2 generated by
a1, a2, b1, . . . , b2n with the following additional commutator and power relations:

[a1, b2i+1] = [a2, b2i+2] = 1, i = 0, 1, . . . , n − 1,

[b1, b2] = [b3, b4] = · · · = [b2n−1, b2n] = 1,

[bi , b j ] = 1 if i ≡ j (mod 2).

Further, a p
1 = a p

2 = 1 and bp
1 are the product of the following n2 + n + 1 commuta-

tors:

[a1, a2], [a1, b2i+2], [a2, b2i+1], [b2i+1, b2 j+2], i, j = 0, 1, . . . , n − 1, i �= j. (∗∗)

Finally, powers of bi ’s are related by
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bp
2 = bp

1 [a1, b2]−1

bp
2i+1 = bp

2i [a2, b2i+1]−1, bp
2i+2 = bp

2i+1[a1, b2i+2]−1, i = 1, . . . , n − 1.

Then, Gn is a special p-group, with |Gn/(Gn)′| = p2n+2 and (Gn)′ is elementary
abelian p-group generated by n2 + n + 1 commutators in (∗∗); so |Gn| = pn

2+3n+3.
Further, Aut(Gn) is (elementary) abelian, and

|Aut(Gn)| = |Autcent(Gn)| = p(2n+2)(n2+n+1).

For n = 1, G1 is a special p-group of order p7. This is an example of a Miller
group of the smallest order for p odd. The following problem is interesting:

Problem 5 Describe all Miller p-groups of order p7 for p > 2.

(4.7) Up to this point, we have only considered the examples of special Miller p-
groups (modulo Remark19). Now, we will consider non-special groups. Before we
proceed further with more examples, we record a very useful result of Adney and
Yen [1].

Let G be a purely non-abelian p-group of class 2. Let G/G ′ = ∏r
i=1〈xiG ′〉,

with o(xiG ′) ≥ o(xi+1G ′). Let pa, pb, pc denote the exponents of Z(G), G ′ and
G/G ′, respectively. Finally, let R be the subgroup of Z(G) generated by all the
homomorphic images of G in Z(G), and K denote the intersection of the kernels of
all the homomorphisms G → G ′.

Theorem 23 (Adney-Yen, [1]) With the above notations, Autcent(G) is abelian if
and only if the following holds:

(1) R = K.
(2) either min(a, c) = b or min(a, c) > b and R/G ′ = 〈x pbG ′〉.

Motivated by the conjecture of Mahalanobis as stated in the introduction, Jain
and the second author [24], in 2012, constructed the following infinite family of
non-special Miller p-groups. For n ≥ 2, and p odd, let Gn = 〈x1, x2, x3, x4〉 be the
p-group of class 2 with the following additional relations:

x pn

1 = x p2

2 = x p2

3 = x p
4 = 1,

[x1, x2] = x p
2 , [x1, x3] = [x1, x4] = x p

3 ,

[x2, x3] = x pn−1

1 , [x2, x4] = x p
2 , [x3, x4] = 1.

It is then easy to see that

(1) Z(Gn) = �(Gn) = 〈x p
1 , x p

2 , x p
3 〉.

(2) G ′
n = 〈x pn−1

1 , x p
2 , x p

3 〉 is elementary abelian of order p3.
(3) Gn is special only when n = 2 (follows by (1) and (2)).
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The proof that Aut(Gn) = Autcent(Gn) is constructive and reply on detailed careful
calculations. An application of Theorem23 now shows that Gn is Miller.

In the preceding examples of non-specialMiller p-groupsG, one can easily notice
that

G ′ < Z(G) = �(G).

One might desire that for a Miller p-group G, one of the following always holds
true: (i) G ′ = Z(G); (ii) Z(G) = �(G).

In 2013, Jain, Rai and the second author [25] constructed the following infinite
family of Miller p-groups G such that G ′ < Z(G) < �(G), which we again denote
byGn . For n ≥ 4, letGn = 〈x1, x2, x3, x4〉 be a p-group of class 2 with the following
additional relations:

x pn

1 = x p4

2 = x p4

3 = x p2

4 = 1

[x1, x2] = [x1, x3] = x p2

2 , [x1, x4] = x p2

3 ,

[x2, x3] = x pn−2

1 , [x2, x4] = x p2

3 , [x3, x4] = x p2

2 .

Then, Gn is a p-group of order pn+10 with

Z(Gn) = 〈x p2

1 , x p2

2 , x p2

3 〉, �(Gn) = 〈x p
1 , x p

2 , x p
3 , x p

4 〉, G ′
n = 〈x pn−2

1 , x p2

2 , x p2

3 〉.

It follows that G ′
n ≤ Z(Gn) < �(Gn) and G ′

n = Z(Gn) only when n = 4. As in the
previous examples, the proof of the fact that Gn is Miller is constructive.

As mentioned in Theorem13, if Aut(G) is elementary abelian, then �(G) is
elementary abelian and one of the following holds: (1) Z(G) = �(G); (2) G ′ =
�(G). Jain, Rai and the second author constructed the following Miller p-groups in
which exactly one of these conditions hold.

For any prime p, let G4 = 〈x1, x2, x3, x4〉 denote the p-group of class 2 with the
following additional relations:

x p2

1 = x p2

2 = x p2

3 = x p2

4 = 1,

[x1, x2] = 1, [x1, x3] = x p
4 , [x1, x4] = x p

4 ,

[x2, x3] = x p
1 , [x2, x4] = x p

2 , [x3, x4] = x p
4 .

Then, G4 is a p-group of order p8 and the following holds.

(1) G ′
4 = 〈x p

1 , x p
2 , x p

4 〉 is elementary abelian of order p3.
(2) �(G4) = Z(G4) = 〈x p

1 , x p
2 , x p

3 , x p
4 〉 is elementary abelian of order p4.

(3) Aut(G4) is elementary abelian of order p16.

Again for any prime p, consider the p-group G5 = 〈x1, x2, x3, x4, x5〉 of class 2
with the following additional relations:
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x p2

1 = x p2

2 = x p2

3 = x p2

4 = x p
5 = 1,

[x1, x2] = x p
1 , [x1, x3] = x p

3 , [x1, x4] = 1, [x1, x5] = x p
1 , [x2, x3] = x p

2 ,

[x2, x4] = 1, [x2, x5] = x p
4 , [x3, x4] = 1, [x3, x5] = x p

4 , [x4, x5] = 1.

Then, G5 is a p-group of order p9 and the following holds.

(1) G ′
5 = �(G5) = 〈x p

1 , x p
2 , x p

3 , x p
4 〉 is elementary abelian of order p4.

(2) Z(G5) = 〈x4,G ′
5〉.

(3) Aut(G5) is elementary abelian of order p20.

It is natural to ask

Question 6 Does there exist a Miller p-group G in which Z(G) � �(G) and
�(G) � Z(G)?

(4.8) The proofs of the results in Sect. (4.7) involve heavy computations. To remedy
the problem, in 2015, Caranti [5, 6] suggested a simple module- theoretic approach
to construct non-special Miller p-groups from special ones. The arguments given in
[5] are not sufficient to prove the results as stated. The authors of the present survey
proved that the results are valid under an additional hypothesis. The construction is
briefly described as follows.

For an odd prime p, let H be a special Miller p-group satisfying the following
hypotheses:

(i) �1(H) is a proper subgroup of H ′.
(ii) The map H/H ′ → H ′ defined by hH ′ �→ h p is injective.

Let K = 〈z〉 be the cyclic group of order p2, and M be a subgroup of order p in H ′
but not in �1(H). Let G be a central product of H and K amalgamated at M . Note
that G ′ = �(G) < Z(G); hence G is non-special. With this setting, we have

Theorem 24 If H/M is a Miller group, then so is G.

Before we proceed, we make a comment on the preceding theorem. Caranti
claimed that G is Miller without the condition “H/M is Miller”. Unfortunately,
this is not always true, as shown in the following example.

Let H = 〈a, b, c, d〉 be the p-group of class 2 with the following additional rela-
tions:

a p = [a, c], bp = [a, bcd], cp = [b, cd], d p = [b, d].

Then, H is a special Miller p-group of order p10 and satisfies conditions (i)–(ii). It
can be proved that if M = 〈[a, b]〉, then G is Miller, and if M = 〈[a, d]〉, then G is
not a Miller group. That H and H/〈[a, b]〉 are Miller can be proved following the
arguments similar to those in [26] (for details see [28]).

As noted above, the Miller groups G are such that G ′ = �(G) < Z(G). Now
with a little variation in the preceding construction, we obtain Miller p-groups G
with G ′ < �(G) = Z(G). Assume that the special Miller group H also satisfies the
following hypothesis in addition to (i)–(ii) above:
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(iii) If H is minimally generated by x1, . . . , xn , then H ′ is minimally generated by
[xi , x j ] for 1 ≤ i < j ≤ n.

Let L = 〈z〉 be a cyclic group of order pn , n ≥ 3 and let z act on H via a non-inner
central automorphism σ of H (which always exists in a Miller p-group). Let N be
a subgroup of order p in H ′ but not in �1(H). Now define G to be the partial semi-
direct product of H by L amalgamated at N (cf. [14] or [28]). With this setting, we
finally have

Theorem 25 If H/N is a Miller group, then so is G.

Again, we remark that the condition “H/N is Miller”, in the preceding theorem,
cannot be dropped, as shown by the following example. Let H = 〈a, b, c, d〉 be the
p-group of class 2 described above. Then, the map σ defined by

a �→ ad p, b �→ b, c �→ c, d �→ d

extends to a non-inner central automorphism of H . Let L = 〈z〉 be of order p3 acting
on H via σ . Then, G is Miller if N = 〈[a, b]〉, and G is not if N = 〈[a, d]〉.
Remark 26 The above construction of non-special Miller groups G from special
Miller groups H is valid even without hypotheses (i)–(iii) on H . That Aut(G) =
Autcent(G) can be proved using the same arguments as in [28], which do not rely on
hypotheses (i)–(iii). Then, one can apply Theorem23 to show that Aut(G) is abelian.

We conclude with the following remarks. In all known examples of Miller p-
groupsG,G/Z(G) is homocyclic. It will be interesting to knowwhether this happens
in all Millers p-groups. If true, one might expect if γ2(G) is always homocyclic.
Again in the known Millers p-groups G one can observe that either G ′ and Z(G)

have same ranks or G/Z(G) and G/G ′ have same ranks. We wonder whether this
is true for all Miller p-groups.

References

1. J.E. Adney, T. Yen, Automorphisms of p-group. Ill. J. Math. 9, 137–143 (1965)
2. G. Ban, S. Yu, Minimal abelian groups that are not automorphism groups. Arch. Math. 70,

427–434 (1998)
3. Y. Berkovich, Z. Janko, Groups of Prime Power Order, vol. 2 (Walter de Gruyter, New York,

2008)
4. J.N.S. Bidwell, M.J. Curran, D.J. McCaughan, Automorphisms of direct products of finite

groups. Arch. Math. 86, 481–489 (2006)
5. A. Caranti, A Module theoretic approach to abelian automorphism groups. Isr. J. Math. 205,

235–246 (2015)
6. A. Caranti, Erratum tomodule-theoretic approach to abelian automorphismgroups. Isr. J.Math.

215, 1025–1026 (2016)
7. M.J. Curran, Semi-direct product groups with abelian automorphism groups. J. Austral. Math.

Soc. (Ser. A) 42, 84–91 (1987)



140 R. D. Kitture and M. K. Yadav

8. M.J. Curran, Direct products with abelian automorphism groups. Commun. Algebra 35, 389–
397 (2007)

9. R. Dark, C.M. Scoppola, On Camina groups of prime power order. J. Algebra 181, 787–802
(1996)

10. B. E. Earnley, On finite groups whose group of automorphisms is abelian, Ph.D. Thesis, Wayne
State University, 1975

11. R. Faudree, A note on the automorphism group of a p-group. Proc. Am. Math. Soc. 19, 1379–
1382 (1968)

12. R. Faudree, Groups in which each element commutes with its epimorphic images. Proc. Am.
Math. Soc. 27(2), 236–240 (1971)

13. S.P. Glasby, 2-groups with every automorphisms central. J. Austral. Math. Soc. (Ser. A) 41,
233–236 (1986)

14. D. Gorenstein, Finite Groups, 2nd edn. (AMS Chelsea Publication, 1980)
15. H. Heineken, M. Liebeck, The occurrence of finite groups in the automorphism group of

nilpotent groups of class 2. Arch. Math. 25, 8–16 (1974)
16. H. Heineken, Nilpotente Gruppen, deren sm̈atliche Normalteiler charakteristisch sind, Arch.

Math. 33 (1979/80), 497 - 503
17. P.V. Hegarty, Minimal abelian automorphism groups of finite groups. Rend. Sem. Mat. Univ.

Padova 94, 121–135 (1995)
18. G. T. Helleloid, A survey on automorphism groups of finite groups, arXiv:math/0610294v2

[math.GR], 25 Oct. 2006
19. H. Hilton, An Introduction to the Theory of Groups of Finite Order (Oxford at the Clarendon

Press, 1908)
20. C. Hopkins, Non-abelian groups whose groups of isomorphisms are abelian. Ann.Math. 29(1),

508–520 (1927)
21. A. Hughes, Automorphisms of nilpotent groups and supersolvable groups. Proc. Symp. Pure

Math. 37, 205–207 (1980). AMS
22. M.H. Jafari, Elementary abelian p-groups as central automorphism groups. Commun. Algebra

34, 601–607 (2006)
23. A. Jamali, Somenewnon-abelian 2-groupswith abelian automorphismgroups. J.GroupTheory

5, 53–57 (2002)
24. V.K. Jain, M.K. Yadav, On finite p-groups whose automorphisms are all central. Isr. J. Math.

189, 225–236 (2012)
25. V.K. Jain, P.K. Rai, M.K. Yadav, On finite p-groups with abelian automorphism groups. Int. J.

Algebra Comput. 23, 1063–1077 (2013)
26. D. Jonah, M. Konvisser, Some non-abelian p-groups with abelian automorphism groups. Arch.

Math. 26, 131–133 (1975)
27. T. Karimi, Z.K. Farimani, p-groups with elementary abelian central automorphism groups.

World Appl. Program. 1, 352–354 (2011)
28. R.D. Kitture,M.K.Yadav, Note onCaranti’smethod of construction ofMiller groups.Monatsh.

Math. 185, 87–101 (2018)
29. I.Malinowska, p-automorphisms of finite p-groups - problems and questions (Rome,Advances

in Group Theory, Aracne Edritice, 2002), pp. 111–127
30. A. Mahalanobis, Diffe-Hellman key exchange protocol and non-Abelian nilpotent groups. Isr.

J. Math. 165, 161–187 (2008)
31. I.D. Macdonald, The Theory of Groups (Oxford at the Clarendon Press, 1968)
32. A. Mann, Some questions about p-groups. J. Austral. Math. Soc. (Ser. A) 67, 356–379 (1999)
33. G.A. Miller, A non-abelian group whose group of isomorphisms is abelian. Messenger Math.

XVIII, 124–125 (1913-1914)
34. M. Morigi, On the minimal number of generators of finite non-abelian p-groups having an

abelian automorphism group. Commun. Algebra 23, 2045–2065 (1995)
35. M. Morigi, On p-groups with abelian automorphism group. Rend. Sem. Mat. Univ. Padova 92,

47–58 (1994)
36. R.R. Struik, Some non-abelian 2-groups with abelian automorphism groups. Arch. Math. 39,

299–302 (1982)

http://arxiv.org/abs/math/0610294v2


Camina Groups, Camina Pairs,
and Generalizations
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1 Introduction

This is a survey of results regarding Camina groups and Camina pairs and related
topics. Except where mentioned, all groups are finite. There are no new results in this
paper, and we do not include proofs. Our goal is to put in one place all of the main
results regarding Camina groups andCamina pairs with one exception. The condition
semi-extra special is equivalent to being a nilpotent Camina group of nilpotence class
2. Since we recently wrote an expository article covering the major results regarding
semi-extra special groups [47], we are not repeating that content here; instead, we
refer readers interested in Camina groups of nilpotence class 2 to consult [47]. We
also include many of the generalizations of Camina groups and Camina pairs that
have been studied. Finally, we give an extensive list of the problems where these
ideas have been applied. We have tried to be as complete as we can; however, we
admit the likelihood that we have missed something.

The study of Camina pairs began with [12] where Camina considered two con-
ditions that generalized Frobenius groups and extra special groups. We discuss
Camina’s conditions in Sect. 4. Macdonald then picked up the study of Camina pairs
in [52] and began the study of Camina groups in [52, 53]. We believe that the names
Camina group and Camina pair were introduced in [57], but one can see that those
names quickly caught on.
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In this paper, we will begin by defining Camina groups and presenting results
about general Camina groups. The main result in this section is the characterization
of Camina groups by Dark and Scoppola in Theorem2.4. We then turn to Camina
p-groups. As we mentioned above, the exposition of Camina p-groups of nilpotence
class 2 can be found in [47]. In this paper, we present known results regardingCamina
p-groups of nilpotence class 3.

We then turn to Camina pairs. We begin by defining Camina pairs and mentioning
the general results regarding Camina pairs. Among these general results, we include
Camina’s initial theorem that started the investigation of these topics.We then present
the known results regarding the case where (G, K ) is a Camina pair such that G/K
is a p-group.We then discuss a situation studied by Gagola independently of Camina
pairs, but later, it was realized thatGagola’s situationwas a special case of theCamina
pair situation. Next, we present the case where (G, K ) is a Camina pair and K is
a p-group. Then, we consider the case where (G, K ) is a Camina pair and G is a
p-group. We follow that by including Camina pairs (G, K ) where G is not solvable.
We close the section on Camina pairs with the homogeneous induction condition
studied by Kuisch and van der Waall.

We then look at generalizations of these ideas. The first is the idea of anti-central
elements considered by Ladisch. Next, we present our results about the vanishing-off
subgroup of a group. We then present Camina triples. We close this section with a
discussion of other generalizations that have been studied.

Finally, we present applications where these ideas have been used. First is
Mattarei’s amazing examples of groups with identical character tables and differ-
ent derived lengths. We then discuss weak Cayley tables. After that, we have the
solution of Snyder’s problem. We close with a long list of other applications. For
many of these other applications, we only mention the application, and provide few
other details.

We would like to thank the referees for the careful reading of this paper and the
helpful suggestions.

2 Camina Groups

The following equivalent conditions can be seen as the basis of Camina groups
and the motivation for Camina pairs, and all related objects. The following was
proved as Lemma2.1 in [40], but that result was motivated by Lemma1 of [12] and
Proposition3.1 of [13].

Lemma 2.1 Let g be an element of a group G. Then, the following are equivalent:

1. The conjugacy class of g is gG ′.
2. |CG(g)| = |G : G ′|.
3. For every z ∈ G ′, there is an element y ∈ G so that [g, y] = z.
4. χ(g) = 0 for all nonlinear χ ∈ Irr(G).
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We will call an element g of a group G that satisfies the conditions of Lemma2.1
a Camina element. A nonabelian group G is a Camina group if every element in
G \ G ′ is a Camina element. There are two key examples of Camina groups (1) any
Frobenius group whose Frobenius complement is abelian and (2) any extra special
p-group. In particular, the quaternions and the dihedral group of order 8 are Camina
groups. As a corollary to Lemma2.1, we obtain the following equivalent conditions
for a group to be a Camina group.

Lemma 2.2 Let G be a group. Then, the following are equivalent:

1. G is a Camina group.
2. For every element g ∈ G \ G ′, the conjugacy class of g in G is gG ′.
3. For every element g ∈ G \ G ′, |CG(g)| = |G : G ′|.
4. For every element g ∈ G \ G ′ and for every element z ∈ G ′, there is an element

y ∈ G so that [g, y] = z.
5. Every character χ ∈ Irr(G) vanishes on G \ G ′.

We make a couple of observations about Camina groups.

Lemma 2.3 Let G be a Camina group. Then the following are true:

1. If N is a normal subgroup of G, then either N ≤ G ′ or G ′ ≤ N.
2. If N < G ′, then G/N is also a Camina group.

The definition of Camina groups was formulated as a common generalization of
extra special groups and Frobenius groups. Dark and Scoppola have proved in [16]
that there are few other examples:

Theorem 2.4 (Dark and Scoppola) Let G be a Camina group. Then, one of the
following occurs:

1. G is a Frobenius group whose Frobenius complement is cyclic.
2. G is a Frobenius group whose Frobenius complement is the quaternions.
3. G is a p-group for some prime p.

In particular, the only examples of Camina groups are Frobenius groups whose
complements are cyclic, Frobenius groups whose complements are isomorphic to
the quaternion group, and Camina groups that are p-groups. We will talk more
about Camina p-groups in Sect. 3, and we will see that these groups have many
properties in common with extra special groups. Recall that the Frobenius kernel of
a Frobenius group must be nilpotent. The following corollary follows immediately
from Theorem2.4.

Corollary 2.5 If G is a Camina group, then G is solvable.

At this point, we cannot help but plug our own recent papers [34, 43] where we
give a new proof of Theorem2.4. Our proof relies on the following theorem which is
of independent interest. In particular, it has been used by Herzog, Longobardi, and
Maj in their work on generalizing the definition of Camina groups to infinite groups
(see [27]).
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Theorem 2.6 Let P be a Camina p-group that acts on a nontrivial p′-group Q so
that CP(x) ≤ P ′ for every x ∈ Q \ {1}. Then the action of P is Frobenius and P is
the quaternions.

While we do not want to get sidetracked into a discussion regarding infinite
Camina groups, we do mention that the situation appears much more complicated
in that case. In particular, Herzog, Longobardi, and Maj give examples of infinite
Camina groups that are not solvable. Also, infinite Camina groups are studied in [19,
65].

3 Camina p-Groups

Since Frobenius groups are relatively well understood, most of the focus on Camina
groups has been on Camina groups that are p-groups. We say that such a group is a
Camina p-group. The structure of these groups is highly limited. In particular, there
is a very tight bound on their nilpotence class. This next theorem gives a flavor of
this. It is Theorem3.1 in [53]. In [55], Mann presents an alternate proof of this next
theorem.

Theorem 3.1 (MacDonald) If G is a Camina 2-group, then G has nilpotence class
2.

When p is odd, the bound is only slightly less tight. This next result was proved
in [16].

Theorem 3.2 (Dark and Scoppola) If G is a Camina p-group for an odd prime p,
then its nilpotence class is either 2 or 3.

In fact, Mann and Scoppola had previously proved the following preliminary
result in [57].

Theorem 3.3 (Mann and Scoppola) Let G be a Camina p-group for an odd prime
p and assume that G is Metabelian. Then, G has nilpotence class 2 or 3.

It turns out that Theorem3.3 is a key step in Dark and Scoppola’s proof of
Theorem3.2. In particular, in[16], Dark and Scoppola use Lie rings to show that
Theorem3.2 can be reduced to the case where the group is metabelian, and so they
complete the proof of Theorem3.2 by appealing to Theorem3.3.

A p-group G is said to be semi-extraspecial if for every subgroup N in Z(G)

having index p, thenG/N is extra special. The following result is proved as Theorem
1.2 in [76].

Theorem 3.4 (Verardi) Let G be a group. Then, the following are equivalent:

1. G is a Camina group of nilpotence class 2.
2. G is a semi-extra special p-group for some prime p.
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Thus, the study of Camina p-groups of nilpotent class 2 is precisely the study of
semi-extra special groups.We have recently written an expository paper that presents
many of the known results regarding these groups [47]. Rather than repeating that
work here, we refer the reader to that paper.

One particular family of semi-extra special groups should be highlighted. We
define the Heisenberg group of degree n for the prime p to be a Sylow p-subgroup
of GL3(pn). That is, this is the group of 3 by 3 upper triangular matrices with 1’s on
the diagonal and entries from the field of order pn . Note that it has order p3n .

3.1 Camina p-Groups of Nilpotence Class 3

We now turn to Camina groups of nilpotence class 3. Recall from Theorem3.1 if
G is a Camina 2-group, then G has nilpotent class 2. Therefore, when discussing a
Camina p-group of nilpotence class 3, we necessarily know that p is an odd prime.

We begin with a theorem (Theorem3.5) that lists most of the known results about
these groups.

Theorem 3.5 Let G be a Camina p-group of nilpotence class 3. Let C = CG(G ′).
Then, the following are true:

1. G/G ′, G ′/G3, and G3 are elementary abelian where G3 = [G ′,G].
2. G3 = Z(G) and G ′/G3 = Z(G/G3).
3. |G : G ′| = p2n, |G ′ : G3| = pn, and |G3| < p3n/2 for some even integer n.
4. G/G3 and G ′ have exponent p.
5. Either |C : G ′| = |G ′ : G3| = pn or C = G ′.
6. C/G3 is an elementary abelian p-group.
7. If |G3| = p, then |C : G ′| = pn.
8. If |G3| ≥ pn, then G/G3 is isomorphic to the Heisenberg group of degree n for

the prime p.
9. Every nonlinear character in Irr(G/G3) is fully ramified with respect to G/G ′

and every character in Irr(G | G3) is fully ramified with respect to G/Z.
10. cd(G) = {1, pn, p3n/2}.

We now list the references for the results included in Theorem3.5. Conclusions
(1), (2), and the first two parts of (3) were proved by MacDonald as Corollary 2.3,
Theorem5.2 (ii), and Corollary 5.3 in [52]; the last part of (3) was proved by Dark
and Scoppola in [16]; and Conclusion (4) was proved by Mann in [55]. Conclusion
(5) is a corollary of Lemma5.1 of [52] with some of the arguments used in the proof
of Theorem5.2 of [52]. (A proof of Conclusion (5) in a more general context can
be found as Lemma4.11 of [41].) Conclusion (6) is a consequence of Theorem1.3
(iii) and (iv) of [57]. (An independent proof of Conclusion (6) can be found as
Proposition4 of [34].) Conclusion (7) was proved byMacdonald in [52]; Conclusion
(8) was proved by Mann and Scoppola in [57]; and Conclusions (9) and (10) were
proved by the author along with Moretó and Wolf in [48].
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Recall from Lemma2.3 that if G is a Camina group and N < G ′ is a normal
subgroup of G, then G/N is also a Camina group. In particular, if G is a Camina
group of nilpotence class 3, then G/G3 must be a Camina group of nilpotence class
2. This fact is used in proving (1), (2), and (3) of Theorem3.5.

In Sect. 6 of [52], MacDonald constructs for every odd prime p and every even
positive integer n, a Camina p-groupG such that |G| = p3n+1,G has nilpotence class
3, and |G3| = p. MacDonald also constructs a Camina group G of nilpotence class
3 and order 38 where |G : G ′| = 34 and |G ′ : G3| = |G3| = 32 in [53]. In Sect. 4
of [16], Dark and Scoppola construct for any odd prime p and every positive even
integer n, a Camina p-group G of order p4n having nilpotence class 3 and satisfying
|G3| = pn where |G : G ′| = |G3|2.

One note on conclusion (3) of Theorem3.5. MacDonald sketches out a proof of
the stronger assertion that |G3| ≤ pn in Lemma2.1 of [53], but Dark and Scoppola
point out in Sect. 1 in [16] that there is a problem with Macdonald’s sketched proof.
Dark and Scoppola prove in [16] |G3| < p3n/2. At this time, there are no known
Camina groups G of nilpotence class 3 with pn < |G3| < p3n/2, so it is possible that
Macdonald’s assertion is true. In particular, whenG satisfies the equation |G3| ≤ pn ,
we say that G satisfies the Macdonald Bound. At this time, we have the following
open question:

Open Question: Does the MacDonald bound hold for all Camina groups of nilpo-
tence class 3? That is, does there exists a Camina group G of nilpotence class 3 with
|G : G ′| = p2n for the prime p and positive integer n with pn < |G3| < p3n/2?

Notice that the smallest value of n for which there might possibly be a Camina
group G of nilpotence class 3 that violates the MacDonald bound is n = 4, and in
this case, such a groupG would have |G : G ′| = p8, |G ′ : G3| = p4, and |G3| = p5;
so |G| = p17.

In our paper, [46], we consider bounds on |G3| when G is a Camina group of
nilpotence class 3. We are not able to approach the MacDonald bound, but we do
obtain some interesting results in some special cases. We note that |G ′ : G3| is a
square, so |G ′ : G3|1/2 is necessarily an integer. The following is Theorem1 of [46].

Theorem 3.6 If G is a Camina p-group of nilpotence class 3 and G ′ < CG(G ′),
then |G3| ≤ |G ′ : G3|1/2.

In the next theorem, we remove the hypothesis that G ′ < CG(G ′). However, we
do add a hypothesis on the number of abelian subgroups of the quotient G/G3. This
is Theorem2 of [46].

Theorem 3.7 Let G be aCamina p-group of nilpotence class 3, and let H = G/G3.

1. If H has one or two abelian subgroups of order |H : H ′|, then CG(G ′) > G ′.
2. If H has pa + 1 abelian subgroups of order |H : H ′| for the positive integer a,

then either CG(G ′) > G ′ or |G3| ≤ p2a.

Note that, Theorem3.5 (8) shows that if G is a Camina group of nilpotence class
3 with |G3| ≥ |G : G ′|1/2, then G/G3 is isomorphic to the Heisenberg group. On
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the other hand, if |G3| < |G : G ′|1/2, then we have much less information regarding
G/G3. We do know that G/G3 must be a Camina group and it must have nilpotence
class 2; so by Theorem3.4 we know that G/G3 must be semi-extra special. Since
G3 > 1, we also know that there will a subgroup N < G3 so that |G3 : N | = p.
Letting C/N = CG/N (G ′/N ) and applying Theorem3.5 (7), we see that C/G3 will
be abelian. This implies that G/G3 has an abelian subgroup of order |G : G ′|. Not
all semi-extra special groups have an abelian subgroup of this order. In [46], we
present two nonisomorphic semi-extra special groups that are not isomorphic to the
Heisenberg group, but it do occur as the quotients of Camina groups of nilpotence
class 3. This leads us to ask the following question.

OpenQuestion:Which semi-extra special groups can occur as quotients ofCamina
groups of nilpotence class 3?

We close by mentioning the following result proved by Mann in Theorem3 in
[55].

Theorem 3.8 (Mann) If G is a Camina 3-group of nilpotence class 3, then G has
exponent 9.

In general, if G is a Camina p-group of nilpotence class 3, then Theorem3.5 (1)
implies that the exponent of G is at most p2. We note the groups constructed by
Dark and Scoppola mentioned above have exponent p when p ≥ 5, so p = 3 is an
exception.

4 Camina Pairs

Camina pairs arise by generalizing the conditions in Lemma2.2 where we replace
G ′ with some arbitrary normal subgroup K in G. In particular, let G be a group and
1 < K be a proper normal subgroup of G. Then, (G, K ) is a Camina pair if for
every element g ∈ G \ K , then g is conjugate to every element of gK . Notice that,
this says that the conjugacy class of g is a union of cosets of K in G.

Now, when K = G ′, this is the precisely that condition that we used to define
Camina groups. Hence, a group G is a Camina group if and only if (G,G ′) is a
Camina pair. In many places, the term Camina kernel is used for the subgroup K .
That is. K is a Camina kernel for G if and only if (G, K ) is a Camina pair.

SinceLemma2.2 has a number of equivalent conditions, it should not be surprising
that there are a large number of equivalent conditions forCamina pairs. InLemma4.1,
we list a number of these equivalent conditions. If K is a normal subgroup of G, then
we write Irr(G | K ) for the set of irreducible characters of G whose kernels do not
contain K .

Lemma 4.1 Let 1 < K be a proper normal subgroup of a group G. Then, the fol-
lowing are equivalent:

1. (G, K ) is a Camina pair.
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2. If x ∈ G \ K, then |CG(x)| = |CG/K (xK )|.
3. If xK and yK are conjugate in G/K and nontrivial, then x is conjugate to y in

G.
4. For all x ∈ G \ K and z ∈ K, then there exists an element y ∈ G so that [x, y] =

z.
5. If C1 = {1}, . . . ,Cm are the conjugacy classes of G contained in K and

Cm+1, . . . ,Cn are the conjugacy classes of G outside K , then CiC j = C j for
1 ≤ i ≤ m and m + 1 ≤ j ≤ n.

6. For all χ ∈ Irr(G | K ), then χ vanishes on G \ K.
7. Every nonprincipal character in Irr(K ) induces homogeneously to G.

We now list the references for the results included in Lemma4.1. That Condition
(2) follows from Conditions (3) and (4) is proved in Lemma1 of [12] Conditions (2),
(3), (4), and (6) were proved equivalent to the Camina condition in Proposition3.1
of [13]. Condition (5) was proved equivalent to Condition (6) in [71]. Condition (7)
was proved equivalent to the Camina condition in Lemma2.1 of [37].

We saw above that G is a Camina group if and only if (G,G ′) is a Camina pair.
When G is a Camina group of nilpotence class 3, we can say more. Macdonald
proved the following as Theorem5.2 (i) of [52].

Theorem 4.2 (Macdonald) Let G be a Camina p-group of nilpotence class 3. Then
(G,G3) is a Camina pair.

Some other facts regarding Camina pairs are reasonably obvious.

Lemma 4.3 Let (G, K ) be a Camina pair. Then, the following are true:

1. If N < K is normal in G, then (G/N , K/N ) is a Camina pair.
2. Z(G) ≤ K ≤ G ′.

Recall that if G is a Frobenius group where a Frobenius complement is either
cyclic or quaternion, then G is a Camina group. On the other hand, it is not difficult
to see that if G is any Frobenius group with Frobenius kernel K , then (G, K ) is a
Camina pair. Thus, generalizing fromCamina groups to Camina pairs, we capture all
Frobenius groups. As we mentioned earlier, K is sometimes called a Camina kernel
when (G, K ) is a Camina pair, and in this sense, we can think of the Camina kernel as
being a generalization of the Frobenius kernel. In Theorem2 of [12], Camina proved
the first structural result regarding Camina pairs.

Theorem 4.4 (Camina) If (G, K ) is a Camina pair, then either G is Frobenius group
with Frobenius kernel K or one of G/K or K is a p-group for some prime p.

Wewill use Theorem4.4 to split Camina pairs into different categories. In Propo-
sition3.2 of [13], Chillag and Macdonald find a way to distinguish the Camina pairs
that are Frobenius groups. Recall that a group G splits over a normal subgroup K if
there is a subgroup H that complements K . That is, G = K H and K ∩ H = 1.
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Theorem 4.5 (Chillag and Macdonald) If (G, K ) is a Camina pair, then G is a
Frobenius group with Frobenius kernel K if and only if G splits over K .

This gives the immediate corollary which was actually first proved by Camina in
[12].

Corollary 4.6 (Camina) If (G, K ) be a Camina pair, then G is a Frobenius group
with Frobenius kernel K if and only if (|G : K |, |K |) = 1.

While we are discussing general results for Camina pairs, we mention a couple
of other lemmas that appear in [13] that seem useful. Lemma4.7 shows that Camina
pairs can be put together to obtain another Camina pair.

Lemma 4.7 If (G, K ) and (G/K , N/K ) areCamina pairs, then (G, N ) is aCamina
pair.

Lemma4.8 shows that certain subgroups of Camina pairs yield newCamina pairs.

Lemma 4.8 If (G, K ) is aCaminapair andG = HK, then (H, H ∩ K ) is aCamina
pair.

Lemma4.9 was proved in [13]. This yields information about a Sylow subgroup
of a Camina pair.

Lemma 4.9 Suppose (G, K ) is a Camina pair where either G/K or K is a p-group
and G is not a Frobenius group with Frobenius kernel K . If P is a Sylow p-subgroup
of G, then Z(P) ≤ K and in particular, P is not abelian.

The following generalizes a result of Gagola (see Corollary 2.3 of [20]).
Lemma4.10 appears as Proposition5.1 in [37].

Lemma 4.10 (Kuisch, van der Waall) Suppose (G, K ) is a Camina pair. If π is the
set of primes that divide |K | and ν ∈ Irr(K ) is a nonprincipal character, then the
stabilizer in G of ν is a π-group. In particular, if K is a p-group for some prime p,
then the stabilizer in G of ν is a p-group.

We do want to mention the result which started the study of Camina pairs. This
study began with the following observation of Camina that was Theorem1 of [12].
Camina’s motivation came from the fact that both Frobenius groups and extra special
groups satisfy both of these properties.

Theorem 4.11 (Camina) Let G be a group, and let N be a nontrivial proper normal
subgroup of G. Then, the following two conditions are equivalent:

1. If x ∈ G \ N, then x is conjugate to every element in xN.
2. There exist irreducible characters χ1, . . . ,χn of G so that each χi vanishes on

G \ N and there exist positive integers a1, . . . , an so that
∑n

i=1 aiχi is constant
on N #.

Notice that, Condition (1) of [12] is the definition of Camina pairs, so Camina
pairs can be characterized by Condition (2). We define Irr(G | N ) to be the set of
the irreducible characters of G whose kernels do not contain N . It is not difficult to
show in Condition (2) that Irr(G | N ) = {χ1, . . . ,χn}.
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4.1 G/K a p-Group

In the next several subsections, we will look at Camina pairs in more detail. Re-
call from Theorem4.4 that if (G, K ) is a Camina pair where G is not a Frobenius
group with Frobenius kernel K , then either G/K or K is a p-group. In this first
section, we consider Camina pairs (G, K ) where G/K is a p-group for some prime
p. In Theorem2.1 of [33], Isaacs proved the following theorem which strengthens
Theorem4.4.

Theorem 4.12 (Isaacs) Suppose (G, K ) is a Camina pair such that G/K is nilpo-
tent. Then, either

1. G is a Frobenius group with Frobenius kernel K , or
2. G/K is a p-group for some prime p, G has a normal p-complement M, and

CG(m) ≤ K for all m ∈ M \ {1}.
Since Frobenius groups have normal p-complements for every prime p, the fol-

lowing result is a corollary to the theorem labeled as Theorem C of [33]. This result
was proved independently in [14].

Theorem 4.13 (Isaacs) If (G, K ) is a Camina pair and G/K is a p-group for some
prime p, then G has a normal p-complement.

We now look for examples of Camina pairs (G, K ) where G/K is a p-group.
Obviously,whenG is a Frobenius group and K is a Frobenius kernelwhoseFrobenius
complement is a p-group, (G, K )will be such an example. Another example is when
(G,G ′) where G is a Camina p-group. We have also seen that if G is a Frobenius
group whose Frobenius complement is isomorphic to the quaternions, then (G,G ′)
is a Camina pair whereG/G ′ has order 4. At this time, no other Camina pairs (G, K )

where G/K is a p-group are known.
The question of the existence of other examples has been considered in [13, 14].

In [13], they proved that there is no other example whose Sylow p-subgroup has
nilpotence class at most 2. In [14], they take this further.

Theorem 4.14 (Chillag, Mann, Scoppola) Suppose (G, K ) is a Camina pair such
that G/K is a p-group and K is not a p-group. If P is a Sylow p-subgroup of G,
then P does not satisfy any of the following conditions (among others): (1) P is of
maximal class, (2) the nilpotence class of P is at most p + 1, or (3) K ∩ P = Z(P).

In the situation of Theorem4.14, they do not prove, but they state that they have
a proof that the case where p = 2 and P has nilpotence class 4 cannot occur.

In Proposition11 of [55],Mann proves the following curious necessary condition:

Theorem 4.15 (Mann) Let (G, K ) be a Camina pair with G/K a p-group and G
not a p-group for some odd prime p. Then any two maximal cyclic subgroups of
G/K that have a nontrivial intersection are conjugate. The same conclusion holds
for p = 2, provided the intersection has size at least 4.
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Mann mentions that groups of exponent p, cyclic groups, and dihedral groups
are obvious examples of groups satisfying the conjugacy condition of Theorem4.15.
Mann notes one group of order 81 that satisfies this condition and other than the
obvious groups, it is the only group of order p4 that satisfies this condition. He
mentions that there exist examples of orders p5 and p6. he stated that he will return
to these groups in a later paper, but to our knowledge, no one has published any
further results regarding these groups.

Given all of this evidence, the following seems like a reasonable conjecture:

Conjecture Let (G, K ) be a Camina pair and assume that G/K is a p-group for
some prime p. Then, one of the following occurs: G is a Frobenius group with
Frobenius kernel K and Frobenius complement that is a p-group, G is a Camina
p-group with K = G ′, or G is a Frobenius group whose Frobenius complement is
the quaternions and K = G ′.

4.2 Gagola Characters

For the remaining subsections regarding Camina pairs, we consider Camina pairs
where the normal subgroup is a p-group. Before looking at these Camina pairs
in detail, we make a detour into a condition that was studied independently. In
[20], Gagola studied the following condition. Suppose a group G has an irreducible
character χ that vanishes on all but two conjugacy classes of G. He proved the
following as Lemma2.1 in [20].

Theorem 4.16 (Gagola) Let G be a group with |G| > 2 that has an irreducible
character χ that does not vanish on exactly two conjugacy classes of G. Then χ
is unique, and it is the unique faithful irreducible character of G. Furthermore, G
contains a unique minimal normal subgroup N. The subgroup N is an elementary
abelian p-group for some prime p. The characterχ vanishes onG \ N and is nonzero
on N. Finally, the action of G by conjugation on N is transitive on the nonidentity
elements of N .

If G with |G| > 2 has an irreducible character χ so that χ does not vanish on
exactly two conjugacy classes of G, then we will say that χ is a Gagola character
and G is a Gagola group. If G is a Gagola group, then we apply Theorem4.16 to
see that G has a unique minimal normal subgroup N . It is not difficult to see that
Irr(G | N ) = {χ} where χ is the Gagola character, and we know that χ vanishes on
G \ N . By Lemma4.1, we see that (G, N ) is a Camina pair where N is a p-group,
so all of the results of Sect. 4.3 will apply to Gagola groups. In particular, the groups
Gagola studied are a special case of Camina pairs.

It is not difficult to see that extra special 2-groups and doubly transitive Frobenius
groups will be examples of Gagola groups. Furthermore, if G is a p-group and a
Gagola group, then |Z(G)| = 2, and thus, G is a 2-group. In particular, if G is a
p-group, then G is a Gagola group if and only if (G, Z(G)) is a Camina pair and
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|Z(G)| = 2. If G is a Frobenius group, then G is a Gagola group if and only if G is
a doubly transitive Frobenius group.

Prof. Gagola’s work predates most of the results on Camina pairs. At least, a
couple of the results that Gagola first proved for Gagola groups were later proved for
Camina pairs. For example, Gagola proved the following as Theorem2.5 in [20].

Theorem 4.17 (Gagola) Let G be a Gagola group and write N for the unique
minimal normal subgroup of G. Suppose p is the prime so that N is a p-group. If P
is a Sylow p-subgroup of G, then Z(P) ≤ N, Z(P) = N if and only if P is normal
in G, and N is a term of the upper central series for G.

The following theorem was proved as Theorem6.2 of [20] gives more structure
on the p-subgroups of a Gagola group.

Theorem 4.18 (Gagola) Let G be a Gagola group, and let N be the unique minimal
normal subgroup which we know is an elementary abelian p-group for some prime
p. Then, N = Op(G) if and only if G is a doubly transitive Frobenius group or
|G| = 2.

In Theorem6.3 of [20], Gagola shows that every p-group shows up as a subgroup
of a Sylow p-subgroup of G/N where G is a Gagola group and N is the unique
minimal normal subgroup and N is a p-group.

Theorem 4.19 (Gagola) Let p be a prime, let Q be any p-group, and let a be
a positive integer. Then, there exists a Gagola group G with a normal Sylow p-
subgroup P and a cyclic group H of order pa − 1 so that G = PH, Z(P)H is a
doubly transitive Frobenius group of order pa(pa − 1) and Q is isomorphic to a
subgroup of P/Z(P). Notice that in this case, Z(P) is the unique minimal normal
subgroup of G and |Z(P)| = pa.

Observe that Theorem4.19 implies that Gagola groups are going to be plentiful.
Gagola also presents two examples of Gagola groups where the Sylow p-subgroup is
not normal when the uniqueminimal normal subgroup is a p-group. The construction
of these examples appears on p. 383 and 384 of [20]. They are also described in detail
on p. 274–275 in [14]. Both examples presented are {2, 3}-groups. One has a unique
minimal normal 2-subgroup whose Sylow 2-subgroup is not normal. The other has
a unique minimal normal 3-subgroup whose Sylow 3-subgroup is not normal.

In Lemma3.1 of [45], we found another characterization of Gagola groups.

Lemma 4.20 Let G have a minimal normal subgroup N that is an elementary
abelian p-group for some prime p. Then, χ ∈ Irr(G) is a Gagola character for
G if and only if χ(1) = (|G| − |G : N |)1/2.

Recently, Wang, Chang, and Jin generalized the idea of Gagola characters in [77].
In their paper, they consider a group G and a character χ with the property that
number of conjugacy classes that χ does not vanish on is exactly one more than
number of conjugates of χ under the action on the characters of G by the Galois
group of the field obtained by extending the rational field by the values of χ over the
rational field. They show that these groups also yield a Camina pair, and they prove
number of interesting results regarding these groups.
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4.3 K is a p-Group

We now study the general case of a Camina pair (G, K ) where K is a p-group.
Recall that we do not know of any Camina pair (G, K )where G/K is a p-group, but
G is neither a Frobenius group nor a p-group. The situation when K is a p-group
is quite different. We know of many examples where (G, K ) is a Camina pair such
K is a p-group and G is neither a Frobenius group nor a p-group. In particular, the
examples due to Gagola include those that are presented in Theorem4.18 and the two
examples mentioned in the penultimate paragraph of Sect. 4.2. We will later mention
other examples of these pairs.

We now gather results regarding Camina pairs (G, K ) where K is a p-group. Let
P be a Sylow p-subgroup of G. We know that K ≤ P . By Lemma4.6, we know that
G is a Frobenius group if and only if P = K . Given a group G, a central series is a
series of subgroups 1 = N0 ≤ N1 ≤ · · · ≤ Nn so that Ni+1/Ni ≤ Z(G/Ni ) for all i
so that 0 ≤ i ≤ n − 1. The group G is nilpotent if and only if G has a central series
with Nn = G. When G is nilpotent, we only consider central series that end with G.
We now present Proposition1.1 of [14] which shows that K will be a term in every
central series for P . Notice that, this generalizes the last conclusion of Theorem4.17.

Lemma 4.21 Let (G, K ) be a Camina pair with K a p-group and let P be a Sylow
p-subgroup of G. Then, K appears as a term in every central series of P.

The forward direction of this next theorem is presented as Lemma4.2 in [13]. The
converse is proved as Theorem1.1 in [75].

Theorem 4.22 (Kuisch, van der Waall) Let (G, K ) be a Camina pair where K is a
p-group for some prime p. Let P be a Sylow p-subgroup of G. Then, P is normal
in G if and only if (P, K ) is a Camina pair.

The forward direction of Theorem4.22 can be generalized. The following is The-
orem5.4 of [37].

Theorem 4.23 (Kuisch, van der Waall) Let (G, K ) be a Camina pair where K is a
p-group for some prime p. If M is a normal subgroup of G and K < M and p does
not divide |G : M |, then (M, K ) is a Camina pair.

We know that if G is a Gagola group, then G has a normal p-subgroup for some
prime p so that (G, N ) is a Camina pair. Applying Theorem4.22, we see that if
G is a Gagola group and P is a normal Sylow p-subgroup of G, then (P, N ) will
be a Camina pair. With this in mind, we may appeal to Theorem4.19 to obtain the
following.

Corollary 4.24 Let p be a prime, let Q be a p-group, and let a > 0 be an integer.
Then, there exists a p-group P so that (P, Z(P)) is a Camina pair, |Z(P)| = pa,
and Q is isomorphic to a subgroup of P/Z(P).
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A group is said to be p-closed if its Sylow p-subgroup is normal. At one point,
people asked whether (G, K ) is a Camina pair where K is a p-group implies that
G is p-closed. (See p. 112 of [13].) It was then realized that the groups constructed
by Gagola in [20] are Camina pairs. As we saw in Sect. 4.2, two of the examples
presented by Gagola give Camina pairs (G, K ) with K a p-group where G is not
p-closed. One example has p = 2 and the other example has p = 3. At that point,
it was conjectured that Camina pairs of the form (G, K ) where K is a p-group and
p is not 2 or 3 have that G is p-closed. (See the comments in the Example on p.
274 of [14] and on p. 401 of [36].) However, we prove the following theorem as
Theorem1.1 in [45] which disproves this conjecture.

Theorem 4.25 Let p be a prime. Then, there exists a solvable group G with a normal
p-subgroup K so that (G, K ) is a Camina pair and G is not p-closed. In fact, G
can be chosen to be a Gagola group.

In other words, there are examples where G is not p-closed for every prime p.
Kuisch proves the following as TheoremAof [36].A normal p-series for a groupG is
a series of normal subgroups 1 = K0 ≤ L1 ≤ K1 ≤ L2 ≤ K2 ≤ · · · ≤ Ln ≤ Kn =
G so that p does not divide |Li : Ki−1| and Ki/Li is a p-group for all integers i with
1 ≤ i ≤ N . We know that G is p-solvable if and only if G has a p-series. Assuming
G is p-solvable, the p-length of G is the smallest n so that G has a p-series with
Kn = G. In particular, G has p-length one if there exists normal subgroups L ≤ K
in G so that p does not divide |L| and |G : K | and K/L is a p-group. Notice that
if G is p-closed, then G has p-length one, so this next theorem is really about the
situation when G is not p-closed.

Theorem 4.26 (Kuisch) Let (G, K ) be a Camina pair where G is solvable and K
is a p-group. Then, Op′(G) = 1 and the p-length of G is at most 2.

In Theorem B of [36], Kuisch gets more detailed information about the structure
of G under the hypotheses of Theorem4.26 when G is not p-closed, however, these
conditions are complicated and not particularly enlightening so we do not include
them here. Under some additional hypotheses, one can obtain the conclusion that G
is p-closed. The following is a combination of Theorem4.1 in [13] and Corollary
1.1 of [36].

Theorem 4.27 Let (G, K ) be a Camina pair with K a p-group for some prime p.
Let P be a Sylow p-subgroup of G. Assume one of the following conditions holds:

1. G is p-solvable and P/K is abelian.
2. G is p-solvable and P has nilpotence class at most 2.
3. K is cyclic.
4. G is solvable and P has no factor group isomorphic to Z p � Z p.
5. G is solvable and |K | < pp.
6. G is solvable and P ′ is normal in G.
7. G is solvable and P has maximal class.
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Then, P is normal in G. Furthermore, G is a semi-direct product H P where H is a
Hall p-complement of G, and if H is nontrivial, then HK is a Frobenius group with
Frobenius kernel K .

The following result gives a necessary and sufficient condition that includes the
Sylow p-subgroup being normal. When G is a group and χ is a character of G, the
vanishing-off subgroup of χ is the subgroup V (χ) = 〈g ∈ g | χ(g) 	= 0〉. This next
result appears as Lemma5.6 and Proposition5.7 of [37].

Theorem 4.28 (Kuisch, van der Waall) Let (G, K ) be a Camina pair with K a p-
group for some prime p. Let P be a Sylow p-subgroup of G. Then, K = Z(P) if and
only if P is normal in G and K = V (θ) for all θ ∈ Irr(P | N ).

This next lemma shows that p′-subgroups are Frobenius complements when
(G, K ) is a Camina pair having K as a p-group. This appears as Lemma4.3 in
[13].

Lemma 4.29 Let (G, K ) be a Camina pair where K is a p-group for some prime p.
If T is any p′-subgroup of G, then T K is a Frobenius group with Frobenius kernel
K and Frobenius complement T . In particular, every Sylow subgroup of T is either
cyclic or generalized quaternion.

In this case, there are a number of examples that are not Frobenius groups. In
particular, the Gagola groups mentioned Theorem4.19 and in the paragraph that
followed that theorem are such examples.We nowpresent some examples that are not
Gagola groups and not Frobenius groups. In this section, we will focus on examples
where G is not a p-group. We will save the case where G is a p-group until later.
The examples we present in this section all arise from the following observation of
Chillag and Macdonald in Lemma2.2 of [13].

Lemma 4.30 Let G = PT where P and T are subgroups of G with Z(P) = K
where K is a normal subgroup of G and K ≤ T . If (P, K ) is a Camina pair and T
is a Frobenius group with Frobenius kernel K , then (G, K ) is a Camina pair.

First, suppose G is a Frobenius group with Frobenius kernel P , and suppose P
is a p-group where (P, Z(P)) is a Camina pair. This Lemma shows that (G, Z(P))

is a Camina pair since if H is a Frobenius complement for G, then Z(P)H will be
a Frobenius group. In Example2 of [13], they showed that there exists a Frobenius
group whose Frobenius kernel is an extra special group of order 73 and exponent
7 and whose Frobenius complement is cyclic of order 3. This example is far from
unique, and it is easy to find other primes and more complicated examples.

There also are examples where G is not a Frobenius group. Let C be a cyclic
group of order pn where p is an odd prime, and let A be the automorphism group of
C . Take G to be the semi-direct product of A acting on C . Notice that, A is cyclic
of order pn−1(p − 1), so G is metacyclic of order p2n−1(p − 1). If one takes P to
be the Sylow p-subgroup of G, it is not difficult to see that (P, Z(P)) is a Camina
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pair, and if H is a subgroup of order p − 1, then Z(P)H is a Frobenius group. This
example appeared as Example3 of [13].

In Example4 of [13], Chillag and Macdonald showed that the quaternions act on
a Camina group of nilpotence class 2 of order 36 whose center has order 32 where
the action on the center is a Frobenius action. (The whole action is not Frobenius.)

4.4 G is a p-Group

In the previous section, we considered the Camina pairs (G, K ) where either G/K
is a p-group or K is a p-group, but we did not assume that G was a p-group. In fact,
we considered a number of results and examples where G is not a p-group. In this
section, we now suppose that (G, K ) is a Camina pair where G is a p-group.

These groups have been studied in [52] by Macdonald. The first result is Theo-
rem7.1 of [52].

Theorem 4.31 (Macdonald) If (G, K ) is a Camina pair with G a p-group for some
prime p, then |G : K | is an even power of p.

We will use the following notations. A series of normal subgroup N0 < N1 <

· · · < Nr in G is called a central series if Ni/Ni−1 ≤ Z(G/Ni−1) for i = 1, . . . , r . If
N0 = 1 and Nr , thenwe say thatG is nilpotent. There are two important central series.
The first is the lower central series, which is given by G1 = G and Gi = [Gi−1,G]
for i > 1. Also, we have the upper central series which is given by Z0(G) = 1 and
Z1(G) = Z(G) and Zi (G)/Zi−1(G) = Z(G/Zi−1(G)) for i > 1. A group G has
nilpotence class c if and only if Zc(G) = G and Zc−1(G) < G, and this is true if
and only if Gc+1 = 1 and Gc > 1. One key lemma that he proved is the following
as Lemma2.1 of [52].

Lemma 4.32 If (G, K ) is a Camina pair where G is a p-group, then K is a term in
both the upper and lower central series for G.

In particular, if the nilpotence class of G is c, then there is a positive integer r so
that K = Gr = Zc−r+1(G).

In particular, this proves that if (G, K ) is a Camina pair where G is a p-group,
then K is a term in both the upper central series and the lower central series of G.
Macdonald also gets information when K = Z(G). This is Theorem2.2 of [52].

Theorem 4.33 (Macdonald) Let (G, K ) be a Camina pair where G is nilpotent of
class c. If K = Zr (G) where 1 ≤ r < c, then Zi (G)/Zi−1(G) has exponent p for
r ≤ i ≤ c.

Macdonald then obtains the following corollary as Corollary 2.3 of [52].

Corollary 4.34 (Macdonald) Let (G, K ) be a Camina pair where G is nilpotent of
class c. If K = Gr where 2 ≤ r ≤ c, thenGi/Gi+1 has exponent p for r − 1 ≤ i ≤ c.
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We note that we really do need r − 1 ≤ i in this previous corollary. Take G to be
the group of order 32 given by

〈a, b, c, d, e | a2 = d, b2 = c2 = d2 = e2 = 1, ba = b ∗ c, ca = c ∗ e, db = d ∗ e〉.

This is SmallGroup(32, 6) from the small group library inMagma. It is not difficult to
see that G has nilpotence class 3. Also, (G,G3) is a Camina pair where G3 = Z(G).
However, G/G ′ has exponent 4, not 2. Since G/Z2(G) has exponent 2, this implies
that G ′ < Z2(G).

From Corollary 4.24, we see that Camina pairs of the form (G, Z(G))where G is
a p-group are plentiful. The only known examples of Camina pairs (G, N ) where G
is a p-group and N 	= Z(G) are (G,G ′)where G is a Camina p-group of nilpotence
class 3. Hence, Macdonald has the following as Conjecture 2 in [53]:

Conjecture If (G, N ) is a Camina pair with G a p-group having nilpotence class
c, then either N = Gc−1 or N = Gc.

Notice that if this conjecture is true, then it would imply that either N = Z(G)

or N = Z2(G). Macdonald also has the following as Conjecture 1 in [53]. This
conjecture is based on the fact that it is true for Camina groups of nilpotence class 3.

Conjecture If (G,Gi ) is a Camina pair, then (G,Gi+1) is also a Camina pair.

At this point, there has not been much study of Camina pairs (G, K ) where G is
a p-group beyond Macdonald’s work. But we do mention one result that we have
proved in this situation. In [42], we give an easy argument showing that if (G, Z(G))

is a Camina pair, then G must be a p-group. In Theorem3 of [42], we prove the
following:

Theorem 4.35 If (G, Z(G)) is a Camina pair, then |Z(G)| < |G : Z(G)|3/4.
Under additional hypotheses, we can improve this bound to a square root, and we

know of no examples where the square root is exceeded. Thus, it makes sense to ask:
Open Question: If (G, Z(G)) is a Camina pair, is it true that |Z(G)| ≤ |G :

Z(G)|1/2?
A possible generalization of Theorem4.35 can be found in [54].

4.5 Nonsolvable Camina Pairs

Observe thatCaminagroups are necessarily solvable.On the other hand,weknow that
Frobenius groups give rise to Camina pairs. Since there exist nonsolvable Frobenius
groups, there must exist nonsolvable Camina pairs. The obvious question becomes:
Do there exist nonsolvable Camina pairs that are not Frobenius groups? This question
was answered positively in [5]. In that paper, they present an example of a group
G with |G| = 23 · 3 · 56 = with a normal subgroup N so that |N | = 52, (G, N ) is a
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Camina pair, G/O5(G) ∼= SL(2, 5), and G is not a Frobenius group. We note that
G is a Gagola group; so this is also the first nonsolvable Gagola group that is not
a Frobenius. Obviously, G is not 5-closed, so this was the first example of both
a Camina pair and a Gagola group that is not 5-closed. As explained in [5], the
construction of this group does not generalize to other primes.

In Theorem1.20 of [24], we present examples of p-closed Camina pairs (G, K )

where |K | = p2 and G/Op(G) = SL2(5) × Zc for p = 11 and c = 1, p = 29 and
c = 7, and p = 59 and c = 29. To see that these groups give Camina pairs, the reader
will need to apply Lemma4.30. We note that these groups are also Gagola groups.
At this time, these are all of the nonsolvable Camina pairs that have been published.

We now want to consider what restrictions regarding nonsolvable Camina pairs
and Gagola groups are known. Even though Camina and Gagola did not have any
nonsolvable examples, they both obtained some restriction. In [12], Camina quotes
results of W. B. Stewart in a preprint entitled “Largely fixed-point-free groups”to
get information on nonsolvable Camina pairs. In a private communication, van der
Waall has pointed out that Proposition9.2 in Stewart’s preprint is incorrect, and that
Camina relies on this proposition to prove his corollary in Sect. 1 of [12], and so his
proof of that result is incomplete. Gagola also obtains restrictions on the nonsolvable
Gagola groups that can occur in Theorem5.6 of [20].

Camina’s results have been improved in Theorem1.3 of [5] where they prove the
following. Since the proofs in [5] do not rely on the work in [12], we do not need
to be concerned about the problem mentioned by van der Waall in the proof of this
result. If G is a group, we write G∞ for the solvable residual of G. That is, G∞ is the
unique subgroup that is minimal subject to being normal in G and whose quotient is
solvable.

Theorem 4.36 (Arad, Mann, Muzychuk, Pech) Let (G, K ) be a Camina pair where
G is not solvable. Then, K is a p-group for a prime p and one of the following holds:

1. (G/Op(G))∞ ∼= SL(2, pe) where e is an integer so that pe > 3.
2. (G/Op(G))∞ ∼= SL(2, 5) where p = 3.
3. (G/Op(G))∞ ∼= SL(2, 13 where p = 3.
4. (G/Op(G))∞ ∼= SL(2, 5) where p ≥ 7 and (S, K ) is a Camina pair so that G/S

is isomorphic to either A5 or S5 where S is the solvable radical of G. That is, S is
the unique subgroup that is maximal subject to being normal in G and solvable.

Notice that, the example in [5] satisfies Conclusion (1) with p = 5, and the ex-
amples from [24] meet conclusion (4) of Theorem4.36 with p = 11, 29, 59. Also,
the nonsolvable Frobenius groups will meet Conclusion (4) for many other primes.
Thus, it is reasonable to ask the following:

Open Question: Do there exist Camina pairs that satisfy Conclusions (2) and (3)
of Theorem4.36?

Open Question: Do there exist Camina pairs that satisfy Conclusion (1) with
p 	= 5?

OpenQuestion: Forwhich primes p are thereCamina pairs that satisfyConclusion
(4)?
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4.6 Homogeneous Induction

We consider a class of groups studied by van der Waall and Kuisch in [37]. Let G be
a group and let H be a subgroup of G. They say that (G, H) satisfies (CI) if every
nonprincipal irreducible character of H induces homogeneously to G. We have seen
in Lemma4.1 that when H is normal this condition is equivalent to being a Camina
pair.

When G is a p-group, then we have the following result which is Lemma3.1 of
[37].

Lemma 4.37 Let G be a p-group for some prime p. If (G, H) satisfies (CI), then
H is a term in the upper central series of G.

In the situation of Lemma4.37, we now have that H is normal inG, so Lemma4.1
applies and (G, H) is a Camina pair. Next, we will see that the situation when H is
not normal, we still have a Camina pair. The following is Theorem3.2 of [37].

Theorem 4.38 (Kuisch, van der Waall) Suppose (G, H) satisfies (CI). If N is the
normal closure of H in G, then (G, N ) is a Camina pair.

More information can be obtained about the structure of H when (G, H) satisfies
(CI) and H is not normal. The following are Theorems4.1 and 4.7 of [37].

Theorem 4.39 (Kuishch, vanderWaall) If (G, H) satisfies (CI) and H is not normal,
then H is nilpotent. Furthermore, if N is the normal closure of H, then either G is a
doubly transitive Frobenius group whose Frobenius kernel is N or N is a p-group.

In [70], they study pairs (G, H) that satisfy (CI) even further, focusing on the case
where H is not normal. Their results are fairly technical, so we do not repeat them
here except for the following. Suppose (G, H) satisfies (CI) where H is not normal
in G and the normal closure of H is a p-group for some odd prime p and write N for
the core of H in G. Then G/N has a Gagola character. They obtain a similar result
with p = 2 under the additional hypothesis that G does not have a normal Sylow
2-subgroup (see Corollary 6.2 of [70]).

A generalization of homogeneous induction has been studied byGagola and Sezer
in [21] andLyons in his dissertation [51]. They consider a groupG that has a subgroup
H with the property that every nonprincipal character of H induces to G as a sum of
irreducible characters that all have the same degree. Obviously, if (G, H) satisfies CI,
then G and H satisfy this condition. The results they obtain do not involve Camina
pairs, so we will not digress further.

5 Generalizations

We now want to look at some of the generalizations of Camina groups and Camina
pairs that have been studied.
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5.1 Anti-central Elements

At this time, we look back to Lemma2.1 that gave a number of equivalent conditions
for an element of g ∈ G. In [38], Ladisch states that an element g ∈ G is anti-central
if it satisfies the conditions of Lemma2.1. That is, g is anti-central if the conjugacy
class of g is gG ′. Note that these are the elements that we called Camina elements
in the introduction. To avoid confusion with the rest of this paper, we are going to
continue to refer to these elements as Camina elements as opposed to anti-central
elements. However, we remind the reader that when they see anti-central element in
[38] or other papers in the literature the definition is the same as our definition of
Camina element.

Note that, G is a Camina group if and only if every element in G \ G ′ is a Camina
element. In [38], Ladisch considers any group that has a Camina element, and in
that paper, he provides a number of examples of groups that have Camina elements
that are not Camina groups. The main theorem of [38] is Theorem4.3 which is the
following.

Theorem 5.1 (Ladisch) Let G be a (finite) group containing a Camina element.
Then, G is solvable.

In [38], Ladisch also gathers some interesting information regarding the structure
of groups that contain a Camina element. For example, the following is Corollary
3.5 of [38].

Lemma 5.2 Let N be a normal subgroup of G and let π be a set of primes. If a ∈ G
is a Camina element, then a fixes a unique Hall π-subgroup of N.

The following is Proposition3.6 of [38].

Lemma 5.3 If G hasaCamina element a and N is anormal subgroupofG contained
in G ′ that has a cyclic Sylow p-subgroup, then N has a normal p-complement.

For g ∈ G, following Ladisch, we define Ci (g) inductively by C0(g) = 1 and
Ci+1(g) = {x ∈ G | [g, x] ∈ Ci (g)}. Let C∞ = ∪i≥0Ci (g). The following is Theo-
rem3.9 of [38].

Theorem 5.4 (Ladisch)Let a ∈ G be aCamina element, and set D = C∞(a). Then,
the following are true:

1. D is a nilpotent self-normalizing subgroup of G.
2. G = DG ′.
3. If H ≤ G so that G = G ′H and a ∈ H, then D ≤ H.
4. If K ≤ G so that K is nilpotent and a ∈ K, then K ≤ D.
5. If L ≤ G so that G = G ′L, a ∈ L, and L is nilpotent, then L = D.

Recall that a nilpotent subgroup of G that is self-normalizing is called a Carter
subgroup ofG. WhenG is a solvable group, it is known thatG has a Carter subgroup
and that all Carter subgroups are conjugate (Satz III.3.10 of [32]). Thus, Theorem5.4
proves that if a ∈ G is a Camina element, then C∞(a) is a Carter subgroup of G.

Infinite groups having a Camina element have been studied in [19].
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5.2 The Vanishing-Off Subgroup

Recall when G is a group and χ is a character of G that the vanishing-off subgroup
of χ is the subgroup V (χ) = 〈g ∈ g | χ(g) 	= 0〉. Thus, V (χ) is generated by the
elements of G where χ does not vanish. That is, V (χ) is the smallest subgroup of G
where χ vanishes on the elements outside of V (χ). Note that χ may also vanish on
elements in V (χ).

When G is a nonabelian group, we defined in [41] the vanishing-off subgroup of
G to be the subgroup of G generated by the elements g ∈ G so that there exists a
nonlinear irreducible character χ so that χ(g) 	= 0. It is not hard to see that V (G)

is going to be the product of all the V (χ)’s as χ runs over the nonlinear irreducible
characters of G. In particular, every nonlinear irreducible character of G will vanish
on all of the elements of G outside of V (G) and V (G) is the smallest subgroup of
G with this property. Recall by Lemma2.1 that an element g ∈ G vanishes on every
nonlinear irreducible character ofG if and only if g is a Camina element. Thus, every
element of G − V (G) is a Camina element, and V (G) is the smallest subgroup of
G with the property that every element outside of it is a Camina element. Note that
V (G) may contain Camina elements, so V (G) should be viewed as the subgroup
generated by the non-Camina elements of G.

Notice that Theorem5.1 implies that if G is nonsolvable, then G = V (G). Also,
it is not difficult to see that if G has nonlinear irreducible characters with coprime
degrees, then G = V (G) (see the first paragraph on p. 1314 of [41]). Thus, it is often
the case that G = V (G). However, there are interesting cases where V (G) < G. For
example, G is a Camina group if and only if G ′ = V (G). In [41], we studied the
groups G where V (G) < G. The following is Theorem1 of [41].

Theorem 5.5 Let G be a nonabelian solvable group. Then, G/V (G) is either cyclic
or an elementary abelian p-group for some prime p.

We then inductively define a central series for G in terms of V (G). We set
V1(G) = V (G) and for i ≥ 2, we set Vi (G) = [Vi−1(G),G]. We use the follow-
ing notation for the lower central series of G. We set G1 = G and for i ≥ 2, we set
Gi = [Gi−1,G]. Note that, this is consistent with our definition of G3 earlier. The
following is Theorem2 of [41].

Theorem 5.6 Let G be a group. Then, Gi+1 ≤ Vi (G) ≤ Gi for all i ≥ 1. If in ad-
dition V2(G) < G2, then the following holds:

1. There is a prime p so that G/Vi (G) is an elementary abelian p-group for all
i ≥ 1.

2. There exist positive integers m ≤ n so that |G : V (G)| = p2n, |G2 : V2(G)| =
pm, and cd(G/V2(G)) = {1, pn}.
One should note the similarity to the result that if G is a semi-extra special

p-group, then there exist integers m ≤ n so that |G : G ′| = p2n , |G ′| = pm , and
cd(G) = {1, pn}. When V3(G) < G3, Theorem3 of [41] gave the next result.
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Theorem 5.7 Suppose G is a group where V3(G) < G3. Let Z/V3(G) =
Z(G/V3(G)) and C/V3 = CG/V3(G)(G ′/V3(G)). Then, the following are true:

1. |G : V1(G)| = |G ′ : V2(G)|2.
2. V2(G) = Z ∩ G ′.
3. Either |G : C | = |G ′ : V2(G)| or C = V1(G).
4. V (C) ≤ V1(G).
5. If V1(G) < C, then C ′ = V2(G).
6. If V1(G) < C and [V1(G),C] < V2(G), then |G : C | is a square.

Again, note the similaritieswith the results regardingCamina groups of nilpotence
class 3.We have seen that there are noCamina groupswith nilpotence classmore than
3. On the other hand, this central series associated with the vanishing-off subgroup
seems to go further. In his dissertation [62] and in the preprint [63], our student Nabil
Mlaiki studied groups G where Vk(G) < Gk for an arbitrary positive integer k. He
defined Dk/Vk(G) = CG/Vk (G)(Gk−1/Vk(G)) for all integers k ≥ 3.We now present
Theorem2 of [62, 63].

Theorem 5.8 (Mlaiki) Suppose G is a group where Vk(G) < Gk for some integer
k ≥ 3 and G ′/Vk(G) is abelian. Then, the following are true:

1. Dk = D3.
2. |Gk−1 : Vk−1(G)| = |G : D3| if k ≥ 4.
3. |Gk : Vk(G)| ≤ |G : D3|.

Note that G2 = G ′, so the subgroup D3 in Theorem5.8 equals the subgroup C
in Theorem5.7. We would like to understand what happens when one removes the
hypothesis that G ′/Vk(G) is abelian. At this time, the only examples we have where
Vk(G) < Gk are examples found using the small groups library in the computer
algebra system Magma. In particular, we do not have examples with k ≥ 5. It would
be nice to find families of groups that have examples with k arbitrarily large.

We close this section bymentioning an application of this group. Define the group
G to be a Q1-group if every nonlinear irreducible character has rational values. An
element g ∈ G is rational in G if χ(g) is rational for all χ ∈ Irr(G). It is known that
this is equivalent to g being conjugate in G to gm for every integer m that is coprime
to o(g).

In Theorem3.9 of [18], it is proved that G is a Q1-group if and only if every
element g ∈ V (G) is rational inG. In [67], V (G) is used in classifying the nonabelian
Q1-groups.

5.3 Camina Triples

In some sense, themost obviousway to generalizeCamina pairs is in terms ofCamina
triples. Define (G, N , M) to be a Camina triple if 1 < M ≤ N are proper normal
subgroups of G so that for every element g ∈ G \ N , then g is conjugate to all of
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gM . Notice that, (G, N , N ) is a Camina triple if and only if (G, N ) is a Camina
pair. It is not difficult to see that (G, V (G),G ′)will be a Camina triple for any group
G where V (G) < G. In fact, if (G, N ) is a Camina pair and M is a group, then
(G × M, N × M, N × 1) will be a Camina triple. (See Theorem1.2 of [30].)

This definition was originally considered byMattarei in his dissertation (see The-
orem4.4.1 of [58]) where he was studying groups with the same character tables.
We independently proposed this definition in [39]. Camina triples appeared in the
paper [35] by Johnson, Mattarei, and Sehgal where they arise in the problem of weak
Cayley tables. We will discuss the problems of groups with the same character tables
and the same weak Cayley tables in a later section. Camina triples also arise in the
question of fusions of character tables in [29, 30].

We nowgeneralize the definition of the vanishing-off subgroup. Let N be a normal
subgroup of G. We define V (G | N ) to be the product of the V (χ) where χ runs
through the characters in Irr(G | N ). In particular, it is easy to see that V (G) =
V (G | G ′). We first consider a couple of basic facts regarding this subgroup. This
appears as Lemma5.1 of [62].

Lemma 5.9 If N is a normal subgroup of a group G, then N ≤ V (G | N ).

The following is Lemma5.3 of [62].

Lemma 5.10 Let G be a group. If M is a normal subgroup of G and M 	≤ G ′, then
G = V (G | M).

We now provide a connection between Camina triples and V (G | N ). We also
obtain a generalization of Lemma4.1 for Camina triples. The most of the following
appears as Theorem5.4 of [62] and as Theorem2.1 of [64]. Condition (4) is from
Theorem1.3 of [30].

Theorem 5.11 If 1 < M ≤ N are two normal subgroups of G, then the following
are equivalent:

1. (G, N , M) is a Camina triple.
2. |CG(g)| = |CG/M(Mg)| for every g ∈ G \ N.
3. χ vanishes on G \ N for every character χ ∈ Irr(G | M).
4. Every character in Irr(N | M) induces homogeneously to G.
5. V (G | M) ≤ N.
6. For all g ∈ G \ N and z ∈ M, there exists an element y ∈ G so that [g, y] = z.

Notice that, an immediate corollary of this theorem is that (G, N ) is a Camina
pair if and only if N = V (G | N ). We also get the following observation regarding
Camina triples. (See Lemma2.2 of [64].)

Corollary 5.12 If (G, N1, M) and (G, N2, M) are Camina triples, then (G, N1 ∩
N2, M) is a Camina triple. If (G, N , M) is a Camina triple and N ≤ K, then
(G, K , M) is a Camina triple.
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In Theorem3 of [62] or Theorem1 of [64], the following is proved. Note that, one
consequence of Theorem4.36 is that if (G, N ) is a Camina pair where N < G, then
N is solvable. Conclusion (a) shows that a generalization can be proved for Camina
triples. Conclusion (b) is a generalization of Theorem4.13 to Camina triples.

Theorem 5.13 (Mlaiki) If (G, M, N ) is a Camina triple such that M < G, then the
following are true:

1. N is solvable.
2. If π is the set of primes dividing |G : M |, then N has a normal π-complement Q

and N/Q is nilpotent.

The following is Lemma2.11 of [64].

Theorem 5.14 (Mlaiki) If (G, M, N ) is a Camina triple and G is nilpotent, then
there is a prime p so that G/M and N are p-groups.

In [30], a number of results are proved about Camina triples. The following is
Theorem1.2 of [30]. Notice that, this reduces the problem of finding Camina triples
to groups that cannot be written as direct products.

Theorem 5.15 (Humphries, Kerby, Johnson) Let G and H be groups.

1. If (G, J, K ) is a Camina triple, then (G × H, J × H, K × 1) is a Camina triple.
2. Let π : G × H → G be the projection map. Suppose that (G × H, J, K ) is a

Camina triple. If π(K ) 	= 1, then (G,π(J ),π(K )) is a Camina triple.

5.4 More Generalizations

In [74], theydefine agroup to beflat if every conjugacy class is a coset of a (necessarily
normal) subgroup, and they consider p-groups with this property. (We note that this
condition was considered for infinite groups in [8, 73].) It is not difficult to see that
every nilpotent group of class 2 is flat. The following is Theorem5.1 of [74].

Theorem 5.16 (Moran, Tandra) Let G be a nilpotent group of class 3.

1. If G is a Camina group, then G is flat.
2. If (G, Z(G)) is a Camina pair, then G is flat.
3. If |G| = p5, then (G, Z(G)) is a Camina pair if and only if G is flat.

We see that Camina groups of nilpotence class 3 are flat. The paper [74] presents
other p-groups of nilpotence class 3 that is flat. Using the work of Heineken in [26],
one can show that all metacyclic groups are flat. Since the dihedral groups of 2-power
order are metacyclic, we can find flat groups with arbitrarily large nilpotence class.
(One of the referees has mentioned that there are also examples of flat 2-groups in
[25] which is in Russian. At this time, we have not been able to obtain a copy of this
paper ourselves, so we have not been able to verify this comment.)
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In [22], they define a waist to be a normal subgroup W of a group G with the
property that if N is any normal subgroup of G, then either N ≤ W or W ≤ N .
They note that if (G, N ) is a Camina pair, then N must be a waist. They are mostly
interested in waists in pro p-groups, and many of their results can be considered
generalizations of results about Camina pairs. Some of their results are of particular
interest in finite groups.

Theorem 5.17 (Gavioli, Monti, Scoppola) Suppose p is an odd prime and G is a
noncyclic p-group. Suppose W is a waist for G, then the following are true:

1. W ≤ �(G).
2. G/W is not cyclic.
3. |W | 	= p, then W is a term in both the upper and lower central series for G.

In his preprint [56], Mann notes that if W is a waist in G, then W must be the
unique normal subgroup of G having order |W |. He also notes that in p-groups, the
converse will also be true, but this need not be true otherwise.

In [65], the authors consider the following situations: (1) Suppose the group G
has a normal subgroup N such that for every element x ∈ G \ N , the conjugacy
class of x in G contains all of the elements of order o(x) in G \ N and (2) Suppose
the group G has a normal subgroup M such that for every element x ∈ G \ M , the
coset xM contains all of the elements of o(x) in G \ M . In Proposition4.3 of [65],
it is proved that if G satisfies (1) and (2) with M = N , then M = N = G ′ and G is
a Camina group. Furthermore, in Proposition4.4 of [65], they prove that if G is a
Camina group, then G satisfies (1) with N = G ′ if and only if G satisfies (2) with
M = G ′.

In the papers [6, 7], the authors define auto Camina groups. They define G∗ =
{g−1gα | g ∈ G,α ∈ Aut(G)} = [G,Aut(G)]. They say that G is an auto Camina
group if gG∗ = {gα | α ∈ Aut(G)} for all g ∈ G \ G∗. In those papers, a few basic
results regarding auto Camina groups are proved. In [6], they provide an example of
an auto Camina group that is not a Camina group.

6 Applications

We are going to close this paper with a section outlining some of the problems where
Camina groups and Camina pairs and their generalizations have been applied.

6.1 Identical Character Tables

We begin with character tables. Let G be a group. We label the irreducible characters
of G as χ1, . . . ,χn and we can pick representatives x1, . . . , xn of the conjugacy
classes of G. It is customary to fix χ1 = 1G and x1 = 1. The character table of G is
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the n × nmatrix whose i, j- entry isχi (x j ). In general, there is no canonical ordering
of either the irreducible characters or the conjugacy classes. With this in mind, we
say that two groups G1 and G2 have identical character tables if there exists some
permutation of the rows and some permutation of the columns of the character table
of G2 so that its entries match up with the entries of the character table of G1.

It is easy to see that isomorphic groups have identical character tables. On the other
hand, it is not difficult to find nonisomorphic groups that have identical character
tables. For example, if G1 and G2 are extra special groups of the same order, then
G1 and G2 have identical character tables. In fact, if G1 and G2 are semi-extra
special groups with |G1 : G ′

1| = |G2 : G ′
2| and |G ′

1| = |G ′
2|, then G1 and G2 have

identical character tables. This observation is made on p. 66 of [58] and later proved
independently by us in [39]. In [40], we showed that if G1 and G2 are Camina
groups of nilpotence class 3, then they have identical character tables if and only if
|G1 : G ′

1| = |G2 : G ′
2| and |[G ′

1,G1]| = |[G ′
2,G2]|. Observe that having identical

character tables is an equivalence relation for groups.
One question that has received considerable attention is the question of what

properties are determine by the character table of group. That is, if G1 and G2 are
groups with identical character tables, what properties of G1 does G2 have to have.
It is easy to see that if G1 is abelian, then G2 is abelian. It is somewhat more difficult
to see that if G1 is simple, then G2 must be simple. If G1 is nilpotent, then G2 must
be nilpotent. In fact, the upper central series can be read off of the character table,
so if G1 is nilpotent, then G2 is nilpotent with the same nilpotence class.

It turns out that if G1 and G2 have identical character tables and G1 is solvable,
then G2 must be solvable. It was quite a surprise when in his dissertation [58] and
then in the papers [59–61], Mattarei presented examples of groups G and H that
have identical character tables, but have different derived lengths. The groups G and
H produced in [59] and Chap.5 of [58] are semi-direct products of a q-group acting
on a p-group. In both groups, the p-groups being acted on are Camina pairs. We note
that in this case, the groups are not nilpotent and one is metabelian and the other has
derived length 3.

In [60] and Chap.6 of [58], the groups G and H are p-groups. Again one is
metabelian and the other has derived length 3. In this case, both of the groups are
themselves Camina pairs. In Corollary 4.3 of [58], there is a nice necessary condition
for when two Camina pairs have identical character tables. In Theorem4.4.1 of [58],
this result is generalized to Camina triples. Finally, in [61] and Chap.7 of [58], it is
shown how to use wreath products to take these examples and obtain examples of
groups G and H with identical character tables where one has derived length d ≥ 3
and the other had derived length d + 1.

6.2 Weak Cayley Tables

The idea of a weak Cayley table was proposed in [35]. Let G be a group. We label
the elements of G by g1 = 1, g2, . . . , gn . The weak Cayley table is the n × n matrix
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whose i, j-entry is the conjugacy class of gig j . Weak Cayley tables were constructed
to incorporate information from the character table of the group and the so-called
“two-character” of the group. We are not going to discuss two characters here, but
the interested reader can refer to the Introduction of [35] for an exposition on two-
characters. Two groups G1 and G2 have identical weak Cayley tables if there is a
bijection α : G1 → G2 such that (1) g, h ∈ G1 are conjugate in G1 if and only if
α(g) and α(h) are conjugate inG2 and (2) for all g, h ∈ G1, α(gh) and α(g)α(h) are
conjugate in G2. It is proved in Corollary 2.8 of [35] that if G1 and G2 have identical
weak Cayley tables, then G1 and G2 have identical character tables. The following
is Theorem3.1 of [35].

Theorem 6.1 (Johnson, Mattarei, Sehgal) Suppose (G1, N ) and (G2, N ) are Cam-
ina pairs so that N is an abelian group and G1/N ∼= G2/N has odd order. Then,
G1 and G2 have identical weak Cayley tables.

Notice that this implies that the groups constructed by Mattarei in [60] have iden-
tical weak Cayley tables, and so, the derived length of a group cannot be determined
from its weak Cayley table. In [35], they explore a number of other connections
between weak Cayley tables and Camina pairs.

6.3 Snyder’s Problem

Let G be a nonabelian group and let d be the largest degree of a nonlinear irreducible
character of G. Of course, we know that d divides |G| and |G| > d2. Thus, there
exists a positive integer e so that |G = d(d + e). Berkovich showed that e = 1 if
and only if G is a 2-transitive Frobenius group (see [10]). Snyder noted when e ≥ 2
that |G| can be bounded in terms of e [72]. In [31], it was shown that |G| ≤ e4 − e3

when e > 1 and that equality can only occur when G has a nontrivial abelian normal
subgroup. It was previously known that examples exist that meet this bound; so this
is the best possible bound. For the full details of this problem, see [31, 44] and the
references therein.

For the purposes of this paper, we restrict ourselves to the case where G has a
nontrivial abelian normal subgroup. This was the case considered in [44]. In that
paper, the following is the key result.

Theorem 6.2 Let G be a Gagola group and let N be the unique minimal normal
subgroup. Write p for the prime so that N is an elementary abelian p-group. Assume
G is not a 2-transitive Frobenius group with Frobenius kernel N , and let d and e be
defined as above for G and note that d is the degree of the Gagola character. Then,
d ≤ e2 − e. Furthermore, if P is a Sylow p-subgroup of G, then |N |2 ≤ |P : N |.

Using Theorem6.2, we then show that if G is any group with a nontrivial abelian
normal subgroup with e > 1, then d ≤ e2 − e where d and e is abelian. In Sect. 7 of
[31], we consider groups G where |G| = e4 − e3, i.e., where d = e2 − e. In Theo-
rem7.2 of [31], we prove the following.
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Theorem 6.3 Let G be a finite group, and let |G| = d(d + e) where d > 1 is a
character degree of G and e > 1 is an integer. Then, |G| = e4 − e3 if and only if G
has a Gagola character of degree d and a unique minimal normal subgroup N of
order e.

On p. 545 of [31], we conjectured that |G| = e4 − e3 implies that G is solvable.
However, if one considers the nonsolvable groupG of order 23 · 3 · 56 = 375000with
a normal subgroup N so that |N | = 52 = 25 that was found in [5] and mentioned in
Sect. 4.5, then one sees that e = 52 = 25 and d = 25 · 24 = 600. Hence, there exists
a nonsolvable example where the bound is met, and thus, the conjecture in [31] is
false.

6.4 Other Applications

In [28], Humphries and Johnson introduce the idea of fusion of character tables.
The definition of fusing character tables is quite complicated, and so, we refer the
interested reader to either [28] or [29] for the definition. In Theorem1.1 of [28], they
show that extra special p-groups fuse from an abelian group. In [29], they study
which Camina pairs and Camina triples fuse from abelian groups. In particular, give
an example of a group that fuses from an abelian group but contains a subgroup that
does not fuse from any abelian group. The group with this property has a Camina
triple. In [30], they prove that if G is a noncyclic group, then G fuses from a cyclic
group if and only if G has normal subgroups K ≤ H so that (G, H, K ) is a Camina
triple that satisfies some additional conditions on H and K .

The problem where we first encountered Camina groups was the following. Let
G be a solvable group and suppose that G has the property that if a, b ∈ cd(G)

with 1 	= a, b and a 	= b, then a does not divide b and b does not divide a. In other
words, there is no divisibility among the nontrivial character degrees ofG. This is the
problem studied in [48]. In that paper, we prove that if G satisfies the nondivisibility
hypothesis, then |cd(G)| ≤ 4 and the derived length of G is at most 3. Furthermore,
we are able to describe the groups G in this set which has |cd(G)| = 4. In particular,
we show that if G is in this set and |cd(G)| = 4 that G has a normal subgroup that
is a Camina p-group that has nilpotence class 3. Note that, one of the key steps
(Theorem4.9 of [48]) reduces to showing that there exists no Camina group with
nilpotence class greater than 3.

Camina groups andCamina pairs arise in the classification of groupswith only one
irreducible character of degree divisible by p. This classification is proved in [24].
In that paper, it is proved for a prime p that a group G has exactly one irreducible
character whose degree is divisible by p if and only if G is one of the groups
mentioned in a list of nine families of groups. We are not going to mention all of
the groups here. Included in the list are extra special 2-groups and doubly transitive
Frobenius groups whose Frobenius complements have a nontrivial cyclic normal
Sylow p-subgroup. There are also two families that contain a normal Sylow p-
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subgroup that is semi-extra special, and in one of these families there is a quotient
that is a doubly transitive Frobenius group and in the other family, there is a subgroup
that is a doubly transitive Frobenius group and we can apply Lemma4.30 to see that
the groups in this family is Camina pairs.

Dade and Yadav consider the question of groups where the product of any two
conjugacy classes that do not contain inverses is another conjugacy class. Note that,
this is a stronger condition than condition (5) of Lemma4.1. They prove the following
as TheoremA of [17]

Theorem 6.4 (Dade, Yadav) Let G be a group. Then, the following are equivalent:

1. When C and D are conjugacy classes of G satisfying x−1 /∈ D for x ∈ C, then
CD is a conjugacy class of G.

2. One of the following occurs:

(a) G is a p-Camina group for some prime p,
(b) G is a Frobenius group whose Frobenius kernel is elementary abelian of

order pn and a Frobenius complement is cyclic of order pn − 1 where p is a
prime and n is a positive integer so that pn > 2.

(c) G is a Frobeniu group whose Frobenius kernel is elementary abelian of order
9 and a Frobenius complement is the quaternion group of order 8.

Looking at the question of the probability of that the product of two elements of a
group G equals a fixed element g ∈ G is the subject of [66]. In that paper, they study
this question when G is nilpotent Camina group.

Chillag and Herzog consider groups with “almost distinct degrees” in [15]. In
particular, they consider a groupGwith the property thatχ,ψ being distinct nonlinear
irreducible characters of G with χ(1) = ψ(1) implies that ψ = χ. To do this, they
consider extended Camina pairs. They say (G,G ′) is an extended Camina pair if
1 < G ′ < G and xG ′ is contained in the union of the conjugacy classes of x and
x−1. They then show that if G is a nonabelian, nonperfect group so that (G,G ′) is
an extended Camina pair, then one of the following holds: (1) G is a p-group for
some prime p, (2) G is a Frobenius group with Frobenius kernel G ′, or (3) G/G ′ is
a 2-group and CG(u) is a 2-group for every u ∈ G \ G ′. Furthermore, if G is not a
Camina group, then (3) holds. They also show that if G is a nonabelian, nonperfect
groupwhereχ(1) = θ(1) for distinct nonlinear irreducible charactersχ, θ onlywhen
χ = θ, then (G,G ′) is an extended Camina pair. In [15], the authors use the fact that
these groups are extended Camina pairs to obtain a classification. In [4], the authors
consider the following variation: An extended Camina group is a pair (G, H) where
H is a proper, nontrivial, normal subgroup of G so that Hg is contained in the union
of the conjugacy classes of g and g−1 for all g ∈ G \ H .

A similar generalization of Camina groups is found in [49]. A group G is called
a relative elementary abelian group (abbreviated REA group) if there is a subgroup
N < G such that if g1, g2 ∈ G \ N then g1 is conjugate under Aut(G) to either g2 or
g−1
2 . In [49], they study the Cayley graphs of these groups.
In [71], Ren uses Camina ideas to consider two problems. We say that G is

a V 3-group if every nonlinear irreducible character takes on exactly three values.
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Furthermore, G is said to be a restricted V 3-group if G is a V 3-group, and every
nonlinear character χ ∈ Irr(G) has its kernel contained in G ′. Ren then proves that
every V 3-group is solvable. He uses Camina techniques to classify the restricted
V 3-groups. The classification includes semi-extra special 2-groups and Frobenius
groups that satisfy some extra conditions.

Ren in [71] also considers D-groups. A group G is called a D-group if for every
normal subgroup N satisfying 1 < N ≤ G ′ and for every nonprincipal character λ ∈
Irr(N ), the induced characterλG has the property that distinct irreducible constituents
have distinct degrees. Note that, D-groups had previously been studied in [9]. In [71],
Ren uses the ideas ofCamina groups to simplify the proofs andweaken the hypothesis
for the classification of D-groups that are not perfect.

In [50], Loukaki showed that if G is a group with an abelian minimal normal
subgroup N with the property that the irreducible characters of G that do not have N
in their kernels have distinct degrees. That is, when χ,ψ ∈ Irr(G) with N 	≤ ker(χ),
N 	≤ ker(ψ), and χ 	= ψ, then it must be that χ(1) 	= ψ(1). Loukaki proves in this
circumstance that (G, N ) must be a Camina pair.

Zhang and Shi use Camina pairs in [79] when studying metabelian groups where
the nonlinear irreducible characters each vanish on at most three conjugacy classes.
In particular, they obtain a classification of these groups. They ask about what can
be said if the hypothesis of metabelian is removed.

IfG is a group, Autc(G) is the set of automorphisms ofG so thatα(x) is conjugate
to x for all x ∈ G. It is not difficult to see thatAutc(G) is a normal subgroup ofAut(G)

that contains the inner automorphisms. In [78], Yadav proved that G is a p-group

of order pn , then |Autc(G)| ≤ p(n2−4)/4 when n is even and |Autc(G)| ≤ p(n2−1)/4

when n is odd. He also answers the question of when equality happens, and this
involves consider Camina p-groups.

In [1, 23], it proved that if G is a p-group and (G, Z(G)) is a Camina pair, the G
has a noninner automorphism of order p when p is odd or order 2 or 4 when p = 2
that fixes the subgroup �(G) elementwise.

In [41], we defined (G, N ) to be a generalized Camina pair (GCP) if N is a
normal subgroup of G and every element of G \ N is a Camina element. It is not
difficult to see that (G, N ) is a GCP if and only if (G, N , V (G)) is a Camina triple.
When N = Z(G), it follows that (G, Z(G)) is a GCP if and only if every element of
G \ Z(G) is a Camina element. In [40], we defined G to be a generalized Camina
group if every element in G \ Z(G) is a Camina element. Thus, G is a generalized
Camina group if and only if (G, Z(G)) is a GCP. In [68, 69], the authors study
the total character of generalized Camina groups where the total character is the
character

∑
χ∈Irr(G) χ.

We close by mentioning that the idea of Camina groups and Camina pairs have
been adapted to the setting of table algebras. Table algebras can be thought of as a
generalization of finite groups. We suggest that the interested reader consult [2–4,
11] for more details. We are not going to pursue this further since the definitions get
complicated and the topic is departure from group theory.
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1 Introduction

For a group G, let U(ZG) be the group of units of the integral group ring ZG and
let V := V(ZG) be the group of normalized units in ZG, so that U(ZG) = ±V. The
aim of this article is to survey results on the upper central series 〈1〉 = Z0(V) ⊆
Z1(V) ⊆ · · · ⊆ Zn(V) ⊆ Zn+1(V) ⊆ . . . of V .

In caseG is finite, the central height of V , i.e., the smallest integer n ≥ 0 such that
Zn(V) = Zn+1(V), is at most 2 [6, 7]. Furthermore, the central height ofV is 2 if, and
only if, G is a Q∗ group, i.e., G has an element a of order 4 and an abelian subgroup
H of index 2, which is not an elementary abelian 2-group, such that G = 〈H, a〉,
ha := a−1ha = h−1, for all h ∈ H and a2 = b2, for some b ∈ H . Moreover, in this
case, Z2(V) = TZ1(V), where T = 〈b〉 ⊕ E2, E2 being an elementary abelian 2-
group. In all other cases, the central height must be 0 or 1. Thus, for finite groups,
the problem of understanding the upper central series of V boils down to the study
ofZ(V) := Z1(V), the centre of V , which has been a topic of intensive research (see
[47, 48, 60, 65, 73]).

We begin by reviewing, in Sect. 2, the results on the free rank of Z(V). The
results related to the groups where Z(V) is trivial in the sense that Z(V) = Z(G),
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are discussed in Sect. 3. The structure of non-trivial Z(V) is taken up in Sect. 4. In
Sect. 5, we discuss the results on the upper central series of integral group rings of
arbitrary (not necessarily finite) groups. We conclude this survey with a discussion
on the hypercentral units of ZG in Sect. 6.

2 Free Rank of Z(U(ZG))

Let G be a finite group. It is known ([67], Corollary 7.3.3) that

Z(U(ZG)) = 〈−1〉 × Z(G) × AG = ±Z(V), (1)

where AG is a free abelian group of finite rank, say ρ(G). To determine the structure
of Z(V), the computation of ρ(G) is thus an essential requirement.

For an abelian group G, U(ZG) was first investigated by Higman in [39] where
he explored various properties of group rings and thus paved the way for some of
the most important questions in the theory of group rings. A rank formula for ρ(G),
in case G is abelian, was given by Ayoub and Ayoub [8].

Theorem 1 (Abelian groups) ([8], Theorem 4) If G is a finite abelian group, then

ρ(G) = 1

2
(|G| + n2 − 2c + 1), (2)

where |G| denotes the order of the group G, n2 is the number of elements of order 2
in G and c is the number of cyclic subgroups of G.

The above formula (2) for ρ(G) was generalized to all finite groups, in terms of
the number CG of conjugacy classes in G, the number qG of Q-conjugacy classes
of G (two elements x, y ∈ G are said to be Q-conjugate, if the cyclic subgroups
〈x〉, 〈y〉 are conjugate in G) and the number rG of real classes in G (a conjugacy
class C is said to be real, if x−1 ∈ C for every x ∈ C). Ritter and Sehgal [70] proved
that for a finite group G,

ρ(G) = 1

2
(CG − 2qG + rG). (3)

Let r(G) and q(G) denote, respectively, the number of simple components in
the Wedderburn decomposition of the real group algebra RG and the rational group
algebra QG. Observing that r(G) equals the number of R-conjugacy classes in G
(two elements x, y ∈ G are said to be R-conjugate, if x is conjugate to y or y−1)
and q(G) equals qG ([22], Theorem 42.8), Ferraz [26] independently obtained an
alternate expression for ρ(G) as follows:

ρ(G) = r(G) − q(G). (4)
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As an application, the free rank ρ(An) for the alternating groups An , in terms of
partitions of n, was computed. It may be mentioned that ρ(An) had also been given,
using the theory of Young tableaux, by Giambruno and Jespers [32].

The classification of the alternating groups An with ρ(An) at most 1, has been
obtained as follows:

Theorem 2 (Alternating groups) [5, 26]

(i) ρ(An) = 0 if and only if n ∈ {1, 2, 3, 4, 7, 8, 9, 12}, and
(ii) ρ(An) = 1 if and only if n ∈ {5, 6, 10, 11, 13, 16, 17, 21, 25}.
Using the results of [26], Ferraz and Simón [30] computed the rank ρ(G) for

a finite metacyclic group G by computing the number of R-conjugacy classes and
Q-conjugacy classes of G. In particular, the following result was obtained:

Theorem 3 (Metacyclic groups) Let Cp, q be the non-abelian metacyclic group of
order pq, where p and q are odd primes such that p divides q − 1. Then,

ρ(Cp, q) = p − 1

2
+ q − 1

2p
− 2. (5)

It is interesting to note that, the only solution of ρ(Cp, q) = 0 is p = 3, q = 7.
Recently, Jespers et al. [53] gave a formula to compute ρ(G) for a large class of

groups, including abelian-by-supersolvable groups. In order to present the same, we
first recall the definition of strongly monomial groups [64].

Let G be a finite group and K a normal subgroup of a subgroup H of G. Define
Ĥ := 1

|H |
∑

h∈H h and

ε(H, K ) :=
{
Ĥ , if H = K ;
∏

(K̂ − L̂), otherwise,

where |H | denotes the order of H and L runs over the normal subgroups of H ,
which are minimal among the normal subgroups of H containing K properly. A
strong Shoda pair [64] of G is a pair (H, K ) of subgroups of G satisfying:

(i) K is normal in H and H is normal in NG(K ), the normalizer of K in G;
(ii) H/K is cyclic and a maximal abelian subgroup of NG(K )/K ; and
(iii) the distinct G-conjugates of ε(H, K ) are mutually orthogonal.

It is known that if (H, K ) is a strong Shoda pair of G, then e(G, H, K ), the sum of
distinct G-conjugates of ε(H, K ), is a primitive central idempotent of the rational
group algebra QG ([64], Proposition 3.3). Two strong Shoda pairs (H1, K1) and
(H2, K2) are said to be equivalent, if e(G, K1, H1) = e(G, K2, H2). By a complete
irredundant set of strong Shoda pairs of G, one means a complete set of represen-
tatives of the distinct equivalence classes of strong Shoda pairs of G. A finite group
G is said to be strongly monomial, if every primitive central idempotent of QG is of
the form e(G, H, K ) for some strong Shoda pair (H, K ) of G.
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Jespers et al [53], calculated the free rank of Z(U(ZG)) in terms of strong Shoda
pairs of G, provided G is a strongly monomial group.

Theorem 4 (Strongly monomial groups) Let G be a finite strongly monomial group.
Then,

ρ(G) =
∑

(H, K )

(
ϕ([H : K ])

k(H,K )[NG(K ) : H ] − 1

)

, (6)

where [A : B] denotes the index of B in A, ϕ is the Euler totient function, the
sum runs over a complete irredundant set of strong Shoda pairs (H, K ) of G with
H/K = 〈hK 〉 and

k(H, K ) =
{
1, if hhx ∈ K for some x ∈ NG(K );
2, otherwise.

For illustrations on the computation of rank using the above theorem, see ([12],
Sect. 4), where ρ(G) has been computed for non-abelian groups of orders p3 and
p4, p-prime.

3 CUT-Groups

Trivially, Z(V) contains Z(G), the centre of G. In case Z(V) = Z(G), i.e., all
central units are trivial, following [13], we call G a cut-group, or a group with the
cut-property. Clearly, for a finite group G, V has central height zero if, and only if,
G is a cut-group with trivial centre.

The question of classifying cut-groups was explicitly posed, for the first time,
by Goodaire and Parmenter [33]. As an answer, Ritter and Sehgal [68] gave a char-
acterization of such finite groups in terms of their conjugacy classes, which was
later generalized for arbitrary groups [24]. Recently, cut-groups have further been
explored [9, 13, 20, 63]. It turns out that the study of cut-groups has been going
on under different names, and with different approaches. The various notions thus
developed exhibit a highly interesting interplay between group theory, representation
theory, algebraic number theory and K -theory.

In view of ([9], Proposition 2.2), ([14], Theorem 20.2), ([24], Lemma 2), ([43],
p. 545), ([52], Corollary 1.7) and the results in [9, 20, 26, 68], we have the following
characterizations for a finite group to be a cut-group:

Theorem 5 The following statements are equivalent for a finite group G:

(i) G is a cut-group.
(ii) The free rank ρ(G) of Z(V) equals 0.
(iii) For every x in G, and for every natural number j , relatively prime to |G|, the

order of G, x j is conjugate in G to x or x−1.
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(iv) G is an inverse semi-rational group, i.e., each element x ∈ G is such that
every generator of the cyclic group 〈x〉 is conjugate in G to x or x−1.

(v) The numbers r(G) and q(G), denoting respectively the number of simple
components in the Wedderburn decomposition of RG and QG, are equal.

(vi) The character fieldQ(χ) := Q({χ(g) | g ∈ G}) of each absolutely irreducible
character χ of G is either Q or an imaginary quadratic field.

(vii) IfQG ∼= ⊕
i Mni (Di ), is theWedderburn decomposition ofQG,where Mn(D)

denotes the algebra of n × n matrices over the division ringD, then the centre
Z(Di ) of each division ring Di is Q or an imaginary quadratic field.

(viii) G = NV(G), the normalizer of G in V.

(ix) K1(ZG), the Whitehead group of ZG, is finite.

The above characterizations of cut-groups immediately yield the following prop-
erties of such groups (see [13, 63, 68]).

Proposition 1 Let G be a finite cut-group. Then,

(i) Every homomorphic image G of G is a cut-group.
(ii) The centre Z(G) of G is a cut-group.
(iii) If H is a real group (i.e., for all h ∈ H, h is conjugate to h−1), and has the

cut-property, equivalently, if H is a rational group (i.e., for every h ∈ H, all
generators of the cyclic subgroup 〈h〉 are in one conjugacy class of G), then
the direct sum G ⊕ H is a cut-group.

It is well known [39] that a finite abelian group G is a cut-group if, and only if,
the exponent of G is 1 , 2 , 3 , 4 or 6. In fact, it is easy to check that if a finite group
G has exponent 1 , 2 , 3 , 4 or 6, then it is a cut-group. However, the converse is not
true for non-abelian groups. For instance, the non-abelian metacyclic group of order
27 is a cut-group and has an element of order 9 (see Theorem 7).

It may be noted that the cut-property is not direct sum closed. For instance, let
H = 〈a, b | a8 = b2 = 1, b−1ab = a3〉 and K = 〈x | x4 = 1〉.

Then H ⊕ K is not a cut-group, although both H and K are cut-groups ([13],
Remark 1). Further, it may be pointed that the statement (iii) in Proposition 1 is a
generalization of Higman’s result [39] which states that if G is a cut-group, then so
is the direct sum G ⊕ E2, E2 an elementary abelian 2-group.

In Theorem 4, for a strong Shoda pair (H, K ) of a strongly monomial finite group
G with [H : K ] = m say, the quotient group NG(K )/H is regarded as a subgroup
of U(Z/mZ), using the following faithful action:

NG(K )/H −→ Gal(Q(ζm)/Q) (∼= U(Z/mZ))

xH �−→ αxH , x ∈ NG(K ),

where ζm is a primitive mth root of unity, αxH (ζm) = ζ
j
m , if hx K = h j K . With this

identification, Theorem 4 at once yields the following:

Theorem 6 (Strongly monomial cut-groups) [12] A strongly monomial group G is
a cut-group if, and only if,
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U(Z/[H : K ]Z) = 〈NG(K )/H, −1〉,

for every strong Shoda pair (H, K ) of G. In particular, if for every strong Shoda
pair (H, K ) of a strongly monomial group G,

[H : K ] = 1 , 2 , 3 , 4 or 6,

then G is a cut-group.

An advantage of determining the primitive central idempotent e(G, H, K ) ofQG,
using strong Shoda pair (H, K ) of G, is that one can describe the structure of the
corresponding simple component QGe(G, H, K ) ([64], Proposition 3.4).

The following theorem gives, up to isomorphism, a complete list of metacyclic
cut-groups. This has been obtained by invoking Theorem 5 and by computing the
structure of simple components of the rational group algebras of metacyclic groups
via complete irredundant sets of strong Shoda pairs of G determined by the work
in [11].

Theorem 7 (Metacyclic cut-groups) ([13], Theorem5) Let G be a finite non-abelian
metacyclic group defined by the presentation

G = 〈a, b | an = 1, bt = a�, ab = ar 〉,

where n, t, r, � are natural numbers such that

r t ≡ 1 (mod n), �r ≡ � (mod n) and � | n.

Then, G has the cut-property if, and only if, G is isomorphic to one of the following
46 groups:

〈a, b | an = 1, bt = 1, ab = an−1〉, t = 2, 4, 6, n = 3, 4, 6;
〈a, b | a4 = 1, bt = a2, ab = a3〉, t = 2, 6;
〈a, b | an = 1, bϕ(n) = 1, ab = aλn 〉, n = 5, 7, 9, 10, 14, 18;
〈a, b | an = 1, bϕ(n) = 1, ab = aλ2

n 〉, n = 7, 9, 14, 18;

〈a, b | an = 1, b
ϕ(n)
2 = 1, ab = aλ2

n 〉, n = 7, 9;
〈a, b | a8 = 1, bt = 1, ab = ar 〉, t = 2, 4, r = 3, 5;
〈a, b | a12 = 1, bt = 1, ab = a5〉, t = 2, 4;
〈a, b | a12 = 1, b6 = a�, ab = a7〉, � = 6, 12;
〈a, b | a15 = 1, b4 = 1, ab = a2〉;
〈a, b | a16 = 1, b4 = 1, ab = ar 〉, r = 3, 5;
〈a, b | a20 = 1, b4 = 1, ab = ar 〉, r = 3, 13;
〈a, b | a20 = 1, b4 = a10, ab = a3〉;
〈a, b | a21 = 1, b6 = 1, ab = ar 〉, r = 2, 10;
〈a, b | a28 = 1, b6 = a�, ab = a11〉, � = 14, 28;
〈a, b | a30 = 1, b4 = 1, ab = a17〉;
〈a, b | a36 = 1, b6 = a�, ab = a7〉, � = 6, 36;
〈a, b | a42 = 1, b6 = 1, ab = ar 〉, r = 11, 19;

where λn is a generator of U(Z/nZ).
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For a classification of finite metacyclic groups G, relative to the central height of
V(ZG), see ([13], Theorem 6).

The following result extends Higman’s classification of finite abelian cut-groups
[39] to that of finite nilpotent cut-groups.

Theorem 8 (Nilpotent cut-groups) ([63], Theorem 3; see also [13], Sect. 2) A finite
nilpotent group G has the cut-property if, and only if, G is one of the following:

(i) a 2-group such that for all x ∈ G, x3 is conjugate to x or x−1;
(ii) a 3-group such that for all x ∈ G, x2 is conjugate to x−1;
(iii) a direct sum H ⊕ K of a real group H satisfying (i) and a non-trivial group K

satisfying (ii).

Corollary 1 (p-groups) Let G be a p-group with the cut-property. Then, p = 2 or 3
and each quotient in the lower, as well as the upper, central series of G is of exponent

{
2 or 4, if p = 2;
3, if p = 3.

Corollary 2 Let H and K be p-groups with the cut-property. Then, the following
statements holds:

(i) H ⊕ K is a cut-group, if p = 3.
(ii) If p = 2, and one of H or K is a real group, then H ⊕ K is a cut-group.

From the foregoing analysis and using the results from Sect. 4 of [12], it is easy
to deduce the following identification of non-abelian cut-groups of order p3 and p4,
p-prime.

Proposition 2 A non-abelian group G of order p3 or p4, p-prime, is a cut-group
if, and only if, it is isomorphic to one of the following 12 groups:

〈a, b : a4 = b2 = 1, ba = a3b〉,
〈a, b : a4 = 1, a2 = b2, ba = a3b〉,
〈a, b : a8 = b2 = 1, ba = a5b〉,
〈a, b, c : a4 = b2 = c2 = 1, cb = a2bc, ab = ba, ac = ca〉,
〈a, b : a4 = b4 = 1, ba = a3b〉,
〈a, b, c : a4 = b2 = c2 = 1, ca = a3c, ba = ab, cb = bc〉,
〈a, b, c : a4 = b2 = c2 = 1, ca = abc, ba = ab, cb = bc〉,
〈a, b, c : a4 = b4 = c2 = 1, ba = a3b, ca = ac, cb = bc, a2 = b2〉,
〈a, b : a8 = b2 = 1, ba = a3b〉,
〈a, b, c : a9 = b3 = c3 = 1, ca = a4c, ba = ab, cb = bc〉,
〈a, b, c : a9 = b3 = c3 = 1, ba = a4b, ca = abc, cb = bc〉,
〈a, b, c, d : a3 = b3 = c3 = d3 = 1, dc = acd, bd = db, ad = da,

bc = cb, ac = ca, ab = ba〉.
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Specializing to p-groups of class 2, we have the following:

Proposition 3 (p-groups of class 2) [63] Let G be a p-group of class 2. Then, the
following statements are equivalent:

(i) G is a cut-group.
(ii) Either (a) p = 2 and for every x ∈ G, x4 ∈ [x, G] or

(b) p = 3 and, for every x ∈ G, x3 ∈ [x, G], where [x, G] := 〈x−1xg | g ∈ G〉.
(iii) For all x ∈ G, both [x, G] and G/[x, G] are cut-groups.
(iv) For all normal subgroups N of G contained in Z(G), both N and G/N are

cut-groups.

Furthermore, the cut-property is direct sum closed for p-groups of class 2.

Recently, Bächle [9] has given the classification of Frobenius cut-groups.

Theorem 9 (Frobenius cut-groups) ([9], Theorem 1.3) Let K be a Frobenius com-
plement.

(i) If |K | is even and K is the complement of a Frobenius cut-group G, then G
is isomorphic to one of the groups in either (a) − ( f ) with b, c, d ∈ Z≥1 or

(α) − (δ):

(a) Cb
3 � C2; (α) C2

5 � Q8;

(b) C2b
3 � C4; (β) C2

5 � (C3 � C4);

(c) C2b
3 � Q8; (γ) C2

5 � SL(2, 3);

(d) Cc
5 � C4; (δ) C2

7 � SL(2, 3).

(e) Cd
7 � C6;

(f) C2d
7 � (Q8 × C3);

Conversely, for each of the above structure descriptions, there is a Frobenius
cut-group of that form, and it is unique up to isomorphism.
(Here, Cm

n denotes the direct sum of m copies of the cyclic group Cn.)
(ii) If |K | is odd, then there is a Frobenius cut-group G with complement K and

Frobenius kernel F if, and only if, K ∼= C3 and one of the following holds:

(a) F is a cut-2-group admitting a fixed point free automorphism of order 3.
In particular, F has order 2a for some a ∈ 2Z≥1 and is an extension of an
abelian group of exponent a divisor of 4 by an abelian group of exponent a
divisor of 4.

(b) F is an extension of an elementary abelian 7-group by an elementary abelian
7-group, exponent of F equals 7 and F admits a fixed point free automor-
phism of order 3 fixing each cyclic subgroup of F.

Corollary 3 ([9], Corollary 4.6)Let G be aFrobenius cut-groupwith abelianFrobe-
nius kernel. Then, G appears in Theorem 9(i) or is isomorphic to
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(Ca
2 × Ca′

4 ) � C3 or C
d
7 � C3 (a, a′ ∈ 2Z≥0, a + a′ > 0, d ∈ Z≥1).

For each of the above structures, there is a unique Frobenius cut-group of that form.

Recall that a group G is called a Camina group, if G �= G ′, the derived subgroup
of G, and, for every g /∈ G ′, the coset gG ′ is a conjugacy class [23, 62].

Bakshi et al. [13] have proved that non-abelian Camina p-groups are cut-groups,
for p = 2, 3. As a corollary to classification of Frobenius cut-groups, the following
is a classification of Camina cut-groups:

Corollary 4 (Camina cut-groups) ([9], Corollary 4.8) A Camina group G is a cut-
group if, and only if,

(i) G is a p-group, p = 2, 3,
(ii) G is a Frobenius group of the form:

(C2n
2 × C2m

4 ) � C3, Cn
3 � C2, C2n

3 � C4, C2n
3 � Q8, C2

5 � Q8,

for m, n ∈ Z≥1,
(iii) G is a Frobenius group of the form:

Cn
7 � C3, Cn

5 � C4, Cn
7 � C6,

for n ∈ Z≥1, where a generator of the complement raises each element of the
Frobenius kernel to the same power, or

(iv) G is aFrobenius cut-groupwith a cyclic complement of order 3 and non-abelian
kernel as described in Theorem 9 (ii).

The following results from [63] use Theorem 8 along with the results on semi-
rational groups due to Chillag and Dolfi [20].

Theorem 10 (Solvable cut-groups) ([63], Theorem 2) A finite solvable group G
in which every element has prime-power order is a cut-group if, and only if, every
element x ∈ G satisfies one of the following conditions:

(i) o(x) = 2a, a ≥ 0 and x3 is conjugate to x or x−1;
(ii) o(x) = 7 or 3b, b ≥ 1 and x5 is conjugate to x−1;
(iii) o(x) = 5 and x3 is conjugate to x−1;

where o(x) denotes the order of x.

The odd-order cut-groups have been definitively characterized as follows:

Theorem 11 (Odd-order cut-groups) ([63], Theorem 1) An odd-order group G is a
cut-group if, and only if, every element x ∈ G satisfies
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(i) x5 is conjugate to x−1, and
(ii) o(x) is either 7, or a power of 3.

dummy

An immediate consequence of the above result is the following:

Corollary 5 The cut-property is direct sum closed for odd-order groups.

Crucial for the proof of the Theorem 11 is the observation that ifG is an odd-order
cut-group, then every element of G has prime-power order.

The characterization of even-order solvable but non-nilpotent cut-groups having
an element of mixed order is still an open problem.

We conclude this section with the observation that if G is solvable, then the cut-
property has a strong bearing on the prime spectrum π(G), the set of primes dividing
the order of G.

Theorem 12 (Prime spectrum of cut-groups) [9, 13, 20, 63] Let G be a finite cut-
group. Then, either 2 or 3 ∈ π(G), and

(i) π(G) ⊆ {2, 3}, if G is nilpotent;
(ii) π(G) ⊆ {3, 7}, if G is an odd-order group;
(iii) π(G) ⊆ {2, 3, 5, 7}, if G is solvable.

The bounds on π(G) given in the above result are best possible, in the sense that
no prime can be dropped. Since all symmetric groups Sn , n ≥ 3 are cut-groups [68],
such a restriction cannot be put on π(G) if G is non-solvable.

The investigation of the cut-property for non-solvable groups will naturally be of
interest.

4 The Structure of Z(U(ZG))

If G is a finite group which is not a cut-group, then, for a complete description of
Z(U(ZG)), one needs to compute a basis SG say, of a complement AG of its torsion
subgroup Z(G) (see (1)). Apparently, this involves construction of units of infinite
order.While the construction of such units is rather hard, certain standard procedures
have been evolved for cyclic group rings, which we proceed to recall (see [73] for
details).

Let Cn = 〈g〉, be a cyclic group of order n ≥ 1.
Bass cyclic units: Let k and m be positive integers with 1 < k < n and km ≡
1(mod n), then the element

uk,m(g) := (1 + g + · · · + gk−1)m + 1 − km

n
(1 + g + · · · + gn−1) (7)

is a unit in ZCn with the inverse uk ′,m(gk), where kk ′ ≡ 1(mod n), 1 < k ′ < n.
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Alternating units: Let c be an integer coprime to 2n, then

μ := 1 − g + g2 − · · · + gc−1, (8)

is a unit in ZCn .
Hoeschmann units: For i ≥ 0 and y ∈ Cn , set

si (y) = 1 + y + · · · + yi−1. (9)

Let i, j be integers, 0 < i, j < n, both relatively prime to n and let k, l be positive
integers with li = 1 + kn. Then,

ui, j (g) = sl(g
i )si (g

j ) − ksn(g) (10)

is a unit in ZCn .

Set of Generators for Z(U(ZG))

The problem of determining an explicit basis SG of a complement of Z(G) in
Z(U(ZG)) has been solved for very few cases. We proceed to present the current
status.

Cyclic Groups

If n = 1, 2, 3, 4 or 6, then Cn is a cut-group and therefore, SCn = φ.
For C5, we have SC5 = {u}, where

u = g − g3 − g4,

and for C8, we have SC8 = {v}, where

v = 2 + g − g3 − g4 − g5 + g7 ([67, 73]).

Aleev and Panina [3] proved that

V(ZG) = G × 〈u1〉 × 〈u2〉, if G = C7 or C9,

and provided explicit description of the elements ui , i = 1, 2.
The group V(ZCn), for n = 10 and 12 has been described in [1]. Aleev and

Sokolev [4] gave the description of V(ZG) when G = C16 or C32. Further, for a
prime p satisfying certain number-theoretic condition, a basis SCp , was computed in
[27], including, in particular, all primes 5 ≤ p ≤ 67. The description of the elements
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of SCp was given in terms of Bass cyclic units and alternating units. Using similar
conditions and methodology, Ferraz and Katani [28] extended the work in [27] to
the case when G = Cpm , involvingHoeschmann units. Their method is for restricted
values of m and includes all primes p and m ∈ N satisfying ϕ(pm) ≤ 66. Recently,
Ferraz andMarcuz [29] described a basis SG when G is the cyclic group of order 2p.

Metacyclic Groups

Adapting the algorithmgiven in ([18], Sect. 2.5.3), Jespers anddelRío ([48], Example
7.2.4), illustrate the calculation of a basis SG , when

G = 〈a, b | a5 = 1, b4 = 1, ab = a−1〉,

involving some GAP [75] computations. It has been pointed out that the algorithm is
effective, but not too efficient in general ([21], Conclusion 4.9.3). The same technique
can be used to find an SG , when

G = 〈a, b | a13 = 1, b4 = 1, ab = a−5〉,

D16 (the dihedral group of order 16), Q16 (the generalized quaternion group of order
16), or A5 ([48], Exercises 7.2.4 and 7.2.5). In [29], Ferraz and Marcuz described
an SG , when G = Cp × C2 × C2, for a prime p satisfying some suitable conditions.
Furthermore, for certain primes p and q, Ferraz and Simón [31] described the struc-
ture of Z(V(ZCp, q)), with Cp, q as in Theorem 3.

Alternating Groups

The group of central units of integral group ring ZAn of the alternating group An

is known only for some values of n. The cases for which ρ(An) = 0 (i.e., SG =
φ) have already been given in Theorem 2. The generators of non-trivial groups
Z(V(ZAn)), n = 5 and n = 6,were explicitly given byAleev [1]. ForA5, samework
was also independently carried out by Li and Parmenter [56]. The full description of
Z(V(ZAn)), for the cases when ρ(An) = 1 (see Theorem 2), can be found in [2, 4].
Some results on calculation of ρ(An), n ≤ 600, can be found in [5].

Large Subgroups of Z(U(ZG))

As may be noted from the preceding discussion, the problem of determining a
multiplicatively independent subset yielding a torsion-free complement of Z(G)

inZ(U(ZG)) is not answered fully even for cyclic groups of prime order. A weaker,
but still non-trivial, question is to find a large subgroup of Z(U(ZG)), meaning a
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subgroup of finite index in Z(U(ZG)). A lot of work has been done in this direction
which we now proceed to describe.

For a cyclic group G, Bass cyclic units generate a subgroup of finite index in
U(ZG) [15]. Generalizing this result, Bass, Milnor, and Serre [16] proved that the
result holds good for finite abelian groups as well. Their proofmakes use of K -theory
in order to reduce the computation to group rings of cyclic groups. In [54], Jespers
et al gave another construction of subgroup of finite index in U(ZG), for an abelian
group G, which did not involve the use of K -theory. For abelian groups G, the units
of ZG have been studied in a series of papers [40–42]. In ([41], Theorem 2.5), it is
proved that the Hoechsmann units arising from the cyclic subgroups of order greater
than 2, along with ±G, generate a subgroup of finite index in U(ZG).

Giambruno and Jespers [32] described a construction of a large subgroup in
Z(U(ZAn)). Their construction avoids the use of Bass cyclic units and is based
mainly on the theory of Young tableaux. Ferraz and Simón [30], gave a subgroup
of finite index in Z(U(ZCp, q)), by defining two kinds of units, both based on Bass
cyclic units.

For an arbitrary finite group G, a construction of generators of a large subgroup
in Z(U(ZG)) can be found in [69]. In [51], Jespers et al provided an explicit set of
generators for a large subgroup inZ(U(ZG)),G a finitely generated nilpotent group.
For a finite abelian-by-supersolvable group G, such that every cyclic subgroup of
order not a divisor of 4 or 6 is subnormal inG, Jespers et al [50] gave a large subgroup
in Z(U(ZG)).

Based on Bass cyclic units and theory of strong Shoda pairs of G, Jespers and
Parmenter [49] introduced a newconstruction of unitswhich yield a subgroup of finite
index inZ(U(ZG)), providedG is strongly monomial group.With this construction,
Jespers, Olteanu, del Río and Van Gelder [50] defined generalized Bass units as
follows:

Let M be a normal subgroup of G and let g ∈ G be an element of order n. Let k
and m be positive integers with 1 < k < n and km ≡ 1(mod n), then

uk,m(1 − M̂ + gM̂) := 1 − M̂ + uk,m(g)M̂ (11)

is a unit inZG(1 − M̂) + ZGM̂ . Since bothZG(1 − M̂) + ZGM̂ andZG are orders
in QG, there is a positive integer ng,M such that

(uk,m(1 − M̂ + gM̂))ng,M ∈ U(ZG). (12)

Suppose nG,M is the minimal positive integer satisfying (12) for all g ∈ G. Then, the
element

(uk,m(1 − M̂ + gM̂))nG,M = 1 − M̂ + uk,mnG,M (g)M̂ (13)

is called a generalized Bass unit of ZG based on g and M with parameters k and m.
Observe that nG,M = 1, if M is trivial, i.e., M = 〈1〉 or G, and with M = 〈1〉,

uk,m(1 − M̂ + gM̂) = uk,m(g), a Bass cyclic unit in ZG.
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Let G ′ denote the derived subgroup of G.
With the foregoing notation, we have

Theorem 13 ([50], Theorem 5.1) Let G be a finite strongly monomial group. Then,
the group generated by the generalized Bass units (uk,m(1 − Ĥ ′ + hĤ ′))nH,H ′ ∈ ZH,
arising fromstrongShodapairs (H, K )ofG with H/K = 〈hK 〉, contains a subgroup
of finite index in Z(U(ZG)).

Note that, the preceding Theorem is a generalization of ([49], Corollary 2.3),
where this result was proved for the class of metabelian groups. In ([49], Corollary
3.3; see also [60], Theorem 3.6), for a Frobenius group G with complement H of
odd order, a large subgroup in Z(U(ZG)) has been given.

Virtual Basis of Z(U(ZG))

We next discuss the work, where not only a large subgroup in Z(U(ZG)) for a
finite group G has been constructed, but also a virtual basis, i.e., a multiplicatively
independent set of elements of Z(U(ZG)), generating such a subgroup has been
given.

For a cyclic group, Bass described a virtual basis using the Independence Lemma
[15]. However, for abelian groups, virtual basis was given much later in [54].

If G is a finite abelian-by-supersolvable group, such that every cyclic subgroup
of order not a divisor of 4 or 6 is subnormal in G, a virtual basis has been provided
in [50].

Recently, for a class of strongly monomial groups G which have a complete
irredundant set of strong Shoda pairs (H, K )with the property that the index [H : K ]
is a prime-power, Jespers et al [53] gave a virtual basis, say B, of Z(U(ZG)). The
groups which satisfy this property include metacyclic groups Cqm � Cpn , where p
and q are different odd primes, and Cpn acts faithfully on Cqm . Hence, this was an
extension of work in [30], where a virtual basis was given for Z(U(ZCp, q)).

Index of Large Subgroups in Z(U(ZG))

For abelian groups, Bass cyclic units generate a subgroup of finite index which is rel-
atively higher in comparison to the index of the subgroup generated by Hoechsmann
units. In [25], Faccin et al. provide an algorithm based on construction of Hoechs-
mann units, and implement the same in MAGMA [19], to compute the index for all
groups of order up to 110. Furthermore, for the class of strongly monomial groups,
studied by Jespers et al in [53], Bakshi and Maheshwary [12] estimated the index

[Z(U(ZG)) : 〈B〉]
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of the free abelian subgroup generated by B. An upper bound on the index has been
given, based on the ideas contained in [53] and Kummer’s work (see [76], Theorem
8.2) on the index of cyclotomic units.

Note that, index estimation for the large subgroups in full unit group of ZG has
been done for certain other cases. For details, the reader is referred to Section 7
of [47].

We next consider central units in integral group rings of infinite groups.

5 Integral Group Rings of Infinite Groups

For an arbitrary abelian group G, it was shown by Sehgal ([71], Theorem 1, see also
[72], Theorem 3.5), that every unit u ∈ ZG can be written as u = wg, g ∈ G, w ∈
ZT, where T is a finite subgroup of G. This result was extended to central units
of ZG, when G is a finitely generated nilpotent group, by Jespers, Parmenter and
Sehgal [51] and was later generalized further by Milies and Sehgal [66], to the case
of arbitrary groups.

Recall that the FC-subgroup �(G) of a group G is the subgroup consisting of all
elements in G having only finitely many conjugates in G. We denote by �+(G), the
torsion subgroup of �(G).

Theorem 14 ([66], Theorem 1) Let G be an arbitrary group. Every central unit u
of ZG can be written as

u = wg = gw, g ∈ �(G), w ∈ Z�+(G). (14)

The above theorem serves as a major tool to construct large subgroups of
Z(U(ZG)), using the generators of large subgroups inZ(U(Z�+(G))), when�(G)

is finitely generated (see e.g. [51, 66]).
Dokuchaev, Milies and Sehgal [24] generalized, to arbitrary groups, the criterion

givenbyRitter andSehgal (Theorem5 (iv)), for afinite group to have thecut-property.

Theorem 15 ([24]) An arbitrary group G is a cut-group if, and only if, every finite
normal subgroup A of G satisfies the condition that, for every a ∈ A and every
natural number j relatively prime to the order of a, the element a j is conjugate (in
G) to a or a−1.

The representation for central units given in Theorem 14 was generalized to that
for normalizing units u ∈ NV(G) and applied to verify the normalizer property, for
several classes of infinite groups.

Theorem 16 ([52], Theorem 1) Let G be an arbitrary group. Every normalizing
unit u ∈ NV(G) can be written as

u = wg, g ∈ G, w ∈ Z�+(G). (15)
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As a consequence, it was shown that the groups NV(G)/G and Z(V)/Z(G) are
embedded in the torsion-free abelian group Z(V) ∩ V(Z�+(G))/Z(G) ∩ �+(G)

and they all have the same torsion-free rank ([52], Corollary 1.5). One thus has
another characterization of the cut-property for arbitrary groups.

Theorem 17 ([52], Corollary 1.7) The following statements are equivalent for an
arbitrary group G:

(i) G is a cut-group.
(ii) NV(G) = G.

(iii) all units in Z�+(G), that are central in ZG are trivial.

Finally, we consider the hypercentral units of integral group rings.

6 The Hypercentre of V(ZG)

For a group H , let

Z∞(H) := ∪∞
n=1Zn(H)

denote the hypercentre of H . The group H is said to be hypercentral ifZ∞(H) = H .
Given a group G, the elements of Z∞(V(ZG)) are called hypercentral units.

Hypercentral Unit Groups

The classification of groups G for which Zn(V) = V for some n ≥ 1, i.e., V is
nilpotent, due to Sehgal and Zassenhaus ([74], see also [72], VI.3.23), has long
been known. It is naturally of interest to know when is Z∞(V) = V , i.e., when is
V hypercentral. Such groups were characterized by Bist [17] and have also been
recently studied by Iwaki and Juriaans [44–46], using a different approach.

Theorem 18 ([17], Corollary 3, see also [46], Theorem 2.4) Let G be an arbitrary
group. The unit group V(ZG) is hypercentral if and only if G is hypercentral and
the torsion subgroup T of G satisfies one of the following conditions:

(i) T is central in G.
(ii) T is an abelian, non-central and for g ∈ G and for every t ∈ T , tg = t or t−1.
(iii) T is a Hamiltonian 2-group and every subgroup of T is normal in G.

Hypercentral Units

While the central units of integral group rings have been a subject of intensive re-
search, hypercentral units too have received considerable attention. However, unlike
central units, no general constructions for hypercentral units seem to be known.
The investigations on hypercentral units of integral group rings have been primarily
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motivated by the study of themultiplicative Jordan decomposition and the normalizer
property.

A group G is said to have the multiplicative Jordan decomposition property,
if every unit u ∈ V is expressible as the product u = αβ with α semisimple, β
unipotent and αβ = βα (see surveys [34, 35]). In the study of Jordan decomposition
for elements of V , Arora, Hales and Passi [6, 7] proved that, for a finite group G,
[Z2(V),V] ⊆ Z(G), and concluded that Z∞(V) = Z2(V) = Z(V)T , where T is
the torsion subgroup of Z2(V). Moreover, for a finite group G, Z2(V) �= Z1(V) if,
and only if, G is a Q∗ group.

In a series of papers, Li and Parmenter made significant contributions to the study
of hypercentral units [55, 57–59]. They extended the above mentioned results of
Arora, Hales and Passi to torsion groups and checked thatZ∞(V) = Z2(V) does not
hold good in general [58, 59]. They also proved that the inclusionZ∞(V) ⊆ G.Z(V)

holds if either (i) G is an FC-group which is locally nilpotent or has no 2-torsion;
or (ii) the torsion elements of G form an abelian subgroup T contained in the FC-
subgroup ofG andG = 〈T, g〉 for some g ∈ G; or (iii)G = T � X , where T is finite
abelian and X is torsion-free abelian ([58], Proposition 2.5). If the torsion elements
of a groupG form a subgroup T , say, then ([59], Theorem 3.2, see also [58], Theorem
2.3) implies that ifZ∞(V) ⊆ NV(G), thenZ∞(V) ⊆ G. CV(T ), where CV(T ) is the
centralizer of T in V . Furthermore, if Z∞(V) � CV(T ), then T is either an abelian
2-group or T has an element a of order 4 and an abelian subgroup H of index 2,
which is not an elementary abelian 2-group, such that T = 〈H, a〉, a−1ha = h−1,
for all h ∈ H ([59], Theorem 3.1, see also [58], Theorem 3.5).

A group G is said to have the normalizer property, if NV(G) = Z(V).G. The
normalizer property is related to some central problems in the theory of group rings
and has been widely studied by several authors (see survey [10], for instance). The
study of hypercentral units is closely related to the study of the normalizer property
as well.

Theorem 19 ([38], Proposition 4.1, see also [59], Lemma 2 and [55], Lemma 1)
For an arbitrary group G,

(i) Z∞(V) ⊆ NV(G);
(ii) [V,Zn+1(V)] ⊆ Zn(G), for each n ∈ N;
(iii) each element of Z∞(V) commutes with all the unipotent elements of V .
It may be noted that the above result has been proved more generally for the group

ring RG, where R is a G-adapted ring (an integral domain R of characteristic zero is
said to be G-adapted, if every rational prime p for which G has an element of order
p, is not invertible in R). For partial or complete generalizations of results in this
section, to RG, we refer the reader to [36].

Furthermore, it has been proved that the normal closure of group generated by
the support of a hypercentral unit in Z∞(V(ZG)) is a polycyclic-by-finite group,
provided the group G is finitely generated ([38], Proposition 2.4).

In view of Theorem 19, the normalizer property clearly has a strong impact on the
hypercentral units; for, then Z∞(V) ⊆ G.Z(V). Considerable work has been done
in this direction [36–38, 45, 46, 52, 61].
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Hertweck and Jespers [37] proved that Blackburn groups have the normalizer
property. As a consequence of this, along with results in [38] (Propositions 4.1 and
4.5, Corollaries 4.3 and 4.12), it is observed that the inclusion Z∞(V) ⊆ G.Z(V)

holds for any arbitrary group G.

Theorem 20 ([37]) Let G be an arbitrary group. Then,

Z∞(V) ⊆ G.Z(V).

Returning to the cut-groups, we see that the cut-property has strong bearing on
the hypercentral units. The following result was proved by Li ([55], Corollary 2) for
torsion groups.

Corollary 6 ([52], Propostion 1.8) Let G be an arbitrary cut-group. Then,

Z∞(V) ⊆ G.
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1 Introduction

It is more than 14 years since I wrote in [22] a list of open problems on characters and
Sylow subgroups for the Proceedings of the JohnThompson conference (Gainesville,
Florida, 2003). In this lapse of time, there has been significant progress on some
of these questions. Others have remained unaccessible or simply ignored. It is my
purpose here to give an account on what has been done in these years, add a few
more problems, and comment on others.

It is hardly debatable that one of the corner stones of group theory is Sylow
theory. For a character theorist with love for finite groups, there are few, if any, more
interesting subjects than the study of the relationship between the set Irr(G) of the
irreducible complex characters of G and P ∈ Sylp(G), a Sylow p-subgroup of G.
If one wants to go deeper, there is a more sophisticated version of this: relate the
irreducible characters in a Brauer p-block Irr(B) with D, where D is a defect group
of B.
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2 Brauer’ Problems

Asmany of the fundamental questions in theRepresentationTheory of FiniteGroups,
it all starts with Richard Brauer. There are some problems in his celebrated paper [3]
that have totally shaped the research in our subject. This is Brauer’s Problem 12, in
Brauer’s words.

Problem 12. Given the character table of a group G and a prime p dividing n = |G|,
how much information about the structure of the p-Sylow group P can be obtained?
In particular, can it be decided whether or not P is Abelian?

W. Kimmerle and R. Sandling solved this problem (the abelian part) in 1995
[18], but perhaps not in the way that Brauer was thinking. Kimmerle and Sandling
showed, using the classification of finite simple groups, that if G and H have the
same character table, then G has abelian Sylow p-subgroups if and only if H has
abelian Sylow p-subgroups. (They even proved another remarkable fact: that those
Sylow subgroups have to be isomorphic.) But their method is not practical. If we
have a character table, how do we recognize if the Sylow p-subgroup is abelian?

Of course, Brauer was thinking about his famous Height Zero Conjecture on
blocks (Problem 23 in [3]) when he proposed Problem 12.

There are many ways to introduce blocks, but from the character theory point of
view, the best way is to use something that can be computed in the character table.
It is time to remark that the character table X (G) of a finite group G is the square
complex matrix (χi (x j )) whose (i, j)-entry is the value of the irreducible character
χi on the representative x j of the conjugacy classes of G. (Of course, this is only
well defined up to a permutation of rows and columns.) We do not know the orders
of the elements x j , although we do know the set of primes dividing o(x j ). (This is a
theorem of G. Higman, see Theorem 8.21 of [11].) A way to define p-blocks is this:
we define a linking ↔ in the set Irr(G) by linking α ↔ β if and only if

∑

x∈G0

α(x)β(x) �= 0 ,

where G0 is the set of p-regular elements of G. Then the blocks are the connected
components in Irr(G) via this linking. If B ⊆ Irr(G) is a block, then the characters χ
in B with smallest possible χ(1)p are called the height zero characters of the block,
and it turns out that if α ∈ B has height zero, then χ ∈ Irr(G) belongs to B if and
only if

∑

x∈G0

α(x)χ(x) �= 0 .

(This is Corollary 3.25 of [20].) The principal block of G is the block containing
the trivial character, and therefore the height zero characters in this block are the
characters of degree not divisible by p.
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Conjecture 2.1 (Brauer’s Height Zero, for principal blocks) Let G be a finite group,
and let P ∈ Sylp(G). Then, P is abelian if and only if whenever

∑
x∈G0 χ(x) �= 0,

where χ ∈ Irr(G), then p does not divide χ(1).

We see that Conjecture 2.1 gives an explicit algorithm to compute from the char-
acter table X (G) if P ∈ Sylp(G) is abelian. Since the writing of [22], there has been
fundamental progress on Brauer’s Height Zero Conjecture (for every block). In [17],
one direction of the conjecture was proven (if the defect group of B is abelian, then
all irreducible characters in B have height zero). In [28], it was proven for 2 blocks
of maximal defect, and the connection with the so called Alperin–McKay conjecture
was foreseen. Later in [30], with the help of [29], the remaining direction was proven
to be a consequence of the Inductive Alperin-McKay condition [41], and therefore,
it was reduced to a question on simple groups.

But in fact, in the same paper [3], Brauer was also wondering about an easier way
to detect if P is abelian from the character table of G: “If we know the p-classes
K , we have a necessary condition for this question: c(K ) for these classes must be
divisible by the full power of p dividing n. It does not seem to be known whether this
condition is sufficient for P to be Abelian.” (Here, c(K ) is the size of the centralizer
of any element in K .)

Brauer, of course, was not aware of the examples J4 or Ru for p = 3, and Th
for p = 5. A. Camina and M. Herzog [4] proved that Brauer was indeed right for
p = 2. (Much later E. Henke gave another proof of this result in [10].) Somewhat
surprisingly, Tiep and this author proved in [31] that the cases p = 3 and p = 5 were
the only exceptions.

Theorem 2.2 Suppose that p �= 3, 5. Let G be a finite group, and P ∈ Sylp(G).
Then, P is abelian if and only if p does not divide the sizes of the conjugacy classes
of the p-elements of G.

Afterward, with R. Solomon, we completely characterized the finite groups sat-
isfying the condition in Theorem 2.2 [37], and were able to give a complete solution
to Brauer’s Problem 12. (Of course, while we wait for the entire resolution of the
Height Zero Conjecture).

Theorem 2.3 Let G be a finite group, let p be any prime and P ∈ Sylp(G). Then,
P is abelian if and only if every p-element has conjugacy class size not divisible by
p, and, if p = 3 or 5, whenever

∑
x∈G0 χ(x) �= 0, where χ ∈ Irr(G), then p does not

divide χ(1).

Let me digress for a moment and change the subject of abelian Sylow to nilpotent
Hall subgroups and character tables. (This is related to Brauer’s Problem 11: Given
the character table of a group G, how much information about the existence of
subgroups can be obtained?) Again, Kimmerle and Sandling proved that if X (G) =
X (H) andG has a nilpotentHallπ-subgroup, then H has a nilpotentHallπ-subgroup.
But, in [2], we found a natural condition that easily characterizes this fact in the
character table.
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Theorem 2.4 Let G be a finite group. Then, G has nilpotent Hall subgroups if and
only if for every pair of distinct primes p, q ∈ π the class sizes of the p-elements of
G are not divisible by q.

Besides of the questions that I formulated in [22] for which there has been no
progress or activity, we believe that it might be interesting to work on the following.

Problems 2.5 (a) Does the multi-set of character degrees of a finite group G deter-
mine whether G has abelian Sylow p-subgroups?

(b) Does the character table of a finite group G determine whether G possesses Hall
π-subgroups? Or even whether G possesses Hall π-subgroups H satisfying that
every π-subgroup of G is contained in a G-conjugate of H?

(c) Does the character table X (G) determine, for instance, whether P ∈ Sylp(G)

has class 2?

Problem 2.5(a) is asking if only the first column of the character table of G
determines if G has abelian Sylow p-subgroups! This is highly unlikely, but at the
time of this writing I have no counterexample to this. For Problem 2.5(b), notice that
if H is a Hall π-subgroup H containing up to G-conjugacy the π-subgroups of G,
then we have a permutation character (1H )G with many nice properties. Whether or
not the properties of such a character determines the existence of H seems like an
interesting problem.

3 The McKay Conjecture

As we all know, the McKay conjecture is at the center of the Representation Theory
of Finite Groups today. It asserts that if G is a finite group and P ∈ Sylp(G), then

|Irr p′(G)| = |Irr p′(NG(P))| ,

where Irr p′(G) is set of the irreducible characters of G of degree not divisible by p.
In 2007 [15], we reduced the McKay conjecture to a problem on simple groups: if
the finite simple groups satisfy what is now called the inductive McKay condition,
then the McKay conjecture is true. This approach has proven to be successful, as
shown in the landmark paper by G. Malle and B. Späth [19], in which they prove the
McKay conjecture for p = 2.

But there is a strong conviction that there has to be more than “merely” bijections

∗ : Irr p′(G) → Irr p′(NG(P)) .

For instance, we believe that there should be bijections ∗ satisfying χ(1) ≡ ±χ∗(1)
mod p [13]; such that

(χ∗)a = (χa)∗
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for all a ∈ Aut(G) that stabilize P [24]; that these bijections should respect coho-
mology [15]; Brauer blocks and the Brauer correspondence [1]; and, what concerns
us here, that they should commute with certain Galois action, as proposed in [23].

Our aim in the rest of this paper is to survey how the McKay–Galois conjecture
is giving us insight on the problem of relating character tables and local structure.

By elementary character theory, we have that Irr p′(NG(P)) = Irr(NG(P)/P ′),
where P ′ is the derived subgroup of P . The group NG(P)/P ′ is the semidirect
product of P/P ′ with NG(P)/P and in particular, the groups P/P ′ and NG(P)/P
are natural targets of research.

4 The Group NG(P)/P

Themost basic question here is: Does the character table detect if this group is trivial?
The McKay–Galois conjecture provides an answer to this. And for odd primes p,
this has become a theorem (not a conjecture). Recall that an irreducible character χ
is p-rational if the field of valuesQ(χ) is contained in some cyclotomic fieldQn , for
n not divisible by p. Of course, if G is a p′-group, then every irreducible character of
G is p-rational. Since the McKay–Galois conjecture (which we have not stated yet)
implies that the number of p-rational characters in Irr p′(G) and Irr p′(NG(P)) is the
same, it easily follows from this fact that, for odd primes, we have that NG(P) = P
if and only if the unique p′-degree p-rational irreducible character of G is the trivial
one. This result was proven in [35].

Theorem 4.1 Let p be an odd prime, let G be a finite group, and let P ∈ Sylp(G).
ThenNG(P) = P if and only if the trivial character is the only p-rational p′-degree
irreducible character of G.

Our interest in self-normalizing Sylow subgroups started when we tried to prove
the McKay conjecture in this case. The first fact that we discovered was that if
NG(P) = P , then G is solvable for p > 3 [9]. Almost at the same time [21], I
proved that for solvable groups G with NG(P) = P , there is a natural bijection

∗ : Irr p′(G) → Irr(P/P ′) .

This bijection can be described quite easily: If χ ∈ Irr p′(G), then

χP = χ∗ + �,

where χ∗ ∈ Irr(P) is linear and every irreducible constituent of� (if any) has degree
divisible by p. Later in [36], we proved the same result for every finite group, for p
odd. In particular, since ∗ commutes with Galois action, notice that Theorem 4.1 can
easily be proved to be a consequence of this correspondence.

The subject of when there exist natural McKay bijections is quite interesting (see
[6, 8, 16]). It is also a subtle subject, since the word natural has never been defined in
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character theory.We understand that a map is canonical, natural, or choice-free when
the outcome does not depend on any choice made in order to define it. Perhaps, there
is not even need for a definition: one simply recognizes a canonical map when one
sees it. In fact, we digress, one of the reasons why the McKay conjecture is so hard
might be because there are not natural bijections between Irr p′(G) and Irr p′(NG(P)),
in general. This might be even related to the title of the book of the American
psychologist Barry Schwartz: “The paradox of choice: why more is less”.

Inspired by the block version of the McKay–Galois conjecture, we can detect
further local structure in the character table. The following is the main result of [27]
and lies much deeper than Theorem 4.1.

Theorem 4.2 Let G be a finite group, let p be an odd prime, and let P ∈ Sylp(G).
Then, the trivial character is the only p′-degree p-rational character in the principal
block of G if and only if NG(P) = P × K.

After Theorems 4.1 and 4.2, the question left is what happens with all these results
for p = 2. At the time of this writing, we have no theorems but conjectures.

A single Galois automorphism holds the key in this situation. Let σ be the Galois
automorphism that fixes two power roots of unity and squares odd roots of unity.

Conjecture 4.3 Let G be a finite group, and let P ∈ Syl2(G). Then, P = NG(P) if
and only if every irreducible odd-degree character of G is σ-invariant.

This conjecture was reduced to almost simple groups in [40]. The block version
of it, which can be proved to imply Conjecture 4.3, has also been reduced to almost
simple groups in [34].

Conjecture 4.4 Let G be a finite group, and let P ∈ Syl2(G). Then,NG(P) = P ×
K if and only if every odd-degree irreducible character in the principal block of G
is σ-invariant.

Again, all these conjectures are consequences of the McKay–Galois conjecture.
Recent work of A. Schaeffer-Fry and J. Taylor makes us believe that they might turn
into theorems soon.

Question 7 in [22] asked if X (G) determines |NG(P)|. Since X (G) determines
|P| = |G|p, this is a more general question than asking if NG(P) = P . If G is p-
solvable, there has been progress in [33]. Recall that the p-power map of a character
table is the function f defined by the following: If {x1, . . . , xk} are representatives
of the conjugacy classes of G then f : {1, . . . , k} → {1, . . . , k} is defined such that
(x j )

p lies in the class of x f ( j).

Theorem 4.5 Suppose that G is p-solvable, and let P ∈ Sylp(G). Then, X (G) and
the p-power map determine |NG(P)|.

Besides of Question 9 that I formulated in [22] (to decide if X (G) determines if
NG(P)/P is abelian) for which there has been no progress, it might be interesting
to work on the following.
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Problems 4.6 (a) How much does X (G) know about the structure of NG(P)/P?
Does it determine the set of its prime divisors? Or if NG(P)/P is cyclic?

(b) Is there a canonical subset A of Irr p′(G) which we can naturally associate to
the set Irr(NG(P)/P)? For instance, if G is p-solvable, thenA = Xp′(G) is the
set of Gajendragadkar p′-special characters of G (See [5]). Or if P is cyclic,
thenA is the set of the non-exceptional characters of G, as defined in the cyclic
defect theory.

E. Giannelli, in private communication, has constructed A for symmetric groups
[7]. It is not clear what A could be for groups of Lie type. We believe that A should
at least consist of p-rational characters, and their degrees should be congruent with
plus or minus the degrees of the irreducible characters in NG(P)/P .

5 The Group P/P ′

In Sect. 2, we essentially wrote on the case where P is abelian, that is, when P ′ = 1.
The main general question in this section is how much X (G) knows about the group
P/P ′. For instance, Question 1 of [22] asked if |P/P ′| is determined by X (G). We
do not know if this is true, even for p-solvable groups.

Again, the McKay–Galois conjecture provides a relationship between X (G) and
P/P ′. If one thinks about it, it is surprising that a tiny local section of a finite group
influences (and is influenced by) its character table. The following is one of the
origins of what later became the Galois–McKay conjecture [12].

Conjecture 5.1 Let e ≥ 1. Let σ be the Galois automorphism ofGal(Qab) that fixes
roots of unity of order not divisible by p, and sends p-power roots of unity ξ to ξ1+pe .
Let G be a finite group, and let P ∈ Sylp(G). Then all the irreducible characters of
p′-degree of G are σ-fixed if and only if the exponent of P/P ′ is less than or equal
to pe.

There is quite a recent development in this conjecture [26].

Theorem 5.2 Let G be a finite group, and let P ∈ Sylp(G). If all the irreducible
characters of p′-degree in the principal block of G are σ-fixed, then the exponent of
P/P ′ is less than or equal to pe. The converse holds if it holds for central extensions
of almost simple groups.

The exponent of P/P ′ for P ∈ Syl2(G) has also received attention in a conjecture
of R. Gow that has been recently proved in [32]. Unfortunately, it only goes in one
direction.

Theorem 5.3 Let G be a finite group, and let P ∈ Syl2(G). If all the irreducible
characters of odd-degree in the principal block of G are real valued, then P/P ′ is
elementary abelian.
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Theorem 5.3 might be suggesting something that it is simply not true. It is false
that if all characters in Irr(G) are real valued, then all characters in Irr(P) are real
valued, and there are some easy examples. The same statement is also false for
rational-valued characters, but thiswas a 50-year-old conjecturewhichwas disproved
in [14].

It is perhaps time to state the McKay–Galois conjecture. Let H ⊆ Gal(Q̄/Q) be
the group of all field automorphisms σ that send each p′-root of unity ξ to some
p-power ξ pe , where e is a fixed but arbitrary nonnegative integer depending on σ.

Conjecture 5.4 The actions of H on Irr p′(G) and Irr p′(NG(P)) are permutation
isomorphic.

When trying to find new connections between Irr p′(G) and Irr p′(NG(P)) in the
McKay conjecture, it is easy to see that there cannot always exist McKay bijections
that commute with the action of the whole group Gal(Q̄/Q). This would imply,
for instance, that the number of rational-valued (or real) characters in Irr p′(G) and
Irr p′(NG(P)) is the same, and this is plainly false. There are plenty of counterex-
amples to this assertion. (For instance, G = GL2(3) for p = 3.) If one thinks about
it, this is too much to expect, since we are holding fixed a prime p in the McKay
problem and we are not taking into account the prime p at this point. The subgroup
of Gal(Q̄/Q) that takes p naturally into account is preciselyH, because it is exactly
the stabilizer of the prime ideals containing p in the ring of algebraic integers of the
cyclotomic field Qn for every n.

If the McKay conjecture forces us to understand how Aut(S) acts on Irr(S) for
every simple group S (an open and extremely hard problem on its own), the McKay–
Galois forces us not only to understand this action, but to control Galois actions, and
therefore, character values. Contrary to the case of the ordinary McKay conjecture,
there is no reduction of the Galois version of it, although some attempts are under
way. It seems that Turull’s Brauer–Clifford group [42] might be important in that.

(NOTE. There has been some recent developments since the writing of this paper.
B. Sambale has found a counterexample to Problem 2.5(a) for p = 2 in [25]. A.
Schaeffer-Fry has proven Conjecture 4.3 in [38, 39]. E. Giannelli [7] has found
a canonical set for the symmetric groups Sn for Problem 4.6(b). There is now a
reduction of the McKay-Galois conjecture by B. Späth, C. Vallejo and myself.)
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