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Abstract Many natural systems can be represented as networks of dynamical units
with amodular structure in the formof communities of densely interconnected nodes.
Unfolding structure of such densely interconnected nodes in hydro-climatology
is essential for reliable parameter transfer, model inter-comparison, prediction in
ungauged basins, and estimating missing information. This study presents the appli-
cation of complex network-based approach for regionalization of rainfall patterns in
Germany. As a test case study, daily rainfall records observed at 1,229 rain gauges
were selected throughout Germany. The rainfall data, when represented as a complex
network using event synchronization, exhibits small-world and scale-free network
topologywhich are a class of stable and efficient networks common in nature. In total,
eight communities were identified using Louvain community detection algorithm.
Each of the identified communities has a sufficient number of rain gauges which
show distinct statistical and physical rainfall characteristics. The method used has
wide application in most of the real systems which can be represented by network
enabling to understand modular patterns through time series analysis.

Keywords Complex network · Event synchronization · Rainfall network

1 Introduction

A complex network is a collection of nodes, interconnected with links in a non-trivial
manner. In a functional network, links are set up between each pair of nodes based on
how the nodes interact with each other. For example, in a family network, each person
is considered as a node and the relationship between them is a link; in a computer
network, each computer is a node and links are the connections between computers;
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in brain networks, neurons are nodes and links represent the pairwise neurons’ inter-
action. In the last decade, climatologists and hydrologists have successfully applied
the same network concept to analyze different research questions of hydro-climatic
science. Each node represents a geographical location of climatological data (rain-
fall, stream flow, temperature, air pressure, etc.) and links between nodes are set up
based on their interaction or similar variability (correlation, synchronization).

Hydro-climatic systems often show the topology of interacting nodes embedded
in space. Such spatial networks are usually organized in modules (communities) of
densely interconnected nodes. The spatial embedding of the network can hide the
underlying community structure, rendering the identification of communities a chal-
lenging task. The investigation of the community structure in such networks helps
in better understanding the functional mechanism of the highly complex systems.
For instance, the identification of communities in rainfall network is essential to
obtain reliable information about rainfall in case of missing values or no observa-
tion. Reliable records of rainfall are vital for many hydraulic (flood studies, dam,
dikes, diversion structures, power plants) and environmental studies (land use plan-
ning andmanagement, streamhabitat assessment, extreme events, and climate impact
studies). The traditional approach for estimating missing values in hydrology is to
pool the information from other hydrologically homogeneous watersheds; by per-
forming clustering analysis, [1–3] which have been identified to lead to erroneous
estimations.

In the past, there have been several attempts [4–10] to develop a general uni-
fied framework for identifying rainfall communities (rainfall coherent sub-systems)
using different approaches. The methods, in general, range from similarities in the
rainfall signature, [11–13], via geographical location and catchment characteristics
[14, 15] to rainfall network complexity, model parameters, and uncertainty [16–19].
Razavi and Coulibaly provides a detailed review of several methods for clustering
in hydro-climatology [19]. Even though there are a plethora of methods available
for community detection, most of these methods are subjective and consider the
spatial proximity of the region, which in turn is not always true [8]. Also, tradi-
tional clustering methods are not capable of unraveling the numerous connections
of each rain gauge station within and outside the community. Information on node
connections/interconnections is essential to understand the role of each station in the
rainfall network. For instance, dead ends (stations having few connections) which
might be influenced by sampling size whereas stations connecting two communities
are hybrid nodes hence play an important role in the rainfall network. Also, stations
having a high number of links within the community can be termed as a local center.
This kind of analysis by community detection is essential to understand the relative
roles of each of the member stations of the community and is critical information
in uncertainty analysis for predictions in ungauged basins, regionalization, missing
values, and hydro-monitoring [20].

To add such insights into community detection, we use a more data-centric
approach based on the complex network which extracts a spatial pattern from the
network. The fundamental advantage of using network approach is that it considers
the entire network structure in contrast to the only node attributes used by traditional
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approaches [21]. Also, complex network uses network distance for partition com-
pared to pairwise distance used by various clustering algorithm which is suitable
for portioning such a spatiotemporal dynamical system [22, 23]. This study aims
to identify a homogeneous region in rainfall network as defined by similarity in
the long-term rainfall variability. Such regions (communities) are of interest both to
reveal inherent structure with the rainfall coherent sub-system and to use as poten-
tial climate indicators [24]. It is vital to note that spatial proximity is not taken into
consideration while forming a network and identifying communities.

In this study, to construct a rainfall network, we use event synchronization (ES)
similarity measure. ES has advantages over other time-delayed correlation tech-
niques (e.g., Pearson lag correlation), as it allows us to use dynamics time delay
(not fixed) which is suitable to study interrelations between series of non-Gaussian
data, data with heavy tails [25, 26]. After calculating synchronization between all
possible pair of stations, we apply a suitable threshold to construct rainfall network.
Louvain community detection algorithm employed to identify homogeneous regions
by maximizing modularity. As a test case study, we use 1,229 available observed
rain gauges across Germany to form a rainfall network. Eight communities were
identified, and each of the identified communities has a sufficient number of rain
gauges which show distinct statistical and physical rainfall characteristics. In this
paper, the only preliminary result has been shown on German rainfall network which
has immense potential to be extended in the future for hydro-monitoring purposes.

The paper is organized in the following manner. Section 2 describes the methods
used in this study such as event synchronization, community detection, and various
network measures. Section 3 discusses the application of network on observed daily
rainfall data of Germany, and subsequent results obtained are discussed in detail in
Sect. 4. The summary of the study is briefed in Sect. 5.

2 Methods

2.1 Event Synchronization

Adapting the state-of-the-art method, event synchronization, we measure nonlinear
synchronization between all possible pair of rain gauges [27]. Themodified algorithm
proposed works as follows: An event occurs in the signals x(t) and y(t) at time t xl
and t ym , where l � 1, 2, 3, 4 . . . Sx , m � 1, 2, 3, 4 . . . Sy , and Sx , and Sy are the
total number of events, respectively. In our study, we derive events from a more or
less continuous time series by selecting all time steps with values above a threshold
(α � 95th percentile). These events in x(t) and y(t) are considered as synchronized
when they occur within a time lag ±τ

xy
lm which is defined as follows:

τ
xy
lm � min

{
t xl+1 − t xl , t xl − t xl−1, t

y
m+1 − t ym, t ym − t ym−1}/2 (1)
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where Sx and Sy are the total number of such events (greater then threshold α) that
occurred in the signal x(t) and y(t), respectively. The above definition of the time lag
helps to separation of independent events which in turn allows to take into account
the fact that different processes are responsible for the generation of events. We need
to count the number of times an event occurs in the signal x(t) after it appears in
the signal y(t) and vice versa, and this is achieved by defining quantities C(x |y) and
C(y|x). Where

C(x/y) �
Sx∑

l�1

Sy∑

m�1

Jxy (2)

and

Jxy �

⎧
⎪⎪⎨

⎪⎪⎩

1 if 0 < t xl − t ym < τ
xy
lm

1
2 if t xl � t ym

0 else,

(3)

Similarly, we can define C(y|x), and from these quantities, we can obtain

Qxy � C(x |y) + C(y|x)
√

(Sx − 2)
(
Sy − 2

) (4)

Qxy is a measure of the strength of event synchronization between signal x(t)
and y(t). Also, it is normalized to 0 ≤ Qxy ≤ 1. This implies Qxy � 1 for perfect
synchronization between signal x(t) and y(t).

2.2 Community Detection

Complex networks often show subsets of nodes that are densely interconnected.
These subsets are often known as communities [7]. The understanding and visual-
ization of community structure provide insight into the network [28]. For instance,
different communities within a networkmay have very different properties compared
to the averaged properties of the complete network [29].

There exist several community detection approaches aiming at stratifying the
nodes into communities in an optimal way (see [30] for an extensive review), but
very few of those are applicable for a hugely complex network having more than
thousand nodes [24]. In this study, we adopted the Louvain algorithm proposed
by [31, 32]). The Louvain algorithm works to optimize modularity (Q), a network
measure, an indicator of “community’s partition correctness” in away that the number
of edges falling within the community should bemaximum andminimum in between
communities [33]. Modularity (Q) is calculated as:
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Q � 1

2m

∑

i, j

⌊
Ai j − Pi, j

⌋
δ
(
CiC j

)
(5)

where Ai j represents the number of edges between i and j and Pi, j � ki k j

2m represent
the expected number of edges between node i and j. ki and k j are the total number
of links of nodes i and j , respectively. m is the total number of edges in a network
calculated as m � 1/2

∑
i j Ai j . Ci and Cj are the communities to which node

i and j are assigned, and the δ − function δ (CiC j ) is 1 if nodes i and j are in the
same community and 0 otherwise.

2.3 Network Measures

Various network measures exist to characterize the network dynamics, but in this
study, we use only three prime and widely used properties: the degree (k) and degree
distribution, the clustering coefficient (CC), and the average path length (L).

The degree [26] of a node in the network emphasizes the number of connections
linked to the node directly. It can explain the type of nodes to some extent such as hubs
having the highest degree and non-hubs having a low degree. The degree distribution
p(k) of a network is then defined to be the fraction of nodes in the network with
degree k. Thus, if there are N nodes in total in a network and Nk of them have degree
k, we have P(k) � NK /N .

In general, the clustering coefficient (CC) [7] is used to identify the modular
organization of the network by quantifying the tendency of a node to share same
neighbors of directly connected nodes (tendency to form a triangle). High values of
CC represent well-interconnected nodes and suggest redundancy of information in
the network. Also, high values of CC are interpreted to exhibit significant spatial
coherence [7, 34, 35].

The average path length (L) is the average number of steps taken along the shortest
paths between all possible pairs of network nodes [26]. It is ameasure of the efficiency
of information or mass transport in a network. Efficiency in the network is inversely
related to path length. A network with small average path length is highly efficient
because two nodes are likely to be separated by few links (Table 1).

2.4 Random and Scale-Free Network

We generate an equivalent random and scale-free network for the same number
of nodes (N � 1229) and links (96,384) as rainfall network (RN). We have used
MATLAB toolbox for network analysis provided by MIT [36].

A random network is constructed by starting with a set of N isolated nodes
and adding successive edges between them at random. There exist several random
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Table 1 Network measures

Degree Clustering coefficient Average path length

Di �
∑N

j�1 Ai, j

N−1 C � 1
N

∑
i∈N Ci � 1

N

∑
i∈N 2E

ki (ki−1) a � ∑
νi ,ν j∈N

d(νi ,ν j )
N (N−1)

N the total number of nodes in a network. Di degree of node i.; the clustering coefficient for the
ith node is represented as Ci where E is the number of links that are actually observed to exist
between the ki neighbors of node i. We use the average of all the local clustering coefficients over
the network as a bulk measure of the clustering tendency or cliquishness of the network as a whole.
a is average path length, V is the set of nodes in the network, and d

(
vi , v j

)
is the shortest path from

vi to v j

network models, and each of them produces different probability distributions
on graphs. Most commonly studied is Erdős–Rényi model which is denoted as
G(N , p). In the G(N , p) model, a network is formed by linking nodes randomly
with probability p (0 < p < 1) independently from every other edge [37, 38].

The expected number of edges (L) inG(n, p) is � C(N , 2)

For given L and N , we can estimate the probability (p) for the random network.
For the scale-free network, we use the Barabási–Albert (BA) model which uses

a preferential attachment algorithm.Many existing natural and human-made systems
such as the Web network, social network seem to be approximately scale-free and
certainly contain few supernodes (called hubs) with an exceptionally high degree
as compared to the other nodes of the network. The BA model tries to explain the
existence of such nodes in real networks [39, 40].

The network begins with an initial connected mo � 2 node, the links between
which are chosen arbitrarily, as long as each node has at least one link. At each time
step, we add a new node with m (≤m0) links that connect the new node to m nodes
already in the network. Repeating the procedure, total number of edges (L) in the
network will be mN , where N is the number of nodes. For a known total number of
edges (L) and nodes (N), we can estimate the value of m.

3 Rainfall Network Construction

Precipitation data from Germany is studied to explore the utility of network theory
in identifying the communities in rainfall network. Daily data from an extensive
network of 1,440 rain gauge stations (Fig. 1a) in contiguous Germany is available.
Out of which 1,229 rain gauge stations lie inside Germany (red dots in Fig. 1a). Two
hundred and eleven stations outside Germany (green dots in Fig. 1a) are included in
the analysis to minimize the spatial boundary effect in the network formation (these
stations are finally excluded from the discussion). One hundred and ten years of daily
data, from 1 January 1901 to 31 December 2010, are available from various stations
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Fig. 1 (Left) Geographical location of gauging stations selected from Germany. (Right) 95th per-
centile of daily rainfall amounts for the observed data

operated by the German Weather Service. Data processing and quality control were
performed according to Österle et al. [41].

We begin the network construction [29] by extracting event series from the 1,440
rain gauges representing extreme rainfall events, i.e., precipitation exceeding the
95th percentile at that station. By applying a threshold (95th percentile), we draw
out extreme events from the given time series [24]. The 95th percentile is a good
compromise between having a sufficient number of events at each location and a
rather high threshold to study heavy precipitation. The strength of the connection
between any two stations is established using the concept of event synchronization as
discussed in [42]. If the value of ES is close to 1, it implies the two stations are highly
synchronized, and if the value is close to 0, it indicates no synchronization [43].

In this study, we use an undirected network; i.e., we do not consider which of
the two synchronized events happened first, to avoid the possibility of misleading
directionalities of event occurrences in between rain gauges that are topographically
close. Although the reconstructed network is based on all 1,440 nodes (to minimize
the boundary effect), the subsequent topological analysis is performed only for the
1,229 stations lying inside Germany (red dots in Fig. 1a).

4 Result and Discussion

The rainfall network (RN) obtained using the 1,229 nodes contain total 96,384 pair-
wise links between them. The average degree for the entire RN is 95, the minimum
is 0, and the maximum is 413. Several characteristics of the rainfall network are
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Fig. 2 Degree distribution
of the German rainfall
network (RN), random
network, and scale-free
network generated for an
equal number of nodes and
links

immediately clear. For instance, obtained RN is not a regular network since each
node of the regular network exhibits equal degree. Also, the existence of supernodes
(hubs) in the network, i.e., some nodes has a very high degree.

To understand the network topology, we compute the network properties: the
degree distribution (p(k)), the clustering coefficients (CC),, and the average path
length (L) [7] and then place the rainfall network (RN) into the context of known
topologies. The degree distribution of the RN (Fig. 2) shows some resemblance with
the degree distribution of a scale-free network [44] because scale-free networks have
an asymmetric degree distribution which asymptotes to P(k) ∝ k−γ at sufficiently
large values of k, where γ ranges from 2.1 to 4 for a wide array of the observed
network [7].

The small-world property of the RN is checked by clustering coefficient and
average path length. A network has a small-world property if C � Crandom and
L�L random [7, 45]. For the RN, we find a global clustering coefficient of C=0.64
and an average path length of L=3.92, whereas the equivalent random graph has a
clustering coefficient of Crandom � 0.12, and an average path length of L random �
1.87; thus, the rainfall network behaves as small-world network that exhibits scale-
free behavior.

The scale-free network represents a network having supernodes (as already inter-
preted) also termed as “hubs” which have many more connections as compared to
the rest of the nodes in the network as a whole following the power law/Pareto dis-
tribution. In general, a small-world network is characterized regarding stability and
efficiency [7, 46]. Stability signifies that the network holds its integrity if some nodes
of the network are randomly removed; i.e., the removal of the node will likely not
fragment the network structure. In the context of rainfall network, this implies that
if a randomly selected station is removed, then it is possible to recover most of the
information. The efficiency of the network qualitatively characterizes the ease of
information propagation in the network. A network with small average path length
is highly efficient because two nodes are likely to be separated by few links.
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The rainfall network constructed behaves as small-world network which, in turn,
indicates the possible modular organization (communities) in the network. Hence,
community mining has been performed in the study.

Identification of Modular Organization of the Network

While analyzing the network, it always remains a concern to explore the densely
interconnected small subgroups, the communities. Here, it can be stated that with
the enhanced knowledge of the community, their pattern of formation, the structure
can give a deep insight into the network which is particularly true for small-world
network. Also, the identification of the modular organization is helpful for coarse-
graining the network [47, 48] which is very crucial while dealing with billions of
nodes such as Web networks, brain networks, climate networks.

As already mentioned, a vast range of community detection algorithms exists (see
[30] for an extensive review). However, considering the finding that the particular
choice of the community detection algorithms has only a small impact [7], we only
use one community detection algorithm, i.e., the Louvain algorithm which works
for optimizing modularity on each step of the algorithm. In general, high modu-
larity networks are densely linked within communities but sparsely linked between
communities; i.e., the algorithm stops when the highest modularity is achieved.

The Louvain (maximizing modularity) community detection algorithm detects
eight communities within the RN of Germany (Fig. 3).

Community structure, identified by modularity-based network analysis, shares
specific elements which can be tied back to two general categories such as climate
characteristics and physical characteristics. Therefore, the number of communities
reflects the climatological diversity of Germany, and the number of stations per
community sets the extent to which each distinct climatology “family” is sampled.

The spatial extent of the stations in the communities prominently shows the abil-
ity of the methods to capture the underlying driving forces. For instance, we do not
impose any spatial constraints on the network, and there is no guarantee that com-
munity will be geographically cohesive, but as shown in Fig. 3 this is often the case.
In fact, we observe a relationship between clustering coefficient and the number of
stations in the community; namely, the higher the value of C, a large number of sta-
tions exist in the community and more geographically coherent they are. Although
geographical proximity plays a vital role apart from that there is another governing
mechanism, viz. physiographic features, climatic patterns, and statistical similarity
of rainfall regimes which might influence the climate pattern. It is also important to
emphasize, however, that such a modular structure is identified based on a cluster of
actual connections, rather than based on our traditional way of geographic proximity,
nearest neighbors, regional patterns, and linear correlations.

Table 2 shows the statistical and geographical interpretation of the resultant com-
munity which includes the mean, standard deviation, and coefficient of skewness of
the precipitation distribution for each community. Higher mean precipitation shows a
higher total amount of precipitation, larger standard deviation shows a stronger vari-
ation of data for the collecting period, and a larger coefficient of skewness indicates
more extreme precipitation events [49].
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Fig. 3 Rain gauge stations map colored according to community membership. The communities
were identified with maximizing modularity using Louvain algorithm

Intriguingly, resultant communities show numerous known relationships of pre-
cipitation along with new insights that are not obvious and hence may be of interest
to a climate scientist. For example, community 8 (Fig. 3), which covers an almost
mountainous region (Bavarian Alps), with daily mean of 3.0 mm and standard devi-
ation of 6.34 mm (Table 2), represents the area with the highest daily mean and
largest variation in the precipitation while community 2 (Fig. 3), which cover slow
land areas (Mecklenburg lowlands), represents the region with the lowest mean and
uniform precipitation. Community 2 (Mecklenburg lowlands) has a large coefficient
of skewness, whereas communities 3 (Rhenish Massif region) and 6 (Black Forest
region) show the smallest coefficient of skewness. All the communities show a pos-
itive coefficient of skewness, which indicates precipitation with a long tail toward
high values.



Unfolding Community Structure in Rainfall Network of Germany … 189

Table 2 Summary of geographical and statistical analysis for each individual community. Commu-
nities formed bymaximizing themodularity usingLouvain algorithm. Elevationmap forGermany is
presented in the Fig. 1b

C. No. Number of
stations

Daily mean Standard
deviation

Skewness Remarks

1 240 (20%) 1.92 4.02 4.46 Low elevation, wide geographic
range

2 91 (7%) 1.69 4.01 6.04 Small community, mid
elevation, Mecklenburg
lowlands

3 68 (5%) 2.56 4.99 3.8 Smallest community, mid
elevation, Rhenish Massif

4 193 (16%) 1.97 4.24 4.33 High elevation, Bavarian Forest

5 131 (11%) 2.03 4.31 4.65 Mid elevation, Rhenish Massif

6 118 (10%) 2.63 5.47 3.98 High elevation, Black Forest
region

7 190 (15%) 2.06 4.38 4.23 Mid elevation,
Rhineland-Palatinate

8 198 (16%) 3.0 6.34 4.13 Very high elevation, Bavarian
Alps

Community 1 also shows low daily mean and uniform precipitation in a wide
longitudinal geographic range consisting of low elevation stations. Communities
2 and 3 are the smallest communities which may have characteristics that are rare
because they show either undersampled or uncommon hydro-climatological regimes,
whichmake them vital if the aim of a rainfall network is to sample the inherent hydro-
climatological diversity of that area [7]. In South Germany, both communities 4 and
6 (Fig. 3) represent the forest-dominated (Bavarian Forest and Black Forest region,
respectively) high elevation regions having nearly same statistical and geographical
properties (Table 2); then what makes them different? The answer must lie in the
orographic barrierwhich lies along the 10°E longitudewhich causes an abrupt change
of topography of the area resulting in different climate regimes for communities 4
and 6. These results also follow the study by Rheinwalt [50], which shows an abrupt
change in the precipitation isochrones along the orographic barrier.

It is also interesting to understand how these network communities present differ-
ent climate regime properties. For instance, both day-to-day precipitation dynamics
and overall seasonal regimes exhibited by data from a particular rain gauge station are
determined to a significant extent by the elevation whether the station receives daily
precipitation as rain, snow, or some mixture of the two. Thus, it might be possible
to understand the community structure, at least in part, by their stations’ elevation.
Comparing the communities with the corresponding stations’ elevation reveals, to
some degree, that they are stratified by elevation (Fig. 4). Overall, it can be stated that
the singularities of sharp transition hidden in precipitation data are more significant
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Fig. 4 Boxplots of mean
basin elevation grouped by
the communities. The
number of stations in each
community is mentioned in
Table 2

than changes in the periodicity or data structure of the time series for community
detection.

5 Summary

This study has shown the application of complex network-based method to unfold
modular structure in complex natural systems using the dynamics of observed time
series. We applied the method on observed rainfall time series and uncovered eight
communities that are consistent with statistical and physical characteristics of rain-
fall. The results lead to the following concluding remarks:

• Preliminary investigation on the rainfall network of Germany shows that the net-
work exhibits small world and scale-free behaviour which is a common class in
many disciplines such as brain network, airport network. A small-world network
implies stability, and the network is resilient to the loss of nodes whereas scale-free
behaviour suggested that network consist of supernodes in the network which are
vital to consider for many hydrologic applications such as missing information,
prediction in ungauged basin etc. Hence, the advantage of using complex network-
based approach is that network topology gives a beforehand idea of the behavior
of communities and rain gauges in the network.

• The rainfall network based on event synchronization seems to be a formidable
statistic in capturing the rainfall system dynamics. The 1,229 stations considered
are categorized into eight communities each exhibiting distinct rainfall character-
istics. We then show that these eight communities appear to be defined by their
geographical proximity, which in turn corresponds to shared or different meteoro-
logical forcing. The number of communities reflects the diversity of such rainfall
dynamical classes, and the number of stations per community sets the extent to
which each regime is sampled.
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In future, it would be interesting to extend the current work to understand the
strength of connection among rain gauges within the community. In other words,
microscopic investigation of the (intra-) intercommunity connection is essential to
have better hydro-monitoring design of rain gauges. Also, it would be vital to extend
the work to identify the universal role of each raingauge (node) such as hubs, non-
hubs, dead-ends in communities and whole network.
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