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Abstract The primary objective of the paper is to design a nonlinear control
technique for a nonlinear intravenous model of Type 1 diabetes mellitus (T1DM)
patient. Input–output feedback linearisation is utilised for deriving the nonlinear
control law based on a modified version of Bergman’s minimal model augmented
with the dynamics of the insulin pump and the meal disturbance. The results depict
that the proposed control technique avoids severe hypoglycaemia and postprandial
hyperglycaemia in the presence of exogenous meal disturbance as well as parametric
uncertainty within a population of 100 virtual T1DM patients (inter-patient variabil-
ity). The efficacy of the proposed control technique is investigated through variability
grid analysis.
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1 Introduction

Due to immune-mediated depredation of the pancreaticβ-cells resulting in negligible
secretion of insulin, blood glucose concentrations cannot be tightly controlled within
the safe range (50–180mg/dl) by the pancreas leading to events of hyperglycaemia
(>180mg/dl) or severe hypoglycaemia (<50mg/dl) [11]. While hyperglycaemia
is associated with long-term health diseases such as heart disease, blindness, kid-
ney failure and nerve damage, hypoglycaemia has the immediate effect that may
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lead to diabetic coma leading to death [3, 6]. The dependency of T1DM patients on
exogenous insulin infusions either throughmultiple daily insulin injections or insulin
infusion pump (IIP) results in hyperglycaemic and hypoglycaemic events. The role
of Artificial Pancreas (AP) system is vital in addressing these issues via closed-
loop control of the blood glucose concentration that is achieved through sensing
the blood glucose by continuous glucose monitoring (CGM) systems and infusing
insulin continuously through IIP as determined by the control algorithm [7]. Despite
the advances in technology and communications in AP systems, important control
challenges exist due to: (i) huge time lags in insulin action, insulin absorption and
glucose sensing dynamics, (ii) exogenous disturbances like meals, exercise, stress
and sleep and (iii) parametric variability both within a population (inter-patient vari-
ability) and within the same T1DM patient (intra-patient variability) [5]. The physi-
ologically based mathematical models of T1DM patients can be broadly categorised
into the intravenous models [4] and the subcutaneous models [6, 15] depending upon
whether the glucose sensing and insulin infusion route are intravenous (directly into
the veins) or subcutaneous (under the skin). In this current work, we have considered
popular Bergman’s minimal model (BMM) that is not only simplistic in structure but
also represents the glucose–insulin regulatory system quite accurately, which have
important applications in ICU medications and treatment of diabetes ketoacidosis
[20].

Various control algorithm like proportional–integral–derivative (PID), model pre-
dictive control (MPC) and fuzzy logic control have been proposed for maintaining
the plasma glucose concentration in the safe range in T1DM patients are discussed
in [11]. Different variants of sliding mode control (SMC) techniques like back steep-
ing SMC [19], Higher order SMC [14, 16] and super twisting controller [1] were
designed for Bergman’s minimal model where the issue of inter-patient variability
was addressed. It is important to note that the design of the control algorithms based
on BMM as reported in [1, 8, 9, 14, 16, 19] did not consider the dynamics of IIP.
The novelty in this paper is the consideration of more realistic scenario for AP sys-
tem by augmenting the pump dynamics [12, 13] to the modified Bergman’s minimal
model [2], where the parametric variability appearing due to inter-patient variability
in T1DM patients is addressed. The design of the nonlinear controller avoids the lin-
earization of the nonlinear dynamics as in [9, 12, 13], thus preserving the nonlinear
characteristics of the system. Since control variability grid analysis (CVGA) [18] is a
significant tool for the performance assessment of closed-loop control techniques in
addressing inter-patient variability, unlike the above-mentioned control algorithms
[1, 8, 9, 12–14, 16, 19], here CVGA was performed for 100 virtual T1DM patients.

The paper is structured into four sections. Section2 deals with the modelling of
the glucose–insulin regulatory system of T1DM patients as well as the design of the
control law. The simulation results investigating the effectiveness of the proposed
scheme is provided in Sect. 3. Section4 contains the concluding remarks and future
scope of the proposed work.
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2 Design Methodology

In this section, an integrated mathematical model that is essentially a modification
of the BMM is introduced where the insulin pump dynamics, as well as the meal
disturbance dynamics, are augmented. The first subsection deals with the mathemat-
ical modelling of T1DM patients. The design of the control law is discussed in the
succeeding subsection.

2.1 Mathematical Model for Glucose–Insulin Regulatory
System

In this present work, the BMM [4] is chosen for the model-based controller design.
A modified version of the BMM is considered here as in [2]. Further, the modified
model is augmented with the insulin pump dynamics as discussed below

Ġp(t) = −Ir(t)Gp(t) − c1Gp(t) + c1Gb + D(t) (1)

İr(t) = −c2Ir(t) + c3Ip(t) − c3Ib, (2)

İp(t) = −c4Ip(t) + c4Ib + γp[Gp(t) − hp]+t, (3)

where the BGC is represented by Gp(t), the delayed insulin’s effect on BGC by
Ir(t) (min−1) and Ip(t) (µU/ml) denotes the plasma insulin concentration. Gb and Ib
denote the steady state (basal) value of Gp(t) and Ip(t), respectively. The BMM is
essentially a compartmental model composed of the dynamics for glucose homeosta-
sis and insulin kinetics as modelled by Eqs. (1)–(3) representing the plasma glucose
compartment, the remote insulin compartment and plasma insulin compartments,
respectively. The important physiological parameters of glucose–insulin regulatory
system can be expressed in terms of the BMM’s parameters [2, 4] directly. The
parameter, c1 (min−1) signifies the insulin-independent glucose utilisation occurring
in muscles and liver. Insulin sensitivity is represented by c3

c2
((µU/ml)−1min−1) and

c4 (min−1) is the rate of degradation of Ip(t). γp[Gp(t) − hp]+t represents the pan-
creatic actions in maintaining BGC (negligible in T1DM patients). As mentioned in
[10], the term D(t) (mg/dl/min) represents the exogenous meal disturbance (the rate
at which glucose appears in the plasma glucose compartment) that is modelled by
an exponentially decaying function, as follows:

Ḋ(t) = −c6D(t), c6 > 0, (4)

where the parameter c6 (min−1) represents the time-to-peak glucose following exoge-
nous glucose disturbance.

In this present work, the above-mentioned modified version of the BMM is aug-
mented with a simple first-order linear state-space model that represents the actuator
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(insulin pump) dynamics, thus enabling us to design a suitable controller for regu-
lating BGC in T1DM patients for a more realistic scenario. As reported in [12, 13],
the pump model is represented as

U̇ (t) = c5[−U (t) +Uc(t)] (5)

where 1
c5

represents the time constant for the pump and ‘U’ is the actual insulin
infusion rate as determined by the command input ‘Uc’. All the dynamics of the
physiological variables of the glucoregulatory system along with the meal distur-
bance as well as insulin pump dynamics are expressed in a compact form:

ẋ1o = −x1ox2o − c1x1o + c1Gb + x5o
ẋ2o = −c2x2o + c3x3o − x3o Ib
ẋ3o = −c4x3o + c4Ib + x4o
ẋ4o = −c5x4o + c5Uc

ẋ5o = −c6x5o

(6)

where, x1o , x2o , x3o , x4o and x5o represents Gp(t), Ir(t), Ip(t),U (t) and D(t), respec-
tively. The state variable appearing in (6) can be expressed as deviation terms from
their equilibrium as reported in [2].

ẋ1d = −c1x1d − (x1d + Gb)x2d + x5d
ẋ2d = −c2x2d + c3x3d
ẋ3d = −c4x3d + x4d
ẋ4d = −c5x4d + c5Uc

ẋ5d = −c6x5d

(7)

where the deviated states [x1d x2d x3d x4d x5d ]T are expressed as the difference between
the original states [x1o x2o x3o x4o x5o ]T and their equilibrium [x1e = Gb x2e = 0 x3e =
Ib x4e = 0 x5e = 0]T are given as follows:

[
x1o x2o x3o x4o x5o

]T = [
x1e x2e x3e x4e x5e

]T + [
x1d x2d x3d x4d x5d

]T
, (8)

We can rewrite (7) as in the compact form as,

ẋd(t) = f (xd, t) + g(xd, t)Uc(t), (9)

where, f (xd, t) =

⎡

⎢
⎢
⎢
⎢
⎣

−c1x1d − (x1d + Gb) x2d + x5d
−c2x2d + c3x3d
−c4x3d + x4d
−c5x4d
−c6x5d

⎤

⎥
⎥
⎥
⎥
⎦

, g(xd, t) =

⎡

⎢
⎢
⎢
⎢
⎣

0
0
0
c5
0

⎤

⎥
⎥
⎥
⎥
⎦

, and output

y(t) = h(xd, t) = Cxd, C = [1 0 0 0 0 ] (10)
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2.2 Feedback Linearisation Control Technique

In this work, a nonlinear control law is proposed based on the input–output feed-
back linearisation. A conceptual block diagram of the proposed control technique is
demonstrated in Fig. 1.

Themain idea of this control technique is composed of (i) the choice of appropriate
scalar output function and (ii) the linearisation of the input–output mapping of the
original nonlinear system by the proposed controller via successive differentiation
of the selected output. Here, the output of the system is chosen as y = h(xd) = x1d
(BGC) that can be measured directly via CGM devices.

y = h(xd) = x1d (11)

The derivatives of the output function are calculated as

y(1) = Lfh(xd) = x5d − c1x1d − x2d (Gb + x1d ), LgLfh(xd) = 0 (12)

y(2) = L 2
f h(xd) = (c1 + x2d )(c1x1d − x5d + x2d (Gb + x1d )) − c6x5d+

(Gb + x1d )(c2x2d − c3x3d ), LgL
2h
f (xd) = 0 (13)

y(3) = L 3h
f (xd) = c6x5d (c1 + c6 + x2d ) − (c2x2d − c3x3d )(c1x1d − x5d + (Gb + x1d )

(c1 + x2d ) + c2(Gb + x1d ) + x2d (Gb + x1d )) − c3(Gb + x1d )(x4d − c4x3d ) − (c1x1d

− x5d + x2d (Gb + x1d ))(c2x2d − c3x3d + (c1 + x2d )2) (14)

Fig. 1 Feedback linearisation-based nonlinear control
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LgL
3h
f (xd) = −c3c5(Gb + x1d ) �= 0 (15)

y(4) = L 4h
f (xd) = ((c1 + x2d )(c2x2d − c3x3d + (c1 + x2d )

2)

+ (c2x2d − c3x3d )(2c1 + c2 + 2x2d )

+ c3(x4d − c4x3d ))(c1x1d − x5d + x2d (Gb + x1d ))

+ (c2x2d − c3x3d )((Gb + x1d )(c2x2d − c3x3d + (c1 + x2d )
2)

+ (2Gb + 2x1d )(c2x2d − c3x3d ) − c6x5d + (c1x1d
− x5d + x2d (Gb + x1d ))(2c1 + c2 + 2x2d )

+ c2(c1x1d − x5d + (Gb + x1d )(c1 + x2d ) + c2(Gb + x1d )

+ x2d (Gb + x1d ))) + (x4d − c4x3d )(c3(c1x1d − x5d + x2d (Gb + x1d ))

+ c3(c1x1d − x5d + (Gb + x1d )(c1 + x2d ) + c2(Gb + x1d ) + x2d (Gb + x1d ))

+ c3c4(Gb + x1d )) − c6x5d (2c2x2d − 2c3x3d + c6(c1 + c6 + x2d )

+ (c1 + x2d )
2) + c3c5x4d (Gb + x1d ) (16)

where y(i), i = 1, 2 . . . , 4 denote the successive differentiation terms of the output
function (10), respectively. SinceLgL

3h
f (xd ) �= 0 the relative degree of the system

(9) is ρ = 4. Clearly, since the relative degree (ρ = 4) is less than the system’s order
(n = 5), the system (9) can be expressed in the in the transformed coordinate as
follows:

ζ̇ = Aζ ζ + Bζ v (17)

η̇ = f 0(η, ζ ) (18)

y = Cζη (19)

where Aζ =

⎡

⎢⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥⎥
⎦, Bζ =

⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦ and Cζ = [

1 0 0 0
]
. In (18), η̇ = f 0(η, ζ ) =

−p6x5d (i.e. internal dynamics), with respect to the chosen output (10). The equilib-
rium point η = 0 is locally asymptotically stable and hence if we can stabilise the
transformed system (17) by designing a state-feedback control law v = −Kζ [17].
The ρ = 4th-derivative of the output function is given by

y(4) = L 4
f h(xd) + LgL

3
f h(xd)Uc (20)

Let us consider the auxiliary control as

y(4) = v (21)
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Then, the actual controller expression can be computed from (20) using (21) as
follows:

Uc = −L ρ

f h(xd) + v

LgL
ρ−1
f h(xd)

(22)

The auxiliary control input ‘v’ can be designed as

v = −k4y
(3) − k3y

(2) − k2y
(1) − k1y (23)

such that the resulting output dynamics

y(4) = −k4y
(3) − k3y

(2) − k2y
(1) − k1y (24)

is linear and time-invariant with the positive constants k1, k2, k3 and k4 chosen such
that the characteristic polynomial given below is Hurwitz.

λ4 + k4λ
3 + k3λ

2 + k2λ + k1 = 0 (25)

The characteristic polynomial (25) is derived from the fact that the output dynamics
can be expressed in a matrix form as follows:

ζ̇ = Aclζ (26)

where

ζ = [
y y(1) y(2) y(3)

]T
, Acl =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1

−k1 −k2 −k3 −k4

⎤

⎥
⎥
⎦ (27)

The exponential convergence of the output trajectories to the origin is guaranteed
by the Routh–Hurwitz criterion. From the Routh–Hurwitz criterion, it is obtained
that if the inequality

k4k3 > k2 (28)

holds then the matrix Acl is Hurwitz and

lim
t→0

ζ = 0

with exponential rate of convergence.
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3 Simulation Results

In this section, the simulation studies are carried out for the performance assess-
ment of the proposed feedback linearisation based nonlinear control technique for
regulating plasma glucose concentration in T1DM patients for the augmented min-
imal model. The T1DM patient is considered to be in the hyperglycaemic state
(x1o = 230mg/dl) with no prior exogenous insulin infusions that is reflected by
the initial conditions x2o = 0 min−1, x3o = 7 mU/l and x4o = 0 mU/l, with high
exogenous meal disturbance x5o = 10mg/dl/min. The BMM’s parameter values are
considered as in Table1. The controller gains k1 = 0.00009, k2 = 0.0058, k3 = 0.15
and k4 = 4.5 are chosen heuristically for the adjustment in the insulin dosages, u(t)
such that the control objectives are satisfied.

It is evident from Fig. 2 that the blood glucose level stays at the hyperglycaemic
state in the absence of exogenous insulin infusion, whereas the blood glucose level is
brought down below 180mg/dl within 150min thereby avoiding postprandial hyper-
glycaemia and hypoglycaemia. The external insulin infusion by the insulin pump as
determined by the control command Uc is depicted in Fig. 3.

Finally, to investigate the controller’s robustness to parametric uncertainty rep-
resenting inter-patient variability, CVGA [18] is carried out. CVGA is essentially
the grid representation of the maximum (Y-axis) and minimum (X-axis) blood
glucose variations of a virtual T1DM patient during the whole simulation period.

Table 1 Nominal value of the parameters [2, 13]

Parameter Nominal value Parameter Nominal value

c1 0 c4 0.2814

c2 0.0142 c5 0.5

c3 1.54×10−6 c6 0.05

Fig. 2 Plasma glucose concentration of treated and untreated patient
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Fig. 3 Exogenous insulin infusion U(t) determined by the insulin pump

Fig. 4 Control variability grid analysis of 100 closed-loop responses. Each black dot corresponds
to 400min long closed-loop simulation for a single T1DM patient

100 numerical simulations are carried out with random parameters with ±10% vari-
ation from the nominal value specified in Table1 and with the initial conditions x1o =
80mg/dl, x2o = 0min−1, x3o = 7mU/l, x4o = 0mU/l/min, x5o = 0mg/dl/min and
with an administration ofmeal disturbance of 10mg/dl/min at the 100thmin. Figure4
elucidates that all the black dots corresponding to T1DM subjects are confined to the
grid B (green zone), thereby ensuring no events of hypoglycaemia during the whole
simulation period.
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4 Conclusion

A feedback linearisation technique-based nonlinear control law is designed for the
plasma glucose regulation problem of an augmented intravenous modified minimal
model of T1DM patient by considering the insulin pump dynamics. The closed-loop
performance under inter-patient variability (±10%) is investigated. Occurrences of
prolonged hyperglycaemia, as well as hypoglycaemia, are completely avoided as
validated by the simulation studies. Despite the parametric uncertainty, the controller
is able to maintain the plasma glucose of 100 random virtual T1DM patients in the
safe range (50–180mg/dl) as confirmed by control variability grid analysis plot.
Although the proposed controller can efficiently handle parametric uncertainty of
±10%, to deal with larger parametric uncertainty, robust and adaptive controllers
need be designed.

Acknowledgements Authors acknowledge the financial support by TEQIP-III, NIT Silchar,
788010, Assam India for this work.
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