
Chapter 13
Feedback T-S Fuzzy Controller in Finite
Frequency for Wind Turbine

Youssef Berrada, Abderrahim El-Amrani, and Ismail Boumhidi

Abstract This chapter investigates a feedback finite frequency Takagi-Sugeno (T-
S) fuzzy controller synthesis for a variable speed wind turbine. The proposed
control design is based on both the T-S fuzzy modeling and the finite frequency
approach. The T-S fuzzy model is used to deal with a nonlinear behavior of
wind turbine system, and the finite frequency approach allows the command in a
specific domain of frequency. The control constraints are given in terms of a set
of LMIs which can be efficiently solved using existing numerical tools. In order to
illustrate the performance of the proposed control algorithm, numerical simulations
are performed using Matlab software.

Keywords Finite frequency · Takagi-Sugeno fuzzy · Variable wind speed ·
Wind turbine

Notations

• The superscript T stands for matrix transposition.
• I denotes an identity matrix with appropriate dimension.
• “diag” stands for block diagonal matrix.
• “tr(A)” denotes the trace of matrix A.
• A > 0 (resp. A < 0) mean that matrix A is positive definite (resp. negative

definite).
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13.1 Introduction

Global warming effect and fossil fuel pollution has caused great damage in the
earth’s environment, and has become a serious problem for people. As renewable
energies sources are environment-friendly and sustainable, wind and solar energy
have attracted increased attention during the last years. In light of this, improving
the efficiency of wind turbine becomes an important research topic. Furthermore,
control techniques have a major effect on wind energy conversion systems, and
remain a key factor in maximizing the extracted energy from the wind and reducing
the stresses caused by aerodynamic loads. To achieve satisfactory wind turbine
performances, Takagi-Sugeno (T-S) fuzzy has received increasing attention during
the past decades from many researchers. There are a lot of research results on
the T-S fuzzy in the literature, such that, in Lasheen et al. (2016) the authors
proposed a new algorithm of fuzzy predictive for collective pitch control of large
wind turbines. A Neuro-fuzzy inertia controller has been addressed in Hafiz et al.
(2016) to control parameter selection which ensures the optimal use of available
Kinetic Energy reserve. Neural network is also coupled in Medjber et al. (2016)
with fuzzy logic controller to monitor maximum power for wind energy conversion
system. A new kind of T-S fuzzy control technique used for capturing maximum
wind energy under multi-operating condition has been discussed in An et al. (2015).
A data driven design methodology able to generate a Takagi-Sugeno fuzzy model for
maximum energy extraction from variable speed wind turbines has been examined
in Galdi et al. (2008). A sensorless wind energy conversion system maximum
wind power point tracking using Takagi-Sugeno fuzzy cerebellar model articulation
control to achieve maximum power transfer under various wind speeds without
actual measurement of the wind velocity has been proofed in Liu et al. (2015).
Note that all those control techniques and other given in this area can improve the
wind turbine robustness against the random wind speed and maximize the extracted
wind power. However, when the external disturbance belong to a certain frequency
range which is known beforehand, it is not favorable to control the system in the full
frequency domain, because this may introduce some conservatism and poor system
performance. Recently, the control synthesis in a finite frequency domain has been
addressed, and there have appeared many results in this domain (Berrada et al. 2017;
Chen et al. 2010; El-Amrani et al. 2016; Li et al. 2015; Zhang et al. 2014).

In light of the above, we propose feedback Finite Frequency Takagi-Sugeno
Fuzzy (FFTSF) to control wind turbine under various wind conditions. We first
represent the wind turbine, which is a two mass model, as a highly nonlinear
dynamical model. To carry out the FFTSF design, we then rewrite the wind
turbine model as a T-S fuzzy representation. Next the proposed feedback control is
established by the finite frequency approach to command the wind turbine system in
a specific band of frequency. Based on the generalized Kalman-Yakubovich-Popov
(GKYP) lemma (Iwasaki et al. 2005), the controller constraints are given in terms
of linear matrix inequalities (LMIs) which can be efficiently solved numerically.
The control technique acts on generator in order to apply the electromagnetic
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torque reference and on the pitch actuator in order to control the pitch angle of
the blades according to wind speed value, calculated from the measurements of the
rotational speed of the shaft at the generator side, and of the speed of the wind by
an accelerometer located at the top of the tower.

The paper is organized as follows. In Sect. 13.2, we will describe the model of the
wind turbine system. In the next section, we will rewrite the obtained model as a T-
S Fuzzy representation, and the controller will be designed by the Finite frequency
technique. In Sect. 13.4, the performances of the proposed control strategy will be
shown carried out by simulation results. Finally, some conclusions are given in
Sect. 13.5.

13.2 Wind Turbine Model

The wind turbine is established by combining a model of a mechanical structure
represent the drive trains and nonlinear model representing the blades aerodynamic
properties. The mathematics model of the wind turbine is clearly described in
Bououden et al. (2012), which is represented by the following state representation:

ẋ0 =

⎡
⎢⎢⎢⎢⎣

0 1 −1

−Ks

Jr

−Bs

Jr

Bs

Jr

−Ks

Jg

−Bs

Jg

Bs

Jg

⎤
⎥⎥⎥⎥⎦

x0 +

⎡
⎢⎢⎢⎢⎣

0 0
1

Jr

0

0
1

Jg

⎤
⎥⎥⎥⎥⎦

[
Ta

Tg

]
(13.1)

where x0 = [θs, ωr , ωg]T , θs , ωr , ωg , Bs and Ks are the torsion angle, the rotor
speed, the generator speed, the damping of the transmission and the stiffness of the
transmission, respectively. Jr and Jg are the inertia of the rotor and the generator,
respectively. Tg is the generator torque which is a nonlinear function depends to the
generator speed and the zero-torque speed ωz.

Tg = Bs(ωg − ωz) (13.2)

Ta is the aerodynamic torque which is expressed as:

Ta = 1

2
π ρ R3 Cq(λ, β) v2 (13.3)

with Cq(λ, β) = 1

λ
Cp(λ, β) is the torque coefficient. Cp(λ, β) is the power

coefficient that is a nonlinear function of the pitch angle β and the reduced speed λ.
So, Ta is a nonlinear function depends to wind speed, rotor speed and pitch angle,
can be linearized by the following expression:

Ta = Tavv + Taββ + Taλλ (13.4)
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where Tav , Taβ and Taλ are individual partial derivatives of the aerodynamic torque
Tav for rotor speed, wind speed and pitch angle at the operating point, respectively.

The actuator describes the dynamic behavior between the desired pitch βd and
the actuation of this desired pitch β is modeled as:

β̇ = 1

τ
(βd − β) (13.5)

where τ is a time constant.
Finally, according to the Eqs. (13.1), (13.2), (13.3), (13.4), and (13.5), and

replacing Ta and Tg with their approximated expressions, the dynamic model of
the wind turbine can be represented as:

ẋ = Ax + Bu + Ev

y = Cx (13.6)

where x = [θs, ωr , ωg, β]T , u = [βd, ωz]T , y = ωg and matrices A, B and E are
given by:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1 0

−Ks

Jr

−Bs

Jr

Bs

Jr

Taβ

Jr

−Ks

Jg

−Bs + Bg

Jg

Bs

Jg

0

0 0 0 − 1

τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

0
Bg

Jg
1

τ
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, E =

⎡
⎢⎢⎢⎢⎣

0
Tav

Jr

0
0

⎤
⎥⎥⎥⎥⎦

(13.7)
Let ξ = x − xref so x = xref + ξ and then ẋ = ẋref + ξ̇ .
The system dynamic model (13.6) becomes:

ξ̇ = Aξ + Bu + Dw

χ = Cξ (13.8)

where w = [xref , ẋref , v]T and D = [A, −I, E] with xref is the reference signal.

13.3 Finite Frequency T-S Fuzzy Control

13.3.1 T-S Fuzzy Representation

The best possible performance from the highly nonlinear system (13.6) can be
obtained using T-S fuzzy model. The wind turbine variables are assumed varying in
the operating range v1 ≤ v ≤ v2, β1 ≤ β ≤ β2. Consequently, The T-S fuzzy model
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of system (13.6) is established by the following rules IF-THEN for i = 1, . . . , 4 and
l, k = 1, 2:

If(βisMl)And(visNk)Then

{
ξ̇ = Aiξ + Biu + Diw

χ = Ciξ
(13.9)

Membership functions are given by:

h1 = M1(β)N1(v), h2 = M1(β)N2(v), h3 = M2(β)N1(v), h4 = M2(β)N2(v)

with:

M1(β) = β − β1

β2 − β1
, M2(β) = β2 − β

β2 − β1
, N1(v) = v − v1

v2 − v1
, N2(v) = v2 − v

v2 − v1

The fuzzy basis functions satisfies: hi ≥ 0 and
4∑

i=1
hi = 1.

The fuzzy system can be written as following form:

ξ̇ = A(h)ξ + B(h)u + D(h)w

χ = C(h)ξ (13.10)

where:

A(h) =
4∑

i=1

hiAi, B(h) =
4∑

i=1

hiBi, D(h) =
4∑

i=1

hiDi, C(h) =
4∑

i=1

hiCi

The fuzzy state feedback controller can be designed as:

u =
4∑

i=1

hiKiξ = K(h)ξ (13.11)

Combining (13.10) and (13.11) together, we can get the following closed-loop fuzzy
system:

ξ̇ = Ac(h)ξ + D(h)v

χ = C(h)ξ (13.12)

where: Ac(h) = A(h) + B(h)K(h).
The transfer function from the input ξ to the output χ is given by:

G(jω) = c(h)[jωI − A(h)]−1D(h) (13.13)
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13.3.1.1 Problem Description

The objective is to design a state feedback controller in (13.11) for system (13.12)
such that two conditions are satisfied:

1. Closed-loop system (13.12) is asymptotically stable.
2. The following finite frequency index holds:

∫
ω1≤ω≤ω2

χ(ω)T χ(ω)dω ≤
∫

ω1≤ω≤ω2

w(ω)T w(ω)dω (13.14)

where ω1 and ω2 are known scalars.

13.3.2 Finite Frequency

We start this section by introducing some basic lemmas, which we will be used in
the proof of our results.

Lemma 1 Let be a given scalar. For the system (13.12) is asymptotically stable, and
the FF H∞ (13.14) is satisfied if there exists Hermitian matrices, such P = P T that:

[
Ac(h) D(h)

I 0

]T [−Q(h) P (h) + jωcQ(h)

I 0

] [
P(h) − jωcQ(h) −ω1ω2Q(h)

I 0

]

+
[

C(h)T C(h) 0
0 −γ 2I

]
< 0 (13.15)

where ωc = 1
2 (ω1 + ω2).

Proof First, suppose (13.15) holds. Post multiplying by [ξT wT ] from the left and
by its conjugate transpose from the right, we have:

2ξ̇ T P ξ − ξ̇ T P ξ̇ + jωcξ̇Qξ − jωcξ
T Qξ̇ − ω1ω2ξ

T Qξ + χT χ − γ 2wT w ≤ 0
(13.16)

Note that for any vectors φ and ϕ, the equality φT Qϕ = tr(ϕφT Q) holds.
Then (13.16) can be rewritten as

d

dt
(ξT P ξ) + χT χ − γ 2wT w ≤ tr

[
He

(
ω1ξ + j ξ̇

) (
ω2ξ + j ξ̇

)T
Q

]
(13.17)

Taking the integrating from t = 0 to ∞ using the stability property, we have

ξ(∞)T P ξ(∞) +
∫ ∞

0
χT χdt − γ 2

∫ ∞

0
wT wdt ≤ tr[He(S)Q] (13.18)
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where:

S =
∫ ∞

0

(
ω1ξ + j ξ̇

) (
ω2ξ + j ξ̇

)T
dt (13.19)

Note that ξ(∞)T P ξ(∞) ≥ 0 for P > 0, then we have:
∫ ∞

0
χT χdt ≤ γ 2

∫ ∞

0
wT wdt + tr[He(S)Q] (13.20)

By the Parseval’s theorem (Goodwin et al. 2001; Skenton et al. 1998), we have:

S = 1

2π

∫ ∞

−∞
(ω1 − ω)(ω2 − ω)X(ω)X(ω)T dt (13.21)

∫ ∞

0
χT χdt = 1

2π

∫ ∞

−∞
Y (ω)T Y (ω)dw (13.22)

∫ ∞

0
wT wdt = 1

2π

∫ ∞

−∞
W(ω)T W(ω)dw (13.23)

And hence S is Hermitian and the bound on the right-hand side of (13.20) becomes,
and hence (13.20) is equivalent to:

∫ ∞

0
χT χdω − γ 2

∫ ∞

0
wT wdω ≤ 2π tr(SQ) (13.24)

Note that XT QX ≥ 0 for Q > 0, and (ω1 − ω)(ω2 − ω) ≤ 0 for ω1 ≤ ω ≤ ω2.
Then we have

2π tr(SQ) =
∫

ω1≤ω≤ω2

(ω1 − ω)(ω2 − ω) tr(XXT Q)dω

=
∫

ω1≤ω≤ω2

(ω1 − ω)(ω2 − ω)XT QXdω ≤ 0 (13.25)

From (13.24) and (13.25), we have statement (13.14), and hence the finite
frequency performance is satisfied.

Remark 1 If all the matrices in Lemma 1 are independent on h, then the fuzzy
system becomes a linear system, and Lemma 1 is reduced to the generalized KYP
lemma (Iwasaki et al. 2005), which proved to be an effective tool to deal with the
Finite Frequency problem of linear time-invariant systems.

Lemma 2 (Projection Lemma Apkarian et al. 2001) Given a symmetric matrix
Φ and two matrices Γ , Π of column dimension m, there exists a symmetric matrix
F such that the following LMI holds

Φ + Γ FΠ + ΠT FT Γ T < 0 (13.26)
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If and only if the following projection inequalities with respect to F are satisfied:

Γ ⊥ΦΓ ⊥T < 0 (13.27)

Π⊥ΦΠ⊥T < 0 (13.28)

Now, an important theorem which can guarantee the asymptotical stability and the
FF H∞ performance of the system in (13.12) is going to be proposed.

Theorem 1 For a given constant γ > 0, consider the closed-loop system (13.12),
if there exist symmetric matrices Q(h) > 0, X > 0, Z(h) and general matrix Y (h)

such that the following linear matrices inequality holds

Ψ =

⎡
⎢⎢⎣

−Q(h) −X + Z(h) + jωcQ(h) 0 0
� Υ D(h) XC(h)T

� � −γ 2I 0
� � � −I

⎤
⎥⎥⎦ < 0 (13.29)

S = A(h)X + XA(h)T + B(h)Y (h) + Y (h)T B(h)T < 0 (13.30)

with: Υ = A(h)X + XA(h)T − B(h)Y (h) − Y (h)T B(h)T − ω1ω2Q(h).
The controller gains Ki are given by:

K(h) = Y (h)X−1 (13.31)

Proof Using the Lemma 1, and according to the close loop system (13.12). The
inequality (13.15) can be rewritten as:

⎡
⎣

A(h) D(h)

I 0
0 I

⎤
⎦

T

Φ

⎡
⎣

A(h) D(h)

I 0
0 I

⎤
⎦ < 0 (13.32)

where:

Φ =
⎡
⎣

−Q(h) P (h) + jωcQ(h) 0
P(h) − jωcQ(h) ω1ω2Q(h) + C(h)T C(h) 0

0 −γ 2I

⎤
⎦ (13.33)

On the other hand, we can obtain

⎡
⎣

I 0
0 0
0 I

⎤
⎦

T

Φ

⎡
⎣

I 0
0 0
0 I

⎤
⎦ =

[−Q(h) 0
0 −γ 2I

]
< 0 (13.34)
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According to the projection Lemma 2, with:

Γ ⊥ =
[

A(h)T I 0
D(h)T 0 I

]
(13.35)

Π⊥ =
[

I 0 0
0 0 I

]
< 0 (13.36)

The following inequality is a sufficient condition for (13.15).

Φ +
⎡
⎣

−I

A(h)T

D(h)T

⎤
⎦F

[
0 I 0

] + [
0 I 0

]T
F

⎡
⎣

−I

A(h)T

D(h)T

⎤
⎦

T

< 0 (13.37)

By substituting Ac(h) = A(h) + B(h)X, we obtain:

⎡
⎣

−Q(h) −F + P(h) + jωcQ(h) 0
� Λ FD(h)

� � −γ 2I

⎤
⎦ < 0 (13.38)

with: Λ = A(h)T F + FA(h) + FB(h)K(h) + K(h)T B(h)T F − ω1ω2Q(h) +
C(h)T C(h).

Multiplying both sides of (13.36) by the full rank matrix diag(F−1 F−1 I ) and its
transpose from the left and right, and defining new variables Q(h) = F−1Q(h)F−1,
Z(h) = F−1P(h)F−1, Y (h) = K(h)F−1 then (13.36) is rewritten as follows:

⎡
⎣

−Q(h) −X + Z(h) + jωcQ(h) 0
� Λ D(h)

� � −γ 2I

⎤
⎦ < 0 (13.39)

with: Λ = A(h)X+CA(h)T +B(h)Y (h)+Y (h)T B(h)T F−ω1ω2Q(h)+XC(h)T +
C(h)X.

Applying the Schur complement to inequality (13.39), we obtain exactly the
inequality (13.29).

For the second sufficient condition of Theorem 1, let us construct a Lyapunov
function inequality, A(h) is stable if and only if there exists F = FT such that:

Ac(h)T F + FAc(h) < 0 (13.40)

By substituting, Ac(h) = A(h) + B(h)K(h), we get

A(h)T F + FA(h) + FB(h)K(h) + K(h)T B(h)T F < 0 (13.41)
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Multiplying both sides of (13.41) by the matrix F−1 and its transpose from the left
and right, then we can get

F−1A(h)T + A(h)F−1 + B(h)K(h)F−1 + F−1K(h)T B(h)T < 0 (13.42)

Let X = F−1 and Y (h) = K(h)F−1, then (13.40) became exactly the inequal-
ity (13.28).

Theorem 2 Given a positive scalar γ > 0, there exists a T-S fuzzy control
law (13.11) which makes the H∞ norm of the T-S fuzzy system (13.12) less than
γ in the frequency domain, if there exist matrices Qi > 0, X > 0, Zi and general
matrix Yi , such that the following LMIs hold for all i < j = 1, . . . , 4.

Ψii < 0 (13.43)

Ψij + Ψji < 0 (13.44)

Sii < 0 (13.45)

Sij + Sji < 0 (13.46)

where:

Ψij =

⎡
⎢⎢⎢⎣

−Qi −X + Zi + jωcQi 0 0
� AiX + XAT

i − BiYj − YT
j BT

i − ω1ω2Qi Di XCT
i

� � −γ 2I 0
� � � −I

⎤
⎥⎥⎥⎦(13.47)

Proof Taking the following summations:

4∑
i=1

4∑
j=1

hihjΨij ;
4∑

i=1

4∑
j=1

hihjSij (13.48)

Using Theorem 1, the proof is completed.

13.4 Simulation Results

The wind turbine model (13.6) with the numerical values listed in Table 13.1 is
considered under the variable wind speed 12 ≤ v ≤ 35 m/s. The Rotor speed
is maintained around the nominal speed value in the high speed region, and the
operated range of pitch angle is −2 ≤ β ≤ 24◦. Matrices of the T-S fuzzy model are:



13 Feedback T-S Fuzzy Controller in Finite Frequency for Wind Turbine 275

Table 13.1 Wind turbine parameters

Parameter Ks Bs Bg Jg Jr ρ R τ

Value 1.566×106 3029.5 15.993 5.9 83×104 1.225 30 500

Unit N/m Nms/rad Nms/rad kg m2 kg m2 kg/m3 m µs

A1 = A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1 0

−Ks

Jr

−Bs

Jr

Bs

Jr

Taβ1

Jr

−Ks

Jg

−Bs + Bg

Jg

Bs

Jg

0

0 0 0 − 1

τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13.49)

A3 = A4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1 0

−Ks

Jr

−Bs

Jr

Bs

Jr

Taβ3

Jr

−Ks

Jg

−Bs + Bg

Jg

Bs

Jg

0

0 0 0 − 1

τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13.50)

B1 = B2 = B3 = B4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

0
Bg

Jg
1

τ
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(13.51)

D1 =

⎡
⎢⎢⎢⎢⎣

0
Tav1

Jr

0
0

⎤
⎥⎥⎥⎥⎦

, D1 =

⎡
⎢⎢⎢⎢⎣

0
Tav2

Jr

0
0

⎤
⎥⎥⎥⎥⎦

(13.52)

where Taβ1 = Taβ(β = β1), Taβ2 = Taβ(β = β2), Tav1 = Tav(v = v1) and
Tav1 = Tav(v = v2).

The simulation is carried out under the following operating conditions:

• Wind speed profile 17 ≤ v ≤ 31 m/s (see Fig. 13.1)
• The operating frequency domain represents the rotation frequency maximum

and minimum of the aerodynamics rotor (3–42 rpm) which is equivalent to
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Fig. 13.1 Wind speed input profile

[0.05, 0.7] Hz, and for the generator (1500–1550 rpm) which is equivalent to
[25, 25.83] Hz.

By solving the linear matrix inequalities (13.43), (13.44), (13.45), and (13.46) for
i < j = 1, . . . , 4 with the optimized variable γ > 0 and the ranges of frequency:

• [ω1 = 0.05 Hz, ω2 = 0.7 Hz],
• [ω1 = 25 Hz, ω2 = 25.83 Hz],

for the regulators of pitch angle and zero-torque speed, respectively, we can obtain
the control gains:

K1 = 103[1.049 3.484 − 0.953 − 0.052 − 97.814 0.160 − 4.743 − 0.005]

K2 = 103[1.064 3.531 − 1.042 − 0.053 − 97.874 − 0.040 − 2.363 − 0.002]

K3 = 103[0.585 2.029 − 0.731 − 0.030 − 97.877 − 0.050 − 2.089 − 0.002]

K4 = 103[0.621 2.139 − 0.595 − 0.032 − 98.022 − 0.527 − 2.721 0.005]

The performance of the proposed Feedback T-S fuzzy controller in finite
frequency (FFTSF) is illustrated using a comparison with the predictive controller
(MPC) strategy [16] carried out by Bououden et al. (2012).

From the simulation results, Fig. 13.2 represents the time response of the
generator speed equipped with controller FFTSF and controller MPC in dashed and
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Fig. 13.2 Response time of the generator speed

dotted lines respectively, the solid line represents the optimal signal of the generator
speed. The time response of controller laws: Pitch angle βd and Zero-torque speed
Ω are shown in Figs. 13.3 and 13.4, respectively. Figure 13.5 represents the variation
of the membership functions.

According to these results, the generator speed with the proposed control strategy
converges faster without any oscillatory behavior to its optimal value (Fig. 13.2)
compared to this of the MPC controller which has some oscillators at the beginning
of convergence. We can also observe that the proposed control laws, the pitch
angle βd (Fig. 13.3) and the Zero-torque Ω (Fig. 13.4), yields the best performance
in terms of stability and convergence. Moreover, the applied effort at the regime
transient is too small despite the presence of strong variations in wind speed.

13.5 Conclusions

This chapter proposes a Feedback T-S fuzzy controller in finite frequency synthesis
for a variable speed wind turbine, which is designed using GKYP lemma extended
to T-S fuzzy model. The T-S fuzzy is used to deal with the highly nonlinear term
of aerodynamics torque, and the finite frequency in order to design the feedback
control. The main objective of the developed control strategy is to improve the
robustness of the system in a certain finite frequency range where the system
operates or the external disturbance has existed. The effectiveness of the control
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Fig. 13.3 Desired pitch angle control

Fig. 13.4 Zero-torque speed control
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Fig. 13.5 Membership functions

strategy compared with a predictive controller has been realized, and simulation
results have shown an interesting performance of the proposed control strategy in
terms of stability and convergence speed, allowing a better regulation of the power
generated by the wind turbine.
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