
An Improved Differential Neural Computer Model
Using Multiplicative LSTM

Khushmeet S. Shergill(✉), K. Sharmila Banu, and B. K. Tripathy

School of Computer Science and Engineering, VIT University, Vellore, India
{khushmeetsingh1996,sharmila.k,tripathybk}@vit.ac.in

Abstract. Artificial neural networks excel at doing specific tasks like image
recognition, sequence learning, machine translation. But, the direction of research
has moved towards the creation of more general purpose neural network archi‐
tectures. Recently, DeepMind introduced Differentiable Neural Computer
(DNC), with an external memory system that is capable of working on complex
data structures. DNC can infer from graph problem, solve block puzzle using
reinforcement learning and so on. DNC uses LSTM as controller network that
manipulates the memory matrix. In this paper, we introduce a change to DNC
architecture by replacing LSTM network with multiplicative LSTM and measure
the performance of the improved model by training it on three different tasks;
namely question answering task using bAbI dataset, character level modelling
using harry potter text and planning search using air cargo problem. We compared
the performance of the previous model to determine its behavior.

Keywords: LSTM · Memory · Planning search · Recurrent neural networks

1 Introduction

Differentiable Neural Computer (DNC) is a powerful neural network model coupled
with external memory matrix. The model itself consists of two main components,
controller and memory. Controller is recurrent neural network that acts like the CPU of
the model, whereas memory is just an N × W matrix which can be thought of as the RAM
of the model. The operations of the manipulating the memory is learned through gradient
descent. The system is end to end differentiable.

Memory consists of weights, which represents the degree to which the particular
location is involved in read or write operation. System has read and write heads that are
involved in memory manipulation.

Differentiable Neural Computer can be thought of as a LSTM network, in a sense
that they both try to remember things. The only difference is that DNC is given an
external memory to remember things where as LSTM uses its hidden states for learning
long term dependencies. But LSTM fall short in this regard.

DNC has taken inspiration from mammalian hippocampus. For e.g. humans recall
the memories in the order they were remembered. Same happens in DNC with temporal
link matrix, that retrieves memory in the same sequence they were written. Another is

© Springer Nature Singapore Pte Ltd. 2018
I. Zelinka et al. (Eds.): ICSCS 2018, CCIS 837, pp. 283–290, 2018.
https://doi.org/10.1007/978-981-13-1936-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1936-5_31&domain=pdf

memory allocation is DNC, which is similar to dentate gyrus region of the hippocampus
that performs neurogenesis.

2 Related Works

Artificial Neural Networks were created with the goal of trying to replicate thinking and
remembering, which are the hallmark of human brain. With some setbacks ANNs started
to perform well on many tasks, where brain excelled, such as image and speech recog‐
nition, machine translation and so on. But these neural networks still weren’t good at
doing inferencing and answering complex queries. This changed when Recurrent Neural
Networks (RNN) were introduced. They have this feedback loop, that let them remember
input through their hidden states. RNNs take sequence as vector

[
x1, x2, x3 … xn

]
,

xt ∈ ℝ
X and each output is a prediction sequence given as probability distribution with

the help of softmax function. The hidden state ht ∈ ℝ
H is updates as a linear combination

of input xt and hidden state in the previous time step ht−1. Later Bengio et al. [1] showed
that RNNs suffer from vanishing gradient problem, where the model cannot store long
term dependencies and training start to suffer.

In 1997 Schmidhuber and Hochreiter [2] introduced Long Short-Term Memory
Network which solved vanishing gradients problem by introducing forget gate and new
memory gate, that allowed hidden state to either pass through time (remembered) or not
(forgot). This enabled the modelling of sequence with much greater length than before.

This was a significant win over RNNs and are very popular in sequence modelling,
but still fall short when it comes to very long input sequence (limit of LSTMs). It can
be seen in tasks like question answering.

To solve this, neural networks were given a separate memory component that can
remember inputs and recall those inputs at later time steps. There are several networks
that have memory component. Dynamic Memory Networks (DNM) from Kumar et al.
[3] was built for question answering. It has semantic memory module that had GloVe
vectors that are used to create sequence of word embeddings. The input module
processes the text into a set of vectors. The episodic memory consists of 2 GRU modules.
Outer GRU generates the memory vector from episodes, which are generated by inner
GRU by moving over the facts from input modules.

Neural Turing Machine (NTM) (Graves et al.) [4] is a predecessor to DNC. It is
different from memory networks in a sense that instead of just working on a specific
task like question answering, they are built to perform algorithmic tasks (generalize to
perform various tasks). The model is similar to DNC, meaning that it has same archi‐
tecture as DNC, but differs in access mechanism. NTM uses location-based addressing,
restricting how memory is being written (contiguous blocks). NTMs has no way to
guarantee non-overlapping of memory locations. NTMs cannot free used memory loca‐
tions.

284 K. S. Shergill et al.

3 High Level Overview of DNC

Model works by giving an input to the controller xt ∈ ℝ
X at every time step and it then

emits an output vector yt ∈ ℝ
Y. Along with input vector xt controller receives a set of

read vectors from the previous time step. Controller then emits an interface vector, that
defines the way the controller will interact with the memory matrix denoted formally as
M ∈ ℝ

N×W. Both the input vector and read, write vectors are concatenated to obtain
single vector with is then input into the controller.

X =
[
xt, r1 … rn

]

After one iteration, model emits and output vector and an interface vector (𝛿)
consisting of parameters for interacting with memory.

Reading memory is done by using read weightings to compute weighted average of
the content of location, which are called read vectors, which are then sent to the controller
network, therefore giving it access to memory content.

For write operation, a single write weighting
(
ww

t

)
 calculated from memory alloca‐

tion mechanism, erase vector and write vector (both taken from interface vector) is used
to modify memory content.

DNC uses three mechanisms for concentrating on specific memory location while
reading and writing. This increases the effectiveness of the model in storing and
recalling. DNC uses content bases attention mechanism, which uses similarity between
memory vector and the key vector. This is helpful when recalling some fact or finding
a similar pattern. Second is memory allocation. DNC reuses memory location by
defining usage vector ut (for complete information refer to original paper by Graves
et al.). Third is temporal linkage. This allows the DNC to recall facts in the order they
were presented, simulating how human brain recall facts.

4 Multiplicative LSTM as Controller Network

Multiplicative LSTM (mLSTM) (Krause et al.) [5] is a hybrid architecture that combines
LSTM and Multiplicative RNN (Sutskever et al.) [6]. Multiplicative RNN modifies
Tensor RNN (Weston et al.) [7] to have hidden weight matrix for every input.

ht = tanh
(

Whxxt + W
(xt)
hh

ht−1 + bh

)

ot = Wohht + bo

The hidden matrix used for given input is

W
(xt)
hh

=

N∑
n=1

W
(n)

hh
x(n)

t

An Improved Differential Neural Computer Model Using Multiplicative LSTM 285

Where x(n)t is a one hot encoding of the input, and N is the dimensionality of the input.
Whh is a tensor here, which can be seen as a list of hidden matrices. With increasing
dimensionality of xt, Whh becomes immensely huge to work with. Therefore Whh is
factorized as follows.

W
(xt)
hh

= Whf ⋅ diag
(
Wfxxt

)
⋅ Wfh

To get mLSTM, hidden state from mRNN is plugged into gating units of LSTM.

mt =
(
Wfxxt

)
⊙
(
Wfhht−1

)

ht =Whxxt + Whmmt

it = 𝜎
(
Wixxt + Wimmt

)

ot = 𝜎
(
Woxxt + Wommt

)

ft = 𝜎
(
Wfxxt + Wfmmt

)

5 Experimental Results and Analysis

The first experiment is done on bAbI dataset (Weston et al.) [8]. bAbI contains set of
tasks and for each task there are 1000 questions for training and 1000 for testing. These
tasks are designed to see whether network is able to answer query where deduction is
required or can it count or can it answer questions in yes/no style etc. For full details on
bAbI task, please refer to the paper by Weston et al.

In preprocessing phase, inputs and targets are encoded as vectors of length 100 by
constructing a lexicon of unique words and padded zeros at the beginning if sequence
length is small and is serialized to be used later during training phase.

During training, input and output vectors are taken one at a time, since batch size is
1 and are then converted to one hot vectors which are then fed to the model.

Two different DNC models are used DNC1 with LSTM as controller network and
DNC2 with mLSTM variant both using 256 cells. Rest of the parameters are same as of
DeepMind DNC. Both models are run for 300,000 iterations.

Following table compares DeepMind DNC with our model (Table 1).
Model performed poorly on Path finding and Basic Induction, but performed really

well on Agent Motivation, Compound Coreference and Basic Coreference. Model if
trained further could lower the error rate on every task. Model is further compared with
DeepMind’s DNC with their results taken from the paper.

Above Fig. 1 displays loss for 300,000 iterations but is showing only last 200,000
iterations because the training was later continued from a checkpoint. Loss fluctuation
is high, but model was able to perform moderately accurate on bAbI tasks.

286 K. S. Shergill et al.

Fig. 1. Loss vs Iterations (bAbI task)

Table 1. Results for bAbI task

Task DeepMind DNC DNC
Positional reasoning 24.1 43.75
Two argument relation 0.0 5.69
Agent motivation 0.0 1.10
Counting 0.2 9.00
Single supporting fact 0.0 13.30
Path finding 0.1 90.23
Basic deduction 0.0 53.19
Three supporting fact 2.4 30.70
Indefinite knowledge 0.2 27.04
Three argument relation 0.5 13.20
Negation 0.0 4.40
Conjunction 0.1 8.40
Basic coreference 0.0 4.14
Time reasoning 0.3 27.98
Size reasoning 4.0 8.43
Compound coreference 0.0 1.05
Lists 0.1 7.70
Basic induction 52.4 63.19
Two supporting fact 1.3 30.37
Yes/No 0.0 5.80

The second experiment is character level language modelling. This means that DNC
tries to model probability distribution of the next character is the given sequence. For

An Improved Differential Neural Computer Model Using Multiplicative LSTM 287

the DNC to work, output from the controller is passed through a softmax classifier with
number of units equals the length of the vocabulary.

The dataset used is seven harry potter books scraped from internet archive [9]. The
input is converted to one hot encoded vectors with dimensions having (100, 100, 83) which
is represented as (batch size, sequence steps, one hot vector length). Loss function used is
softmax cross entropy loss. Standard DNC configuration is used with 1 write head, 4 read
heads and 256 memory locations and multiplicative LSTM as controller network. The
model reaches 0.04076 error rate after 26000 iterations. To test the model, character is
passed through the model, the output for that corresponding input is used as input for the
next time step, therefore running for 2000 iteration. Following is the output for 2000 step
using “Magic” as the starting input. Following is an excerpt from the output.

Magic Leady was a few more points into the darkness to the common room they did, and
they didn’t take their way to the corridor. They could have to be carried the sign that she had
taken a sharp polish when he wanted to trust her. He was telling him to get out of the move;
he has taken a first year threat on them, the moment she was about to see it too, but they
were tenting to have a good stone way, and then he started at him. “It’s be there to do what
te was stopped, you said to his stomach,” said Dumbledore, starting to strain to Harry into
her hand. “Well, if you come back there. The Muggle birth was a bulging second time. …
They didn’t look like it has the bar in the silence and take it.”

Observing the above text, it can be seen that individual words generated were mean‐
ingful but the sentence structure did not make any sense. Some of the words that is partic‐
ular to the input text, for example “Dumbledore” or “Muggle” were correctly generated,
but later in the sentence, Dumbledore was referred as her, concluding that words as a
collection does not possess any meaning. But overall grammar of the text is correct.

The model was able to converge quite nicely at 26,000 iterations and text resembles
with the input given. Various words unique to this text, were generated accurately by
the model. Loss vs Iteration of model is present in Fig. 2.

Fig. 2. Loss vs Iteration

288 K. S. Shergill et al.

The third experiment is planning problem. Air cargo planning problem is chosen
from [8] Russel and Norvig. Given initial conditions, goal and list of actions that can be
performed, model’s task is to find optimal number of steps to reach that goal.

For example, given an initial condition and Goal and an action schema (Fig. 3).

Init(At(C1, SFO) At(C2, JFK) At(P1, SFO) At(P2, JFK) Cargo(C1) Cargo(C2)
Plane(P1) Plane(P2) Airport(JFK) Airport(SFO))

Goal(At(C1, JFK) At(C2, SFO))
Ac on(Load(c, p, a), PRECOND: At(c, a) At(p, a) Cargo(c) Plane(p) Airport(a)

EFFECT: ¬ At(c, a) In(c, p))
Ac on(Unload(c, p, a), PRECOND: In(c, p) At(p, a) Cargo(c) Plane(p) Airport(a)

EFFECT: At(c, a) ¬ In(c, p))
Ac on(Fly(p, from, to), PRECOND: At(p, from) Plane(p) Airport(from)
Airport(to)

EFFECT: ¬ At(p, from) At(p, to))

Fig. 3. Loss vs Iterations (Planning problem)

Following this data, the goal will be achieved in 6 steps, by following the plan given
below.

Load (C1, P1, SFO)
Load (C2, P2, JFK)
Fly (P1, SFO, JFK)
Fly (P2, JFK, SFO)
Unload (C1, P1, JFK)
Unload (C2, P2, SFO)

DNC’s task is to figure out the plan in minimum number of steps.

An Improved Differential Neural Computer Model Using Multiplicative LSTM 289

DNC has to figure out the correct order of the item in the tuple, like the arguments
given to the action (C1, P1, SFO) and to determine which action to use, Load or Fly or
Unload.

The experiment is conducted with 2 cargos, 2 planes and 2 airports. After training
for 2 days for 140,000 iterations on NVidia K80 12 GB GPU, it gave 62.5% accuracy
on 8 planning problems. Graph below shows model reaches 0.2 loss.

Model is taking long time to converge, with another 100,000 iterations required to
reach loss below 0.1.

6 Conclusion

In this paper we proposed a new DNC model with the LSTM being replaced with multi‐
plicative LSTM. The proposed model has a slightly larger training time in comparison
to the previous model. But, being a generalised model it is applicable to larger class of
problems. Moreover, the new DNC model tries to emulate algorithmic tasks. When
executed in powerful computers with higher processing speed there are endless possi‐
bilities for the proposed model.

References

1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent
is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994)

2. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

3. Kumar, A., et al.: Ask me anything: dynamic memory networks for natural language
processing. In: International Conference on Machine Learning, pp. 1378–1387, June 2016

4. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines (2014). arXiv preprint arXiv:
1410.5401

5. Krause, B., Lu, L., Murray, I., Renals, S.: Multiplicative LSTM for sequence modelling (2016).
arXiv preprint arXiv:1609.07959

6. Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural networks. In:
Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp.
1017–1024 (2011)

7. Weston, J., et al.: Towards AI-complete question answering: a set of prerequisite toy tasks
(2015). arXiv preprint

8. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial Intelligence: A
Modern Approach, vol. 2, no. 9. Prentice Hall, Upper Saddle River (2003)

9. Rowling, J.K.: Internet Archive. https://archive.org/details/HarryPotterCompleteCollection

290 K. S. Shergill et al.

http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1609.07959
https://archive.org/details/HarryPotterCompleteCollection

	An Improved Differential Neural Computer Model Using Multiplicative LSTM
	Abstract
	1 Introduction
	2 Related Works
	3 High Level Overview of DNC
	4 Multiplicative LSTM as Controller Network
	5 Experimental Results and Analysis
	6 Conclusion
	References

