
ALICE: A Natural Language Question Answering
System Using Dynamic Attention and Memory

Tushar Prakash(✉), Bala Krushna Tripathy, and K. Sharmila Banu

School of Computer Science and Engineering, VIT, Vellore, India
tusharprk@yahoo.com, {tripathybk,sharmilabanu.k}@vit.ac.in

Abstract. With the growing amount of textual information in recent years, it has
become quite challenging to keep up with content produced by humans. Many
models have been proposed that can perform reading comprehension on a variety
of texts; however, past models either excel at information retrieval on complex
texts or inference on simple texts. In this paper, we propose a model called ALICE
that can perform information retrieval as well as inference tasks on any text. It is
scalable to any document size and can be used to aid professionals in quickly
finding answers to their problems using natural language queries. We will explore
how ALICE achieves this and test it on some common datasets.

Keywords: Language · Processing · Reading · Comprehension · Attention
Memory · Question · Answer

1 Introduction

In recent years, many models have been developed that can perform reading compre‐
hension. Most recent models utilize deep learning techniques augmented with atten‐
tion and memory mechanisms [1, 2] to decode answers from the encoded questions
and documents [1, 3]. Many models either use information retrieval or inference
techniques to find answers. However, current state-of-the-art models still face a
decline in accuracy when processing larger and more complex text documents [3–6].
In this paper, we introduce a new approach towards text comprehension by utilizing
predictive word embeddings, matched attention and external memory. Our proposed
model can handle any document size due to its expandable architecture. Addition‐
ally, we predict the semantic relationship of out-of-vocabulary (OOV) and rare
words, thereby, allowing us to generate significantly more accurate vector based
word embeddings. End to end training is also possible with this model because the
entire model is differentiable. The general architecture of this model can be expanded
to applications beyond reading comprehension, such as, sentiment classification,
image captioning and machine translation.

© Springer Nature Singapore Pte Ltd. 2018
I. Zelinka et al. (Eds.): ICSCS 2018, CCIS 837, pp. 274–282, 2018.
https://doi.org/10.1007/978-981-13-1936-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1936-5_30&domain=pdf


2 Related Work

Most natural language processing models use recurrent neural networks (RNNs) for
encoding and decoding operations as they can handle sequential data very easily.
More recently, LSTM and GRU [7] model variations have been adopted because they
can encode larger contexts [6, 7]. The recent addition of attention mechanisms over
gated RNNs has also enabled a plethora of applications including, but not limited to,
sentiment analysis, neural machine translation [1, 3], image caption generation [8]
and question answering [2]. Furthermore, external memory manipulation also
involves attention as seen in [4]. In this paper, we use a similar approach to under‐
stand the context of a document. However, unlike previous approaches [6, 9], our
model combines the benefits of inference capability in augmented memory models
with the scalability of sequential gated attention based models. This allows our
model to perform a variety of tasks that were previously limited to only certain types
of models. In recent years vector embedding models such as Word2Vec [10] and
GloVe [11] have become a common method for encoding words because they can
capture some of the semantic relationships between words. However, a major draw‐
back of these models is that they can’t generate representations of words or phrases
that were not part of their training set. So, rare or out-of-vocabulary (OOV) words
either have poor representations or don’t have any representation at all. This results
in diminished accuracy because the attention based models can’t effectively deter‐
mine how the poorly represented word relates to the context. Methods to mitigate
this issue have been described in [12]. In this paper we propose a new method for
embedding words that takes care of the underlying issues with vector based word
embedding models, thereby significantly boosting their accuracy. To test our model
we use common datasets like Facebook’s bAbI dataset [13]; Stanford’s SQuAD
dataset [14] and Microsoft’s MS MARCO dataset [15]. The bAbI dataset tests infer‐
ence tasks over simple sentences, whereas, The SQuAD and MS MARCO datasets
test more complex inference and information retrieval aspects of reading compre‐
hension.

3 Model and Methods

In this section we provide a brief overview of the proposed model. Subsequently, we
describe each component of the model in detail and give the intuition for its creation.
We begin the task of reading comprehension by sequentially encoding the question and
document using two bidirectional GRUs [7, 16]. A paired matching matrix then asso‐
ciates each word in the question with words in the given document [17]. The relevance
of each sentence is determined using a soft attention mechanism on the matching matrix.
Subsequently, a temporal controller writes the weighted encoding of the word into
memory using a method similar to the one described in [18]. The encoded question and
the word pair matching matrix is then passed as input to the read controller which selects
the weighted encodings of the words (memory vector) that are relevant to the question.

ALICE: A Natural Language Question Answering System Using Dynamic Attention 275



Each selection is fed back to the read controller along with the question to find more
evidence for supporting an answer (Fig. 1).

Fig. 1. A high level view of ALICE’s architecture showing one time step

The weighted results are given to a bidirectional GRU which decodes the answer [1].

3.1 Embedding and Encoding

We propose a new method to handle rare or OOV words in vector based word embed‐
dings [10, 11] by guessing the context of the words. A bidirectional LSTM (BiLSTM)
is trained separately to predict the next word in a sentence. For each rare or OOV word,
the BiLSTM generates ‘n’ candidate results to replace that word. We average the ‘n’
candidate vectors and insert then result into our word embedding model. We train the
BiLSTM on texts used to train the word embedding model to ensure we don’t encounter
any OOV words. To encode the question Q and the document D, we generate their
corresponding word embeddings 

[
w

Q

i

]m

i=1 and 
[
wD

i

]k

i=1 along with their character embed‐
dings 

[
c

Q

i

]m

i=1 and 
[
cD

i

]m

i=1, where ‘m’ is the number of words in the question Q and ‘k’ is
the number of words in the document D. For word embedding we use pre-trained GloVe
embeddings [11] and for character embedding we use an LSTM-charCNN [19]. We then
combine the word and character embeddings using bidirectional GRUs [16] to form
encodings 

[
e

Q

i

]m

i=1 and 
[
eD

i

]k

i=1 for all words in the question and document respectively.

e
Q

i
= BiGRU

(
e

Q

i−1,
[
w

Q

i
, c

Q

i

])
(1)

276 T. Prakash et al.



eD

i
= BiGRU

(
eD

i−1,
[
wD

i
, cD

i

])
(2)

By combining the enhanced word vector representations with character embeddings
we get an encoding that effectively handles rare and OOV words.

3.2 Word to Word Relevance

To determine the importance of a word in answering the given question, we follow the
suggestions outlined in [17] to generate word pair representations. For a given question
encoding 

[
e

Q

i

]m

i=1 and a document encoding 
[
eD

i

]k

i=1, the word pair representation 
[
pD

i

]k

i=1 is
calculated using soft-alignment of words:

pD

i
= RNN

(
pD

i−1, ci

)
(3)

where ci is a context vector formed by merging all word pair attention vectors with
question’s encoding eQ

i
.

ci =

m∑
i=1

aie
Q

i (4)

si =
exp

(
aj

)
∑m

j=1 exp
(
aj

) (5)

ai = wTtanh
(
WQe

Q

i
+ WDeD

i
+ WppD

i−1

)
(6)

Here, ai is an attention vector over the individual question-document word pairs and
si is the softmax over ai. w is a learned weight vector parameter whose transpose is wT.
In [20], they add eD

i
 as another input to the recurrent network used in 

[
pD

i

]
 (Fig. 2):

pD

i
= RNN

(
pD

i−1,
[
eD

i
, ci

])
(7)

Since the document may be very large, we introduce a gate gi over the input[
eD

i
, ci

]
. This allows us to find parts of the document that are relevant to the question.

gi = sigmoid
(
Wg

[
eD

i
, ci

])
(8)

[
eD

i
, ci

]′
= gi ⊙

[
eD

i
, ci

]
(9)

The gate gi is a learned value over time. This gate filters out the irrelevant words
when gi is closer to zero and gives importance to words when gi is closer to one. The
gate gi learns different values for Wg over various time steps. Thus modeling a mecha‐
nism to effectively select parts of the document relevant to the question. In our model
we use a BiGRU in place of an RNN.

ALICE: A Natural Language Question Answering System Using Dynamic Attention 277



3.3 Memory Controller

The memory architecture is similar to, but less complex than the one described in
[18]. Memory is stored in an N × M matrix where N is the number of memory loca‐
tions and M is the vector size at each location. Our first step is to write the weighted
word vectors in to memory. This is achieved by using an LSTM for the controller
network defined by:

il

t
= sigmoid

(
Wl

i

[
xt, hl

t−1, hl

t
− 1 + bl

i

])
(10)

f l

t
= sigmoid

(
Wl

f

[
xt, hl

t−1, hl

t
− 1 + bl

f

])
(11)

sl

t
= f l

t
sl

t−1 + il

t
tanh

(
Wl

s

[
xt, hl

t−1, hl

t
− 1 + bl

s

])
(12)

ol

t
= sigmoid

(
Wl

o

[
xt, hl

t−1, hl

t
− 1 + bl

o

])
(13)

hl

t
= ol

t
tanh

(
sl

t

)
(14)

where l denotes the layer of the LSTM and sigmoid is the logistic sigmoid function
defined as:

sigmoid(x) =
1

1 + e−x
(15)

il
t
, f l

t
, sl

t
, ol

t
, and hl

t
 are the input, forget, state, output and hidden gates, respectively, at

layer l and time t. The input vector xt is supplied to the controller at each time-step t.
Since we want to maintain the order of sentences occurring in the document, we concat‐
enate an increasing time index i to pD

i
 from the word matching step:

Fig. 2. A visual depiction of the attention mechanism used

278 T. Prakash et al.



pD

i
= RNN

(
pD

i−1,
[
eD

i
, ci

])
(16)

xt =
[
pD

i
, i
]

(17)

To read the memory vectors, we use the weighted averages across all locations:

ri

t
= MT

t
wr

t (18)

Here, Mt denotes the memory matrix at time t. The read vectors are appended to the
controller input after each time-step. For the first time step, the question’s encoding ei

Q

is supplied as input. The read weighting wr
t
 determines the importance of a vector for

answering the question. It is defined as:

wr

t
= ft[1](i − 1) + ft[2]C(M, k) + ft[3](i + 1) (19)

Here, ft is a read mode decided by applying a softmax over a collection of 3 states:
move backward, find similar vectors, move forward. The read weight wr

t
 is applied over

all memory locations, allowing the model to select important facts relevant to the given
question. To find evidence supporting an answer, we use content-based addressing [18]
on the read head to perform lookups over the memory:

C(M, k) =
exp (D(k, M[i, ⋅]))∑
j
exp

(
D
(
k, M

[
j, ⋅
])) (20)

Here, k ∈ R is the key or address of a memory location and D is the cosine similarity
function. In our case, the temporal index is also used as the key.

3.4 Output

The output vectors are fed into a BiGRU which decodes the answer. Once the output is
decoded, we calculate the loss using a standard cross-entropy loss function. We use this
to minimize the sum of log probabilities when comparing the decoded answer with the
actual one:

L(y, z) = −

m∑
{i=0}

z ⋅ log (P(y|z)) (21)

Here, m is the vocabulary size, z is the actual answer and y is the prediction given
by the model. The error is calculated and back-propagated until it is minimized.

4 Results

The bAbI dataset [13] consists of 20 tasks for testing a model’s ability to reason over
text. From the results listed in Table 1, we observe that ALICE performs significantly
better than the DNC on basic induction tasks (task 16), which significantly contributes

ALICE: A Natural Language Question Answering System Using Dynamic Attention 279



to a higher mean accuracy for ALICE. We also observe that the DMN [4] performs better
than ALICE on basic induction tasks, yet, ALICE performs better on all other tasks. The
accuracy of ALICE converges towards 96.8% over 10 training sessions. We only report
the best results obtained from one of the 10 sessions.

Table 1. Comparison of results obtained on the bAbI dataset

Task DMN [4] DNC [18] ALICE
1. Single supporting fact 100 100 100
2. Two supporting facts 98.2 99.6 98.6
3. Three supporting facts 95.2 98.2 97.2
4. Two argument relations 100 100 99.9
5. Three argument relations 99.3 99.5 99.4
6. Yes/no questions 100 100 100
7. Counting 96.9 99.8 99.7
8. List/sets 96.5 99.9 99.4
9. Simple negation 100 100 100
10. Indefinite knowledge 97.5 99.8 98.1
11. Basic co-reference 99.9 100 100
12. Conjunction 100 100 100
13. Compound co-reference 99.8 100 100
14. Time reasoning 100 99.7 99.8
15. Basic deduction 100 100 100
16. Basic induction 99.4 47.6 73.44
17. Positional reasoning 59.6 88 82.6
18. Size reasoning 95.3 99.2 97.5
19. Path finding 34.5 99.9 98.3
20. Agent motivations 100 100 100
Average accuracy 93.605 96.56 97.209
Number tasks failed (accuracy < 95%) 2 2 2

We further test our model on the SQuAD [14] and MS MARCO datasets [15]. The
SQuAD dataset [14] contains question-answer pairs derived from 536 Wikipedia arti‐
cles. SQuAD uses exact match (EM) and F1 score metrics to measure the performance
of a given model. We report the best results obtained from 1 of 10 training sessions in
Table 2.

Table 2. A comparison of results obtained on the SquAD dataset

Model EM F1
SAN ensemble model [23] 79.608 86.496
Reinforced mnemonic reader ensemble model [22] 77.7 84.9
ReasoNet ensemble model [23] 73.4 81.8
ALICE 78.024 85.212

280 T. Prakash et al.



While ALICE outperforms competitive models like ReasoNet [23] and Reinforced
Mnemonic Reader [22]; the Stochastic Attention Network (SAN ensemble model) [21]
still beats ALICE by a small margin. We attribute this to SAN’s ensemble nature. To
test our model (ALICE) on larger texts we use the MS MARCO dataset [15]. It contains
multiple passages extracted from anonymized Bing search engine queries and the
answers may not be exactly worded in those passages. The metrics used for evaluating
a model for the MS MARCO dataset are BLEU and ROUGE-L scores.

From the results in Table 3, we see that ReasoNet [23] marginally outperforms
ALICE on the MS MARCO dataset. Note that the results for ReasoNet are obtained by
Microsoft AI and Research group after the paper was published. From our tests, we can
clearly see that ALICE performs similar to, or better than some competitive models on
the bAbI [13], SQuAD [14] and MS MARCO [15] datasets.

Table 3. A comparison of results obtained on the SquAD dataset

Model BLEU ROUGE-L
ReasoNet [23] [Microsoft AI and research results] 38.81 39.86
ALICE 38.43 38.67

5 Conclusion

In this paper, we propose a novel model, ALICE, aimed at the task of reading compre‐
hension and question answering. We simplify an existing state-of-the-art architecture
and combine it with a matching layer, to attend over a question and document. We also
provide a method to improve the accuracy of similar models by using a bidirectional
LSTM to generate contextual word embeddings for out-of-vocabulary words. Results
for our model show that it is scalable in size and complexity. Our model achieves results
that are close to the state-of-the-art and similar to, or better than some competitive
models. Future work includes simplifying the current model and applying this model to
generate captions for images.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align
and translate (2014). arXiv preprint arXiv:1409.0473

2. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In: Advances in
Neural Information Processing Systems, pp. 2440–2448 (2015)

3. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural
machine translation (2015). arXiv preprint arXiv:1508.04025

4. Kumar, A., et al.: Ask me anything: dynamic memory networks for natural language
processing. In: International Conference on Machine Learning, pp. 1378–1387 (2016)

5. Gong, Y., Bowman, S.R.: Ruminating reader: reasoning with gated multi-hop attention
(2017). arXiv preprint arXiv:1704.07415

6. Sordoni, A., Bachman, P., Trischler, A., Bengio, Y.: Iterative alternating neural attention for
machine reading (2016). arXiv preprint arXiv:1606.02245

ALICE: A Natural Language Question Answering System Using Dynamic Attention 281

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1704.07415
http://arxiv.org/abs/1606.02245


7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural
networks on sequence modeling (2014). arXiv preprint arXiv:1412.3555

8. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption
generator. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3156–3164. IEEE (2015)

9. Iyyer, M., Boyd-Graber, J., Claudino, L., Socher, R., Daumé III, H.: A neural network for
factoid question answering over paragraphs. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 633–644 (2014)

10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Advances in Neural Information Processing
Systems, pp. 3111–3119 (2013)

11. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1532–1543 (2014)

12. Luong, M.-T., Sutskever, I., Le, Q.V., Vinyals, O., Zaremba, W.: Addressing the rare word
problem in neural machine translation (2014). arXiv preprint arXiv:1410.8206

13. Weston, J., et al.: Towards AI-complete question answering: a set of prerequisite toy tasks
(2015). arXiv preprint arXiv:1502.05698

14. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000 + questions for machine
comprehension of text (2016). arXiv preprint arXiv:1606.05250

15. Nguyen, T., et al.: MS MARCO: a human generated machine reading comprehension dataset
(2016). arXiv preprint arXiv:1611.09268

16. Cho, K., et al.: Learning phrase representations using RNN encoder–decoder for statistical
machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1724–1734 (2014)

17. Rocktäschel, T., Grefenstette, E., Hermann, K.M., Kočiský, T., Blunsom, P.: Reasoning about
entailment with neural attention (2015). arXiv preprint arXiv:1509.06664

18. Graves, A., et al.: Hybrid computing using a neural network with dynamic external memory.
Nature 538(7626), 471 (2016)

19. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language models. In:
AAAI, pp. 2741–2749 (2016)

20. Wang, S., Jiang, J.: Learning natural language inference with LSTM. In: Proceedings of
NAACL-HLT, pp. 1442–1451 (2016)

21. Liu, X., Shen, Y., Duh, K., Gao, J.: Stochastic answer networks for machine reading
comprehension (2017). arXiv preprint arXiv:1712.03556

22. Hu, M., Peng, Y., Qiu, X.: Mnemonic reader for machine comprehension (2017). CoRR, abs/
1705.02798 http://arxiv.org/abs/1705.02798

23. Shen, Y., Huang, P.-S., Gao, J., Chen, W.: ReasoNet: learning to stop reading in machine
comprehension. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1047–1055. ACM (2017)

282 T. Prakash et al.

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1410.8206
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1509.06664
http://arxiv.org/abs/1712.03556
http://arxiv.org/abs/1705.02798

	ALICE: A Natural Language Question Answering System Using Dynamic Attention and Memory
	Abstract
	1 Introduction
	2 Related Work
	3 Model and Methods
	3.1 Embedding and Encoding
	3.2 Word to Word Relevance
	3.3 Memory Controller
	3.4 Output

	4 Results
	5 Conclusion
	References




