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Abstract. Glaucoma is an ophthalmic pathology caused by increased fluid
pressure in the eye, which leads to vision impairment. The evaluation of the
Optic Nerve Head (ONH) using fundus photographs is a common and cost
effective means of diagnosing glaucoma. In addition to the existing clinical
methods, automated method of diagnosis can be used to achieve better results.
Recently, Empirical Wavelet Transform (EWT) has gained importance in image
analysis. In this work, the effectiveness of EWT and its extension called
Enhanced Empirical Wavelet Transform (EEWT) in denoising fundus images
was analyzed. Around 30 images from High Resolution Fundus (HRF) image
database were used for validation. It was observed that EEWT demonstrates
good denoising performance when compared to EWT for different noise levels.
The mean Peak Signal to Noise Ratio (PSNR) improvement achieved by EEWT
was as high as 67% when compared to EWT.
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1 Introduction

Glaucoma is the second common source of vision loss usually seen in the age group of
40–80 years. It is characterised by very high eye pressure, which damages the Optic
Nerve Head (ONH) causing peripheral vision loss and finally leading to blindness [1].
Approximately 64.3 million people in the world were suffering from glaucoma in 2013.
By 2020 this number might rise to 76 million and by 2040 it might affect 111.8 million
people [2]. Although glaucoma cannot be cured, timely treatment will help to hold back
its progression. Therefore, diagnosis of this disease is important to avoid preventable
vision loss [3].

The diagnosis necessitates regular eye tests, which is expensive and time - con-
suming. Conventional diagnosis techniques are based on manual observations and
hence restricted by the expertise of ophthalmologists in the domain and prone to inter
observer variability [1]. These limitations impose the need for automated methods
which offer consistency, objective analysis and time efficiency. Among the various
imaging modalities used for glaucoma detection, digital fundus photography is pre-
ferred for automated diagnosis since it is cost effective and captures a large retinal field.
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Clinical information suggests that the ONH examination is the most beneficial
method for diagnosing glaucoma structurally. Proper segmentation of structures in and
around ONH requires precise identification of the border between the retina and the rim
which has a number of limitations [4]. The accuracy of the system developed relies on
the accuracy of segmentation performed.

Among the various techniques used for image analysis, wavelet transform has
shown to have an upper hand. The drawback of wavelet analysis is that it has fixed
basis and hence is non-adaptive with respect to signal characteristics [5]. Huang et al.
[6] propounded Empirical Mode Decomposition (EMD) which is adaptive in nature. It
decomposes the non- stationary signal into modes known as Intrinsic Mode Functions
which acts as the bases. EMD makes use of a process known as sifting for signal
decomposition. However, there are a few shortcomings of EMD, such as lack of a
strong theoretical background, no robust stopping criterion for sifting process, mode
mixing and end effects [7].

To overcome the limitations of EMD, Empirical Wavelet Transform (EWT) was
suggested [8] and it is shown to have an upper hand over other time-frequency analysis
methods [9, 10]. By combining the time-frequency localisation properties of wavelets
and adaptability of Empirical Mode Decomposition (EMD), EWT is found to be apt for
analysing fundus images. However, EWT does not take spectrum shape into consid-
eration while performing segmentation of the spectrum to decompose images into
different modes. The drawback of EWT was identified and a new approach was pro-
posed by Hu et al. [11] known as Enhanced Empirical Wavelet Transform (EEWT). It
makes use of an envelope-based approach using the Order Statistics Filter (OSF) for
segmentation of the Fourier spectrum. EEWT is found to have better performance for
non-stationary signal analysis [10].

Fundus images are generally affected by additive, multiplicative noise and a mix-
ture of these two [12]. EWT has shown to have an upper hand in Computer Aided
Detection (CAD) systems for diagnosing glaucoma. In such systems, as a prepro-
cessing step, techniques like Median and Gaussian filters are used for denoising the
fundus images [13]. Rather than making use of an additional preprocessing step, the
inherent denoising ability of EWT and EEWT can be utilized. The purpose of the work
is to study the effects of EWT and EEWT in denoising of fudus images.

This paper is arranged as follows. Section 2 gives a summary of the two techniques
used and the methodology adopted. Section 3 covers the results and discussions.
Finally, the paper concludes in Sect. 4.

2 Methodology

This work focuses on analyzing EWT and its extension EEWT on fundus images. EWT
and EEWT were applied on the fundus images to form sub images from low to high
frequency. Next, the modes were thresholded to eliminate the effect of noise. Inverse
transform was performed on these modes to reconstruct the signal. EWT, EEWT and
the denosing method employed are explained in Sects. 2.1, 2.2 and 2.3.
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2.1 Empirical Wavelet Transform

Gilles [8] proposed EWT in order to analyse signals such that adaptability of EMD and
time frequency localisation of wavelets can be combined together. EWT decomposes
the signal into modes using wavelet filter banks, whose supports are derived from the
location of information in the signal. The main steps involved in EWT are segmen-
tation of the spectrum followed by construction of EWT basis and their application on
the segments formed. For N segments, a bank of filters will be defined; N−1 band pass
filters and a low pass filter. The procedure involved in EWT is illustrated in Fig. 1.

Segmentation of the signal spectrum requires dividing it into N continuous seg-
ments given as kn ¼ xn�1xn½ �, where xn is the frequency at any point n. Centered on
each xn, a transition phase Tn is defined with a width of 2sn. Excluding 0 and p, N−1
boundaries should be detected. They are obtained by finding all the local maxima of the
spectrum and sorting them in descending order. The first N−1 maxima are then
selected. Boundaries are found as the average between the positions of two consecutive
maxima. Empirical scaling and wavelet functions are obtained similar to Littlewood-
Paley wavelets and Meyers wavelets. For the signal spectrum mðxÞ, empirical scaling
function and empirical wavelet function are shown as Eqs. (1) and (2) respectively.

The empirical scaling function is defined as:
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By taking the inner product between signal and empirical wavelet function, wavelet
coefficients can be obtained. Similarly, the inner product of signal with empirical
scaling function gives the scaling coefficient.

This concept was extended to images in [14] by Gilles et al. The empirical
counterpart of Tensor wavelets, Curvelets, Littlewood-Paley wavelets and Symlets
were built. In 2 dimensional Littlewood-Paley wavelet transform, images are filtered
using wavelets with annuli supports. Hence, Polar FFT is preferred in this case. Pseudo
polar FFT is a method which helps to do this with less computational complexity since
FFT is computed on a square grid rather than polar grid [15].
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2.2 Enhanced Empirical Wavelet Transform

EWT is limited by the fact that it can be used to analyze signals with well separated
frequencies. For signals that are noisy, or non-stationary in nature, EWT may not
perform well, as the boundary detection may result in errors. The local maxima, which
might be significant may not be considered while those which are part of the noise
might be considered. Segmentation performed with such boundaries will be incorrect.
This drawback is a result of spectrum shape not being considered by EWT. On the
other hand, EEWT considers the spectrum shape for segmentation of the signal.

In EEWT, OSF is first applied on the input signal to obtain the upper envelope from
which the major peaks are found. The procedure involved in EEWT analysis is
illustrated in Fig. 2.

FFT of the signal is taken in order to obtain the spectrum. OSF is performed on the
spectrum using Max filter for upper envelope detection. A sliding window of size sOSF
centered at a point is used to determine the upper envelope Uð Þ at that point as the
maximum value of elements in that region. The upper envelope is given by (3)

U nð Þ ¼ maxk�An D kð Þð Þ ð3Þ

where D denotes the sequence of data and An denotes the sliding window. At any point
n, the value of U is the maximum value of D over the region An. The size of sliding
window is found by considering all the local maxima. The minimum value of the
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Fig. 1. Flowchart of EWT
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Euclidean distance between two consecutive local maxima gives the value of sOSF
given by (4)

sOSF ¼ min Dmaxf g ð4Þ

where Dmax is an array containing the Euclidean distance between consecutive local
maxima of the data.

When OSF is applied on a signal, any peak in the signal spectrum becomes a flat
top. These useful flat tops corresponding to the most significant peaks will be used for
boundary detection. For this purpose, the following three criteria are used.
Criterion 1: Significant flat tops have width greater than or equal to the size of OSF.
Criterion 2: Within a neighbourhood the flat top with maximum value is the

significant one. Neighborhood for a flat top is its preceding flat top and
the flat top before the previous one.

Criterion 3: The flat tops obtained from the downward trend of the signal spectrum
are not considered as useful ones.

Boundary detection involves choosing the lowest among consecutive flat tops.
Once the boundary is detected, the spectrum is segmented in accordance with the
boundary obtained. Following this, filter banks are constructed and the signal is
decomposed using the filters.

2.3 Denoising Using EWT/EEWT

Soft thresholding is applied on EWT modes to remove noise. The threshold value was
found using Eq. (5).

s ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log Mð Þ

p
ð5Þ

where s is the universal thresholding, M represents the total number of pixels in the
image and r gives the noise level estimate. It is given by Eq. (6).

r ¼ median wf g
0:6745

ð6Þ

where w is the wavelet coefficient.
EEWT can distinguish noise and meaningful components effectively boundaries

detected are optimal. Thus denoising was performed by removing the mode containing
the highest frequency.

3 Results and Discussions

A total of 30 retinal fundus images were acquired from High Resolution Fundus
(HRF) image database [16]. MATLAB R2017a on Windows platform was used for the
implementation of this work. For validation of the denoising performance, Speckle and
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Gaussian noise were added to the images, followed by decomposition of the images
into EWT and EEWT modes. Figure 3 shows the green channel of fundus image
decomposed into modes using EWT. Figure 4 shows the decomposition of images
using EEWT.

Denoising was performed using EWT and EEWT methods. By comparing the sub-
band images of EWT and EEWT, it is clear that noise is more distinguishable in EEWT
than EWT. Further, in EEWT, the low frequency content was retained without much
noise in the first intrinsic mode function. High frequency components clearly show the

Fig. 3. Decomposition using EWT

Fig. 4. Decomposition using EEWT
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influence of noise. On the other hand, in EWT, it is difficult to distinguish between
noise and meaningful content since noise gets mixed in all modes. This shows that
spectral boundaries detected for EEWT are optimal as compared to EWT.

These cases were considered with different values for noise variance. Images were
corrupted by Speckle and Gaussian noise with variance of 0.001, 0.01 and 0.05
respectively. Figure 5 shows images corrupted by noise with variance of 0.05, EWT
and EEWT denoised images.

Denoised images of EEWT shows reduced noise levels and thus improved quality
when compared to EWT. This indicates that the boundaries detected using EWT could
not effectively separate noise from image content. To quantitatively analyze the
denoising performances of the two methods, Peak Signal to Noise Ratio (PSNR) was
calculated.

Table 1 shows the mean PSNR values for EWT based denoising and EEWT based
denoising on 30 images for different levels of noise variance. It is seen that the mean
performance of EEWT is better than EWT. This can be attributed to the fact that EEWT
takes spectrum shape into consideration for segmentation of the spectrum. As a result,
EEWT can separate out the insignificant peaks caused by noisy components better
when compared to EWT.

It is further observed that EWT is inefficient especially when greater amount of
noise is present in the image. On the other hand, EEWT shows good performance even
when noise levels are high. Hence EEWT is suitable in analysing glaucoma using
fundus images which are susceptible to noise during acquisition process. The inherent
denoising capability of the technique alleviates the need for denoising as a pre-
processing step.

Fig. 5. (a) Image with noise variance 0.05, (b) Denoised using EWT, (c) Denoised using EEWT

Table 1. Mean PSNR values of EWT and EEWT denoising for different noise variance

Noise variance EWT EEWT

0.001 26.351 dB 39.256 dB
0.01 19.552 dB 34.209 dB
0.05 14.057 dB 26.723 dB
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4 Conclusion

Though much work has been based recently on EWT for image analysis, it can be seen
that EEWT is a better alternative for non-structural approach. EEWT has better inherent
noise removing capability resulting in an overall improved performance compared to
EWT. Thus EEWT, with its combined noise robustness, adaptability and time-
frequency localisation is a promising technique for computer aided glaucoma
diagnosis.
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