Predicting the Severity of Closed Source)
Bug Reports Using Ensemble Methods e

M. N. Pushpalatha and M. Mrunalini

Abstract Severity tells about how urgent given bug is to be fixed. There are large
numbers of bug identified during software development and maintenance for each
bug the bug report will be submitted. Bug report gives very important information
such as Description, Severity, Priority, Date and Time of bug report, etc. Even though
there are clear guidelines present about how to assign the severity, the inexperienced
and busy test engineer may make the mistake in correctly identifying the severity in
closed source software development. Automatic prediction of severity helps inex-
perienced and busy engineer in saving time and resources. In this paper, bug report
dataset (PITS) is taken for NASA projects from PROMISE Repository. Predicting
the severity is done using Bagging, Voting, Adaboost and Random forest ensem-
ble methods. The result shows bagging gives better accuracy than other ensemble
algorithms. Two preprocessing techniques, i.e., Information gain and Chi-square are
considered for data reduction. Information gain gives slightly good accuracies over
chi-square.

1 Introduction

During open source software development lots of bug reports are submitted by end-
users, developers, testers from all over the world are stored in different open source
bug repositories like Bugzilla, JIRA, etc. lot of research is done on these repositories
to analyze the bug reports for improving the quality of software and delivering the
software according to customer requirements. Some of the research is related to
predicting the severity of bug reports and predicting the proper developer for fixing
that bug. Closed source software developments use slightly different approach for
software development than open source. In open source anyone (users, developers,

M. N. Pushpalatha () - M. Mrunalini
Ramaiah Institute of Technology, Bangalore 560054, India
e-mail: pushpalathamn @msrit.edu

M. Mrunalini
e-mail: mrunalini @msrit.edu

© Springer Nature Singapore Pte Ltd. 2019 589
S. C. Satapathy et al. (eds.), Smart Intelligent Computing and Applications,

Smart Innovation, Systems and Technologies 105,

https://doi.org/10.1007/978-981-13-1927-3_62

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1927-3_62&domain=pdf

590 M. N. Pushpalatha and M. Mrunalini

and testers) can test the software and if they find any defect then can submit the bug
report to the developer. Even though there are clear guidelines on how to assign the
severity. Many a times the users make the mistake when assigning the severity to
the bug report. In closed source, the assignment of severity is done by test engineer
who tests the software. If the test engineer is busy or inexperienced then they are the
chances of making the mistakes. Prediction of severity of bug report for closed source
will help for the inexperienced and busy test engineer. It is very important to identify
it correctly for resource allocation and fixing urgent and critical bug. Assessment of
severity in closed source depends on the experience of test engineer and the time he
spends on the defect report [1].

In [1-6] used the general classifier such as rule based classification, Naive Bayes,
Naive Bayes Multinomial, K-Nearest Neighbor, J48, RIPPER, probability based
Naive Bayes, Random Forests and Support vector machine, etc., for predicting the
severity. Bagging ensemble method used in [7] for predicting the severity for open
source data sets and compared with C4.5. Bagging gave good accuracy over C4.5
general classifier. Literature shows that ensemble methods are not addressed in avail-
able work for open source NASA datasets.

In this paper, the defect reports of the NASA’s Project Issue and Tracking system
(PITS) from PROMISE repository are considered for experiment. PITS is database
contains all findings which are captured during NASA’s Independent Verification
and Validation (IV & V) and contains data for more than 10 years [1]. It contains the
data about nuclear reactor, robotics and human-rated missions.

In this paper, different ensemble methods used for predicting the severity for PITS
defect reports.

The paper organization is Sect. 2 explains the literature survey, Sect. 3 is about
methodology used, in Sect. 4 Result and Discussion is presented and Sect. 5 is about
the conclusion and future work.

2 Literature Survey

In the literature machine learning and Text mining techniques are used to address
the different problems on bug tracking repositories. Some of the problems addressed
by different researchers are on predicting the duplicate bug reports, predicting the
severity and priority of bug reports and predicting the developer to resolve the bug, etc.
In author [8] used natural language processing to detect duplicate defect reports. In
the presence of ancillary data about a bug (e.g., number of affected users), the process
of bug triaging could be automated. In this vein, Naive Bayes based classification
algorithm has been used to automatically predict the severity of reported bugs [2] of
Bugzilla repositories for Eclipse, Mozilla and GNOME component.

Since bug reports typically come with textual descriptions, text mining techniques
have been applied on the descriptions of bug reports to automatically triage bugs [9,
10].

Predicting the Severity of Closed Source Bug Reports ... 591

The predicting the severity levels for closed source of NASA defect reports is
done using RIPPER algorithm [3]. Different measures like recall, precision, and
F-measure is used for evaluating the result.

Prediction of severity of open source bug reports from Bugzilla is done by using
Naive Bayes Multinomial, K-Nearest Neighbor, Naive Bayes, and Support vector
machine [3]. Among four algorithms [3] found Naive Bayes Multinomial gives good
accuracy and works with less training sets and fastest. Nearest Neighbor algorithm is
used in [4] for predicting the severity of open source software bug reports of Eclipse,
OpenOffice and Mozilla from Bugzilla repository. In [5] author used Naive Bayes
Multinomial, Support Vector Machine, Naive Bayes, k-Nearest Neighbor, J48 and
RIPPER algorithms are used for predicting the severity of NASA defect reports,
accuracy and F-measure is used for evaluating the result. In author [6] taken NASA’s
defect reports from PROMISE repository as Closed source data set and bug reports
of Eclipse, Mozilla & GNOME from Bugzilla bug repository as open source data
sets and used different classification algorithm such as Random Forests, RIPPER,
Naive Bayes, Support Vector Machine and J48 for predicting the severity of both
open source and closed source datasets.

Cross projects severity prediction of bug report is done using K-NN, Naive Bayes
and Support vector machine. K-NN gave good performance over other two [11].
For dealing with imbalance bug data problem used the vote and bagging ensemble
methods from RapidMiner. F-measure Performance was increased by 5% and 10%
using vote and bagging respectively [11]. In this paper used the voting, bagging,
Adaboost and random forest ensemble methods from RapidMiner for predicting the
severity of closed source data sets.

In[12] Bayesian Networks, Naive Bayes, REPTree, SVM, Decision tree, rules and
Random Forest machine learning algorithm along with Stacking ensemble method
for predicting the developer for industrial data and comparison is done on different
classification algorithm and concluded that stacking ensemble method increased the
accuracy. In [13] authors used bagging ensemble method and Naive Bayes general
classifier for predicting the developer of open source projects and concluded that
accuracy can be increased with bagging ensemble method. In this paper, ensemble
methods are used for closed source software bug reports.

3 Methodology

NASA’s PITs Datasets are taken from the Promise repository [14] and used Rapid-
Miner tool for prediction of severity. NASA’s Independent Verification and Validation
facility given the five anonymous PITs projects named it as pitsA to pitsF and all
five projects are related to robotic.

Table 1 shows the number of bug reports available for each severity and Table 2
tells about the total number of bug reports available for each datasets, their size and
total word count is given

592 M. N. Pushpalatha and M. Mrunalini

Table 1 Number of bug reports for each severity

Projects Severity 1 Severity 2 Severity 3 Severity 4 Severity 5
PitsA 0 325 375 239 26
PitsB 0 23 523 382 59
PitsC 0 0 132 180 7
PitsD 0 1 167 13 1
PitsE 0 24 517 243 41
PitsF 0 9 477 209 48

Table 2 Total number of bug reports, size and word count

Total number of Size of the dataset Total word count
reports

PitsA 965 1.2 MB 173,963

PitsB 987 704.1 KB 104,052

PitsC 319 143.6 KB 23,799

PitsD 182 106.5 KB 15,868

PitsE 825 650.0 KB 93,750

PitsF 743 548.9 KB 82,775

PITS dataset is preprocessed before applying the classification algorithm. The
dataset is first tokenized to splits the text of a document into a sequence of tokens.
After stop words removal is used to remove the stop words like a, the, etc., next
porter stemming is used to stem the words for example the present, presented and
presenting is stemmed to present. The dimensionality is reduced to 150 by using Chi-
Squared Statistic and information gain, next different ensemble methods are applied
on the reduced data set for classification. From Table 2 shows that number of words
for each dataset which varies from 15,868 to 1,73,964. Dimensionality is reduced in
order to reduce both time and memory taken by data mining algorithms.

Bagging classifier is created using K-NN classifier and in Adaboost is created
using the Naive Bayes as base classifier. In vote used Naive Bayes, decision tree
and K-NN as base classifier and majority vote from three classifiers is considered as
class.

Chi-squared

This is a preprocessing technique used for term reduction. Chi-squared is used for
calculating the relevance of the terms with respect to class attribute. The term is more
relevant if has higher weight. It is used only for nominal label.

The Chi-square is calculated using below equation [1].

X? = Sigma[(O — E)*/E] (1)

In Eq. (1) X? is the chi-square statistic, the observed frequency is O and the expected
frequency is E. The chi-squared statistic summarizes the divergence between the

Predicting the Severity of Closed Source Bug Reports ... 593

expected number of times each result occurs and the observed number of times each
result occurs, by summing the squares of the variation, normalized by the expected
numbers, over all the categories [15].

Information gain

Information gain is another preprocessing technique used for dimensionality reduc-
tion. The information gain is used for calculating the relevance of attributes based
on the weights. The term is more relevant if it has highest weight. It calculates the
weight of the terms with respect to class attribute. It can only be applied to nominal
label [15].

3.1 Adaboost

The most popular boosting algorithm is Adaboost. There are data sets of D of d
class-labeled records, (Ay, c1), (A3, ¢2), ... (Aqg4, cq), Where c; is the class label of
record A;. An equal weight of 1/d is assigned to each training record.

k rounds are required to generate k classifiers. In round i, the records from the D
are sampled to form a training set, D;, of size d.

The same sample may be selected more than once because the sampling with
replacement is used. Based on the weight of sample is selected. The p classifiers are
generated in p rounds. Training set D; of size d is formed the samples of the D in
round i. The classifier model M; is created by using training samples of D;. Test set
D, is used for calculating the error. If a sample is classified incorrectly then weight is
increased otherwise weight is decreased. For generating the training records for the
next round weights will be used. More focus is given on the misclassified samples
of the previous round [16].

3.2 Bagging

Bagging is also known as Bootstrap aggregating is an ensemble classification tech-
nique, which combines the voting from multiple models. Multiple models are of same
type. Over fitting can be avoided and also variance can be reduced using bagging
[15].

3.3 Random Forest

Random forest is constructed using multiple decision trees or random trees. Each
random tree is created using a random subset of features at each split, except this
remaining everything is similar to decision tree [15]. It works well if data sets contain

594 M. N. Pushpalatha and M. Mrunalini

Table 3 Accuracy of ensemble classifier using weight by Chi-squared statistic

Bagging Random forest Voting Adaboost
PitsA 75.33 56.23 72.93 58.10
PitsB 80.84 48.97 80.48 66.54
PitsC 89.79 79.88 90.10 78.96
PitsD 96.20 92.89 95.64 92.87
PitsE 66.42 63.15 69.45 40.26
PitsF 76.10 64.64 69.45 64.10

more redundant attributes [17]. New test data us classified based on the vote it receives
from the multiple random trees. Suppose, if random forest is created using 10 random
trees. If 8 random trees classifiers assign class as 4 and remaining two random trees
as class 5, then it will be classified as class 4 because of majority votes.

3.4 Voting

Voting ensemble method is present in RapidMiner tool [15]. This method uses a
majority vote for classification from the base classifiers provided. Base classifiers
can be of different types. Suppose if there are three base classifiers it, if two base
classifiers assign class as 3 and another one as 2. It will classify it as severity class
3. Majority vote is 2.

4 Result and Discussion

It will take more time and memory for data mining algorithms to work on huge
dimensions (words). That is reason, reduced the dimension to 150 by using two
dimensionality reduction methods, i.e., Chi-Square and Information gain. Table 3
shows the accuracies of different ensemble methods after reducing the dimension
using Chi-Squared statistic. For PitsA Accuracy varies between 56.23 and 75.33,
PitsB accuracy varies between 48.97 and 80.84, PitsC between 78.96 and 90.10,
PitsD varies from 92.87 to 96.20, for PitsE varies between 40.26 and 69.45 and PitsF
accuracy varies between 64.10 and 76.10. Table 4 shows the accuracies of different
ensemble methods after reducing dimensionality using Information gain. For PitsA
Accuracy varies between 58.09 and 74.07, PitsB accuracy varies between 54.38 and
80.72, PitsC varies between 79.85 and 89.80, PitsD varies between 93.42 and 96.20,
PitsE varies between 69.21 and 72.36 and PitsF accuracy varies between 64.10 and
75.70 using different ensemble methods.

Predicting the Severity of Closed Source Bug Reports ... 595

Table 4 Accuracy of ensemble classifier using weight by information gain

Bagging Random forest Voting Adaboost
PitsA 74.07 58.09 71.27 61.01
PitsB 80.72 54.38 80.35 72.20
PitsC 89.80 79.85 89.79 84.22
PitsD 96.20 93.42 95.64 92.87
PitsE 69.21 63.76 72.36 47.39
PitsF 72.86 64.64 75.70 64.10
120
100 -
W Bagging
60 W Random forest
M voting
20T ® Adaboost

20

PitsA PitsB PitsC PitsD PitsE PitsF

Fig. 1 Accuracies comparison using weight by Chi-squared statistic

Graphical representation of accuracies comparison is shown in Figs. 1 and 2 using
Chi-Squared Statistic and Information gain respectively. Figures 1 and 2 show that
bagging is given good accuracies over other ensemble methods.

Figure 3 shows accuracies comparison each classifier with different dimension-
ality reduction, information gain gives slightly good accuracies comparing to Chi-
Squared Statistic. Accuracies of bagging and voting algorithm is same, only slight
differences in the accuracies of adaboost and Random forest after reducing the dimen-
sion using Information gain and Chi-Square.

5 Conclusion

In this paper, predicting the severity of bug report for closed source dataset done using
the different ensemble methods such as Bagging, Voting, Adaboost, and random
forest. In that bagging is given the good accuracy over other methods. Also compared
the two techniques of dimensionality reduction, i.e., chi-square and information

596 M. N. Pushpalatha and M. Mrunalini

120
100
80 -+
W Bagging
60 - W Random forest
mvoting
404 ® Adaboost
20 -
PitsA PitsB PitsC PitsD PitsE PitsF
Fig. 2 Accuracies comparison using weight by information gain
Accuracies of Voting using Chi Accuracies of Adaboost using Chi
Squared and Information Gain Squared and Information Gain

Accuracies of bagging using Chi Accuracies of Random Forest Chi
Squared and Information Gain Squared and Information Gain
- i
5 /"\ 1_: -_—‘_—_-\/I/’\
Pitsd] 1l P tal 114 Lt W L

Fig. 3 Accuracies of different ensemble methods using Chi-squared and information gain

gain for reducing the number of dimension. Information gain is given slightly good
accuracy over the chi-square. Better prediction of severity for NASA defect reports
can be done using ensemble methods which help for improving the quality of software
and on time delivery. Future work is done on the data sets of open source software
for cross project context.

Predicting the Severity of Closed Source Bug Reports ... 597

References

10.

13.

14.
15.
16.
17.

. Menzies, T., Marcus, A.: Automated severity assessment of software defect reports. In: IEEE

International Conference on Software Maintenance, vol. 28, 4 October 2008, pp. 346-355

. Lamkanfi, A., Demeyer, S., Giger, E., Goethals, B.: Predicting the severity of a reported bug.

In: 7th IEEE Working Conference on Mining Software Repositories (MSR 2010), pp. 1-10
(2010)

. Lamkanfi, A., Demeyer, S., Soetens, Q.D., Verdonck, T.: Comparing mining algorithms for

predicting the severity of a reported bug. In: 2011 15th European Conference on Software
Maintenance and Reengineering

. Tian, Y., Lo, D., Sun, C.: Information retrieval based nearest neighbor classification for fine-

grained bug severity prediction. In: 2012 19th Working Conference on Reverse Engineering

. Chaturvedi, K.K., Singh, V.B.: Determining bug severity using machine learning techniques.

In: 2012 CSI Sixth International Conference on Software Engineering (CONSEG), pp. 1-6
(2012)

. Chaturvedi, K.K., Singh, V.B.: An empirical comparison of machine learning techniques in

predicting the bug severity of open and closed source projects. In: International Journal on
Open Source Software and Processes, vol. 4, issue 2, pp. 32-59 (April 2012)

. Pushpalatha, M.N., Mrunalini, M.: Predicting the severity of bug reports using classification

algorithms. In: International Conference on Circuits, Controls, Communications and Comput-
ing (14C), pp. 1-4 (October 2016)

. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect reports using

natural language processing. In: Proceedings of the 29th International Conference on Software
Engineering (ICSE ‘07), pp. 499-510, May 20-26 (2007)

. Cubranic, D., Murphy, G.C.: Automatic bug triage using text categorization. In: Proceedings of

the Sixteenth International Conference on Software Engineering & Knowledge Engineering,
pp- 92-97 (June 2004)

Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proceedings of the 28th
International Conference on Software Engineering (ICSE ‘06), pp. 361-370. ACM, New York
(2006)

. Singh, V.B., Misra, S., Sharma, M.: Bug severity assessment in cross project context and

identifying training candidates. J. Inf. Knowl. Manage. 16(01) (March 2017)

. Jonsson, L., Borg, M., Broman, D., Sandahl, K., Eldh, S., Runeson, P.: Automated bug assign-

ment: ensemble-based machine learning in large scale industrial contexts. Empirical Softw.
Eng. 21(4), 1533-1578 (2016)

Pushpalatha, M.N., Mrunalini, M.: Automatic bug assignment using bagging ensemble method.
Int. J. Adv. Inf. Sci. Technol. 40(40) (August 2015)

Promise. http://openscience.us/repo/issues/

RapidMiner. https://rapidminer.com/

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaugmann (2006)
Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education (2006)

http://openscience.us/repo/issues/
https://rapidminer.com/

	Predicting the Severity of Closed Source Bug Reports Using Ensemble Methods
	1 Introduction
	2 Literature Survey
	3 Methodology
	3.1 Adaboost
	3.2 Bagging
	3.3 Random Forest
	3.4 Voting

	4 Result and Discussion
	5 Conclusion
	References

