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Scalable Eigen-Analysis Engine for
Large-Scale Eigenvalue Problems

Tetsuya Sakurai, Yasunori Futamura, Akira Imakura,
and Toshiyuki Imamura

Abstract Our project aims to develop a massively parallel Eigen-Supercomputing
Engine for post-petascale systems. Our Eigen-Engines are based on newly designed
algorithms that are suited to the hierarchical architecture in post-petascale systems
and show very good performance on petascale systems including K computer. In
this paper, we introduce our Eigen-Supercomputing Engines: z-Pares and EigenExa
and their performance.

3.1 Introduction

Our project aims to develop a massively parallel Eigen-Supercomputing Engine
for post-petascale systems. This Eigen-Engine is to be developed based on newly
designed algorithms that are suited to the hierarchical architecture in post-petascale
systems. Our Eigen-Engine is expected to overcome issues of scalability and fault
tolerance in conventional eigensolvers. To achieve the aim and provide a high-
performance Eigen-Engine that can contribute to practical applications, six research
groups are organized, and a variety of studies and developments are conducted
through collaboration with researchers in applied mathematics HPC and application
fields. Our Eigen-Engine will make it possible to do extensive scale scientific
computations that are impossible today and open the door to innovation in various
fields of science and industry.

We have collaboratively developed two Eigen-Engines: z-Pares for sparse eigen-
value problems and EigenExa for dense eigenvalue problems. These engines consist
of building blocks developed in the project, and their performance have been
evaluated in actual applications.
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3.2 Sparse Eigen-Super Computing Engine

Here, we consider complex moment-based eigensolvers and their high-performance
software: z-Pares for solving the following generalized eigenvalue problem

Axi = λiBxi , A, B ∈ C
n×n, xi ∈ C

n \ {0}, λi ∈ Ω ⊂ C, (3.1)

with sparse matrices A and B, where zB −A is non-singular in a boundary Γ of the
target region Ω .

3.2.1 Complex Moment-Based Eigensolvers

3.2.1.1 Basic Concepts

As one of the powerful algorithms for solving (3.1), a complex moment-based
eigensolver has been proposed by Sakurai and Sugiura in 2003 [37]. The basic
concept is to introduce the rational function

r(z) := ṽH(zB − A)−1Bv, v, ṽ ∈ C
n,

whose poles are the eigenvalues of the generalized eigenvalue problem: Axi =
λiBxi , and compute all poles located in Ω by solving Hankel generalized eigen-
value problem with complex moments

μk := 1

2π i

∮

Γ

zkr(z)dz

using the method proposed by Kravanja et al. [33]. Now, there are several improve-
ments and variants including direct extensions of Sakurai and Sugiura’s approach
[20–22, 25, 27, 39] and the FEAST eigensolver developed by Polizzi [36] and its
improvements [15, 32, 44, 49, 50].

Let L,M ∈ N be the input parameters and V ∈ C
n×L be an input matrix. We

define Sk ∈ C
n×L(k = 0, 1, . . . , M − 1) as follows:

Sk := 1

2π i

∮

Γ

zk(zB − A)−1BV dz. (3.2)

Complex moment-based eigensolvers are mathematically designed based on the
properties of the matrices Sk . Then, practical algorithms are derived by approxi-
mating the contour integral (3.2) using the numerical integration rule:

̂Sk :=
N

∑

j=1

ωjz
k
j (zjB − A)−1BV dz, (3.3)
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where zj is a quadrature point and ωj is its corresponding weight.
The algorithms of complex moment-based eigensolvers comprise the following

three steps:

Step 1. Solve N linear systems with L right-hand sides:

(zjB − A)Wj = BV, j = 1, 2, . . . , N. (3.4)

Step 2. Construct complex moment matriceŝSk(k = 0, 1, . . . , M −1) and others,
from Wj(j = 1, 2, . . . , N).

Step 3. Extract the target eigenpairs from the complex moment matrices.

The most time-consuming part of the complex moment-based eigensolvers is
Step 1 that is solving the linear systems (3.4). For solving the linear systems, these
eigensolvers have hierarchical parallelism.

Layer 1. Contour paths can be independently performed.
Layer 2. Each linear system can be solved in parallel.
Layer 3. The linear systems can be independently solved.

Because of the hierarchical structure of the algorithms, these methods are expected
to achieve high scalability [13, 19, 27, 31, 32, 43, 48]. The algorithm on GridRPC
systems is also considered [38, 40].

These methods have been implemented in the form of the high-performance
parallel software: z-Pares [52] and FEAST [10], respectively.

3.2.1.2 Theoretical Aspect

The complex moment-based eigensolvers can be regarded as projection methods
using a subspace constructed by the contour integral (3.3). The property of the
subspace is well analyzed using the so-called filter function:

f (λi) :=
N

∑

j=1

ωj

zj − λi

,

which approximates a band-path filter for the target region Ω . Using the filter
function, error analyses of the complex moment-based eigensolvers were given
in [15, 23, 24, 44]. An error resilience technique and an accuracy deterioration
technique have also been discussed in [16, 28] using the results of the error analyses.

The relationship among typical complex moment-based eigensolvers was also
analyzed in [24] focusing on the subspace. The block SS–RR method [21] and
the FEAST eigensolver [44] are projection methods directory for solving the target
eigenvalue problem (3.1), whereas the block SS–Hankel method [20], Beyn [3], and
the block SS–Arnoldi methods [22] are projection methods for solving an implicitly
constructed standard eigenvalue problem (see [24] for the details). A map of the
relationship among the contour integral-based eigensolvers is presented in Fig. 3.1.
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Fig. 3.1 A map of the relationship among the contour integral-based eigensolvers

3.2.1.3 Extension to Nonlinear Eigenvalue Problems

The complex moment-based eigensolvers were extended to solve nonlinear eigen-
value problems (NEPs):

T (λi)xi = 0, xi ∈ C
n \ {0}, λi ∈ Ω ⊂ C,

where the matrix-valued function T : Ω → C
n×n is holomorphic in some open

domain Ω .
The block SS–Hankel [1, 2], block SS–RR [51], and block SS–CAA methods

[26] are simple extensions of the GEP solvers. Improving technique of the numerical
stability of the block SS–RR method for solving NEP was also studied in [7, 8].

As another type of complex moment-based nonlinear eigensolvers, Beyn pro-
posed a method based on Keldysh’s theorem and the singular value decomposition
[3]. Also, van Barel and Kravanja proposed an improvement of the Beyn method
using the canonical polyadic (CP) decomposition [46].

3.2.2 Distributed Parallel Sparse Eigensolver Package z-Pares

3.2.2.1 Introduction

z-Pares is a package for solving generalized eigenvalue problems (3.1). The
symmetries and definitenesses of the matrices can be exploited suitably. z-Pares
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computes eigenvalues inside a user-specified contour path and the corresponding
eigenvectors. The most important feature of z-Pares is two-level message passing
interface (MPI)-distributed parallelism.

3.2.2.2 Features

The main features of z-Pares are described below.

• Implemented in Fortran 90/95
• Solves standard eigenvalue problems Ax = λx and generalized eigenvalue

problems Ax = λBx

• Computes eigenvalues located in an interval or a circle and the corresponding
(right) eigenvectors

• Both real and complex types are supported
• Single precision and double precision are supported
• Both sequential and distributed parallel MPI builds are available
• Two-level distributed parallelism can be employed by using a pair of MPI

communicators
• Reverse communication mechanism is used to ensure the package accept any

matrix data structure
• Interfaces for dense and sparse CSR format are available (only with one-level-

distributed parallelism)

3.2.2.3 Dependences

z-Pares depends on following packages:

• BLAS/LAPACK
• Message passing interface (MPI-2 standard)
• MUMPS 4.10.0 (optional)

BLAS/LAPACK should be installed, and MPI is needed for the parallel version
of z-Pares. MUMPS is required to use the sparse CSR interface.

3.2.2.4 Basic Concepts of z-Pares

Here we show the schematic illustration of a numerical contour integration (3.3) in
Fig. 3.2. As described in Fig. 3.2, numerical quadrature with N quadrature points is
used to approximate the contour integral. The basis of the subspace which is used
for extracting eigenpairs is computed by solving linear systems with multiple right-
hand sides. In this section, matrix V is called a source matrix, and its column vector
is called a source vector.
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Fig. 3.2 z-Pares computes
eigenvalues located inside a
contour path on the complex
plane (Blue cross)

Im

Re

...eigenvalue

Because the linear systems can be solved independently, the computations can
be embarrassingly parallelized. Additionally, each linear system can be solved in
parallel.

3.2.2.5 Two-Level MPI Parallelism

Above the parallelism of quadrature points, there is independent parallelism if
multiple contour paths are given. Here we define three levels of parallelism:

• Top level: Parallelism of computations on contour paths
• Middle level: Parallelism of computations on quadrature points
• Bottom level: Parallelism of computations for solving linear systems

z-Pares uses the middle- and bottom-level parallelism by employing a pair of
MPI communicators. The MPI communicators that manage the middle level and
the bottom level are called the higher-level communicator and the lower-level
communicator, respectively. Because the top-level parallelism can be implemented
completely without communications, we have not added the implementation of this
level to the feature of z-Pares. Users should manage the top-level parallelism by
theirselves if necessary.

The above descriptions are shown in Fig. 3.3.
For the Rayleigh-Ritz procedure and the residual calculations, matrix-vector

multiplications (mat-vec) of A and B must be done for multiple vectors. The higher-
level communicator manages the parallelization in performing mat-vec for different
vectors. The lower-level communicator manages the parallelization for one mat-vec.

3.2.2.6 zpares_prm Derived Type

The derived type zpares_prm plays a central role in the use of z-Pares.
zpares_prm consists of components that represent several input and output
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=

Solve

Top level
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Computations on
contour paths are
independent

Computations on
quadrature points
are independent

Linear systems
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MPI communicator
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Fig. 3.3 Three levels of parallelism and two-level MPI communicator

parameters and inner variables. See z-Pares users’ guide for more details. In the
rest of this section, an entry of zpares_prm is referred to as prm.

3.2.2.7 Reverse Communication Interface

z-Pares basically delegates tasks of

• Solving linear systems with multiple right-hand sides (zjB − A)Yj = BV

• Performing matrix-vector multiplications of A and B

to the user, because an efficient algorithm and matrix data structure are seriously
problem dependent.

z-Pares delegates the tasks by using the reverse communication interface (RCI)
rather than the modern procedure pointer or an external subroutine.

When using RCI, the user code communicates with the z-Pares subroutine in the
following manner:

1. Reverse communication flag prm%itask is initialized with zpares_init
before entering the loop of 2.

2. The z-Pares subroutine is repeatedly called until
prm%itask == ZPARES_TASK_FINISH

3. In the loop of 2., the tasks indicated by prm%itask are completed with the
user’s implementation
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When using RCI, the user need not define global, COMMON, or module
variables to share information (such as matrix data) with the subroutine given to the
package, in contrast to manners using the procedure pointer or external subroutine.
RCI is also used in eigensolver packages such as ARPACK and FEAST.

To briefly describe a user code using RCI, a skeleton code for solving complex
non-Hermitian problem is given below.

do wh i l e ( prm%i t a s k /= ZPARES TASK FINISH )
c a l l z p a r e s z r c i g e g v &

( prm , n r ow lo c a l , z , mwork , cwork , l e f t , r i g h t , num ev , e i g v a l , X, r e s , i n f o )

s e l e c t c a s e ( prm%i t a s k )
c a s e (ZPARES TASK FACTO)

! Here , t h e u s e r f a c t o r i z e s ( z∗B − A)
! At t h e nex t r e t u r n from z p a r e s z r c i g e g v ,
! prm%i t a s k ==ZPARES TASK SOLVE wi th t h e same z i s r e t u r n e d

c a s e (ZPARES TASK SOLVE)

! i = prm%ws ; j = prm%ws+prm%nc−1
! Here , u s e r s o l v e s ( z∗B − A) X = cwork ( : , i : j )
! The s o l u t i o n X shou ld be s t o r e d i n cwork ( : , i : j )

c a s e (ZPARES TASK MULT A)

! iw = prm%ws ; jw = prm%ws+prm%nc−1
! i x = prm%xs ; j x = prm%xs+prm%nc−1
! Here , t h e u s e r pe r f o rms ma t r ix−v e c t o r m u l t i p l i c a t i o n s :
! mwork ( : , iw : jw ) = A∗X( : , i x : j x )

c a s e (ZPARES TASK MULT B)

! iw = prm%ws ; jw = prm%ws+prm%nc−1
! i x = prm%xs ; j x = prm%xs+prm%nc−1
! Here , t h e u s e r pe r f o rms ma t r ix−v e c t o r m u l t i p l i c a t i o n s :
! mwork ( : , iw : jw ) = B∗X( : , i x : j x )

end s e l e c t
end do

Listing 3.1 Usage of reverse communication interface

ZPARES_TASK_FINISH,ZPARES_TASK_FACTO,ZPARES_TASK_SOLVE,
ZPARES_TASK_MULT_A, and ZPARES_TASK_MULT_B are defined as module
variables of the type integer,parameter of the zpares module. Tasks
delegated to the user are indicated by these values.

Implementing a linear solver is a heavy task for users. To allow users to get
started with z-Pares easily, we provide two interfaces for a specific matrix data
structure:

• Dense interface using LAPACK
• Sparse CSR interface using MUMPS

3.2.2.8 Efficient Implementations for Specific Problems

In the above descriptions, we have used the subroutines for complex non-Hermitian
problems. In z-Pares, efficient implementations are given for exploiting specific
features of the problem. The following features are considered:
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• Symmetry or hermiticity of matrices A and B

• Positive definiteness of B

• B = I (standard eigenvalue problem)

We recommend the user to let z-Pares consider these features by setting appropriate
parameters to obtain maximum efficiency.

A stochastic estimation method of eigenvalue distribution in a given domain is
proposed in [12, 34]. This method is used to evaluate appropriate parameters. Some
properties of the contour integral-type methods are considered to determine efficient
parameters in [41, 42].

3.3 EigenExa: Development of a Dense Solver

3.3.1 Introduction

Eigenvalue calculation is a significant tool for scientific numerical simulation and
engineering analysis. High-performance and highly reliable software must be avail-
able. As the size of problems to be solved and available computer resources become
substantial, the practical eigenvalue solver is expected to change accordingly.

When this post-petascale CREST project was initiated, we reviewed the trend of
the future hardware technology, microprocessor, accelerator unit, memory module,
and interconnect network. We supposed that the following must be an essen-
tial requirement to build a next-generation, so-called exascale, supercomputer
system:

• CPU socket
8CPUs+1000FPUs,
On-chip shared memory,
1.25TFLOP/s

• Compute node
8sockets,
64GB shared memory,
20TFLOP/s

• System
105nodes,
6.4PB memory,
2EFLOP/s

In a rough sketch of the design mentioned above, the system has a heterogeneous
and hierarchical combination of CPU modules and memories interconnected. We
also predicted that such a complication of hierarchical hardware results in a new
hierarchical parallel programming style. In fact, two programming languages were
critical issues at the beginning of the project: MPI for a representative tool of
distributed parallelism and OpenMP for thread parallelism among computational
cores in a shared memory fashion.
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Fig. 3.4 Concept of hierarchical and multi-layered approach in dense linear algebra

As parallel numerical linear algebra software, not only eigenvalue calculation,
the configuration of ScaLAPACK + LAPACK + BLAS has been known as de
facto standard not changed significantly for nearly 20 years since the 1990s. In the
above hierarchization, vertical (upper and lower) parallelism could be handled by a
combination of the existing numerical linear algebra software, but it was quite hard
to perform higher parallel control by combining flexible parallelism and parallel
execution in the same horizontal layer.

What is more, in 2010, a pragmatic innovation was required from not only
the software environment but also the parallel algorithm. For one thing, it was
necessary to collaborate with a highly parallel/concurrent language to support
parallel/concurrent processing over multiple parallel layers and software runtime.
Naturally, the emergence of numerical algorithms having multilevel parallelism in
every hierarchy was demanded. In fact, there is a need to respond to the emergence
of times when hardware has parallelism ranging from hundreds to tens of thousands.
In our implementation of algorithms crossing over multiple layers of a dense matrix
representation, we decided to realize by the configuration method being aware of
any hierarchy as shown in the figure. In particular, we decided to develop mainly
block algorithms corresponding to multiple memory hierarchies found in (i) typical
high-speed implementation of matrix-matrix products and (ii) local and global
communication avoidance, for example, by the CAQR-type approach (Fig. 3.4).

Here, we would like to summarize a brief review of the solver development
project, which was promoted during the 2010s. As mentioned previously, ScaLA-
PACK released in the 1990s keeps still in the position as the de facto standard
in distributed parallel environments. Meanwhile, thread parallelism has also to be
taken into consideration at the same time by the multicore processor that appeared
around 2010. On the other hand, in the HPC community, the development of numer-
ical libraries specialized for thread parallelism for many-core environment equipped
with dozens to thousands of cores, the MAGMA project, and the PLASMA project,
has been started.
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Focused on the trend of numerical eigenvalue libraries, it had been known
that xSYEVD of ScaLAPACK based on Cuppen’s divide and conquer method
had a significant advantage in the distributed parallel environment. Nowadays, a
successor routine of xSYEVR, which adopts a different mathematical algorithm
of MR3 (multiple relatively robust representations), is still naive implementation.
However, the new algorithm has O(N2) complexity and a promising way (has
another name of “the holy grail”) to reduce the computational cost regarding flops.
As still ScaLAPACK as old design in 1990s, the developer needs to improve
thread parallelism. Since 2010, there have been several signs of progress in parallel
eigenvalue solvers, such as ELPA by the German team, Elemental, DPLASM by
the University of Tennessee, our EigenExa library, and QDWH-based library by
KAUST. Each eigensolver library has a unique aspect in the numerical algorithm
and parallel implementations. For example, the ELPA library insists significance of
a so-called two-stage algorithm, which is a promising way to resolve the matters
of narrow memory bandwidth and non-negligible network latency. Also, Elemental
employs a brand-new parallel implementation of the MR3 algorithm.

In the rest of the section, we report the status summary of the EigenExa library,
which was developed in the CREST project.

3.3.2 Brief History of the Dense Solver Project

Since 2010, the H4ES (=H4ES, high performance, high scalability, high portability,
and high-reliability Eigen-Supercomputing engine) project conducted by Prof.
Tetsuya Sakurai has been kicked off supported by one of the national grant CREST
JST. We organized a mini-research group to devote to the development of a dense
eigenvalue solver for a post-petascale supercomputer system at the University of
Electro-Communications and later at RIKEN Advanced Institute for Computational
Science (AICS) from 2012 to the present.

The activities initiated by T. Imamura had not been started since the H4ES project
but another CREST project led by Dr. Masahiko Machida, Japan Atomic Energy
Agency (2005–2010). The present dense solver project inherited the primary results
from the Earth Simulator system, which was the world’s largest vector supercom-
puter [47]. The library was optimized with a combination of a very conservative
long-vector-oriented technique and a modern cache-oriented technique, so-called
vectorization and efficient cache reuse, respectively. After the Earth Simulator
age, we comprehensively scrapped and built up the vector code to multi-threading
processing code [30], which was deployed on each system of T2K cluster. The T2K
cluster was designed as a commodity supercomputer. Then, the code was ported
to the K computer with the help of Fujitsu, and we named the eigensolver library
EigenExa. The K computer was the first 10 petaFLOPS system housed at RIKEN
AICS and is still keeping rank 10 in the top 500 benchmark (Nov. 2017). The
K computer has a unique interconnect, namely, Tofu interconnect, and more than
80,000 SPARC64 VIIIfx processors consist of the heart of the system. We observed
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a big impact of high-performance eigensolver on the RSDFT code, which won the
Gordon Bell prize in SC2011 [17], even though the solver was very early version
and not optimized so well. Currently, the EigenExa library version 2.4p1 is the latest
release [9].

Since 2014, RIKEN AICS has started a national project to develop a flagship
system, so-called the post-K system. For that, we continue to improve the EigenExa
library toward emerging supercomputer systems, such as Oakforest-PACS, which
is the rank 9 system in the top 500 benchmark (Nov. 2017) and is hosted at joint
center between the University of Tokyo and University of Tsukuba. Since another
aspect on the extreme computing implies not only capability computing but capacity
computing, we recognized the necessity of the high-performance eigensolver with
a broad variety of parallelism and parallel scaling. It is an entirely challenging work
for applied mathematics, computer science, and engineering.

3.3.3 Our Approaches in Parallel Algorithm

As shown, we have been developing an eigenvalue library EigenExa, which con-
sists of multiple eigensolvers, toward next-generation distributed memory parallel
supercomputers [30]. For performance improvement of the solvers, it is critical to
identify the significant performance bottleneck and remove it on the highly parallel
environment [17]. We exploit several algorithmic and implementation techniques
to remove bottleneck which comes from data communication among or through a
great number of computing nodes.

Main components of EigenExa are two driver routines and one reducer routine
from generalized eigenvalue problem (GEVP) to standard eigenvalue problem
(SEVP). Two driver routines are:

• eigen_s: a conventional scheme, and
• eigen_sx: a novel one-stage scheme.

We exploited a novel one-stage scheme for the implementation of eigen sx,
and its outline is summarized as follows (see also Fig. 3.5).

Real symmetric Eigenpairs of ATridiagonal Eigenpairs of T

Conventional 1-stage scheme 
(eigen_s in EigenExa , ELPA1, 
and
PDSYEVD in ScaLAPACK)

2-stage scheme
(ELPA2, DPLASMA)

New 1-stage scheme
(eigen_sx in EigenExa)

Banded Eigenpairs of B

Fig. 3.5 Schematics of Numerical schemes for dense symmetric eigenvalue problem
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1. Transform a matrix A to a pentadiagonal matrix P by similarity transformation
with an orthogonal matrix V (forward transformation, which consists of multiple
Householder transformation): V �AV = P ,

2. Compute the eigenpairs of P by the divide-and-conquer (DC) algorithm for a
banded matrix: P = U�U� (where U is an orthogonal matrix and � is a
diagonal matrix),

3. Compute the eigenvectors of A (back transformation): Q = V U .

3.3.3.1 Householder Band Reduction

The first and the third steps are implemented based on Bischof’s band reduction
algorithm, so-called successively band reduction (SBR) [4, 5]. The parallelization
is performed in an MPI/OpenMP hybrid fashion. In eigen sx, a pentadiagonal
form is used as the intermediate matrix to reduce the internode communication cost,
while the tridiagonal form is used in most of the high-performance eigensolvers.
Core manipulations are based on block Householder transformation.

1. Compute a block reflector u corresponding to w and an associated lower
triangular matrix C, somehow, such that they hold (I − uCu�)w = ER. Here,
E is a unit matrix, and R is an upper triangular matrix.

2. Compute v0 := Au, and S := Cu�v0C
�.

3. Compute v := (vC� − 1
2uS).

4. Update A := A − uv� − vu�.

3.3.3.2 Divide and Conquer for a Banded Matrix

The routine for the second step is implemented and modified for the pentadiagonal
matrix based on the routine PDSTEDC in ScaLAPACK [6, 45], which is for solving
an eigenvalue problem of a tridiagonal matrix. The principle of the algorithm is
“single perturbation of a diagonal matrix” defined as M = D +ρuu�. For a banded
matrix, we can summarize the algorithm as follow. As you can see, Step 2 can be
done recursively.

1. Divide P := P1 ⊕P2 +U	U�, here 	 is a diagonal matrix, and K refers to the
half value of the bandwidth of matrix P .

2. Compute eigenproblems P1 and P2, somehow.
3. Transform P1⊕P2+U	U� → D1⊕D2+V 	V � by similarity transformation.
4. Set D = D1 ⊕ D2.
5. for i=1, . . . , K
6. Solve a single perturbation problem F := D + σiviv

�
i .

7. Set D := Q�FQ. Here, Q is corresponding eigenvectors of matrix F .
8. Set Vi+1:K := Q[vi+1, · · · , vK ]
9. Return the eigenvalues in the diagonal of D and the corresponding eigenvectors

in matrix Q.
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3.3.3.3 Back Transformation

The third step employs the compact WY representation to accelerate the compu-
tational performance as most of the modern solvers do. A core part of the block
Householder transformation with the WY representation is as follows.

1. Construct a triangular matrix C corresponding to block reflector from u =
[u1, u2, · · · , ub], such that I − uCu� = (I − ubu

�
b ) · · · (I − u2u

�
2 )(I − u1u

�
1 ).

2. Update X := (I − uCu�)X = X − uC(u�X).

Since all the reflector vectors u = [u1, u2, · · · ] were already computed in the
forward transformation, data redistribution (or broadcasting) of them has many
variations. We introduced one of the communication hiding techniques (CH), the
overlap of communication, and computation to reduce the communication overhead
hiding behind computation.

3.3.4 Performance

In the project, we evaluated and analyzed the feasibility of the algorithm and parallel
implementation. Also, performance of eigen_s and eigen_sx driver routines is
investigated using the K computer [29] housed in RIKEN AICS (Project number
hp120170 and ra000005). The benchmark presented in this article was done by
using EigenExa version 2.5 Release Candidate (development code “c4”), which
was developed in February 2018 under the support of KAKENHI grand-in-aid
(15H02709).

3.3.4.1 Performance on the K Computer

Figure 3.6 shows a strong scaling benchmark results demonstrated on the K
computer. We consider problems of dimension 10,000 to 130,000, and we selected
a Frank matrix defined by (A)ij = max(i, j) as a test matrix, which has
eigenvalues represented analytically as λk = 1/2(1 − cos(π(2k + 1)/(2N + 1))).
EigenExa performs on the K computer in a hybrid MPI/OpenMP parallel fashion
8threads/1process deployed on a node with varying the number of processes from
32 to 4096 processes. Our EigenExa libraries yielded excellent performance than
the ELPA2 solver does. However, in case of a middle-sized problem, N= 10,000,
performance improvement stacked up when more than 200 processes were used
because the problem size and the amount of required computational counts were
not enough for such large number of processes. However, in the cases of more
larger dimensional matrices, N = 50,000 and 130,000, we observed the gradual but
acceptable performance improvement up to 4096 processes.
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Fig. 3.6 Strong scaling benchmark on the K computer

3.3.4.2 Ultra-Scale Benchmark

The most outstanding result on the development of EigenExa was the success of a
full diagonalization of a one million-dimensional matrix by using the whole system
of the K computer. The actual log is shown in Fig. 3.7. This ultra-scale benchmark
was done under the conditions:

1. EigenExa version 1.0 (eigen_sx driver routine).
2. The test matrix was generated as a random matrix symmetrized, (A + A�)/2.
3. Fujitsu software environment was K-1.2.0-14.
4. Full node of the K computer, i.e., 82944 nodes, was occupied during the job.
5. MPI/OpenMP hybrid parallelism. 1MPI process/node, 8threads/1MPI process.
6. Job time stamp was “Wed Aug 14 23:16:05 JST 2013.”

Another experiment on Jan 16, 2014, revealed an accuracy of such a huge-sized
eigenvalue problem. The relative residual was maxi ‖Axi − λixi‖1/N‖A‖1 =
5.99 × 10−16, and the orthogonal error was ‖X�X − I‖F /N = 2.16 × 10−16.
These observations exhibit that the parallel algorithm adopted in the current
implementation works feasibly when even matrix size and parallelism grow in
super-scale. Furthermore, the algorithm and parallel implementation are trustable
in the exascale era.

From the results through our current and past benchmark tests, we clarified the
parallel performance improvement and the performance bottleneck of the solvers
on the highly parallel environment. These achievements provide us with deep
insight and perspectives of a high-performance numerical library toward the future
supercomputer systems such as the post-K computer.
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NUM.OF.PROCESS= 82944 ( 288 288 )
NUM.OF.THREADS= 8
calc (u,beta) 503.0970594882965
mat-vec (Au) 1007.285000801086 661845.1244051798
2update (A-uv-vu) 117.4089198112488 5678160.294281102
calc v 0.000000000000000
v=v-(UV+VU)u 328.3385872840881
UV post reduction 0.6406571865081787
COMM_STAT

BCAST :: 424.3022489547729
REDUCE :: 928.1299135684967
REDIST :: 0.000000000000000
GATHER :: 78.28400993347168

TRD-BLK 1000000 1968.435860157013 677356.7583893638 GFLOPS
TRD-BLK-INFO 1000000 48
before PDSTEDC 0.1448299884796143
PDSTEDC 905.2210271358490
MY-REDIST1 1.544256925582886
MY-REDIST2 14.75343394279480
RERE1 4.861211776733398E-02
COMM_STAT

BCAST :: 4.860305786132812E-02
REDUCE :: 2.155399322509766E-02
REDIST :: 0.000000000000000
GATHER :: 0.000000000000000

PDGEMM 532.6731402873993 5417097.565200453 GFLOPS
D&C 921.8044028282166 3130319.580211733 GFLOPS
TRBAK= 573.9026420116425 COMM= 533.7601048946381

573.9026420116425 3484911.644577213 GFLOPS
182.3303561210632 5484550.248648792 GFLOPS
152.0370917320251 6577342.335399065 GFLOPS
0.1022961139678955 7.379654884338379

COMM_STAT
BCAST :: 229.3666801452637
REDUCE :: 234.4477448463440
REDIST :: 0.000000000000000
GATHER :: 0.000000000000000

TRBAKWY 573.9029450416565
TRDBAK 1000000 573.9216639995575 3484796.141101135 GFLOPS
Total 3464.162075996399 1795203.448396145 GFLOPS
Matrix dimension = 1000000
Internally required memory = 480502032 [Byte]
Elapsed time = 3464.187163788010 [sec]

Fig. 3.7 Console output of the full-diagonalization benchmark of a one million-dimensional
matrix

3.3.5 Related Sub-projects

To develop a dense eigenvalue solver, mathematical and computational innovations
are required. Several topics were conducted in the project and interacted with other
projects.
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3.3.5.1 CholeskyQR2

Orthogonalization by QR factorization is one of the critical issues for the eigen
decomposition or internal Householder transformation. Fukaya and Yamamoto et
al. proposed the CholeskyQR2 algorithm, which factorizes a tall-skinny matrix in a
QR representation, where matrix Q holds Q�Q = I and R is an upper triangular
matrix.

1. R0 :=Chol(A�A), st. A�A = R�
0 R0.

2. Q0 := AR−1
0 .

3. R1 :=Chol(Q�
0 Q0).

4. Q := Q0R
−1
1 , R := R1R0.

They elucidated that CholeskyQR2, which is an algorithm performing CholeskyQR
twice, gives excellent accuracy and computing speed in most practical cases. In their
experiments using 16,384 nodes of the K computer, CholeskyQR2 outperformed
TSQR nearly threefold in computing time for a 4,194,304× 64 matrix [14].

3.3.5.2 Performance Modeling

It is inevitable to establish a methodology of the performance prediction model for
emerging large-scale systems. In the development of EigenExa, we investigated two
styles of performance modeling: (i) an empirical base-function approximation [11]
and (ii) the LP method, which introduced suppress of overfitting with nonnegative
constraint [35].

In the above empirical study, we reported the evaluation on a Fujitsu PRIME-
HPC FX10, which was mainly focused on investigating the differences between
the two driver routines. The obtained results were expected to be useful for not
only for a future EigenExa library but other parallel dense matrix computations.
In contrast to the empirical way, we examined that the LP method predicted more
accurately than the LASSO method, which is often used in the sparse modeling
field. The LP method exhibited the valid base functions of the EigenExa library
systematically from the products of {N3, N2, N} and {1, 1/√p, 1/p}, and then we
obtained a model function of the collective communication represented by a simple
linear combination of the base functions:

c1
N2

√
p

+ c2N
3 + c3N.

Since theoretical discussions do not provide the term of N3, it suggests that a
significant scale eigenvalue problem might tend to incur severe performance degra-
dation due to (i) non-parallelized parts and (ii) increasing communication overhead.
Since similar arguments held for another empirical approximation modeling, we
recognized the significance to continue the topics in the future.
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3.3.5.3 High-Precision Calculation

The higher precision calculations often demanded in practical engineerings and
quantum chemistry to obtain more accurate eigenvalues or identify the algebraic
duplicity of a cluster of eigenmodes. For that, it is essential to take account
of Bailey’s double-double arithmetic as a quadruple precision format from the
viewpoint of accuracy and performance. We evaluated the performance of the
high-performance quadruple precision eigensolver libraries QPEigenK on the K
computer. The latest version of QPEigenK performs exhibiting excellent scalability.
We observed that the elapsed time to solve an eigenproblem with n = 10,000 was
118 seconds on 16384 nodes of the K computer, whereas it was 31 times longer than
the case of a double precision solver [18].

Currently, the standardization of IEEE754 half precision format has induced
other arguments of computing precision in numerical libraries. Not only high
precision but flexible or selectable precision may become significant in future
computing with the help of new hardware such as an FPGA device. Also, we
expect that the topic could be enhanced to the new research world of reproducible
computing, which guarantees identical computing result on any circumstances,
anywhere and anytime.

3.4 Conclusion

In this paper, we introduced massively parallel Eigen-Supercomputing Engines: z-
Pares and EigenExa, for post-petascale systems. Our Eigen-Engines ware based
on newly designed algorithms that are suited to the hierarchical architecture in
post-petascale systems and showed very good performance on petascale systems
including K computer.
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