
Chapter 15
GPU-Accelerated Language and
Communication Support by FPGA

Taisuke Boku, Toshihiro Hanawa, Hitoshi Murai, Masahiro Nakao,
Yohei Miki, Hideharu Amano, and Masayuki Umemura

Abstract Although the GPU is one of the most successfully used accelerating
devices for HPC, there are several issues when it is used for large-scale parallel
systems. To describe real applications on GPU-ready parallel systems, we need
to combine different paradigms of programming such as CUDA/OpenCL, MPI,
and OpenMP for advanced platforms. In the hardware configuration, inter-GPU
communication through PCIe channel and support by CPU are required which
causes large overhead to be a bottleneck of total parallel processing performance. In
our project to be described in this chapter, we developed an FPGA-based platform
to reduce the latency of inter-GPU communication and also a PGAS language for
distributed-memory programming with accelerating devices such as GPU. Through
this work, a new approach to compensate the hardware and software weakness of
parallel GPU computing is provided. Moreover, FPGA technology for computation
and communication acceleration is described upon astrophysical problem where
GPU or CPU computation is not sufficient on performance.

T. Boku (�) · M. Umemura
Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
e-mail: taisuke@cs.tsukuba.ac.jp; umemura@ccs.tsukuba.ac.jp

T. Hanawa · Y. Miki
Information Technology Center, The University of Tokyo, Tokyo, Japan
e-mail: hanawa@cc.u-tokyo.ac.jp; ymiki@cc.u-tokyo.ac.jp

H. Murai · M. Nakao
Center for Computational Science, RIKEN, Kobe, Japan
e-mail: h-murai@riken.jp; masahiro.nakao@riken.jp

H. Amano
Department of Information and Computer Science, Keio University, Tokyo, Japan
e-mail: hunga@am.ics.keio.ac.jp

© Springer Nature Singapore Pte Ltd. 2019
M. Sato (ed.), Advanced Software Technologies for Post-Peta Scale Computing,
https://doi.org/10.1007/978-981-13-1924-2_15

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1924-2_15&domain=pdf
mailto:taisuke@cs.tsukuba.ac.jp
mailto:umemura@ccs.tsukuba.ac.jp
mailto:hanawa@cc.u-tokyo.ac.jp
mailto:ymiki@cc.u-tokyo.ac.jp
mailto:h-murai@riken.jp
mailto:masahiro.nakao@riken.jp
mailto:hunga@am.ics.keio.ac.jp
https://doi.org/10.1007/978-981-13-1924-2_15

302 T. Boku et al.

15.1 Introduction

We started the project named “Accelerator and Communication Unification for
Scientific Computing” where we utilize the FOG technology to realize a short
latency communication between accelerators such as GPUs for strong scaling on
accelerated parallel computing. Today’s GPUs such as NVIDIA CUDA devices
are equipped with a feature for device-to-device direct memory access within a
computation node. Our goal was to develop a special hardware technology as well
as system software to make over-node direct communication among GPUs. This
concept is named “TCA (Tightly Coupled Accelerators).” We also implemented a
prototype system to realize this concept with external link of PCIe (PCI Express)
to enable GPU-GPU direct memory access over nodes. We implemented it on an
FPGA system named PEACH2 (PCI Express Adaptive Communication Hub ver.2).

While PEACH2 provides very short latency of communication among GPUs on
different nodes, the system software stack to support application level coding is
required. We developed an API library to drive PEACH2 in a similar style of GPU
Direct access feature by NVIDIA to program this system based on CUDA-style
coding where we can call GPU-GPU direct access instead of MPI communication
over GPUs. However, this level of coding is still difficult for application users
such as advanced computational scientists. To support them, we developed a new
language named XcalableACC (XACC) for higher level coding in an incremental
manner. In an implementation of XcalableACC, we developed a special version
to support PEACH2 communication as well as ordinary MPI communication with
InfiniBand.

Finally, we stepped into a new method to utilize FPGA for PEACH2 not only
for PCIe base communication but also for sub-computation of the entire scientific
algorithm. It is a brand-new challenge to apply FPGA both for communication
and computation where a class of tightly coupled parallel computing can be
implemented to partially off-load the computation to the function of internode com-
munication. This concept is named “AiS (Accelerator in Switch).” We demonstrated
this new feature on an astrophysics application on enhanced version of PEACH2.

In this chapter, we introduce PEACH2 technology at first for the realization
of TCA concept and then briefly introduce the feature and implementation of
XcalableACC. Finally, we describe the AiS implementation for an astrophysics
code.

15.2 PEACH2

15.2.1 Realizing TCA Concept by PCIe

Recent GPUs such as NVIDIA CUDA devices are equipped with functions to apply
DMA (Direct Memory Access) through PCIe where these devices are connected

15 GPU-Accelerated Language and Communication Support by FPGA 303

Fig. 15.1 TCA implementation by PCIe bus (left, ordinary method; right, TCA by PCIe)

with other devices including the host CPU. For example, it is available to directly
access the global memory of GPU from InfiniBand HCA through PCIe where the
technology is called GPU Direct.

On the other hand, PCIe is possible to extend its communication link not just
on the motherboard of computation node but also to external link to connect it
to another node’s PCIe interface. Thus, it is theoretically possible to extend GPU
Direct to another node. However, there is a problem of PCIe device for master/slave
relationship. There is only one RootComplex that is allowed on PCIe bus, and
all other devices must be in EndPoint mode. If we can solve this problem with
some appropriate circuit with both sides of interface which is compatible with
PCIe specification, we can use PCIe for interconnection among nodes where GPU
Direct is possible to operate. Since all the communication is performed just within
simple PCIe protocol, it is very fast with short latency. It is one of the simplest
implementation of TCA (Fig. 15.1).

To realize above concept under TCA model, we implemented this feature to
FPGA. Here, Altera Stratix IV FPGA was used as the latest technology at that
time. This device is named as PEACH2 (PCI Express Adaptive Communication
Hub ver.2).1 A PEACH2 chip (FPGA) is equipped with four ports of PCIe gen2 x8
interfaces to be connected to host CPU or external link to other nodes. Figure 15.2
shows the block diagram of PEACH2. The port to the host CPU must be EndPoint of
course, but other three ports which are configured as RootComplex, EndPoint, or the
selection of them. The last port can be configured either RootComplex or EndPoint.
Theoretically, we can make any combination including ring/torus network with the
routing function inside PEACH2 chip.

1Before we started this research, we had made another PCIe base communication. Then it is named
as the second version.

304 T. Boku et al.

Fig. 15.2 Block diagram of
PEACH2 chip

Fig. 15.3 PEACH2 board

The PEACH2 FPGA chip is mounted on an PCIe board to be inserted to the
motherboard as like as ordinary PCIe devices. This board is called PEACH2 board
(Fig. 15.3).

15 GPU-Accelerated Language and Communication Support by FPGA 305

Fig. 15.4 PEACH2 latency

15.2.2 PEACH2 Performance

Since PEACH2 enables the simplest communication protocol on PCIe to connect
multiple GPUs over multiple nodes, it can achieve very low latency in the
communication for GPU-GPU remote memory copy. Figure 15.4 shows the point-
to-point communication latency comparison between PEACH2 and MVAPICH2 on
InfiniBand (QDR). “MVAPICH2-GDR 2.0” shows the latency of MVAPICH2 at
that date, while three lines “PIO,” “DMA(GPU),” and “DMA(CPU)” show that
of PEACH2. The actual use case of GPU-GPU communication is represented by
“DMA(GPU),” and it shows 2.1µs of latency up to 2 KB of message. It is quite
faster than MVAPICH2.

For the bandwidth, the situation is different. Since our PEACH2 implementation
with Stratix IV allows to be interfaced by PCIe gen2 x8 lanes, its maximum band-
width is up to 4 GB/s. On the other hand, InfiniBand QDR can be connected by PCIe
gen3 x8 lanes where the maximum bandwidth reached to the double of PEACH2.
Figure 15.5 shows the ping-pong bandwidth of PEACH2 and MVAPICH2 over
InfiniBand(QDR). Since the latency of PEACH2 is much shorter than MVAPICH2,
the bandwidth is higher than it for short messages; then MVAPICH2 performance
overcomes PEACH2. It is caused by the physical performance difference on PCIe
technology, but still we can demonstrate that PEACH2 provides higher performance
when the message size is relatively short, and it is a better solution for strong scaling.

306 T. Boku et al.

Fig. 15.5 PEACH2
bandwidth

15.2.3 Conclusion

The basic research for development of PEACH2 to realize TCA concept shows the
possibility to reduce the communication latency between GPUs over multiple nodes.
PEACH2 technology is based on PCIe external link extension which provides a
very simple and flat communication protocol over remote GPU communication. The
FPGA implementation is just a prototyping method for easy and cost-effective way,
and we developed the PEACH2 chip only for the communication functionality with
intelligent PCIe controlling. Since we could utilize PCIe gen2 technology on that
date of FPGA (Altera Stratix IV), the absolute performance of following generations
such as InfiniBand FDR or EDR overcame the performance of PEACH2 later.

After this basic research on PEACH2 implementation, we expanded its uti-
lization to language level, introducing a new parallel language with PGAS model
named XcalableACC. The programmability and productivity of the scientific code
for large-scale parallel GPU clusters are enhanced by this research. We will describe
it in the next section. Another new challenge was to utilize FPGA not only for
communication but also for partial computation which is not suitable for GPU. It is
a unique solution to speed up the application by FPGA to be unified computation
with communication. This new concept is named as AiS (Accelerator in Switch).
We will describe this feature and actual application on this concept in the following
section.

15 GPU-Accelerated Language and Communication Support by FPGA 307

15.3 XcalableACC: A Directive-Based Language for
Accelerated Clusters

15.3.1 Introduction

A type of parallel computer that is composed of multiple nodes equipped with
accelerator devices (e.g., Graphics Processing Unit (GPU)) has become a popular
HPC platform. In fact, many supercomputers in the recent TOP500 lists are of this
type. We call it accelerated clusters.

To program accelerated clusters, the combination of Message Passing Interface
(MPI) for distributed-memory parallelism among nodes and a dedicated language
or application programming interface for off-loading works to accelerator devices
within a node (e.g., CUDA for NVIDIA’s GPU and OpenACC [15]) is usually
adopted. However such a style of programming is quite complicated and difficult
for most of application programmers, and an easier way to program accelerated
clusters is strongly demanded.

To meet this demand, some PGAS languages [3, 18] have already been extended
to support accelerators. On the other hand, there have been other approaches based
on C++ template library, such as Kokkos [4], RAJA [7], Alpaka [25], and Phalanx
[5], for heterogeneous architectures including accelerated clusters.

In this project, we propose a new language named XcalableACC [17], which
is a diagonal integration of two existing directive-based language extensions:
XcalableMP and OpenACC.

XcalableMP (XMP) [24], developed by the XMP Specification Working Group
of the PC Cluster Consortium, is a directive-based language extension for C and
Fortran to program distributed-memory parallel computers. Using XMP, program-
mers can obtain parallel programs just by inserting simple directives into their serial
programs.

OpenACC is another directive-based language extension designed to program
heterogeneous CPU/accelerator systems. It targets off-loading works from a host
CPU to attached accelerator devices and has an advantage of portability across
operating systems and various types of host CPUs and accelerators.

XcalableACC (XACC) has features for handling distributed-memory parallelism,
derived from XMP, and off-loading works to accelerators, derived from OpenACC,
and two additional functions: direct communication between accelerators and
data/work mapping among multiple accelerators. These two functions are the
advantages of XACC against the previous works.

308 T. Boku et al.

Fig. 15.6 Execution model of XACC for data distribution, off-loading, and communication

15.3.2 XcalableACC Language

XACC consists of three components: the XMP directives, the OpenACC directives,
and the XACC extensions, which have the following functions, respectively.

• XMP directives for distributed-memory parallelism
• OpenACC directives for off-loading works to accelerator
• XACC extensions for handling direct communication between accelerators and

multiple accelerators

15.3.2.1 Execution Model

Figure 15.6 shows the execution model of XACC for data distribution, off-loading,
and communication. On this model, data or works are distributed onto nodes
and then off-loaded onto accelerators within a node; communication of the data
in accelerator memory might be performed via the direct interconnect between
accelerators, if available.

An example code of XACC is given in Fig. 15.7.

15.3.2.2 XACC Extensions

The XACC extensions in the XACC language have specifically the following two
functions:

• Direct communication between accelerators

15 GPU-Accelerated Language and Communication Support by FPGA 309

1 #pragma xmp nodes p[*]
2 #pragma acc device d(*)
3
4 #pragma xmp template t[100]]
5 #pragma xmp distribute t(block) onto p
6
7 float a[100][100];
8 #pragma xmp align a[i][*] with t[i]
9 #pragma xmp shadow a[1:1][0]

10
11 #pragma acc declare copy(a) layout([*][block]) \
12 shadow([0][1:1]) on_device(d)
13
14 #pragma xmp reflect (a) acc
15
16 #pragma xmp loop (i) on t[i]
17 for (int i = 0; i < 100; i++){
18 #pragma acc kernels loop layout(a[*][j]]) on_device(d)
19 for (int j = 0; j < 100; j++){
20 a[i][j] = ...
21 }
22 }
23
24 ...

Fig. 15.7 Example code of XACC

– XMP’s communication directives, such as reflect, bcast, and gmove,
act on data that reside in the device memory when the acc clause is specified
in them (line 14 in Fig. 15.7).

– Data in device memory can be also declared as coarray, which can be
remotely accessed by other nodes.

• Data/work mapping onto multiple accelerators

– Data and works are distributed among nodes by an XMP directive and further
distributed among accelerators within each node by the additional layout
clause of the declare and loop directives (lines 11 and 18 in Fig. 15.7).

– The on_device clause can be put on some OpenACC directives (e.g.,
declare and data) to explicitly specify their target device (lines 12 and
18 in Fig. 15.7).

15.3.3 Omni XcalableACC Compiler

Omni XcalableACC is a compiler of XACC based on the Omni compiler infrastruc-
ture [14], which is being developed by RIKEN R-CCS and University of Tsukuba.

Omni XACC accepts an XACC source program and translates it into an
MPI+OpenACC program, which is then compiled and linked with the XACC
runtimes by the backend OpenACC compiler, such as PGI’s, to generate an exe-

310 T. Boku et al.

Fig. 15.8 Omni XACC
architecture

OpenACC
compiler

Translator

Backend

.....

.....
XACC program

.....

.....
MPI+OpenACC
program in
C/Fortran

Executable

MPI library

XACC
runtime

Omni XcalableACC

Translate XMP and
XACC directives
Modify OpenACC
directives

Frontend

cutable (Fig. 15.8). Note that Omni has already supported OpenACC and therefore
can work as the backend compiler for itself.

Omni XACC supports TCA-based direct communication between accelerators as
well as that based on MVAPICH2-GDR [16], which is an implementation of MPI
that takes advantage of the GPUDirect RDMA (GDR) technology [12]. In addition,
Omni XACC is also able to concurrently utilize a standard interconnect between
CPUs, such as Infiniband, and a dedicated direct interconnect between accelerators
to make the most of the interconnect throughput of the system [13].

15.3.4 Case Study: Lattice QCD Mini-application

15.3.4.1 Implementation

We evaluate performance and productivity of XACC through an implementation of
a Lattice Quantum Chromo-Dynamics (QCD) mini-application which is one of the
most important applications in the HPC field. Figure 15.9 shows the declarations of
distributed arrays on the accelerator memory. Note that these arrays have shadow
regions for halo exchange. Figure 15.10 shows how to exchange halo regions
between adjacent nodes. WD() in line 5 is the Wilson-Dirac operator [23], which
is the main kernel of this mini-application. Since WD() requires halo exchange,

15 GPU-Accelerated Language and Communication Support by FPGA 311

1 Gluon_t U[4][NT][NZ][NY][NX];
2 Quark_t X[NT][NZ][NY][NX];
3 #pragma xmp template t[NT][NZ]
4 #pragma xmp nodes n[PT][PZ]
5 #pragma xmp distribute t[block][block] onto n
6 #pragma xmp align [*][i][j][*][*] with t[i][j] shadow[0][1][1][0][0] :: U
7 #pragma xmp align [i][j][*][*] with t[i][j] shadow[1][1][0][0] :: X
8 #pragma acc enter data copyin(U, X)

Fig. 15.9 Declaration of distributed arrays

1 #pragma xmp reflect_init(U) width(0,/periodic/1:0, ...) orthogonal
2 #pragma xmp reflect_init(X, ...) width(/periodic/1, ...) orthogonal
3 :
4 #pragma xmp reflect_do(U, X) acc
5 WD(..., U, X);

Fig. 15.10 Halo exchange and calling Wilson-Dirac operator

the reflect_do directive performs halo exchange based on information set by the
reflect_init directive.

15.3.4.2 Performance Evaluation

We evaluate the performance of the Lattice QCD mini-application in XACC on
HA-PACS/TCA. The communication mechanism between GPUs of Omni XACC
is based on “hybrid” communication via TCA having low latency and Infiniband
having high bandwidth, which allows communication among sub-clusters of HA-
PACS/TCA. For a comparison purpose, we also evaluate it in the combination
of CUDA and MPI (CUDA+MPI) and the combination of OpenACC and MPI
(OpenACC+MPI). We assign a single process with a single compute node, and we
use up to 64 compute nodes. The problem size is (NT , NZ, NY , NX) = (16, 16,
16, 16) in Fig. 15.9, and we measure performance in strong scaling.

Figure 15.11 shows performance results of the implementations, where the
performance in XACC is the best at the high degree of parallelism. The performance
of XACC is up to 9% better than that of CUDA+MPI and up to 18% better than that
of OpenACC+MPI.

15.3.4.3 Productivity Evaluation

We evaluate the productivity of each the implementation using Delta Source Lines of
Code (DSLOC), which is one of evaluation criterions for productivity [19]. DSLOC
is a value to count the amount of changes (add, delete, and modify) required to
implement a parallel Lattice QCD code from a sequential Lattice QCD code. When
DSLOC is small, the programming costs and the possibility of program bugs will be
small as well. Table 15.1 shows DSLOC in each implementation, where XACC is

312 T. Boku et al.

200

160

120

80

40

0
1x1 2x22x1 4x2 8x44x4 8x8

P
er

fo
rm

an
ce

 (G
Fl

op
s)

Number of processes (PT x PZ)

XcalableACC
CUDA+MPI
OpenACC+MPI

Fig. 15.11 Performance results of lattice QCD mini-application

Table 15.1 Delta source
code of lines in each
implementation

XcalableACC CUDA+MPI OpenACC+MPI

Total 86 767 219

Add 80 348 173

Delete 0 73 0

Modify 6 346 46

the smallest. DSLOC of XACC is 89% less than that of CUDA+MPI and 61% less
than that of OpenACC+MPI.

15.3.5 Summary

We proposed XcalableACC that is a directive-based language extension for accel-
erated clusters and developed a compiler for it. It is basically an integration of
XcalableMP and OpenACC and has advanced features of direct communication
between accelerators and data/work mapping onto multiple accelerators. The case
study for a Lattice QCD mini-application showed that XACC would be useful in
both performance and productivity to program accelerated clusters.

15.4 Applying Accelerator in Switch for Astrophysics

15.4.1 Introduction

Simulations of gravitating collisionless particles, say N -body simulations, are a
fundamental tool in astrophysics. We have developed a gravitational octree code

15 GPU-Accelerated Language and Communication Support by FPGA 313

on GPU that adopts a block time step. Parallelization of the code is a mandatory
procedure to run N -body simulations with a large number of N -body particles that
cannot be stored in the memory of single GPU. Warren and Salmon proposed an
algorithm named Locally Essential Tree (LET) for the parallel tree code. Adopting
the LET reduces the communication between processes by paying an additional
cost to generate subtracted tree structure for all other processes. Accelerator in
Switch (AiS) is a framework to accelerate pre-/post-processes of communications
and provide better parallel efficiency. We have implemented LET generator on
PEACH3, which is a switching hub with Altera’s FPGA (Field Programmable Gate
Array) board, as a test bed for AiS in actual simulations. The LET generator on
PEACH3 is always faster than that on GPU and achieves 4.5 times acceleration.
Performance optimization on PEACH3 such as adopting lower accuracy of floating
point operations than single precision would provide further acceleration.

15.4.2 Development of Gravitational Octree Code Accelerated
by Block Time Step

Simulations of gravitating collisionless particles, say N -body simulations, are
a fundamental tool in astrophysics. In order to perform N -body simulations in
realistic elapsed time with a large number of N -body particles that are sufficient
to resolve astrophysical phenomena, the tree method [2] is frequently employed
to accelerate simulations through reducing the amount of force calculations. In
most astrophysical phenomena, the mass density and dynamical timescale are not
uniform and have difference by more than an order of magnitude. Therefore,
block time stepping (sometimes called hierarchical time stepping) is more effective
to accelerate N -body simulations than the shared time stepping [1, 8]. We have
developed a Gravitational Oct-Tree code Accelerated by Hierarchical Time step
Controlling, named GOTHIC, which adopts both the tree method and the block time
step [10]. The code is optimized for GPUs and adopts adaptive optimizations by
monitoring the execution time of each function on-the-fly and minimizes the time-
to-solution by balancing the measured time of multiple functions.

The decrease in the number of steps having long execution time is attributed
to the acceleration by the block time step. In the case of the block time step,
execution time in some steps is smaller than shared time step, because the number
of activated N -body particles is reduced by order of magnitude. Figure 15.12 shows
the execution time of tree traverse on NVIDIA Tesla K20X with CUDA 7.5. Out
of the first 201 steps, the number of steps having execution time above 1 s is 26
owing to the reduction of force calculations on slowly moving N -body particles;
this is the main reason for the acceleration by the block time step. The achieved
mean execution time per step is 0.21 s, and the contributions from the steps with
long execution time, which is 1.2 s ×26/201 = 0.16 s, are dominant.

314 T. Boku et al.

0 25 50 75 100 125 150 175 200
Step

10−3

10−2

10−1

100

Ex
ec
ut
io
n
tim

e
(s
ec
)

Fig. 15.12 Execution time of gravitational force calculation on NVIDIA Tesla K20X as a function
of the time step. The particle distribution is a model reproducing the Andromeda galaxy with
222 = 4,194,304 particles generated by MAGI [11]

15.4.3 Parallelization of the Code and Barrier for Scalability

Parallelization of the code is a mandatory procedure to run N -body simulations
with a large number of N -body particles that cannot be stored in the memory
of single GPU (N ∼ 10 M or N ∼ 30 M are the upper limit for GOTHIC on
NVIDIA Tesla K20X or NVIDIA Tesla P100, respectively). Warren and Salmon
proposed an algorithm named Locally Essential Tree (hereafter, LET) to reduce
the amount of the communication among processes for the parallel tree code [22].
When one applies the domain decomposition to the tree code, particle distribution
in other domains is necessary to calculate gravitational force. However, a subtracted
tree provides sufficient data to calculate gravitational force properly, since the
detailed information in the distant regions is not required for the tree method.
The LET contains the data that is necessary to calculate the gravitational force
on every N -body particle in a local domain pulled by particles in other domains.
Adopting the LET reduces the communication between processes by paying an
additional cost to generate subtracted tree structure for all other processes. The
difficulty in achieving the scalability comes from the collision with aspects of block
time step and computational cost for LET. The parallel efficiency decreases when
the execution time of LET-related operations exceeds or is comparable to that of
gravitational force calculations. As shown by Fig. 15.12, the execution time of force
calculations has various ranges: ∼1.2 s, ∼0.4 s, ∼ 0.1 s, and ∼2 ×10−3 s. Let
us consider a case of the LET-related operation takes ∼0.5 s, for example. The
operation becomes the dominant procedure in most time steps except for the steps
with execution times above 1 s, and therefore the parallel efficiency would become
worse. Since the execution time of the shared time step is corresponding to the

15 GPU-Accelerated Language and Communication Support by FPGA 315

longest execution time of the block time step, a condition to achieve good parallel
efficiency for the block time step is more severe than that for the shared time step.

15.4.4 Accelerator in Switch

Accelerator in Switch (AiS) is a framework to accelerate pre-/post-processes of
communications and provide better parallel efficiency [21]. Communications among
multiple processes are sometimes tightly coupled with related computations. In the
case of the LET, the communications require subtraction of local tree just before
sending data to other processes. Moreover, some of the recent switching hubs for
high-performance networks are equipped with high-end FPGAs [6, 9, 26]. Such
FPGAs in switching hubs now become a candidate for an accelerator device for
pre-/post-processes of communications among multiple processes by exploiting
redundant logic elements in FPGAs. We adopt PEACH3, which is a PCIe gen3
switch developed for tightly coupled accelerators, as a test bed for AiS in actual
simulations. PEACH3 is implemented on Stratix V GX EP5SGXA7N3F45C2, an
FPGA board by Altera, and possesses 622K logic elements with 512MB DDR3
SDRAM.

15.4.5 Development of LET Generator in PEACH3

The LET generator is one of the attractive applications suitable for AiS. LET con-
struction is implemented as tree traverse of a single imaginary particle representing
the particle distributions in a distant domain and decimating tree nodes which are
not required for gravitational force calculation by the target process. GPU is not
a very suitable candidate for accelerator device for the LET generator, because its
high performance mainly comes from massive parallelization utilizing its many-core
architecture. FPGA can handle the LET generation and makes GPUs concentrate
on gravitational force calculation by releasing them from the burden on unsuitable
tasks.

We have implemented LET generator on PEACH3 using Quartus II ver.16.1
Standard Edition. The LET module is redesigned for AiS and has an ability to
handle large data set based on the implementation by [20]. Figure 15.13 shows the
execution time of LET generators on GPU (NVIDIA Tesla K40 with CUDA 6.5)
and PEACH3, including communication between two GPUs. The LET generator on
PEACH3 is always faster than that on GPU and achieves 4.5 times acceleration as
shown in Fig. 15.13. The low latency communication of PEACH3 is also responsible
for the acceleration. The observed acceleration of LET generator and communica-
tion help GOTHIC to achieve a good parallel efficiency. Performance optimization
on PEACH3 such as adopting lower accuracy of floating point operations than single
precision would provide further acceleration. Since the LET generator does not

316 T. Boku et al.

Fig. 15.13 Execution time of
LET generator including
communication as a function
of the number of N -body
particles. Blue and red bars
show the results for LET
generator on GPU and
PEACH3, respectively

require accurate floating point operations and recent GPUs provide only limited
half-precision floating point operations such as fused multiplication and addition of
small matrices, the acceleration by lower precision operations is another potentiality
for FPGA-specific performance optimization.

References

1. Aarseth, S.J.: Dynamical evolution of clusters of galaxies, I. Mon. Not. R. Astron. Soc. 126,
223 (1963). https://doi.org/10.1093/mnras/126.3.223

2. Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446–
449 (1986). https://doi.org/10.1038/324446a0

3. Cunningham, D., et al.: GPU programming in a high level language: compiling X10 to CUDA.
In: Proceedings of the 2011 ACM SIGPLAN X10 workshop (X10 ’11), New York (2011)

4. Edwards, H.C., Trott, C.R.: Kokkos: enabling performance portability across manycore
architectures. In: Proceedings of the 2013 extreme scaling workshop (XSW 2013), pp. 18–24,
Aug 2013

5. Garland, M., Kudlur, M., Zheng, Y.: Designing a unified programming model for hetero-
geneous machines. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12, pp. 67:1–67:11, Los Alamitos (2012)

6. Hanawa, T., Kodama, Y., Boku, T., Sato, M.: Interconnect for tightly coupled accelerators
architecture. In: IEEE 21st Annual Sympsium on High-Performance Interconnects (HOT
Interconnects 21) (2013)

7. Hornung, R.D., Keasler, J.A.: The RAJA portability layer: overview and status. Technical
Report LLNLTR-661403, LLNL (2014)

8. McMillan, S.L.W.: The vectorization of small-N integrators. In: Hut, P., McMillan, S.L.W.
(eds.) The Use of Supercomputers in Stellar Dynamics. Lecture Notes in Physics, vol. 267, p.
156. Springer, Berlin (1986). https://doi.org/10.1007/BFb0116406

9. Mellanox Fabric Collective Accelerator. http://www.mellanox.com/
10. Miki, Y., Umemura, M.: GOTHIC: gravitational oct-tree code accelerated by hierarchical time

step controlling. New Astron. 52, 65–81 (2017). https://doi.org/10.1016/j.newast.2016.10.007
11. Miki, Y., Umemura, M.: MAGI: many-component galaxy initializer. Mon. Not. R. Astron.

Soc. 475, 2269–2281 (2018). https://doi.org/10.1093/mnras/stx3327
12. NVIDIA Corporation: NVIDIA GPUDirect (2014). https://developer.nvidia.com/gpudirect

https://doi.org/10.1093/mnras/126.3.223
https://doi.org/10.1038/324446a0
https://doi.org/10.1007/BFb0116406
http://www.mellanox.com/
https://doi.org/10.1016/j.newast.2016.10.007
https://doi.org/10.1093/mnras/stx3327
https://developer.nvidia.com/gpudirect

15 GPU-Accelerated Language and Communication Support by FPGA 317

13. Odajima, T., et al.: Hybrid communication with TCA and infiniband on a parallel programming
language XcalableACC for GPU clusters. In: Proceedings of the 2015 IEEE International
Conference on Cluster Computing, pp. 627–634, Sept 2015

14. Omni Compiler Project: Omni compiler project (2018). http://omni-compiler.org/
15. OpenACC-Standard.org: The OpenACC application programming interface version 2.0

(2013). http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
16. Potluri, S., Hamidouche, K., Venkatesh, A., Bureddy, D., Panda, D.K.: Efficient inter-node

MPI communication using GPUDirect RDMA for infiniband clusters with NVIDIA GPUs. In:
Proceedings of the International Conference on Parallel Processing, pp. 80–89 (2013)

17. RIKEN AICS and University of Tsukuba: XcalableACC language specification version 1.0
(2017). http://xcalablemp.org/download/XACC/xacc-spec-1.0.pdf

18. Sidelnik, A., et al.: Performance portability with the Chapel language. In: Proceedings of the
IEEE 26th International Parallel and Distributed Processing Symposium, pp. 582–594 (2012)

19. Stone, A.I., et al.: Evaluating coarray fortran with the cgpop miniapp. In: Proceedings of the
Fifth Conference on Partitioned Global Address Space Programming Models (PGAS), Oct
2011.

20. Tsuruta, C., Miki, Y., Kuhara, T., Amano, H., Umemura, M.: Off-loading LET generation to
PEACH2: a switching hub for high performance GPU clusters. In: ACM SIGARCH Computer
Architecture News – HEART15, vol. 43, pp. 3–8. ACM, New York (2016). http://doi.acm.org/
10.1145/2927964.2927966

21. Tsuruta, C., Kaneda, K., Nishikawa, N., Amano, H.: Accelerator-in-switch: a framework for
tightly coupled switching hub and an accelerator with FPGA. In: 27th International Conference
on Field Programmable Logic & Application (FPL2017) (2017)

22. Warren, M.S., Salmon, J.K.: Astrophysical N-body simulations using hierarchical tree data
structures. In: Proceedings of the 1992 ACM/IEEE Conference on Supercomputing, pp. 570–
576. IEEE Computer Society Press (1992)

23. Wilson, K.G.: Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)
24. XcalableMP Specification Working Group: XcalableMP specification version 1.2 (2013).

http://www.xcalablemp.org/download/spec/xmp-spec-1.2.pdf
25. Zenker, E., Worpitz, B., Widera, R., Huebl, A., Juckeland, G., Knpfer, A., Nagel, W.E.,

Bussmann, M.: Alpaka – an abstraction library for parallel Kernel acceleration. In: Proceedings
of the 2016 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 631–640, May 2016

26. Zilberman, N., Audzevich, Y., Kalogeridou, G., Bojan, N.M., Zhang, J., Moore, A.W.:
NetFPGA – rapid prototyping of high bandwidth devices in open source. In: 25th International
Conference on Field Programmable Logic and Applications (FPL) (2015)

http://omni-compiler.org/
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf
http://xcalablemp.org/download/XACC/xacc-spec-1.0.pdf
http://doi.acm.org/10.1145/2927964.2927966
http://doi.acm.org/10.1145/2927964.2927966
http://www.xcalablemp.org/download/spec/xmp-spec-1.2.pdf

	15 GPU Accelerated Language and Communication Supportby FPGA
	15.1 Introduction
	15.2 PEACH2
	15.2.1 Realizing TCA Concept by PCIe
	15.2.2 PEACH2 Performance
	15.2.3 Conclusion

	15.3 XcalableACC: A Directive-Based Language for Accelerated Clusters
	15.3.1 Introduction
	15.3.2 XcalableACC Language
	15.3.2.1 Execution Model
	15.3.2.2 XACC Extensions

	15.3.3 Omni XcalableACC Compiler
	15.3.4 Case Study: Lattice QCD Mini-application
	15.3.4.1 Implementation
	15.3.4.2 Performance Evaluation
	15.3.4.3 Productivity Evaluation

	15.3.5 Summary

	15.4 Applying Accelerator in Switch for Astrophysics
	15.4.1 Introduction
	15.4.2 Development of Gravitational Octree Code Accelerated by Block Time Step
	15.4.3 Parallelization of the Code and Barrier for Scalability
	15.4.4 Accelerator in Switch
	15.4.5 Development of LET Generator in PEACH3

	References

