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Preface

Computational Science, which enables us to explore uncharted fields of science
through applications of high performance computing, is a third paradigm of
scientific research which has become indispensable for the development of science
and technology of the twenty-first century.

Computational Science has been making great progress rapidly. The computa-
tional capability of supercomputers is now reaching on the verge of surpassing a
Peta-flops (1015 floating operations per second). This advance allows us in making
it possible to explore a wide range of phenomena through computer simulations
which was impossible in the past, for example, the creation and evolution of
the universe, the quantum origin of the functions of nano- and biomaterials
and its implication to life, and global climate changes. At the same time, the
development of intelligent information processing technologies is beginning to
enable a handling and analysis of enormous amount of data, which are accelerating
discoveries in many science disciplines, such as genome analyses, high energy
accelerator experiments, astronomical observations, and satellite observation of geo-
environments. In short, computational science is rapidly developing into a unified
framework in which large-scale modeling and simulation, large-scale data analysis,
and experiments/observation are integrated together to solve grand challenge issues
in various branches of science. As such, computational science has now become
an indispensable tool to better understand nature, life, and environment in order to
create a better future for mankind.

In Japan, the importance of computational sciences was explicitly noted in the
Japanese Government’s Third Basic Plan of Science and Technology (2006–2010),
and a national project for the development of “Next Generation Supercomputer” has
been carried out from 2006 as one of the key technologies of national importance.
The K computer has been produced as a major result of the project, achieving
world’s best performance in TOP500 list in 2011. Currently, the FLAGSHIP 2020
project for the development of the next Japanese flagship supercomputer has been
launched in 2014, and the development is under way. The operation for the public
service will be scheduled around 2020.
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vi Preface

In 2010, the Japan Science and Technology Agency (JST) has initiated a research
area, titled “Development of System Software Technologies for Post-Peta Scale
High Performance Computing,” as a part of its Strategic Basic Research Program
(CREST). The project was named “JST CREST Post-Petascale software project.”
The research area of the project aimed at developing system software technologies
as well as related systems to be used for high performance computing systems
including the next generations of the Japanese flagship system, the K computer,
which is under development. Several researches and developments were conducted
for system software enabling us to exploit maximum efficiency and performance
from supercomputers composed of general purpose many-core processors as well
as accelerators such as GPUs and FPGA. From 2010 to 2012, 14 research teams
were selected, and 5-year research has been being conducted by each research
team. Many Japanese researchers and graduate students related to HPC have been
participating in these research teams.

This book describes the major outcomes obtained by research teams of the JST
CREST post-petascale software project.

Advanced system software is the key technology for post-petascale and exascale
high performance computing systems which will be developed in next decade. I
hope that the technologies developed in the JST CREST post-petascale software
project will play a role bridging to exascale computing and beyond through system
software technologies and advance the future computational science.

Kobe, Japan Mitsuhisa Sato
May 2018
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Chapter 1
JST CREST Post-petascale Software
Project Bridging to Exascale Computing

Mitsuhisa Sato

Abstract JST CREST post-petascale software project aimed to establish software
technologies to explore extreme performance computing beyond petascale com-
puting, on the road to exascale computing. Several research and development has
been conducted for system software enabling us to exploit maximum efficiency
and reliability from high-performance computing systems composed of general-
purpose many-core processors as well as accelerators including GPGPU from
the second half of the 2010s to 2020s. The research topics cover from system
software such as programming languages, compilers, runtime systems, operating
systems, communication middleware, and file systems to application development
support software and ultra-large data processing software. As well as conventional
technologies for large-scale numerical computation, the project was also able to
address the storage technology required for big data processing, the complexity
of memory hierarchy, and the power problem. Exploration for the direction of
future high-performance computing is also an urgent and significant agenda in
our research area. This chapter presents the outline of JST CREST post-petascale
software project with brief description of the research topics, followed by summary
of results and achievements.

1.1 Trends of High-Performance Computing

High-performance computing systems used for cutting edge of advanced compu-
tational have reached several petaflops (a million billion calculations per second)
performance and will be targeted to the next generation of exascale systems as a
post-petascale system. Scientific applications require increasing performance for
industrial and societal general improvements.

M. Sato (�)
RIKEN Center for Computational Science, Kobe, Japan
e-mail: msato@riken.jp
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Japan already has installed several petascale computers including the K com-
puter in RIKEN and now explores the evolution toward future exascale systems.
Following the end of the existing Moore law, the number of core per chip increases
and specialized hardware has been used to accelerate specific type of applications.
The number of processors and the interconnecting network increase also and
we have then to face new programming problems. Post-petascale systems and
future exascale computers are expected to have an ultra-large-scale and high-
performance architecture with nodes of many-core processors and accelerators.
To manage these ultra-large-scale parallel systems, we require new sophisticated
system software technologies, allowing to manage complex parallel computations
with huge distributed data, minimizing the energy consumption, and with fault-
resilient properties.

JST CREST post-petascale software project has been launched to establish
software technologies to explore extreme performance computing beyond petascale
computing, on the road to exascale computing. The ability to manage and program
these future high-performance systems efficiently is considered by all research
national agencies all along the world as a strategic and important issue.

1.2 Outline of JST CREST Post-petascale Software Project

CREST (Core Research for Evolutional Science and Technology) is a funding
program supported by JST (Japan Science and Technology Agency), which is an
independent public body of the Ministry of Education, Culture, Sports, Science
and Technology (MEXT), Japan. CREST is a funding program for team-based
research expected to produce outstanding results to lead scientific and technological
innovation. JST CREST post-petascale software project is one of CREST programs,
starting from 2012.

Our research area was funded under the title of “Development of System
Software Technologies for Post-petascale High-Performance Computing.” It was
launched by the first program research supervisor, Prof. Akinori Yonezawa, RIKEN,
from 2012 to 2014, and it was taken over to the second program research supervisor,
Prof. Mitsuhisa Sato, RIKEN, from 2015 to 2018.

The research area aimed at developing software technologies as well as related
systems to be used for high-performance computing in the post generations of the
Japanese national supercomputer, the K computer. Several research and develop-
ment has been conducted for system software enabling us to exploit maximum
efficiency and reliability from high-performance computing systems composed of
general-purpose many-core processors as well as accelerators including GPGPU
from the second half of the 2010s to 2020s. In addition to the system software
such as programming languages, compilers, runtime systems, operating systems,
communication middleware, and file systems, application development support
software and ultra-large data processing systems are also the targets for our research
and development.
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The calls for project proposals were issued at every year from 2010 to 2012, and
finally the 14 projects were adopted: 5 projects in the first year, 5 projects in the
second year, and 4 projects in the third year as a result of peer reviews by advisory
committee for the project proposals submitted as responses to the calls. The duration
of each project is 5.5 years. The total budget from 2010 to 2017 was about 60 M
USD. Table 1.1 shows the adopted teams of JST CREST post-petascale software
project.

The advisory committee was organized to advice the research direction of the
project teams by following members:

• Mutsumi Aoyagi, Professor, Research Institute for Information Technology,
Kyushu University (assumption of office period: Oct. 2010–Dec. 2014)

• Yutaka Ishikawa, Project Leader, Flagship 2020 Project, RIKEN Advanced
Institute for Computational Science

• Kouichi Kumon, Member of the board, Fujitsu Laboratories Ltd.
• Kenji Kono, Professor, Keio University
• Hiroaki Kobayashi, Director, Cyberscience Center, Tohoku University
• Mitsuhisa Sato, Professor, Department of Computer Science, University of

Tsukuba (assumption of office period: Oct. 2010–Mar. 2015)
• Shinji Shimojo, Professor, Cybermedia Center, Osaka University
• Keiko Takahashi, Director, Center for Earth Information Science and Technol-

ogy, Japan Agency for Marine-Earth Science and Technology
• Yaoko Nakagawa, Senior Project Manager, Center for Technology Innovation-

Information and Telecommunications, Research & Development Group, Hitachi
Ltd.

• Hiroshi Nakashima, Professor and Director, Academic Center for Computing and
Media Studies, Kyoto University

• Junichiro Makino, Professor, Department of Planetology, Graduate School of
Science, Kobe University

• Satoshi Matsuoka, Professor, Global Scientific Information and Computing
Center, Tokyo Institute of Technology

To carry the projects out strategically, the policies and goals of management in
our research area were defined as follows:

(1) Research and development of highly functional and reliable system software
for sustainable high-performance computing technologies to solve social and
scientific problems

Numerical simulation and data analysis utilizing ultra-large-scale computational
resources and storage have dramatically been increasing the importance of its role
for modern science and technology. In response to this fact, the USA, Europe, China,
and Japan are racing to develop the next generation of supercomputer – exascale
systems – capable of a million trillion calculations a second by around 2020. In
our country, the project, FLAGSHIP2020, has been launched to develop the next
flagship system following the K computer.
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Table 1.1 Research teams of JST CREST post-petascale software project

PI, title/affiliation Research theme

1. Research teams adopted in 2010
Tetsuya Sakurai Professor, University of
Tsukuba

Development of an Eigen-Supercomputing
Engine Using a Post-Petascale Hierarchical
Model

Osamu Tatebe Professor, University of
Tsukuba

System Software for Post-Petascale
Data-Intensive Science

Kengo Nakajima Professor, University of
Tokyo

ppOpen-HPC: Open-Source Infrastructure for
Development and Execution of Large-Scale
Scientific Applications on Post-Petascale
Supercomputers with Automatic Tuning (AT)

Atsushi Hori Senior Researcher, RIKEN Parallel System Software for Multi-core and
Many-core

Naoya Maruyama Research Team Leader,
RIKEN

Highly Productive, High-Performance
Application Frameworks for Post-petascale
Computing

2. Research teams adopted in 2011
Ryuji Shioya Professor, Toyo University Development of a Numerical Library Based on

Hierarchical Domain Decomposition for
Post-petascale Simulation

Hiroyuki Takizawa Associate Professor,
Tohoku University

An Evolutionary Approach to Construction of a
Software Development Environment for
Massively Parallel Heterogeneous Systems

Shigeru Chiba Professor, The University of
Tokyo

Software Development for Post-petascale
Supercomputing: Modularity for
Supercomputing

Takeshi Nanri Associate Professor, Kyushu
University

Development of Scalable Communication
Library with Technologies for Memory Saving
and Runtime Optimization

Katsuki Fujisawa Professor, Kyushu
University

Advanced Computing and Optimization
Infrastructure for Extremely Large-Scale
Graphs on Post-petascale Supercomputers

3. Research teams adopted in 2012
Toshio Endo Associate Professor, Tokyo
Institute of Technology

Software Technology that Deals with Deeper
Memory Hierarchy in Post-petascale Era

Masaaki Kondo Associate Professor, The
University of Tokyo

Power Management Framework for
Post-petascale Supercomputers

Itsuki Noda Principal Research Manager,
AIST

Framework for Administration of Social
Simulations on Massively Parallel Computers

Taisuke Boku Professor, University of
Tsukuba

Research and Development on Unified
Environment of Accelerated Computing and
Interconnection for Post-petascale Era

Under such circumstances, in order to keep the ability to solve several social and
scientific problems by making full use of the supercomputer, it is extremely signif-
icant not only to have technologies to execute a large-scale programs (simulation
programs, data analysis programs, etc.) efficiently on current supercomputers but
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also to perform researches on software technologies to bring out the full potential
of the next generation of high-performance systems and technologies in the future.
The sustainable progress of high-performance computing software is essential for
the sustainable contribution to science and technology advancement and innovation
by the high-performance computing.

In our research area, we are developing a high-performance, highly functional,
and high-reliability system software including programming language, compiler,
runtime system, operating system, communication middleware, file system, numer-
ical calculation library, job management system, and ultra-large-scale data process-
ing system software. In addition, from the viewpoint of sustainable contribution by
the high-performance computing mentioned above, it should be not only academic
research to demonstrate simple novel idea and its feasibility but the development of
actual usable software. It is requested for the teams to make the developed software
used in related community and is also to be emphasized in the evaluation.

(2) Exploration for the direction of future high-performance computing research
and development

At the time of calls for the project proposal, it was not clear what kind
of technologies would be used for the future next-generation high-performance
computing systems, general-purpose many-core processor, or specialize hardware
such as GPU. So, we requested to indicate the target system of the research and how
to make the proposed software executed efficiently in the proposed target systems.
The accepted research project teams were supposed to publish their research results
as open-source software.

As the duration of the adopted project was 5 years, in intermediate evaluation at
the third year, the team was requested to demonstrate that the developed software
will be usable realized at the end of the project. By this request, we expected that
the developed software would show the direction of system architecture of the
future high-performance computing systems and be used actually in these systems
including the next-generation system of the K computer or GPU-based accelerator
systems. For this purpose, we aimed for international collaboration and industry-
academia collaboration while sharing information with overseas researchers and
companies.

Furthermore, when each research team is about to be finished (from 2016), we
expected that the practical and usable software developed by the teams as a result of
the project is used to enable advanced large-scale simulation and valuable prediction
using large-scale data in a wide range of science and technology fields.

(3) Fostering of the next-generation leaders in the field of high-performance
computing

In order to keep the ability of sustainable development of high-performance com-
puting systems and promote the direction of future high-performance computing
research and development, human resource who can bear it is indispensable. We
actively appointed young researchers who were expected to be in the future at the
selection of the projects and took into account the development of young research
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leaders who will be responsible for research and development in the next generation
of high-performance computing technology in Japan, by emphasizing autonomy in
the planning, making teams and management.

1.3 Research Topics of the Project

In this section, the research topics and some highlights of the adopted projects
are described briefly. As mentioned above, the research topics of our research
area covers from system software such as programming languages, compilers,
runtime systems, operating systems, communication middleware, and file systems to
application development support software and ultra-large data processing systems.

Several teams carried researches on programming models and frameworks for
post-petascale systems.

Maruyama’s team (Chap. 5) has been working on several programming frame-
works and libraries to make programming easy for the next generation of high-
performance systems. They developed Daino, a high-level framework for parallel
and efficient AMR on GPUs, and investigated effectiveness of high-level program-
ming techniques such as Gridtools for global climate model simulation.

Endo’s team (Chap. 12) was working on problems for recent trends on deeper
memory hierarchy. For exascale high-performance systems, the “Memory Wall”
problem will become even more severe. His team promotes research toward this
problem via co-design approach among application algorithms, system software,
and architecture. They have developed several libraries to make it easy to use the
system of deeper memory hierarchy.

Chiba’s team (Chap. 8) focused on productive programming models for post-
petascale systems. A single general programming language or framework that
covers all subjects will not be feasible for post-petascale supercomputing. Their goal
is to apply modern techniques for software engineering and theoretical foundations
of programming languages, such as software modularization, to high-performance
computing.

Takizawa’s team (Chap. 9) proposed the Xevolver framework which takes an
evolutionary approach to incremental migration of existing software resources to
new systems. The goal is to establish an effective migration path to new algorithms,
implementation schemes, and programming environments for massively parallel
and heterogeneous systems in an upcoming extreme-scale computing era.

Boku’s team (Chap. 15) has been working on TCA (tightly coupled accelera-
tors) by short-latency communication among GPUs over nodes to achieve strong
scalability on next-generation accelerated computing and its programming model.
They developed prototype system named PEACH2 which implemented by FPGA
for flexible design and suitability for PCIe interface. As its extension, they proposed
aggressive solution named AiS (Accelerator in Switch) to exploit high potential of
recent FPGA. To solve the low productivity on programming by MPI plus CUDA

http://dx.doi.org/10.1007/978-981-13-1924-2_5
http://dx.doi.org/10.1007/978-981-13-1924-2_12
http://dx.doi.org/10.1007/978-981-13-1924-2_8
http://dx.doi.org/10.1007/978-981-13-1924-2_9
http://dx.doi.org/10.1007/978-981-13-1924-2_15
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style, we are developing new language framework XcalableACC (XACC) where
OpenACC description is involved to XcalableMP PGAS language.

The teams of system software cover researches from storage technology to
communication middleware.

Tatebe’s team (Chap. 6) carried researches on the next-generation storage
technologies for post-petascale computing. The performance gap between CPU and
storage is growing wider and wider. Distributed file system using compute-node
local storage is promising to fill the gap. His team promotes node-local distributed
file system and parallel and distributed execution framework for the file system.

Hori’s team (Chap. 4) proposed a new process model for many-core. As in MPI
program, the multiprocess model allows each process to own a private address space,
though processes can allocate explicit shared memory regions. On the other hand,
the multi-threaded model shares all address space by default, though threads can
explicitly move data to thread-private storage. His team proposes a third model
called Process-in-Process (PiP), where multiple processes are mapped into a single
virtual address space, which may make use of many-core processor efficiently.

Nanri’s team (Chap. 7) has been developing a PGAS-based communication
library, ACP, and its applications. Memory efficiency of communication libraries
is becoming important issue in large-scale parallel systems, where the number of
processes is expected to be tens of millions. ACP enables both high-performance
and low memory consumption for post-petascale systems.

Power consumption is now becoming a first class design constraint for devel-
oping future post-petascale computing systems. To achieve exa-flops-level perfor-
mance with realistic power provisioning of 20–30 megawatts, significant power
efficiency improvement over today’s supercomputers is necessary.

Kondo’s team (Chap. 13) has been working on this power issue in the next
generation of high-performance computing system. In order to maximize effective
performance within a power constraint, they proposed the power-constraint adaptive
system design (P-CAS), which allows the system’s peak power to exceed maximum
power provisioning with adaptively controlling power-knows equipped in hardware
components so that effective power consumption at runtime is under the power
constraint.

Researches on numerical algorithms and libraries and software which support
high-performance scientific applications also have been carried out.

Sakurai’s team (Chap. 3) aimed to develop a massively parallel eigenvalue solver,
eigen-supercomputing engine for post-petascale systems. Eigenvalue solver is one
of the most important algorithms in several computational science applications. The
eigen-engine is to be developed based on newly designed algorithms that are suited
to the hierarchical architecture in post-petascale systems.

Nakajima’s team (Chap. 2) has been developing “ppOpen-HPC,” an open-source
infrastructure for development and execution of optimized and reliable simulation
code on post-petascale parallel computers based on many-core architectures, and it
consists of various types of libraries, which cover general procedures for scientific
computation.

http://dx.doi.org/10.1007/978-981-13-1924-2_6
http://dx.doi.org/10.1007/978-981-13-1924-2_4
http://dx.doi.org/10.1007/978-981-13-1924-2_7
http://dx.doi.org/10.1007/978-981-13-1924-2_13
http://dx.doi.org/10.1007/978-981-13-1924-2_3
http://dx.doi.org/10.1007/978-981-13-1924-2_2
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Shioya’s team (Chap. 10) has been developing an open-source software called
ADVENTURE system. The ADVENTURE system is a general-purpose parallel
finite element analysis system and can simulate a large-scale analysis model with
supercomputer like the Earth Simulator or K computer. In the ADVENTURE
system, HDDM (hierarchical domain decomposition method), a very effective
technique for large-scale analysis, was developed. They aimed to develop a numer-
ical library based on HDDM that is extended to pre- and post-processing parts,
including mesh generation and visualization of large-scale data, for the post-
petascale simulation.

Fujisawa’s team (Chap. 11) has been developing advanced computing and
optimization infrastructures for extremely large-scale graphs on post-petascale
supercomputers. The large-scale graph analysis has attracted significant attention as
a new application of the next-generation supercomputer. It is, however, extremely
difficult to realize a high-speed graph processing in various application fields
by utilizing previous methods. They aimed to develop advanced computing and
optimization infrastructures for extremely large-scale graphs on the next-generation
supercomputers.

Noda’s team (Chap. 14) has been working on Project CASSIA (Comprehensive
Architecture of Social Simulation for Inclusive Analysis) which aims to develop a
framework to administer to execute large-scale multiagent simulations exhaustively
to analyze socially interactive systems. The framework realizes engineering envi-
ronment to design and synthesize social systems like traffics, economy, and politics.

1.4 Results and Achievements

The JST CREST post-petascale project has ended at the end of March 2018. At
the end, the final evaluation was done, and the overall results were evaluated as
“excellent” by the evaluation committee.

As planned at the beginning of the project, the goals described in Sect. 1.2 have
been achieved.

Regarding research and development of highly functional and reliable system
software for sustainable high-performance computing technologies, at first of all,
the researchers of each team have published many excellent technical papers and
valuable software as well as research presentations at prominent academic societies.
Furthermore, making use of the developed software, large-scale applications are
executed in many practical application fields from tsunami simulation, weather sim-
ulation to graph analysis, economic simulation, resulting in valuable contribution
to solving social and scientific problems. In particular, it was showing not only
the conventional large-scale numerical simulation but also the application of high-
performance computing to new and important field such as big data analysis and
social simulation. And, in the team having close to the real application, collaboration
and joint research with the industries were actively carried out.

http://dx.doi.org/10.1007/978-981-13-1924-2_10
http://dx.doi.org/10.1007/978-981-13-1924-2_11
http://dx.doi.org/10.1007/978-981-13-1924-2_14
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Exploration for the future direction of future high-performance computing
research and development is an urgent and significant agenda in our research area.
Although the subjects of this research area were mainly focused on software,
at the time of setting research area, there was discussion on whether or not
to conduct hardware research. During the project, the research done by many
researchers has caught the trend of large-scale systems such as with many-core
processors or accelerators from software’s point of view, and consequently the
researches is applied to the current systems, indicating the direction to the future
high-performance computing systems. As well as conventional technologies for
large-scale numerical computation, the project was also able to address the storage
technology required for big data processing, the complexity of memory hierarchy,
and the power problem. Furthermore, we have handled quickly to new trends such
as FPGA after the start of the project.

As mentioned in Sect. 1.2 the project for the development of the next Japanese
flagship supercomputer, the Post-K (Flagship 2020 project), was started from
FY2014, and the development is under way. The operation for the public service
will be scheduled around 2020. Many software developed in our project, such as
numerical libraries and power control software, will be actually deployed and used
for the post-K.

From the viewpoint of fostering human resources of the leaders in the next
generation of high-performance computing, many excellent young researchers were
produced as many young researchers in the project are awarded such as the “Young
Encouragement Prize” and the “Research Award” in the community. It is thought as
a big achievement that the research team took the initiative to organize numerous
international and domestic symposiums, workshops, and seminars related to the
research area, resulting in improvement of international awareness of leaders and
researchers of the teams.

As a major international collaboration, the project collaborated with SPPEXA
with Germany and France. Under the framework of the “Software for Exascale
Computing (SPPEXA)” program which is implemented by DFG (Germany), JST
(Japan) and ANR (France) agreed to support trilateral projects for high-performance
computing. Some of teams have been awarded as a SPPEXA partner supported
by JST. The research duration of the awarded teams was extended by 1 or 2
years, and the research results could be further improved through the international
collaborative research.

The JST CREST post-petascale software project was expected to play a role
bridging to post-petascale and exascale computing through system software. Cur-
rently, research and development of supercomputers aiming at the exascale comput-
ing is going on in several countries. It is important to continue several dissemination
activities as well as for post-K. We hope that the technologies and software
developed in the project should be used in several applications even after the
research period and further drive the direction of research for the future high-
performance computing.



Chapter 2
ppOpen-HPC/pK-Open-HPC:
Application Development Framework
with Automatic Tuning (AT)

Kengo Nakajima, Masaharu Matsumoto, Masatoshi Kawai,
Takahiro Katagiri, Takashi Arakawa, Hisashi Yashiro, and Akihiro Ida

Abstract ppOpen-HPC and pK-Open-HPC are open source infrastructures for
development and execution of large-scale scientific applications on post-petascale
(pp) supercomputers with automatic tuning (AT). Both of ppOpen-HPC and pK-
Open-HPC focus on parallel computers based on many-core architectures and
consist of various types of libraries covering general procedures for scientific
computations. The source code, developed on a PC with a single processor, is linked
with these libraries, and the parallel code generated is optimized for post-petascale
systems. In this article, recent achievements and progress of the ppOpen-HPC and
pK-Open-HPC project are summarized.

2.1 Overview of ppOpen-HPC

“ppOpen-HPC [1, 2]” is an open source infrastructure for development and exe-
cution of optimized and reliable simulation code on post-petascale (pp) parallel
computers based on many-core architectures, and it consists of various types of
libraries, which cover general procedures for scientific computation. Source code
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developed on a PC with a single processor is linked with these libraries, and the
parallel code generated is optimized for post-petascale systems. The target post-
petascale system is many-core-based systems, such as the Oakforest-PACS system
operated by JCAHPC [3]. ppOpen-HPC is part of a 5-year project (FY.2011–2015)
spawned by the “Development of System Software Technologies for Post-petascale
High-Performance Computing [4]” funded by JST-CREST.

The framework covers various types of procedures for scientific computations,
such as parallel I/O of datasets, matrix assembly, linear solvers with practical
and scalable preconditioners, visualization, adaptive mesh refinement, and dynamic
load balancing, in various types of computational models, such as FEM (finite
element method), FDM (finite difference method), FVM (finite volume method),
BEM (boundary element method), and DEM (discrete element method). Automatic
tuning (AT) technology enables automatic generation of optimized libraries and
applications under various types of environments. We release the most updated
version of ppOpen-HPC as open source software every year in November (2012–
2015), which is available at the home page of ppOpen-HPC [2].

In 2016, the team of ppOpen-HPC joined ESSEX-II (Equipping Sparse Solvers
for Exascale) project (Leading P.I. Professor Gerhard Wellein (University of
Erlangen-Nuremberg)) [5]), which is funded by JST-CREST and the German
DFG Priority Programme 1648 “Software for Exascale Computing” (SPPEXA)
[6] under Japan (JST)-Germany (DFG) collaboration until FY2018. In ESSEX-II,
we develop pK-Open-HPC (extended version of ppOpen-HPC, framework for exa-
feasible applications), preconditioned iterative solvers for quantum sciences, and a
framework for automatic tuning (AT) with performance model.

Original ppOpen-HPC includes the following four components (Fig. 2.1):

• ppOpen-APPL Frameworks for development of applications by FEM, FDM,
FVM, BEM, and DEM (Fig. 2.2) [1, 2]

FT

FDMFEM BEM DEM

COMM

ppOpen-APPL

MGppOpen-MATH

ppOpen-SYS

GRAPH VIS MP

FVM

ppOpen-AT STATIC DYNAMIC

ppOpen-HPC

User’s Program

Optimized Application with 
Optimized ppOpen-APPL, ppOpen-MATH

pK-Open-FVM

pK-Open-SOL

pK-Open-AT

pK-Open-HPC

Framework for
Application
Development

Math Library

Automatic
Tuning (AT)

System
Software

Fig. 2.1 Overview of ppOpen-HPC and pK-Open-HPC [1, 2]
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FEM
Finite Element Method

FVM
Finite Volume Method

BEM
Boundary Element Method

FDM
Finite Difference Method

DEM
Discrete Element Method

Fig. 2.2 Target applications of ppOpen-HPC and pK-Open-HPC

• ppOpen-MATH Math library
• ppOpen-AT Capability of automatic tuning
• ppOpen-SYS System software

In, pK-Open-HPC, we are focusing on the following issues and developed new
libraries (Fig. 2.2)

• pK-Open-FVM Frameworks for development of applications by FVM with AMR
(adaptive mesh refinement)

• pK-Open-SOL Robust and efficient preconditioned iterative solvers
• pK-Open-AT Capability of automatic tuning

In this article, we introduce recent developments and activities in ppOpen-HPC
and pK-Open-HPC. The structure of this article with information of authors is as
follows:

1. Overview of ppOpen-HPC (Kengo Nakajima)
2. Development of pK-Open-FVM (Masaharu Matsumoto)
3. Robust and massively parallelized preconditioner for quantum systems

(Masatoshi Kawai) (related to pK-Open-SOL)
4. Automatic tuning (AT) in ppOpen-HPC and pK-Open-HPC (Takahiro Katagiri)
5. Development of a multi-physics coupler ppOpen-MATH/MP (Takashi Arakawa,

Hisashi Yashiro)
6. Efficient structures of H-matrices on distributed memory computer systems

(Akihiro Ida) (related to ppOpen-APPL/BEM and pK-Open-SOL)
7. Summary (Kengo Nakajima)
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2.2 Development of pK-Open-FVM

Adaptive mesh refinement (AMR) technique [7, 8] can provide efficient numerical
calculation by generating hierarchical layers with different cell sizes at the local
regions where high resolution is needed. It is, however, generally difficult to
implement the AMR treatment in conventional simulation codes discretized by finite
volume method, finite difference method, and so on. To overcome this problem, a
block-based AMR framework, pK-Open-FVM, with which the AMR technique can
be relatively easily ported to generic simulation programs which hire the uniform
cell system has been developed. In this framework, the AMR technique is applied
to a block-structured region consisting of the fixed number of cells, as shown in
Fig. 2.3. A generic simulation program using uniform cell size can be implemented
in each block in the AMR framework [9]. Once a situation occurs where high
resolution is needed in a local region, the corresponding block-structured region is
divided into eight for three-dimensional case and new block-structured regions with
uniform cell with half size of the original one are generated. In the AMR framework,
the simulation domain is divided into multiple sub-domains, and they are assigned to
a number of processes for parallel computing using MPI. A sub-domain is composed
of multiple block-structured regions each of which has the fixed number of grids.
When high resolution is required at a certain region in the sub-domain, a block-
structured region with refined cells, which is called child block, is locally created.

For the application of the AMR framework, (1) Vlasov-Poisson plasma simu-
lations, which are composed of 1D uniform direction and 1D AMR direction, (2)
AMR plasma particle simulations for the development of reactive plasma deposition
equipment, and (3) particle-based sugarscape model simulations are introduced as
follows.

Fig. 2.3 Example of
block-AMR
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2.2.1 Application to Vlasov-Poisson Simulation

On large-scale computing, high-efficient calculation by AMR technique is one of the
most attractive features. In particular, high-dimensional (≥4 dimension) simulation
is suitable for the AMR simulation. Numerical simulation of Vlasov equation is
one of the famous high-dimensional simulations in the plasma physics field. In
Vlasov equation, a collision term on the right hand side of Boltzmann equation
is eliminated.

∂f

∂t
+ v · ∂f

∂x
+ F

m
· ∂f

∂v
= 0

Here, f = f (x, v, t) is velocity distribution function, x, v are position, velocity, m
is particle mass, and F is external force, respectively. This equation includes position
coordinate, 3 dimension, + velocity coordinate, 3 dimension = total 6 dimension.
It is difficult to solve this equation under the condition with six-dimensional
coordinate because very large amount of memory is needed. Therefore, the function
of AMR framework is extended to combine uniform mesh direction and AMR
direction, and the extended function is applied to two-dimensional Vlasov-Poisson
system (one-dimensional space and one-dimensional velocity). In this simulation,
spatial direction is set to uniform 1D mesh because Poisson equation is solved to
estimate electric field as an external force by fast Fourier transform, and velocity
direction is set to adaptive mesh. Figure 2.4 shows the contour figure of distribution
function at t = 0, 128, 176 s under the typical simulation conditions. The model
calculated here is called “beam instability.” In this model, twin electron beams with

Fig. 2.4 Application of AMR to 1D-1D Vlasov-Poisson simulation
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different components of velocity generate a vortex and combine into single electron
beam as time proceeds. As criteria for mesh refinement, the gradient of velocity
is set. When adaptive mesh direction (namely, velocity) have large gradient, mesh
refinement occurs, and high-resolution simulation can be conducted. The lower
right of Fig. 2.4 shows enlarged view of vortex. Lv. 3 block is generated where
the gradient of velocity is large. The execution time of the AMR simulation can
reduce 30% compared to the simulation with uniform mesh at velocity direction.

2.2.2 AMR Particle Simulation for the Development
of Reactive Plasma Deposition Equipment

Plasma particle/fluid hybrid simulation code for the development of reactive plasma
deposition (RPD) equipment (Fig. 2.5) has been developed by using pK-Open-
FVM [10]. In this simulation, the interaction of electromagnetic fields and plasma
particles can be simulated by calculating electromagnetic fields defined on the
computational mesh and mesh-free plasma particles, simultaneously. In such a
plasma particle simulation, in general, several hundreds of particles per one mesh
are needed because the influence of statistical error depending on the number of
particles is reduced.

In a conventional simulation with uniform mesh, the statistical error increases
with increasing the difference of plasma density in the computational domain. In
order to reduce statistical error, much more particles are needed and the execution
time of simulation is also increased. On the other hand, by using the AMR

Fig. 2.5 RPD equipment
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Fig. 2.6 Distribution of ion
density and computational
mesh

Fig. 2.7 The number of
particles used in the
simulation with/without
AMR technique

framework, cell size can be adjusted according to the number of particles (plasma
density) (Fig. 2.6). That is, cell size becomes fine at high plasma density region
or becomes coarse at low plasma density region. Furthermore, Fig. 2.7 shows the
comparison of the number of particles used in the simulation with/without AMR
technique. As a result, the total number of particles and execution time can be
reduced by using AMR technique. The simulation using indium tin oxide as a
material source which can’t be conducted in conventional code can evaluate an
experimental result (dependency of coil current), quantitatively.

2.2.3 Application to Particle-Based Sugarscape Model

Test simulations by adopting the sugarscape model which is proposed for the
simulation for an artificial society by using many agents representing inhabitants
in a certain area are conducted [11]. The inhabitants are treated as a bunch of
particles and the sugar amount are assigned at each grid as the environment in a
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Fig. 2.8 Initial distribution
of sugar amount in the color
map and inhabitants with dots

two-dimensional simulation domain. In the simulation, initially, two peaks of sugar
are placed and randomly distribute the inhabitants in Fig. 2.8. In the PSS model, the
inhabitant agents can move freely in the computational domain. The following are
the equations of motion to be solved:{

∂x
∂t

= v

∂v
∂t

= mFs − nFd

Here, Fs is the spatial gradient of the sugar amount obtained at inhabitant
position, and Fd is the spatial gradient of the agent density obtained at inhabitant
position. Therefore, from these equations, the inhabitant agents receive forces to the
direction of high-sugar density region and low agent density region, as shown in
Fig. 2.9.

2.3 Robust and Massively Parallelized Preconditioner for
Quantum Systems

2.3.1 Objective

The objective of this research is to develop an iterative solver with robustness and
exascale parallelism.

In the field of quantum systems, researchers are very interested in electrical,
structural, and chemical properties of materials such as graphene and topological
insulators. To clarify the physical properties of the target materials, we must
solve the generalized eigenvalue problems. A collaborating project of ppOpen-HPC
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Fig. 2.9 Distribution of
inhabitants number density
and refinement block

Fig. 2.10 Example of
SS/FEAST method Arbitrary area

Integral points

(founded by CREST) and ESSEX-II (founded by SPPEXA) focuses on solving the
problems using the Sakurai-Sugiura (SS) [12] or FEAST [13] method. By using
these methods, we can calculate eigenvalue-eigenvector pairs that lie in an arbitrary
area (Fig. 2.10). The area is described using a liner integral, and we must solve a sys-
tem of simultaneous linear equations (SLEs) on integral points. Coefficient matrices
Az of the SLEs on each integral point are calculated as Az = zB – A. Then, matrices A
and B are defined by an application. These matrices derived from our target applica-
tions are sparse and large scale. The values of z are determined from the coordinate
of each integral point. There is a possibility that ill-conditioned coefficient matrices
are provided. Therefore, the requirements of the iterative solver are:
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• Robustness
• Massive parallelism

In this study, we select an ILU preconditioned Krylov subspace method as the
solver. In addition, we applied regularization methods to incomplete LU (ILU)
preconditioner for the robustness [14]. For the massive parallelism, we proposed
hierarchical parallelization for multicoloring algorithms [15].

2.3.2 Regularizations for Robustness

For robustness of the ILU preconditioned Krylov subspace method, we applied
two regularization methods. The first method is a blocking technique, and the
second is diagonal shifting. If conventional ILU factorization methods are applied
to real-world applications, problems such as accumulation of rounding error or a
breakdown of factorization are known to occur. The applied regularization methods
increase the robustness for overcoming such problems.

2.3.2.1 Blocking Technique

The ILU preconditioner using a blocking technique is a well-known approach to
improving the convergence. In our approach, we focus on the increasing robustness
as well. The breakdown of ILU factorization occurs if diagonal entries of the target
matrix are small. This is because the rounding errors accumulate by dividing the off-
diagonal entries by diagonal entries. By applying a blocking technique, we obtain
larger diagonal submatrices. The diagonal blocks include off-diagonal entries, as
shown in Fig. 2.11.

2.3.2.2 Diagonal Shifting

This is a strong and direct method to make diagonal dominant matrices. If we
apply diagonal shifting, the matrix Ãz, which should be incompletely factorized,
is calculated as:

Ãz = AZ + αI I = identical matrix

Then, the constant value α is decided by the user. α is then added to the diagonal
entries of the target matrix AZ , making it the diagonal dominant matrix Ãz. The
larger value of α makes a more diagonal dominant matrix. However, the effect of
ILU preconditioner gets smaller because of larger difference between AZ and Ãz.
The best parameter α depends on the target application and shift value z.
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Small entry

Small diagonal entries Diagonal blocks including
non–small entries

Blocking

Non-small entry

Fig. 2.11 The effect of the blocking technique

2.3.2.3 Numerical Evaluation

For numerical evaluations, we prepared 128 datasets. There are two types of
different model. One model simulates the graphene, and the other simulates the
topological insulator. Each model has four kinds of degrees of freedom (DoF) data,
and each set of data has 16 data shifts. These models are symmetrical and complex
values. For solving them, we implemented the block IC preconditioned conjugate
orthogonal conjugate gradient (COCG) method. The BIC-COCG solver converged
when the relative residual norm was less than 10−7. If we applied only a blocking
technique with a small size, we would solve only 64 datasets. However, by applying
a larger block size (64) and (0.0, 1.0) data shifts, we solved all datasets (Fig. 2.12).

2.3.3 Hierarchical Parallelization of Multicoloring Algorithms
for Massive Parallelism

The multicoloring is often used for parallelization of ILU factorizations and
forward-backward substitutions. However, the coloring algorithms themselves are
not parallelized in most reported research. To support the exascale system, we must
parallelize them. In addition, the coloring algorithms have a significant impact on
the convergence rate and performance of the ILU preconditioned Krylov subspace
method. If local colorings are applied to parallelizing the ILU preconditioners
for each MPI process, the convergence rate degrades as the number of processes
increases. The multicoloring with hierarchical parallelization has a small influence
on the convergence rate, because the proposed method provides global coloring.
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Fig. 2.12 Numerical
evaluation of the regularized
IC-COCG

Fig. 2.13 Example of five-colored matrix for four processes

2.3.3.1 Parallelization of the ILU Preconditioner with Multicoloring

Generally, the ILU factorization and forward-backward substitution have sequen-
tiality. To parallelize them, the multicoloring algorithms are widely applied. Figure
2.13 shows the example of a “three-colored matrix for four processes” paralleliza-
tion. The diagonal submatrices colored with the same color have no relationships.
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All processes calculate these diagonal submatrices and off-diagonal submatrices in
the same row, parallely.

2.3.3.2 Hierarchical Parallelization

As mentioned above, the result of the multicoloring has a strong impact on
convergence and computational time per iteration. As a result, there are many kinds
of coloring algorithms, such as Cuthill-Mckee (CM), greedy [16], algebraic mul-
ticoloring (AMC) [17], and so on. The best algorithm depends on the application.
Therefore, we need a versatile method that can parallelize existing algorithms.

To parallelize these algorithms, a hierarchical parallelization method that sup-
plies colored groups is proposed. In the initial condition, each process stores a
part of a coefficient matrix. First, each process separates handling elements into
several groups (Fig. 2.14: Step 1). Second, each process makes a new graph that
shows the relationships between separated groups, and a master process gathers the
graph. After that, a master process colored the new graph (Fig. 2.14: Step 2). Third,

Fig. 2.14 Coloring process with hierarchical parallelization
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the master process scatters the coloring result to the other processes. Using this
approach, all processes get colored groups (Fig. 2.14: Step3). Finally, each process
colored the handling elements in accordance with the colored groups (Fig. 2.14:
Step 4).

2.3.3.3 Numerical Evaluation

In this section, we show that there is not a large difference of the convergence and
performance between sequential hierarchical parallelized multicoloring. In addition,
we show that the convergence of the ILU preconditioned Krylov subspace method
parallelized with the proposed multicoloring does not influence the convergence.
The target problems in this section are symmetric and have real values. Then, we
use the block IC preconditioned CG (BICCG) method for numerical evaluations.
The size of the block is four, and the constant value for the diagonal shifting is 100.
The BICCG solver converged when the relative residual norm was less than 10−7.
We show numerical evaluations of the performance and convergence on several
models Numerical tests were conducted on the Reedbush-U supercomputer at the
Information Technology Center, University of Tokyo, Japan.

The test problems for the numerical experiments were ParabolicFEM, Thermal2,
Flan1565 [18], and Poisson (seven-points stencil, 128 × 128 × 256 DOF). For the
coloring, we used greedy and AMC methods with lexicographic and CM ordering.
Figure 2.15 shows the comparison between the sequential and the hierarchical

Fig. 2.15 Comparison between the sequential and the hierarchical parallelized multicoloring
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Fig. 2.16 Numerical evaluation of proposed method on Oakleaf-FX

parallelized coloring on 32 nodes. This figure shows the ratio of the number of
iterations and the computational time required by the hierarchical parallel coloring
method to those required by the sequential coloring method. The differences in
the convergence and computational time between the sequential and hierarchical
parallelized coloring are small. The most significant differences in the convergence
and computational time are 32.3% and 26.6%, respectively.

Next, we show a numerical evaluation on a larger model with 4800 nodes
cluster. Numerical tests were conducted on the Oakleaf-FX (SPARC64™ IXfx)
supercomputer at the Information Technology Center, University of Tokyo, Japan.
The program was parallelized with both OpenMP and MPI. The number of threads
was 16 per process. The test problem for the numerical experiment was the graphene
model. The DoF was 536,870,912. The coloring algorithm, which is parallelized
with the hierarchical approach, is the ten-color AMC.

By applying the hierarchical parallelized algebraic multicoloring, the conver-
gences for each number of processes are similar (Fig. 2.16, dashed line with
square marks). Regarding the effect of constant convergence, the performance of
the BICCG method is good.

2.3.4 Publication of Deliverable

To publicize the developing ILU preconditioner, we implemented our code in PHIST
(Fig. 2.17) [5]. PHIST has an eigenvalue solver, such as the SS and FEAST method,
and supports a change library such as GHOST (developed by ESSEX-II), MKL,
CuBLAS, and MAGMA. The SLEs derived from FEAST in the PHIST are solved
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・
・
・

Fig. 2.17 Example of PHIST with the block ILU preconditioner [5]

by GMRES, BiCGStab, or any other iterative algorithms. By implementing our
preconditioner in PHIST, we try to accelerate the iterative solver for the SS and
FEAST.

2.4 Automatic Tuning (AT) in ppOpen-HPC
and pK-Open-HPC

2.4.1 Functions of ppOpen-AT

ppOpen-MATH/MP is a coupling software applicable to the models employing
various discretization methods such as FDM, finite volume method (FVM), and
finite element method (FEM).

For functions of auto-tuning (AT) by ppOpen-AT, the following loop transforma-
tions as AT functions are proposed in our previous research [19].

(a) Loop split and replacement of statements to optimize register optimizations
(b) Loop collapse to obtain longer length of loops to optimize thread-level opti-

mizations
(c) Code selection with computational kernels between low Byte per Flops (B/F)

and high B/F

With respect to the above three AT functions, in particular, (c) code selection
with kernels between low B/F and high B/F is original AT facility for ppOpen-
AT/FDM. The AT of code selection is aimed to optimize the code by lower level
of memory optimization with respect to hierarchical memory configurations on
current computer architectures. This optimization is categorized for “lower memory
optimizations” to cache memories, such as to level 1 cache, level 2 cache, and
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registers by adapting the above loop split, for example. On the other hand, we
categorize “upper memory optimizations” to under the lowest cache, such as last
level cache (LLC), and including memory, such as 3D stacked memory with highly
bandwidth.

We suppose code optimization for the upper memory optimizations as like
algorithm-level optimizations. Hence, we call the code optimization for upper
memory “code selection.”

A select construct can be specified by ppOpen-AT, which is one of AT languages
for the above code optimizations to upper memory optimizations, while lower
memory optimizations, such as register optimization, can be specified by inner
processes on the target function specified by ppOpen-AT. Hence the AT by ppOpen-
AT can provide the higher and lower code optimizations.

2.4.2 Target Users

We focus on the following users for ppOpen-AT.

(a) Users who are using ppOpen-APPL/FDM as a black-box tool
(b) Users who want to know effective tuning strategy for newly released computers
(c) Researchers of AT methodology

For the users (a), they receive a merit for execution speedup with ppOpen-AT.
For the users (b), they receive actual tuned codes and effect of tuning for the newly
released computers, such as fast method of loop collapse by referring history of AT
by ppOpen-APPL/FDM.

For the researches (c), they can compare effect of proposal method by them with
compared to tuned execution time by ppOpen-APPL/FDM.

Hence there are many potential users for ppOpen-AT.

2.4.3 Performance Evaluation

The following three kinds of processes are implemented in this performance
evaluation:

(a) Baseline code: Ratio of B/F is high (approximately 1.7). Experimentally, the
code is the best code for vector machines.

(b) Loop collapse code (including IF-sentences): (i) Fourth-order central difference
scheme, (ii) process of boundary area, and (iii) time-step expansion for leapfrog
scheme are included into a conventional loop; then make it one loop. To apply
this modification, ratio of B/F can be reduced to approximately 0.4. Hence this
makes a loop with low B/F ratio.
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(c) Loop collapse code (IF-sentences free): (i) A loop with IF-sentences free and
(ii) a loop with dedicated process of boundary area are made in the code of (b).
For the (i), it is excepted to obtain better code to the loop in (b) by compilers,
because of simple code without IF-sentences.

We evaluate proposal AT methodology by implementing the code selection
function based on the above three codes. Performance evaluation of ppOpen-
APPL/FDM are evaluated with the Intel Xeon Phi (Knights Landing, KNL) by using
a node of the Oakforest-PACS, which is installed in JCHPCH (The University of
Tokyo and Tsukuba University, Japan), and the Intel Broadwell EP (BDW) by using
a node of the Reedbush-U, which is installed in Information Technology Center,
The University of Tokyo, and the Sparc64 XIfx (FX100) by a node of the Fujitsu
PRIMEHPC FX100, and the Haswell-EP by a node of the Fujitsu CX400, which is
installed in Information Technology Center, Nagoya University.

It is implemented an advanced memory with 3D stacked memory for memory
on KNL and FX100. Both effective performance of memory bandwidth is approxi-
mately 300 GB/s. Effect of AT is presented in [20]. The obtained knowledge from
[20] is summarized as follows:

• With FLAT-QUADRANT mode for memory and core job allocation for the KNL,
factor of speedups by AT is reached to 1.33x at maximum.

• Selected the best implementation for kernel of update_stress, (b) loop collapse
code (including IF-sentences) is the best for the KNL, while (c) loop collapse
code (IF-sentences free) is the best for the others (the FX100 and the Haswell-
EP). The best implementation depends on computer architectures, hence the
proposed AT methodology effects well for current advanced CPU environments.

Figure 2.18a, b show execution time between the BDW and the KNL by AT
and normalized factors of speedups for the KNL based on execution time in the
BDW. Fig. 2.18a shows that maximum 2.4x speedup is established for the KNL

Fig. 2.18 Effect of AT and comparison of execution time. It shows aggregated execution time of
kernel update_stress up to 2000 time steps. (a) The best execution time between BDW and KNL
between original and with AT. (b) Normalized speedup factors of the KNL based on execution time
in the BDW
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to the BDW, and the BRD obtains much speedups to the KNL between original
and with AT. It has almost 3x bandwidth to the BDW with respect to memory
bandwidth for the KNL. Hence it has a room to optimize codes for the KNL, but it is
reasonable performance for the KNL in viewpoint of hardware ability. For summary
of this performance evaluation, we show speedup by the AT we proposed with an
application of FDM. This also indicates that crucial speedups can be obtained by
AT we have developed in this project.

2.5 Development of a Multi-physics Coupler
ppOpen-MATH/MP

2.5.1 Background

Recent progress on high-end supercomputers has enabled larger scale, more com-
plex simulations. Owing to this progress, the phenomena currently possible to
simulate have become more complex, and software applications seen as a projection
of actual natural phenomena have also become larger and larger. As an example, we
take a climate model that is one of the most typical complex system simulation
models in use today. According to [21], Climate model NCAR CCSM was actually
composed of two component models, atmosphere and ocean, at the beginning of its
development. In the 1980s, a sea ice model was added, and an aerosol model was
added in the 1990s. Over time, interactive vegetation and carbon cycle models have
also been added. These component models are usually developed independently
by researchers in the field of the respective research and have a grid space and
grid structure suitable to the phenomena that the model represents. Therefore, on a
multi-physics simulation, a coupling program that overcomes the difference of code
structure and grid system has acquired an important role.

Because of the background described above, we have been developing a cou-
pler called ppOpen-MATH/MP. ppOpen-MATH/MP is designed to be applicable
to models employing various discretization methods supported by ppOpen-HPC
software suites such as FDM, FVM, and FEM. This wide applicability is achieved
by being independent from the grid structure and is designed so that users can
implement their own interpolation code.

2.5.2 NICAM-COCO Coupling

To demonstrate the applicability of ppOpen-MATH/MP, we utilized it to achieve
the coupling of an atmospheric model and an ocean model. The atmospheric model
selected for this purpose is NICAM, a non-hydrostatic global model employing an
icosahedral grid system and the FVM discretization method [24]. The CCSR Ocean



30 K. Nakajima et al.

Fig. 2.19 Grid structure of NICAM and COCO. The colored hexagonal grid represents NICAM
grid and the black rectangular grid represents COCO grid

Component Model, COCO [24], is used as the ocean model to be coupled with
NICAM. COCO adopts a tripolar grid, in which the northern polar region grid points
do not follow latitude-longitude, and the discretization method is FDM. Figure 2.19
shows the grid structure. The colored hexagonal grid represents the NICAM grid,
and the black rectangular grid represents the COCO grid. As stated previously,
for achieving wide applicability, ppOpen-MATH/MP is designed so that users can
implement their own interpolation code. The interpolation algorithm utilized in this
study is based on the first-order conservative remapping scheme in [22]. Physical
quantities exchanged from NICAM to COCO are comprised of 13 variables such as
wind speed, heat flux, and precipitation. And the number of quantities exchanged
from COCO to NICAM is comprised of six variables such as SST and sea ice
thickness.

2.5.3 Coupling Results

Coupled simulation was performed on the Fujitsu Oakforest-PACS of the University
of Tokyo. Figure 2.20 shows the result, total precipitation, and monthly mean
sea surface temperature of October. Horizontal resolution is about 14 km on
NICAM and 0.1 degree on COCO. We can see that the realistic distribution is
successfully represented. In more detail, it can be seen that several precipitation
band extends from the western Pacific equatorial region to the Japanese archipelago.
This represents the course of the typhoon that approached in October. In addition
to high-resolution calculations as shown above, low-resolution NICAM-COCO
coupling by ppOpen-MATH/MP has been also used for realistic meteorological
simulation studies such as Madden-Julian oscillation reproduction experiments [25].
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Fig. 2.20 Total precipitation (blue scale) and average sea surface temperature (color scale) of
October on NICAM-COCO coupled simulation. Horizontal resolution is 14 km on NICAM and
0.1 degree on COCO

2.5.4 NICAM-COCO and I/O Component

In addition to NICAM-COCO coupling, we have implemented NICAM and I//O
component coupling. The reason for this coupling is that the icosahedral grid
employed by NICAM is not suitable for analyzing the results. For example, the
calculation of the zonal mean values is not straightforward, and the visualization
tools assume a latitude-longitude grid (lat-lon grid) in many cases. So, we developed
an IO program that converts the icosahedral grid to the lat-lon grid and is executed
in parallel with NICAM. We implemented three types of conversion schemes, a
bilinear interpolation, a control volume weighted average, and the nearest neighbor
method. The I/O component is designed so that the user can select one of these
schemes for each set of output data by using a configuration file. Figure 2.21
is a schematic of the coupling system described above. The coupling system is
designed so that NICAM automatically detects the coupling pattern at runtime
without any other configuration by the user. For example, when COCO is executed
in parallel with NICAM, subroutines for NICAM-COCO coupling are used, and if
not, subroutines of the mixed layer ocean model are called. IO is also the same as
in the case of COCO, in which NICAM automatically sends output data to I/O only
when the I/O component is executed.



32 K. Nakajima et al.

Fig. 2.21 A schematic of NICAM coupling system. For simplicity ppOpen-MATH/MP is illus-
trated as an independent component, but actually it works as a library called from each component

2.6 Efficient Structures of H-Matrices on Distributed
Memory Computer Systems

The ppOpen-APPL/BEM, which is a software for BEM analyses, consists of BEM-
BB framework and HACApK library. All the components are parallelized based on
the hybrid MPI + OpenMP programming model. By using the BEM-BB framework,
the users can easily develop a parallel BEM code for their own application by
adding a user function describing the integral operation to the framework [26].
To overcome a disadvantage of BEM that the complexity of at least O(N2) is
required, we also provide the HACApK library which adopts hierarchical matrices
(H-matrices) as low-rank structured matrices. The idea of H-matrices is based on
the fact that submatrices corresponding to remote interactions become numerically
low-rank. H-matrices reduce the complexity from O(N2) to O(N log N). For
parallelization of H-matrices on distributed memory computer systems, we have
proposed a set of algorithms for H-matrices construction and performing H-matrix-
vector multiplication [27], which employed in HACApK. In performance tests
using electric field analyses, the HACApK exhibits a parallel speedup for the H-
matrix-vector multiplication up to about a few hundred MPI processes.
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Fig. 2.22 An H-matrix structure coming from normal H-matrices (a) and its conversion to a BLR
(b) and a lattice H-matrix (c). Blocks painted in deep red show dense submatrices and blocks in
light red indicate low-rank submatrices

For massively parallel processing (MPP), key points are to achieve good load
balancing and to construct efficient communication pattern among MPI processes.
Unfortunately, the partition structures of H-matrices are too complicated as shown
in Fig. 2.22a to meet these requirements. Simplifying the partition structures
would be one possible approach to meet requirements for MPP. Some simplified
formats are proposed in the literature and they can be regarded as special cases
of H-matrices. The block low-rank (BLR) matrices have the simpler structure as
shown in Fig. 2.22b, and the structure is one of the most convenient ones for
the approach above. However, as a trade-off, the memory usage increases from
H-matrices O(N log N) to O(N1.5). In [28], we discussed the applicability of BLR-
matrices instead of H-matrices for large-scaled BEM analyses on a distributed
memory computer system. The implementation of the BLR using our proposed
exhibits a parallel speedup up to about 10,000 MPI processes for the test problems
that H-matrices suffered from a saturation of speedup around 100 MPI processes.
We confirm that the BLR version is significantly faster than the normal H-matrix
version, given a large number of CPU cores.

In [29], we proposed a new variant of low-rank structured matrices, named
“lattice H-matrices.” As shown in Fig. 2.22, the lattice H-matrices appear to be a
hybrid of normal H-matrices and BLR-matrices. Lattice H-matrices are defined by
introducing the lattice structure into normal H-matrices. In other words, the lattice
H-matrices are constructed by utilizing H-matrices as submatrices in blocks of the
lattice structures observed in BLR-matrices. When assigning the lattice blocks to
MPI processes, we expect the lattice H-matrices to maintain the advantages of
both H-matrices and BLR-matrices. The advantages are the high compressibility
of H-matrices, which reduces the memory usage, and the convenience of matrix
arithmetic with BLR-matrices. We can restrict ourselves to performing complex
arithmetic originating from the H-matrices structure only in serial computing or
thread processing on a CPU node, while we can utilize sophisticated existing
parallel algorithms for dense matrices used in ScaLAPACK based on efficient
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communication patterns between MPI processes on distributed memory systems.
Thanks to the complex structure in each block of the lattice, lattice H-matrices
reduce the memory complexity from BLR O(N1.5) to O(N log N). We confirmed
the memory complexity both in theory and in practical experiments. In numerical
experiments of electric field analyses, we confirmed that a relatively good load
balance is maintained in the case of lattice H-matrices even if we use a large
number of MPI processes. The execution time of lattice H-matrices is slightly larger
when normal H-matrices continue to demonstrate a speedup. In contrast to the
speedup saturation with only a few dozen processors for normal H-matrices, the
implementation of the lattice H-matrices exhibits a parallel speedup that reaches
as high as 4000 MPI processes. It is confirmed that the implementation of lattice
H-matrix version is significantly faster than of normal H-matrix version if we use
more than several hundred MPI processes.

2.7 Summary

In this article, recent achievements and progress of the ppOpen-HPC and pK-
Open-HPC have been presented. The libraries developed for ppOpen-HPC and
pK-Open-HPC are open for public use under MIT license and can be downloaded at
the website of the project [1]. ppOpen-HPC and pK-Open-HPC have been installed
on various types of super computers, and are utilized for research and development
that requires large-scale supercomputer systems. Moreover, ppOpen-HPC and pK-
Open-HPC are introduced in graduate and undergraduate classes at universities.
Some of the development of pK-Open-SOL is implemented to PHIS [5]. Currently,
we are preparing for further research and development toward ppOpen-HPC and
pK-Open-HPC on exascale and Post Moore systems.
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Chapter 3
Scalable Eigen-Analysis Engine for
Large-Scale Eigenvalue Problems

Tetsuya Sakurai, Yasunori Futamura, Akira Imakura,
and Toshiyuki Imamura

Abstract Our project aims to develop a massively parallel Eigen-Supercomputing
Engine for post-petascale systems. Our Eigen-Engines are based on newly designed
algorithms that are suited to the hierarchical architecture in post-petascale systems
and show very good performance on petascale systems including K computer. In
this paper, we introduce our Eigen-Supercomputing Engines: z-Pares and EigenExa
and their performance.

3.1 Introduction

Our project aims to develop a massively parallel Eigen-Supercomputing Engine
for post-petascale systems. This Eigen-Engine is to be developed based on newly
designed algorithms that are suited to the hierarchical architecture in post-petascale
systems. Our Eigen-Engine is expected to overcome issues of scalability and fault
tolerance in conventional eigensolvers. To achieve the aim and provide a high-
performance Eigen-Engine that can contribute to practical applications, six research
groups are organized, and a variety of studies and developments are conducted
through collaboration with researchers in applied mathematics HPC and application
fields. Our Eigen-Engine will make it possible to do extensive scale scientific
computations that are impossible today and open the door to innovation in various
fields of science and industry.

We have collaboratively developed two Eigen-Engines: z-Pares for sparse eigen-
value problems and EigenExa for dense eigenvalue problems. These engines consist
of building blocks developed in the project, and their performance have been
evaluated in actual applications.
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3.2 Sparse Eigen-Super Computing Engine

Here, we consider complex moment-based eigensolvers and their high-performance
software: z-Pares for solving the following generalized eigenvalue problem

Axi = λiBxi , A, B ∈ C
n×n, xi ∈ C

n \ {0}, λi ∈ Ω ⊂ C, (3.1)

with sparse matrices A and B, where zB −A is non-singular in a boundary Γ of the
target region Ω .

3.2.1 Complex Moment-Based Eigensolvers

3.2.1.1 Basic Concepts

As one of the powerful algorithms for solving (3.1), a complex moment-based
eigensolver has been proposed by Sakurai and Sugiura in 2003 [37]. The basic
concept is to introduce the rational function

r(z) := ṽH(zB − A)−1Bv, v, ṽ ∈ C
n,

whose poles are the eigenvalues of the generalized eigenvalue problem: Axi =
λiBxi , and compute all poles located in Ω by solving Hankel generalized eigen-
value problem with complex moments

μk := 1

2π i

∮
Γ

zkr(z)dz

using the method proposed by Kravanja et al. [33]. Now, there are several improve-
ments and variants including direct extensions of Sakurai and Sugiura’s approach
[20–22, 25, 27, 39] and the FEAST eigensolver developed by Polizzi [36] and its
improvements [15, 32, 44, 49, 50].

Let L,M ∈ N be the input parameters and V ∈ C
n×L be an input matrix. We

define Sk ∈ C
n×L(k = 0, 1, . . . , M − 1) as follows:

Sk := 1

2π i

∮
Γ

zk(zB − A)−1BV dz. (3.2)

Complex moment-based eigensolvers are mathematically designed based on the
properties of the matrices Sk . Then, practical algorithms are derived by approxi-
mating the contour integral (3.2) using the numerical integration rule:

Ŝk :=
N∑

j=1

ωjz
k
j (zjB − A)−1BV dz, (3.3)
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where zj is a quadrature point and ωj is its corresponding weight.
The algorithms of complex moment-based eigensolvers comprise the following

three steps:

Step 1. Solve N linear systems with L right-hand sides:

(zjB − A)Wj = BV, j = 1, 2, . . . , N. (3.4)

Step 2. Construct complex moment matrices Ŝk(k = 0, 1, . . . , M −1) and others,
from Wj(j = 1, 2, . . . , N).

Step 3. Extract the target eigenpairs from the complex moment matrices.

The most time-consuming part of the complex moment-based eigensolvers is
Step 1 that is solving the linear systems (3.4). For solving the linear systems, these
eigensolvers have hierarchical parallelism.

Layer 1. Contour paths can be independently performed.
Layer 2. Each linear system can be solved in parallel.
Layer 3. The linear systems can be independently solved.

Because of the hierarchical structure of the algorithms, these methods are expected
to achieve high scalability [13, 19, 27, 31, 32, 43, 48]. The algorithm on GridRPC
systems is also considered [38, 40].

These methods have been implemented in the form of the high-performance
parallel software: z-Pares [52] and FEAST [10], respectively.

3.2.1.2 Theoretical Aspect

The complex moment-based eigensolvers can be regarded as projection methods
using a subspace constructed by the contour integral (3.3). The property of the
subspace is well analyzed using the so-called filter function:

f (λi) :=
N∑

j=1

ωj

zj − λi

,

which approximates a band-path filter for the target region Ω . Using the filter
function, error analyses of the complex moment-based eigensolvers were given
in [15, 23, 24, 44]. An error resilience technique and an accuracy deterioration
technique have also been discussed in [16, 28] using the results of the error analyses.

The relationship among typical complex moment-based eigensolvers was also
analyzed in [24] focusing on the subspace. The block SS–RR method [21] and
the FEAST eigensolver [44] are projection methods directory for solving the target
eigenvalue problem (3.1), whereas the block SS–Hankel method [20], Beyn [3], and
the block SS–Arnoldi methods [22] are projection methods for solving an implicitly
constructed standard eigenvalue problem (see [24] for the details). A map of the
relationship among the contour integral-based eigensolvers is presented in Fig. 3.1.
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Fig. 3.1 A map of the relationship among the contour integral-based eigensolvers

3.2.1.3 Extension to Nonlinear Eigenvalue Problems

The complex moment-based eigensolvers were extended to solve nonlinear eigen-
value problems (NEPs):

T (λi)xi = 0, xi ∈ C
n \ {0}, λi ∈ Ω ⊂ C,

where the matrix-valued function T : Ω → C
n×n is holomorphic in some open

domain Ω .
The block SS–Hankel [1, 2], block SS–RR [51], and block SS–CAA methods

[26] are simple extensions of the GEP solvers. Improving technique of the numerical
stability of the block SS–RR method for solving NEP was also studied in [7, 8].

As another type of complex moment-based nonlinear eigensolvers, Beyn pro-
posed a method based on Keldysh’s theorem and the singular value decomposition
[3]. Also, van Barel and Kravanja proposed an improvement of the Beyn method
using the canonical polyadic (CP) decomposition [46].

3.2.2 Distributed Parallel Sparse Eigensolver Package z-Pares

3.2.2.1 Introduction

z-Pares is a package for solving generalized eigenvalue problems (3.1). The
symmetries and definitenesses of the matrices can be exploited suitably. z-Pares
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computes eigenvalues inside a user-specified contour path and the corresponding
eigenvectors. The most important feature of z-Pares is two-level message passing
interface (MPI)-distributed parallelism.

3.2.2.2 Features

The main features of z-Pares are described below.

• Implemented in Fortran 90/95
• Solves standard eigenvalue problems Ax = λx and generalized eigenvalue

problems Ax = λBx

• Computes eigenvalues located in an interval or a circle and the corresponding
(right) eigenvectors

• Both real and complex types are supported
• Single precision and double precision are supported
• Both sequential and distributed parallel MPI builds are available
• Two-level distributed parallelism can be employed by using a pair of MPI

communicators
• Reverse communication mechanism is used to ensure the package accept any

matrix data structure
• Interfaces for dense and sparse CSR format are available (only with one-level-

distributed parallelism)

3.2.2.3 Dependences

z-Pares depends on following packages:

• BLAS/LAPACK
• Message passing interface (MPI-2 standard)
• MUMPS 4.10.0 (optional)

BLAS/LAPACK should be installed, and MPI is needed for the parallel version
of z-Pares. MUMPS is required to use the sparse CSR interface.

3.2.2.4 Basic Concepts of z-Pares

Here we show the schematic illustration of a numerical contour integration (3.3) in
Fig. 3.2. As described in Fig. 3.2, numerical quadrature with N quadrature points is
used to approximate the contour integral. The basis of the subspace which is used
for extracting eigenpairs is computed by solving linear systems with multiple right-
hand sides. In this section, matrix V is called a source matrix, and its column vector
is called a source vector.
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Fig. 3.2 z-Pares computes
eigenvalues located inside a
contour path on the complex
plane (Blue cross)

Im

Re

...eigenvalue

Because the linear systems can be solved independently, the computations can
be embarrassingly parallelized. Additionally, each linear system can be solved in
parallel.

3.2.2.5 Two-Level MPI Parallelism

Above the parallelism of quadrature points, there is independent parallelism if
multiple contour paths are given. Here we define three levels of parallelism:

• Top level: Parallelism of computations on contour paths
• Middle level: Parallelism of computations on quadrature points
• Bottom level: Parallelism of computations for solving linear systems

z-Pares uses the middle- and bottom-level parallelism by employing a pair of
MPI communicators. The MPI communicators that manage the middle level and
the bottom level are called the higher-level communicator and the lower-level
communicator, respectively. Because the top-level parallelism can be implemented
completely without communications, we have not added the implementation of this
level to the feature of z-Pares. Users should manage the top-level parallelism by
theirselves if necessary.

The above descriptions are shown in Fig. 3.3.
For the Rayleigh-Ritz procedure and the residual calculations, matrix-vector

multiplications (mat-vec) of A and B must be done for multiple vectors. The higher-
level communicator manages the parallelization in performing mat-vec for different
vectors. The lower-level communicator manages the parallelization for one mat-vec.

3.2.2.6 zpares_prm Derived Type

The derived type zpares_prm plays a central role in the use of z-Pares.
zpares_prm consists of components that represent several input and output
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=

Solve

Top level

Middle level

Bottom level

Computations on
contour paths are
independent

Computations on
quadrature points
are independent

Linear systems
are solved in parallel

The higher level
MPI communicator

The lower level
MPI communicator

Fig. 3.3 Three levels of parallelism and two-level MPI communicator

parameters and inner variables. See z-Pares users’ guide for more details. In the
rest of this section, an entry of zpares_prm is referred to as prm.

3.2.2.7 Reverse Communication Interface

z-Pares basically delegates tasks of

• Solving linear systems with multiple right-hand sides (zjB − A)Yj = BV

• Performing matrix-vector multiplications of A and B

to the user, because an efficient algorithm and matrix data structure are seriously
problem dependent.

z-Pares delegates the tasks by using the reverse communication interface (RCI)
rather than the modern procedure pointer or an external subroutine.

When using RCI, the user code communicates with the z-Pares subroutine in the
following manner:

1. Reverse communication flag prm%itask is initialized with zpares_init
before entering the loop of 2.

2. The z-Pares subroutine is repeatedly called until
prm%itask == ZPARES_TASK_FINISH

3. In the loop of 2., the tasks indicated by prm%itask are completed with the
user’s implementation
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When using RCI, the user need not define global, COMMON, or module
variables to share information (such as matrix data) with the subroutine given to the
package, in contrast to manners using the procedure pointer or external subroutine.
RCI is also used in eigensolver packages such as ARPACK and FEAST.

To briefly describe a user code using RCI, a skeleton code for solving complex
non-Hermitian problem is given below.

do wh i l e ( prm%i t a s k /= ZPARES TASK FINISH )
c a l l z p a r e s z r c i g e g v &

( prm , n r ow lo c a l , z , mwork , cwork , l e f t , r i g h t , num ev , e i g v a l , X, r e s , i n f o )

s e l e c t c a s e ( prm%i t a s k )
c a s e (ZPARES TASK FACTO)

! Here , t h e u s e r f a c t o r i z e s ( z∗B − A)
! At t h e nex t r e t u r n from z p a r e s z r c i g e g v ,
! prm%i t a s k ==ZPARES TASK SOLVE wi th t h e same z i s r e t u r n e d

c a s e (ZPARES TASK SOLVE)

! i = prm%ws ; j = prm%ws+prm%nc−1
! Here , u s e r s o l v e s ( z∗B − A) X = cwork ( : , i : j )
! The s o l u t i o n X shou ld be s t o r e d i n cwork ( : , i : j )

c a s e (ZPARES TASK MULT A)

! iw = prm%ws ; jw = prm%ws+prm%nc−1
! i x = prm%xs ; j x = prm%xs+prm%nc−1
! Here , t h e u s e r pe r f o rms ma t r ix−v e c t o r m u l t i p l i c a t i o n s :
! mwork ( : , iw : jw ) = A∗X( : , i x : j x )

c a s e (ZPARES TASK MULT B)

! iw = prm%ws ; jw = prm%ws+prm%nc−1
! i x = prm%xs ; j x = prm%xs+prm%nc−1
! Here , t h e u s e r pe r f o rms ma t r ix−v e c t o r m u l t i p l i c a t i o n s :
! mwork ( : , iw : jw ) = B∗X( : , i x : j x )

end s e l e c t
end do

Listing 3.1 Usage of reverse communication interface

ZPARES_TASK_FINISH,ZPARES_TASK_FACTO,ZPARES_TASK_SOLVE,
ZPARES_TASK_MULT_A, and ZPARES_TASK_MULT_B are defined as module
variables of the type integer,parameter of the zpares module. Tasks
delegated to the user are indicated by these values.

Implementing a linear solver is a heavy task for users. To allow users to get
started with z-Pares easily, we provide two interfaces for a specific matrix data
structure:

• Dense interface using LAPACK
• Sparse CSR interface using MUMPS

3.2.2.8 Efficient Implementations for Specific Problems

In the above descriptions, we have used the subroutines for complex non-Hermitian
problems. In z-Pares, efficient implementations are given for exploiting specific
features of the problem. The following features are considered:
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• Symmetry or hermiticity of matrices A and B

• Positive definiteness of B

• B = I (standard eigenvalue problem)

We recommend the user to let z-Pares consider these features by setting appropriate
parameters to obtain maximum efficiency.

A stochastic estimation method of eigenvalue distribution in a given domain is
proposed in [12, 34]. This method is used to evaluate appropriate parameters. Some
properties of the contour integral-type methods are considered to determine efficient
parameters in [41, 42].

3.3 EigenExa: Development of a Dense Solver

3.3.1 Introduction

Eigenvalue calculation is a significant tool for scientific numerical simulation and
engineering analysis. High-performance and highly reliable software must be avail-
able. As the size of problems to be solved and available computer resources become
substantial, the practical eigenvalue solver is expected to change accordingly.

When this post-petascale CREST project was initiated, we reviewed the trend of
the future hardware technology, microprocessor, accelerator unit, memory module,
and interconnect network. We supposed that the following must be an essen-
tial requirement to build a next-generation, so-called exascale, supercomputer
system:

• CPU socket
8CPUs+1000FPUs,
On-chip shared memory,
1.25TFLOP/s

• Compute node
8sockets,
64GB shared memory,
20TFLOP/s

• System
105nodes,
6.4PB memory,
2EFLOP/s

In a rough sketch of the design mentioned above, the system has a heterogeneous
and hierarchical combination of CPU modules and memories interconnected. We
also predicted that such a complication of hierarchical hardware results in a new
hierarchical parallel programming style. In fact, two programming languages were
critical issues at the beginning of the project: MPI for a representative tool of
distributed parallelism and OpenMP for thread parallelism among computational
cores in a shared memory fashion.
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Fig. 3.4 Concept of hierarchical and multi-layered approach in dense linear algebra

As parallel numerical linear algebra software, not only eigenvalue calculation,
the configuration of ScaLAPACK + LAPACK + BLAS has been known as de
facto standard not changed significantly for nearly 20 years since the 1990s. In the
above hierarchization, vertical (upper and lower) parallelism could be handled by a
combination of the existing numerical linear algebra software, but it was quite hard
to perform higher parallel control by combining flexible parallelism and parallel
execution in the same horizontal layer.

What is more, in 2010, a pragmatic innovation was required from not only
the software environment but also the parallel algorithm. For one thing, it was
necessary to collaborate with a highly parallel/concurrent language to support
parallel/concurrent processing over multiple parallel layers and software runtime.
Naturally, the emergence of numerical algorithms having multilevel parallelism in
every hierarchy was demanded. In fact, there is a need to respond to the emergence
of times when hardware has parallelism ranging from hundreds to tens of thousands.
In our implementation of algorithms crossing over multiple layers of a dense matrix
representation, we decided to realize by the configuration method being aware of
any hierarchy as shown in the figure. In particular, we decided to develop mainly
block algorithms corresponding to multiple memory hierarchies found in (i) typical
high-speed implementation of matrix-matrix products and (ii) local and global
communication avoidance, for example, by the CAQR-type approach (Fig. 3.4).

Here, we would like to summarize a brief review of the solver development
project, which was promoted during the 2010s. As mentioned previously, ScaLA-
PACK released in the 1990s keeps still in the position as the de facto standard
in distributed parallel environments. Meanwhile, thread parallelism has also to be
taken into consideration at the same time by the multicore processor that appeared
around 2010. On the other hand, in the HPC community, the development of numer-
ical libraries specialized for thread parallelism for many-core environment equipped
with dozens to thousands of cores, the MAGMA project, and the PLASMA project,
has been started.
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Focused on the trend of numerical eigenvalue libraries, it had been known
that xSYEVD of ScaLAPACK based on Cuppen’s divide and conquer method
had a significant advantage in the distributed parallel environment. Nowadays, a
successor routine of xSYEVR, which adopts a different mathematical algorithm
of MR3 (multiple relatively robust representations), is still naive implementation.
However, the new algorithm has O(N2) complexity and a promising way (has
another name of “the holy grail”) to reduce the computational cost regarding flops.
As still ScaLAPACK as old design in 1990s, the developer needs to improve
thread parallelism. Since 2010, there have been several signs of progress in parallel
eigenvalue solvers, such as ELPA by the German team, Elemental, DPLASM by
the University of Tennessee, our EigenExa library, and QDWH-based library by
KAUST. Each eigensolver library has a unique aspect in the numerical algorithm
and parallel implementations. For example, the ELPA library insists significance of
a so-called two-stage algorithm, which is a promising way to resolve the matters
of narrow memory bandwidth and non-negligible network latency. Also, Elemental
employs a brand-new parallel implementation of the MR3 algorithm.

In the rest of the section, we report the status summary of the EigenExa library,
which was developed in the CREST project.

3.3.2 Brief History of the Dense Solver Project

Since 2010, the H4ES (=H4ES, high performance, high scalability, high portability,
and high-reliability Eigen-Supercomputing engine) project conducted by Prof.
Tetsuya Sakurai has been kicked off supported by one of the national grant CREST
JST. We organized a mini-research group to devote to the development of a dense
eigenvalue solver for a post-petascale supercomputer system at the University of
Electro-Communications and later at RIKEN Advanced Institute for Computational
Science (AICS) from 2012 to the present.

The activities initiated by T. Imamura had not been started since the H4ES project
but another CREST project led by Dr. Masahiko Machida, Japan Atomic Energy
Agency (2005–2010). The present dense solver project inherited the primary results
from the Earth Simulator system, which was the world’s largest vector supercom-
puter [47]. The library was optimized with a combination of a very conservative
long-vector-oriented technique and a modern cache-oriented technique, so-called
vectorization and efficient cache reuse, respectively. After the Earth Simulator
age, we comprehensively scrapped and built up the vector code to multi-threading
processing code [30], which was deployed on each system of T2K cluster. The T2K
cluster was designed as a commodity supercomputer. Then, the code was ported
to the K computer with the help of Fujitsu, and we named the eigensolver library
EigenExa. The K computer was the first 10 petaFLOPS system housed at RIKEN
AICS and is still keeping rank 10 in the top 500 benchmark (Nov. 2017). The
K computer has a unique interconnect, namely, Tofu interconnect, and more than
80,000 SPARC64 VIIIfx processors consist of the heart of the system. We observed
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a big impact of high-performance eigensolver on the RSDFT code, which won the
Gordon Bell prize in SC2011 [17], even though the solver was very early version
and not optimized so well. Currently, the EigenExa library version 2.4p1 is the latest
release [9].

Since 2014, RIKEN AICS has started a national project to develop a flagship
system, so-called the post-K system. For that, we continue to improve the EigenExa
library toward emerging supercomputer systems, such as Oakforest-PACS, which
is the rank 9 system in the top 500 benchmark (Nov. 2017) and is hosted at joint
center between the University of Tokyo and University of Tsukuba. Since another
aspect on the extreme computing implies not only capability computing but capacity
computing, we recognized the necessity of the high-performance eigensolver with
a broad variety of parallelism and parallel scaling. It is an entirely challenging work
for applied mathematics, computer science, and engineering.

3.3.3 Our Approaches in Parallel Algorithm

As shown, we have been developing an eigenvalue library EigenExa, which con-
sists of multiple eigensolvers, toward next-generation distributed memory parallel
supercomputers [30]. For performance improvement of the solvers, it is critical to
identify the significant performance bottleneck and remove it on the highly parallel
environment [17]. We exploit several algorithmic and implementation techniques
to remove bottleneck which comes from data communication among or through a
great number of computing nodes.

Main components of EigenExa are two driver routines and one reducer routine
from generalized eigenvalue problem (GEVP) to standard eigenvalue problem
(SEVP). Two driver routines are:

• eigen_s: a conventional scheme, and
• eigen_sx: a novel one-stage scheme.

We exploited a novel one-stage scheme for the implementation of eigen sx,
and its outline is summarized as follows (see also Fig. 3.5).

Real symmetric Eigenpairs of ATridiagonal Eigenpairs of T

Conventional 1-stage scheme 
(eigen_s in EigenExa , ELPA1, 
and
PDSYEVD in ScaLAPACK)

2-stage scheme
(ELPA2, DPLASMA)

New 1-stage scheme
(eigen_sx in EigenExa)

Banded Eigenpairs of B

Fig. 3.5 Schematics of Numerical schemes for dense symmetric eigenvalue problem
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1. Transform a matrix A to a pentadiagonal matrix P by similarity transformation
with an orthogonal matrix V (forward transformation, which consists of multiple
Householder transformation): V �AV = P ,

2. Compute the eigenpairs of P by the divide-and-conquer (DC) algorithm for a
banded matrix: P = U	U� (where U is an orthogonal matrix and 	 is a
diagonal matrix),

3. Compute the eigenvectors of A (back transformation): Q = V U .

3.3.3.1 Householder Band Reduction

The first and the third steps are implemented based on Bischof’s band reduction
algorithm, so-called successively band reduction (SBR) [4, 5]. The parallelization
is performed in an MPI/OpenMP hybrid fashion. In eigen sx, a pentadiagonal
form is used as the intermediate matrix to reduce the internode communication cost,
while the tridiagonal form is used in most of the high-performance eigensolvers.
Core manipulations are based on block Householder transformation.

1. Compute a block reflector u corresponding to w and an associated lower
triangular matrix C, somehow, such that they hold (I − uCu�)w = ER. Here,
E is a unit matrix, and R is an upper triangular matrix.

2. Compute v0 := Au, and S := Cu�v0C
�.

3. Compute v := (vC� − 1
2uS).

4. Update A := A − uv� − vu�.

3.3.3.2 Divide and Conquer for a Banded Matrix

The routine for the second step is implemented and modified for the pentadiagonal
matrix based on the routine PDSTEDC in ScaLAPACK [6, 45], which is for solving
an eigenvalue problem of a tridiagonal matrix. The principle of the algorithm is
“single perturbation of a diagonal matrix” defined as M = D +ρuu�. For a banded
matrix, we can summarize the algorithm as follow. As you can see, Step 2 can be
done recursively.

1. Divide P := P1 ⊕P2 +U�U�, here � is a diagonal matrix, and K refers to the
half value of the bandwidth of matrix P .

2. Compute eigenproblems P1 and P2, somehow.
3. Transform P1⊕P2+U�U� → D1⊕D2+V �V � by similarity transformation.
4. Set D = D1 ⊕ D2.
5. for i=1, . . . , K

6. Solve a single perturbation problem F := D + σiviv
�
i .

7. Set D := Q�FQ. Here, Q is corresponding eigenvectors of matrix F .
8. Set Vi+1:K := Q[vi+1, · · · , vK ]
9. Return the eigenvalues in the diagonal of D and the corresponding eigenvectors

in matrix Q.
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3.3.3.3 Back Transformation

The third step employs the compact WY representation to accelerate the compu-
tational performance as most of the modern solvers do. A core part of the block
Householder transformation with the WY representation is as follows.

1. Construct a triangular matrix C corresponding to block reflector from u =
[u1, u2, · · · , ub], such that I − uCu� = (I − ubu

�
b ) · · · (I − u2u

�
2 )(I − u1u

�
1 ).

2. Update X := (I − uCu�)X = X − uC(u�X).

Since all the reflector vectors u = [u1, u2, · · · ] were already computed in the
forward transformation, data redistribution (or broadcasting) of them has many
variations. We introduced one of the communication hiding techniques (CH), the
overlap of communication, and computation to reduce the communication overhead
hiding behind computation.

3.3.4 Performance

In the project, we evaluated and analyzed the feasibility of the algorithm and parallel
implementation. Also, performance of eigen_s and eigen_sx driver routines is
investigated using the K computer [29] housed in RIKEN AICS (Project number
hp120170 and ra000005). The benchmark presented in this article was done by
using EigenExa version 2.5 Release Candidate (development code “c4”), which
was developed in February 2018 under the support of KAKENHI grand-in-aid
(15H02709).

3.3.4.1 Performance on the K Computer

Figure 3.6 shows a strong scaling benchmark results demonstrated on the K
computer. We consider problems of dimension 10,000 to 130,000, and we selected
a Frank matrix defined by (A)ij = max(i, j) as a test matrix, which has
eigenvalues represented analytically as λk = 1/2(1 − cos(π(2k + 1)/(2N + 1))).
EigenExa performs on the K computer in a hybrid MPI/OpenMP parallel fashion
8threads/1process deployed on a node with varying the number of processes from
32 to 4096 processes. Our EigenExa libraries yielded excellent performance than
the ELPA2 solver does. However, in case of a middle-sized problem, N = 10,000,
performance improvement stacked up when more than 200 processes were used
because the problem size and the amount of required computational counts were
not enough for such large number of processes. However, in the cases of more
larger dimensional matrices, N = 50,000 and 130,000, we observed the gradual but
acceptable performance improvement up to 4096 processes.
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Fig. 3.6 Strong scaling benchmark on the K computer

3.3.4.2 Ultra-Scale Benchmark

The most outstanding result on the development of EigenExa was the success of a
full diagonalization of a one million-dimensional matrix by using the whole system
of the K computer. The actual log is shown in Fig. 3.7. This ultra-scale benchmark
was done under the conditions:

1. EigenExa version 1.0 (eigen_sx driver routine).
2. The test matrix was generated as a random matrix symmetrized, (A + A�)/2.
3. Fujitsu software environment was K-1.2.0-14.
4. Full node of the K computer, i.e., 82944 nodes, was occupied during the job.
5. MPI/OpenMP hybrid parallelism. 1MPI process/node, 8threads/1MPI process.
6. Job time stamp was “Wed Aug 14 23:16:05 JST 2013.”

Another experiment on Jan 16, 2014, revealed an accuracy of such a huge-sized
eigenvalue problem. The relative residual was maxi ‖Axi − λixi‖1/N‖A‖1 =
5.99 × 10−16, and the orthogonal error was ‖X�X − I‖F /N = 2.16 × 10−16.
These observations exhibit that the parallel algorithm adopted in the current
implementation works feasibly when even matrix size and parallelism grow in
super-scale. Furthermore, the algorithm and parallel implementation are trustable
in the exascale era.

From the results through our current and past benchmark tests, we clarified the
parallel performance improvement and the performance bottleneck of the solvers
on the highly parallel environment. These achievements provide us with deep
insight and perspectives of a high-performance numerical library toward the future
supercomputer systems such as the post-K computer.
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NUM.OF.PROCESS= 82944 ( 288 288 )
NUM.OF.THREADS= 8
calc (u,beta) 503.0970594882965
mat-vec (Au) 1007.285000801086 661845.1244051798
2update (A-uv-vu) 117.4089198112488 5678160.294281102
calc v 0.000000000000000
v=v-(UV+VU)u 328.3385872840881
UV post reduction 0.6406571865081787
COMM_STAT

BCAST :: 424.3022489547729
REDUCE :: 928.1299135684967
REDIST :: 0.000000000000000
GATHER :: 78.28400993347168

TRD-BLK 1000000 1968.435860157013 677356.7583893638 GFLOPS
TRD-BLK-INFO 1000000 48
before PDSTEDC 0.1448299884796143
PDSTEDC 905.2210271358490
MY-REDIST1 1.544256925582886
MY-REDIST2 14.75343394279480
RERE1 4.861211776733398E-02
COMM_STAT

BCAST :: 4.860305786132812E-02
REDUCE :: 2.155399322509766E-02
REDIST :: 0.000000000000000
GATHER :: 0.000000000000000

PDGEMM 532.6731402873993 5417097.565200453 GFLOPS
D&C 921.8044028282166 3130319.580211733 GFLOPS
TRBAK= 573.9026420116425 COMM= 533.7601048946381

573.9026420116425 3484911.644577213 GFLOPS
182.3303561210632 5484550.248648792 GFLOPS
152.0370917320251 6577342.335399065 GFLOPS
0.1022961139678955 7.379654884338379

COMM_STAT
BCAST :: 229.3666801452637
REDUCE :: 234.4477448463440
REDIST :: 0.000000000000000
GATHER :: 0.000000000000000

TRBAKWY 573.9029450416565
TRDBAK 1000000 573.9216639995575 3484796.141101135 GFLOPS
Total 3464.162075996399 1795203.448396145 GFLOPS
Matrix dimension = 1000000
Internally required memory = 480502032 [Byte]
Elapsed time = 3464.187163788010 [sec]

Fig. 3.7 Console output of the full-diagonalization benchmark of a one million-dimensional
matrix

3.3.5 Related Sub-projects

To develop a dense eigenvalue solver, mathematical and computational innovations
are required. Several topics were conducted in the project and interacted with other
projects.
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3.3.5.1 CholeskyQR2

Orthogonalization by QR factorization is one of the critical issues for the eigen
decomposition or internal Householder transformation. Fukaya and Yamamoto et
al. proposed the CholeskyQR2 algorithm, which factorizes a tall-skinny matrix in a
QR representation, where matrix Q holds Q�Q = I and R is an upper triangular
matrix.

1. R0 :=Chol(A�A), st. A�A = R�
0 R0.

2. Q0 := AR−1
0 .

3. R1 :=Chol(Q�
0 Q0).

4. Q := Q0R
−1
1 , R := R1R0.

They elucidated that CholeskyQR2, which is an algorithm performing CholeskyQR
twice, gives excellent accuracy and computing speed in most practical cases. In their
experiments using 16,384 nodes of the K computer, CholeskyQR2 outperformed
TSQR nearly threefold in computing time for a 4,194,304 × 64 matrix [14].

3.3.5.2 Performance Modeling

It is inevitable to establish a methodology of the performance prediction model for
emerging large-scale systems. In the development of EigenExa, we investigated two
styles of performance modeling: (i) an empirical base-function approximation [11]
and (ii) the LP method, which introduced suppress of overfitting with nonnegative
constraint [35].

In the above empirical study, we reported the evaluation on a Fujitsu PRIME-
HPC FX10, which was mainly focused on investigating the differences between
the two driver routines. The obtained results were expected to be useful for not
only for a future EigenExa library but other parallel dense matrix computations.
In contrast to the empirical way, we examined that the LP method predicted more
accurately than the LASSO method, which is often used in the sparse modeling
field. The LP method exhibited the valid base functions of the EigenExa library
systematically from the products of {N3, N2, N} and {1, 1/

√
p, 1/p}, and then we

obtained a model function of the collective communication represented by a simple
linear combination of the base functions:

c1
N2

√
p

+ c2N
3 + c3N.

Since theoretical discussions do not provide the term of N3, it suggests that a
significant scale eigenvalue problem might tend to incur severe performance degra-
dation due to (i) non-parallelized parts and (ii) increasing communication overhead.
Since similar arguments held for another empirical approximation modeling, we
recognized the significance to continue the topics in the future.



54 T. Sakurai et al.

3.3.5.3 High-Precision Calculation

The higher precision calculations often demanded in practical engineerings and
quantum chemistry to obtain more accurate eigenvalues or identify the algebraic
duplicity of a cluster of eigenmodes. For that, it is essential to take account
of Bailey’s double-double arithmetic as a quadruple precision format from the
viewpoint of accuracy and performance. We evaluated the performance of the
high-performance quadruple precision eigensolver libraries QPEigenK on the K
computer. The latest version of QPEigenK performs exhibiting excellent scalability.
We observed that the elapsed time to solve an eigenproblem with n = 10,000 was
118 seconds on 16384 nodes of the K computer, whereas it was 31 times longer than
the case of a double precision solver [18].

Currently, the standardization of IEEE754 half precision format has induced
other arguments of computing precision in numerical libraries. Not only high
precision but flexible or selectable precision may become significant in future
computing with the help of new hardware such as an FPGA device. Also, we
expect that the topic could be enhanced to the new research world of reproducible
computing, which guarantees identical computing result on any circumstances,
anywhere and anytime.

3.4 Conclusion

In this paper, we introduced massively parallel Eigen-Supercomputing Engines: z-
Pares and EigenExa, for post-petascale systems. Our Eigen-Engines ware based
on newly designed algorithms that are suited to the hierarchical architecture in
post-petascale systems and showed very good performance on petascale systems
including K computer.
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Chapter 4
System Software for Many-Core and
Multi-core Architecture
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Aurélien Bouteiller, and Thomas Herault

Abstract In this project, the software technologies for the post-peta scale com-
puting were explored. More specifically, OS technologies for heterogeneous archi-
tectures, lightweight thread, scalable I/O, and fault mitigation were investigated.
As for the OS technologies, a new parallel execution model, Partitioned Virtual
Address Space (PVAS), for the many-core CPU was proposed. For the heterogeneous
architectures, where multi-core CPU and many-core CPU are connected with an
I/O bus, an extension of PVAS, Multiple-PVAS, to have a unified virtual address
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space of multi-core and many-core CPUs was proposed. The proposed PVAS was
also enhanced to have multiple processes where process context switch can take
place at the user level (named User-Level Process: ULP). As for the scalable I/O,
EARTH, optimization techniques for MPI collective I/O, was proposed. Lastly, for
the fault mitigation, User Level Fault Mitigation, ULFM was improved to have
faster agreement process, and sliding methods to substitute failed nodes with spare
nodes was proposed. The funding of this project was ended in 2016; however, many
proposed technologies are still being propelled.

4.1 Overview and Background

The goal of this project was to develop OS technologies needed for post-peta scale
machines in the future under the assumption of heterogeneous architecture would
have dominated. The goal of this project was to develop key software technologies
required for the post-peta scale computers. There were four research topics in this
project:

• OS technologies for heterogeneous architectures,
• Lightweight thread,
• Scalable I/O,
• Fault mitigation.

This 5-year project was started from April 2011 and ended March 2016. When
this project was started, the first commercial many-core CPU, Intel Knights Corner
(known as KNC) [12], became available, and many people believed it was the
dawn of many-core era. KNC was designed as a coprocessor and it needed another
many-core CPU to be attached with. From the view point of OS research, this
heterogeneous CPU architecture was new because an OS ran on each CPU, unlike
the other coprocessor architectures such as GP-GPU or vector processing unit (e.g.,
ClearSpeed [9]) where no (explicit) OS runs on those coprocessors. Our focus was
to provide a single system image for such heterogeneous architecture.

The following research topics in this project were higher-level than the above OS
research. The performance improvement of applications having dynamic workload
characteristics is a big concern for the coming post-scale era. The oversubscribed
lightweight multithread is thought to be the answer for this kind of applications. We
proposed a novel technique for this topic.

I/O performance has been a headache in the long history of HPC. We focused on
the collective I/O in MPI and proposed several optimization techniques to improve
I/O performance.

Fault mitigation has been a big concern as supercomputers are scaling up. In
this project, we proposed two techniques; one is a parallel execution environment
in which a process failure can be mitigated, and another is the technique how failed
nodes must be replaced with spare nodes.
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4.2 OS Technologies for Heterogeneous Architecture

The widely used in-node parallel execution models are multi-process model (e.g.,
MPI) and multi-thread model (e.g., OpenMP). The multi-process model has the
problem when to communicate with the others because each process has its
own virtual address space and shared memory is often used for inter-process
communication. The widely used shared memory technique cannot avoid the 2-copy
to exchange data between processes. On the other hand, the multi-thread model
has the non-negligible overhead of mutual exclusion on shared variables. These
overheads become more striking when the number of cores increases.

To have the best of the two worlds, multi-process and multi-thread, the third
execution model had been proposed and implemented. SMARTMAP is to pack
processes into one virtual address space, but SMARTMAP only runs on Kitten
OS and relies on x86 architecture [4]. MPC allows threads to have privatized
variables, but MPC heavily depends on a language processing system, and it requires
special language processing systems [11]. We decided to develop our own system
to implement the third execution model. This is called Partitioned Virtual Address
Space (PVAS) implemented by the patched Linux kernel. Its details are explained in
the next subsection.

PVAS provides the efficient parallel execution mode on many-core architectures.
However, our final target architecture is heterogeneous architecture where many-
core CPU and multi-core CPU are connected by an I/O bus. Each CPU has
its own physical memory. An OS runs independently on each CPU. On KNC,
Intel provides the SCIF to communicate between the KNC process and host
process. Unfortunately, its communication performance was not so good (shown
in Sect. 4.2.2). Our proposed solution to this is the extension of PVAS to pack
processes running on KNC and processes running on the host processor into one
virtual address space so that every process can access the data of the other processes
regardless which process is running on which processor [15, 22]. This scheme
was called Multiple-PVAS (MPVAS), and more efficient communication than Intel
provided SCIF could be achieved.

4.2.1 Partitioned Virtual Address Space

Basically, a process has an isolated virtual address space, and it cannot access the
data in the other process. Shared memory technique is widely used to implement
inter-process communication in HPC. Shared memory is a special memory region
in which physical memory region is shared between processes and the data in the
shared memory region can be accessed from the processes sharing the memory
region. However, during communication between two processes, sender process
writes a data into the shared memory segment and receiver process reads the data in
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the shared memory segment. Thus, two memory copies take place, and this memory
copy overhead hinders the parallel execution.

Each process has its own virtual address space so that the process is guaranteed
not to be interfered by the other processes. Let’s assume that there are two processes
connected by a pipe. If a sender process dies for some reason, then the receiver
process is killed by the SIGPIPE signal. Even if the SIGPIPE signal is ignored,
then the receiver process might be blocked forever for receiving data, since there is
no process to send data to the receiver process. Thus, communicating processes
can be said to share the same fate. The protection mechanism for processes in
modern OS incurs the overhead of the inter-process communication. In the coming
many-core era, the intra-node communication will be more frequent. Therefore the
development of efficient intra-node communication is important.

If all communication processes share the same virtual address space, then
the data owned by a process can be accessed by the other processes without
incurring the overhead of 2-copy. This is the idea of PVAS [17–21]. There is no
protection between the processes sharing the same virtual address space. However,
as mentioned above, the communicating processes share the same fate, and the
protection mechanism has no meaning (Fig. 4.1).

In PVAS, the virtual address space is firstly partitioned, and process occupies one
of the partitions. To implement PVAS, the Linux OS kernel is patched. Figure 4.2
shows the Open MPI intra-node communication performance comparisons among
shared memory, denoted as “SM BTL,” KNEM (a kernel assisted 1-copy messag-
ing), denoted as “SM-KNEM BTL,” XPMEM (allows process to expose a memory
region to be accessed by the other process), denoted as “Vader BTL,” and PVAS,
denoted as “PVAS BTL.” This evaluation was carried out on KNC (Intel Xeon Phi,
5110P 1.053 GHz). The left graph shows the PingPong latency measured by using
IMB benchmark, and the right graph shows the system-wide memory usage of IMB
AlltoAll communication. As shown in those graphs, the intra-node communication
using PVAS exhibits the lowest latency and the least memory usage.
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In the MPI point-to-point communication, MPI datatypes which is an expression
of non-contiguous data layout can be specified in the send function and the receive
function. Since datatype information is local, the sender process has no knowledge
on the datatype on receiver process. In the current MPI implementations, if a sender
wants to send a non-contiguous data to a receiver, firstly the sender packs the non-
contiguous data and then send the packed data to the receiver. And on the receiver
process, the packed data is unpacked. Thus, costly message 2-copy for packing and
unpacking must take place.

With PVAS, however, the sender process can take a look at the datatype
information on the receiver process. This is because the sender process and the
receiver process share the same virtual address space in PVAS. And non-contiguous
messages can be sent with 1-copy according to the datatypes of sender and
receiver. Shimada [17] reported 20% improvement with the ft2d_datatype
benchmark [16].

4.2.2 Heterogeneous Extension of PVAS

On KNC, there are two sets of CPU and memory, and they are connected by the PCIe
bus. Independent OS runs on each CPU. The multi-core CPU has a fewer number of
fast cores and the many-core CPU has a large number of slow cores. Applications
having large parallelism can exploit the power of many-core. When an application
running on many-core CPU tries to send a message using MPI, for example, then
MPI’s complex protocol which is very hard to parallelize must be handled by the
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slow many-core CPU. This can add extra latency when compared with the case of
using multi-core CPU.

The idea here is to delegate the heavy protocol handling from many-core CPU
to multi-core CPU so that the complex MPI protocol can be handled by the faster
multi-core CPU. The key technology here is the low-latency delegation mechanism
from many-core CPU to multi-core CPU and vice versa. Generally speaking, this
idea can be applied not only MPI but many situations.

Multiple-PVAS (MPVAS) was designed for such purpose. The processes running
on many-core CPU and the processes running on multi-core CPU are mapped
into one virtual address space (Fig. 4.3) [5]. In the MPVAS-aware MPI, based on
NMVAPICH, to send a message from a process on many-core CPU, the send request
is passed to the dedicated process running on the multi-core CPU, and then the
request is processed on the multi-core CPU. Since the data to be sent can be accessed
by the multi-core process, there is no need of copying it.

Figure 4.4 shows the latency of RPC between many-core (E5-2650v2, 2.60 GHz)
and multi-core (Xeon Phi 7120P). X-axis shows the payload length and Y-axis
shows the latency. As shown in this figure, the latency of using the offloading
mechanism provided by Intel is several order of magnitude slower. Fukazawa
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reported that the MPI latency with this delegation mechanism is almost halved
compared with the one using only many-core CPU [5, 14].

4.3 Lightweight Thread

So far, each PVAS process has an associated OS kernel thread to run in parallel.
There can be PVAS processes having OS kernel thread and there can be PVAS
processes having no OS kernel thread. Assume PVAS process A has no OS kernel
thread and PVAS process B has OS kernel thread. The OS kernel thread of B can
switch to A at user level by calling the swapcontext() or setcontext()
Glibc function. This mechanism is very similar to the one of user-level thread.
However, each PAVS process may have different program and do have privatized
variables, unlike (user-level) thread. We named this User-Level Process (ULP)
because PVAS [21].

Figure 4.5 shows the context switching times (Y-axis) comparing Linux pro-
cesses, Pthreads, MassiveThreads [10] (a user-level thread implementation), and
ULP over the number of processes or threads (X-axis). The context switching times
of ULP is very close to the ones of MassiveThreads.

If some MPI processes in a node are implemented by using ULP and they are
oversubscribed by having more number of MPI processes than the number of CPU
cores, then those MPI processes can be switched from one to the other in a fast way.
This would result in leveling the load imbalance between CPU cores. Thus, the load
imbalance of dynamic workload can run more efficiently.
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4.4 Scalable I/O

The current optimization technique of collective MPI-IO [23] is based on two-phase
I/O [13], where the scattered I/O requests on compute nodes are sorted according
to the parallel file offset, and then actual I/O requests are sent to I/O servers. This
technique is very effective because the smaller I/O requests on compute nodes are
gathered on aggregator processes so that larger I/O requests can be sent to I/O
servers.

In general, not limited to HPC, it is the file servers’ nature that a number
of simultaneous I/O requests can degrade its performance. To prevent this, I/O
throttling technique was proposed. In the two-phase I/O, a number of I/O requests
are also sent to I/O servers. Our first idea is to throttle the number of request to
the IO servers to get higher performance. There is another bottleneck in two-phase
I/O. Heavy all-to-all-like communication between user processes and aggregator
processes to sort and merge the user’s I/O requests takes place. If the I/O requests to
the server are throttled, then this all-to-all-like communication can also be throttled.
Consequently, the communication bottleneck can be relaxed. Thus, the flow of the
I/O requests from user process to I/O servers can be done in a way of step-wise
pipeline to level the loads of the communication network and I/O servers.

This optimization technique was named EARTH which includes the above step-
wise communication, throttling to the I/O servers, striping-aware data blocking and
distribution, and optimized allocation of the aggregator processes to decrease the
message congestion in communication network [24, 25]. Figure 4.6 shows the write
bandwidth on the K computer [26] comparing the original MPI-IO and EARTH
optimized MPI-IO. In the EARTH cases, the number of requests at each step of the
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Fig. 4.6 HP-IO write performance (the K computer)

step-wise pipeline is also varied (denoted as “req = N”). As shown in this figure,
EARTH performs more better when the number of processes increases.

4.5 Fault Mitigation

Checkpointing is a well-known technique to recover from a failure. However, its
cost can be very high, and the fault mitigation becomes the hot topic in the fault-
tolerant research. User Level Fault Mitigation (ULFM) which is a user-level library
for a parallel program to survive from a process failure is gathering the attentions as
a practical technique of fault mitigation. In this project, a technique to improve the
performance of ULFM was developed. The implementation of ULFM is not easy.
The signal of a process failure must be propagated to the other processes to reach
a consensus on the failure among the healthy processes. Another process failure
may happen during the propagation and consensus protocols. ULFM must survive
from any process failure that can happen at any time. In the next subsection, an
optimization technique for ULFM to be more efficient is explained.

Since ULFM provides the way where user program can handle process failure
events. It is up to the user program how to handle such situation. Having spare
nodes to replace failed node is considered to be effective; however, study on the
spare nodes is not active so far. We also focused on this issue and propose how to
allocate spare nodes and how failed nodes should be replace by the spare nodes.
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4.5.1 User-Level Fault Mitigation (ULFM)

4.5.1.1 Conceptual Design

The main goal of the User Level Fault Mitigation ULFM [2, 3, 6] approach remained
unchanged over the period of this project: define a minimal set of features to notify
application processes about failures, and allow the user to interrupt the normal
behavior of his application and to restore communication capability after process
failures. Exchanges with developers of MPI applications who envision to introduce
resilience in their codes, or who have tried to do so using the ongoing ULFM
specification, as well as fruitful discussion in the MPI Forum, mainly inside the
Fault Tolerance Working Group and in plenary sessions, have highlighted few
opportunities for improvements in the ULFM specification. Ambiguities in the
proposed text have been removed and replaced by a clearer description of the
required behavior. The RMA chapter has been entirely rewritten, to account for the
changes in the RMA chapter introduced in the version 3 of the MPI standard. The
MPI_Comm_shrink() and MPI_Comm_agree() routines, which are part of
the Fault Tolerance extensions, have been simplified, allowing for a more diverse
usage. Non-blocking versions of some of these constructs have been also added, to
allow for more flexible recovery strategies.

4.5.1.2 Implementation

In same time as improving the concepts design, we wanted to provide a decent
implementation that can be used by interested parties for their own research and
developments. The first part of the award period was dedicated to providing correct,
but non necessary efficient and scalable, support for all concepts. In parallel we
advanced on the theoretical side by developing all the necessary tools and algorithms
to design and implement more scalable versions of the needed concepts.

More specifically, the last year of the project has been almost entirely focused
on advancing on the performance side of the two major operations proposed for the
handling of the faults (revocation and agreement) and on promulgating the extension
to the MPI standard to the user communities. In same time, a significant effort has
been done to improve the code quality of the available implementation, in order to
provide a stable, efficient, and portable implementation to the user communities.

Similarly to past years, exchanges with developers of MPI applications who
envision to introduce resilience in their codes, or who have tried to do so using
the ongoing ULFM specification, as well as fruitful discussion in the MPI Forum,
inside the Fault Tolerance Working Group and in plenary sessions, have highlighted
a few places for improvements in the ULFM specification. The main goal of the
ULFM approach remains unchanged: define a minimal set of features to notify
application processes about failures, and allow the user to interrupt the normal
behavior of his application and to restore communication capability after process
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failures. Ambiguities in the proposed text have been removed and replaced by a
clearer description of the required behavior. The RMA chapter has been entirely
rewritten, to account for the changes in the RMA chapter introduced in the version
3 of the MPI standard. The MPI_Comm_shrink() and MPI_Comm_agree()
routines, which are part of the Fault Tolerance extensions, have been simplified,
allowing for a more diverse usage.

On the implementation front, the MPI_Comm_revoke() and MPI_Comm_
agree() operations have been the focus of our efforts for this year. These
two routines are critical to the efficiency of a resilient code and are by nature
costly because they need to be fault-tolerant themselves. MPI_Comm_revoke()
is provided to the user to notify (asynchronously) all processes belonging to a
communicator that an exception happened and to stop the normal execution flow
(e.g., to trigger a collective repair of the communicator). At the conceptual level,
it implements a form of reliable broadcast: if one process receives such revoke
notification, all processes of the communicator must receive one. Because failures
happening during the revoke operation can introduce messages loss, the protocol
that implements the revoke operation must be fault-tolerant and ensure that if one
notification is delivered, all notifications are delivered. The first implementation of
the revocation was done at the Runtime Environment (RTE) level, over the Out-
Of-Band (OOB) network. This implementation was not fault tolerant and required
a large number of messages (O(N2)). We redesigned the algorithms integrating
research in resilient graph topologies and successfully improved not only the
resilience and performance of the revocation algorithm but also the impact on the
network infrastructure and the number of messages. The final algorithm that we
will be delivered with ULFM is based on the Binomial Graph (BMG) topology, a
specialize form of circulant graph topologies [1] (Fig. 4.7). This graph minimizes
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the number of messages and the degree of the graph while providing a strongly
resilient topology that can only be bipartite by the sudden disappearance of more
than half of the processes. Moreover, the new algorithm is implemented at the BTL
level and takes advantage of the fast network interconnect available on most of the
HPC clusters.

The MPI_Comm_agree() routine was also relying, for parts of its services
(namely, the all-reduce tree maintenance), on messages at the OOB level. The
overhead imposed by the OOB mechanism has been hindering the performance
and scalability of the agreement. We completely reworked the agreement to use
directly the fast network communication infrastructure available in Open MPI
(namely, the BTL). This step provided a significant boost in terms of performance
of the agreement algorithms. However, this highlighted few implementation issues
with quadratic search involved in the original algorithms (due mainly to the MPI
semantics of translating ranks between communicators). As a result, we decided to
redesign the agreement implementation from the ground up. Dynamic topologies
have been introduced, topologies that remain optimal as long as no new processes
disappear and that are updated upon a successful completion of an agreement (due to
the semantic of the agreement itself, a consensus on the dead processes is established
during the agreement, allowing for a consistent global view of the alive processes).
This topology is described in the Fig. 4.8. The important change is the coarsest
dashed lines, which represent the new connections that are established to cope
with the discovery of dead processes (signaled by the next coarsest dashed line).
These lines connect a process to the leftmost ancestor still alive and count for one of
the most costly, but critical, operations during the agreement. Without going in too
much details, we have designed a new consensus algorithm named Early Returning
Agreement, with a worst case cost of

∑
f = 1 . . . F (log(P − f )) where F is the

number of fault discovered during a single agreement and P is the total number of
processes.

Moreover, users reports signaled recurring corner cases in the previous agree-
ment implementations, where the agreement routine was unable to provide its
service because of the presence of failures. We wrote a reference implementation of
the agreement, based on an existing Early Termination Agreement protocol, which
work in asynchronous all-to-all phases, ensuring a correct result in any possible
failure scenario. In addition to this reference implementation, we initiated works

Fig. 4.8 Example of
dynamic topology
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on more efficient implementations, which will take advantage of the high resilience
property of the BMG, to reduce the number of messages while still providing the
insurance of safe agreement despite failures in most situations.

4.5.2 Spare Node Substitution

This subsection considers the questions of how spare nodes should be allocated, how
to substitute them with faulty nodes, and how much the communication performance
is affected by the substitution. The third question stems from the modification of the
rank mapping by node substitutions, which can incur additional message collisions.
In a stencil computation, rank mapping can be done in a straightforward way on
a Cartesian network without incurring any message collisions. However, once a
substitution has occurred, such collision-free node-rank mapping can be destroyed.
Figure 4.9 shows an example of message collisions (right figure). In this case, the
failed node substitution results in having at most five message collisions. When two
messages collide, their latency increases, up to at most doubling. Thus, the number
of message collisions should be as low as possible.

The number of message collisions depends on the spare node allocation and how
the failed node is substituted. Although the substitution idea proposed here can be
applied to Cartesian networks having any order, the explanations are mostly using
2D network topology, due to the simplicity.

Figure 4.10 shows how the failed node is substituted in this proposed way. In
this example, spare nodes are allocated at the edges of the 2D node space. The 0D
sliding method is the most simple one: just replace the failed node with a spare
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Fig. 4.10 0D, 1D, and @d sliding methods on 2D Cartesian network

node which is located to the nearest Manhattan distance from the failed node. In
the 1D sliding method, firstly the spare node having the same X-axis or Y-axis is
chosen and the nodes between the failed node and the spare node are shifted. In 2D
sliding method, all nodes having the larger or equal to X-axis or Y-axis location are
shifted. In general, the sliding method can be extended up to ND sliding, where N

is the dimension order of a Cartesian topology network. When a substitution of a
failed node happens, the inter-node communication of a stencil computation takes
place between the neighbor nodes of the spare node. And the message collisions
can happen on the paths between the neighbor nodes and the spare node. This is the
reason why the nearest spare node is chosen so that the paths can be minimized.

The highest-order sliding method can be applied to only the number of the order
of the network, assuming spare nodes are allocated on every single edge of the
network. And this highest-order sliding method increases one hop count, but no
collision happens.

Those substitution methods can be combined, and this is named hybrid sliding
method as shown in Fig. 4.11. In 2D sliding method, the nodes in the gap which
is created by the 2D sliding method can be used as a new spare node set. In this
hybrid sliding method, the method having the highest order must be applied. This is
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Fig. 4.11 Hybrid sliding methods on 2D network

because the highest-order sliding method does not impact the network performance
so much. And if a sliding method cannot be applied, then the lower-order sliding
method is applied. This procedure is repeated until the 1D sliding method fails.
Since the 0D sliding method has no limitation as long as spare nodes exits, it can be
used as a last resort.

We developed a simulator of the proposed sliding methods to count the maximum
message collisions and compare the performance (message collisions) of the
proposed sliding methods. We also evaluated the sliding methods on the K computer,
BG/Q, and Tsubame2.5 [8].

4.6 Subsequent Development

Although this project was started with the prediction of heterogeneous CPU
architecture would be a common many-core architecture, this does not come true.
Intel announced stand-alone many-core CPU, Knights Landing (KNL). Although
MPVAS software developed in this project became useless for the stand-alone
many-core CPUs, the idea of packing multiple processes running on heterogeneous
CPUs into one virtual address space is still effective.

The PVAS project is still active. One of the most drawbacks of PVAS was the
implementation by the patched Linux, and PVAS was hard to port to the other OSes
and architectures. To overcome this, a new user-level implementation has been being
developed, named Process-in-Process (PiP) [7]. ULP on PVAS is also planned to
implement on top of PiP. The other techniques developed in this project excepting
MPVAS are applicable for the exa-scale computing. The research on scalable MPI-
IO, EARTH, is also going on. The ULFM development team is trying to push ULFM
into the MPI standard.
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4.7 Summary

We proposed PVAS as a new parallel execution model especially for many-core
CPU, MPVAS for heterogeneous CPU architectures, ULP to have fast context
switching between user-level processes, EARTH for efficient MPI collective I/O,
ULFM enhancement, and sliding substitution methods to replace failed nodes with
spare nodes. Successor projects are contributing to the exa-scale computing.
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Chapter 5
Highly Productive, High-Performance
Application Frameworks for
Post-Petascale Computing

Naoya Maruyama, Takayuki Aoki, Kenjiro Taura, Rio Yokota,
Mohamed Wahib, Motohiko Matsuda, Keisuke Fukuda,
Takashi Shimokawabe, Naoyuki Onodera, Michel Müller,
and Shintaro Iwasaki

Abstract We present an overview of our project that aimed to achieve both high
performance and high productivity. In order to achieve our aim, we designed
and developed high-level domain-specific frameworks that can automate many of
tedious and complicated program optimizations for certain computation patterns.
This article walks through some of our research results and highlights how we
achieved both high performance and high productivity.

5.1 Overview

The main challenge of our project was to achieve both high performance and high
productivity. While it is generally intractable to attain both of them simultaneously,
we observe that existing software stacks for HPC applications often compromise
either of them as they strive to be flexible, general-purpose software. While
generality is obviously important in general, we envisioned that specialized software
stacks could provide high performance without compromising productivity. More
specifically, we focused on computational fluid dynamics and fast multipole method
and first developed high-performance reference implementations that allowed us to
learn key optimization techniques for large-scale heterogeneous systems (Sects. 5.2
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and 5.3). We then designed several domain-specific frameworks (Sect. 5.5) that
automate the learned optimization techniques for the target application domains by
exploiting scalable runtime system software (Sect. 5.4).

5.2 High-Performance Computational Fluid Dynamics
Simulations

5.2.1 Large-Scale LES Wind Simulation Using Lattice
Boltzmann Method for a 10 km × 10 km Area in
Metropolitan Tokyo

Pedestrians often feel strong winds around tall buildings in the metropolitan Tokyo
area. The concentration of tall buildings makes the air flow turbulent. In order to
understand the details of the airflow there, it is necessary to carry out large-scale
computational fluid dynamics (CFD) simulations, but thanks to recent progress in
supercomputers, we can now execute large-scale computation using a billion mesh
points.

The lattice Boltzmann method (LBM) constitutes a class of CFD methods that
solve the discrete-velocity Boltzmann equation. Since the LBM is based on a weak
compressible formulation, the time integration is explicit, and we do not need
to solve the pressure Poisson equation. This makes the LBM scalable and, thus,
suitable for large-scale computation. As an example, researchers performing large-
scale calculation using LBM [40] won the Gordon Bell prize in SC10. Moreover,
fluid phenomena taking into consideration complex shapes have also been studied
[6, 61]. However, LBM has not been applied to turbulent flows at high Reynolds
numbers. So far, there has been no large-scale wind flow simulation accounting for
real building shapes.

A large-eddy simulation (LES) is an approach that can deal with unsteady
turbulent flows. It is expected that the application of LES to LBM would allow one
to make a stable calculation of turbulent flows with high Reynolds numbers [65].
The dynamic Smagorinsky model [19] is a prominent subgrid-scale model based on
the concept of eddy viscosity. However, to determine the model parameter, a spatial
average has to be carried out over the global domain. This makes the computation
too inefficient for large-scale simulations. The coherent structure model (CSM)
[24] is a remedy to these problems; it enables the model parameter to be locally
calculated without taking any averages. CSM is suitable for a petascale LES wind
simulation.

We measured the performance of our LBM code on TSUBAME 2.0 (NVIDIA
TESLA M2050) and TSUBAME 2.5. (NVIDIA TESLA K20X). The code was
written in the GPU programming framework CUDA. The overlapping technique,
which hide the communication time with the computation time, is also applied to
achieve high performance on parallel computation.
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Fig. 5.1 Performance and simulation results. (a) Weak scalability in single precision (b) Snapshot
of wind flow (north is up)

Figure 5.1a presents the weak scalabilities of the LBM performance on TSUB-
AME 2.0 and 2.5. Each GPU handled a domain with a 192 × 256 × 256 mesh.
We achieved 149 TFLOPS on 1,000 GPUs of TSUBAME 2.0 and 1.14 PFLOPS
on 3968 GPUs of TSUBAME 2.5 in single precision. Since the model parameter
of CSM could be locally determined without averaging, we obtained fairly good
performance for weak scalability.

The large-scale wind simulation of a 10 km × 10 km area had a resolution of
1 m, and it included real building data of the city of Tokyo. The computational
domain covered the major wards of Tokyo, including Shinjuku, Chiyoda, Chuo,
Minato, and Meguro. We used 4,032 GPUs and a 10,080 × 10,240 × 512 mesh. The
inflow and outflow conditions were applied in the streamwise direction (from north
to south). Periodic boundary conditions were assumed in the spanwise direction
(east and west). The ground had a nonslip condition. The inlet velocity was set to be
Uin = A·log10z/2, where wind velocity was 10 m/s at a height of 100 m. Figure 5.1b
shows a snapshot of the wind flows visualized by using mass-less particles.

We concluded that the present scheme is one of most promising approaches to
simulating a wide area of turbulence. The LES computation for the 10 km × 10 km
area with a 1 m resolution is the most extensive of its kind.

5.3 High-Performance Fast Multipole Method

This article describes aspects of our fast multipole method code – exaFMM –, which
could otherwise have been difficult to publish in a scientific journal because they
were too software oriented. What we mention here has greatly helped simplify our
code and has kept the pace of development from slowing down even when the code
became bigger. These techniques can be thought of as subtle improvements in the
code implementation and following best practices in software engineering.
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5.3.1 Dual Tree Traversal

In conventional FMM codes, the interaction lists for the M2L kernel are determined
from the parent’s neighbor’s children that are non-neighbors, with extensions to
adaptive tree structures by considering well-separated descendants of neighbors of
leaf cells [8]. There are also methods to reduce the translation stencil from 189 to
119 [21] or even down to 40 [66]. In some cases the definition of the neighbor region
is extended from 3 × 3 × 3 to 5 × 5 × 5 [2].

exaFMM was designed to combine the strengths of treecodes and FMMs and has
adopted the dual tree traversal as a mechanism to calculate the optimal interaction
list for any tree structure. The idea of a dual tree traversal was first mentioned by
Warren and Salmon [59] and in more detail along with an optimized implementation
by Dehnen [12]. It has been parallelized using task-based models independently by
Yokota [62] and by Lange and Fortin [26]. It’s concept is extremely simple, where
the source tree and target tree are simultaneously traversed while applying the MAC
to each pair of cells.

Figure 5.2 shows the flow of calculation for the dual tree traversal. We start from
the pair of root cells and traverse both the source tree and target tree simultaneously.
If the pair of cells satisfy the MAC, the M2L kernel is executed/queued, and the
traversal is continued recursively otherwise. When the traversal hits the bottom of
both trees and it still doesn’t satisfy the MAC, the P2P kernel is executed/queued.

if 

source celltarget cell

else if both cells are leafs
call P2P() 

call M2L() 

else
loop over the children of
the larger cell and recurse

start from pair of root cells

ri : radius of target cell
rj : radius of source cell
Rij : distance between cells

can be used to create
explicit lists instead of
calling M2L() immediately

can be implemented without
recursion by pushing pairs
of cells into stacks

ri rjRijri + rj

Rij
< θ

Fig. 5.2 Dual tree traversal
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The concept of traversing two trees to obtain the interaction lists goes back to the
original work by Appel [4], though implementing it in its original form was proven
to be suboptimal [29].

5.3.2 Inner Kernels

5.3.2.1 Operator Overloading

In order to achieve performance portability without saving different implementa-
tions of each FMM kernel for every single architecture, we resort to C++ operator
overloading of a SIMD vector type. For example, a “+” operator for a SIMD
vector of floats will be overloaded with a _mm512_add_ps if the architecture
has AVX512, _mm256_add_ps for AVX, and _mm_add_ps for SSE equipped
hardware. With this approach, the kernels need to be written only once to run
on hardware of different SIMD generations. The performance is equivalent to
coding in intrinsics because the operators are overloaded with intrinsics. Using this
technology, the following inner kernels can be implemented efficiently.

5.3.2.2 Implementation Differences

There is also a large difference in performance among the various implementations
of the same type of expansion. For example, the spherical harmonics with rotation is
a popular choice, and various implementations exist, with different ways to calculate
the recurrence relation [9, 10, 25, 28], reduce the interaction list size by exploiting
symmetry [11, 21, 52, 66], or use BLAS to process the translation operations
in batches [15, 16]. Spherical harmonics and Legendre polynomials involve the
calculation of factorials and could result in loss of precision if not implemented
carefully. This is also true for the Hankel and Bessel functions that are needed for
the Helmholtz kernels [37].

5.3.3 Partitioning (Load-Balancing)

exaFMM supports all of the partitioning schemes mentioned in this subsection.
There are two main categories for partitioning schemes for hierarchical N -body
methods. One is the orthogonal recursive bisection (ORB) and the other is the
hashed octree (HOT).

5.3.3.1 Orthogonal Recursive Bisection

In ORB the domain is bisected at a position where the workloads on both sides
are equal, where the workload is determined from the previous step [43]. If the
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number of processes is not a power of two, we can use multi-sections where the
domain is partitioned into either two or three subdomains [30]. The ORB works
well with the hypercube type all-to-all communication scheme [27] if we map every
level of the bisection to a hypercube dimension. In this scheme, every process
will only communicate with one other process to exchange the bodies at each
bisection, and the end result will still be an all-to-all communication. In the exaFMM
implementation of ORB, we split the MPI communicator hierarchically to map it to
the binary tree structure. Therefore, it is trivial to find the pair of processes that
exchange bodies by simply using the split communicator at each level of the multi-
section tree.

5.3.3.2 Hashed Octree

In HOT the Morton/Hilbert ordered space filling curves are split into equal segments
based on the workload and assigned to each process, where the workload is
determined from the previous step [58]. A similar method called costzones was
proposed for shared memory [50], and HOT can be thought of as a distributed
memory extension of it [20]. At the partitioning stage, it is not necessary to sort
within the partitions. Therefore, applying a global parallel sort on all bodies is
suboptimal, considering that there are usually millions of bodies per partition.
Parallel sampling-based techniques have proven to be useful for both finding the
bisectors in ORB [30] and finding the splitting keys in HOT [51]. In exaFMM we
have our own implementation of a sampling-based parallel histogram sort, which
sorts only among the partitions and not within the partitions. exaFMM allows the
user to choose between Morton and Hilbert ordering, though for most distributions
we have found that it makes little difference.

5.3.4 Local Essential Tree

5.3.4.1 Communication

In a distributed memory implementation of the FMM, a unique subset of the tree
from every process must be communicated to every other process. From this infor-
mation, each process can construct the local essential tree (LET), which is a subset
of the global tree that is required by each process [43]. Since the communication for
the LET requires unique information to be sent from every process to every other
process, its naive implementation relies on an MPI_Alltoallv. Furthermore, the
distribution of the bodies and the resulting tree structure on remote processes is
unknown, so each process does not actually know what information to ask for.
This problem can be solved by guessing from the local tree what needs to be
sent to every other process. Such sender-initiated LET communication schemes are
described for both ORB [14] and HOT [41]. exaFMM uses this sender-initiated LET
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communication for both the ORB and HOT. The MPI communicator splitting used
for the partition is also used here to facilitate a hypercube type communication.

5.3.4.2 Grafting

Typically, code for merging the LET would take a large portion of a parallel FMM
code, and this has made it difficult to implement new features such as periodic
boundary conditions, mutual interaction, more efficient translation stencils, and dual
tree traversals in most FMM codes. exaFMM is able to incorporate all these extended
features and still maintain a fast pace of development because of its simplification in
how the global tree structure is geometrically separated from the local tree structure.
This separation of the global and local tree structure is also a requirement for
achieving a theoretical communication complexity of O

(
log P + (N/P )2/3

)
[64].

5.3.4.3 Thread Scalability

The thread scalability is shown for up to 16 threads for various tol and N values
in Fig. 5.3a. In general, higher accuracy and larger problem size lead to much more
computation and therefore have much more concurrency and are easier to scale.
These experiments are conducted on a node with 12 physical cores, so it is not
expected to scale to 16 threads. exaFMM has compute-bound kernels and hyper-
threading will not help in this case. We see that exaFMM scales up to 8 cores if the
computational load is large enough.

5.3.4.4 MPI Scalability

For the strong and weak scalability results, we use a Cray XC40 with 6174 nodes.
The code used for the distributed memory scalability runs is in exafmm/uniform
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Fig. 5.3 Scalability of exaFMM code (a) Thread scalability of exaFMM for different numbers of
bodies N and different orders of expansions P (b) Weak scalability of exaFMM for N = 108 per
node, with 64 cores per node, and P = 6
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Fig. 5.4 Strong scalability of exaFMM for N = 200,000,000 with 64 cores per node, and P = 6

and compiled with make parallel. The weak scalability results are shown in
Fig. 5.3b, where the number of bodies is set to N = 100,000,000 per node with
64 cores per node. The order of expansion is set to P = 6. In the breakdown,
“Grow tree” represents the tree construction time, “Traverse” represents the kernel
evaluation time, “Communication” represents the MPI communication time, and
“Other” is the total of everything else. The communication becomes visible beyond
16,384 cores but is still quite small even for 131,072 cores. The strong scalability is
shown in Fig. 5.4, where the number of bodies is set to N = 200,000,000 in total.
We use 64 cores per node and an expansion order P = 6 similar to the weak scaling
case. The computation time is multiplied by the number of cores for the sake of
visibility of the breakdown. The communication starts to dominate at 32,768 cores,
but note that the actual execution time (without multiplying by the number of cores)
is still faster for 32,768 than the 4,096 case.

5.4 A Runtime System for Unified Task-Parallel
Programming Models

5.4.1 What Are Task-Parallel Models?

A task-parallel programming model is a parallel programming model supporting
dynamic creation of tasks at arbitrary point in the execution. It allows a running
task to create another task, just like any serial programming language allows a
function to call another function. It thus supports a nested tree of tasks. While
details vary among systems, it generally allows a task to wait for its child tasks
to finish. In task-parallel programming models, the programmer is responsible
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for extracting parallelism by creating tasks, leaving the job of mapping them to
available hardware for the system (a compiler, a runtime system, or a combination
thereof). In particular, the programmer does not have to match the number of
runnable (ready-to-execute) tasks with the number of available execution units
(e.g., cores). In addition, implementation of task-parallel systems generally tries to
minimize the overhead for creating and finishing a task. With the automatic mapping
of tasks to hardware resources combined with the low overhead, the programmer is
relieved from burdens of careful partitioning of the work to available resources.

Task-parallel systems differ in the scope in which a task can distribute. Most
commonly, a task-parallel system distributes tasks to cores within a shared memory
node (local task-parallel systems). Programming languages supporting local task
parallelism include Cilk [17], OpenMP tasks [5], Intel Threading Building Block
[42], and Chapel [67]. Libraries that can readily be used for implementing such
languages include MassiveThreads [36], Qthreads [60], and Argobots [44]. There
are systems that distribute tasks globally across nodes (global task-parallel systems),
e.g., [13, 22, 32] among others. It is also possible and logical to map tasks to
SIMD lanes, another dimension along which the hardware exposes parallelism to the
programmer. Mapping what is conceived as a task or a thread from the programmer’s
perspective to SIMD lanes entails a significant compiler effort. Our research efforts
range across all types of task parallelism.

5.4.2 MassiveThreads Lightweight Thread Library

MassiveThreads [36] is a lightweight thread library that exposes an ordinary thread-
like API but implements it much more efficiently in the user level. It also uses the
work-stealing algorithm [7, 33] for task scheduling and distribution, so that it is
suitable for divide-and-conquer parallel algorithms. On top of MassiveThreads API,
we have implemented a layer compatible with taskgroup in the Intel Threading
Building Block. This demonstrates that one can easily build a high-level task-
parallel interface on top of MassiveThreads. We also implemented a binding for
Standard ML# [38] and integrated it into Cray Chapel [67] as an optional tasking
layer.

5.4.3 Task-Parallel Fast Multipole Methods (exaFMM)

We have implemented a task-parallel formulation the exaFMM library [63], a highly
optimized implementation of fast multipole methods. Its central data structure is
an octree that decomposes the three-dimensional space. The shape of the octree
is determined by particle distributions and can be highly imbalanced when the
distribution is skewed.
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We have shown a task parallelism plays a great role in parallelizing every
phase of exaFMM, including octree construction, calculation of interaction, and
upward and downward propagation [53]. In particular, exaFMM employs a dual
tree traversal [12], which takes two trees and descends along both of them in a data-
dependent fashion. MassiveThreads greatly helps its parallelization, by allowing the
programmer to simply spawn a new task when it descends a tree.

5.4.4 UniAddress: A Library-Based Global Work Stealing with
RDMA

Compared to the local task parallelism, which has become readily available as a
means to distribute tasks within a single shared memory node, distributing tasks
across nodes is far more challenging.

We developed a global work stealing library, MassiveThreads/DM [1], which
can distribute tasks compiled with ordinary C/C++ compilers. Being library is an
important property, as it allows the user programs to be compiled and optimized
by mature production compilers. Most global task-parallel systems as of today
do not support recursive (arbitrarily nested) task creations/synchronizations, which
are essential for describing divide-and-conquer algorithms. To our best knowledge,
MassiveThreads/DM is the first system that supports recursive task creations/syn-
chronizations with ordinary C/C++ compilers.

Toward realizing this goal, a challenging issue arises due to the fact that each
node in a distributed memory supercomputer has its own distinct address space. In
this setting, moving a task from one node to another requires an explicit movement
(migration) of the task state, which is essentially a stack of activation frames. After
a migration, the stack will be copied into an address available in the destination
node, which is, naturally, different from the address it occupied in the originating
node. If this is the case, the runtime system must modify pointers pointing to an
address within the moving stack. This fix-up operation requires precisely locating
all pointers in a stack, which is difficult to achieve in non-type-safe languages such
as C/C++. Since our goal is to take advantage of production C/C++ compilers and its
mature optimizations, our only choice seems to ensure a migrating stack is copied
into exactly the same address in the destination node. The scheme was invented by
Antoniu et al. and named IsoAddress [3]. There is a scalability issue in IsoAddress
scheme, however; it requires a huge logical address space in each node, so that
any node can potentially accommodate any live stack in the entire system. Since
the number of live stacks is proportional to the number of cores, there is a real
risk that we run out of logical address space in future massively parallel systems.
Furthermore, this luxury use of virtual addresses has a bad memory locality and
causes extra TLB misses and page faults. We proposed a solution to these problems,
UniAddress [1], which ensures that a stack is on the identical address only when it
is actually running.
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5.4.5 Static Optimizations and Vectorization of Tasks

To obtain good peak performance and energy efficiency, recent processors increas-
ingly rely on wide single instruction, multiple data (SIMD) instructions, instructions
that apply a single operation (e.g., multiply, add, etc.) to multiple data. Programmers
typically use SIMD instructions either through low-level intrinsic APIs (functions
that directly map to SIMD instructions) or regular loops that compilers are able
to use SIMD instructions for. In the context of task-parallel programs, this means
that programmers typically have to program multicore and SIMD separately; they
use tasks for utilizing multiple cores and loops or intrinsics within each task for
utilizing SIMD parallelism within a core.

This doubles the burden on the programmer. Furthermore, considering that the
idea of task-parallel programming models is to create lots of logically concurrent
tasks to be mapped by the system to hardware resources, it is natural to explore
the possibility to distribute tasks to SIMD lanes too. In this ideal model, the
programmer creates lots of tasks without explicitly vectorizing the work within
individual tasks, and the system utilizes SIMD instructions to execute multiple
tasks. This is conceptually similar to the single instruction, multiple threads (SIMT)
execution model of CUDA, in which programmers only need to create lots of CUDA
threads, to be executed by GPU hardware. Internally, GPU has a mechanism similar
to SIMD, called warp, with which all threads within a single warp can execute
an instruction in the same clock cycle, as long as they are executing the same
instruction. SIMT execution model unifies parallelism inside and across warps in
the programming model, albeit only for the flat parallelism expressible in the SIMT
model. It is also similar to Intel SPMD compiler (ISPC), which compiles SPMD
programs into SIMD execution [39].

Both SIMT and ISPC rely on the fact that the program is written in the SPMD
model; the program describes the action taken by each logical thread and launches
many instances of them. Programs expressed in this manner is amenable to SIMD
execution, as the compiler’s job is essentially to generate instructions that execute
the described action in all SIMD lanes. Conditional executions are handled through
predicated execution and/or branches. All in all, the compiler’s job is similar to
vectorizing a loop whose execution count is known.

Compiling task-parallel programs into SIMD is much more challenging for a
number of reasons. First, tasks are dynamically created, so the number of tasks is
not apparent in the program. Second, tasks may have dependencies, so all created
threads are not necessarily concurrently executable. Third, there are no single piece
of code that describe the action of all concurrent threads. The compiler must
undertake significant static analysis to identify concurrent tasks that will execute
the same instructions and transform them into a representation more amenable to
vectorization.

We developed such a transformation based on the LLVM compiler framework
[23]. It performs static elision of task creation near leaves of the task tree (static
cut-off) and applies a number of optimizations to coalesced leaves. For regular
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programs, it is able to transform them into loops, which may then be vectorized
by the backend compiler. We observed a significant speedup (up to two orders of
magnitude in an extreme case) for a number of programs.

5.5 Domain-Specific High-Level Frameworks

In this project, we have developed several tools and frameworks for computational
fluid dynamics and fast multipole method, including the Physis stencil frame-
work [31], a kernel fusion/fission optimization framework [54, 55], the Daino AMR
framework [57], and the Tapas framework for FMM [18]. Below, we give a brief
overview of some of the frameworks.

5.5.1 High-Level Framework for High-Performance AMR

In many scientific and engineering simulations, partial differential equations (PDEs)
are solved in a uniform mesh arrangement by using finite-difference schemes,
referred to as iterative stencils. Typically, the resolution of the mesh is uniformly
set to the highest resolution to provide accurate solutions. For meshes that require
only high resolution for some portions of the mesh, an alternative method, known
as adaptive mesh refinement (AMR), can be used instead of the uniform mesh. The
AMR method solves the problem on a relatively coarse grid and dynamically refines
it in regions requiring higher resolution. However, AMR codes tend to be far more
complicated than their uniform mesh counterparts due to the software infrastructure
necessary to dynamically manage the hierarchical mesh framework. Despite this
complexity, it is generally believed that future applications will increasingly rely on
adaptive methods to study problems at unprecedented scale and resolution.

We design a high-level programming framework that provides a highly produc-
tive programming environment for AMR [56, 57]. The framework is transparent and
requires minimal involvement from the programmer while generating efficient and
scalable AMR code. The framework consists of a compiler and runtime components.
A set of directives allows the programmer to identify stencils of a uniform mesh
in an architecture-neutral way. The uniform mesh code is then translated to GPU-
optimized parallel AMR code, which is then compiled to an executable. The runtime
component encapsulates the AMR hierarchy and provides an interface for the mesh
management operations. We demonstrate the scalability of auto-generated AMR
code using three production applications. We compare the speedup and scalability
with handwritten AMR of all three applications.
Applications: (a) Phase-field simulation: This application simulates 3D dendrite
growth during binary ally solidification. (b) Hydrodynamics solver: This solver
models a second-order directionally split hyperbolic schemes to solve Euler equa-
tions. (c) Shallow water: Modeling shallow water by depth-averaging Navier-Stokes
equations.
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Fig. 5.5 Weak scaling of uniform mesh and handwritten and automated AMR
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Fig. 5.6 Strong scaling of uniform mesh and handwritten and automated AMR

Results: In a weak scaling experiment, shown in Fig. 5.5, the runtime for uniform
mesh, handwritten AMR, and auto-generated AMR are compared. The following
points are important to note. First, more than 1.7× speedup is achieved using Daino
suing the full TSUBAME machine, 3,640 GPUs, for the phase-field simulation. This
is a considerable improvement considering that the uniform mesh implementation is
a Gordon Bell prize winner for time-to-solution. Second, Daino achieves good scal-
ing that is comparable to the scalability of the handwritten AMR code. Figure 5.6
shows a strong scaling comparison for handwritten and auto-generated AMR against
uniform mesh implementation. The code generated by Daino achieves speedups and
scalability comparable to handwritten implementations. However, when using more
GPUs, reduction in speedup starts to occur as the management of AMR starts to
dominate the simulation runtime.

5.5.2 Automatically Fusing Hundreds of Stencil Kernels for
Better Performance and Productivity

Kernel fusion is an advanced optimization at which codes of different memory-
bound kernels are aggregated to expose inter-kernel data localities. Performance can
then potentially improve if opportunities of data reuse in the transformed code are
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exploited effectively. Applying kernel fusion to real-world large-scale applications,
however, is difficult. A main challenge is the need for a scalable method to
search for the optimal choice of which kernels to fuse among the enumeration
of feasible fusions. Another main challenge is to design an architecture-aware
method for collectively applying fusion as a transformation: exposing locality
does not guarantee actual performance improvement unless the architecture-related
features were taken into consideration when optimizing for data reuse. Finally, a
transformation method for applying kernel fusion that is automated and applicable
to a diversity of applications is a nontrivial challenge.

This work introduces GPU kernel fusion for a class of memory-bound applica-
tions [54, 55]. In particular, PDEs solvers comprise a significant fraction of scientific
applications in a variety of areas. Those applications are often implemented using
memory-bound finite-difference techniques referred to as stencils. Optimized stencil
codes in GPU typically depend on the on-chip memory to enhance performance.
Kernel fusion further optimizes the use of on-chip memory in stencils and can
be increasingly important in the future of performance optimization driven by the
increased dependence on on-chip memory.

The work conducted in this project targets the following: make the process of
applying kernel fusion to improve performance a practical choice for real-world
applications. The main proposal is an end-to-end automated kernel transformation
framework. The end-to-end solution includes the following steps: first, gathering
of metadata via instrumentation and static analysis to understand the dependencies
among kernels; second, searching for the optimal fusion of kernels using a cus-
tomized optimization algorithm; and third, auto-generating new optimized kernels
to replace the original kernels. A positive consequence of the automated approach
is an opportunity for improving the optimization algorithm. More specifically,
we propose the use of kernel fission to improve the search space exploration
by increasing the number of feasible solutions through relaxation of the on-chip
memory capacity constraint. This in turn increases the chances of finding kernel
fusions that could expose higher locality.

We evaluate the proposed end-to-end solution by applying automated kernel
transformations to enhance the performance of six real-world scientific applications
in such diverse areas as weather modeling, seismic simulations, oceanic circulation
modeling, electromagnetics, and fluid dynamics. The transformation resulted in
speedups ranging between 1.12× and 1.76× compared to the original CUDA
codebases. Further details of the performance results can be found in [55].

5.5.3 High-Productivity Framework on GPU-Rich
Supercomputers for Weather Prediction Code

Numerical weather prediction is one of the major applications in high-performance
computing and is accelerated on GPU supercomputers. The Japan Meteorological
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Agency (JMA) is developing a high-resolution mesoscale weather prediction code
ASUCA. Multi-GPU computation of mesh-based applications, including ASUCA,
has the potential to achieve high performance. However, it requires relatively high
cost of implementation [45, 46, 49].

We have developed high-productivity and high-portability framework for multi-
GPU computation of mesh-based applications and implemented ASUCA based on
this proposed framework from scratch [47, 48]. The proposed framework is designed
to provide highly productive programming environment for stencil applications with
explicit time integration running on regular structured grids. The framework updates
the physical variables defined on grid points and stored in arrays in user programs.
Our framework is implemented in C++ and CUDA languages. It automatically
translates user-written stencil functions that update a grid point and generates both
GPU and CPU codes. The programmers write user code just in C++ and it can be
executed on multiple GPUs.

In this framework, stencils must be defined as C++ functors called stencil
functions. The stencil function for three-dimensional diffusion equation is defined
as follows:

Listing 5.1 Stencil functions as C++ functors
s t r u c t D i f f u s i o n 3 d {
_ _ h o s t _ _ _ _ d e v i c e _ _
vo id o p e r a t o r ( ) ( c o n s t ArrayIndex3D &idx ,

f l o a t ce , f l o a t cw , f l o a t cn , f l o a t cs ,
f l o a t c t , f l o a t cb , f l o a t cc ,
c o n s t f l o a t * f , f l o a t * fn ) {

fn [ i d x . i x ( ) ] =
cc * f [ i d x . i x ( ) ]

+ ce * f [ i d x . ix < 1 , 0 , 0 > ( ) ] + cw* f [ i d x . ix < −1 ,0 ,0 >()]
+ cn * f [ i d x . ix < 0 , 1 , 0 > ( ) ] + cs * f [ i d x . ix <0 , −1 ,0 >()]
+ c t * f [ i d x . ix < 0 , 0 , 1 > ( ) ] + cb * f [ i d x . ix <0 ,0 , −1 >( ) ] ;
}
} ;

Stencil access patterns on three-dimensional grids are described by using
ArrayIndex3D, which is provided by the framework. ArrayIndex3D holds
the size of each dimension of a grid and represents a certain grid point (i,j,k),
which is the coordinate of the point where this function is applied. To apply user-
written stencil functions to grids, the framework provides the Loop3D class, which
is used to invoke the diffusion equation on the three-dimensional grid by passing to
it the stencil functions and their respective parameters.

In the multi-GPU computation, since stencil computation that updates to a
point of grid needs to access its neighbor points, the data exchanges of boundary
regions between subdomains are performed frequently. The framework provides
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(a) (b)

Fig. 5.7 Performance results for ASUCA. (a) Strong scaling. (b) Weak scaling

the BoundaryExchang class to write this communication. This class utilizes
appropriate GPU-GPU communications such as GPUDirect peer-to-peer access
with MPI.

The data communication time between GPUs is not ignored in the total execution
time in the case of large-scale computation. The overlapping technique to hide com-
munication overhead with computation can contribute to performance improvement.
This framework provides kernel-division overlapping method reported in our previ-
ous work [45, 46]. This method exploits data independency within a single variable.

Figure 5.7a shows the performance of the framework-based ASUCA running on
Tesla K20X GPUs on TSUBAME 2.5 and compares the strong scalability of the
non-overlapping version and the overlapping version of ASUCA. We observe that
the overlapping method works effectively to hide communication cost for both mesh
sizes we expected, resulting in performance improvement. Using a 3,072 × 2,560
× 60 mesh on 512 GPUs, the overlapping method achieves 18.9 TFlops. In weak
scaling (Figure 5.7b), we achieve an extremely high performance of 209.6 TFlops
using 4,108 GPUs with the overlapping method in single precision.

5.5.4 A Framework for High-Productivity GPU Acceleration
Through Code Transformation Applied to Operational
Weather Prediction Model in Japan

Numerical weather prediction (NWP) is steadily advancing toward increasingly
high resolutions in order to allow accurate modeling of cloud-forming processes,
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creating increasing demand for memory bandwidth among other hardware aspects.
GPUs are very promising in this regard – their internal memory is highly performant
compared to conventional approaches. On the other hand, numerical weather
prediction is a very demanding environment with regard to operational requirements
for the codebases in use – maintainability and ease-of-use for domain scientists are
paramount for a successful deployment of new hardware architectures. While the
performance of GPUs for earth system software has been studied extensively in
related work, there is a gap in studies and frameworks where productivity plays a
central role. Two technical challenges stand out in terms of their potential impact on
productivity and code integrity, as many NWP codes have been developed mainly
with CPUs in mind:

1. The granularity of physical processes tends to be too coarse for GPU.
2. The memory layout of data structures often needs to be reordered.

Existing approaches to solve these issues have led to varying combinations of
limited performance, poor maintainability, and invasive rewrites. For ASUCA, a
production regional-scale weather model used in operation at the Japan Meteorolog-
ical Agency, an approach has been sought that comes with none of these drawbacks.

To meet these challenges, we introduce “Hybrid Fortran,” a new approach that
allows high-performance GPGPU porting for data-parallel Fortran codes. This
technique requires only minimal changes for a CPU targeted codebase, a significant
advancement in terms of productivity. Parallel loops are abstracted through the
means of a new language construct (parallel region), allowing to specify multiple
granularity levels with the same code, depending on the target architecture (thus
keeping support for CPU). Figure 5.8 gives an overview of this approach for
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Fig. 5.8 ASUCA hybrid code structure with two granularity levels depending on target
architecture
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ASUCA. Memory layout is transformed at compile time, enabling the reuse of
existing code with zero runtime overhead.

Hybrid Fortran has been successfully applied to both dynamical core and
physical processes of ASUCA, a Japanese mesoscale weather prediction model with
more than 150k lines of code. By using extensive code transformation techniques,
more than 85% of the original codebase was left unchanged, and the overall code
size has been extended by less than 4%. This shows very promising productivity,
maintainability, and ease-of-adoption in an operational setting [34].

By means of a minimal weather application that resembles ASUCA’s code
structure, Hybrid Fortran is compared to both a performance model and today’s
commonly used method, OpenACC. As a result, the Hybrid Fortran implementation
is shown to deliver the same or better performance than OpenACC, and its perfor-
mance agrees with the model both on CPU and GPU. In a full-scale production run,
using an ASUCA grid with 1581 × 1301× 58 cells and real-world weather data
in 2km resolution, 24 NVIDIA Tesla P100 running the Hybrid Fortran based GPU
port are shown to replace more than 50 18-core Intel Xeon Broadwell E5-2695
v4 running the reference implementation – an achievement comparable to more
invasive GPGPU rewrites of other weather models. In terms of kernel performance,
a speedup of more than 3× is shown between latest-generation CPUs and GPUs
(Reedbush-H), and a speedup of 4.9× is shown on TSUBAME 2.5, comparing
Kepler K20x GPUs to six-core Westmere CPUs [35].

5.6 Concluding Remarks

In this article, we presented an overview of our project that aimed to achieve
both high performance and high productivity. In order to achieve our aim, we
designed and developed high-level domain-specific frameworks that can automate
many of tedious and complicated program optimizations for certain computation
patterns. In particular, we focused on computational fluid dynamics and fast
multipole method and first developed high-performance reference implementations
that allowed us to learn key optimization techniques for large-scale heterogeneous
systems. We then designed several domain-specific frameworks that automate the
learned optimization techniques for the target application domains by exploiting
scalable runtime system software.

We believe that we were able to demonstrate that achieving both high per-
formance and high productivity is possible by specializing software stacks. It is
becoming even more important given the uncertainty on future HPC hardware
architecture beyond exascale computing. Obviously, however, it is not trivial to
develop such domain-specific frameworks at all, although some of the common
tasks can be accomplished by runtime software such as MassiveThreads. In order
to realize high-performance and high-productive programming environments for
a wider variety of application domains, the cost of developing frameworks must
be reduced significantly. Another major challenge is to make frameworks into
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professionally managed products. Domain-specific frameworks, by definition, have
smaller user communities than general-purpose software, and they tend to end up
as research demonstrations, including ours, rather than continuously maintained
software products. We note that the two challenges are mutually related and think
that addressing these challenges will become more important in the exascale and
post-exascale era.
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Chapter 6
System Software for Data-Intensive
Science

Osamu Tatebe, Yoshihiro Oyama, Masahiro Tanaka, Hiroki Ohtsuji,
Fuyumasa Takatsu, and Xieming Li

Abstract The storage performance is an issue for supercomputers to facilitate the
data-intensive science. To improve the storage bandwidth according to the number
of compute nodes, we assume a node-local scale-out storage architecture. The
number of local storages increases according to the number of compute nodes, and
the total storage bandwidth increases scalably. Our research target is a distributed
file system in the node-local storage architecture, an operating system for compute
node, and runtime systems for the distributed file system using node-local storages
for workflow systems, MapReduce, MPI-IO, and batch job schedulers.

6.1 Distributed File System

CPU performance of supercomputers has been improved toward Exaflops. However,
the speed of storage performance improvement is slow, and the performance
gap between CPU and storage is growing wider and wider. The performance
improvement of most applications is limited. To fill the gap, an innovation in
computer systems is required. To improve the storage bandwidth according to the
number of compute nodes, we assume a node-local scale-out storage architecture.
The number of local storages increases according to the number of compute nodes,
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Fig. 6.1 A node-local
scale-out storage architecture
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and the total storage bandwidth increases scalably. As a general rule of thumb, well-
balanced 100 PFlops supercomputers require 100 TB/s of the storage bandwidth. An
example of system configuration is shown in Fig. 6.1. Each node has 4 NVMe SSDs
that provide 20 GB/s of storage bandwidth in total. A file system metadata server
manages 500 nodes. Ten sets of them provide 100 TB/s of the storage performance.

In this storage architecture, file data is stored in a local storage. The file location
and file metadata such as a modification date and an access control list are stored
in a metadata server. Separate management of file metadata and file data makes it
possible to directly access file data from a client in parallel, which helps to improve
storage access performance.

Existing systems having the node-local scale-out storage architecture include
Google file system [5], Hadoop distributed file system [6], and Gfarm file system
[27]. Google file system and Hadoop distributed file system are for MapReduce [3]
processing; on the other hand, Gfarm file system is a POSIX-compliant file system.
There are several issues to realize a 100 TB/s node-local scale-out storage system.
One issue is the performance and the availability of file system metadata servers.
All existing systems utilize a single metadata server that has a limitation of the
metadata performance, which can typically manage up to thousands of compute
nodes. Regarding the availability, Gfarm file system has a slave metadata server
to prepare for a failover when a master metadata server fails. The metadata server
should not be a single point of failure.

Another issue is the availability of the file data. When using the node-local
storage, the file data stored on that node cannot be accessed if it fails. In the worst
case, the file data is lost. To prevent the data lost or increase the degree of the
availability, files are often replicated among nodes. The file replication requires two
times more capacity of storage when three copies are created. Erasure coding helps
to reduce additional capacity, but there is overhead to encode, which may degrade
the write performance. How to reduce this performance penalty is another problem.
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New device innovation such as a nonvolatile memory and a flash device requires
redesign of storage system software since how to improve the performance is
different. To improve the performance, hard disk drives require sequential access
of blocks, while a flash device and a nonvolatile memory require parallel accesses
or non-blocking accesses to hide access latency.

In the node-local distributed storage systems, access performance depends on the
location of files. A local storage provides better performance than a remote storage.
Exploiting locality of storage access is critical to improve the storage performance.
This is an issue for runtime systems to allocate processes on a node that stores the
input files.

6.1.1 File System Metadata Server

To achieve scalable performance for file operations using multiple metadata servers,
the metadata management, especially hierarchical namespace management, is
critically important. Traditional local file system uses a directory entry that is an
array or a tree of an entry name and the inode number to manage a hierarchical
namespace. This design is not appropriate for concurrent operations since it is
challenging to manage in distributed servers and to modify it in parallel.

To avoid this difficulty, we design a PPMDS metadata server. A directory entry
does not manage a list of entries. Instead, it manages a server list that stores inode
entries in the directory. Entries in the directory are distributed across multiple
servers in the server list. Each entry can be accessed, updated, created, and removed
in parallel unless these are conflicting operations for the same entry.

This design can eliminate unnecessary blocking regarding file operations when
they are not conflicted. Directory operations that require to modify multiple entries
consistently can be supported by a non-blocking transaction efficiently [7]. This
design eliminates a global lock or a distributed lock in a directory level and ensures
to process concurrent operations in parallel unless they are conflicting operations.

The traditional file system is managed by the inode data structure, which is
optimized for a block device in a local machine. It is not suitable for distributed
data management since a directory entry is managed by a single inode. File system
metadata consists of the following two types of data:

• file metadata for each inode entry such as a list of block locations, permission
and timestamps, and

• hierarchical namespace.

Hierarchical namespace is managed by directory entries in the traditional file
system, while it has several problems in distributed management and parallel
updates.

In PPMDS, the file system metadata is managed by key-value pairs. Each key-
value pair is an inode entry. The file metadata is stored as a value of a key-value pair.
Key is a pair of a parent inode number and an entry name. Inode entry is identified
by a pair of a parent inode number and an entry name. This representation is also
used by TableFS [17].
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This key-value metadata data structure is easily distributed among multiple
servers. Each metadata server has its own key-value store. Inode entries in the
directory are distributed using a hash function among servers.

6.1.2 Object Storage

OpenNVM [4] is a proposed standard interface for a flash storage. It includes a
sparse address space and atomic batch write operations, which can greatly improve
the flash storage performance. The sparse space address is similar to a logical
address in memory space. Only written blocks are physically allocated in the flash
storage. The atomic batch write operations can write or trim several I/O blocks or
I/O vectors atomically.

Using these operations, an object storage can be designed by a straightforward
array of fixed-sized regions. Region size is large enough to fit the maximum size
of objects. In this case, each object can be accessed directly using the region
number. Besides, atomic batch operations can be used for batch initialization,
which improves the object creation performance. Our PPOST implementation [22]
shows 12 times speedup compared with the DirectFS [9] and achieves 740,000 file
creations per second.

6.1.3 Active Storage for Cluster-Wide RAID

To increase the degree of availability, file replications are often used, while they
waste the capacity. RAID or erasure coding can reduce the additional capacity,
but there is an overhead to encode. RAID encoding is usually done using a RAID
controller in a storage server, while it is not a case for a cluster-wide RAID spread
among storage servers.

We proposed an active storage mechanism for a cluster-wide RAID to avoid
the encoding overhead [13]. In a RAID controller model, a client calculates
parity blocks and sends data and parity blocks to storage servers, which consume
additional CPU cycles in a client and additional network traffic for parity blocks.
Active storage mechanism calculates parity blocks at storage server side. The client
sends only data blocks not parity blocks. A storage server sends a data block to a
storage server to calculate a parity block. It is possible to construct a pipeline stage
for this data transfer and the calculation of the parity block, which can hide the parity
calculation overhead. A zero-overhead RAID-5 pipeline is demonstrated in [13].

6.1.4 PPFS Scale-Out Distributed File System

To demonstrate a scale-out distributed file system, we design a PPFS file system
using PPMDS distributed metadata server and PPOST object storage [23]. A
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naive implementation suffers from overhead of communication among a client
and a server and among servers. To reduce the overhead, a bulk creation and an
object prefetching are proposed. The bulk creation creates N empty files at one
time, which are cached at the metadata server. This reduces the number of file
creation requests to 1/N . The object prefetching hides the latency of communication
between servers. It introduces a helper thread to create objects beforehand and hides
the communication latency. Using these techniques, PPFS file creation performance
achieves 138,000 file creations per second, which is 2.5 times better than the
IndexFS [18].

6.2 Compute-Node Operating System for Data-Intensive
Computing

System software for compute nodes is critical for maximizing the performance of a
distributed file system in supercomputers. Even if the I/O servers of the distributed
file system are fully optimized, runtime overheads on I/O operations on compute
nodes can significantly decrease the overall performance of applications. Based
on this observation, we developed fundamental technologies for compute-node
operating systems that can maximize the performance of data-intensive applications
running with distributed file systems. The distributed file system used in this
research is Gfarm [27].

Various results have been obtained. First, we developed an RDMA-based mech-
anism to transfer file data between clients and servers of a distributed file system.
The mechanism helps minimize the number of data copies and context switches
occurring in I/O operations. Second, we developed technologies to efficiently
manage cache of file data on compute nodes. The technologies include deduplication
of file data and cooperative caching. Finally, we developed a method to reduce
operating system jitter on compute nodes due to high load of I/O operations. The
following part of this section presents the results.

6.2.1 RDMA-Based File Data Transfer in Distributed File
Systems

We developed a mechanism that enables the client interface (kernel driver) of a
distributed file system to quickly transfer file data to or from I/O servers. The key
building block of the mechanism is the remote direct memory access (RDMA),
which is provided by a high-speed communication mechanism InfiniBand. The
RDMA allows a node to directly read or write the memory of other nodes connected
with the InfiniBand. Nodes using RDMA can transfer data faster than those using
packet-based communication such as Ethernet. A TCP/IP communication is still
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possible on top of InfiniBand owing to the IPoIB (IP over IB) communication
mechanism. However, the use of TCP/IP results in significant runtime overhead
because of the operations of the TCP/IP protocol.

A conventional method of accelerating file accesses from the client interface of a
distributed file system involves using a kernel driver specialized for the distributed
file system. This helps reduce the number of context switches between the processes,
context switches between the kernel level and user level, and memory copies of file
data, when compared to methods using user-level client interface such as FUSE.
In the past, the Gfarm project developed a kernel driver specialized for Gfarm,
achieving faster file accesses than FUSE-based client interface, which has been
conventionally used with Gfarm. However, even after the introduction of the kernel
driver, the operating system kernel of the client nodes still executes redundant
memory copies.

We attempted to eliminate the redundant memory copies using InfiniBand
RDMA. The conventional method first receives file data from the server in its
communication buffer, and then the operating system kernel copies the data to a
page-cache area. A page-cache area is a kernel-level memory area on which the
kernel stores the file data read from the storage. Figure 6.2 shows the data flow
in the conventional method (blue dotted lines) and in the mechanism developed in
this study (red dotted line). The developed mechanism directly transfers file data
from the I/O server to a page-cache area of a client node without memory copy.
We implemented the mechanism and integrated it into Gfarm. The elimination of
memory copies in the mechanism reduces the consumption of CPU resource, which
is extremely valuable for compute nodes. To the best of our knowledge, this research
is the first to implement an RDMA-based mechanism whereby client nodes directly
receive file data in page-cache areas.

Buffer

Page cache

Application

Direct data transfer by RDMA

User
Kernel

I/O server

Buffer

Disk

Kernel module

Data copy
Buffer

Data transfer

Client

Fig. 6.2 Flows of data in a conventional method and with the developed mechanism
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Table 6.1 Bandwidth of sequential read

Buffer size User-level daemon User-level daemon + RDMA Proposed mechanism

64 KiB 306.6 511.4 907.8

1024 KiB 321.1 509.8 909.6

(MiB/s)

Table 6.2 Execution times of the Montage workflow application

User-level daemon User-level daemon + RDMA Proposed mechanism

983.4 s 984.6 s 883.3 s

We measured the basic performance of the mechanism using the IOR benchmark,
which is widely used to evaluate I/O performance of parallel file systems. We
measured the bandwidth of the sequential file read after loading the file data on the
memory of the I/O server. Table 6.1 lists the result. The label “User-level daemon”
indicates the use of the original FUSE-based client interface. The label “User-level
daemon + RDMA” indicates the use of the client interface extended with a simple
RDMA extension, with which file data are not transferred to a page-cache area but
are rather received in an RDMA communication buffer and then copied to a buffer
in the user-level daemon. The buffer sizes in the table indicates the buffer sizes of
the file I/O operations. Under the condition of 1024 KiB buffer size, the developed
mechanism achieved 78.4% improvement in the bandwidth when compared to the
simply extended client interface.

In addition, we evaluated the improvements in the performances of several real-
world scientific applications. Table 6.2 lists the result of the Montage workflow
application, which synthesizes astronomical images with many file I/O operations.
The developed mechanism achieved faster execution than the FUSE-based user-
level client interface and the original kernel driver. The details of the experiments
are presented in our previous paper [20].

6.2.2 Efficient File Cache Management Using Deduplication

We developed an efficient cache management mechanism for client nodes of a
distributed file system. When introducing a caching mechanism, the resulting
performance of not only the file I/O itself but also of the applications is crucial.
Therefore, in general, caching mechanisms should refrain from consuming too
much memory because memory resource is valuable for applications, and a high
memory pressure from caching can have a negative impact on the performance of
applications.

To enable the mechanism to achieve both high cache hit rate and moderate
memory consumption, we employed the deduplication technique, which is used in
many file systems to reduce the footprints of memory and storage.
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Although the major application of deduplication is to back up large-scale storage,
we believe that deduplication would be useful for data-intensive high-performance
computing because it has significant potential to improve the performance of file
I/O and applications. Many applications in data-intensive science involve reading
and writing of extremely large files, the data of which are loaded on the memory
of client nodes, thus significantly reducing the amount of free memory shared with
applications. However, only a few studies have been published so far concerning
the experimental evaluation of the effect of deduplication on file systems used in
data-intensive high-performance computing.

We developed a cache management mechanism based on deduplication, thereby
eliminating the operations and footprints for the redundant parts of files.

A straightforward approach of creating cache on client nodes involves saving
an entire copy of an accessed file. However, this approach has two disadvantages.
One is that the amount of memory or storage required for cache is largely equal
to the total size of the accessed files and can become considerable. The other is
that the cache management cost can increase for certain file I/O workload. In this
approach, an entire copy must be updated or discarded each time the corresponding
file is updated, irrespective of the number of updates. It should be noted that files in
a distributed file system can be accessed simultaneously by multiple client nodes.
The effect of caching in this approach becomes negligible in applications wherein a
small part of a large file is frequently updated.

Another approach is to create cache for each block of a file. We employed this
approach because it addresses the abovementioned disadvantages.

In the developed mechanism, a client divides file data into variable-length blocks
(we refer to them as chunks) and creates a cache of chunks in the memory of the
self-node. The cache is used in future accesses to the file data. The mechanism
deduplicates the chunks and calculates the SHA-1 hash values of the created chunks
and merges multiple chunks that have the same hash value into one. A single chunk
can be a partial cache of different files or a partial cache of different parts of a file.
Cache is also utilized in the transfer of files that a client accesses for the first time. If
a file contains chunks, the contents of which are the same as those that have already
been created on the client, the client reuses the chunks without transferring the file
data corresponding to the chunks.

A main characteristic of the mechanism is the aggressive use of the content-
defined chunking (CDC) method, using which the boundaries of the chunks are
determined on the basis of their contents. In particular, the method is used to
calculate the fingerprints of partial file data in a fixed-length window by sliding
the window byte to byte from the beginning of a file to the end. If the fingerprint
satisfies a certain condition, a boundary is placed just after the present position of
the window. This method of boundary setting allows to deduplicate common byte
sequences that appear in arbitrary file offsets. To the best of our knowledge, there
has been no research in which a CDC-based deduplication is applied to the client-
node cache of a distributed file system.
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The developed mechanism reduces memory consumption and local storage for
cache and the amount of data transferred between I/O servers and clients. In
addition, it can decrease the number of cache updates or discards required when
a file is updated, because the unit of caching is not the entire files but rather chunks.

Deduplication operations themselves incur runtime overheads, and the mech-
anism is not an exception. If the advantages of deduplication are more than the
disadvantages, the application performance can be improved. However, otherwise,
deduplication degrades the performance. Hence, we integrated two techniques to
minimize deduplication overhead. One is to asynchronously update the table for
managing chunks, and the other is the parallel execution of file data manipulation
and hash-value computation. The details regarding the same are given in our
previous paper [16].

We evaluated the effect of the mechanism through experiments using the IOR
benchmark. The result shows that it achieved up to 9.2 times speedup in random
read of file data. In addition, we evaluated the rate of data reduction due to
deduplication. The result shows that it achieved over 30% data reduction in all cases
of various average chunk sizes. The details of the experiments are presented in our
previous paper [16]. We believe that the results are useful to understand, predict,
and analyze the effect of deduplication on distributed file systems in data-intensive
high-performance computing.

6.2.3 Cooperative Caching Using Memory of Compute Nodes

In addition to deduplication-based caching, we studied the effect of cooperative
caching [2] for data-intensive high-performance computing. Cooperative caching
is a technique with which client nodes cooperatively share the cache of files in a
distributed file system. If a client fails to find cache in a local node, the technique
attempts to obtain the cache from other client nodes as well as from I/O servers.
Clients exchange cache between them by sending and receiving cache requests.
Cooperative caching is advantageous if the communication between clients is fast
and if the cache miss penalty, including the cost of storage accesses in an I/O server,
is considerable.

Although cooperative caching has a long history, most previous studies assumed
computing environments that are quite different from those of modern environments
for data-intensive computing. For example, the assumed computers and network
devices were much slower, not to mention the unavailability of InfiniBand RDMA
at the time these studies were conducted. As a result, the effectiveness of cooperative
caching in modern computing environments is quite unclear.

Based on the observation, we implemented a cooperative caching mechanism
for Gfarm and clarified its effectiveness through experiments. We assumed an
environment in which all the nodes of the compute nodes and I/O servers are
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connected with InfiniBand. Clients using the mechanism share the cache of files
in the Gfarm distributed file system. We extended Gfarm code so that clients could
send cache requests to other clients and could accept and handle such requests. File
data are transferred with RDMA between clients and between a client and an I/O
server. If a client finds requested data in the local node, it transfers them directly
from the memory of the self-node to the memory of another client node without
redundant memory copies.

The cooperative caching mechanism associates the metadata of each file with
cache placement information, which is a list of client nodes that is likely to maintain
the required part of the file being accessed.

The possible methods of information management are classified into two. The
first is to manage information in a distributed manner using distributed data
structures such as distributed hash tables. However, methods in this class have a
problem of increased access latencies because of many hops in communication,
which cannot be neglected in high-performance computing. The other class is
to manage information in a centralized manner, e.g., by using a central server
managing all cache placement information for an entire distributed file system. The
methods in this class have many advantages including high expected accuracy and
low expected latency, though they have a disadvantage in that the server becomes a
bottleneck when cache placement information is frequently requested or updated.

We chose the centralized method and extended the Gfarm metadata server with
the function of managing cache placement information. When a client receives the
cache of file data from another node, it provides the information to the central
server. The central server integrates the information sent by clients to maintain
the statistics on the number of cache requests sent by each client and the number
of cache transfers that was actually performed. When a client inquires the central
server of a client that is likely to have the desired cache, the central server answers
the client that is most likely to have one.

We evaluated the cooperative caching mechanism through experiments using
three scientific applications: Montage, SDFRED, and NGS Analyzer-MINI.
Table 6.3 lists the result of Montage. The label “Kernel module + RDMA” in
the table indicates the use of our RDMA-based kernel module for handling file
I/O operations instead of a user-level daemon. The label “Kernel module + RDMA
+ Cooperative caching” indicates the use of the kernel module extended with
cooperative caching. We confirmed that the mechanism achieved a performance
improvement of 5.8% for Montage. The highest hit rate among all applications on
all clients was 97.3%, and the average hit rates were always greater than 60%. The
details of the experiments are presented in our previous paper [19].

Table 6.3 Execution times of the Montage workflow application

Original Kernel module + RDMA Kernel module + RDMA + cooperative caching

4745.5 s 4421.8 s 4156.2 s
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6.2.4 Reduction in the Operating System Jitter Because of File
Accesses

Operating system jitter (OS jitter) is a well-known factor that slows down appli-
cations running on a compute-node operating system. OS jitters are operations
performed by the operating system kernel or system daemons that affect the
application performance. It has been said from a long time in high-performance
computing that reducing OS jitter is crucial for achieving higher performance.

To address the problem of OS jitter, we quantified the impact of OS jitter
on high-performance scientific applications and developed a method to minimize
performance degradation due to OS jitter. Although there are many types of OS
jitters, we focus on a type of OS jitter that is caused by file system operations.
First, we simultaneously ran a scientific computing application and a program that
executes many file I/O operations and measured the performance of the application.
The result shows that the performance was seriously degraded. This is because
a huge amount of memory was consumed for file cache because of the file I/O
operations. When physical memory runs out, a system daemon called kswapd starts
to reclaim the memory from applications and file cache. The daemon is usually
asleep but awakens when the amount of free memory decreases. We identified that
the kswapd daemon and other daemons, such as the migration daemon, consumed
a large amount of CPU time. This implies that a high load on a file system
can significantly degrade the performance of scientific applications. This problem
becomes particularly serious in data-intensive high-performance computing.

To address the abovementioned problem, we developed a mechanism that
minimizes the runtime overhead due to the memory-reclaiming daemon kswapd.
We solved the problem by extending the page reclaim mechanism in the operating
system kernel with a kernel module. The kernel module starts to reclaim pages
before the number of free pages decreases below a certain threshold used by the
kswapd daemon. The mechanism is awakened before kswapd because its threshold
is set to a value greater than that of the kswapd. Users can keep a small number
of invocations of the mechanism by having it reclaim numerous pages in one
invocation.

As mentioned above, the mechanism provides two critical configuration parame-
ters: (1) the threshold of the number of free pages and (2) the maximum number
of pages reclaimed in one invocation. Users can customize both the parameters
according to their environments, conditions, or requirements. The mechanism is
invoked typically when a large amount of memory is consumed for page cache,
whereas it is not invoked when a large amount of memory is consumed for ordinary
memory objects such as data structures created by applications. When memory is
consumed mainly for memory objects, reclaiming many pages is likely to degrade
the performance of applications that are concerned with memory objects. The
mechanism determines the present status of memory usage based on the frequency
of disk accesses. If the number of disk reads in unit time exceeds a threshold, the
mechanism determines that the memory is consumed mainly for page cache.
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The operating system kernel provides several parameters to control the behavior
of kswapd. Users can reduce the impact of OS jitter by changing the parameters.
However, it is quite unclear whether the kswapd or the developed mechanism is
more effective. Moreover, it is difficult to identify optimum parameter values that
minimize the impact of OS jitter. We surmise that inappropriate values of the
parameters will have only a small effect on OS jitter. Experiments are needed to
clear these ambiguous points.

We evaluated the mechanism through experiments, in which we simultaneously
ran a weather forecast application WRF and a program that repeatedly invokes file
I/O operations. We executed WRF on seven compute nodes in parallel, using 11
cores on each node. We measured the changes in the application performance con-
sidering the presence of the mechanism. In addition, we measured the performance
changes observed when varying the parameter values of the kswapd daemon.

Figure 6.3 shows the execution times elapsed for each computation step of the
WRF. The label “WRF” indicates that only WRF is run. The label “WRF + Jitter”
indicates that WRF and jitter-generating programs without the mechanism are run.
The label “WRF + Jitter + Proposed” indicates that the WRF and jitter-generating
programs with the mechanism are run. The best performance was obtained when
the proposed mechanism was used. The execution times significantly increased
because of the OS jitter, whereas the increase in the execution time when using
the proposed mechanism was negligible. Although varying the kswapd parameters
improved the performance, it could not achieve as high a performance as that using
mechanism. We also found that a certain level of skill and experience was required
to provide optimum parameter values. The details of the experiments are described
in our previous papers [14, 15].
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6.3 Pwrake Workflow System

Pwrake [24] is a parallel and distributed workflow system developed for data-
intensive, many-task computing on computer clusters. Pwrake is implemented as
an extension for on Rake (Ruby Make). Pwrake inherits a workflow language from
Rake. Rake has a powerful workflow language since it has various useful features
such as mapper rules and capability to write scripts in the Ruby language. Pwrake
has features to utilize Gfarm file system [27] for parallel I/O performance. Gfarm
file system has mechanisms to exploit local I/O performance, e.g., (a) select a close
replica when reading a file replicated to multiple nodes, and (b) select local storage
when creating a new file to maximize write performance. However, the performance
of reading input files depends on the task scheduling. The following two scheduling
methods are developed for Pwrake:

• Locality-aware scheduling using multi-constraint graph partitioning [25].
• Disk cache-aware scheduling mitigating trailing task problem [26].

These studies are briefly described in Sects. 6.3.1 and 6.3.2, respectively.

6.3.1 Locality-Aware Scheduling

In default behavior of Pwrake, tasks are scheduled based on the information of nodes
where input files are stored. However, this method is not enough for a scientific
workflow like Montage [8] where data have geometric relationships. The paper [25]
proposed new locality-aware scheduling method using information from a directed
acyclic graph (DAG) which represents a workflow. In a workflow graph, a vertex
represents a task, and an edge represents a dependency. The graph partitioning is
an algorithm to divide a graph with minimum edge cut. Figure 6.4a is the result
of graph partitioning applied to a Montage workflow. This figure shows that graph
partitioning does not reflect task parallelism.

(a) (b)

Fig. 6.4 The result of graph partitioning of Montage workflow DAG. (a) Graph partitioning
without weight vector. (b) Proposed method based on MCGP
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Fig. 6.5 Definition of weight
vectors in the MCGP
scheduling

Fig. 6.6 Experimental results of Montage workflow comparing three scheduling methods

The paper [25] proposed a new task scheduling method using the multi-
constraint graph partitioning (MCGP) [10]. The MCGP algorithm was studied and
implemented in the METIS library [10, 21]. In the ordinary graph partitioning, a
vertex may have a scalar weight. Meanwhile, in MCGP, a vertex is weighted by
a vector which consists of multiple values. The MCGP algorithm balances the
summation of weight values in each dimension. Figure 6.5 illustrates the proposed
method in [25] to define weight vectors for the Montage workflow. In this method,
each dimension of the weight vector is assigned to each phase of parallel tasks.

In the experiment, the Montage workflow is executed on an eight-node cluster
with four cores per node and evaluated three scheduling methods. Figure 6.6a shows
that the rate of file access to a remote node is reduced to 14% by the MCGP
scheduling from locality-unaware scheduling (88%) and Pwrake default scheduling
(47%). Figure 6.6b shows that the MCGP scheduling reduces the elapsed time by
31% from locality-unaware scheduling and by 22% from Pwrake default scheduling.
Note that the elapsed time is reduced by 53 s in return for spending 0.03 s for
graph partitioning. This result shows that the proposed method using the MCGP
is powerful to improve the performance of workflow execution.
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Fig. 6.7 Three scheduling schemes: FIFO, LIFO, and LIFO+HRF

6.3.2 Disk Cache-Aware Scheduling

The paper [26] proposed another I/O-aware scheduling method which improves both
disk cache hit rate and core utilization.

Let us consider the scheduling of the workflow DAG shown in Fig. 6.7a. In this
workflow, the output file of the task A1 is the input file of the task B1. Figure 6.7b
illustrates three scheduling methods for executing the left workflow on a machine
with two cores. If the tasks are extracted from a task queue in the FIFO (first in, first
out) order, the tasks A1 . . . An are executed before the tasks B1 . . . Bn. In this case,
the output file of A1 may expire from the disk cache before B1 reads it since A3
. . . An−1 are executed after A1 ends and before B1 starts. In the case of LIFO (last
in, first out), the output file of A1 may remain in the disk cache since the task B1 is
executed immediately after the task A1.

However, LIFO has a problem called trailing task problem [1]. In the case of
FIFO, only Bn is a trailing task. In the case of LIFO, An and Bn are trailing tasks
since they are executed consecutively.

In order to solve disk cache hit rate and trailing task problem at the same time,
the paper [26] proposed a new scheduling method. First, rank is defined as the
vertical position of a task in the DAG based on the distance from the target task.
The scheduling method to execute tasks in the order of higher rank is called highest
rank first (HRF). The new scheduling method is a hybrid of LIFO and HRF. NHR is
defined as the number of highest ranked tasks in the queue and Ncore as the number
of cores of a node. The LIFO+HRF scheduling algorithm is:

• If NHR > Ncore, select a task in order of LIFO.
• If NHR ≤ Ncore, select a task in order of HRF.
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Fig. 6.8 Strong scaling of Montage workflow

The diagram of LIFO+HRF in Fig. 6.7 shows that tasks A1 . . . An−2 and B1
. . . Bn−2 are retrieved with the LIFO method and that An−1 and An are retrieved
with the HRF method. The paper [26] also discusses another scheduling method
called rank equalization, but we omit it here.

Figure 6.8 shows the elapsed time (only for parallel tasks) of Montage workflow
executed using 1–12 nodes with eight cores per node. In the range of 1–4 nodes,
the FIFO scheduling is about 1.9 times slower than the other methods. This result
shows that the disk cache hit rate is a significant factor for performance when data
size per node is large. In the range of 6–12 nodes, the LIFO scheduling is slower
than other scheduling methods. In the experiment using 12 nodes with 96 cores, the
LIFO+HRF scheduling improved the performance by 12% from LIFO scheduling.
This improvement is due to the reduction of the trailing task problem by the HRF
method. In conclusion, the LIFO+HRF scheduling method demonstrates excellent
performance for any number of cores in this experiment by solving issues of disk
cache and trailing tasks.

6.4 Task Dispatching for Batch Queuing Systems

A traditional scheduler for batch queuing systems takes the CPU load average as
the main standard for load balancing. However, the cost of a file access can be
a significant parameter for nonuniform storage access (NUSA) file systems like
Gfarm, where the difference in throughput between local and remote access may
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be significant. We describe data-aware task dispatching for batch queuing systems
in the following subsection:

• Data-aware task dispatch (DAD) [12] in Sect. 6.4.1.
• Improved data-aware task dispatch (IDAD) [11] in Sect. 6.4.2.

6.4.1 Data-Aware Task Dispatch

The paper [12] proposed data-aware task dispatch (DAD). It introduces
f ileLocality, a parameter that indicates the difficulty of accessing the dataset,
and combines it with load average as a comprehensive Score to determine the most
suitable node.

The f ileLocality(t, h), which indicates the difficulty of accessing the dataset
referenced by task t when it is dispatched to a specific compute node h, is defined
as follows:

f ileLocality(t, h) =[
n∑

y=1

locality(fy, h)

/

n∑
y=1

sizeof (fy) + 1]/2

locality(fi, h) =
{

−sizeof (fi) if on(fi, h)

sizeof (fi) other

(6.1)

where the locality(fi, h) is a value determined by the size of file fi and whether
compute node h has a replica of fi . If one of the replicas of fi is on h, the cost of
accessing it will be smaller, and therefore the file size of fi will be subtracted to
make the “cost” smaller, and vice versa. The f ileLocality(t, h) is the normalized
sum of the locality(fy, h) ranges [0, 1].

The comprehensive Score can be calculated in advance using the f ileLocality

as follows:

Score(t, h) =f ileLocality(t, h) × β

+load(h) × (1 − β) (0 ≤ β ≤ 1)
(6.2)

The load average load and f ileLocality are unified into Score using parameter
β. Here, β is a modifier used to adjust the strength of DAD. When β = 1, the
scheduler will ignore the CPU load at dispatch. Although there should be a method
for acquiring the optimal value of β, we leave this for future work and only show
the effectiveness of this particular parameter.
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Score can now be used to judge whether a host is desirable for a job execution
in the exact way in which the load average is used in a CPU-focused scheduler, with
consideration of both the CPU load and the file locality.

In DAD, β is a key parameter for striking a balance between f ileLocality and
CPU load. However, in real-world situations, tasks dispatched by a scheduler may
have quite different characteristics. Some tasks may be I/O-intensive which requires
β to be set to a value close to 1, while others could be CPU-intensive and prefer
smaller β values. Since β in Equation 6.2 is a global parameter that affects all tasks
dispatched by the scheduler, it is not easy to determine a suitable β that works for
all kinds of tasks.

6.4.2 Improved Data-Aware Task Dispatch

As discussed in the previous subsection, DAD has parameter β to strike a balance
between fileLocality and CPU load, yet β is quite difficult to calculate. Considering
the fact that CPU load does not have a major impact on execution time, the
paper [11] proposed a more data-centric approach called improved data-aware task
dispatch (IDAD).

A traditional scheduler takes the CPU load average as the main standard for
load balancing. Just like DAD, IDAD also defines a Score for selecting the best
node at dispatch phase. In DAD, the only user-defined parameter is β, and it is a
global parameter that affects all tasks scheduled. For precise control of each task, we
introduce a per-task parameter called Remote Degradation Rate (RDR) to indicate
the extent to which a task is data-intensive.

RDR is defined as follows:

RemoteDegradRate = RemoteT ime(t) − LocalT ime(t)

LocalT ime(t)
(6.3)

where RemoteT ime(t) is the execution time when a task t runs on a remote node.
Likewise, LocalT ime(t) is the execution time when a task t runs on a local node.

The range of RDR is [0,∞). When RemoteT ime(t) equals LocalT ime(t),
RDR is zero, which means for this specific task t , executing remotely or locally
does not affect execution time, and therefore it is not a data-intensive job.

The Score(t, h) then can be defined as follows:

Score(t, h) =RDR(t) ∗
∑n

y=1 RemoteSizeof (fy, h)∑n
y=1 Sizeof (fy)

RemoteSizeof (fi, h) =
{

0 if on(fi, h)

sizeof (fi) other

(6.4)
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where the
∑n

y=1 RemoteSizeof (fy, h) is the total size of files accessed remotely
and

∑n
y=1 Sizeof (fy) is the total size of files accessed by the task.

At the dispatch phase, when the scheduler selects the best node h for task t ,
IDAD calculates the Score(t, h) for each free node h; and the node with the lowest
Score is chosen as the execution node.

The paper [12] discussed that some specific task orders may harm locality and
cause a drastic degradation in performance. This is also true in IDAD. To alleviate
this issue, delay scheduling (DS) [28] is applied in IDAD. In DS with IDAD, tasks
are classified by Score(t, h) in Equation 6.4 and a local threshold value. A node
h is local to task t if Score(t, h) is smaller than the local threshold lT hreshold.
Otherwise, h is considered remote.

6.4.3 Evaluation

The paper [11] implemented IDAD which interacts with Gfarm file system and
evaluated IDAD with BLAST benchmarks, comparing it with DAD and the stock
FIFO Torque scheduler. Tasks of Blastn and Blastx are submitted to two different
queues to avoid excess judgment regarding the DS. In our experiment, four nodes
are used as storage and execution nodes. Twenty-two different database files were
replicated once (two replicas) and distributed evenly to four compute nodes. In this
evaluation, Blastn and Blastx are submitted to IDAD, DAD, and the stock FIFO
Torque scheduler. As the first step of IDAD, a sampling evaluation to acquire the
RDR of Blastn and Blastx is performed by executing tasks on both remote and local
machines. RDR is calculated using Eq. 6.3.

The RDRs of Blastn and Blastn are 6.176 and 0.262, respectively. In this
evaluation, lT hreshold is set to 0.3 with intent to classify Blastx as a CPU-intensive
job and Blastn as an I/O-intensive job. Here, the lT hreshold is altered to a large
and then a small value to see how it affects the result. For DAD, since there is no
viable way of calculating the optimal β defined, DAD with different values of β

and Delay is evaluated to acquire the best result. Figure 6.9 shows the makespan of
100 Blastn tasks and 10 Blastx tasks, which is the time difference between starting
the first task and finishing the last task. As you can see in the figure, the shortest
makespan using DAD is 179.139 s when β = 0.8 and Delay = 2.

The best-case makespans of DAD, IDAD, and the stock FIFO Torque scheduler
are shown in Fig. 6.10. BEST in the figure is obtained under the condition that all
nodes hold all datasets required by the task, which means whichever node the task
is dispatched to, it will access files locally. Therefore, it can be considered the lower
bound for the evaluation. In this figure, IDAD-0 denotes the result of IDAD with
Delay = 0.

As you can see in Fig. 6.10, the best makespan using IDAD is 162.265 s
(Delay = 2), whereas the best case with DAD is 179.139 s (β = 0.8 and
Delay = 2), which is a 10.40% time reduction. There is a much more obvious
improvement, 35.05%, when compared with the stock FIFO Torque scheduler.
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Fig. 6.9 Makespan of Blastn
and Blastx using data-aware
dispatch
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Chapter 7
Approaches for Memory-Efficient
Communication Library and Runtime
Communication Optimization

Takeshi Nanri

Abstract This article summarizes the works established in Advanced Communica-
tion for Exa (ACE) project. The most important motivation of this project was the
severe demands for scalable communication toward Exa-scale computations. There-
fore, in the project, we have built a PGAS-based communication library, Advanced
Communication Primitives (ACP). Its fundamental communication model is one-
sided, based on PGAS model, so that it can consume internal memory footprint as
small as possible. Based on this model, several applications including simulations
of magnetohydrodynamic, molecular orbitals, and particles were tuned to achieve
higher scalability. In addition to that, some communication optimization techniques
have been investigated. Especially, tuning methods of collective communications,
such as message ordering, algorithm selection, and overlapping, are studied. Also,
in this project, a network simulator NSIM-ACE is developed. It simulates behavior
of packets for one-sided communications to study the effects of congestions on
interconnects.

7.1 Motivation

Currently, there have been various discussions about possible designs of Exa-scale
computers. Most of those designs predict that the number of nodes and the number
of cores will be significantly increased, and the interconnect topology will be more
complicated. On such systems, communication libraries should be re-designed to
fulfil the requirements of scalability. Especially, memory usage and performance
tuning will become the key issues.

As for memory usage, in the existing communication libraries, each process
prepares some amount of receive buffer for each of other processors. This works
efficiently up to hundreds of thousands of processes. However, when the number of
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processes becomes over 100 million, the total amount of memory for the buffer will
be more than 100 GB/process, even when the amount of each receive buffer is 1 KB.
At the same time, the available amount of memory per process is predicted to be the
same level or reduced on Exa-scale computers. Therefore, communication libraries
on such systems must be based on memory saved protocols.

On the other hand, as for performance tuning, static and manual methods are
applied on the existing communication libraries. For example, the thresholds for
changing algorithms of collective communications are decided by using some
benchmark programs at the installation of the library. As the number of processes
increases, and the interconnect topology becomes complicated, the search space
of the optimization will be increased explosively. In addition to that, because
of the complexed topology, it becomes quite difficult to predict performance
statically. Therefore, some automatic and dynamic method will be needed for tuning
communication libraries.

Another important point for performance tuning is the information of the
programs. Existing communication libraries can only achieve information about
parameters that have been specified at the invocation of communication functions.
Therefore, libraries cannot analyze how those functions are used in the programs.
For example, if the library can detect that the invoked function will be repeatedly
invoked for many times, it can pay some overhead to apply more aggressive
optimization at runtime. Or, there can be special approaches for implementing some
popular patterns of computation and communication.

7.2 PGAS-Based Communication Library ACP

7.2.1 Overview

ACP library is designed to support low-overhead data transfer with just-enough
amount of memory in communications (Fig. 7.1). It consists of the basic layer and
the middle layer [18, 19].

Basic Layer

ACP (Advanced Communication Primitives)

Interconnects (InfiniBand, Tofu, Ethernet)

Middle Layer

PGAS-style global memoryRDMA operations

Channel List Vector Map

Fig. 7.1 Structure of ACP library
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7.2.2 Basic Layer

The basic layer of ACP is a thin abstraction of underlying communication
devices [10]. Currently, this layer is implemented on UDP, IBverbs, and Tofu.
This layer provides an RDMA-based communication model. It supports a global
address space shared among all of the processes. Any local memory space of any
process can be mapped to this space via the registration function.

The basic layer provides global address space shared among all of the processes.
This space is addressed by 64bit unsigned integer, so that it can be directly handled
by the atomic operations of CPUs and devices.

Any local memory space of any process can be mapped to this space via
the registration function, acp_register_memory, of this layer. It returns
a key with the data type of acp_atkey_t. There is also a de-registration
function, acp_unregister_memory, to unregister the region of the specified
key. Global address in a registered region can be retrieved by a query function,
acp_query_ga. It returns the address with the data type of acp_ga_t.

At the registration, in addition to the start address and the size of the local
region to be mapped, the color of the global address can be specified. Color is
used for specifying device in the node to be used for making remote access to the
region. There is a function, acp_colors, to query the maximum number of colors
available on the current system.

At the initialization, a special region, called starter memory, is allocated on each
process. Each of the starter memories of the processes is registered to the global
address space, and there is a function, acp_query_starter_ga, to query for
the global address of the starter memory of the specified rank. This region is mainly
used for exchanging global addresses before performing RDMA operations on the
global address space.

The RDMA operations on the global memory space of the basic layer is called
global memory access (GMA). ACP prepares GMA functions, such as acp_copy,
acp_add4, acp_add8, acp_cas4, and so on, to perform copy and atomic
operations on the global memory space. Unlike other communication libraries, both
of the source and the destination of copy function can be remote.

All of the GMA functions are non-blocking. Therefore, each of them returns
a GMA handle with the data type of acp_handle_t to wait for the completion.
Each GMA function has an argument “order” to specify the condition for starting the
operation. If a GMA handle is specified for this argument, it will wait for the com-
pletion of the GMA of the handle before starting its access. If ACP_HANDLE_NULL
is specified as the order, it starts the access immediately. If ACP_HANDLE_ALL is
specified, it will wait for the completions of all of the previously invoked GMAs.
If ACP_HANDLE_CONT is specified as the order, and if the GMA that is invoked
immediately before this one has the same source rank, target rank, source color,
and target color, it can start its access with the same condition of the previous
one, as far as it will not overtake the order. If there is any difference in those
parameters, the behavior is same as the case with ACP_HANDLE_ALL. There
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can be an implementation that always performs the same way as the case with
ACP_HANDLE_ALL, even if ACP_HANDLE_CONT is specified.

The completion function, acp_complete, waits for the completion of the
GMA specified by the handle. The completions of GMA functions are ensured in
order. This means that the completion of one GMA function ensures the completion
of all of the other GMA functions that have been invoked earlier than it on the
process. There is also a function, acp_inquire, which check the completions of
the GMA specified by the handle and the GMAs that have been invoked before it.

7.2.3 Middle Layer

To hide the complexities of programming with RDMA, such as registration of
memory regions and exchanging global addresses, the middle layer of ACP is
prepared as a set of programmer-friendly interfaces. The interfaces of this layer
support common patterns of communications, such as channels, neighbors, and
collectives. It also prepares interfaces for managing common data structures, such
as queues, lists, and vectors, on the global address space of ACP.

As a common policy, each interface consists of the functions for allocation and
de-allocation of the memory regions such as control structures and buffers that are
used in it. With these functions, the programmers can specify the exact duration of
the usage for each of the memory regions. Then, the library may use this information
to reduce its memory consumption without degrading the performance.

7.2.3.1 Data Interfaces

Data interfaces of ACP consists of the following data types [1, 2]:

Vector The vector interface provides the data structure and algorithms of dynamic
array. The type of for referencing vectors is acp_vector_t, and the type of
the iterator of vectors is acp_vector_it_t. Vectors can be created via the
constructor function, acp_create_vector. As an argument, this function
accepts the rank to place the instance of the vector.

Deque The deque interface provides the data structure and algorithms of double-
ended queue. The type of for referencing deques is acp_deque_t, and the
type of the iterator of deques is acp_deque_it_t. Deques can be created via
the constructor function, acp_create_deque. As an argument, this function
accepts the rank to place the instance of the deque.

List The list interface provides the data structure and algorithms of bidirectional
linked list. The type for referencing lists is acp_list_t, and the type for
the iterator of lists is acp_list_it_t. Lists are created via the constructor
function, acp_create_list. This function prepares an empty list. As an
argument, it accepts the rank to place the control structure of the list. Elements



7 Approaches for Memory-Efficient Communication Library and Runtime. . . 125

can be added to a list via functions, such as acp_push_back_list and
acp_insert_list. Each of these functions also accepts the rank to allocate
the instance of the element, as an argument. Therefore, the control structure and
the elements of a list can be placed on different processes.

Map The map interface provides the data structure and algorithms of associative
arrays. The type for referencing maps is acp_map_t, the type for the iterator
of maps is acp_map_it_t, and the type for returning result of finding element
in a map is acp_map_ib_t. Maps are created via the constructor function,
acp_create_map. This function prepares an empty map distributed among a
group of processes. As an argument, it accepts the number of processes, the array
of ranks of the processes in the group, the number of slots, and the rank to place
the control structure of the map. Elements can be added to a map via the function
acp_insert_map. In addition to the map to insert, this function accepts the
key and the value of the element, as an argument. Each of the key and the value
is specified by a pair of the address and the size in byte. The rank to place the
element to be inserted is decided according to the hash value calculated from the
key. acp_find_map searches the key in a map. It returns the value true or false
according to the result and the iterator of the element with the key if it has been
found.

Workspace Workspace is a temporal memory space that is shared among all
of processes. Creation and destruction of a workspace is done collectively via
functions acp_create_ws and acp_destroy_ws. The type of the handle
for referencing workspaces is acp_ws_t. Once created, each process can
perform read/write accesses to the workspace via functions acp_read_ws and
acp_write_ws that are similar to POSIX pread/pwrite. Size of the workspace
is specified at its creation. Initial value of the workspace is undefined. Distribu-
tion of the temporal memory workspace among processes can be controlled by
parameters specified via the function acp_setparams_ws.

Malloc The malloc interface provides the functions for asynchronous allocation
and de-allocation of global memory. It is the same as that of the asynchronous
global heap that designs a memory pool to be accessible via RDMA as well as
via processor instructions. This interface consists of the acp_malloc function
that allocates a segment of global memory from specified process by a rank
number. A global memory segment allocated by this function can be freed by
the acp_free function.

7.2.3.2 Communication Interfaces

Communication interface provides a virtual pass for message passing from one
process to another (Fig. 7.2). The data transfer supported by it is single direction
and in order. Therefore, the implementation of it can be simple and efficient. Before
establishing data transfer with the interface, both the sender process and the receiver
process must call the allocation function to establish a channel between them. If a
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channel
send receive

sender receiver

Fig. 7.2 Flow of messages on a channel

channel has become useless, the program can free the channel by calling the de-
allocation function at both sides [13, 14].

The allocation function, acp_create_ch, of this interface allocates a region
of memory according to the role of the process that invoked the function. After
that, it starts exchanging the information about the region with another peer of the
channel to establish the connection of the channel. Then, it returns a handle of the
channel, with the data type of acp_ch_t, without waiting for the completion of the
connection. The library implicitly progresses the establishment of the connection.

The non-blocking functions for sending and receiving messages,
acp_nbsend_ch and acp_nbrecv_ch, on a channel can be invoked before the
completion of its connection. Each of these functions stores the information about
the invocation in the request queue of the channel and returns a request handle
with the data type of acp_request_t. It starts transferring messages after it
has completed the connection. The wait function, acp_wait_ch, waits for the
completion of the request.

The non-blocking de-allocation function, acp_free_ch, starts freeing mem-
ory regions of the channel specified by the handle. The behavior of the functions
of send and receive on the channel that has been specified for this function is not
defined.

7.2.4 Enabling ACP as a Communication Layer Among MPI
Task

MPI (message passing interface) is a programming interface for process-parallel
programming used as a de facto standard. There exists various scientific programs
that are tuned by using communication functions of this interface. In most of the
cases, loops are divided among processes to parallelize the program mainly because
of the Amdahl’s law and the easiness of programming. However, in recent years,
parallelisms of loops are consumed mainly by the parallel architectures within
one computational node, such as SIMD ways, multiple cores, and accelerators.
Therefore, another level of parallelism, tasks, is becoming important. With task-
level parallelism, a program is divided into smaller tasks that solve subproblems.
Then, these tasks are executed in parallel, according to the dependencies among
them.

Therefore, ACP has been designed to be used as a communication layer for
connecting multiple MPI tasks to enable task-parallel programs with existing tuned
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MPI codes [8]. Toward Exa-ela, this layer will need to handle millions of processes.
Of course, MPI itself can be the layer to connect those tasks. However, MPI has a
problem of scalability, because it consumes amount of memory linear to the number
of processes. For example, if the size of one receive buffer is 10KB, the amount of
memory consumed for the buffers will be 10GB on each process, when the number
of processes becomes one million.

On the other hand, by using ACP, the memory consumption can be minimal.
Also, one-sided communications can be implemented by using RDMA (remote
direct memory access) facility that is available on most of the recent high-
performance interconnects. This memory efficiency makes ACP library as the better
candidate for the communication layer that covers all of the processes on large-scale
parallel computers.

Both MPI library and ACP library have their own launcher to start processes
on computational nodes. Those launchers pass various parameters to the processes
that are required in the initialization. Therefore, we have added another launcher,
macprun, to pass parameters of ACP to the processes of MPI tasks. macprun
uses the launcher of MPI library as it is, internally. Therefore, no modification is
needed to the existing MPI libraries.

The most important part for enabling ACP in MPI processes is the mechanism
for passing parameters of ACP to them. The parameters of ACP for initialization
are a pair of port numbers of TCP and the rank of the process in ACP. The rank of
the process in ACP is different from process to process, but they can be calculated
with simple manner. On the other hand, the port numbers are also different from
process to process. In addition to that, those numbers depend on the availability of
the ports of the platform. Therefore, it is difficult to calculate those numbers at the
initialization.

Figure 7.3 shows a sample of the commands invoked within macprun. In this
sample, three MPI tasks are invoked. The numbers of the processes of those tasks
are 6, 4, and 2, respectively. To calculate the rank in ACP of the process, macprun
passes the offset of the rank of ACP at the tail of the command-line option. After
the initialization of MPI, each process is attached with the rank of MPI. Those ranks
are contiguous among processes in one MPI task and starts from 0. Therefore, each
process calculates its rank of ACP by adding the offset and its rank of MPI.

As for port numbers, on the other hand, macprun generates a temporal file that
consists a table of ACP ranks and their pair of port numbers. Then the name of the
file is passed as the parameter of the command-line option, --mult-runtime.
At the initialization of ACP in the program, each process reads the line of its rank

mpirun machines Nodes.1 -np 6 ./test --mult-runtime Portfile 0 &
mpirun machines Nodes.2 -np 4 ./test --mult-runtime Portfile 6 &
mpirun machines Nodes.3 -np 2 ./test --mult-runtime Portfile 10

Fig. 7.3 Sample of mpirun commands invoked in m_acprun for raunching three MPI tasks
with 6, 4, and 2 processes



128 T. Nanri

of ACP and retrieves its pair of port numbers. Then, it uses those ports to exchange
information among processes of all MPI tasks, to enable communication each other
by ACP functions.

At this point, this mechanism relies on the shared file system among all of the
computational nodes. In addition to that, the size of the temporal file is linear to the
number of processes. These requirements degrade the availability and the scalability
of the mechanism. Designing more flexible and scalable mechanism is remaining as
a future work.

7.3 Network Simulator NSIM-ACE

To study detailed traffics on interconnects, there have been various network
simulators. However, most of them deal with communications with message passing
model in which two processes explicitly participate in the data transfer. On the other
hand, as RDMA facility become popular on interconnects, communications with
one-sided model, such as acp_copy, MPI_Put, and MPI_Get, are becoming
another important communication patterns in parallel applications. Therefore, to
enable studies on such communication patterns, ACE project has developed a
simulator, NSIM-ACE [20, 21], which is an enhancement of existing simulator for
two-sided communications, NSIM.

NSIM is an interconnect simulator that simulates behavior of packets. The
patterns of packet transfers to be simulated are automatically generated from
MGEN programs that are C codes with MPI-style functions, such as MGEN_Isend,
MGEN_Irecv, and MGEN_Wait. Invocation times of each function can be
adjusted by MGEN_Comp function which delays following operations for specified
duration of seconds.

With the generated patterns of packets, NSIM performs distributed event simula-
tion on each of them. It uses information of the topology and the routing policy of the
interconnect given as input files to simulate arbitrations on switches and congestions
on links. Therefore, it can perform detailed simulation of large-scale interconnects.

NSIM-ACE added four functions, MGEN_rdma_put, MGEN_rdma_get,
MGEN_rdma_poll, and MGEN_acp_complete to simulate one-sided commu-
nication model. MGEN_rdma_put and MGEN_rdma_get are used to specify
when the one-sided communication starts. MGEN_rdma_poll represents a behav-
ior of the target process of MGEN_rdma_put which waits for the arrival of the
data. MGEN_acp_complete waits for the completion of MGEN_rdma_put or
MGEN_rdma_get.

Simulation of one-sided communications with these functions are done by
automatically generating reply packets on target side, at each arrival of requesting
packets for MGEN_rdma_put and MGEN_rdma_get. Therefore, traffics for one-
sided communications can be investigated precisely.
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7.4 Runtime Optimizations of Collective/Neighboring
Communications

Overheads of collective communications and neighboring communications are
another important issue for achieving sufficient scalability of applications. This sec-
tion describes several optimization techniques of these communications introduced
in ACE project.

7.4.1 Runtime Algorithm Selection of Collective
Communication

Usually, for each collective communication, more than algorithms are available.
Previously, choices of the appropriate algorithm have been done statically, according
to the results of benchmarks on some possible combinations of parameters, such as
the number of ranks and the size of messages.

However, as the sizes and the complexities of computer systems for high-
performance computing are increased significantly, such static strategy has become
insufficient to enable efficient usage of the systems. One of the reasons is simply
because the parameters to be considered has become large in number and wide in
range. In addition to that, especially for communication libraries, usage of cost-
efficient topologies of interconnect networks, such as Fat-Tree, Mesh, or Torus, has
increased the difficulty on appropriate choice. On these topologies, there are some
additional issues that affect the performance significantly, such as the collisions
among independent messages and the distance between the sender and the receiver.
This means, even when the number of ranks and the size of the message are the
same, best implementation technology can be different according to the situations
only known at runtime, such as relative locations of ranks. Therefore, demands for
the techniques to choose suitable implementations at runtime are increasing.

In ACE project, a method is proposed for choosing the appropriate algorithm
of collective communications at runtime [16]. Collective communications, such
as broadcasts, reductions, and all-to-all exchanges, are popularly used in parallel
programs of computational sciences to achieve productivity and performance
portability. There have been many algorithms introduced for each of these collective
communications. The method proposed in this paper is a combination of two
approaches, performance prediction and performance measurement.

At first, it gathers the information about the allocations of ranks, and applies them
to the performance models of the available algorithms along with the information
about the topology and the routing policy of the system to predict the time for
completing the communication with them. By comparing the results, algorithms
that are predicted to be significantly slower than others are discarded from the
candidates. Then, each of the remained algorithms is examined one at each call
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of the collective communication to gather the empirical performance data. After all
algorithms are examined, the fastest algorithm is chosen to be used for the rest of
the calls.

From the results of experiments on a cluster connected via Fat-Tree topology
interconnect, the proposed method has chosen the algorithm that were sufficiently
fast. It guarantees the accuracy of the performance prediction models established in
this work.

7.4.2 Neighboring Communication Algorithm for Multiple
NICs

For extra large-scale computers, cost-effective topologies such as Mesh and Torus
are preferred. With those topologies, each node usually consists of multiple NICs.
Therefore, effective use of them is a key to achieve higher scalability.

As one of such attempts, in ACE project, an algorithm of neighboring communi-
cations is proposed to use multiple NICs efficiently [11, 12]. The proposed algorithm
divides the message into multiple segments. Then they are distributed among NICs
according to the number of NICs and the number of neighboring nodes.

An implementation of this algorithm is examined by using RDMA interface of
Fujitsu FX10. From the results, it is shown that the proposed algorithm achieves up
to 25% improvement of the throughput.

7.4.3 Active Packet Pacing for Congestion Avoidance of
Collective Communications

Since congestions on interconnects can reduce the throughput of data transfer
significantly, there have been studies on communication algorithms and routing
policies to avoid them. However, as the topology becomes larger and complicated,
static control of congestions is becoming difficult.

Therefore, ACE project has developed a technique called active packet pacing
that reduces congestions according to the runtime status of the interconnect [17].
This technique monitors traffic of each link. If it detects congestion at a link,
it increases the gap between packets of the traffic detected as the cause of the
congestion. The amount of gap to be increased is adjusted with the number of hops
of the traffic, so that number of packets per link becomes optimal.

The logical effect of the packet pacing is examined by the simulator, NSIM. It
has predicted that, with all-to-all communication with pairwise exchange algorithm,
the throughput can be gained up to two times higher. Also, the practical effect of it
is studied by empirical experiments on Fujitsu FX10. From the results, it is shown
that packet pacing can actually increase the throughput of the entire interconnects.
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7.5 Optimization of Applications

In addition to the fundamental technologies described so far, ACE project also tack-
led with techniques to achieve higher scalability of some applications. They include
analysis of communications in applications [3–6, 9, 23, 24] and optimizations by
using fundamental technologies proposed in the project.

7.5.1 Overlapping Halo Exchange with One-Sided
Communication for Stencil Computation

Stencil computation is one of the most popular pattern of scientific applications
in which the target field is represented by multidimensional array, and each
element is updated by the values of its neighboring elements. Usually, process-
based parallelization on this program is done by dividing the array into blocks and
distributing them to the processes so that calculations of each block can be done in
parallel.

In the parallelized stencil program, at each step of updating array, each process
needs to exchange data on the boundary of the block with the neighboring processes.
This type of communication is called as halo exchange. The target processes and the
area of this halo exchange depend on how the array is divided and relative positions
of elements that are used to update one element.

If this area to be transferred in a halo-exchange communication is not contiguous,
multiple operations for sending data are required. However, these operations can
cause significant loss of performance because of their overhead. To avoid such
overhead, in most of the cases, the elements in that area are copied into a contiguous
region of a memory, called a send buffer, so that they can be transferred by
one operation. This technique is called packing. After the packed elements are
transferred to the receive buffer of the target process, they need to be unpacked
to the appropriate positions of the destination block.

Therefore, ACE project examined the effect of overlapping with four different
communication interfaces, ISND, ACTV, PASV, and ACP [15]. ISND uses non-
blocking two-sided communication interface, MPI_Isend and MPI_Irecv, for
halo exchange. ACTV and PASV use one-sided communication interface with
active target synchronization and passive target synchronization, respectively. ACP
uses ACP version. Each program performs two-dimensional stencil computation.
The array is allocated so that X dimension is contiguous. Therefore, packing and
unpacking are performed before and after each halo-exchange communication,
respectively.

Figure 7.4 shows the parallel stencil program with two-sided communication
interface of MPI. Before entering the main loop, each process calls MPI_Irecv
to notify the system that its receive buffers are ready to receive messages. Then,
in the main loop, it performs packing and starts sending the packed data to the
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Fig. 7.4 Stencil computation
with send/recv of MPI

setup arrays

MPI_Irecv from left
MPI_Irecv from right
for (steps)

pack
MPI_Isend to left
MPI_Isend to right

calculate inner elements

MPI_Waitall

unpack

MPI_Irecv from left
MPI_Irecv from right

calculate elements of edges

Fig. 7.5 Stencil computation
with active target of MPI

setup arrays
MPI_Win_allocate()

for (steps)
pack
MPI_Win_fence
MPI_Put to left
MPI_Put to right

calculate inner elements

MPI_Win_fence

unpack

calculate elements of edges

processes on the left and right by using MPI_Isend. While the data is transferred,
calculations on inner elements that do not depend on the result of halo exchange
are performed to overlap the communication. After that, MPI_Waitall is called
to wait for the completion of the communication. Since the receive buffers become
ready again after unpacking, MPI_Irecv functions are called to start receiving as
soon as possible. Then calculations on the elements that depend on the received data
are performed.

Figure 7.5 shows the program with active target synchronization mode. The flow
is almost similar with the program with two-sided communication except for the
absence of receiving functions. MPI_Put is the only functions for data transfer.
For synchronization, MPI_Win_fence is used at two points in the main loop. The
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Fig. 7.6 Stencil computation
with passive target of MPI

setup arrays
MPI_Win_allocate()
*lrdy = 1; *rrdy = 1;
for (steps)

ctr++
pack
MPI_Win_flush_all
lflg = 0; rflg = 0;
while ((lflg == 0)||(rflg == 0)

if ((lflg == 0)&&(*lrdy >= ctr))
lflg = 1
MPI_Put data to left
MPI_Put ctr to rack on left

if ((rflg == 0)&&(*rrdy >= ctr))
rflg = 1
MPI_Put data to right
MPI_Put ctr to lack on right

calculate inner elements

lflg = 0; rflg = 0;
while ((lflg == 0)||(rflg == 0)

if ((lflg == 0)&&(*lack >= ctr))
lflg = 1

if ((rflg == 0)&&(*rack >= ctr))
rflg = 1

unpack

MPI_Put ctr to rrdy on left
MPI_Put ctr to lldy on right

calculate elements of edges

first one makes sure that every process is ready to receive data, while the second one
waits for the completion of all data transfer.

Figure 7.6 shows the program with passive target synchronization mode. In this
mode, to avoid incorrect order of data transfers, synchronization between the source
and the target processes of each communication most be explicitly described in
the program. With this program, two types of synchronizations are required. To
make sure that the buffers on the target process are ready to receive buffers, a short
message, called RDY, is sent from the target to the source. On the other hand, to
notify the target that the source has sent a data to the buffer, another short message,
called ACK, is sent from the source to the target. These messages are sent by using
extra MPI_Put functions.

For both of these synchronizations, counters are used. Each process keeps three
types of counters, local, ready, and ack. Each process has one local counter that
represents its current step of the calculation. On the other hand, ready counters
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and ack counters are prepared for each side of the halo exchange. A ready counter
represents the availability of the buffer of the target process of the halo exchange
on that side. It is updated by MPI_Put operation on the target. Similarly, an ack
counter represents availability of the data sent from the source of the halo exchange
on that side.

In Fig. 7.6, “ctr” is the local counter, “lrdy” and “rrdy” are the ready counters, and
“lack” and “rack” are the ack counters. At each step, local counter is incremented.
Then, the values of the ready counters are repeatedly checked to wait for the
availability of the buffer. When the buffer of the target of one side has become
available, it invokes an MPI_Put for sending data, followed by another MPI_Put
for notification to the target. After MPI_Put functions to the targets of both sides,
it computes inner elements of the matrix. This is where the communication and
computation are overlapped.

Then, the process checks the ack counters to wait for the availability of the data
from the sources on both sides. After completion of the waits, it unpacks received
data. After that, before calculating elements on the edges with that unpacked data,
ready notifications are sent to the sources of the both sides, because after unpacking,
data in the buffer has been copied to the arrays.

As the flow shows, passive-mode requires additional MPI_Put functions for the
synchronizations between the source and the target. However, there is no collective
operation among all of the processes.

Figure 7.7 shows the ACP version of this program. The flow is quite similar
to the program with passive target synchronization. Transferring data and signal
messages are all done with a copy function on the global address space. Therefore,
all buffers and counters are registered to the global address space in the beginning
of the program.

From the results, it is shown that ACP could hide communication time efficiently
except for the case when the number of processes is 64. Possible reason for the low
efficiency as the number of processes increases, the time for computation becomes
shorter so that it cannot hide the entire communication of halo exchange. With
MVAPICH2, passive target synchronization worked better than other methods in
most of the cases. However, the difference between the non-blocking two-sided
communication and passive target synchronization is not significant. In addition
to that, performance with active target synchronization is almost ten times slower
than the time with passive target synchronization. With Open MPI, passive target
synchronization was the best choice. Other communication methods show almost
similar time. Though the detailed analysis on the results is remained as a future
work, from these results, using ACP or the passive target synchronization of MPI
has advantage over other communication methods in the effect of overlapping
communication with computation.

However, as the size of the array is increased, this advantage of ACP and passive
target synchronization disappears. The reason for this characteristic is being studied.
At this point, load imbalances among processes and the overheads for handling
messages are the factors to be investigated.



7 Approaches for Memory-Efficient Communication Library and Runtime. . . 135

Fig. 7.7 Stencil computation
with ACP

setup arrays
register ctr, lbuf and rbuf
register lflg and rflg
register lrdy and rrdy
*lrdy = 1; *rrdy = 1;
for (steps)

ctr++
pack
lflg = 0; rflg = 0;
while ((lflg == 0)||(rflg == 0)

if ((lflg == 0)&&(*lrdy >= ctr))
lflg = 1

acp_copy data to left
acp_copy ctr to rack on left

if ((rflg == 0)&&(*rrdy >= ctr))
rflg = 1

acp_copy data to right
acp_copy ctr to lack on right

calculate inner elements

lflg = 0; rflg = 0;
while ((lflg == 0)||(rflg == 0)

if ((lflg == 0)&&(*lack >= ctr))
lflg = 1

if ((rflg == 0)&&(*rack >= ctr))
rflg = 1

unpack

acp_copy ctr to rrdy on left
acp_copy ctr to lrdy on right

calculate elements of edges

7.5.2 Studies on Communication Methods in N-Body
Simulation

N-body simulation is another important method used in many scientific problems,
such as astronomy and molecular dynamics. Usually, this type of simulation is
parallelized by domain decomposition among processes. In this method, each
process calculates behavior of particles in the sub-domain attached to it. Then,
according to the results of the calculation, data of the particles moved to the different
domain needs to be transferred to the process of the new domain. Therefore,
pattern of communication in this method is unpredictable. ACE project examined
several methods, including the one that uses ACP, to perform this kind of dynamic
communication pattern [22].

One way of performing this kind of dynamic communication pattern is to
exchange information about the particle movement at each step. This is done by
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calling collective communications, such as MPI_Reduce_scatter, after the
calculation of the particle movement of the step.

Another way is to use one-sided communication. In this case, each process needs
to invoke Remote Atomic Fetch-and-Add operation for each target of data transfer
to decide the target location so that the transferred data will not be overwritten by
other processes. This can be implemented by RMA interface of MPI and ACP.

Results of the experiments shoed that implementation with ACP performed well
in most of the cases. It is because ACP can utilize RDMA facility of the interconnect
efficiently to overlap the communication with computation.

7.5.3 Memory-Efficient Master-Worker Model for Molecular
Orbital Calculation

OpenFMO is one of the approaches for simulating molecular orbitals. It divides
the molecular into segments and applies master-worker model to hierarchically
parallelize the calculation. Originally, it is coded with MPI. However, as the number
of processes increase, memory consumption of MPI_COMM_WORLD is predicted to
be a severe issue of scalability.

Therefore, ACE project distributed the workers of OpenFMO as small MPI
tasks and connected them with ACP [7]. Since communications required between
the master and each worker is one-sided, the connection can be done by basic
layer of ACP. From estimation on the memory consumption with MPI-only
versus MPI+ACP, it is predicted that MPI+ACP can reduce the memory footprint
significantly.
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Chapter 8
A Development Platform for Embedded
Domain-Specific Languages

Shigeru Chiba, YungYu Zhuang, and Thanh-Chung Dao

Abstract The use of domain-specific languages (DSLs) is a promising approach to
helping programmers write an efficient program for high-performance computing.
The programmers would feel difficulties in writing such a program by hand with
only low-level abstractions, such as arrays and loops, provided by a general-purpose
language. This chapter presents our new implementation technique for domain-
specific languages. Since existing techniques are not satisfactory, we developed our
technique called deep reification. This chapter also presents Bytespresso, which
is our prototype system to use deep reification. Several Java-embedded DSLs
implemented with Bytespresso are presented to assess the effectiveness of deep
reification and Bytespresso. Program fragments written in these DSLs are embedded
in Java, but they are dynamically off-loaded to native hardware to obtain good
execution performance. Since they are embedded in Java, the syntax of Java is
reused by those DSLs, and hence the development costs of these DSLs are reduced.

8.1 Embedded Domain-Specific Languages

The usefulness and necessity of domain-specific languages (DSLs) are getting
widely recognized in the high-performance computing (HPC) area. DSLs provide
higher-level abstractions for a specific domain than general-purpose languages.
These abstractions consist of domain-specific data types and operators, and they
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hide various techniques for their efficient implementation from the programmers’
views. We first briefly overview the motivation of this approach by presenting
several well-known implementation techniques for it.

8.1.1 Domain-Specific Data Types and Operators

Providing useful data types and operators for a particular application domain is a
promising approach to reduce programming costs in high-performance computing.
Since the underlying hardware and software stack is getting complicated, writing
a raw Fortran or C/C++ program with built-in data types for simple arrays is
also getting harder. During writing such a program, programmers have to consider
various nonfunctional concerns such as how to exploit parallel computation pro-
vided by hardware, how to improve a cache hit ratio, and how to replicate data
among distributed nodes. If domain-specific data types and operators are provided
to abstract these nonfunctional concerns away, programmers can more focus on
application-specific concerns. They would not be bothered about parallelism or
distribution and hence reduce programming costs.

Such data types and operators can be implemented as a library in object-oriented
languages. Since objects encapsulate implementation details of data manipulation
and they provide methods as operators for processing the data, objects and methods
are appropriate vehicles for implementing data types and operators for high-
performance computing. We do not have to modify a programming language to
provide data types and operators. Suppose that we have a library providing Matrix
and Vector objects. Then we would be able to write the following code:

d = (a * p) * q

Here, a is a Matrix object, p and q are Vector objects, and d is a variable
of double. The first * is a multiply method in the Matrix class, and the second
is a method in Vector. If the language does not support operator overloading, the
code above would be like this:

d = (a.multiply(p)).multiply(q)

In either case, implementation details will be hidden from the programmer. a
might be a sparse matrix and uses the compressed sparse row format. It might be
a large matrix, and the data are allocated on multiple distributed nodes where data
are exchanged through a MPI library. Since the implementation of the Matrix and
Vector is provided by our library, the programmer only has to select an appropri-
ate implementation, for example, by selecting a subclass SparseMatrixByMPI
of Matrix when creating the object that the variable a refers to.
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8.1.2 C++ Template Libraries

A challenge of the approach to providing domain-specific data types and operators
by object orientation is an efficient implementation. Despite vigorous research
activities for a long time, object-oriented mechanisms such as method calls tend
to involve runtime penalties.

Listing 8.1 N-body simulation in Java
1 Func f = (Vec4Array pos, int i, Vec3 pi, float wi) -> {
2 Vec3 a = pos.sum((Vec4Array p, int j, Vec3 pj, float wj)

->{
3 Vec3 r = pi.sub(pj);
4 float ra = reciprocalSqrt(r.mult(r) + soft);
5 return r.scale(wj * (ra * ra * ra));
6 });
7 Vec3 v2 = vel.get(i).add(a.scale(delta)).scale(damping);
8 vel.set(i, v2);
9 return pi.add(v2.scale(delta));

10 };

Let us see the example taken from our paper [2]. Listing 8.1 written in Java
defines the kernel computation of the all-pairs approach to N-body simulation [9].
Func, Vec4Array, and Vec3 are data types provided by a library. Func is a type
of lambda expression. Vec4Array is an array of four-dimensional vectors. Vec3
is a three-dimensional vector. reciprocalSqrt is an operator provided by the
library as well as methods in the library classes, such as add and sub (subtraction).
Since the programmer does not have to implement these classes, Listing 8.1 is a
natural program derived from the following formula:

ai = ∑
j wj (r · r + ε2)− 3

2 r where r = pj − pi (8.1)

v′
i = δ(vi + �t · ai) (8.2)

p′
i = pi + �t · v′

i (8.3)

Here, ai corresponds to the variable a. vi corresponds to vel.get(i) and v′
i

corresponds to the variable v2. pi is the value returned by the lambda expression
f. Note that

∑
is represented by the sum method on pos, which is an array of

positions p. The sum method takes a lambda expression to compute wj(r · r +
ε2)− 3

2 r and hides how to iterate over array elements.
Although the program is a straightforward translation into Java except that

domain-specific operators are not simple symbols but methods, the runtime perfor-
mance is not satisfactory when compared with the equivalent C code optimized by
hand without using higher-level abstraction such as objects and a lambda expression.
Figure 8.1 shows the execution performance of the N-body program written in
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Fig. 8.1 The execution performance of N-body programs

several languages. We used OpenJDK (version 1.8.0_151), the Intel C compiler
(version 17.0.1) with -fast, GCC 5.4.0 with -Ofast, and Clang 5.0.0 with -Ofast. All
the programs were run on a machine with dual Intel Xeon E5-2637v3. The hardware
and compilers that we used for this experiment were slightly upgraded from those
in our paper [2]. Although the execution performance depends on the optimization
by a compiler and even minor differences of library design, the performance of
Listing 8.1 in Java is not comparable with the equivalent C code. Furthermore, a
C++ program naively translated from Listing 8.1 was also slow. As presented in
Listing 8.2, this C++ program also uses lambda expressions and several objects
such as Vec3 and Vec4Array.

Listing 8.2 N-body simulation in C++
1 static const auto func
2 = [vel](Vec4Array* pos, int i, Vec3 pi, float wi) -> Vec3

{
3 Vec3 a = pos->sum([&pi](Vec4Array* pos, int j, Vec3 pj

,
4 float wj) -> Vec3 {
5 Vec3 r = pi.sub(pj);
6 float ra = 1.0f / sqrtf(r.mult(r) + 0.01f);
7 return r.scale(wj * (ra * ra * ra));
8 });
9 Vec3 v2 = (vel->get(i)).add(a.scale(0.016f)).scale(1.0

f);
10 vel->set(i, v2);
11 return pi.add(v2.scale(0.016f));
12 };
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To avoid runtime penalties due to object orientation, domain-specific data types
and operators in C++ tend to be implemented by a template library. In the case
of our N-body program, the implementation using templates did not significantly
improve the performance. “C++ templates” in Fig. 8.1 indicates the performance of
our implementation effort using templates. Since in C++ 17 a lambda expression can
be passed as a template argument in only a restricted manner, our template library
for the N-body program could be compiled only by Clang, and the performance
improvement was not satisfactory. “C++ templates 2” in Fig. 8.1 indicates the
performance of another implementation, in which the users do not describe kernel
computation in the form of lambda expression. They instead write it in the form of a
class. Although its performance is comparable to hand-optimized C code as shown
in Fig. 8.1, its programming interface is not satisfactory since the users have to write
a new template class.

A main trick of performance optimization by templates is to pass compile-time
constant values to a template as template arguments so that the resulting code of
instantiating the template will be specialized for those template arguments. Hence
when a library designer designs her template library, she has to carefully separate
constant part of data types and operators from the rest that are dynamically given
at runtime. For our example in Listing 8.1, the sum method on pos should be
specialized for the given lambda expression; the value of the variable vel might
be given at runtime. Furthermore, a library designer has to consider the constraints
on template arguments. For example, a string literal cannot be a template argument.
We cannot specialize two objects that refer to each other:

template <typename T> class A {
T b;

};
template <typename T> class B {
T a;

};

If the member variable b refers to an instance of B and a refers to an instance of
A, then we would want to specialize the type of b into B and the type of a into A.
However, such specialization would be obtained only by A<B<A<B<...>>> and
B<A<B<...>>>, which are not feasible.

Furthermore, we cannot predict with confidence that such specialization is prop-
erly performed by a C++ compiler and it actually improves execution performance.
This depends on the compiler implementation, and a library designer has to struggle
with it in a trial-and-error fashion. Limitations of C++ template libraries would
be that this trade-off between a user-friendly programming interface and execution
performance is not predictable.

Finally, this approach using a C++ template is only applicable when a program
is written in C++. Although most programs for high-performance computing could
be written in C++, some programs might be written in other languages such as
Go. When we want to use OpenCL, this approach is not effective. Since a kernel
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function in OpenCL is described in the form of string literals (or character strings),
the specialization by C++ templates is not naively applicable to an OpenCL kernel
function.

8.1.3 Pragmas

Since a C++ library with templates has some limitations, there have been other
approaches proposed. The most extreme approach is to develop an external domain-
specific language (DSL). It is a new language designed for data types and operators
for a particular application-domain. Although it can provide the most natural syntax
and potentially the best optimizing compiler, a drawback of this approach is its
development cost. Not only a compiler but also a development environment such as
an editor have to be developed.

Another approach with lower development costs is to add pragmas to an existing
language. Pragmas customize a compilation process, in particular, how target native
code is generated, although it does not change syntax. OpenMP is one of the
most successful pragma-based systems. A for statement with the parallel
pragma of OpenMP can be regarded as a domain-specific operator for parallel
looping although the syntactic expression of the for statement is still a normal one.
In other words, pragmas implement domain-specific data types and operators by
changing the semantics of existing language constructs while keeping the original
presentation. In practice, the semantic changes are restricted to be compatible to
the original semantics. The programs including pragmas should run even when all
the pragmas are ignored. For example, a for statement with the OpenMP pragma
should be a valid for statement even when the pragma is removed.

For the development of pragmas, we can use various compiler frameworks such
as Eclipse [14], ROSE [10], and Roslyn [8]. GCC and LLVM compilers can be also
used as a compiler framework. They mitigate relatively high development costs of
pragmas. Most pragmas can be implemented by a translator of abstract syntax trees
(ASTs) from the original trees into transformed trees according to pragmas.

A drawback of this pragma approach is that syntactic presentation is restricted. A
pragma can only add extra semantics to an existing language construct such as a for
statement. The syntax or presentation of that language construct cannot be changed.
This restriction on syntax may also complicate the behavior of domain-specific
data types and operators by pragmas. For example, since OpenMP pragmas cannot
control what programmers write in the body of a for statement, the programmers
may write an arbitrary body. Hence they may be surprised at unexpected behavior
of the statement when the computation in the body has forward or backward
dependency. For example,

#pragma omp parallel for
for (int i = 0; i < N; i++)
array[i] += array[i - 1];
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The result of this for statement might be different from the result of the for
statement without the pragma since OpenMP does not guarantee that array[i] is
updated after updating array[i-1]. If custom syntax can be provided for parallel
for statements, providing such syntax would be preferable so that programmers
could not write a body including forward or backward dependence:

parallel_for (array, N) {
return self + 1.0;

}

Here, parallel_for is a custom for statement with new syntax. It updates
every element of array with size N. The new value is obtained by executing the
body self + 1.0. The built-in variable self refers to the old value of each
element. Although it enables only a limited kind of computation, the programmers
cannot write an expression with forward or backward dependence. Restricting the
expressiveness of data types and operators is sometime useful to avoid unexpected
behavior.

8.1.4 Deep Embedding

Deep embedding is a technique for implementing an embedded domain-specific
language (DSL). An embedded DSL is a library providing domain-specific data
types and operators through an application programming interface (API) regarded
as a DSL. Deep embedding is a variant of the technique called fluent API [3]. The
functionality of a library with a fluent API is invoked by a chain of methods.

Matrix m;
Vector v, p, q;

...
q = m.mult(v).add(p);

The variables m refers to a Matrix object, and v, p, and q refer to Vector objects.
The last line above expresses q = m∗p+v, matrix-vector multiplication and vector
addition. The mult method executes multiplication, and the add method executes
addition. These methods return the resulting vector.

A deep-embedding library, however, provides methods returning an abstract
syntax tree (AST). For the example above, both mult and add return an AST
corresponding to an expression for multiplication or addition. Hence, the type of q
has to be changed from Vector to VectorExpr (vector expression). To obtain
the value of vector type, a method for materialization, for example, eval, has to be
called on the AST.

Matrix m;
Vector v, p, r;
VectorExpr q;

...
q = m.mult(v).add(p);
r = q.eval();
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The result of m ∗ v + p is stored in r. A unique feature of deep embedding is that
programmers explicitly specify when an AST is materialized (by calling eval) into
a value. Hence, a deep-embedding library can generate an optimized program for
executing an AST to be materialized when the materialization method such as eval
is called. Then, it can execute the program generated on demand so that it can get
a better execution performance. The generated program does not have to be written
in the host language. When a deep-embedding library is for Java, it may generate a
C++ or assembly program. It may directly generate native machine code [13].

Since a deep-embedding library generates a program, it is similar to an external
DSL compiler, but it is a library embedded in its host programming language.
The program generation is performed at runtime as a just-in-time (JIT) compiler
does. A deep-embedding library is more portable than external DSLs or the pragma
approach; it does not require a custom compiler or language processor.

Although the syntactic presentation of the code above is somewhat ugly, it could
be improved, for example, if the host language supports operator overloading:

q = (m * v) + p;
r = q.eval();

In Scala, dots and parentheses can be omitted when a method takes a single
parameter. Hence programmers can write the following code:

q = m mult v add p

It can be also possible to implement a precedence rule among mult and add by
exploiting types [7]. However, in either cases, the eval method is still necessary
for explicit materialization.

Explicit materialization is a drawback of deep embedding since programmers
are aware of AST construction. They also have to distinguish AST types and
value types such as VectorExpr and Vector. This drawback is mitigated in
Lightweight Modular Staging (LMS) [12] by relying on Scala’s powerful type
system and advanced features such as user-defined implicit conversion (and often
Scala-Virtualized compiler extension [11]). Yin-Yang [5] uses Scala’s macro system
to further mitigate this drawback. These techniques for mitigation, however, are not
available in other mainstream programming languages, which do not provide as
powerful programming capabilities as Scala’s.

8.2 Deep Reification

In our paper [2], we proposed an alternate approach called deep reification. Like
deep embedding, deep reification enables a library providing domain-specific data
types and operators through a language-like API.
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The idea of deep reification is simple. Deep reification is a language mechanism
for obtaining the AST of the source code of a given lambda expression (or a function
closure) at runtime. Deep reification obtains not only the AST of the given lambda
expression but also the ASTs of all the methods directly or indirectly invoked
from that lambda expression. It can be regarded as a mechanism for obtaining an
abstract syntax forest. The obtained ASTs also come with runtime values captured
by the given lambda expression and accessed from the directly or indirectly invoked
methods. All the types appearing in the obtained ASTs are also collected.

Listing 8.3 Deep reification for N-body simulation
1 dsl.run(() -> {
2 pos1.tabulate(i -> new Vec4(i, i, i, 2));
3 vel.tabulate(i -> new Vec4(i, i, i, 2));
4 dsl.repeat(R, () -> {
5 pos2.map(f, pos1);
6 pos1.map(f, pos2);
7 });
8 Vec3 g = pos1.sum((Vec4Array pos, int i, Vec3 v, float w)
9 -> new Vec3(v.x / w, v.y / w, v.z / w));

10 Util.print(g.x / N).println();
11 });

Listing 8.3 shows an example. It performs the N-body simulation using the
lambda expression f shown in Listing 8.1. The run method on dsl performs deep
reification. It takes a lambda expression and obtains the AST of its source code.
Since this lambda expression refers to f, which is another lambda expression in
Listing 8.1, the AST of f is also obtained. Likewise, other methods such as repeat
and map invoked in Listings 8.1 and 8.3 are also reified and their ASTs are obtained.

Domain-specific data types and operators are implemented by deep reification
as follows. Its approach is similar to deep embedding. A code snippet including
domain-specific data types and operators is an embedded DSL program. It is written
in the form of lambda expression such as one passed to run in Listing 8.3. This
lambda expression is passed to some method provided by the DSL library and
the method extracts the ASTs of that lambda expression and the methods invoked
from that lambda expression. The run method in Listing 8.3 is such a method
provided by a DSL library. Then, the extracted ASTs are translated into an optimized
program, which will be executed to get the result of the DSL program written by the
user. If a host language is Java, the optimized program translated from the ASTs may
be a C++ program. It will be compiled dynamically by an external C++ compiler
and run, while the host program in Java is running. The compiled binary would
communicate to the Java virtual machine through Java Native Interface (JNI) or
inter-process communication such as a socket and a pipe. The latter means allows us
to run the compiled binary on a remote machine with rich computational resources.
Otherwise, the compiled binary can be run as a stand-alone program without any
communication to the host program, while it is running. In this case, the host
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program can be regarded as a program generator where the specification of the
generated program is embedded. The generated and compiled binary will run after
the host program completely finishes.

Any practical implementation of deep reification needs a means for delimiting
acquisition of ASTs for methods directly/indirectly invoked by the root lambda
expression. One simple means is to use naming conventions. In Java, the methods
contained in system packages such as java.lang.* can be eliminated from
the acquisition. Another approach is to let the application programmers annotate
methods to delimit further acquisition of ASTs. When extracted ASTs as a DSL
program are translated into an efficient C++ program, some methods will be native
methods, and their ASTs will not be translated into C++ code as is. They will
be translated, independently of their ASTs, into predefined code supplied by DSL
implementation; further traversal to obtain ASTs will not be necessary. Hence, the
annotation to specify such a native method can be used to delimit AST acquisition.

A difference from deep embedding is that a DSL program is written by borrowing
the syntax of the host language, while it is written in the form of method chaining
in deep embedding. Deep reification also borrows parts of the semantics of a
host language. In the deep-embedding approach, borrowing host language features
such as function calls is difficult in a DSL program. The syntax for a function
call has to be explicitly implemented by the DSL. The DSL cannot reuse a host
language mechanism similar to a function call. Since deep reification traces a
method-call chain and variable accesses referring to the outside of a given closure,
DSL implementation can exploit that tracing functionality when implementing its
equivalent language constructs such as a function call. Deep reification provides for
DSL implementation a smoother connection to its host language.

The approach based on deep reification is similar to a JIT compiler, but the
dynamic compilation in this approach would be heavier than typical JIT compilers.
Hence, a DSL program in this approach is appropriate for off-loading high-
performance computation when executing that computation takes a long time
relatively to the compilation time. On the other hand, like the deep-embedding
approach, the deep-reification approach is portable since it does not need a custom
virtual machine or compiler.

Deep reification is also similar to syntactic macros such as ones found in Lisp.
Syntactic macros allow programmers to extract an AST of the expression given
as a macro argument. The resulting AST returned by a macro function lexically
substitutes the original macro-call expression. Although a syntactic macro can
extract only the AST of the expression written as the argument to the macro, deep
reification can extract the AST of an expression written in a different place from the
place where the execution of deep reification. In Listing 8.3, the map method in line
5 and 6 gets a lambda expression referred to by the variable f and extracts its AST.
The lambda expression does not have to necessarily be directly written in line 5 and
6. If map is a macro function, the lambda expression has to be written in line 5 and
6. Furthermore, deep reification allows programmers to write the following method
and use it:



8 A Development Platform for Embedded Domain-Specific Languages 149

void mapmap(Func f, Vec4Array pos1, Vec4Array pos2) {
pos2.map(f, pos1);
pos1.map(f, pos2);

}

Then line 5 and 6 in Listing 8.3 can be replaced with the following single call:

mapmap(f, pos1, pos2);

Defining a convenience method such as mapmap is not possible if map is a macro
function.

8.3 Bytespresso

To show our idea of deep reification, we implemented a Java library that provides
deep reification in Java [2]. Our Java library named Bytespresso extracts an AST
by bytecode decompilation. It needs to launch the Java virtual machine with the
option jdk.internal.lambda.dumpProxyClasses. This option generates
the bytecode of a dynamically generated lambda expression. For deep reification,
Bytespresso reads the bytecode of a given lambda expression and decompiles it to
construct an AST. It does not need source code; it only needs Java bytecode.

To support the implementation of an embedded DSL by deep reification,
Bytespresso also provides a translator from ASTs to C or CUDA code. The code
generated by the translation is normally compiled by an external C (or CUDA)
compiler and executed in a separate process from the Java virtual machine. The
generated code and the host Java code communicate with each other through a
socket for portability.

Delimiting AST acquisition by deep reification, Bytespresso provides the
@Native annotation. When a method has this annotation, the AST of the method
body is not extracted by deep reification. The ASTs for the methods invoked by that
method are not extracted either. Although a @Native method is translated into a C
function by Bytespresso, the body of that C function is the argument to @Native.
The following method is an example of @Native method:

@Native("struct timeval time; gettimeofday(&time, NULL); "
+ "return time.tv_sec * 1000000 + time.tv_usec;")

public static long time() {
return System.nanoTime() / 1000;

}

The body of the C function is given as a string literal. Furthermore, Bytespresso also
provides the @Foreign annotation for delimiting. Unlike @Native, the translator
provided by Bytespresso does not generate a C function for a @Foreign method.
A call to this method is translated into a call to the existing C function with the same
name. For example,

@Foreign public static float sqrtf(float f) {
return (float)Math.sqrt(f);

}
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A call to this method is translated into a call to the C function sqrt in the standard
library. The body of the method is ignored.

The translator provided by Bytespresso does not preserve the original semantics
of Java. For example, the generated code does not perform an array boundary
checking although DSL designers, who implement their DSL compilers, can modify
the translator from ASTs to C so that array boundary checking will be done. Garbage
collection is optional for the generated code. If it is required, a conservative garbage
collector [1] is used. Note that a program processed by Bytespresso is a DSL
program. It should be a different language from Java and can provide different
semantics although it has to use the same syntax as Java. The choice of which part
of Java’s semantics is reused by the DSL is the responsibility of the DSL designer.
It should be decided to fit the aim of the DSL.

8.3.1 N-Body Simulation

We first show our small array library built with Bytespresso. It provides several
classes used in Sect. 8.1.2 such as Vec4Array (an array of vectors in four
dimensions) and Vec3 (a vector in three dimensions). Vec4Array provides a
method for computing sums:

@Inline public Vec3 sum(Func f) {
Vec3 v = new Vec3(0, 0, 0);
for (int i = 0; i < size; i++) {
Vec3 vi = get(i);
Vec3 v2 = f.apply(this, i, vi, getW(i));
v = v.add(v2);

}
return v;

}

This is a natural Java program that can be also executed by the Java virtual machine.
get(i) obtains the i-th element (with only three components) of the vector.
getW(i) obtains the fourth dimension of the i-th element. f.apply runs the
lambda expression f with the arguments.

However, this array library is an embedded DSL. Although a program written in
this DSL lexically looks like a lambda expression in Java, it is extracted from a host
Java program, translated into efficient C++ code, compiled, and executed out of the
Java virtual machine. The execution semantics of the DSL code is slightly different
from Java’s, for example, with respect to array boundary checking.

The vector elements of a Vec4Array object are stored in a FloatArray2D
object. FloatArray2D is a class provided by Bytespresso for a two-dimensional
array of float. The AST-to-C translation of the code related to this object is
specially treated, and hence every instance of FloatArray2D is translated into
a static global variable in C. An instance of FloatArray2D has to be created
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Fig. 8.2 The execution performance of N-body programs by Bytespresso

with its fixed size before deep reification is executed. For example, if the size is 128
by 128, then the instance is translated into:

static double gvar[128][128];

This is a statically allocated array with a fixed size. It will help the back-end C
compiler generate efficient binary.

Note that a DSL program extracted from its host Java program by Bytespresso
is compiled into C and executed by a separate process. Therefore, the host Java
program and the DSL program run in separate execution environments, and they
do not share objects or any type of variables. All the Java objects referred to by a
DSL program are also extracted by Bytespresso. Then their copies are made and
embedded into a generated C program as a statically allocated variable. When data
have to be exchanged between a host Java program and a DSL program, they have
to be explicitly passed by remote method invocation. The AST-to-C translator of
Bytespresso supports remote method invocation between host and DSL programs.
A method annotated with @Remote is treated as a method that can be remotely
called. Bytespresso currently supports the only primitive data types and arrays as a
parameter of remote method invocation.

Figure 8.2 shows the execution performance of our array library with Byte-
spresso. We ran the simple N-body simulation shown in Listing 8.3 on the same
hardware and software as in Fig. 8.1 in Sect. 8.1.2. The performance of Bytespresso
is comparable to the C program written by hand except when the back-end C
compiler is the Intel C compiler. It seems that the Intel compiler was able to
effectively apply SIMD vectorization when the source code was written by hand
and had a simpler structure.

The performance of Bytespresso shown in Fig. 8.2 was achieved by aggressive
inlining specified by the annotation @Inline for the sum method. Our array
library supports not only single-thread execution but also OpenMP and CUDA. It
provides several subclasses of Vec4Array, and, by switching them, programmers
can change which kind of program is generated from a DSL program written as a
lambda expression in Java. When a subclass of Vec4Array for CUDA is selected,
the AST-to-C translator of Bytespresso generates a CUDA program that computes
the sum method by using a GPGPU. Therefore, a call to the sum method may
cause dynamic method dispatch. Bytespresso aggressively inlines a method and
attempts to statically resolve such dynamic dispatch. The call to the sum method
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in Listing 8.1 and all other calls that might have been dynamic calls were statically
resolved by Bytespresso and translated into normal calls to C functions specialized
for the call sites. Some calls to the specialized functions are further inlined. To help
this optimization, the final modifier should be added to object fields if possible.
Furthermore, Bytespresso provides @Final annotation to specify that the value of
a field never changes, while a DSL program is running. Since it can be updated
while a host Java program is running before deep reification is performed, @Final
is different from the final modifier.

Listing 8.4 2-dimensional 5-point stencil
Boundary b = new FixedEndBoundary();
b.initializer(new Initializer() { ... });
GridFloat2D grid = new CpuGridFloat2D(xsize, ysize, b);
Initializer init = new Initializer() {
public float value(int i, int j) { return 273.15f; }

};
Kernel k = new Kernel() {
public float newValue(Float2Array oldValue, Cursor cur,

int t, Reduction r) {
float v = c0 * (cur.north(oldValue) + cur.south(oldValue
))

+ c1 * (cur.east(oldValue) + cur.west(oldValue
))

+ c2 * cur.self(oldValue);
return v;

}
};
grid.initialize(init)

.each(Reduction.NO, 1, Predicate.FOREVER, k)

.repeat(N, new MPIDriver(nodes));

8.3.2 Auto-Parallelization

Another example is a simple framework for stencil computation. It is an embedded
DSL, and a program written in this DSL is translated into an efficient C program to
be run. The abstraction provided by the framework hides all the details of efficient
implementation. The framework users do not have to care about the implementation
details.

Stencil computation is a well-known programming model useful for, for exam-
ple, solving a partial differential equation. Listing 8.4 is a program using our frame-
work for stencil computing. It performs five-point stencil computation in single pre-
cision. It first constructs a two-dimensional grid with a concrete boundary condition.
In Listing 8.4, we constructs two-dimensional grid, which is a CpuGridFloat2D
object with a FixedEndBoundary object. Then the initialize method on
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a grid object registers an initializer that sets each grid point to an initial value,
and the each method registers a kernel function for stencil computation. Finally,
the repeat method performs deep reification and generates a C program. Since a
MPIDriver object is given to the repeat method in Listing 8.4, the generated
program is an MPI program in C. It is supposed to be compiled and submitted to a
job queue of supercomputer after the Java program in Listing 8.4 finishes.

The kernel function receives the old values of a grid (oldValue) and the current
position (cur). It has to return a new value at the current position of the grid.
cur.north obtains the old value at the upper position, and cur.self obtains
the old value at the current position. The other parameters t and r are the current
time and an object for computing reduction, which is not specified in Listing 8.4.

This framework for stencil computation provides several components, and the
users can write their application program by selecting appropriate components.
They can choose boundary conditions and how their program is executed, by
CPU, GPGPU, or MPI. Then the framework generates a program for the given
configurations.

Listing 8.5 The Himeno benchmark using our framework
grid.initialize(cInitPressure)

.each(Reduction.SUM, 1, Predicate.FOREVER, new Kernel()
{

public float newValue(FloatArray3D p, Cursor cur, int
t,

Reduction r) {
float s0 = cur.self(a0) * cur.east(p)

+ cur.self(a1) * cur.south(p)
+ cur.self(a2) * cur.down(p)
+ cur.self(b0)

* (cur.southeast(p) - cur.northeast(p)
- cur.southwest(p) + cur.northwest(p

))
+ cur.self(b1)

* (cur.downsouth(p) - cur.downnorth(p)
- cur.upsouth(p) + cur.upnorth(p))

+ cur.self(b2)

* (cur.downeast(p) - cur.downwest(p)
- cur.upeast(p) + cur.upwest(p) )

+ cur.self(c0) * cur.west(p)
+ cur.self(c1) * cur.north(p)
+ cur.self(c2) * cur.up(p)
+ cur.self(wrk1);

float ss = (s0 * cur.self(a3) - cur.self(p))

* cur.self(bnd);
r.apply(ss * ss);
return cur.self(p) + omega * ss;

}
}).repeat(N, drv);
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An interesting research question is whether this framework using Bytespresso
can generate a program appropriate for the given configuration, in particular, a
back-end compiler. To reduce development costs, existing software tools should be
reused if they are appropriate to use, and a generated program should be optimizable
easily by such a back-end compiler. For example, there are automatic parallelizing
compilers available.

To examine whether our framework can generate a program that such a compiler
can parallelize, we rewrote the Himeno benchmark [4] to use our framework and
ran it on the Fujitsu FX10 supercomputer. The back-end compiler was the Fujitsu
C compiler. To exploit its automatic parallelization, a compiled program has to be
a good one that the compiler can easily analyze and parallelize. To generate a good
program, our framework applies function inlining to the whole kernel loop in the
framework implementation. It also transforms an object used for reduction into a
set of local variables. This technique is often known as object inlining. Without
this transformation, the back-end compiler could not parallelize the code. The
framework also allocates global variables in a generated C program, which holds
grid data, in a specified order on memory. Since all these optimization techniques
are specific to the Fujitsu C compiler, we developed framework components for that
compiler so that the framework users can choose when their target machine is the
Fujitsu FX10 supercomputer.

The Himeno benchmark runs a single three-dimensional Jacobi kernel. The
problem size was XL (512 × 512 × 1024). The original benchmark is written in
C with MPI, and each MPI process is single-threaded in single precision. The
benchmark score mainly reflects the memory bandwidth. Listing 8.5 shows the
kernel of the benchmark program. The variables a0, a1, and so forth refer to
coefficient matrices, which are FloatArray3D objects created in the benchmark
program.

Figure 8.3 shows the result. Bytespresso could successfully achieve comparable
performance with the hand-optimized C code. Every node of the machine had
32 GByte memory and one SPARC64 IXfx (1.848 GHz) processor with 16 cores.
The back-end compiler was Fujitsu C compiler 1.2.1. The compiler option -
Kfast,parallel,noprefetch,ocl was given. The page size was set to 256 MB.

8.3.3 NAS Parallel Benchmarks

We also wrote a vector matrix library built with Bytespresso. It runs on the MPI
environment, and hence it can process large vector and matrices. Like our small
array library used for the N-body simulation in Sect. 8.3.1, it is an embedded DSL.
A program written in this DSL looks like a normal Java program, but it is executed
after being translated into a C program using MPI. The library users do not have to
care about data distribution or exchanges through MPI. Such details are hidden by
the library.
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Fig. 8.3 Strong scale performance of the Jacobi kernel of Himeno on FX10

Listing 8.6 The CG benchmark using our framework
public double conj_grad(Vector x, Vector z, Matrix.Sparse a,

Vector p, Vector q, Vector r, double rnorm)
{

q.set(0.0);
z.set(0.0);
r.set(x);
p.set(r);
double rho = r.norm();
for (int cgit = 1; cgit <= cgitmax; cgit++) {
q.setToMult(a, p); // q = A * p
double d = inner(p, q); // d = p * q
double alpha = rho / d;
z.setToAdd(z, alpha, p); // z = z + alpha * p
r.setToAdd(r, -alpha, q); // r = r - alpha * q
double rho0 = rho;
rho = r.norm(); // rho = r * r
double beta = rho / rho0;
p.setToAdd(r, beta, p); // p = r + beta * p

}
r.setToMult(a, z); // r = A * z
r.setToSub(x, r); // r = x - r
double sum = r.norm(); // sum = r * r
return Util.sqrt(sum);

}
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To evaluate the performance of this vector matrix library, we rewrote the CG
benchmark from the NAS parallel benchmarks 3.0 so that it will use our library.
Since the library provides high-level abstraction, vectors and matrices, the CG
benchmark became a largely simplified program than the original one containing
a large number of do loops. The original program cg-omp.f contains 1156
lines, while ours corresponding one contains only 751 lines including comments
but excluding the library code. Listing 8.6 shows a main part of the program,
the conjugate gradient routine. Since the generated program by our library runs
using MPI, for example, the setToMult method for computing matrix-vector
multiplication synchronously runs with other MPI processes. It first computes the
multiplication of a sub-matrix and a sub-vector stored on local memory, and then
it exchanges the results among the other nodes through MPI_Irecv, MPI_Send,
and MPI_Wait. These MPI primitives are implemented by @Native methods of
Bytespresso.

Besides the CG benchmark, we also wrote a program equivalent to the LU
benchmark of NAS parallel benchmark suites. This program does not use high-
level abstraction such as a matrix; it directly uses four-dimensional double-precision
arrays as the original benchmark program does. We wrote this benchmark program
to examine the basic execution performance of programs generated by the AST-to-C
translator that Bytespresso provides.

The execution performance of the CG and LU benchmark programs in Fig. 8.4.
We ran them on the TSUBAME 3.0 supercomputer at Tokyo Tech. Each node of
the machine has dual Intel Xeon E5-2680v4 processors with 256 GB memory. For
compilation, we used GCC 4.8.5 with the OpenMPI library. The optimization option
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-Ofast was given to the compiler. We created eight MPI processes per node, and
the maximum number of nodes we used was 64. The CG benchmark using Byte-
spresso achieved comparable performance to the original Fortran program although
the slow down due to Bytespresso was not negligible for the LU benchmark.

8.3.4 ExaStencil

Our last example is an embedded version of the ExaSlang 4 DSL [6]. ExaSlang
is an external DSL for stencil computation. It is being developed by the SPPEXA
ExaStencil project. It provides stencil operators and data grids. It also provides a
loop-over statement, which abstracts a (sequential or parallel) iteration over a grid.

Since ExaSlang supports multigrid methods, a set of multi-level data grids is
called a field. A data grid at a particular level is specified by @. For example,
GradientX@finest represents a data grid at the finest level of the GradientX
field. A stencil operator consists of stencil coefficients.

Stencil SmootherStencil_u@all {
[ 1, 0] => -1.0
[-1, 0] => -1.0
[ 0, 1] => -1.0
[ 0,-1] => -1.0
[ 0, 0] => 4.0*alpha + GradientX@current * GradientX@current

}

This declares a stencil operator named SmootherStencil_u available at all
levels. The right operand of => is a coefficient at the position specified by the left
operand of =>. The declaration above defines the following stencil:

⎛
⎝ −1

−1 4α + I 2
x −1

−1

⎞
⎠

Here, Ix is the element of GradientX at the current position. The stencil can be
used in a function:

Function Smoother@all ( ) : Unit {
// omitted
loop over Flow_u@current {
Flow_u[next]@current = Flow_u[active]@current

+ ((1.0 / diag(SmootherStencil_u@current))

* (RHS_u@current
- SmootherStencil_u@current * Flow_u[active]@current
- GradientX@current * GradientY@current * Flow_v[

active]@current))
}
// omitted

}
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This Smoother function is available at all levels, and it iterates the loop body over
the current level of the Flow_u field. In the body, the SmootherStencil_u for
the current level is applied to the current level of (the active slot of) the Flow_u
field.

We implemented an embedded version of this DSL by using Bytespresso. In
the embedded version, stencil operators and fields are defined as Java objects. For
example, the SmootherStencil_u shown above is written as follows:

final Stencil smootherStencil_u
= new StencilBuilder()
.add(1, 0, -1.0)
.add(-1, 0, -1.0)
.add(0, 1, -1.0)
.add(0, -1, -1.0)
.add(0, 0, (current, x, y) ->

4.0 * alpha + gradientX.at(current).get(x, y)

* gradientX.at(current).get(x, y))
.build();

To obtain better performance, an instance of CustomStencil should be used:

final CustomStencil smootherStencil_u = new CustomStencil() {
public double calc(final LayeredNodeField layeredField,

final int current, final NormalIndex x,
final NormalIndex y) {

return -1.0 * (layeredField.get(current, x, 1, y, 0)
+ layeredField.get(current, x, -1, y, 0)
+ layeredField.get(current, x, 0, y, 1)
+ layeredField.get(current, x, 0, y, -1))
+ (4.0 * alpha + gradientX.get(current, x, y)

* gradientX.get(current, x, y))

* layeredField.get(current, x, 0, y, 0);
}

};

This object directly represents the expression computed by a stencil operator.
Likewise, the Smoother function is written in our DSL as follows:

@Inline public void smoother(int current) {
// omitted
flow_u.next(current).loopOver(current, (c, x, y) ->
flow_u.active(c).get(c, x, y)
+ smootherStencilDiagInv_u.calc(

((rhs_u.get(c, x, y)
- smootherStencil_u.calc(flow_u.active(c), c, x, y))
- gradientX.get(c, x, y) * gradientY.get(c, x, y)

* flow_v.active(c).get(c, x, y)),
c, x, y));

// omitted
}

This function takes a parameter specifying a level. Its expression is more verbose
than ExaSlang but keeps the same abstractions.
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We compared the execution performance of programs that compute two-
dimensional optical flow by the multigrid method. One program was written in
the original ExaSlang language, while the other was written in our embedded DSL.
Both are single-threaded. We compiled the two programs by GCC 5.4.0, Intel C
compiler 17.0.1, and Clang 5.0.0 with -O3, and ran them on the machine with Intel
Xeon E5-2637v3. We examined with different numbers of layers for the multigrid
method. Figure 8.5 shows the execution time of the kernel part of the two programs.
The program written in our embedded DSL was only three times slower than
the program in the original ExaSlang language. Figure 8.6 shows the sum of the
compilation time and the execution time of the two programs. Since the compilation
by the current ExaSlang compiler is slow, our embedded DSL was rather faster.
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8.4 Summary

This chapter presented Bytespresso, a prototype system to use our deep-reification
technique, in Java. Bytespresso allows DSL developers to easily implement efficient
DSLs embedded in Java. The embedded DSL code is dynamically extracted and off-
loaded from the Java virtual machine onto native hardware. The DSL developers can
exploit an existing tool chain, including an external optimizing compiler, when off-
loading DSL code. Since the syntax of the DSLs are borrowed from Java’s and a few
language mechanisms in Java, such as a method call, are reused, the development
costs of the DSLs can be reduced.
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Chapter 9
Xevolver: A User-Defined
Code Transformation Approach
to Streamlining Legacy Code Migration

Hiroyuki Takizawa, Reiji Suda, Daisuke Takahashi, and Ryusuke Egawa

Abstract Since different systems usually require different performance optimiza-
tions, an application code is likely “specialized” for a particular system configura-
tion to fully extract the system performance. This is one major reason why migration
of an existing application code, so-called legacy code migration, is so labor-
intensive and error-prone especially in the high-performance computing (HPC)
area. To make matters worse, the diversity of system architectures would increase
the number of system configurations that have to be considered during the life of
an application. As a result, the increasing system complexity and diversity will
force programmers to further invest enormous time and effort on HPC application
development and maintenance. For long-term software development and mainte-
nance, an HPC application code should not be optimized for a particular system
configuration. However, simply excluding system-awareness from the code just
results in reducing the performance, because system-awareness can be regarded as
the necessary information to exploit the performance of the target system. The goal
of this project is to express system-awareness separately from the HPC application
code to achieve high performance while keeping the code maintainability. To this
end, we have been developing a code transformation framework, Xevolver, so
that users can express system-awareness as user-defined code transformation rules
separately from HPC application codes. By defining custom code transformations
for individual cases, an HPC application code itself does not need to be modified
for each system configuration and is transformed for each system by using the code
transformations defined separately from the code.
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9.1 Introduction

As the end of Moore’s law is approaching, high-performance computing (HPC)
system architectures will become more complicated and heterogeneous so as to
satisfy never-ending demands for achieving higher performance than ever before
without relying on advances in device technology. Moreover, due to some severe
limitations such as power consumption, HPC system architecture design cannot take
the so-called “one-size-fits-all” approach whose ultimate goal is to enable a single
architecture to achieve high performance on any applications. As a result, future
HPC system architectures will diverge to adapt to their important applications. In
this way, the complexity and diversity of HPC systems are increasing more and more
in an upcoming extreme-scale computing era. This results in also complicating and
diverging system software stacks such as runtimes, compilers, libraries, languages,
and so on. While HPC systems could sometimes change revolutionarily in terms
of both hardware and software, it is not affordable to rewrite each application for
every new system. Therefore, it is often required to incrementally or evolutionarily
migrate an existing application to newly available systems while carefully checking
if its behavior is unchanged.

An HPC system is a huge collection of various hardware and software compo-
nents that can affect the performance of an HPC application code. The performance
characteristics of an application code could change drastically depending on various
factors. The increasing system complexity makes it harder to exploit the full poten-
tial of an HPC system. Since different systems usually require different performance
optimizations, an application code is likely “specialized” for a particular system
configuration of specific system architecture, system scale, software stack, and
so on, to fully extract the system performance. This is one major reason why
migration of an existing application code, so-called legacy code migration, is so
labor-intensive and error-prone especially in the HPC area. To make matters worse,
the diversity of system architectures would increase the number of system configu-
rations that have to be considered during the life of an application. Accordingly, the
increasing system complexity and diversity will force programmers to further invest
enormous time and effort for HPC application development and maintenance.

As with the survival in the nature, HPC applications also have to be adaptable
to various system changes to survive in the extreme-scale computing era. Today,
an HPC application is too specialized for a particular system, and system-specific
performance optimizations are directly applied to the application code. As a
result, system-specific performance optimizations are tightly interwoven with the
algorithm description, resulting in severely degrading the adaptability to system
changes. For streamlining the process of legacy code migration, therefore, one
important research issue is how to prevent developing an HPC application with
being aware of only a particular system configuration. Such system-awareness
should not be expressed in an HPC application code.

Because of the system diversity mentioned above, an HPC application code
should not optimized for a particular system configuration. However, simply
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excluding system-awareness from the code just results in reducing the performance,
because system-awareness can be regarded as the necessary information to exploit
the performance of the target system. Therefore, the goal of this project is to
express system-awareness separately from the HPC application code to achieve
high performance while keeping the code maintainability. To this end, we have been
developing a code transformation framework, Xevolver [18, 21], so that users can
express system-awareness as user-defined code transformation rules separately from
HPC application codes. By defining custom code transformations for individual
cases, an HPC application code itself does not need to be modified for each system
configuration and is transformed for each system by using the code transformations
defined separately from the code.

9.2 The Xevolver Code Transformation Framework for
Separation of System-Awareness from Application Codes

In practice, there are repetitive patterns in the code modifications for system-specific
performance optimization. We can hence assume that those code modifications
could be replaced with a smaller number of code transformations. Under this
assumption, we have been developing Xevolver to enable users to express their
own code optimizations for special demands of individual systems and individual
applications [18, 21]. Instead of simply modifying a code by hand, users can
easily define custom code transformations to optimize and specialize an application
code for a particular system. In Xevolver, such code transformation rules can be
defined separately from an application code. Accordingly, Xevolver enables to
express system-specific and/or application-specific code optimizations separately
from application codes.

To define a user-defined code transformation rule, what users have to do is to
simply write two versions of a code, or a code pattern; the original version and
its transformed version. Then, one of our tools named Xevtgen [16] generates a
machine-usable code transformation rule from such a simple description about
the code transformation. Therefore, users do not need to care about any special
knowledge internally required for implementing their code transformations.

The rest of this section gives a small tutorial on how to use Xevolver.

9.2.1 Commands

A high-level interface of Xevolver, named Xevtgen [16], provides three impor-
tant commands, xevparse, xevunparse, and xevtgen. The first command,
xevparse, is used to translate a Fortran code to its abstract syntax tree in an
XML format, called an XML AST. Inversely, the second command, xevunparse,
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Fig. 9.1 Code transformation by using the three commands provided by Xevolver

is to translate an XML AST to its corresponding Fortran code. In Xevolver, a
code transformation rule is also written in Fortran. If an XML AST represents a
code transformation rule, the third command, xevtgen, translates the AST to an
XSLT rule [6], which is a standard XML format to describe XML data conversion.
Accordingly, in Xevolver, a target code and its transformation rules are both written
in Fortran and converted into XML. As a code transformation is executed as an XML
data conversion, various XSLT processors such as xsltproc [22] are available for
the transformation. Figure 9.1 illustrates how to use these three commands. In the
figure, a code, test.f90, is transformed to its transformed version, testo.f90,
and the code transformation rule is defined in rule.f90.

9.2.2 Rule Description

Figure 9.2 shows an example of code transformation rules written in Fortran with
a special directive starting with !$xev tgen. In the example, !$xev tgen is
followed by trans and exp. Here, trans indicates that the directive defines
a transformation rule, and exp means that the transformation is applied to an
expression. Then, a pair of src(‘i**2‘) and dst(‘i*i‘) represents a rule
that replaces expression i**2 with another expression of i*i, because src
and dst are clauses indicating the source and destination code patterns of a
code transformation, respectively. A string surrounded by back quotations is an
expression written in the Fortran syntax.

As illustrated in Fig. 9.1, an XSLT rule for transforming XML ASTs is generated
by running the xevparse command to convert the code in Fig. 9.2 to its XML AST
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1 program rule1
2

3 !$xev tgen trans exp src(‘i**2‘) dst (‘i*i‘)
4

5 end program

Fig. 9.2 A simple rule of replacing a particular expression

1 program rule2
2 integer :: i,j,k,inp
3 integer :: ary(1000)
4

5 !$xev tgen trans stmt src begin
6 do k=1,10
7 do j=1,10
8 do i=1,10
9 inp=(k-1)*100+(j-1)*10+i
10 ary(inp)=inp
11 end do
12 end do
13 end do
14 !$xev end tgen src
15

16 !$xev tgen trans stmt dst begin
17 do inp=1,1000
18 ary(inp)=inp
19 end do
20 !$xev end tgen dst
21

22 end program

Fig. 9.3 A simple rule of changing loop structures

and then executing the xevtgen command on the XML AST. Therefore, by just
writing two versions of an expression, users can transform the original expression
to another one.

Figure 9.3 shows another example of code transformation rules. In the rule,
!$xev tgen trans in Line 5 is followed by stmt, and thus the rule is applied
to statements. Specifically, a loop nest indicated with the src clause is transformed
to another one specified by the dst clause. By using the rule, the triple-nested loops
described in Lines 6–13 are transformed into a single-nested loop in Lines 17–19.

Although both of the two rules in Figs. 9.2 and 9.3 can actually work, each of
the rules is applied only to a very specific code fragment and hence not useful.
For example, if the rule in Fig. 9.2 is applied to the code in Fig. 9.4, only i**2
is transformed, and other similar expressions such as j**2, (k+1)**2, and
inp**2 are unchanged, even though users may intend to replace those expressions
in the same way. Similarly, the rule in Fig. 9.3 does not transform the loop nest in
Fig. 9.4 even though users may intend to transform any triple-nested loops in the
same way; the rule can transform a loop nest only if the AST of the loop nest is
exactly the same as that of the loop nest written in Lines 5–14. Consequently, the
rules in Figs. 9.2 and 9.3 can transform only particular code fragments and can be
seen as simple text replacement.
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1 program test
2 integer :: data(1000)
3 integer :: i = 1, j = 1, k = 1, inp
4

5 data(1) = i**2 + j**2 + (k + 1)**2
6 do k = 1 , 10
7 do j = 1 , 10
8 do i = 1 , 10
9 inp = (k-1)*100+(j-1)*10+i
10 data(inp) = inp**2
11 end do
12 end do
13 end do
14 end program

Fig. 9.4 A Fortran code to be transformed

1 program rule3
2

3 !$xev tgen var(i1) exp
4 !$xev tgen trans exp src(‘i1**2‘) dst(‘i1*i1‘)
5

6 end program

Fig. 9.5 A rule of replacing a code pattern

To generalize a rule so as to transform a certain code pattern to another, Xevolver
provides special variables called Tgen variables that match any expressions or
statements. In Line 3 of Fig. 9.5, a Tgen variable named i1 is defined to represent
any kinds of expressions including variable references. Then, in Line 4, a code
transformation rule is expressed by using the Tgen variable. Since i1 matches
any expressions, the rule defined in Fig. 9.5 can transform all of i**2, j**2,
(k+1)**2, and inp**2 in Fig. 9.4. Similarly, a group of statements such as a
loop body can be represented as a Tgen list of statements. A Tgen list of statements
is a kind of Tgen variables and matches zero or more statements. For example,
although the rule in Fig. 9.6 is similar to that in Fig. 9.3, one Tgen list defined in
Line 5 is used to represent the loop body. As a result, the rule is applied to a loop
nest as long as the loop structure and the first statement in the loop body are the same
as the source code pattern in Lines 7–16 of Fig. 9.6. In this way, users can generalize
a code transformation rule so that the rule can be reusable for other similar cases.

If either i, j, or k is used in the second statement or later within the loop
body in Fig. 9.4, the code transformation rule in Fig. 9.6 changes the behavior of
the code. Thus, the rule should be applied only if those variables do not appear
within the loop body except for the first statement. A Tgen condition is provided to
represent such a condition. Figure 9.7 shows an example of code transformation
rules using Tgen conditions. In Lines 4–6, Tgen conditions, has_i, has_j,
and has_k, are defined to indicate expressions containing variables, i, j, and
k, respectively. Then, in Line 8, stlc is defined as a Tgen list under condition
cond(not(or(has_i,has_j,has_k))), which means a negation of logical
sum of the above three Tgen conditions. Hence, stlc means a list of statements
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1 program rule4
2 integer :: i,j,k,inp
3 integer :: ary(1000)
4

5 !$xev tgen list(stl) stmt
6

7 !$xev tgen trans stmt src begin
8 do k=1,10
9 do j=1,10
10 do i=1,10
11 inp=(k-1)*100+(j-1)*10+i
12 !$xev tgen stmt(stl)
13 end do
14 end do
15 end do
16 !$xev end tgen src
17

18 !$xev tgen trans stmt dst begin
19 do inp=1,1000
20 !$xev tgen stmt(stl)
21 end do
22 !$xev end tgen dst
23

24 end program

Fig. 9.6 A rule of changing loop structures with any loop bodies

1 program rule5
2 integer :: i, j, k, inp
3

4 !$xev tgen condef(has_i) contains exp(‘i‘)
5 !$xev tgen condef(has_j) contains exp(‘j‘)
6 !$xev tgen condef(has_k) contains exp(‘k‘)
7

8 !$xev tgen list(stlc) stmt cond(not(or(has_i, has_j, has_k)))
9

10 !$xev tgen trans stmt src begin
11 do k=1,10
12 do j=1,10
13 do i=1,10
14 inp=(k-1)*100+(j-1)*10+i
15 !$xev tgen stmt(stlc)
16 end do
17 end do
18 end do
19 !$xev end tgen src
20

21 !$xev tgen trans stmt dst begin
22 do inp=1,1000
23 !$xev tgen stmt(stlc)
24 end do
25 !$xev end tgen dst
26

27 end program

Fig. 9.7 A Tgen list of statements satisfying some conditions

not containing neither i, j, nor k. By using stlc, the rule defined in Lines 10–25
transforms a loop nest only if its loop body satisfies the condition given in Line 8.

If a rule should be applied to a specific code region, the region is expressed as
a Tgen context, and the rule is defined for the Tgen context. Figure 9.8 shows an
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1 program rule6
2

3 !$xev tgen var(e1,e2,e3,e4) exp
4 !$xev tgen list(stl1) stmt
5 !$xev tgen ctxdef(c1) stmt begin
6 do e1 = e2, e3, e4
7 !$xev tgen stmt(stl1)
8 end do
9 !$xev end
10

11 !$xev tgen var(i1) exp
12 !$xev tgen trans exp src(‘i1**2‘) dst(‘i1*i1‘) context(c1)
13

14 end program

Fig. 9.8 A rule using a Tgen context

example of using a Tgen context. In the rule, four Tgen variables are defined in
Line 3, and a Tgen list is defined in Line 4. Then, a Tgen context, c1, is defined in
Lines 5–9. The Tgen context represents a do loop of any index range whose body
can be a list of any statements. In Line 12, a code transformation rule is defined
referring to the Tgen context, c1, and hence is applied to an expression only if the
expression is in a code region expressed by the context. Therefore, if the rule in
Fig. 9.8 is applied to the code in Fig. 9.4, the expressions in Line 5 are unchanged
because they are not in a code region matching the Tgen context; only inp**2 in
the loop body is replaced with inp*inp.

If a code matches the source patterns of multiple code transformation rules, the
order of their definitions coincides with the order of applying them to the code.
Therefore, the order of rule definitions written in a rule description file can represent
the priorities of the rules.

9.3 Case Studies of Using the Xevolver Framework

Using the rule description introduced in Sect. 9.2.2, we have demonstrated that
Xevolver can express various code transformation rules specific to individual
systems and/or applications.

In [16], the Xevolver is used to adapt one of our target applications, Numerical
Turbine [10], to an OpenACC [3] platform. As seen in other real-world simulation
codes, Numerical Turbine has a lot of similar loop nests that have almost the
same loop structure as shown in Fig. 9.9. One problem in running the code on an
OpenACC platform is that the loop structure is not OpenACC-friendly. Numerical
Turbine has been optimized for NEC SX vector computing systems, and thus
the loop structure is optimized so as to maximize the innermost loop parallelism
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1 DO 200 M=1,MF
2 DO 200 K=1.KF
3 DO 200 J=1,JF
4 DO 200 L=lstart,lend
5 II1 = IS(L)
6 II2 = II1+1
7 II3 = II2+1
8 IIF = IT(L)
9 IIE = IIF-1
10 IID = IIE-1
11 DO 200 I=II2,IIF
12 IF (I.LE.(IS(L)+2).OR.I.GE.(IT(L)-1)) THEN
13 STBC=0.0D0
14 ELSE
15 STBC=1.0D0
16 END IF
17 ...(skip)...

Fig. 9.9 The original structure of kernel loops in Numerical Turbine

1 DO 200 M=1,MF
2 DO 200 K=1.KF
3 DO 200 J=1,JF
4 DO 200 I=1,inum
5 DO 200 L=lstart,lend
6 IF(I.GE.IS(L).AND.I.LE.IT(L)) THEN
7 EXIT
8 END IF
9

10 IF (I.LE.(IS(L)+2).OR.I.GE.(IT(L)-1)) THEN
11 STBC=0.0D0
12 ELSE
13 STBC=1.0D0
14 END IF
15 ...(skip)...

Fig. 9.10 The transformed structure of kernel loops in Numerical Turbine

exploited by the vector processor. For an OpenACC platform, therefore, the loop
structure should be changed to another one as shown in Fig. 9.10.1

One conventional way of optimizing those loops for other systems is to simply
change the loop structure by directly modifying the code. All the similar loop nests
would be modified in almost the same way. Such an optimization task of manually
modifying the code would be labor-intensive and error-prone. Moreover, the code
modifications would result in specializing the code for the new systems. Due to the
system complexity and diversity, the modified version could be more complex and
make it more difficult to keep the maintainability and performance portability.

On the other hand, in the case of using Xevolver, the original code is almost
unchanged, and system-dependent information is expressed as user-defined code
transformation rules. As a result, application developers can maintain their codes
in their manageable ways and do not usually need to care about the optimized

1In the case study, some OpenACC directives are also needed, but not shown in the example for
simplicity.
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1 program nt_opt
2

3 !$xev tgen list(body) stmt
4 !$xev tgen var(lstart,lend,II2,IIF) exp
5 !$xev tgen condef(has_doi) contains stmt begin
6 DO I=II2,IIF
7 !$xev tgen stmt(body)
8 END DO
9 !$xev tgen end
10 !$xev tgen list(stmt_with_doi) stmt cond(has_doi)
11 !$xev tgen src begin
12 DO L=lstart,lend
13 !$xev tgen stmt(stmt_with_doi)
14 END DO
15 !$xev end tgen src
16 !$xev tgen dst begin
17 DO I=1,inum
18 DO L = lstart, lend
19 IF (I .GE. IS(L) .AND. I .LE. IT(L)) THEN
20 EXIT
21 END IF
22 !$xev tgen stmt(body)
23 END DO
24 END DO
25 !$xev end tgen dst
26 end program nt_opt

Fig. 9.11 The code transformation rule of adapting Numerical Turbine to an OpenACC platform

codes because the codes are transformed just before the compilation. A simplified
version of the code transformation rule used in our case study is shown in Fig. 9.11.
In the rule, a Tgen variable named body is used to define a Tgen condition,
has_doi, which means a do loop whose index variable name is I. Then, a Tgen
list, stmt_with_doi, is defined in Line 10 for expressing a do loop nest that
satisfies the Tgen condition. Consequently, the structure of a do loop nest in the
body of another do statement in Lines 11–15 is replaced to another loop structure
shown in Lines 16–25. One important point in this rule description is that the body
of the inner loop whose index variable name is I is expressed by body in Line 7,
and body is then used in Line 22. In this way, a Tgen condition can be used to
extract a part of a code pattern and to use it in the destination pattern.

The rule in Fig. 9.11 performs a kind of loop interchange with a special
conditional branch, which is needed so that the loop interchange does not change
the behavior of the code. The code transformation rule is specific to this particular
application, Numerical Turbine, and hence we cannot expect a compiler to do
the same loop transformation. Conventionally, in such a case, the code needs
to be modified to achieve high performance. However, in Xevolver, the code
modifications for such system-specific and/or application-specific reasons can be
expressed as a user-defined code transformation rule. Accordingly, Xevolver can
separate system-awareness from the code by defining an application-specific code
transformation rule. In our case study, 44 loop nests are transformed by the rule in
Fig. 9.11.
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Fig. 9.12 The impact on the performance of Numerical Turbine

Figure 9.12 shows the performance impact of the code transformation. The
horizontal axis indicates some main kernels, and the vertical axis shows the speedup
ratio of the transformed code to the original code. If the speedup ratio is less
than one, the performance is degraded by the code transformation. The original
code is optimized for NEC SX vector computers, and the code transformation
rule is defined to adapt the original code to an OpenACC platform. As a result,
the performance of graphics processing units (GPUs), i.e., NVIDIA C2070 and
NVIDIA K20, significantly improves, while the SX performance degrades. It is
obvious that different systems require different optimizations. In the case of using
Xevolver, the performance degradation is not a problem, because the original code
is used for the SX systems and transformed only for GPU systems. Therefore, we
can achieve high performance-portability across those totally different systems.

If the destination code pattern defined in Lines 16–25 of Fig. 9.11 is replaced
with another one, the loop structure of the 44 loop nests in Numerical Turbine would
be transformed in a different way. Therefore, use of Xevolver can make it easy to
optimize the code for another platform without complicating the original code.

Another case study is to use Xevolver for data layout optimization [19]. Data
layout optimization is important to achieve high performance on modern HPC
systems, because it can change the memory access patterns critically affecting the
performance. In many cases, data layout optimization is done by changing the data
structures accessed in kernel loops. Each of data structures and kernel loops could
require its own code transformation, and hence custom code transformation rules
are really needed for data layout optimization.
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1 program dl
2

3 !! Rule 1
4 !! Replace the type definition of AoS data structure
5 !$xev tgen src begin
6 type aos_t
7 real:: x
8 real:: y
9 end type aos_t
10

11 type(aos_t) aosdata(100)
12 !$xev end tgen src
13 !$xev tgen dst begin
14 type soa_t
15 real:: x(100)
16 real:: y(100)
17 end type soa_t
18

19 type(soa_t) soadata
20 !$xev end tgen dst
21

22 !! Rule 2
23 !! Change the way of accessing the data structure
24 !$xev tgen var(idx) exp
25 !$xev tgen var(x) name
26 !$xev tgen trans exp src(‘aosdata(idx)%x‘) dst(‘soadata%x(idx)‘)
27

28 end program dl

Fig. 9.13 A transformation rule for AoS-to-SoA transformation

Figure 9.13 shows an example of typical data layout optimization, so-called
AoS-to-SoA conversion, in which an array of structures (AoS) is converted to a
structure of arrays (SoA). For the conversion, two kinds of rules are defined. One is
to replace the definition of an AoS data structure to that of an SoA data structure.
The other is to change the way of accessing the data structure. The former rule is
defined in Lines 5–20, while the latter one is defined in Line 26. In this example,
the former one is defined as simple text replacement and used only once in the code.
On the other hand, the latter one is applied to every access to the data structure and
hence potentially changes a large number of code lines scattered over the code.
It is cumbersome and error-prone to do the same code modifications by hand.
Xevolver can express such an application-specific rule for mechanically changing
the way of accessing a data structure. As a result, Xevolver can make it easy to
change a data structure for individual cases, i.e., different systems, compilers, and/or
libraries. Thus, Xevolver can prevent specializing a data structure for a particular
system configuration. Accordingly, Xevolver is helpful for long-term maintenance
and evolution of an HPC application code.

Furthermore, in the Xevolver project [21], we have conducted various case
studies such as [8, 9, 20] to demonstrate the usefulness and practicality of the user-
defined code transformation approach in migrating real-world applications to new
systems.
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9.4 Hierarchical Abstraction of HPC Systems

We do not claim that everything for performance optimization should be expressed
as user-defined code transformations. Rather, our claim is that appropriate abstrac-
tions should be used for appropriate purposes. User-defined code transformations
should be used to express code modifications that are unavoidable even if all the
abstractions are properly used. Abstraction technologies such as numerical libraries
are strongly required to hide complicated system configurations from application
developers.

We are developing numerical libraries to hierarchically abstract HPC system
configurations. Our numerical libraries are optimized for multiple platforms, such
as GPU, the Intel many integrated core (MIC) architecture, and standard CPU
cluster systems, so that application developers can use different implementations
with common interfaces, resulting in high performance-portability. The numerical
libraries are designed to support as many data structures as possible to cover
various use cases while achieving high performance. We also investigate auto-
tuning technologies to adapt the optimized implementations of numerical libraries
to similar platforms in order to achieve high performance-portability.

One of the libraries developed in our project is FFTE for GPU/MIC.
FFTE [17] is a Fortran subroutine library for computing the fast Fourier

transform (FFT) in one or more dimensions. It includes real, complex, mixed-radix,
and parallel transforms. Portability is important for any numerical libraries. Thus,
FFTE supports several programming models such as OpenMP, MPI, OpenMP +
MPI, and CUDA Fortran + MPI. FFTE may be faster than other publicly available
FFT implementations and vendor-tuned libraries. In a GPU cluster, GPUs are
connected to individual nodes as PCI Express devices. Many FFT implementations
work well within GPU cards [12, 13]. However, PCI Express transfer is often a
performance bottleneck in FFT because FFT requires a large number of memory
access operations per arithmetic operation. One goal for parallel FFTs on GPU
clusters is to minimize the PCI Express transfer time and the MPI communication
time. The advanced features of MVAPICH2-GDR [11] made it easy to overlap PCI
Express transfers and MPI communication.

Figure 9.14 shows the parallel one-dimensional FFT performance comparison
among FFTE 6.0 (GPU), FFTE 6.0 (CPU), and FFTW 3.3.3 (CPU) [4] on the HA-
PACS base cluster. The results indicate that FFTE 6.0 is well optimized for a GPU
cluster system, and thus FFTE 6.0 (GPU) outperforms the others especially for large
problems. Application developers can benefit from using the FFTE library without
knowing its implementation details. Therefore, by using the library, we can achieve
high performance on FFT without specializing an application code.

The Intel Xeon Phi processor has emerged as an important computational
accelerator in high-performance computing systems. Knights Landing processor
[15] is the second-generation Intel Xeon Phi product. The Intel Advanced Vector
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Fig. 9.14 Performance of parallel one-dimensional FFTs on the HA-PACS base cluster (128
nodes, 512 MPI processes)

Extensions 512 (AVX-512) [5] is a 512-bit single-instruction multiple data (SIMD)
instruction sets on the Intel Xeon Phi processor. We have vectorized our FFT kernels
using the Intel AVX-512 instructions. Both vectorization and parallelization are of
particular importance with respect to Intel Xeon Phi processors. The implementation
of parallel one-dimensional FFTs in FFTE is based on the six-step FFT algorithm
[1]. When we parallelize the six-step FFT by using OpenMP, the outermost loop of
each FFT step is distributed across the cores. In this case, the outermost loop length
may not have sufficient parallelism for many-core processors. Loop collapsing
increases the loop length by collapsing nested loops into a single-nested loop. For
using the OpenMP collapse clause, which is supported from OpenMP 3.0 [14],
the loops must be perfectly nested. Since the outer loops in the six-step FFT are
perfectly nested, they can be collapsed into a single-nested loop.

Figure 9.15 shows the one-dimensional real FFT performance comparison
among FFTE 6.2alpha (with collapse), FFTE 6.2alpha (without collapse), FFTW
3.3.6-pl1, and the MKL 2017 Update 1 on Intel Xeon Phi 7250. As shown in figure,
FFTE (with collapse) is faster than FFTE (without collapse) and FFTW. Besides,
FFTE (with collapse) is faster than MKL for the cases of n = 222, 224 ≤ n ≤ 225

and n = 229 on 272 threads. Accordingly, an loop optimization technique, loop
collapse is effective to improve the performance of an Xeon Phi processor by
increasing the outermost loop parallelism exploited by OpenMP parallel processing.
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Fig. 9.15 Performance of one-dimensional real FFTs (Intel Xeon Phi 7250, 272 threads)

9.5 HPC Refactoring Catalog

In this project, we are cataloging expert knowledge and experiences about code
optimizations as the HPC refactoring catalog. The HPC refactoring catalog is open
to the public (https://one.sc.cc.tohoku.ac.jp/hpcref/) so that programmers can share
and reuse the knowledge and experiences. Description about the code optimization,
code examples, and performance evaluation results are provided in the catalog, and
code transformation rules are also provided for some important code optimization
techniques.

One example of using the catalog for application migration is porting an applica-
tion from Xeon-based scalar systems to a vector-parallel computer, NEC SX-ACE
[2]. The application code has been developed for estimating the risk of a heat stroke
by simulating the changes in the body temperature under various environments [7].
Although this code is memory-intensive and thus suitable for vector computing
systems with high memory bandwidth, the code has been developed for Xeon-
based scaler systems. In this project, hence, the code is migrated to the SX-ACE
system, which has a higher memory bandwidth than other existing scalar systems.
Figure 9.16 shows a part of the main routine of the code. In this code, since the value
of BCOEF changes every iteration, the triple-nested loops cannot be vectorized by
the NEC SX compiler. As a result, the vectorization ratio of this routine is only
15.4%. Since a higher vectorization ratio is mandatory for exploiting the SX-ACE
system, the routine should be optimized so that the compiler can vectorize the kernel
loop.

https://one.sc.cc.tohoku.ac.jp/hpcref/
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1 DO K=1,MODELZ
2 DO J=1,MODELY
3 DO I=1,MODELX
4 ...(skip)...
5 IF(UOLD(I,J,K).GE.US(I,J,K))THEN
6 BCOEF=2**((UOLD(I,J,K)-US(I,J,K))/6)
7 TEMP_DIFF=UOLD(I,J,K)-US(I,J,K)
8 ELSE
9 TEMP_DIFF=0E0
10 ENDIF
11 ...(skip)...
12 IF(UOLD(I,J,K).LT.39E0)THEN
13 BCOEF=1E0
14 ELSE IF(UOLD(I,J,K).LT.44E0)THEN
15 BCOEF=1E0+0.8E0*(UOLD(I,J,K)-39E0)
16 ELSE
17 BCOEF=1E0+(5E0*0.8E0)
18 ENDIF
19 ENDIF
20 ELSE
21 BCOEF=1E0
22 TEMP_DIFF=0E0
23 ENDIF
24 ...(skip)...
25 U(I,J,K)=UOLD(I,J,K)+(DT*SAR(I,J,K)/CP(LK(I,J,K))&
26 &+DT*A(LK(I,J,K))*storetemp2(i,j,k)/(ROU(LK(I,J,K))*CP(LK(I,J,K)))&
27 &-(DT*BCOEF*B(LK(I,J,K))*(UOLD(I,J,K)-henkaTB))/(ROU(LK(I,J,K))
28 ...(skip)...

Fig. 9.16 Original code of the heatstroke risk simulation

1 [Before]
2 integer :: x
3 x = 0
4 do i=1,MAX
5 if(a(i) < 5000) then
6 x = 100
7 end if
8 b(i) = a(i) + c(i)*x
9 end do
10

11 [After]
12 integer :: x(MAX)
13 x = 0
14 do i=1,MAX
15 if(a(i) < 5000) then
16 x(i) = 100
17 end if
18 b(i) = a(i) + c(i)*x(i)
19 end do

Fig. 9.17 Code optimization pattern: “Using arrays instead of scalar variables for promoting
vectorizations”

The catalog provides more than 50 system-aware code optimization patterns, and
one of the patterns for the SX-ACE system is shown in Fig. 9.17. In this optimization
pattern, since the value of x may change every iteration, the SX compiler cannot
vectorize the loop. By changing scalar variable x to a one-dimensional array so
that each element stores the value at an iteration, we can promote the compiler’s
vectorization of the loop. Although the number of nested loops and variables
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1 DO K=1,MODELZ
2 DO J=1,MODELY
3 DO I=1,MODELX
4 ...(skip)...
5 IF(UOLD(I,J,K).GE.US(I,J,K))THEN
6 BCOEF_(I,J,K)=2**((UOLD(I,J,K)-US(I,J,K))/6)
7 TEMP_DIFF=UOLD(I,J,K)-US(I,J,K)
8 ELSE
9 TEMP_DIFF=0E0
10 ENDIF
11 ...(skip)...
12 IF(UOLD(I,J,K).LT.39E0)THEN
13 BCOEF_(I,J,K)=1E0
14 ELSE IF(UOLD(I,J,K).LT.44E0)THEN
15 BCOEF_(I,J,K)=1E0+0.8E0*(UOLD(I,J,K)-39E0)
16 ELSE
17 BCOEF_(I,J,K)=1E0+(5E0*0.8E0)
18 ENDIF
19 ENDIF
20 ELSE
21 BCOEF_(I,J,K)=1E0
22 TEMP_DIFF=0E0
23 ENDIF
24 ...(skip)...
25 U(I,J,K)=UOLD(I,J,K)+(DT*SAR(I,J,K)/CP(LK(I,J,K))&
26 &+DT*A(LK(I,J,K))*storetemp2(i,j,k)/(ROU(LK(I,J,K))*CP(LK(I,J,K)))&
27 &-(DT*BCOEF_(I,J,K)*B(LK(I,J,K))*...

Fig. 9.18 Optimized code of the heatstroke risk simulation

in the optimization pattern are different from those in the target application, the
vectorization-obstructing factor in the pattern is the same as that in the target
application.

Using this optimization pattern as a reference, the target application can be
optimized in a similar way. Since the loops are triple-nested and the value of BCOEF
changes every iteration, a three-dimensional array, BCOEF_(I, J, K), is used
instead of a scalar variable, as shown in Fig. 9.18.

By replacing every reference to BCOEF with a reference to an element of
BCOEF_(I, J, K), the triple-nested loops are successfully vectorized. Tabel 9.1
shows the effects of the code optimization on the single-core execution performance
of the SX-ACE system. By applying this optimization, the vectorization ratio
increased to 99.16% while keeping a certain level of the vector length. As a result, a
20x performance improvement is achieved. In this way, programmers can perform
code migration and optimization based on system-aware optimization patterns in
the catalog. Furthermore, since the performance impacts of the code optimizations
are also quantitatively provided in the catalog, the programmers can estimate how
the code optimizations will affect the performance of their codes. Therefore, we
can expect that programmers’ burden of finding effective code optimizations in a
try-and-error manner is reduced by using the catalog (Table 9.1).
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Table 9.1 Effects of the
code optimization

Vectorization Ave. vector Exec. time
ratio [%] length [sec]

Original 15.4 216.5 3,209.7

Optimized 99.1 196.4 149.1

9.6 Conclusions

In the Xevolver project, we have explored an effective way of streamlining legacy
code migration. One major reason why legacy code migration is so challenging is
that an HPC application code is too specialized for a particular system configuration.
Therefore, we have considered how to separate such system-specific information
from HPC application codes.

Various approaches have been proposed so far to hide the implementation
details that are specific to a particular system. Numerical libraries are one of
the most powerful abstractions for hiding the system-specific implementations
from application developers. Therefore, we have discussed how to optimize some
important numerical libraries such as FFT for modern HPC systems.

Even if all the abstractions are properly used in an HPC application code,
the code still needs to be optimized to fully exploit the performance of a target
system. However, such optimization is likely to specialize the code only for the
target system, leading to lower maintainability and performance portability of the
code. Motivated by this issue, we have been developing a code transformation
framework, Xevolver, so that users can define their own code transformation rules
for system-specific performance optimizations. Various case studies have been
made to demonstrate the effectiveness and practicality of Xevolver. Therefore, we
conclude that the under-defined code transformation approach is useful and helpful
for streamlining legacy code migration by separating system-awareness from HPC
application codes.

Expressing system-aware code modifications as code transformations is also
useful to share expert knowledge and experiences in a machine-usable way. Our
HPC refactoring catalog is maintained by several practitioners to record and share
their experiences and hence is expected to further grow in the future.

Since the main goal of the Xevolver code transformation framework is separation
of system-awareness, it does not automate system-aware performance optimization
at all. It just replaces manual code modifications with code transformations. As a
result, users have to be responsible for ensuring that the transformations do not
change the behaviors of their codes. Therefore, as one future research direction, it
would be interesting to explore an effective way to check the equivalence between
the original and transformed versions of a code.

Acknowledgements The authors would like to sincerely thank all the members of the Xevolver
project for their significant contributions.
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Chapter 10
Numerical Library Based
on Hierarchical Domain Decomposition

Ryuji Shioya, Masao Ogino, Yoshitaka Wada, Kohei Murotani,
Seiichi Koshizuka, Hiroshi Kawai, Shin-ichiro Sugimoto, and Amane Takei

Abstract We have been developing an open-source computer-aided engineering
(CAE) software, ADVENTURE, which is a general-purpose parallel finite element
analysis system and can simulate a large-scale analysis model with supercomputer.
For supercomputer architecture such as an exa-scale system, to obtain high com-
putational efficiency for software that requires large-scale numerical calculation
data processing, a programming model that considers the hierarchical structure of
hardware, such as a microprocessor and memory, is necessary. From this point
of view, ADVENTURE system was developed using the hierarchical domain
decomposition method (HDDM) as the basic technology for a large-scale data
system. HDDM is technology developed by ourselves mainly for numerical analysis
method. In particular, we have developed application-specific system software that

R. Shioya (�) · H. Kawai
Toyo University, Tokyo, Japan
e-mail: shioya@toyo.jp; kawai063@toyo.jp

M. Ogino
Nagoya University, Nagoya, Japan
e-mail: masao.ogino@cc.nagoya-u.ac.jp

Y. Wada
Kindai University, Higashi-osaka, Japan
e-mail: wada@mech.kindai.ac.jp

K. Murotani
Railway Technical Research Institute, Tokyo, Japan
e-mail: murotani.kohei.03@rtri.or.jp

S. Koshizuka
University of Tokyo, Tokyo, Japan
e-mail: koshizuka@sys.t.u-tokyo.ac.jp

S. Sugimoto
Hachinohe Institute of Technology, Hachinohe, Japan
e-mail: sugimoto@hi-tech.ac.jp

A. Takei
Miyazaki University, Miyazaki, Japan
e-mail: takei@cc.miyazaki-u.ac.jp

© Springer Nature Singapore Pte Ltd. 2019
M. Sato (ed.), Advanced Software Technologies for Post-Peta Scale Computing,
https://doi.org/10.1007/978-981-13-1924-2_10

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1924-2_10&domain=pdf
mailto:shioya@toyo.jp
mailto:kawai063@toyo.jp
mailto:masao.ogino@cc.nagoya-u.ac.jp
mailto:wada@mech.kindai.ac.jp
mailto:murotani.kohei.03@rtri.or.jp
mailto:koshizuka@sys.t.u-tokyo.ac.jp
mailto:sugimoto@hi-tech.ac.jp
mailto:takei@cc.miyazaki-u.ac.jp
https://doi.org/10.1007/978-981-13-1924-2_10


184 R. Shioya et al.

can obtain high performance by focusing on simulation of continuum mechanics by
finite element method (FEM) and particle method which are highly demanded by
academic research and industry. We have developed four research items “DDM I/O
(input/output) library,” “DDM solver library,” “DSL for continuum mechanics,” and
“continuous mechanics simulator.” The software, which is the result of our research,
is released as open-source software on the sub-project page in the ADVEN-
TURE project homepage. In this chapter, some of those libraries are described in
detail.

10.1 Numerical Library Based on Hierarchical Domain
Decomposition

10.1.1 Introduction

For next-generation parallel computing architecture such as a post peta-scale
system, to obtain high computational efficiency for software that requires large-
scale numerical calculation data processing, a programming model that considers
the hierarchical structure of hardware, such as a microprocessor and memory, is
necessary. In particular, it is necessary to assume that all processes from pre/post
processing, such as input data generation and visualization, to solver processing,
such as the numerical analysis method, are performed on a supercomputer. There-
fore, we have developed a large-scale numerical data processing system that uses the
hierarchical domain decomposition method (HDDM) [1] as basic technology for a
large-scale numerical data processing system on next-generation parallel computers.
The HDDM is the technology that we developed for the numerical analysis method.
In particular, we developed application-specific system software that can obtain high
performance by focusing on simulation of continuum mechanics by finite element
method (FEM) and particle method which are highly demanded by academic
research and industry.

The target application is the open-source computer-aided engineering (CAE)
software ADVENTURE [2], which we have developed and has been proven in large-
scale parallel computing using the HDDM. It is also used in the HPCI strategic
program and for social and scientific priority issues to be managed by using a
post-K computer. However, ADVENTURE does not include software for a particle
method; thus, we have developed a new application for a particle solver. We have
developed four research items: a “DDM I/O (input/output) library,” “DDM solver
library,” “DSL for continuum mechanics,” and “continuous mechanics simulator.”
The software, which is the result of our research, is released as open-source software
on a sub-project page on the ADVENTURE Project homepage [3].

As a “DDM I/O library,” we have developed the following libraries: “AdvIO2,”
a standard I/O library that corresponds to particle method simulation; “AdvMetis2,”
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a tool that has multilevel domain decomposition and a parallel mesh subdivision
function and enables large-scale data generation using MPI-OpenMP hybrid par-
allel processing and a restart function; “DDM compression technology,” which
compresses the calculation data of an FEM and particle method by deleting
internal freedom; “LexADV_VSCG,” which achieves offline visualization of over
100,000 × 100,000 pixels for super high-resolution simulation and is a highly
portable library that supports mesh and particle drawing; and “LexADV_WOVis,”
which is a library that performs MPI-OpenMP hybrid parallel visualization using the
data structure of DDM and z-buffer image synthesis processing using the original
tournament method.

Additionally, we have developed “LexADV_EMPS,” which is the framework
of a distributed memory parallel moving particle simulation (MPS) explicit solver
with a bucket-based two-level domain decomposition and halo communication
pattern generation function to reduce communication between adjacent processes
for the particle method. Using AdvMetis2, we succeeded in generating one trillion
degree of freedom (DOF) mesh assumed in a post peta-scale system. Moreover,
using “LexADV_EMPS” we performed particle method simulation over hundreds
of millions, which was difficult previously.

As a “DDM solver library,” we have developed the following libraries: “Lex-
ADV_IsDDM,” which is an iterative method library with high scaling performance
of 85% or more with a K computer; “LexADV_TryDDM”, which is an iterative
method library that explicitly constructs the Schur complement equation with
domain decomposition mesh, global coefficient matrix, and right-hand side vector
as input; and a scaled-BDD method with high-speed and high-stability convergence.
We succeeded in reducing the number of iterations and calculation time in a multiple
material model. Using “LexADV_IsDDM,” we succeeded in the structural analysis
of 100 billion DOFs with an unstructured mesh, which was conventionally difficult.
Using “LexADV_TryDDM” made it easy to compare the BDD method with IC
decomposition and SSOR preprocessing.

As a “DSL for continuum mechanics,” we have developed the following libraries:
a translator from a LaTeX-based numerical expression description to program
code that targets physical models for elements, cells, and particles and “Lex-
ADV_AutoMT,” which is a library optimized for small-scale matrices and tensor
operations for multi-core, many-core processors and GPUs.

Because the translator generates a program that calls “LexADV_AutoMT,” the
user does not need to consider the computer architecture, and it is possible to obtain
high performance.

As a “continuous mechanics simulator,” we have developed a large-scale electro-
magnetic field simulator using the DDM iteration method. It improved the efficiency
of analysis for models that include mobile objects, such as motors, using the
development of distributed memory parallel algorithms, and improved accuracy
using the development of heterogeneous boundary smoothing technology for three-
dimensional (3D) voxel data constructed from medical images.
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We have also developed a large-scale fluid simulator based on the MPS explicit
method using the “LexADV_EMPS library,” particularly functions such as fluid-
rigid body coupled analysis, a higher-order precision differential model, and surface
tension model.

In the following sections, some of these libraries are described in detail.

10.1.2 LexADV_TryDDM

An efficient algorithm to solve large linear systems derived from finite element
analysis is of great importance in the post peta-scale computing era. The domain
decomposition method (DDM) [4, 5] is a well-known technique of parallel finite
element analysis. Particularly, the iterative substructuring method that solves a
condensed interface system, called the Schur complement system, is a widely used
algorithm in the implementation of the DDM. Moreover, the HDDM [1] that adopts
the master-slave model and a multiple master system in parallel computation is
expected to obtain high parallel efficiency on various distributed memory parallel
computers. Most software packages that implement finite element analysis based on
the DDM adopt the implicit construction of the Schur complement. As a result, the
program structure is too complex. Thus, it is difficult to evaluate and develop an
algorithm for the DDM using existing software packages. To solve these problems,
we have developed a parallel DDM library called LexADV_TryDDM for finite
element analysis with the explicit construction of the Schur complement equation.
Particularly, two methods for the parallel construction of the Schur complement
equation have been implemented. These methods are based on a global Schur
complement and local Schur complement.

LexADV_TryDDM is a library for solving linear systems of the form

Ax = b, (10.1)

where A is a symmetric positive definite matrix. The library is programmed in
the C language, requires message passing interface (MPI) for message passing,
and makes use of ADVENTURE_IO (AdvIO) [6], MUMPS [7], and Lis [8].
LexADV_TryDDM has the following features:

• solves linear equations using the DDM;
• supports the compressed sparse row (CSR) format for the coefficient matrix;
• supports the dense vector for the right-hand side;
• supports domain decomposed mesh data using ADVENTURE_Metis

(AdvMetis) [6];
• uses the AdvIO library for reading input data;
• uses the MUMPS library to construct the Schur complement equation;
• uses the Lis library to solve the Schur complement equation;
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• is written in the C language;
• uses the MPI library for parallel processing.

10.1.2.1 Iterative Substructuring Method

LexADV_TryDDM solves a linear system based on a nonoverlapping DDM.
Using the nonoverlapping domain decomposition, the original linear system can
be reordered using

[
AII AIB

AIB
T ABB

] [
xI

xB

]
=

[
bI

bB

]
, (10.2)

where the subscripts I and B correspond to variables in the interior of subdomains
and on the interface boundary, respectively. We consider a partitioned system where
the variables in the interior and on the interface are

AII xI = bI − AIBxI , (10.3)

SxB = g, (10.4)

respectively, where S = ∑N
i=1 R(i)T S(i)R(i) is the Schur complement matrix, where

S(i) = A
(i)
BB − A

(i)
IB

T
(
A

(i)
II

)−1
A

(i)
IB (10.5)

is a local Schur complement matrix of subdomain (i), N denotes the number of
subdomains, R(i) is a subdomain Boolean matrix that restricts the interface, and g

is a condensed right-hand side vector.
LexADV_TryDDM solves the interface system and then interior systems. A

flowchart of the library is summarized as follows:

1. Call read_ab_data()

(a) Read coefficient matrix A in CSR format and right-hand side vector b in dense
format.

2. Call try_ddm()

(a) Read the domain decomposed mesh generated by AdvMetis
(b) Reorder A and b in the order of the interior first.
(c) Compute S and g using MUMPS.
(d) Compute xB as a solution of Eq. (10.4) using Lis.
(e) Compute xI as a solution of Eq. (10.3) using MUMPS.
(f) Compute a solution x from xI and xB .
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void read_ab_data(
char *mat_file, /* input filename */
MAT_DATA *A, /* Matrix ’A’ */
VEC_DATA *b /* Vector ’b’ */

);

int try_ddm(
int argc, char* argv[],
int *csr_ptr, /* row pointer of ’A’ */
int *csr_idx, /* column index of ’A’ */
double *csr_val, /* value of ’A’ */
int A_nnz, /* num. of nonzero of ’A’ */
int A_matdim, /* dimension of ’A’ */
int b_dim, /* dimension of ’b’ */
double *b_val, /* value of ’b’ */
char *mesh_file, /* file name of domain decomposed mesh */
char *mesh_type /* type of finite element */
);

Table 10.1 Computational time in a static stress analysis of a holed plate model with a 0.1 million
degree of freedom mesh

Software Total time [s] Solving Eq. (10.4) [s] Other [s]

LexADV_TryDDM 71.2 16.5 54.7

ADVENTURE_solid [6] 59.3 8.3 51.0

10.1.2.2 Numerical Examples

Numerical examples of LexADV_TryDDM are presented. Tables 10.1 and 10.2
show performances for solving a linear system of 0.1 million DOFs. As can be
observed in Table 10.1, the library focuses on encouraging the research of DDM;
however, it has computational time performance that is sufficient for practical use.
Moreover, the library can use various conventional iterative methods and then
enables a comparison between DDM specified preconditioners and others.

10.1.3 Visualization Library for a Post Peta-Scale Computer

A large bottleneck on the exa- and peta-scale supercomputers is the scientific
visualization [11] because of parallel environment with a huge number of proces-
sors. We’d like to review a trend of the recent and next-generation supercomputer
and point the problem of the visualization on. GPGPU accelerates performance,
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Table 10.2 Comparison of iteration counts with different preconditioners

Software Preconditioner Iter. (N = 50) Iter. (N = 250)

LexADV_TryDDM Jacobi 2,301 3623

Gauss-Seidel 1,120 1,780

ILU(0) 271 433

BDD-DIAG [9] 175 94

ADVENTURE_solid BDD-DIAG 176 96

BDD [10] 61 46

which has reduced the computational time by 1/30 in the past decade, using a
moderate comparison. The Kei supercomputer can produce a huge size of total
result files, which exceeds several 1012 bytes. The network speed required to
transfer reduced data is lower than we expect over the Internet, even if a data
reduction technique is used. The problem is now evident, and the post processing
of numerical analysis cannot be obviously managed in local computers. We have
two solutions for the problem. The first is a reversible reduction technique that
compresses a dataset constituted of coarse and medium fine facets or volumes
using a parallel supercomputer [12]. The compressed dataset turns into a smaller
dataset than the original dataset, and interactive post processing can be achieved.
The second solution is parallel visualization in each node of a supercomputer. The
visualization is conducted sequentially after finite element or numerical simulations
[13]. Interactive visualization as post processing in the analysis allows effective
work to examine the results. Regarding user experience, a good experience with
interactivity could not be achieved in visualization on a supercomputer in the past.
Thus, a versatile scientific computer visualization library, LexADV_VSCG [14],
which achieves very high portability for any hardware and software environment
of a supercomputer, is designed and implemented in the present project. The
fundamental ideas, design, and implementation of LexADV_VSCG are explained.
Important facts to visualize on a supercomputer are presented in this work.

10.1.3.1 Fundamental Ideas and Design of the LexADV_VSCG Library

LexADV_VSCG is required because of the obvious concept of visualization on
a supercomputer. LexADV_VSCG is designed to have the following significant
features [14]:

• simple and standard implementation for any operating system (OS): independent
from the OS;

• multiple images to be considered as one image using the z-buffer: parallel
processing;

• no other special hardware and vis libraries: independent from specific environ-
ment issues;
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• manages very fine resolution using well-designed software: key idea for ultra-
large-scale data;

• impressive image using a well-designed algorithm and implementation: key idea
is to use a very fine resolution.

The significant features are surveyed and discussed thoroughly for a next-
generation supercomputer. To establish the features, the software rendering
approach is used without any other software library. The parallel visualization
feature is not provided by LexADV_VSCG; however, the feature is provided by
LexADV_WOVis, as mentioned later. LexADV_VSCG is the elemental library that
serves the API for scientific and engineering visualization and requires no specific
acceleration hardware or other visualization software. The LexADV_VSCG library
generally becomes a part of an application program. Each pixel of an image in
the library is extended to represent the relationship between the view vector and
normal of a facet and z-buffer. The key data of each pixel is an extended z-buffer bit.
The extended z-buffer merges many generated images into one image on parallel
computers where the images are generated in parallel. Each image at a node is
standardly maintained at each storage of the node or stored in the memory of the
node. For instance, when a total of 100,000 cores are installed in the supercomputer,
an analysis model should also be partitioned into 100,000 subdivided subsets. A
camera as a viewpoint is located at 500 positions on a unit sphere, and no fewer than
500,000,000 images are generated. In this case, all the images should be merged
into 500 images. The merging task requires an enormous amount of transferring and
receiving data between nodes. The merging processes are successively computed
as illustrated in Fig. 10.1. When the processes are iteratively conducted 16 times,
216 images are unified to obtain a complete image. Level of detail (LOD), which
is a visualization technique, is a useful approach to managing a large-scale finite
element model. LOD requires several levels of datasets to represent the model. In the
latest parallel computer system, we must completely manage hundreds of thousands
of datasets. Additionally, a large-scale finite element model can be produced on
the supercomputer. When all the calculation tasks from A to Z of an analysis are
processed on the supercomputer, the cost of all of the computing we require would
be larger than the initial assumption.

10.1.3.2 How to Achieve Interactive Visualization

The objective of the development of LexADV_VSCG is to provide an API to
obtain visualized images for very large-scale finite element and particle mod-
els. LexADV_VSCG simply provides a fundamental rendering algorithm, which
is ray casting and glow shading; however, LexADV_VSCG can generate very
high-resolution images for exa-scale and next-generation supercomputers. The
implementation is based on basic visualization algorithms by rendering triangle
facets and shading calculated using ray-cast direction and triangle surface direction.
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Fig. 10.1 Merging processes of images, where located in each node, with an extended z-buffer in
a parallel environment

LexADV_VSCG necessarily requires a huge number of facets with very fine
resolution for a high quality image. LexADV_VSCG can provide the interface for
particle-based method; particles are represented by an aggregation of triangle facets.
A sufficient quality of rendering image can be achieved using LexADV_VSCG for
scientific and engineering visualizations with the supercomputer. The interactivity
of scientific and engineering visualizations is one of the most practical concerns
in scientific and engineering visualization processing. Unfortunately, the latest
supercomputer does not prepare a direct interactive connection with a user’s local
computer. In the supercomputer, all the application programs to be executed are
collocated by a job management system. LexADV_VSCG can produce a very fine
image with a 105 × 105-pixel resolution. The image contains sufficient information
with regard to a very fine finite element discretized model and a huge number of
particles. In a traditional visualization application, a scientist or engineer can easily
adjust the appropriate size of the image as required by shrinking or enlarging it.
Moving, enlarging, and shrinking are the fundamental operations to view an image
with interactivity. The LexADV_VSCG library only generates high-resolution
images. It is necessary to propose the practical use of the LexADV_VSCG library
for interactive visualization. The library is integrated in a user’s application to be run
on the supercomputer. The application requires some contrivance to view the results
after a numerical simulation. The library has positions on a sphere in advance. A
scientist or engineer only generates multiple viewpoint images. A spherical polar
coordinate system is used as a name description rule that represents a relationship
between a name of an image file and a camera position in LexADV_VSCG. The
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Fig. 10.2 Name description rule representing the viewpoint in a spherical coordinate system

name description rule of an image file, including the coordinate system, is defined
as described in Fig. 10.2. The rule is easily extended to other coordinate systems,
for example, Euler’s angle definition or geographic coordinate system.

In LexADV_VSCG, two description rules for the rotation of an object are
available. The first description rule is the direction form of a rotation matrix. The
second description rule is Rodrigues vector (k1, k2, k3). The Rodrigues rotation
formula is described as follows:

K =
⎛
⎝ 0 −k3 k2

k3 0 −k1

−k2 k1 0

⎞
⎠ , (10.6)

R = I + (sin θ) K + (1 − cos θ) K2, (10.7)

where I is a unit matrix and θ is the length of the Rodrigues vector. The position of
a viewpoint is notated in spherical polar coordinates. The distance from a viewpoint
to the center of an object is defined as a constant value of one. Amplitude θ is the
angle between the z-axis and radius vector. Amplitude ϕ is the angle between the
x-axis and projected vector of the radius vector to the x-y plane. The position of a
viewpoint is set at (0, 0,−1) in the implementation. All of positions of a viewpoint
are calculated using the iterative subdivision of a dodecahedron in advance. The
computational notation is described in the Cartesian coordinate system. To convert
from the Cartesian coordinate system to the spherical polar coordinate system, the
positions of viewpoints should be calculated by

⎧⎨
⎩

x

y

z

⎫⎬
⎭ = R−1

⎧⎨
⎩

0
0

−1

⎫⎬
⎭ , (10.8)

⎧⎨
⎩

cos θ = z√
x2+y2+z2

(0 ≤ θ ≤ π)

cos ϕ = x√
x2+y2

, sin ϕ = y√
x2+y2

(0 ≤ ϕ ≤ 2π),
(10.9)
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where x, y, and z are the camera position in the orthogonal coordinate system,
R is an inverse rotational matrix to be applied to the object, and θ and ϕ are
the position of a viewpoint in the spherical polar coordinate system. A generated
multiple image on each node can be processed using OmniEyes [15], which is a
specialized image viewing application to be run on a scientist’s or engineer’s local
computer to display a very high-resolution image generated by LexADV_VSCG.
The images to be displayed to a scientist or engineer can be easily changed using
the mouse operation in a similar manner to a 3D object viewing application. To
ensure the magnification, rotation, and movement of a view of an object, the image
buffer to be displayed that corresponds to the mouse operation is allocated up to
the maximum size of the memory in the computer. The recommended computer
specification is over 16 GB of main memory and over 1 GB of video memory. A
medium-range notebook PC satisfies the recommended specification.

10.1.3.3 How to Parallelize the Visualization Processes

LexADV_VSCG only provides a single processing visualization approach to obtain
visualized results. As mentioned above, the image has z-buffer information to
superpose many images to obtain one large image at the pixel level. If over
10 thousand cores are used in an analysis, a scientist or engineer should merge
over 10 thousands images into one meaningful image iteratively for several hundred
times the number of viewpoints. This task should also be automated to free scientists
or engineers from such a boring task. In current and future supercomputer systems,
a parallel computer system is naturally considered. According to this consideration,
LexADV_WOVis [3] provides parallel features for offline image generation. Lex-
ADV_WOVis is a coupler to use the full features of LexADV_VSCG. The release
version of LexADV_WOVis requires the following mandatory libraries:

• LexADV_VSCG (Versatile Scientific Computer Graphics) library;
• MPI library for parallel data processing;
• AdvIO library for reading input data;
• the input and output files of ADVENTURE_Solid (AdvSolid) and ADVEN-

TURECluster;
• AutoNOSim library for parallel processing.

LexADV_WOVis fundamentally offers an automatic procedure for superimposing
the images of a decomposed finite element discretized model in parallel. Each
decomposed finite element model is located at each node in the parallel super-
computer. An application program using LexADV_WOVis automatically gathers
all of the distributed images into one high-resolution image. The merged images are
repeatedly produced according to the positions of viewpoints on a unit sphere, as
mentioned in Sect. 10.1.3.1.
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10.1.4 Parallel Explicit MPS Solver Framework

The MPS method [16] is one of the most famous particle methods. A particle method
is one of the numerical calculation methods that uses particles to solve the physical
laws governed by differential equations, for example, the Navier-Stokes equations.
Because the particles, as the calculation indicates, move on the time-marching
processes, the particle method is superior to grid methods for the case of solving
dynamic problems, such as free surfaces and large deformations. However, the
motion of particles makes it difficult to parallelize the particle method in distributed
memory parallel computers.

Our target solver is the explicit MPS (EMPS) method, which is one of the
most popular particle methods [17]. LexADV_EMPS v0.1b, released as open-source
software in October 2014, is the sEMPS framework for solving large-scale problems
using particle methods. The target problem size is 10 million to 1 billion particles or
more. LexADV_EMPS supports three functions, “domain decomposition,” “halo
exchange,” and “dynamic load balance,” which are required in the distributed
memory parallel computing of particle methods.

LexADV_EMPS adopts bucket-based domain decomposition [17]. First, after a
bounding box for an entire analysis domain is defined, the bounding box is filled
with buckets of cubes, as shown in Fig. 10.3a. Because the radius of influence for a
particle is defined in the MPS method, the width of the bucket must be the same or
larger than the radius of influence. All particles are assigned to buckets. The domain
decomposition by the buckets is performed with an equal number of particles in
each processing element, as shown in Fig. 10.3b. Each bucket color in Fig. 10.3b
represents a subdomain that is assigned to each processing element. The domain
decomposition in LexADV_EMPS is performed by ParMETIS.

Each decomposed domain is expanded from the boundaries by one bucket width.
The particles in the expanded domain are assigned to one processing element, as
shown in Fig. 10.3c. The expanded domains by one bucket width (areas of faint
color in Fig. 10.3c) are called “halos.” The consistency of the particle data in a
halo is maintained by communication between neighboring domains. The arrows in
Fig. 10.3c represent the appearance of a particle datum of the other domains being
sent to a halo of a domain. If an imbalance in the number of particles among domains
appears as the analysis progresses, this domain decomposition is performed again to
recover the balance of the number of particles. Figure 10.4 shows the results of the
dam-break analysis, and Fig. 10.5 shows the results of the domain decomposition
for the dam-break analysis in Fig. 10.4 by LexADV_EMPS.

10.1.4.1 Distributed Memory Parallel Explicit MPS Implemented by
LexADV_EMPS

There are two sample solvers implemented by LexADV_EMPS. The first sample
solver is the dam-break analysis with a free surface, as shown in Fig. 10.4. The
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Fig. 10.3 Bucket-based domain decomposition of LexADV_EMPS. (a) Assigning particles into
buckets. (b) Domain decomposition for buckets. (c) Halo exchange pattern

second sample solver is the two floating object analysis using the interaction
between fluid and rigid bodies, as shown in Fig. 10.6. The yellow object floats
and the red object sinks according to each density in Fig. 10.6b. These two sample
solvers are as popular as the particle method.

In floating object analysis, we use the coupled method in [18] as the coupled
fluid-rigid body interaction algorithm. In the coupled method, rigid bodies are
represented by particles with fixed relative configurations, and the rigid body
particles are calculated using the same method as that for fluid particles. Translations
and rotations of rigid bodies are calculated by the rigid body particles. The positions
of the rigid body particles are updated by the motions of the rigid bodies. This
algorithm means the volume integral of forces for rigid bodies.

Additionally, the functions for the particle method, for example, “surface tension
model by potential model”; “first-, second-, third-, and fourth-order spatial deriva-
tive models”; and “collision condition,” are implemented in the sample solver.
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Fig. 10.4 Results of dam-break analysis (colors are the velocity). (a) Initial arrangement. (b)
Result at 0.27 s

Fig. 10.5 Results of the domain decomposition (colors are processor elements). (a) Initial
arrangement. (b) Result at 0.27 s

Fig. 10.6 Analysis of two floating objects with different densities. (a) Initial arrangement. (b)
Result at 1.0 s
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10.1.5 LexADV_AutoMT

Exa-scale supercomputers will soon appear, around 2019–2022. As the exa-age
approaches, the gap between the full potential of HPC hardware architectures and
the actual performance of code running on these platforms but written by ordinary
researchers and developers could increasingly widen. As a result, it would be
increasingly more difficult to achieve a high peak performance ratio. Measures
must be taken to shrink the so-called “ninja gap.” Domain-specific language (DSL)
is one of the promising technologies for achieving both code performance and
productivity in software development for numerical simulation. In this section,
[19], which is a library for tensor operations in two-dimensional(2D)/3D spaces, is
presented. AutoMT stands for “automation”-“matrix”-“tensor,” or “MT” represents
“mathematical toolkit.” It also supports a type of DSL, which can perform a
translation from a LaTeX formula into C/Fortran source code.

10.1.5.1 AutoMT Library for Tensor and Small-Matrix Operations

Currently, we are developing a DSL dedicated to the continuum mechanics field
[20, 21], and its associated library for small-matrix and tensor operations. It is called
LexADV_AutoMT (AutoMT).

The numerical library called AutoMT is dedicated to tensor and small-matrix
operations used in the continuum mechanics field. It manages tensor quantities in
3D space, such as scalar, vector, second-order tensor, and fourth-order tensor. It can
also support the very small corresponding matrix and vectors, such as 3 × 3 and
6 × 6. These tensor and matrix operations appear often in element-wise, cell-wise,
and particle-wise calculations in a continuum mechanics-based simulation code.

We consider the following simple example of 3D tensor operations. This is a
simple formula that uses scalar, vector, and tensor quantities:

s = (aX) · b, (10.10)

where s is a scalar, a and b are vectors, and X is a second-order tensor. This example
requires a product operation between a vector and tensor, followed by a dot product
operation between two vectors. AutoMT supports both C and Fortran languages.
Using C, the AutoMT library is called in the following manner:

double a[3], X[3][3], b[3], s, tmp[3];
AutoMT_prod_v_t_v (a, X, tmp);
AutoMT_cdot_v_v_s (tmp, b, &s);
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It can also be written in Fortran as follows:

real*8 a(3), X(3, 3), b(3), s, tmp(3)
call automt_prod_v_t_v (a, X, tmp)
call automt_cdot_v_v_s (tmp, b, s)

In both cases, a vector is represented as a one-dimensional array variable,
whereas a second-order tensor is represented as a 2D array variable.

Implementations of the library for various types of high-performance computing
platforms, such as Intel x86, Xeon Phi (Knights Landing), and K computer/Fujitsu
PRIMEHPC FX100, are also available. Each implementation is highly tuned for
the underlying hardware architecture based on the design concept of a “high-
performance design pattern.” In these highly tuned versions, the implementations
use preprocessor macros instead of C functions/Fortran subroutines. They represent
each data object of 3D vectors, tensors, or small matrices as a set of scalar variables
instead of array/structure.

10.1.5.2 AutoMT DSL

Additionally, on top of the AutoMT matrix and tensor library, a LaTeX-like DSL is
built. The language supports the concept of tensors and small matrices directly as
abstract types, which is often used in the context of solid and fluid mechanics. The
syntax of the DSL is based on LaTeX, which is one of the major choices for writing
engineering documents and mathematical formulas. The DSL translator converts
from DSL source code into the corresponding C/Fortran source code, which is
mainly composed of function/subroutine calls to the AutoMT library.

10.1.6 ADVENTURE_Magnetic

ADVENTURE_Magnetic (AdvMag) is a finite element analysis solver for the
electromagnetic field using the HDDM with parallel data processing techniques. It
was designed as part of the ADVENTURE Project, and applied numerical analysis
techniques were developed in the HDDMPPS. As a result, AdvMag has been able
to solve electromagnetic field problems with tens of billions of DOFs and rotating
machine models efficiently on massively parallel computers. Its source code is
published via the website of the ADVENTURE Project.

AdvMag has the following features:

• AdvMag supports nonlinear magnetostatic analysis, time-harmonic eddy current
analysis, and nonsteady eddy current analysis. These functions have been
published.

• The high-frequency electromagnetic field analysis function is in development.
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• A new domain decomposition technique for the HDDM, including moving
bodies, is in development. This technique makes it possible to efficiently analyze
rotating machines, such as electric generators or motors, on massively parallel
computers.

• AdvMag has some parallel processing modes:

– single mode where all computations are performed as a single process;
– shared memory parallel mode with OpenMP;
– distributed memory parallel mode with MPI;
– hybrid parallel mode with MPI and OpenMP.

• AdvMag can solve electromagnetic field problems with tens of billions of DOFs.

10.1.6.1 Analysis Functions

In this section, the published analysis functions of AdvMag are outlined.

1. Nonlinear magnetostatic analysis function
This function analyzes nonlinear magnetostatic problems. A finite element
equation based on the A method [22] is adopted. The nonlinearity of perme-
ability can be considered using Newton’s method or the Picard iteration. This
function outputs the magnetic flux density [T] and electromagnetic force [N].
Furthermore, it has analyzed two billion DOFs [23].

2. Time-harmonic eddy current analysis function
This function analyzes time-harmonic eddy current problems. Finite element
equations based on the A method or A-φ method [24] are adopted. In this
function, a linear system with complex numbers is solved. Therefore, it outputs
the real and imaginary parts of the magnetic flux density [T], eddy current density
[A/m2], and electromagnetic force [N]. Furthermore, it has analyzed 3.5 billion
DOFs [25].

3. Nonsteady eddy current analysis function
This function analyzes nonsteady eddy current problems. Finite element equa-
tions based on the A method or A-φ method are adopted. This function outputs
the magnetic flux density [T], eddy current density [A/m2], and electromagnetic
force [N] in each time step. A new domain decomposition technique for the
HDDM, including moving bodies, is in development based on this function.

10.1.6.2 Analysis with Tens of Billions of Degrees of Freedom

In this section, the high-frequency electromagnetic field analysis with tens of
billions of DOFs [26] is introduced.
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The high-frequency electromagnetic field analysis function is in development
based on AdvMag. This function analyzes high-frequency electromagnetic field
problems. A finite element equation based on the E method [27] is adopted. For
a time-harmonic scheme of electromagnetic fields, a linear system with complex
numbers is solved only once. Therefore, our method can solve high-frequency
electromagnetic field problems efficiently.

The conjugate orthogonal conjugate gradient (COCG) and the conjugate orthog-
onal conjugate residual (COCR) methods are adopted to solve the interface problem.
In high-frequency electromagnetic field problems, the residual norms of the COCG
method oscillate intensely. However, those of the COCR method oscillate slightly
and decrease stably.

The simple hyperthermia applicator model with up to 30 billion DOFs is
analyzed. This problem is one of the benchmark problems defined as Testing
Electromagnetic field Analysis Method Workshop Problem 29 (TEAM29) [28].
The frequency value is 8 MHz. In this analysis, the dielectric phantom of the
shape of a cylinder with a specific dielectric constant of 80 and conductivity of
0.52 S/m is placed in. Computations were performed by all nodes of the Oakleaf-FX
supercomputer in the Supercomputing Division, Information Technology Center,
the University of Tokyo. This computer consists of 4,800 computer nodes of a
Fujitsu PRIMEHPC FX10 massively parallel supercomputer. Its peak performance
is 1.135 PFLOPS and it has 150 TB of memory. The COCR method was applied to
solve the interface problem. The simplified block diagonal scaling was adopted as
a preconditioner of the COCR method. As a result, the model with 10, 20, and 30
billion DOFs was solved in 549, 956, and 1,138 s, respectively. Thus, it was shown
that it is possible to analyze electromagnetic field problems with complex numbers
and tens of billions of DOFs.

10.1.6.3 Hierarchical Domain Decomposition Method for Devices
Including Moving Bodies

In this section, the HDDM for devices including moving bodies [29], which is in
development based on the nonsteady eddy current analysis function of AdvMag, is
introduced. This method is in development mainly for analyzing rotating machines,
such as electric generators or motors.

Because the moving body (e.g., a rotor) moves, the connection relation with the
stationary body (e.g., a stator) changes. Therefore, in our method, meshes of the sta-
tionary and moving bodies are generated independently, with the element surfaces in
the connection surface between the stationary and moving bodies coinciding even
if the moving body moves. Then, to prevent the DOFs on the connection surface
from being located inside the subdomain, meshes of the stationary and moving
bodies are decomposed independently. The DOFs on the connection surface appear
on the surface of the subdomains; thus, the DOFs on the connection surface are
considered as the interface DOFs. As a consequence, changes in the connection
relation between the stationary and moving bodies are replaced with changes in the
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communication tables. At first, a set of communication tables of the interface DOFs
that are created by the domain decomposition is created. This set is not changed by
time evolution. Then, sets of communication tables of the DOFs on the connection
surface are created based on the connection relation between the stationary and
moving bodies. As many sets are created as the number of connection relations.
In the interprocess communications at each time step, sets of communication tables
of the interface DOFs that are created by the domain decomposition and the DOFs
on the connection surface based on the connection relation in each time step are
used in combination.

In our method, there is no difference from the HDDM algorithm without moving
bodies, except that different sets of communication tables are used for each time
step. Tasks such as updating the coordinate values of the moving body and loading
and changing the sets of communication tables are added to AdvMag. Therefore, it
is expected that it can conduct the analysis of the moving bodies with high parallel
efficiency on massively parallel supercomputers. Moreover, this method is highly
versatile. Although it is currently applied only to 3D electromagnetic field analysis,
it is expected that it can be applied to structural analysis, heat transfer analysis,
analysis in two dimensions, and various elements.

As a result, the parallel efficiencies of our method are equivalent to those of the
HDDM without moving bodies on massively parallel supercomputers. Furthermore,
the rotating machine model with seven million DOFs that is solved in more than
1 month using conventional sequential computation has been successfully solved in
only 1.60 h using our method.

10.1.7 Analysis of a High-Frequency Electromagnetic Field
Using Anatomical Human Models with Mesh
Smoothing

For a high-accuracy analysis of the high-frequency electromagnetic field using
AdvMag with anatomical human models [30, 31], different material boundaries
should be represented by curved surfaces. However, even if users use voxel data
that has been built on the basis of MRI data for anatomical human models, material
boundaries are not smooth, and then an unneeded reflection and scattering of the
electric fields have been observed in the numerical analysis. To reduce this noise,
we have developed a mesh smoothing technique with tetrahedral elements for
smoothing stair shapes of different material boundaries. In this proposed method,
material boundaries of a voxel mesh are detected automatically, and then triangular
prisms are placed on these boundaries. Furthermore, each voxel and prism is divided
into tetrahedral elements. The proposed method is relatively simple and robust for
large-scale and complicated shape models.
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10.1.7.1 Mesh Generation Technique

Anatomical human body models are constructed using a binary data format wherein
types of organs (including air area) are encoded using voxels with sides of 4 mm.
The size of the adult male model is 160 voxels wide, 80 voxels deep, and 433
voxels high. First, the file containing the anatomical human body model, which is
the only input for this computation, is read. Next, ParMETIS [32] is used to partition
the input voxel data into a number of parts. After the initial decomposition, all
processing can be performed independently for each node without communication
between nodes. In each node, the voxel mesh is transformed to a tetrahedral mesh.

10.1.7.2 Confirmation of Mesh Smoothing

Accuracy verifications for the confirmation of mesh smoothing is performed using
the voxel mesh model of TEAM29. This is a benchmark problem that is widely used
for high-frequency electromagnetic field analysis.

To detect the resonant frequency and compare solutions with actual measure-
ments, the resonance state was investigated. The frequency band of 60–70 [MHz]
was calculated for 0.4 [MHz] steps around resonant frequencies, and the response
for every frequency step was investigated. Computations were performed using
3,072 cores (192 nodes) of the FX10 supercomputer. A comparison between
measured resonant frequencies [28] is shown in Table 10.3. Resonances did not
occur in the frequency band of 60–70 [MHz] using the original voxel mesh and
one-level smoothing mesh. By contrast, the obtained solution was in very good
agreement with that obtained using two-level smoothing. The maximum error rate
between the obtained solution and measurement was 6.10% in the mode. Therefore,
the solution obtained using the proposed two-level smoothing had sufficiently high
accuracy.

Figure 10.7 shows a result of mesh smoothing. The anatomical human body torso
model was constructed using voxels with 4 mm pitch. The torso model was made
from the entire body model by cutting out width Zt = 0.25 m from the position
of height Zh = 0.95 m. Figure 10.7a shows the ribs, backbone, and pelvis before
smoothing; Fig. 10.7b shows the same after smoothing. As can be seen, we obtained
smooth step shapes on the boundaries. The smoothing algorithm was relatively
simple and robust. However, in this algorithm, the insertion of triangular prisms
increased the size of the model. With the anatomical human model, when smoothing

Table 10.3 Resonant
frequencies in MHz( ( ): error
rate between measured data
(68.6 [MHz]) and the
anatomical solution [%])

Smoothing type Result

None (Original voxel model) N/A

One-level smoothing N/A

Two-level smoothing 64.4 (6.1)
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Fig. 10.7 Smoothing example (ribs, backbone, and pelvis). (a) Original. (b) Smoothed

Fig. 10.8 Numerical results of high-frequency electromagnetic field analysis using the torso
model (300 MHz, left, without smoothing; right, with smoothing)

was executed, the model size became ten times larger. To solve such large models,
we considered using HPC systems. Figure 10.8 shows visualization examples of the
electric field. These contour maps are visualized as a cut plane in the human body.
Electric fields around the backbone and pelvis can be observed. In the result without
smoothing (Fig. 10.8 (left)), reflection and scattering of the electric fields occurred
around the bones. By contrast, in the result obtained with smoothing (Fig. 10.8
(right)), the electric field shows a natural distribution in bones and the boundaries
of other organs. It is understood that smoothing decreased noise in the electric field
along the voxel shape in the vicinity of the spine surface by comparing the enlarged
views in Fig. 10.8. From these results, because of mesh smoothing, reflection and
scattering of the electric fields were not found.



204 R. Shioya et al.

References

1. Yagawa, G., Shioya, R.: Parallel finite elements on a massively parallel computer with domain
decomposition. Comput. Syst. Eng. 4, 495–503 (1994)

2. ADVENTURE Project (2018). http://adventure.sys.tu.tokyo.ac.jp/
3. LexADV: Development of a numerical library based on hierarchical domain decomposition for

post petascale simulation (2018). http://adventure.sys.t.u-tokyo.ac.jp/lexadv/index.html
4. Glowinski, R., Dinh, Q. V., Periaux, J.: Domain decomposition methods for nonlinear problems

in fluid dynamics. Comput. Methods Appl. Mech. Eng. 40, 27–109 (1983)
5. Quarteroni, A., Vali, A.: Domain Decomposition Methods for Par-tial Differential Equations

(Clarendon Press, Oxford, 1999)
6. Yoshimura, S., Shioya, R., Noguchi, H., Miyamura, T.: Advanced general-purpose compu-

tational mechanics system for large scale analysis and design. J. Comput. Appl. Math. 149,
279–296 (2002)

7. Amestoy, P.R., Duf, I.S. and L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and
unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)

8. Fujii, A., Nishida, A., Oyanagi Y.: Evaluation of parallel aggregate creation orders: smoothed
aggregation algebraic multigrid method. In: High Performance Computational Science and
Engineering, pp. 99–122. Springer, New York (2005)

9. Ogino, M., Shioya, R., Kanayama, H.: An inexact balancing preconditioner for large-scale
structural analysis. J. Comput. Sci. Tech. 2, 150–161 (2008)

10. Mandel, J.: Balancing domain decomposition. Commun. Numer. Methods Eng. 9, 233–241
(1993)

11. Okuda, H., et al.: Parallel Finite Element Analysis Platform for the Earth Simulator: GeoFEM.
Lecture Notes in Computer Science, vol. 2659, pp. 773–780. Springer, Berlin/Heidelberg
(2003)

12. Dongarra, J., et al.: The international exascale software project roadmap. Int. J. High Perform.
Comput. Appl. 25, 3–60 (2011)

13. Fabian, N., et al.: The paraview coprocessing library: a scalable, general purpose in situ
visualization library. IEEE Symposium on Large Data Analysis and Visualization, Providence,
pp. 89–96 (2011)

14. Wada, Y., et al.: High-resolution visualization library for ex-ascale supercomputer. In: Dobashi,
Y., Ochiai, H. (eds.) Mathematical Progress in Expressive Image Synthesis III. Springer
Science Mathematics for Industry, pp. 83–94. Springer, Singapore (2016)

15. Wada, Y., et al.: Development of LexADV_VSCG library for a viewer with high resolution
image. In: Proceedings of 21th JSCES Conference, vol. 21, 2p (2016)

16. Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for frag-mentation of incom-
pressible fluid. Nucl. Sci. Eng. 123, 421–434 (1996)

17. Murotani, K., et al.: Development of hierarchical domain decomposition explicit MPS method
and application to large-scale tsunami analysis with floating objects. J. Adv. Simul. Sci. Eng.
1(1), 16–35 (2014)

18. Koshizuka, S., Nobe, A., Oka, Y.: Numerical analysis of breaking waves using the moving
particle semi-implicit method. Int. J. Numer. Methods Fluids 26, 751–769 (1998)

19. Kawai, H., et al.: AutoMT, a library for tensor operations and its performance evaluation for
solid continuum mechanics applications. Mech. Eng. Lett. 1, Paper No. 15-00349 (2015)

20. Holzapfel, G.A.: Nonlinear Solid Mechanics – A Continuum Approach for Engineering. Wiley,
New York (2000)

21. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cam-
bridge University Press, Cambridge/New York (2008)

22. Kanayama, H., Zheng H., Maeno, N.: A domain decomposition method for large-scale 3-D
nonlinear magnetostatic problems. Theor. Appl. Mech. Jpn. 52, 247–254 (2003)

http://adventure.sys.tu.tokyo.ac.jp/
http://adventure.sys.t.u-tokyo.ac.jp/lexadv/index.html


10 Numerical Library Based on Hierarchical Domain Decomposition 205

23. Sugimoto, S., Ogino, M., Kanayama, H., Yoshimura, S.: Introduction of a direct method
at subdomains in non-linear magnetostatic analysis with HDDM. In: 2010 International
Conference on Broadband, Wireless Computing, Communication and Applications, Fukuoka,
pp. 304–309 (2010)

24. Kanayama, H., Sugimoto, S.: Effectiveness A-φ method in a parallel computing with an
iterative domain decomposition method. IEEE Trans. Magn. 42(4), 539–542 (2006)

25. Sugimoto, S., et al.: Improvement of convergence in time-harmonic eddy current analysis with
hierar-chical domain decomposition method. Trans. Jpn. Soc. Simul. Tech. (in Japanese) 7(1),
110–17 (2015)

26. Sugimoto, S., Takei, A., Ogino, M.: Finite element analysis with tens of billions of degrees
of freedom in a high-frequency electromagnetic field. Mech. Eng. Lett. 3, Paper No. 16-0067
(2017)

27. Takei, A., Yoshimura, S., Kanayama, H.: Large scale parallel finite element analyses of high
frequency electromagnetic field in commuter trains. Comput. Model. Eng. Sci. 31(1), 13–24
(2008)

28. Kanai, Y.: Description of TEAM workshop problem 29: whole body cavity resonator. Technical
report TEAM Workshop in Tucson (1998)

29. Sugimoto, S., Ogino, M., Kanayama H., Takei, A.: Hierarchical domain decomposition method
for devices including moving bodies. J. Adv. Simul. Sci. Eng. 4(1), 99–116 (2018)

30. NICT EMC group home page (2018). http://emc.nict.go.jp/bio/index.html
31. Conil, E., et al.: Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and

child models using finite-difference time-domain. Phys. Med. Biol. 53, 1511–1525 (2008)
32. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning irregular

graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

http://emc.nict.go.jp/bio/index.html


Chapter 11
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Abstract In this paper, we present our ongoing research project. The objective of
many ongoing research projects in high-performance computing (HPC) areas is to
develop an advanced computing and optimization infrastructure for extremely large-
scale graphs on the peta-scale supercomputers. The extremely large-scale graphs
that have recently emerged in various application fields, such as transportation,
social networks, cybersecurity, disaster prevention, and bioinformatics, require fast
and scalable analysis. The Graph500 benchmark measures the performance of
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any supercomputer performing a breadth-first search (BFS) in terms of traversed
edges per second (TEPS). In 2014–2017, our project team has achieved about
38.6TeraTEPS on K computer and been a winner at the 8th and 10th to 15th
Graph500 benchmark. We commenced our research project for developing the
Urban OS (Operating System) for a large-scale city in 2013. The Urban OS, which
is regarded as one of the emerging applications of the cyber-physical system (CPS),
gathers big data sets of the distribution of people and transportation movements by
utilizing sensor technologies and storing them in the cloud storage system. In the
next step, we apply optimization, simulation, and deep learning techniques to solve
them and check the validity of solutions obtained on the cyberspace. The Urban OS
employs the graph analysis system developed by this research project and provides a
feedback to a predicting and controlling center to optimize many social systems and
services. We briefly explain our ongoing research project for realizing the Urban OS.

11.1 Introduction

The objective of many ongoing research projects in high-performance computing
(HPC) areas is to develop an advanced computing and optimization infrastructure
for extremely large-scale graphs on the peta-scale supercomputers. The extremely
large-scale graphs that have recently emerged in various application fields, such as
transportation, social networks, cybersecurity, disaster prevention, and bioinformat-
ics, require fast and scalable analysis (Fig. 11.1) [16, 22, 24]. In recent year, the
demands for high-speed graph processing have been remarkably increasing after
converting the real-world data into the graph data. The graph processing cycle
starts from the target relation and the generation of a graph. Next, we analyze and
process it by utilizing graph algorithms. We can finally understand the relationship
and characteristic of the target. The graph consists of the node and edge sets. For
example, a node corresponds to an intersection in a road network, and an edge
corresponds to a road between two intersections. In the analysis of social networks
such as Twitter, a node corresponds to a user, and an edge corresponds to the Twitter
follower relationship between two users. Besides, we usually handle even larger-
scale graph data in the cybersecurity and neural network. The number of vertices
in the graph networks has grown from billions to trillions and that of the edges
from hundreds of billions to tens of trillions (Fig. 11.2). For example, a graph that
represents the interconnections of all the neurons of the human brain has over 89
billion vertices and over 100 trillion edges. To analyze these extremely large-scale
graphs, we require a new-generation exascale supercomputer, which will not appear
until the 2020s, and therefore, we propose a new framework of software stacks
for extremely large-scale graph analysis systems, such as parallel graph analysis
and optimization libraries on multiple CPUs and GPUs, hierarchal graph stores
using nonvolatile memory (NVM) devices, and graph processing and visualization
systems.

We have a research team that joined the JST (Japan Science and Technology
Agency) CREST (Core Research for Evolutional Science and Technology) post-
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Fig. 11.1 Graph analysis and its application fields. (Image: Illustration by Mirko Ilic)

Fig. 11.2 Size of graphs in various application fields and Graph500 benchmark
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Peta High Performance Computing project1 from October 2011 to March 2017. The
objective of our researches for the JST CREST project has been developed advanced
computing and optimization infrastructures for extremely large-scale graphs on
post-peta-scale supercomputers. In this paper, we explain our ongoing research
project and show its remarkable results.

11.2 Graph500 and Green Graph500 Benchmarks

The Graph5002 and Green Graph500 benchmarks are designed to measure the
performance of a computer system for applications that require irregular memory
and network access patterns. Following its announcement in June 2010, the
Graph500 list was released in November 2010, since when it has been updated
semiannually. The Graph500 benchmark measures the performance of any super-
computer performing a breadth-first search (BFS) in terms of traversed edges per
second (TEPS). The detailed instructions of the Graph500 benchmark are described
as follows:

1. Step 1: Edge List Generation
First, the benchmark generates an edge list of an undirected graph with n(=
2SCALE) vertices and m(= n · edge_f actor) edges;

2. Step 2: Graph Construction
The benchmark constructs a suitable data structure, such as CSR (compressed
sparse row) graph format, for performing BFS from the generated edge list;

3. Step 3: BFS
The benchmark performs BFS to the constructed data structure to create a BFS
tree. Graph500 employs TEPS (traversed edges per second) as a performance
metric. Thus, the elapsed time of a BFS execution and the total number of
processed edges determine the performance of the benchmark;

4. Step 4: Validation
Finally, the benchmark verifies the results of the BFS tree. Note that the
benchmark iterates Step 3 and Step 4 64 times from randomly selected start
points, and the median value of the results is adopted as the score of the
benchmark.

We implemented the world’s first GPU-based BFS on the TSUBAME 2.0
supercomputer at the Tokyo Institute of Technology and gained fourth place in
the fourth Graph500 list in 2012 [27]. The rapidly increasing number of these
large-scale graphs and their applications has attracted significant attention in recent
Graph500 lists (Fig. 11.2). In 2013, our project team gained first place in both the
big and small data categories in the second Green Graph500 benchmarks. The Green

1http://opt.imi.kyushu-u.ac.jp/graphcrest/eng/
2https://graph500.org

http://opt.imi.kyushu-u.ac.jp/graphcrest/eng/
https://graph500.org
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Graph500 list collects TEPS-per-watt metrics. Our another implementation, which
uses both DRAM and NVM devices and whose objective is to analyze extremely
large-scale graphs that exceed the DRAM capacity of the nodes, gained fourth place
in the big data category in the second Green Graph500 list.

As we have mentioned in this section, our project team have challenged the
Graph500 and Green Graph500 benchmarks, which are designed to measure
the performance of a computer system for applications that require irregular
memory and network access [10–15, 21, 23, 26–28, 31–33]. We briefly explain
four major papers of our research projects for Graph500 and Green Graph500
benchmarks.

1. “Highly Scalable Graph Search for the Graph500 Benchmark” [26]
We found that the provided reference implementations are not scalable in a
large distributed environment. We devised an optimized method based on 2D
partitioning and other methods such as communication compression and vertex
sorting. Our optimized implementation can handle BFS of a large graph with 236

(68.7 billion vertices) and 240 (1.1 trillion) edges in 10.58 s while using 1366
nodes and 16,392 CPU cores on the TSUBAME 2.0 supercomputer at Tokyo
Institute of Technology. This performance corresponds to 103.9 GE/s. We also
studied the performance characteristics of our optimized implementation and
reference implementations on a large distributed memory supercomputer with
a Fat-Tree-based Infiniband network.

2. “NUMA-optimized Parallel Breadth-first Search on Multicore Single-node Sys-
tem” [32]
Previous studies [2, 3] have proposed hybrid approaches that combine a well-
known top-down algorithm and an efficient bottom-up algorithm for large
frontiers. This reduces some unnecessary searching of outgoing edges in the
BFS traversal of a small-world graph, such as a Kronecker graph. In this
paper, we describe a highly efficient BFS using column-wise partitioning of
the adjacency list while carefully considering the nonuniform memory access
(NUMA) architecture. We explicitly manage the way in which each working
thread accesses a partial adjacency list in local memory during BFS traversal. Our
implementation has achieved a processing rate of 11.15 billion edges per second
on a 4-way Intel Xeon E5-4640 system for a scale-26 problem of a Kronecker
graph with 226 vertices and 230 edges. Not all of the speedup techniques in this
paper are limited to the NUMA architecture system. With our winning Green
Graph500 submission of June 2013, we achieved 64.12 GTEPS per kilowatt hour
on an ASUS Pad TF700T with an NVIDIA Tegra 3 mobile processor.

3. “Fast and Energy-efficient Breadth-first Search on a single NUMA system” [33]
Our previous NUMA-optimized BFS [32] above reduced memory accesses to
remote RAM on a NUMA architecture system; its performance was 11 GTEPS
(giga TEPS) on a 4-way Intel Xeon E5-4640 system. Herein, we investigated
the computational complexity of the bottom-up, a major bottleneck in NUMA-
optimized BFS. We clarify the relationship between vertex out-degree and
bottom-up performance. In November 2013, our new implementation achieved a
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Graph500 benchmark performance of 37.66 GTEPS (fastest for a single node) on
an SGI Altix UV1000 (one-rack) and 31.65 GTEPS (fastest for a single server)
on a 4-way Intel Xeon E5-4650 system. Furthermore, we achieved the highest
Green Graph500 performance of 153.17 MTEPS/W (mega TEPS per watt) on an
Xperia-A SO-04E with a Qualcomm Snapdragon S4 Pro APQ8064.

4. “NVM-based Hybrid BFS with Memory Efficient Data Structure” [14]
We introduce a memory-efficient implementation for the NVM-based hybrid
BFS algorithm that merges redundant data structures to a single graph data
structure, while off-loading infrequent accessed graph data on NVMs based on
the detailed analysis of access patterns, and demonstrate extremely fast BFS
execution for large-scale unstructured graphs whose size exceeds the capacity
of DRAM on the machine. Experimental results of Kronecker graphs compliant
to the Graph500 benchmark on a 2-way INTEL Xeon E5-2690 machine with 256
GB of DRAM show that our proposed implementation can achieve 4.14 GTEPS
for a SCALE31 graph problem with 231 vertices and 235 edges, whose size is
4 times larger than the size of graphs that the machine can accommodate only
using DRAM with only 14.99 % performance degradation. We also show that
the power efficiency of our proposed implementation achieves 11.8 MTEPS/W.
Based on the implementation, we have achieved the third and fourth position of
the Green Graph500 list (2014 June) in the big data category.

5. “Evaluating the Impacts of Code-Level Performance Tunings on Power Effi-
ciency” [10]
As the power consumption of HPC systems will be a primary constraint
for exascale computing, a main objective in HPC communities is recently
becoming to maximize power efficiency (i.e., performance per watt) rather than
performance. Although programmers have spent a considerable effort to improve
performance by tuning HPC programs at a code level, tunings for improving
power efficiency is now required. In this work, we select two representative
HPC programs (Graph500 and SDPARA) and evaluate how traditional code-level
performance tunings applied to these programs affect power efficiency. We also
investigate the impacts of the tunings on power efficiency at various operating
frequencies of CPUs and/or GPUs. The results show that the tunings significantly
improve power efficiency, and different types of tunings exhibit different trends
in power efficiency by varying CPU frequency. Finally, the scalability and power
efficiency of state-of-the-art Graph500 implementations are explored on both a
single-node platform and a 960-node supercomputer. With their high scalability,
they achieve 27.43 MTEPS/watt with 129.76 GTEPS on the single-node system
and 4.39 MTEPS/watt with 1,085.24 GTEPS on the supercomputer.

6. “Efficient Breadth-First Search on Massively Parallel and Distributed-Memory
Machines” [28]
There are many large-scale graphs in real world such as Web graphs and social
graphs. The interest in large-scale graph analysis is growing in recent years. BFS
is one of the most fundamental graph algorithms used as a component of many
graph algorithms. Our new method for distributed parallel BFS can compute BFS
for one trillion vertices graph within half a second, using large supercomputers
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such as the K computer. By the use of our proposed algorithm, the K computer
was ranked first in Graph500 using all the 82,944 nodes and achieved 38,621.4
GTEPS. Based on the hybrid BFS algorithm by Beamer (Proceedings of the
2013 IEEE 27th International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum, IPDPSW 13, IEEE Computer Society, Washington,
2013), we devise sets of optimizations for scaling to extreme number of nodes,
including a new efficient graph data structure and several optimization techniques
such as vertex reordering and load balancing. Our performance evaluation on K
computer shows that our new BFS is 3.19 times faster on 30,720 nodes than the
base version using the previously known best techniques.

We finally succeeded in coping with large-scale and complicated real data
expected in the future and developing graph search software with the world’s highest
performance. We combined highly advanced software technologies:

1. algorithms to reduce redundant graph searches
2. optimization of communication performance on massively parallel computers

connected by thousands to tens of thousands of high-speed networks
3. optimization of memory access on multicore processors.

In 2014–2017, our project team has achieved about 38.6TeraTEPS on K computer
and been a winner at the 8th and 10th to 15th Graph500 benchmark (Fig. 11.3).

Figure 11.4 shows an application of the Graph500 benchmark. We slightly
modified the source code for the Graph500 benchmark, which was applied to

Fig. 11.3 Our project team were awarded the first place in the 8th and 10th to 15th Graph500
benchmark
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Fig. 11.4 Application of Graph500 benchmarks

making a BFS tree of the Twitter Fellowship Network 2009. It takes only about
70 ms to make a BFS tree from a root node, although this graph has 41 million
vertices and 1.47 billion edges.

11.3 High-Performance Computing for Mathematical
Optimization Problems

We also present our parallel implementation for large-scale mathematical opti-
mization problems [4–6, 25, 29, 30]. In the last decade, mathematical optimization
programming problems have been intensively studied in both their theoretical and
practical aspect in a wide range of fields, such as combinatorial optimization,
structural optimization, control theory, economics, quantum chemistry, sensor
network location, data mining, and machine learning [1, 9, 14, 19]. The semidefinite
programming (SDP) problem is a predominant problem in mathematical optimiza-
tion. The primal-dual interior-point method (PDIPM) is one of the most powerful
algorithms for solving SDP problems, and many research groups have employed
it for developing software packages. However, two well-known major bottleneck
parts (the generation of the Schur complement matrix (SCM) and its Cholesky
factorization) exist in the algorithmic framework of PDIPM. These two parts
where bottlenecks occur are called ELEMENTS and CHOLESKY, respectively. The
standard-form SDP has the following primal-dual form.
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P : minimize
∑m

k=1 ckxk

subject to X = ∑m
k=1 Fkxk − F0, X � O.

D : maximize F0 • Y

subject to Fk • Y = ck (k = 1, . . . , m), Y � O.

(11.1)

We denote by S
n the space of n × n symmetric matrices. The notation X �

O (X � O) indicates that X ∈ S
n is a positive semidefinite (positive definite)

matrix. The inner-product between U ∈ S
n and V ∈ S

n is defined by U • V =∑n
i=1

∑n
j=1 UijVij .

In most SDP applications, it is common for the input data matrices F0, . . . , Fm

to share the same diagonal block structure (n1, . . . , nh). Each input data matrix
Fk (k = 1, . . . , m) consists of sub-matrices in the diagonal positions as follows:

Fk =

⎛
⎜⎜⎜⎝

F 1
k O O O

O F 2
k O O

O O
.. . O

O O O Fh
k

⎞
⎟⎟⎟⎠

where F 1
k ∈ S

n1, F 2
k ∈ S

n2, . . . , F h
k ∈ S

nh .

Note that
∑h

�=1 n� = n and the variable matrices X and Y share the same block
structure. We define nmax as max{n1, . . . , nh}. For the blocks where n� = 1,
the constraints of positive semidefiniteness are equivalent to the constraints of the
nonnegative orthant. Such blocks are sometimes called linear programming (LP)
blocks.

The size of a given SDP problem can be approximately measured in terms of
four metrics.

1. m: the number of equality constraints in the dual form D (which equals the size
of the SCM)

2. n: the size of the variable matrices X and Y

3. nmax: the size of the largest block of input data matrices
4. nnz: the total number of nonzero elements in all data matrices

We denote the time complexities of ELEMENTS and CHOLESKY by O(mn3 +
m2n2) and O(m3), respectively.

We have developed a new version of the semidefinite programming algorithm
parallel version (SDPARA), which is a parallel implementation on multiple CPUs
and GPUs for solving extremely large-scale SDP problems that have over a million
constraints [4, 6, 25]. SDPARA can automatically extract the unique characteristics
from an SDP problem and identify the bottleneck. When the generation of SCM
becomes a bottleneck part, SDPARA can attain high scalability using a large
quantity of CPU cores and some techniques for processor affinity and memory
interleaving. SDPARA can also perform parallel Cholesky factorization using
thousands of GPUs and techniques to overlap computation and communication
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if an SDP problem has over two million constraints and Cholesky factorization
constitutes a bottleneck.

We developed a new version of SDPARA 7.6.0-G, which is a parallel imple-
mentation on multiples CPUs and GPUs for solving extremely large-scale SDP
problems. SDPARA is designed to execute PDIPM on parallel computers with
distributed memory space. The speedup achieved by SDPARA is essentially
attributable to its use of parallel computation to overcome the computational
bottlenecks of ELEMENTS and CHOLESKY. Each process reads the input data
and stores them and all variables in the process memory space, while the SCM
data are divided between processes. We previously reported that SDPARA can
compute each row of the SCM in parallel and applied the parallel Cholesky
factorization provided by ScaLAPACK to the SCM. In our previous work [4], we
developed SDPARA 7.5.0-G on TSUBAME 2.0,3 which is a high-performance
GPU-accelerated supercomputer at the Tokyo Institute of Technology. We solved
the largest SDP problem (which has over 1.48 million constraints) and created a
new world record in 2012. In the same year, our implementation also achieved
533 TFlops in double precision for large-scale Cholesky factorization using 4,080
GPUs. We demonstrated that SDPARA is a high-performance general solver for
SDPs in various application fields through numerical experiments at the TSUBAME
2.5 supercomputer, and we solved the largest SDP problem (which has over 2.33
million constraints), thereby creating a new world record. Our implementation also
achieved 1.713 PFlops [6] and 1.774 PFlops [25] in double precision for large-scale
Cholesky factorization using 2,720 CPUs and 4,080 GPUs (Fig. 11.5).

11.3.1 Extremely Large-Scale Parallel Cholesky Solver

As mentioned in the previous section, SDP has many applications that involve SDP
problems with special structures. We initiated the SDPA project,4 which aims to
develop high-performance software packages for SDP, and we have solved a large
number of SDP problems since 1995; therefore, we can classify the various types of
SDP problems into the following three cases:

1. Case 1: SDP problems are sparse and satisfy the property of correlative sparsity;
therefore, SCM tends to become sparse (e.g., the sensor network location
problem and the polynomial optimization problem). In this case, CHOLESKY
is the bottleneck part of PDIPM.

2. Case 2: m is less or not considerably greater than n, and SCM is fully dense
(e.g., the quantum chemistry problem and the truss topology problem). In this
case, ELEMENTS is the bottleneck part of PDIPM, so we can decrease the time
complexity of ELEMENTS O(mn3 +m2n2) to O(m2) by exploiting the sparsity
of the data matrix.

3http://www.gsic.titech.ac.jp/en/tsubame
4http://sdpa.sourceforge.net/

http://www.gsic.titech.ac.jp/en/tsubame
http://sdpa.sourceforge.net/


11 Advanced Computing and Optimization Infrastructure for Extremely. . . 217

Fig. 11.5 SDPARA and its performance on TSUBAME 2.0 & 2.5 supercomputer

3. Case 3: m is considerably greater than n, and SCM is fully dense (e.g., the com-
binatorial optimization problem and quadratic assignment problem(QAP) [4]).
In this case, CHOLESKY is the bottleneck part of PDIPM.

We previously reported that SDPARA can certainly determine whether the SCM
of an input SDP problem becomes sparse (Case 1) or not (Cases 2 and 3). In
the present study, we mainly focused on parallel computation of ELEMENTS and
CHOLESKY in Cases 2 and 3, respectively. We also demonstrated that SDPARA
is a high-performance general solver for SDPs in various application fields through
numerical experiments on the TSUBAME 2.5 supercomputer and solved the largest
SDP problem (QAP10), which has over 2.33 million constraints [6]; and we created
a new world record. Figure 11.6 and Table 11.1 show the speed of the CHOLESKY
component in teraflops. New corresponds to the latest algorithm [6], while org
denotes the original algorithm in our previous paper [4]. Our implementation also
achieved 1.713 PFlops in double precision for large-scale Cholesky factorization
using 2,720 CPUs and 4,080 GPUs. Table 11.2 shows the speed of the CHOLESKY
component in teraflops on the CX400 supercomputer at Kyushu University. We have
achieved 294.2 TFlops when using 384 GPUs.
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Fig. 11.6 Performance of GPU CHOLESKY obtained by using up to 1360 nodes (4080 GPUs)
on TSUBAME 2.0 and 2.5

Table 11.1 Performance (teraflops) of GPU CHOLESKY obtained by using up to 1360 nodes
(4080 GPUs) on TSUBAME 2.0 [4] and 2.5 [6]

(a) 400 nodes (1200 GPUs)

Name m org(2.0) new(2.0) new(2.5)

QAP6 709,275 223.0 233.0 314.5

QAP7 1,218,400 248.8 306.2 505.8

(b) 700 nodes (2100 GPUs)

Name m org(2.0) new(2.0) new(2.5)

QAP6 709,275 309.5 329.0 387.5

QAP7 1,218,400 440.0 470.0 707.1

QAP8 1,484,406 463.8 512.9 825.1

(c) 1360 nodes (4080 GPUs)

Name m org(2.0) new(2.0) new(2.5)

QAP6 709,275 439.6 437.8 508.7

QAP7 1,218,400 695.2 718.8 952.0

QAP8 1,484,406 779.3 825.6 1186.4

QAP9 1,962,225 - 964.4 1526.5

QAP10 2,339,331 - 1018.5 1713.0
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Table 11.2 Performance (teraflops) of GPU CHOLESKY obtained by using up to 384 nodes (384
GPUs) on CX400

(a) 128 nodes (128 GPUs)

Name m org(2.0) new(2.0) new(2.5)

QAP6 709,275 – – 90.1

QAP7 1,218,400 – – 98.7

(b) 384 nodes (384 GPUs)

Name m org(2.0) new(2.0) new(2.5)

QAP8 1,484,406 – – 288.0

QAP8 − 1 1,495,602 – – 294.2

11.4 Software Stacks for Extremely Large-Scale Graph
Analysis System and Future Plans

In this paper, we finally propose new software stacks for an extremely large-scale
graph analysis system (Fig. 11.7), which are based on our current ongoing research
studies above.

1. Hierarchical Graph Store: We propose a hierarchal graph stores and process
extremely large-scale graphs with minimum performance degradation by care-
fully considering the data structures of a given graph and the access patterns
to both DRAM and NVM devices. We have developed an extended memory
software stack for supporting extreme-scale graph computing. Utilizing emerg-
ing NVM devices as extended semi-external memory volumes for processing
extremely large-scale graphs that exceed the DRAM capacity of the compute
nodes, we design highly efficient and scalable data off-loading techniques,
PGAS-based I/O abstraction schemes, and optimized I/O interfaces to NVMs.

2. Graph Analysis and Optimization Library: Large-scale graph data are divided
between multiple nodes, and then, we perform graph analysis and search
algorithms, such as the BFS kernel for Graph500, on multiple CPUs and GPUs.
Implementations, including communication-avoiding algorithms and techniques
for overlapping computation and communication, are needed for these libraries.
Finally, we can make a BFS tree from an arbitrary node and find a shortest path
between two arbitrary nodes on extremely large-scale graphs with tens of trillions
of nodes and hundreds of trillions of edges.

3. Graph Processing and Visualization: We aim to perform an interactive operation
for large-scale graphs with hundreds of millions of nodes and tens of billions of
edges.

We focus on the graph analysis and optimization library, which are illustrated
in Fig. 11.7. Figure 11.8 shows three algorithmic layers of graph analysis and
optimization library. We classify many optimization algorithms into three layers
according to both of the computation time that we need to solve and the data size of
the optimization problem. We have developed parallel software packages for many



220 K. Fujisawa et al.

Fig. 11.7 Software stacks for extremely large-scale graph analysis system

Fig. 11.8 Specification of each layer of HDAOS
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optimization problems categorized into these three algorithmic layers. The upper
layer contains optimization algorithms for NP-hard problems. The most typical and
important optimization algorithm in this layer is a branch-and-cut (bound) algorithm
for the mixed integer problem (MIP). We have collaborated with ZIB (Zuse Institute
Berlin)5 in developing and evaluating parallel (MPI + pthread) software package
for solving MIPs [17, 18, 20]. The middle and lower layer contains interior-point
algorithms for SDP problems and BFS for graph analysis, respectively. We have
released all the software packages developed in our projects until March 2017. We
have started the research project for developing the Urban OS (Operating System)
and implementing it on a large city (Fukuoka, Japan) from 2013.6 The Urban OS
gathers big data sets of people and transportation movements by utilizing different
sensor technologies and storing them to the cloud storage system. As mentioned in
this paper, we have another research project whose objective is to develop advanced
computing and optimization infrastructures for extremely large-scale graphs on
post-peta-scale supercomputers. The Urban OS employs the graph analysis system
developed by this research project and provides a feedback to a predicting and
controlling center to optimize many social systems and services.

11.4.1 Hierarchical Data Analysis and Optimization System

In the cyber-physical system (CPS) (Fig. 11.9), it is possible to create new industries
by optimizing and simulating the real-world data in social mobility. For this reason,
we are attracting significant attention from a number of industries including social
infrastructure, manufacturing industry, retail industry, and so on. We commenced
our research project for developing the Urban Operating System (OS) for a large-
scale city, in 2013. The Urban OS, which is regarded as one of the emerging
applications of the cyber-physical system, gathers big data sets of people and
transportation movements by utilizing different sensor technologies and storing
them in the cloud storage system. As mentioned in our previous papers [7, 8], we
have another research project whose objective is to develop advanced computing
and optimization of infrastructures for extremely large-scale graphs on post-peta-
scale supercomputers. For example, our project team was the winner at the 8th and
10th to 15th Graph500 benchmark7 [28]. The Urban OS employs the graph analysis
system developed by this research project and provides a feedback to a predicting
and controlling center to optimize many social systems and services.

Here, we focus on the HDAOS based on CPS, which are illustrated in Fig. 11.10.
First, we gather a variety of data sets on a physical space and generate mathematical
models for analyzing the social mobility of real worlds. In the next step, we apply

5http://www.zib.de/
6http://coi.kyushu-u.ac.jp/en/
7https://.graph500.org/

http://www.zib.de/
http://coi.kyushu-u.ac.jp/en/
https://.graph500.org/
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Fig. 11.9 CPS (cyber-physical system) and Urban OS (Operating System)

Fig. 11.10 Hierarchical data analysis and optimization system (HDAOS)



11 Advanced Computing and Optimization Infrastructure for Extremely. . . 223

Fig. 11.11 Cyber-physical system and industrial applications of large-scale graph analysis

optimization and simulation techniques to solve them and check the validity of
solutions obtained on the cyberspace. We finally feed these solutions into the real
world.

Figure 11.8 shows three analysis layers, and we can choose the appropriate one
according to a given time for the decision-making process. Figure 11.8 shows the
algorithmic specifications of each layer of HDAOS. We classify many optimization
algorithms into three layers according to both the computation time needed to solve
problems and the data size of the optimization problem. We have developed parallel
software packages for many optimization problems categorized into these three
algorithmic layers. The long-term analysis layer contains optimization algorithms
for NP-hard problems. The most typical and important optimization algorithm in
this layer is a branch-and-cut algorithm for the mixed integer problem (MIP). We
have collaborated with ZIB in developing and evaluating parallel (MPI + pthread)
software packages for solving MIPs. The midterm and short-term analysis layers
contain SDP problems [4, 6] and BFS for graph analysis [28], respectively. In
the cyber-physical system (Fig. 11.11), it is possible to create new industries by
optimizing and simulating the real-world data in social mobility. We gather a variety
of data sets by utilizing different sensor technologies and storing them in the cloud
storage system via the Internet. In the next step, we generate mathematical models



224 K. Fujisawa et al.

for analyzing the social mobility of real worlds. We finally feed these solutions into
the real world. We will continue these activities toward real-world applications with
many development partners.
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Chapter 12
Software Technology That Deals
with Deeper Memory Hierarchy
in Post-petascale Era

Toshio Endo, Hiroko Midorikawa, and Yukinori Sato

Abstract There is an urgent need to develop technology that realizes larger, finer,
and faster simulations in meteorology, bioinformatics, disaster measures, and so on,
toward post-petascale era. However, the “memory wall” problem will be the one of
largest obstacles; the growth of memory bandwidth and capacity will be even slower
than that of processor throughput. For this purpose, we suppose system architecture
with memory hierarchy including hybrid memory devices, including nonvolatile
RAM (NVRAM), and develop new software technology that efficiently utilizes
the hybrid memory hierarchy. The area of our research includes new compiler
technology, memory management, and application algorithms.

12.1 Introduction

With the existence of many-core accelerators including GPUs and Xeon Phi
processors, exascale supercomputers will be realized in a few years to accommodate
high-performance simulations in weather, medical, and disaster measurement area
using big data. On the other hand, the scales of those simulations will be limited
by the memory wall problem [9], which is that the improvement of capacity and/or
bandwidth of memory is slower than that of processors. This is a well-known and
traditional problem, and processor vendors have improved cache architecture to
mitigate it for a long time. However, it is becoming even more critical because

T. Endo (�)
Global Scientific Information and Computing Center, Tokyo Institute of Technology, Tokyo,
Japan
e-mail: endo@is.titech.ac.jp

H. Midorikawa
Seikei University, Tokyo, Japan
e-mail: midori@st.seikei.ac.jp

Y. Sato
Toyohashi University of Technology, Aichi, Japan
e-mail: yukinori@cs.tut.ac.jp

© Springer Nature Singapore Pte Ltd. 2019
M. Sato (ed.), Advanced Software Technologies for Post-Peta Scale Computing,
https://doi.org/10.1007/978-981-13-1924-2_12

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1924-2_12&domain=pdf
mailto:endo@is.titech.ac.jp
mailto:midori@st.seikei.ac.jp
mailto:yukinori@cs.tut.ac.jp
https://doi.org/10.1007/978-981-13-1924-2_12


228 T. Endo et al.

Fig. 12.1 A co-design approach that spans application algorithm, system software, and system
architecture toward memory wall problem in post-petascale era

of both architectural tendency and demands from applications including larger
and finer scale simulations, which would be coupled with emerging big data
technologies.

Thus we require reactions toward memory wall problem, not only in processor
architecture but also in system architecture including deeper memory hierarchy.
Recently, high-performance flash SSDs with O(GB/s) bandwidth and O(us) access
latency are expected to fill the gap between main memory and slow hard disk
drives. We should take care of technology evolution such as 3D stacking memory
(hybrid memory cube and high bandwidth memory) and next-generational non
volatile memory. Next, application algorithms should be reconsidered to exploit
memory hierarchy efficiently; the key direction is locality improvement and com-
munication reduction. In stencil computation, which is a major computation in
computational fluid dynamics, a technique called temporal blocking can largely
improve memory access locality. Then system software including runtime libraries
and compiler/transpiler have a role to combine such new architecture and new
algorithms while reducing software development costs. This co-design approach
that spans application algorithm, system software, and system architecture should
be pursued toward post-petascale era (Fig. 12.1).

The following part of this section consists as follows. Section 12.2 describes
out-of-core implementations of stencil computation that harness high-speed flash
SSDs in order to achieve finer simulations that require larger memory capacity
than main memory. The implementations adopt multi-level temporal blocking, and
parameter tuning is done in a systematic method. Section 12.3 couples the temporal
blocking technique with GPGPU architectures equipped with memory hierarchy
that consists of GPU device memory, host memory, and high-speed flash SSDs. This
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Fig. 12.2 The multi-level tiling in spatial and temporal spaces for three layers, cache, memory,
and flash SSDs

section introduces a new runtime library designed to harness this memory hierarchy
while reducing application programming costs. Section 12.4 describes a tool chain
designed to help application programmers develop and improve user programs for
efficient usage of memory hierarchy. The key technology is a memory profiler to
capture memory access behaviors of applications. Finally, Sect. 12.5 concludes this
chapter.

12.2 Horizontal and Vertical Memory Extensions for Large
Data Applications (Midorikawa Group)

12.2.1 Flash-Based Out-of-Core Stencil Computations

The 1000-time latency gap between DRAM and flash is overcome by our advanced
implementation using highly parallel AIO (asynchronous input/output) and a novel
temporal blocking algorithm designed for flash as shown in Fig. 12.2 [15, 17].

Large number of AIOs issued by multiple threads boost flash I/O bandwidth at
the maximum and achieve the highest performance compared to traditional schemes,
such as page swap and file map, as shown in Fig. 12.3a.
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Fig. 12.3 (a) Relative times for various methods for 7-point stencil computation with 32 GiB
DRAM, (b) AIO performance in various-size problems using 32 GiB DRAM

Figure 12.3b shows the relative effective Mflops of out-of-core stencil compu-
tations with 32 GiB of DRAM using the AIO method for various problems whose
data sizes are between 16 and 512 GiB. In the 512-GiB problem, whose data size is
16 times larger than that of the DRAM, 87% of the Mflops execution performance
is achieved with DRAM only. In other words, its performance degradation is limited
to only 13% compared to that of the normal execution with sufficient DRAM, even
if 94% of the program data exist in the flash SSD.

With our algorthm, the available maximum problem size for stencil computations
is not limited by the capacity of main memory, but the capacity of local flash SSDs.
Moreover, the optimal combinations of spatial and temporal block sizes are easily
available in runtime by using Blk-Tune described in the next section.

12.2.2 Blk-Tune: Automatic Blocking Size Setting System

Blk-Tune automatically retrieves platform information and determines the globally
optimal spatial/temporal blocking sizes to minimize the amount of I/O traffic to the
flash SSD in runtime [14]. It realizes just-in-time selection by a search algorithm
without any preliminary executions, which differentiates the Blk-Tune from existing
other auto-tuning systems. What a user has to do is only input problem parameters
as shown in Fig. 12.4.

Blk-Tune can work as the front end of stencil computations and finds global
optimum blocking parameters for the particular problem and the platform in
runtime. Blk-Tune is available not only for such online tunings but also for offline
tunings for different platforms from the execution platform, with input of hardware
parameters, such as capacities of memory/cache and number of CPU cores.
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Fig. 12.4 The Blk-Tune internal overview

Fig. 12.5 (a) Blk-Tune output examples, (b) manual selection vs. Blk-Tune for various-size
problems on crest6 (Haswell server) system

Figure 12.5a shows Blk-Tune output examples for two different problems in data
size and time steps and for three platforms, crest6, crest4, and crest0. Even for the
same problem, Blk-Tune outputs different spatial and temporal blocking parameters
for each memory layer according to the platform hardware. Figure 12.5b compares
the execution times by manual and Blk-tune parameter settings for various problem
data sizes and time steps.
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Fig. 12.6 (a) Large-scale stencil computations: vertical memory layers in a local node and a
horizontal domain data distribution in a hierarchical temporal blocking computation for a cluster,
(b) the execution times of stencil computations in TSUBAME3.0

12.2.3 Large-Scale Stencil Computations Using Distributed
Flash SSDs and Memories in a Cluster

To solve large-scale stencil computation problems by using a cluster system, a
new algorithm, which explores data access locality in both vertical and horizontal
directions as shown in Fig. 12.6a, was proposed [16]. It utilized distributed flash
SSDs over cluster nodes as an extension to the main memories of nodes in a cluster.
A multi-level blocking scheme for cache, main memory, local flash, and remote
node was introduced. The available maximum problem size is not limited by the
total capacity of DRAMs in a cluster. It can be expanded to the total capacity of
distributed flash SSDs in a cluster.

The results showed that large-scale stencil problems can be solved with a limited
number of nodes and a moderate size of main memories, which reduces system
cost and energy consumption. When using TSUBAME3.0 supercomputer [12, 31]
(256 GiB-DRAM, 2 TB-Flash/node), only 16 nodes are sufficient for 16 TB stencil
problem as shown in Fig. 12.6b, which usually requires 128 nodes when using only
DRAM without our implementation.

12.2.4 mDLM: User-Level Remote Memory Paging System for
Out-of-Core Multi-thread Applications

A user-level remote memory paging system, DLM (distributed large memory) [18],
provides virtual large memory for one calculation node by using distributed node
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Fig. 12.7 (a) The DLM system: a calculation host and memory servers, (b) the DLM programs

Fig. 12.8 DLM performances: (a) stream benchmark, (b) 7-point stencil computations

memories in a cluster, as shown in Fig. 12.7a. The mDLM [19] supports multi-thread
C programs, such as OpenMP and pthread, as shown in Fig. 12.7b.

It was designed for users who need to solve large-size problems using existing
algorithms and programs originally designed for shared-memory models for single
node. They prefer and accept the extra execution time caused by partially using
remote memory instead of the local memory, because converting existing complex
algorithms to parallel MPI programs is not an easy task and requires substantial
costs.

Figure 12.8a shows stream benchmark for DLM data, where calculation node
memory is only 128 GiB. For 512 GiB DLM data, remote memory bandwidth
achieves 1.6 GiB/s. However, the performance degradation caused by remote mem-
ory paging is limited by using a locality-aware algorithm. Figure 12.8b shows the
performances of a temporal blocking 7-point stencil computation for problem sizes,
from 64 to 512 GiB, when using only 128 GiB local memory. The performance of
512 GiB problem, whose data size is four times larger than the size of local memory,
achieves 77% of the performance in the execution using only local memory.
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Fig. 12.9 Various SMS global data distributed mappings and a program example

12.2.5 mSMS: Software Distributed Shared Memory for
Multi-node and Multi-thread Processing

mSMS, a newly designed software distributed shared memory (SDSM), realizes
flexible and productive parallel programming environment for multi-node process-
ing with OpenMP/pthread/OpenACC for each node in a cluster. It provides a
transparent full-accessible globally shared memory distributed over multiple nodes
with the data distribution API shown in Fig. 12.9, which was developed in the
traditional software distributed shared memory, SMS [13]. mSMS is very different
from other existing PGAS languages and APIs, because the same complete full-
accessible global address space is provided to each node, and C pointer-based
programs are executable transparently for the global data that is actually distributed
over nodes in a cluster with the data distribution interface.

mSMS employs an efficient node communication mechanism by limited number
of threads dedicating to simultaneous node communications, and it achieved com-
parable or more efficient communication performance compared to that obtained by
typical MPI + OpenMP programs

The performance of simple stencil computations on TSUBAME3.0 [12, 31] is
shown in Fig. 12.10. Large-size (9.2 TiB) problems can be easily implemented on
72 nodes of the cluster by mSMS. The performance of mSMS with preload is
comparable or even better than that of the MPI implementation in 7-point stencil. In
more calculation-dominant 27-point stencil, the mSMS performance achieves 97–
93% of the MPI performance without preload.
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Fig. 12.10 The mSMS and MPI performances in 7-point and 27-point stencil computation
(128 GiB–9.2 TiB data problems, 128 time steps, 128 GiB/node, 2–72 nodes in TSUBAME3.0)

12.3 Out-of-Core Computations on Memory Hierarchy of
GPGPU Clusters with a Co-design Approach (Endo
Group)

Toward exascale in computational speed, many-core accelerators including GPUs
and Xeon Phi processors are known as promising components, and many research
projects have demonstrated their high performance. On the other hand, it is still
harder to achieve “extreme problem scale” due to the memory wall problem
mentioned in Sect. 12.1, especially on general purpose GPU (GPGPU) clusters. In
current high-end products, while computation speed and memory bandwidth are
high (around 1–2 TFlops in double precision and 200–400 GB/s per accelerator),
memory capacity per accelerator is limited to 6–16 GiB. Owing to the advantage in
performance of GPUs, many scientific applications have been executed successfully
on GPGPU clusters; however, the problem sizes have been limited by capacity
[2, 21, 22, 30].

In order to realize extremely fast and large-scale applications, we need properly
designed approaches to harness deeper memory hierarchy. An example of architec-
ture of a GPGPU computing node is shown in Fig. 12.11. If we harness both of high
performance of upper memory layer and large capacity of lower layer, fast and large-
scale simulations could be realized. Toward this direction, this section describes a
co-design approach of application programs with locality improvement techniques
and underlying runtime library to perform data swapping between memory layers.

This section assumes that the target applications are designed for GPGPU
clusters and written in MPI and CUDA. Those applications are executed on top
of a runtime library called hybrid hierarchical runtime (HHRT) in order to enable
larger problem scales that surpass the GPU device memory capacity [3, 4, 6]. By
using proper system architecture and a runtime library, scale expansion is achieved;
however, speed performance is still insufficient “as is,” due to overhead of data
movement among memory hierarchy. This cost is largely mitigated by locality
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Fig. 12.11 Memory
hierarchy of a GPGPU
machine from the viewpoint
of GPU cores. Here an SSD
with bandwidth of >1 GB/s is
equipped

improvement in the application algorithm layer. In stencil computation, temporal
blocking [20, 32], also used in Sect. 12.2, is applied.

12.3.1 HHRT

The objective of hybrid hierarchical runtime (HHRT) library is to extend applica-
tions’ supportable problem scales.1 The main targets of HHRT are applications
whose problem scales have been limited by the capacity of upper memory layer,
such as GPU device memory in GPU clusters. For instance, such applications
include simulation software based on stencil computations written for GPUs.
They have been enjoyed high computing speed and memory bandwidth of GPUs.
However, most of those applications are designed as “in core,” and supportable
problem sizes are determined by device memory capacity as shown in Fig. 12.12
(A), in spite of the existence of larger memory (storage) layers, including host
memory and file systems. While the problem sizes are expanded by using multiply
GPUs and compute nodes, they are still limited by the aggregated amount of used
device memory capacity.

1Available at https://github.com/toshioendo/hhrt

https://github.com/toshioendo/hhrt
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Fig. 12.12 Execution model on typical MPI/CUDA and execution model on HHRT library

The problem scales of such applications are expanded by executing them with
only slight modifications on top of HHRT library. Basically we assume that the
target applications of HHRT have the following characteristics:

• The applications consist of multiple processes working cooperatively.
• Data structure that is frequently accessed by each process is put on upper memory

layer.

Many stencil applications on GPU clusters described above have already these
characteristics, since they are written in MPI to support multiple nodes, and regions
to be simulated are distributed among processes so that each process has smaller
local region than device memory capacity.

On the execution model of HHRT, each GPU is shared by multiple MPI processes
as illustrated in Fig. 12.12 (B), unlike in (A) (this figure shows only two-layer
hierarchy; however, if flash SSDs are available, they are visible as the third layer).

When users execute their application on top of HHRT, they would typically adjust
the number of MPI processes so that the data size per each process is smaller
than the capacity of device memory. Hereafter Ps denotes the number of processes
sharing a single GPU, which is 6 in the figure. By invoking plenty number of
processes per GPU, we can support larger problem sizes than device memory in
total.

This oversubscribing model itself, however, does not support larger problem
sizes. We cannot hold all the data of Ps processes on the device memory at once,
when Ps is large enough. Instead, we execute swapping out of memory regions of
some processes from the device memory (process-wise swapping).
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Fig. 12.13 State transition of each process on HHRT

On HHRT, swapping is tightly coupled with process scheduling. Swapping out
may occur at yield points, where process may start sleeping, instead of individual
memory accesses. In current library, based on CUDA and MPI, yield points
correspond to blocking operations of MPI, such as MPI_Recv, MPI_Wait, and
so on.

Figure 12.13 illustrates state transition of each MPI process. Each process is in
one of states, “running,” “blocked,” or “runnable.”2

When a running process p reaches a yield point, it starts swapping out contents
of all the regions that the process holds on the device memory into some dedicated
place (called swap buffer hereafter) on the lower memory layer, such as host
memory or flash SSDs. Then the process releases the capacity of device memory so
that it can be reused by other processes, and the process starts sleeping. While the
MPI operation that have let the process p start to sleep is still blocked, the process p

remains in “blocked” state. Even when the operation is unblocked (e.g., a message
has arrived), the process p may not start running immediately if the capacity of
device memory is insufficient; here p is in the “runnable” state. Afterward, when
the size of free space in device memory becomes sufficient, the sleeping process p

can start swapping in; it allocates the heap region again on device memory, copying
user data from swap buffer to the heap on device memory. Then p can exit from the
yield point, which is an MPI blocked operation function. Now p is in the “running”
state.

With this swapping mechanism, Ps processes share the limited capacity of device
memory in a transparent fashion from application programs.

Generally, we can obtain better performance if more than one process out of
Ps processes can be in “running” state, since such a situation enables overlapping of
swapping processes and running processes. This can be done by configuring the data

2In the actual implementation, there are two transient states, “swapping-in” and “swapping-out.”
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size of each process to be less than half of device memory capacity. Figure 12.12
shows such a situation where two processes are running and other four processes
are sleeping.

12.3.2 Performance Evaluation

We evaluate performance of out-of-core execution by executing a “seven-point”
stencil benchmark on top of HHRT library. The benchmark is written with CUDA
and MPI, and temporal blocking technique is implemented in order to improve
locality. The temporal blocking size has been already tuned through preliminary
evaluations.

The evaluation has been conducted on two GPGPU platforms shown in
Table 12.1. One is a PC server equipped both with a NVIDIA K40 GPU and a
high-speed m.2 flash SSD, which is used for a single GPU evaluation. For multiple
GPU/node evaluation, we use another platform, a 40-node GPGPU cluster named
TSUBAME-KFC/DL [5]. Each node has four NVIDIA K80 gemini boards; thus
eight GPUs are available. In this paper, a single GPU per node is used to evaluate the
effect of memory hierarchy. Note that the application performance is significantly
affected by SSD access performance in “out-of-core” cases. Each TSUBAME-
KFC/DL node is equipped with two SATA SSDs, whose bandwidth is 0.4–0.5GB/s
and severely lower than the m.2 SSD. To alleviate this lower performance, we use
two SSDs in parallel.

Table 12.1 Platforms used for evaluation

PC server TSUBAME-KFC/DL

# of nodes 1 40

GPU NVIDIA Tesla K40 NVIDIA Tesla K80

SP peak perf. (GFlops) 4.29 (5.0 w/ boost) 2.8 (4.37 w/ boost)

Device memory BW (GB/s) 288 240

Device memory size (GiB) 12 12

# of GPUs/node 1 8 (4 boards)

CPU Intel Core i7-6700K Intel Xeon E5-2620 v2

# of CPUs/node 1 2

CPU-GPU connection PCIe gen3 x8 PCIe gen3 x16

Host memory size (GiB) 64 64

SSD Samsung 950PRO m.2 Intel DC S3500

Read/Write BW (GB/s) 2.5/1.5 0.50/0.41

Capacity (GB) 512 480

# of SSDs/node 1 2

Network interface Gigabit Ethernet 4x FDR InfiniBand
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Fig. 12.14 Performance
evaluation with various
problem sizes on a single
GPU

The graphs in Fig. 12.14 show the performance of the stencil program on a single
GPU on the PC server. “TB” in graphs corresponds to the cases with temporal
blocking, and “NoTB” does not use temporal blocking (thus k = 1). In TB cases,
we show the fastest cases with varying k. The x-axis shows the aggregated size of
stencil grids, which correspond to the problem scales.

We have successfully executed the program with problem sizes of up to 256 GiB,
which is 4 times larger than host memory capacity and 20 times larger than device
memory. This is owing to HHRT’s facility for oversubscription and swapping. While
NoTB is impractically slow with 12 GiB problem sizes or larger for too heavy
swapping cost, the situation is significantly better on TB for better locality. In the TB
case, the speed performance is around 80–90% with 12–48 GiB problems, compared
with in-core execution. In these cases, host memory layer is used for swapping
out. With even larger sizes, the overhead becomes larger for swapping data to flash
SSDs; the speed is 30–50%. This situation shall be alleviated in future improvement
of HHRT, flash devices, and temporal blocking algorithm; however, we can say it
is realistic to achieve extremely large problem sizes in scientific applications by
harnessing deeper memory hierarchy.

Figure 12.15 demonstrates weak scalability of multiple GPU cases on
TSUBAME-KFC cluster. The graph shows the case of 24 GiB problem size per
node and 96 GiB per node. Both cases use larger problem sizes than GPU device
memory capacity; the former case uses host memory as swapping devices, while
the later uses flash SATA SSDs.

We observe the scalability is pretty good in both cases. Compared with a single
GPU performance (97.6 GFlops in 24 GiB case and 15.2 GFlops in 96 GiB case),
we got 21.8 times and 23.9 times speedup on 32 GPUs. In the latter case, we have
successfully executed the problem of 96 × 32 = 3072 GiB size by using limited
computing resources. Currently, the resultant speed 363 GFlops is not so high due
to the insufficient speed of SATA SSDs. If each node were equipped with fast m.2
SSDs as the PC server we used, we could obtain around 1 TFlops for 3 TiB problem.
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Fig. 12.15 Weak scalability
evaluation on
TSUBAME-KFC/DL

12.3.3 Summary of This Section

This section described a co-design approach toward extremely large-scale applica-
tions on top of GPGPU clusters. The approach consists of (1) a runtime library,
HHRT, which provides data swapping mechanism among memory layers, and (2)
locality improvement technique, temporal blocking for stencil computations. As a
result, this section showed that it is realistic to achieve extremely large problem sizes
in scientific applications with properly designed deeper memory hierarchy.

12.4 Tool Chains for Memory Locality Profiling and
Performance Tuning (Y. Sato, Endo Group)

In this project, we have developed tool chains for accelerating system with deeply
hierarchical memory. Starting with source code or pre-compiled executable code,
these tools contribute to evolving application software into the underlying memory
subsystems. The objective of these is to enable automatic/semiautomatic perfor-
mance tuning and optimizations for deeply hierarchical memory and contribute to
productive software performance engineering. To realize such performance tuning
and optimizations, we investigate a wide range of techniques to profile, estimate,
translate, and switch application code. Figure 12.16 shows an overview of our
tool chains for memory locality profiling and performance tuning developed in this
project. In the following, we briefly introduce key points of these tools.

To profile the actual application execution, we use executable binary code as
an input and transparently analyze code based on dynamic binary instrumentation
technique. Here, we build static and dynamic analysis routines for binary code on
the top of Pin tool set [10]. To assist performance tuning process, we feed back
the obtained profiling results to source code as key clues for the performance under
the current execution environment. In this project, we focus on the ways to profile
memory locality and cache-line conflicts.



242 T. Endo et al.

Fig. 12.16 Overview of our tool chains for memory locality profiling and performance tuning

To estimate the performance of execution in systems with deeply hierarchical
memory, we build performance models that focus on memory locality. Here, we
deeply explore sensitivity of loop tile size selection for performance and develop
an automatic loop tile size optimizer called PATT. Using PATT, we can perform
transparent tuning-based iterative compilation of code.

To translate and switch application code, we attempt to apply dynamic binary
translation technique to transparent code optimization for memory locality. Here,
we implement transparent code translation based on the existing open source tool
chains and extend them to compensate their weaknesses for applying optimization
from the executable binary code. Then, we package these tools as ExanaDBT, which
realizes performance gain from transparent binary translation.

In the following subsections, we describe outlines of these tool chains we
developed in this project.

12.4.1 Memory Locality Profiler

As modern memory subsystems have become complex, performance tuning of
application code targeting for their deeper memory hierarchy becomes time-
consuming and empirical tasks and often depends on the hands of skilled program-



12 Software Technology That Deals with Deeper Memory Hierarchy in. . . 243

mers or domain experts. These are sometimes called Ninja gap [23] and known
to hinder productivity for software and system development cycles. To assist such
burdens on performance tuning process, we have developed an application analysis
tool called Exana and attempted to automate some parts of it [28].

Exana provides the ability to transparently analyze program structures, data
dependences, memory access characteristics, and cache hit/miss statistics across
program execution. For program structures, it can monitor all the dynamic control
flows during the actual execution and especially focuses on dynamic loop and
call nests appearing at runtime which are sometimes sensitive scenarios of input
data [25, 27]. Here, we present LCCT (loop-call context-tree) representation,
which is an extension of CCT (Call Context Tree) representation [1]. The LCCT
representation, where loop nodes are added into the original CCT, can depict loop
nests across multiple procedure calls effectively.

For data dependence analysis via memory, we present LCCT+M (Loop-Call
Context Tree with Memory) representation that combines dynamic data depen-
dencies with the LCCT representation [26]. Using LCCT+M, we can visualize data
dependencies via memory reference together with dynamic program context based
on regions composed of function calls, nested loops, innermost loops and bodies
of loop iterations. This provides a new methodology that enables understanding
and characterization of actual dynamic execution of workloads in terms of data
dependencies and dynamic program contexts. Using LCCT+M representations,
we can uncover various types of parallelisms such as loop-, task- and pipeline-
parallelisms appeared in the actual executions.

Exana also provides ability to profile memory access characteristics and cache
hit/miss statistics across program execution by feeding online memory trace to a
pattern analyzer or a cache simulator directly. For memory access pattern analysis,
Exana organizes a series of memory accesses as patterns and formulates whole
patterns during the execution [11]. Here, Exana is seen as performing online loss-
less compression of memory access behaviors corresponding to each memory
instruction. Exana also provides the functionality for working set analysis in the
granularity of loop region [28].

Exana is not a loose collection of these individual analyses, but all of analyses
are packaged as an integrated tool. This enables us to activate any of analyses
implemented on Exana at the same time in a single analysis run. This feature also
contributes to providing simple interface for users to obtain application profiling
results. Figure 12.17 shows an overview of how to run Exana. Here, all the users
needed is to select the functionality for profiling and feed the command to be
executed. After the execution with profiling code complete, Exana outputs their
result files, which can be visualized using GUI-based tools. Hence, the users can
intuitively find clues for performance gains and easy to feed back to their source
code.
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Fig. 12.17 Interface of Exana for users

12.4.2 Cache-Line Conflict Detector

We have developed a cache-line conflict profiling method called C2Sim on
the top of Exana tool [24]. The basic idea behind this is the use of cache
simulators as a diagnosis tool for cache-line conflicts. Further, Exana-C2Sim
pushes forward the state-of-the-art performance tuning workflow by accurately
highlighting the sources of conflicts. We also propose a mechanism that enables
to identify where line conflict misses are incurred and the reasons why the conflicts
occur.

The background behind this paper is that performance degradation or perfor-
mance variability due to line conflict misses still found occasionally in modern CPU
architectures, so we strive to eliminate it based on its accurate detection technique.
Modern CPUs typically have highly associative cache structures to avoid conflict
misses as much as possible. One example seen in Intel Sandy Bridge CPU is that
the L3 cache is organized as a 20-way associative cache. Even in the lower L1
and L2 caches, their associativity is 8-way. However, in some of applications that
intensively access a particular set in the associative cache, the number of elements
mapped onto the same set can easily exceed the degree of associativity [8] and cause
conflict misses. Since this often impacts on performance seriously, we should avoid
it by refactoring the source code.

We evaluate our conflict simulator using some of the benchmark codes used in
the HPC field. From the results, we confirm that our simulator can accurately model
the cache behaviors that cause line conflicts and reveal the sources of them during
the execution. We also demonstrate that optimizations assisted by our mechanism
contribute to improving performance for both of serial and parallel executions.
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12.4.3 Automatic Loop Tile Size Optimizer

On modern CPU architectures, performance tuning against complexity within
a hierarchical memory system and scalability for parallelism is inevitable for
achieving their potential. As many-core processors become popular more and more
in high performance computing domain, these trends are becoming much significant
than ever before. Here, we focus on loop tiling that plays an important role in
performance tuning process and strive to find its optimal parameters for scalable
parallel executions. Then, we have developed a novel auto-tuning framework called
PATT, which analytically models load balance and empirically auto-tunes tricky
cache behaviors based on iterative polyhedral compilation using an LLVM-based
polyhedral optimizer, Polly [7].

We compare our method with two of the existing general purpose heuristics:
simulated annealing and Nelder-Mead [33]. From the result, we demonstrate that
our method obtains good tile sizes with shorter search steps and higher accuracy
than the other methods.

12.4.4 Transparent Code Optimizer

To fully automate performance tuning especially for deeper memory hierarchy, we
have developed a dynamic compilation system called ExanaDBT on the top of
dynamic code translation technique [29]. Here, ExanaDBT transparently optimizes
and parallelizes binaries at runtime. To realize advanced loop-level optimizations
beyond trace or instruction level, ExanaDBT uses a polyhedral optimizer [7]
and performs loop transformation for rewarding sustainable performance gain on
systems with deeper memory hierarchy. Especially for successful optimizations, we
reveal that a simple conversion from the original binaries to LLVM IR will not be
enough for representing the code in polyhedral model and then investigate a feasible
way to lift binaries to the IR capable of polyhedral optimizations.

We implement a proof-of-concept design of ExanaDBT and evaluate it. Starting
from hot spot detection of the execution, it dynamically estimates gains for
optimization, translates the target region into highly optimized code, and switches
the execution of original code to optimized one. From the evaluation results, we
confirm that ExanaDBT realizes dynamic optimization in a fully automated fashion.
The results also show that ExanaDBT can contribute to speeding up the execution
in average 3.2 times from unoptimized serial code in a single-thread execution and
11.9 times in a 16-thread parallel execution.
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12.4.5 Contribution to Open-Source Community

We have released Exana and C2Sim to the public, and these are available at GitHub.3

We encourage researchers and developers to download it as a basis for productive
performance tuning.

12.5 Conclusion

This chapter summarized our efforts to efficient usage of deeper memory hierarchy
in post-petascale era. The topics span system architecture, system software, and
application algorithm areas; we demonstrated extremely high performance and
large-scale applications are feasible by combining the proposed technologies. The
knowledge obtained in this project has affected the system architecture design of
TSUBAME3.0 supercomputer introduced at Tokyo Institute of Technology in 2017;
each compute node is equipped with NVMe flash SSD of 2 TB capacity and Read
2.7 GB/s and Write 1.8 GB/s bandwidth, which are expected to be utilized for
extremely high-speed and large computations. In the future, we will pursue this co-
design approach to harness deeper memory hierarchy with new types of nonvolatile
memory devices those appear in next-generation large-scale computer systems.
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Chapter 13
Power Management Framework
for Post-petascale Supercomputers

Masaaki Kondo, Ikuo Miyoshi, Koji Inoue, and Shinobu Miwa

Abstract Power consumption is a first class design constraint for developing
future exascale computing systems. To achieve exascale system performance with
realistic power provisioning of 20–30 MW, we need to improve power-performance
efficiency significantly compared to today’s supercomputer systems. In order to
maximize effective performance within a power constraint, investigating how to
optimize power resource allocation to each hardware component or each job
submitted to the system is necessary. We have been conducting research and
development on a software framework for code optimization and system power
management for the power-constraint adaptive systems. We briefly introduce the
research efforts for maximizing application performance under a given power
constraint, power-aware resource manager, and power-performance simulation and
analysis framework for future supercomputer systems.

13.1 Introduction

Power consumption is expected to be a first class design constraint for developing
future exascale computing systems. Figure 13.1 which illustrates power consump-
tion of the top ten fastest supercomputers in the world over a decade clearly shows
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that power consumption of large-scale supercomputer systems gradually increases.
To achieve exascale computing performance with realistic power provisioning of
20–30 MW, significant power efficiency improvement over today’s supercomputers
is necessary. In order to maximize effective performance within a power constraint,
we need a paradigm shift from the worst-case design strategy to the power-constraint
adaptive system (PCAS) design, which allows the system’s peak power to exceed
maximum power provisioning with adaptively controlling power-knows equipped
in hardware components so that effective power consumption at runtime is under
the power constraint (Fig. 13.2). This concept is recently known as hardware
overprovisioning.

To realize an exascale system with the PCAS concept, we have been conducting
a research project called PomPP (POwer Management framework for Post Peta-
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scale systems) and developing a software framework for code optimization and
system power management which adaptively controls power-performance knobs
under a given power constraint. There are several key challenges that need to
be addressed, for example, (1) framework to maximize application performance
under a given power constraint, (2) power-aware job scheduling to maximize
system throughput and to minimize underutilized power resources, and (3) power-
performance simulation and analysis framework for exascale applications. In the
following sections, we briefly discuss each of the key challenges and introduce our
research efforts for them.

13.2 Power-Performance Optimization Framework

There is a strong demand for maximizing application performance under a given
power constraint. In fact, power demand of each hardware component is very diverse
among applications. For example, compute-intensive applications prefer allocating
much power to CPUs, while memory-intensive applications prefer investing power
resource in memory bandwidth. It is necessary to investigate how to optimize
power resource allocation to each hardware component such as CPUs, memory
subsystems, and network subsystems within a job execution. In this section, we
describe our research efforts of optimizing power-performance behavior of an
application execution.

13.2.1 Variation-Aware Power Allocation Among Compute
Nodes

Due to the advances in VLSI manufacturing processes, modern processors suf-
fer from increasingly large power variations, and it causes a critical issue on
power-constrained large-scale computer systems. Because of this manufacturing
variability, modules that include individual processors and associated DRAMs in
current HPC systems already have inhomogeneity from the viewpoint of power
consumption. In power-limited systems with hardware power cap management, this
power variation turns into CPU frequency variation, causing performance inhomo-
geneity in computing nodes and degrading the effective system performance on the
large-scale parallel computing. This section discusses the impact of manufacturing
variability in power-constrained supercomputing and introduces a power assignment
technique to mitigate the negative effects of the inhomogeneity. The detail of this
section has been reported in [5].
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Table 13.1 Module power and performance variation (*DGEMM)

Module-level power
constraint (Cm) No power cap 110 W 100 W 90 W 80 W 70 W

CPU power cap
(Ccpu)

Non 97.4 W 88.1 W 78.8 W 69.5 W 60.1 W

Worst-case CPU
frequency variation
(Vf )

1.00 1.20 1.32 1.35 1.42 1.40

Worst-case power
variation (Vp)

1.30 1.16 1.14 1.16 1.18 1.21

Worst-case execution
time variation (V t)

1.00 1.31 1.27 1.28 1.40 1.64

13.2.1.1 Impact of Variation on Power-Constrained HPC Systems

Table 13.1 shows power-performance variation for *DGEMM benchmark program
that is a compute-bound, embarrassingly parallel matrix multiplication subroutine
from the BLAS library and is also the main kernel for the High Performance
Linpack (HPL) benchmark. We used a thread-parallelized version of this code in
the Intel Math Kernel Library with a matrix size of 12,288 × 12,288. We measured
the power and performance on a supercomputer called HA8000, which is a large-
scale production system at Kyushu University, with 960 computing nodes, each of
which includes two Intel E5-2697v2 Ivy Bridge processors and 256 GB memory.
The total number of modules is 1,920. We study the impact of module-level power
variation on application performance in power-constrained scenarios with the help
of RAPL power measurements and caps. RAPL (Running Average Power Limit) [6]
is the interface to monitor and limit power consumption of the CPU and DRAM for
Intel CPUs. Table 13.1 presents results of the 1,920-module experiments with and
without power capping.

Although the specification of RAPL covers DRAM power capping, we restrict
power capping to the CPU domain. Vp in the table is calculated by dividing the
maximum power value with the minimum power value in the appropriate module
set. Without power constraints, it is observed that Vp values at the module level are
about 1.3, i.e., there is a 30% difference in power consumption across modules even
when they are running identical codes. We see that variation in power (when no
power capping is enforced) translates to variation in CPU frequency under a power
cap, e.g., applying the 70 W power constraint increases Vf , which is the worst-case
variation in CPU frequency across the modules, from 1.00 to 1.40, indicating a 40%
difference in CPU frequencies across modules. Eventually, the frequency variation
causes the worst-case execution time variation across all MPI ranks represented
as V t . For *DGEMM, power capping results in up to 64% variation in per-rank
performance (Cm = 70 W), resulting in poor application performance. Note that this
scenario makes a perfectly load-balanced application exhibit load imbalance under
a power constraint. This is a serious issue for HPC applications and future power-
constrained systems.
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13.2.1.2 Variation-Aware Power Budgeting

To mitigate the negative effects of the manufacturing variability, we have proposed a
variation-aware power budgeting scheme that attempts to detect and balance power
to even out such variations. Figure 13.3 depicts the framework of our variation-
aware power budgeting. This framework requires to input an HPC application,
its associated data, an application-level power constraint, a list of modules (i.e.,
physical processors), and a Power Variation Table (PVT) that serves as the basis
to estimate power variations in any target application. The PVT is constructed once
per system, e.g., when the system is installed by using some application-independent
standard benchmarks. The framework works as follows:

1. Inserting power directives: Power Measurement and Management Directives
(PMMDs) are inserted in the target HPC application for profiling and manage-
ment. We use the compiler-based instrumentation system from the TAU toolkit
and define the region of interest by inserting PMMDs.

2. Lightweight single-module test run: Two low-cost, single-module test runs of the
application are performed, one at the maximum CPU frequency and the other at
the minimum CPU frequency. CPU and DRAM power are measured.

3. Power model calibration: The information from the single-module test runs
is used to obtain power model of all modules by using the pre-computed
system-level PVT. Then, an application-dependent variation-aware Power Model
Table (PMT) is created. The detail of system-wide power estimation based on
PVT/PMT is explained in Sect. 13.4.

4. Power budgeting algorithm: We use the application PMT and the given module
list to determine the module-level power allocations to maximize the application
performance under the specified application-level power constraint. This includes
determining module-level CPU frequencies and deciding a power constraint for
each module in order to realize that frequency.
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5. Product run: The HPC application annotated with the PMMDs is executed on
the given module list by using the module-level power allocations determined by
the variation-aware power budgeting algorithm. Two implementation strategies,
power capping (PC) with RAPL and frequency selection (FS) with cpufrequtils,
are supported.

13.2.1.3 Evaluation Results

In this evaluation, we consider HPC application executions on HA8000 with 1,920
modules under different global power constraints without any other interference. We
used several HPC benchmarks such as *DGEMM, *STREAM that is used to measure
sustainable memory bandwidth and executes simple vector operations, NPB-BT/SP
from NAS Parallel Benchmark suite, MHD for magneto-hydrodynamics simula-
tions, and mVMC that is a mini-application included in the FIBER benchmark suite.
We compare four power budgeting schemes, an application-independent variation-
unaware power budgeting scheme that distributes power uniformly across all
modules ( Naïve), an application-dependent variation-unaware scheme implemented
via RAPL power capping (Pc), our application-dependent variation-aware scheme
implemented with PC using RAPL (VaPc), or with frequency selection using
cpufrequtils (VaFs). Figure 13.4 reports the speedup of all the aforementioned
schemes when compared to Naïve. It is observed that VaFs achieves a maximum
speedup of 5.40X (for the NPB-BT benchmark with 96 KW power constraint) and an
average improvement of 1.86X across all benchmarks. For VaPc, which exploits the
RAPL CPU power capping functionality, the maximum performance improvement
is 4.03X (for NPB-SP at 96 KW power constraint), and the average improvement
across all benchmarks is 1.72X. From these results, it is clear that variation-aware
power management is a promising technique to improve the performance of power-
constrained supercomputing.
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13.2.2 Power Shifting in Interconnection Networks with
On/Off Links

Modern supercomputing systems consume considerable amounts of power in the
form of network power (up to 33% of the overall system power) [7]. For power
savings of networks, many HPC engineers lately focus on the state-of-the-art
technology known as on/off links due to the great capability of power saving
(up to 10.8 W per link) [13] and explore its applicability in supercomputing
systems [8, 13, 14, 16].

Figure 13.5 shows a power-saving mechanism of on/off links. As shown in
Fig. 13.5a, usual links consume an almost constant amount of power regardless that
they are used for data transfer or not (i.e., active or idle state). This is because PHYs
at both ends of a network cable are always activated and frequently communicate
with each other to check the link connectivity. In contrast to this, on/off links shown
in Fig. 13.5b shutdown in idle state and therefore save up to 90% of link power,
accompanying with the time overheads of a few microseconds (denoted as Ts and
Tw) [13]. Saravanan et al. report that on/off links can save 70% of network power
with the performance degradation of 2% for various HPC applications, and the
power saved by on/off links accounts for 7.3% of the overall system power [13].

On/off links are very hopeful to power savings in supercomputing systems, but
how should we use these technologies in a power-constrained scenario? To answer
this question, we first identified the power that is always unused in networks with
on/off links during the execution of applications. Figure 13.5c shows the always-
unused power of various networks connected to 64 compute nodes. The figure
represents that the radix of networks highly affects the always-unused power. In
particular, a power of 36.1 W per node keeps unused on the 4D-torus system
at runtime of POISSON, which is a handmade application that solves Poisson’s
equation with the Jacobi method. There exists the significant amount of power
remaining even on the tree-topology system, e.g., power of 18.7 W per node
(POISSON), which is comparable to the power required for boosting a 6-core CPU
by 0.3 GHz.
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Based on this observation, we proposed profile-based power shifting, which
enables end users to accelerate their applications by leveraging the always-unused
power of networks with on/off links [9]. Figure 13.6 shows the overview of profile-
based power shifting. Our profile-based power shifting first estimates the impact of
a given application on power of a network with on/off links. This power profiling
is done by an end user with the skeleton code of the application, which quickly
reproduces the spatial and volume attributes of communication included in the
original program by skipping many computations. The end user submits the above
job with the estimated power Punuse to a job scheduler. Our job scheduler changes
the power budget of each device within a client according to Punuse and then
launches the job to clients.

Here we introduce the effect of profile-based power shifting, which is a part of
our experimental results shown in the paper [9]. Figure 13.7a shows the accuracy
of the always-unused link power estimated by using skeleton code. We conducted
this experiment on a 64-node 4D-torus system emulated by the modified SimGrid-
3.11 [3]. The power shown in the figure is normalized to the power of usual links.
The figure shows that power profiling with skeleton codes has significant accuracy in
estimating always-unused link power (an error of up to 17.3% of usual link power).
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Note that skeleton codes somewhat overestimate always-unused power of network
links, because skipping computations causes higher link activities than original
codes.

Figure 13.7b shows the speedup achieved by two power-shifting schemes.
SKELETON represents power shifting based on the always-unused power estimated
by using skeleton codes, while IDEAL represents power shifting based on the
always-unused power measured by using original codes. Exploiting the large
amount of always-unused power on network links, SKELETON can achieve the
significant speedup (up to 1.23×), which is close to IDEAL. Our technique has the
good capability of detecting the power budget remaining on networks with on/off
links.

A few challenges to implementing profile-based power shifting on production
systems still remain, but we believe that our profile-based power shifting will help
end users get performance gains from power-constrained supercomputing systems
with on/off links.

13.2.3 A Runtime Performance-per-Watt Optimization
Methodology

In the use of hardware-overprovisioned systems, since job throughput is restricted
by power limit, “performance-per-watt” becomes a more important indicator of
efficient system use. Because application developers are not expected to pay much
attention to performance-per-watt, power optimizations should be done by system
providers and system administrators. Although optimization techniques for power
and energy, such as dynamic frequency scaling (DFS) and dynamic concurrency
throttling (DCT), have been studied well, practical use is limited to a DB-based
approach, which records and reuses the relationship between a job’s execution
time and its locked CPU frequency. Conducting DFS/DCT optimization during the
execution of a job is simple to use, adaptive to the environment of executing systems,
and possibly robust in terms of a CPU’s manufacturing variability. Therefore
we developed a runtime library which conducts power optimization during the
execution of a job.

In order to design the algorithm of runtime power optimization, we made the
following assumptions:

• Target application does iterative computation, such as time integration and
iterative solver

• The application can be divided into several regions based on computational
characteristics, such as ComputeMG and ComputeSPMV in HPCG benchmark

• From the application users’ viewpoint, performance fluctuation by up to 10% is
ignored or acceptable



258 M. Kondo et al.

The optimization target is a DFS/DCT configuration of maximal performance-
per-watt for each region in the range of acceptable performance degradation.
Optimization proceeds by the following steps:

1. For use as reference performance, observe the performance during initial
iteration(s)

2. Under the “Turbo” frequency, search the number of threads in decreasing order
for the best efficiency

3. Under the base frequency, search the number of threads in the same way as Step 2
4. With the number of threads chosen by Steps 2 and 3 as the best efficiency

in the range of acceptable performance degradation, search CPU frequency in
decreasing order for the best efficiency

5. When performance degradation exceeds the acceptable range, continue the
search after adding one more thread

The optimization procedure works based on the “efficiency” value, as described
above. Since we are assuming that the amount of computation in each region is
constant (for simplicity’s sake), relative performance-per-watt, or efficiency, equals
the inverse of relative energy consumption. RAPL on Intel Xeon processors can
measure the energy consumption; however, the measurement interval is 1ms and
affects the accuracy of the efficiency value for short regions. Therefore we adopt
“estimated energy” for the calculation of efficiency. Those calculations are defined
as follows:

• When measuring by RAPL, efficiency = “measured energy for the reference
performance”/“measured energy for a configuration”

• When estimating without RAPL, measured energy is replaced with “estimated
energy”; estimated energy = “CPU cycles” × (1 + (“the number of threads” − 1)
× “correction factor”

The “correction factor,” which is 0.13 for Xeon E5-2680, 0.06 for Xeon E5-
2698v3, and 0.065 for Xeon Platinum 8168, was derived from the results of
STREAM benchmark by regression analysis.

Figure 13.8 shows an example of optimization behavior for ComputeSPMV
region of HPCG benchmark on Xeon E5-2698v3. Although ranges of relative
efficiency by RAPL measurement and estimation without RAPL are different,
shapes of those behaviors are similar, and the same DFS/DCT configuration is
chosen.

Figure 13.9 shows optimization results for HPCG benchmark by the algorithm
described above. For all of three generations of Xeon processors, “performance-per-
watt” is improved, and the results by RAPL measurement and estimation without
RAPL are equivalent. On the latest Xeon processor, 45% improvement is achieved.

Figure 13.10 shows the difference of power consumption with and without the
optimization. Target program is NICAM-DC-MINI which is a proxy application
of climate models for Post-K development. As the result of optimization, average
power consumption is reduced by 28% in exchange for 13% slowdown of its
execution. It indicates the possibility to increase headroom for power shifting
between jobs.
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Fig. 13.8 Optimization behavior for ComputeSPMV region of HPCG on Xeon E5-2698v3
(2.3 GHz, 16 cores)

Fig. 13.9 Results of the runtime optimization for HPCG

Fig. 13.10 Difference of power consumption with and without the optimization
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As a result of evaluation with HPCG and other benchmark programs, effective-
ness and wide applicability of the “on-the-fly” optimization were validated. As for
the applicability, the optimization algorithm is adapted to three generations of Intel
Xeon processors by only one parameter, as well as showing the improvement of
performance-per-watt in many cases.

13.2.4 Automating Workflow of Power-Performance
Optimization

To optimize power allocation among different hardware components by application
developers, we need a framework which assists collecting power-performance
information with various power settings, optimizing power allocation with
power-performance knobs, and modifying the application code to control power-
performance knobs appropriately. We have been developing a versatile power
management framework which applies power-performance optimization to the
application automatically. The main objective of the framework is to make the power
management and power-performance optimizations processes more facilitating and
flexible for both users and system administrators.

For power-performance efficiency optimization and power management for
HPC applications, we have to take care of many things including (1) what kinds
of hardware components the system has and how much power is consumed in
them, (2) what kinds of power-knobs are available and how to control them, (3)
how the applications behave at runtime, and (4) what is the relationship between
performance and power consumption of the application. Based on these information,
(5) we have to design a power-performance optimization algorithm and finally
(6) assemble and utilize existing tool sets for collecting the necessary information
and actually controlling power-knobs. Our framework is designed to provide or to
support the following functionalities which help users and administrators carry out
power management/control effectively without taking care of the abovementioned
issues:

• Analyzing source code and applying automatic instrumentation
• Measuring and controlling application power consumption and performance
• Optimizing an application under given power budget
• Specifying and defining the target machine specification
• Calibrating hardware power consumption of the system

Figure 13.11 presents the outline of the framework. One of the benefits of using
this framework is that workflow of power-performance optimization and control
can be specified in higher abstraction level. Details of how to use libraries for
controlling power-knobs, how to profile and analyze the application code, and how
to instrument power management pragmas in the code or the job submission script
are hidden from users. Moreover, the framework provides high modularity and
flexibility so that libraries or tool set used in the framework and power optimization
algorithms are customizable.
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In order to provide customizability and flexibility, a simple DSL is used as the
front-end for supported tools and for selecting the power optimization algorithm.
In current version of the framework, we support RAPL/cpufreq utils for accessing
power-knobs and TAU/PDT [10, 15] for code instrumentation and profiling. How-
ever, these are extensible and other tool sets are easily supported. More details of
this framework are explained in [17], and the source code of it is available on our
GitHub repository [4].

13.3 Power-Constraint-Aware Resource Management

In overprovisioned systems, power budget allocated for each node should be
controlled by power-knobs such as dynamic voltage and frequency scaling (DVFS)
or a power capping mechanisms. One of the key challenges is to develop a runtime
system for optimizing and controlling power budget of executing jobs based on the
available power budget of the entire system to maximize the total system throughput.
To this end, a power-aware resource manager and several power allocation or job
scheduling algorithms are necessary.

13.3.1 Development of Power-Constraint-Aware Resource
Manager

Though there have been several studies of hardware overprovisioned HPC systems,
the impact of hardware overprovisioning in production environments at large scale
has not yet been examined intensively. In order to provide a software stack which
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makes such systems accessible to users or administrators, we have been developing
an extensible power-aware resource management and job scheduling framework
based on the widely used SLURM resource manager [18].

Figure 13.12 shows the design of our proposed power-aware resource manager,
which is implemented as a SLURM extension. It enables the implementation of a
wide spectrum of power management algorithms by flexible plugin interfaces that
can be used by different HPC centers to enforce site-specific power management
policies. We add a power scheduler, a node power manager, and a low-level power
plugin interface to the original SLURM code. The power scheduler schedules all
of the system power by monitoring and distributing the compute node power. It
consists of three components: power monitor, power analyzer, and power allocator.
The power allocator and power analyzer have extensible plugin interfaces. This
allows other plugin developers to implement and test their own power management
algorithms. More details of this power-aware resource manager are explained
in [11].

We validated the power management functionality of the extended SLURM using
all the nodes in the HA8000 system. The system contains 965 compute nodes, and
each node has two Xeon processors with 128-GB DDR3 memory. We evaluated
the power consumption of the system varying the total power budget. We evaluate
three power budgets, 100, 110, and 120 kW. Figure 13.13 shows the aggregate power
consumption measured by RAPL for all the compute nodes. As shown in the figure,
the actual power is almost the same as the allocated power budget when the system
is fully loaded (middle section of each curve) This indicates that our power-aware
SLURM successfully controls power usage of executing jobs.
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Fig. 13.14 Evaluation of overprovisioning in a real 960-node system. (a) Power resource usage.
(b) Total system performance

With the extension of SLURM, we investigated the impact of varying the number
of extra compute nodes or the degree of overprovisioning. We assume that the
base system is a non-overprovisioned HPC system with 400 compute nodes whose
system power budget is the peak power consumption of 400 nodes of the HA8000
system. Then, we evaluate several cases of overprovisioned systems: 540, 680, 820,
and 960 compute nodes with the same system power budget.

Figure 13.14a, b present average power resource utilization and system through-
put, respectively, under several overprovisioned system configurations. We evalu-
ated five job mixes varying average power demand of jobs. From Fig. 13.14a, it
can be observed that power resource utilization increases if we increase the number
of overprovisioned nodes to 680 nodes. However, utilization decreases when the
node count increases any further. The node resource is exhausted in cases of small
numbers of overprovisioned nodes and power resource is not fully consumed. On
the other hand, the power resource is exhausted in cases of large numbers of
overprovisioned nodes, and the scheduler must leave some of the nodes being idle
to maintain the power budget.
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In Fig. 13.14b, system throughput tends to improve if we increase the number
of nodes since overprovisioning provides more computational resources. However,
the performance trends are more complex because utilization decreases in the case
of 960-node and depends on job mixes. Power-hungry job mixes with many CPU-
intensive jobs prefer a relatively small number of overprovisioned nodes because the
average node power consumption is high and power resource is easily exhausted by
small number of nodes. On the other hand, low-power job mixes with more memory-
intensive jobs prefer relatively large numbers of overprovisioned nodes as the power
resource does not tend to be exhausted and a larger number of nodes helps increase
the number of jobs executing concurrently.

Through experimentation on a large-scale production system, we have shown that
our power management framework is safe for deployment on production systems.
The experiment for overprovisioning presented above could not be possible without
the production level power-aware resource management framework. Our developed
SLURM extension is very useful in this point. The source code of the SLURM
extension is available on a GitHub repository [4].

13.3.2 Strategies for Power-Aware Resource Management

Besides a software stack for power-aware resource management, strategies or
algorithms for power allocation and job scheduling need to be developed. For the
PCAS design to be effective, we have also investigated several power allocation and
job scheduling strategies, for example, the strategies of job demand-aware power
management [1], cooling-aware job scheduling/node allocation [2], and node active
state control [12]. In this subsection, we briefly introduce the job demand-aware
power management strategy.

An easy way to allocate power for each job is to set power cap statically so
that the total power consumption is within the power constraint of the system.
This static approach is not optimal since runtime power of a job is not constant
for its entire execution. Moreover, the QoS demand, that is, the level of allowable
performance degradation, is not identical for all the jobs. Guaranteeing performance
is indispensable for high-QoS jobs, whereas a part of power resource allocated
for low QoS jobs can be distrained and used for other jobs to execute, so that
total system performance increases. The proposed demand-aware adaptive power
capping scheme dynamically controls power budget of running jobs according to
their power demand.

The demand-aware adaptive power capping scheme (hereinafter referred to as
adaptive power capping) determines the power cap value of each CPU adaptively
by a power manager for every presumed time interval. We assume that jobs are
submitted to the system with their performance requirements or required QoS levels,
which is defined by the maximum acceptable performance loss. Periodically, the
power manager receives power usage information from all of the compute nodes,
predicts the current performance levels of all executing jobs, and then optimizes
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Fig. 13.15 Static and adaptive power capping

power cap values for executing jobs so that their QoS levels are satisfied. To control
and restrict power usage of each job, we use RAPL for CPU power capping. Since
more than half of the power of compute nodes is usually consumed by CPUs and
power fluctuation of CPUs is much larger than that of the other subsystems, the
system power is fairly manageable by controlling CPU power.

Figure 13.15 shows power consumption versus execution time when (a) no
power capping, (b) static fixed power capping, and (c) adaptive power capping
are applied. Using TDP as the power allocation will leave a certain amount of
underutilized power resource, but no performance degradation is expected as shown
in Fig. 13.15a. If power cap value is statically determined and fixed at, for example,
average power consumption of the job throughout the execution as illustrated in
Fig. 13.15b, underutilized power becomes smaller, but performance of the job may
be unexpectedly degraded. Figure 13.15c shows an example of power draw of the
adaptive power capping for a job whose power cap value is set such that performance
loss is smaller than expected. Because the power cap is set to the same as or below
the maximum power demand of the job, no underutilized power is reserved for it,
and the adaptive power capping scheme saves a certain amount of power budget,
and hence the scheduler can submit additional jobs to the system to improve the
system throughput.

We evaluated our adaptive capping scheme on a subsystem of HA8000 with 32
compute nodes. We assumed that the power budget of CPUs and DRAMs is 4,956 W
which corresponds to the sum of the maximum power of PKG and DRAM domains
of 14 compute nodes. We created a job set which consists of 90 jobs from NPB.
The QoS and the number of compute nodes for each job are assigned randomly. The
time interval of the power management is set to one second.

The adaptive capping scheme (Adaptive) was compared with four fixed power
capping strategies, namely, NoCap, MaxReq, Linear, and Nominal. In NoCap, the
power manager allocates TDP (130 W) to each CPU. In MaxReq, power allocated
to a CPU is the maximum power which satisfies the performance requirement and
is determined empirically by profiling. Linear uses a power cap value which is
calculated from a linear function of the performance requirement value based on
the max-min CPU power. In Nominal, the power cap value is the average power
value which satisfies performance requirement.
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Figure 13.16 shows job execution throughput of the system (number of jobs
finished per hour) and the ratio of the average utilized power to the power constraint
of the system. NoCap has the worst power resource utilization since TDP is
allocated to each CPU and that is much higher than its effective power usage. A
job in the queue needs to wait for execution until the power budget of TDP for all
the CPUs and DRAMs necessary for it is available, leading to poor job throughput.
The job throughput and power resource utilization gradually increase from MaxReq
to Adaptive. Adaptive achieves the best throughput and power resource utilization
since it can afford much of power budget to waiting jobs in the queue and execute
more number of jobs simultaneously. The result indicates that the adaptive capping
scheme is very useful for power-constrained HPC systems.

13.4 Power-Performance Estimation for Large-Scale Systems

As discussed in Sect. 13.2.1, manufacturing variation strongly affects the power
characteristics of large-scale systems. This means that considering the variability is
an essential challenge for accurate estimation of system-wide power consumption.
To address this challenge, we introduce a power model that assumes liner function
of clock frequency and a scheme to calibrate it to solve the variation issue. Due
to the manufacturing variability, power consumption with minimum and maximum
clock frequencies are not always identical in all modules even if they have the same
hardware specification. Because it is impractical to execute the application on all
installed modules to obtain the power values, we use a system-level Power Variation
Table (PVT) and perform two single-module application runs for lightweight
profiling.

Figure 13.17 shows the steps of our power model calibration. The PVT consists
of N (the number of total modules in the system) entries, each of which stores
variation scales associated with the CPU and DRAM in each module to represent the
degree of inter-module variation. The PVT is generated when the system is installed
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Fig. 13.18 Power estimation results

by executing representative microbenchmarks on each module. The power values at
the maximum and minimum CPU frequencies are measured for each module, and
the variation scales are obtained by dividing each of these module power values by
the respective average. By performing two single-module test runs at the maximum
and minimum CPU frequencies, we measure the power values on module-k and
then generate the application-dependent Power Model Table (PMT) that includes
the calibrated power models for all modules as shown in Fig. 13.17.

Figure 13.18 reports the power estimation results obtained by performing our
power model calibration. The x-axis shows the module ID, and the y-axis presents
the power ratio obtained by dividing the predicted power value by the measured one
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on each module. For instance, 1.0 of the power ratio means the perfect estimation.
Here, we show the results for six benchmark programs explained in Sect. 13.2.1.
From the results, it is observed that our model calibration scheme works well. For
all benchmarks, both the maximum and minimum module power can be estimated
with less than 10% error (in average).

We have also developed power-performance estimation methodologies for com-
puting nodes and interconnection networks. Our plan is to integrate them to make it
possible a full system power-performance estimation.

13.5 Conclusion

The power is becoming a most precious resource in supercomputer systems.
The power-constraint adaptive system design or hardware overprovisioning is a
viable approach for increasing power utilization and performance for power-limited
HPC systems at scale. In the PomPP project, we have developed several power-
performance optimization strategies and frameworks including the framework to
maximize application performance under a given power constraint, power-aware
resource manager, and power-performance simulation and analysis framework for
exascale applications. Tools developed in this project is freely available on a
GitHub open source repository [4]. We continue to make an effort of research and
development of the tool set for effectively utilizing power budget in future post
petascale supercomputers.
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Chapter 14
Project CASSIA —Framework
for Exhaustive and Large-Scale Social
Simulation—

Itsuki Noda, Yohsuke Murase, Nobuyasu Ito, Kiyoshi Izumi,
Hiromitsu Hattori, Tomio Kamada, Hideyuki Mizuta, and Mikio Takeuchi

Abstract Project CASSIA (Comprehensive Architecture of Social Simulation for
Inclusive Analysis) aimed to develop a framework to administer execution of large-
scale multiagent simulations exhaustively to analyze socially interactive systems
on high-performance computing infrastructures. The framework consists of two
parts, MASS Planning Module and MASS Parallel Middleware. MASS Planning
Module is a manager module conducts effective execution plans of simulations
among massive possible conditions according to available computer resources.
It consists of OACIS/CARAVAN and their intelligent modules. MASS Parallel
Middleware is an execution middleware which provides functionality to realize
distributed multiagent simulation on many-core computers. It is a collection of X10
libraries, scheduler, and XASDI, a platform to program multiagent simulations. The
CASSIA framework was applied to various real applications in pedestrian, traffic,
and economics simulation domains and provided practical results and suggestions
for real-world problems. We also discussed road maps of social simulation and
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high-performance computing to attack real and huge issues on social systems.
This discussion indicates the possibility of CASSIA framework and multiagent
simulations to realize engineering environment to design and synthesize social
systems like traffics, economy, and politics.

14.1 Overview

Project CASSIA (Comprehensive Architecture of Social Simulation for Inclusive
Analysis) aims to develop a framework to administer execution of large-scale
multiagent simulations exhaustively to analyze socially interactive systems. The
framework will realize engineering environment to design and synthesize social
systems like traffics, economy, and politics.

The purpose of multiagent social simulation is to provide tools to design social
systems. It is impossible or quite difficult to carry out experiments of social
phenomena in the real world by the similar way as experiments in physics or
chemistry. Therefore, computational social simulations are indispensable means for
social science.

Fortunately, progress of computational power has a potential to realize wider
applications of computer simulation not only in physical phenomena but also in
social problems. High-performance computing (HPC) has been enabling several
simulation researches on large-scale weather, molecular dynamics, structures and
architectures, and disasters. In addition to these physical phenomena, recently, social
phenomena like economics, traffics, or information flow on networks attract many
attentions as applications of HPC (Fig. 14.1).

In order to make such social simulations on HPC available for wide-range users,
the CASSIA framework consists of:

• MASS Planning Module: a manager module conducts effective execution plans
of simulations among massive possible conditions according to available com-
puter resources.

• MASS Parallel Middleware: an execution middleware provides functionality to
realize distributed multiagent simulation on many-core computers.

14.2 MASS Planning Module

14.2.1 Categories of Simulation Class in Computational Cost

In this section, we give an overview on the two frameworks for parameter-space
exploration, OACIS and CARAVAN. Although both of these frameworks are
designed in order to conduct parameter-space exploration making full use of HPC
resources, they differ in the target scale of each job. On the one hand, a certain
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Fig. 14.1 Cassia framework

class of research issues requires to use the maximum computing power to solve
a single large problem, so-called capability computing. On the other hand, other
researches require to do many small- or medium-scale simulations for parameter-
space explorations, i.e., capacity computing. We categorized these problems into
four classes depending on the scale of a single simulation job as summarized in
Table 14.1. In this table, it is assumed that the total amount of computation is order
of ten exa-floating-point operations. The left most column, which we call class A,
corresponds to typical capability computing. The number of independent jobs is at
most 102. In class B, a typical single job is an MPI-parallel program using 103 ∼ 105

CPU cores. The number of jobs amounts to 103 ∼ 105. In this class, a naive manual
management of jobs is no longer possible, and a framework for managing jobs is
necessary. When typical job scale is serial or shared-memory parallel application,
as labeled class C, the number of jobs expands up to 106 ∼ 109, which requires an
even harder job management. In this class, the parameter selection and interpretation
of the results for each job must be done algorithmically. Finally, on the right most
class, where a single job becomes a function level, the number of jobs is more than
1010. Thus, for capacity computing ranging from class B to D, the demands for
frameworks can be totally different depending on the granularity of jobs. This is
why we developed two frameworks, OACIS and CARAVAN for classes B and C,
where majority of the social simulations are found.
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Table 14.1 Categorization of the problems according to the scale of single simulation job. To
calculate the required number of operations, FLOPS, and the number of CPU cores for each job,
we made assumptions that an exa-flops computer is available, the efficiency of each job is 10%,
and the duration of each job is order of 102 s. From left to right, the typical scale becomes finer,
while the typical number of jobs gets greater. In the last two lines, we showed an example of social
simulations and a framework used for parallel job execution

Class A B C D

# of jobs 100 ∼ 102 103 ∼ 105 106 ∼ 109 1010 ∼
# of operations/
job

1019 ∼ 1017 1016 ∼ 1014 1013 ∼ 1010 109 ∼

FLOPS/job 1018 ∼ 1016 1015 ∼ 1013 1012 ∼ 109 108 ∼
# of cores/job 108 ∼ 106 105 ∼ 103 102 ∼ 10−1 10−2 ∼
Typical job scale Large-scale MPI Medium-scale

MPI
SMP or serial Function

Parameter
selection

Manual Manual or
auto

Auto Auto

Social simulation
application

– Traffic in
metropolitan
area

Traffic in a city Data-driven model

Frameworks OACIS CARAVAN Map-reduce

14.2.2 OACIS

OACIS, which stands for Organizing Assistant for Comprehensive and Interactive
Simulations, is a job management framework for problems in class B [12]. It is
available as an open-source software under the MIT license. (http://github.com/
crest-cassia/oacis). This class of problems require researchers to carry out many
simulation jobs changing models and parameters by trial and error. This kind of
trial-and-error approach often causes a problem of job management because of a
large amount of repetitive works. Such repetitions are not only troublesome and
tedious but prone to human errors. OACIS is designed to let researchers conduct
their research in an efficient, reliable, and reproducible way, helping management
of simulation jobs and results.

The system architecture of OACIS is depicted in Fig. 14.2. It is a web application
developed based on the Ruby on Rails framework, which provides an interactive
user interface. The application server is responsible for handling requests from
users. When a user creates a job using a web browser, the record of the job is created
in the database. Another daemon process, which we denote as “worker,” periodically
checks whether a job is ready to be submitted to a remote host. If a job is found, the
worker generates a shell script to execute a job and submits it to the job scheduler
on the remote host (which we call “computational hosts”) by SSH connection. The
worker process then periodically checks the status of the submitted jobs, and, when
the jobs are finished, it downloads the results and stores them into designated storage
and database appropriately. Hence, users do not have to check the job status by
themselves, and the simulation results are kept in an organized and traceable way.
Various logs, including the values of parameters, executed dates, elapsed times, and

http://github.com/crest-cassia/oacis
http://github.com/crest-cassia/oacis
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Fig. 14.2 A system overview of OACIS

the version number of the simulator, are automatically kept as well. A simulator
on OACIS is registered as a command line string to execute the simulation, not as
the execution program itself. By this design, OACIS can run simulators in various
research fields, which may be written in different programming language.

In addition to an interactive user interface, OACIS provides application pro-
gramming interfaces (APIs) in Ruby and Python programming languages. Any
set of operations on OACIS is programmable using the APIs, which can be used
for various types of parameter-space explorations including parameter sweeps,
sensitivity analysis, and optimization of parameters.

14.2.3 CARAVAN

CARAVAN is another framework designed for class C jobs. It is also available
as an open-source software under the MIT license (https://github.com/crest-cassia/
caravan).

Figure 14.3 shows the whole architecture of CARAVAN. It consists of three
parts: search engine, scheduler, and simulator. “Simulator” is an executable program
prepared for each use case. Once a user integrate a simulator into CARAVAN, it is
executed in parallel. Since a simulator is executed as an external process, a simulator
may be implemented in any language as in OACIS. “Scheduler” is a part which is

https://github.com/crest-cassia/caravan
https://github.com/crest-cassia/caravan
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responsible for parallelization. It receives the commands to execute simulators from
the search engine, distributes them to available nodes, and executes the simulator in
parallel. This part is implemented in X10 programming language using MPI for a
communication layer. “Search engine” is a part which determines the policy on how
parameter-space is explored. More specifically, it generates a series of commands
to be executed in parallel and sends them to scheduler. It also receives the results
from the scheduler when these tasks are done. Based on the received results, search
engine can generate other sets of tasks repeatedly as many as a user wants. This part
is written in Python. A simulator and a search engine must be prepared by each user,
while the scheduler does not have to be modified once it is built.

When writing a simulator and a search engine, users do not have to explicitly take
care of the parallelization. The scheduler is designed so that the whole application
can scale up to tens of thousands of processes. To evaluate the performance of
the scheduler on the K computer, we tested an embarrassingly parallel problem,
in which each task takes about 20 s. We obtained a result that the efficiency of the
task scheduling remains more than 99% even when the number of MPI processes is
scaled up to 18,432.

14.3 MASS Parallel Middleware

14.3.1 X10 Extentions and Plham

To realize distributed multiagent simulation on large-scale distributed computers,
we developed parallel middleware on X10 [17], which is an object-oriented parallel
programming language developed by IBM. X10 adopts partitioned global address
space (PGAS) model and features asynchronous and fork-join-style programs.
Using X10 and our parallel middleware, we developed Plham [4, 22], a platform for
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Fig. 14.4 Plham (simulation model and its parallel execution)

large-scale and high-frequency artificial market simulation. In this section, we first
summarize the design and implementation of Plham to enable large-scale and high-
frequency artificial market simulation. Then we show two libraries, a distributed
collection library and a global load balancing library with multistage facility [24],
that are designed for large-scale multiagent simulations.

Artificial market agent-based simulations have potential to be a strong tool for
studying rapid and large market fluctuation and designing financial regulations.
High-frequency traders, which exchange multiple assets simultaneously within a
millisecond, are said to be a cause of rapid and large market fluctuation. Plham
enables modeling financial markets composed of various brands of assets and
a large number of agents trading on a short timescale. The design feature of
Plham is the separation of artificial market models (simulation models) from their
execution (Fig. 14.4). The primary components of a simulation model are “agents”
and “markets” as shown in (a). The term agent is used to represent a trader, including
high-frequency traders. The term market is used to represent a system or place where
agents can buy or sell a specific asset (here, we assume one market is for one asset).
A certain type of assets depends on a collection of assets and is itself a tradable
financial instrument (e.g., index futures, exchange-traded funds). Users can employ
ready-made agent/market classes provided by Plham or define their original ones
by extending these classes and construct their simulation models without parallel
computing expertise.
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Plham provides multiple runners that implement respective execution models. To
execute a parallel simulation, the users can employ a parallel runner implementing
its parallel execution model that allocates agents over multiple computing nodes,
changes the scheduling frequency of agents depending on the class of agents, and
accepts delayed propagation of market information depending on the class. In the
current implementation, HFT agents are assigned at the master node, in which the
order handling of the markets is processed, and the computation for ordinal traders
is executed at the worker nodes, as shown in Fig. 14.4b. For large-scale simulations,
nonHFT agents must be forced to make a decision by using delayed or out-of-date
market information, whereas HFT agents are given access to latest or relatively up-
to-date market information.

The current parallel runner allows concurrent execution of order submission
and handling as shown in (c) to reduces CPU idle time at worker nodes and
achieve simulation scalability. To increase the parallelism of the simulation, the
runner introduces three agent ranks: high-frequency traders, short-term traders, and
long-term traders. It then concurrently executes the order-submission stage of long-
term traders and the order-handling stage of markets. In addition, it succeeded in
overlapping communication and computation. The scalability of the current parallel
execution model was evaluated in weak scaling to a maximum of 2048 computing
nodes on the K computer [4]. Plham is available as an open-source software under
Eclipse Public License (http://github.com/crest-cassia/plham).

To realize distributed multiagent simulation on large-scale distributed computers,
developers have to implement proper agent distribution, data transportation for
agent communication, parallel execution of agent computation using multi-core
CPUs, and efficient scheduling of respective components of computation and
communication. We developed a distributed collection library to easily manage
collection of object elements distributed over multiple computing nodes. It offers
methods for element relocation (communication) and data parallel processing for
the elements (computation). Our library provides a series of distributed collections,
such as DistCol[T], DistBag[T], and DistMap[K,V], each of which
manages a collection of objects that spreads over worker nodes. Our library also
prepared another type of distributed collection, ColDist[T], that holds a list
of objects and allocates the cache proxies of the list at all worker nodes. In
the implementation of Plham, ColDist is used to manage markets and their
proxies and DistCol is used for agents. Orders and contracted orders are stored
into DistBag and DistMap and relocated at each calculation step. Our library
allows object transportation by using collective communication of MPI, and the
elapsed time for the communication can be reduced. These classes also offers an
asynchronous method, asyncEach, that receive a function and apply it to all
the local elements in the called node using thread pools. Using these features, the
overlapping of communication and computation in Plham was briefly described as
shown in Fig. 14.5a.

We also conducted research on global load balancing for multiagent simulation
having multiple calculation steps. Load balancing is a major concern in massively
parallel computing. X10 provides a global load balancing (GLB) library that shows

http://github.com/crest-cassia/plham
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f i n i s h f o r ( p l a c e i n p laceGroup )
a t ( p l a c e ) async {
f o r ( s t e p s ) {

sCond = sAgen t s . eachAsync ( . . ) ;
i f ( ! f i r s t ) lO r d e r s . r e l o c a t e ( . . ) ;
sCond . awa i t ( ) ;
lCond = lAgen t s . eachAsync ( . . ) ;
sO rde r s . r e l o c a t e ( . . ) ;
i f ( ma s t e r ) ma rke t s . each ( . . ) ;
ma rke t s . t e amedBroadca s t ( . . ) ;
c o n t r a c t e d . r e l o c a t e ( . . ) ;
lCond . awa i t ( ) ;

}}
}

(a) (b)
(c)

Fig. 14.5 Parallel middleware for large-scale multiagent simulations. (a) Sample program of
distributed collections. (b) Performance evaluation of global load balancing. (c) Multistage features
for GLB

high scalability over 10,000 CPU cores. GLB features a lifeline-based scalable
work-stealing algorithm. Results of completed tasks are gathered by means of
reduction operations. We introduced a multithread design into GLB to allow
efficient data sharing between CPU cores. The multithread version showed high
scalability than the original one (Fig. 14.5b). In addition, we proposed a multistage
mechanism for GLB to assign execution stages to tasks. The system gives high
priority to tasks that are assigned to earlier stages and then proceeds with subsequent
stage tasks (Fig. 14.5c). When a computing node runs out of tasks at the earliest
stage, it requests tasks at the earliest stage from other nodes and awaits responses by
processing subsequent stage tasks. When the system identifies the task termination
at a certain stage, it executes a reduction operation over nodes. The multistage
version has performance problems that appear to be caused by network message
scheduling or thread scheduling. After fixing the problems, we plan to introduce
this dynamic load balancing features into our distributed collection library to treat
dynamic load imbalance of tasks.

14.3.2 XASDI

In this section, we describe the overview of X10-based Agent Simulation on
Distributed Infrastructure (XASDI). This framework is published as an open-source
software (https://github.com/x10-lang/xasdi) under the Eclipse Public License
(EPL).

XASDI is large-scale agent-based social simulation framework with enormous
number (billions) of agents to represent citizens in cities or countries. XASDI
enables distributed simulation with the X10 language for post-peta-scale machines.
The X10 programming language (http://x10-lang.org/) is the APGAS (Asyn-
chronous Partitioned Global Address Space) language that provides highly parallel
and distributed functionalities with Java-like syntax [2]. X10 application can be

https://github.com/x10-lang/xasdi
http://x10-lang.org/
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Fig. 14.6 XASDI software
stack Social Simulation (Java)

XASDI API Bridge (Java)

XASDI Core Runtime (X10)

X10 Runtime (X10)

Java Runtime

World 

Region 

Place 

Citizen Citizen 

Place 

Citizen Citizen 

X10 Place (node) 

World 

Region 

Place 

Citizen Citizen 

Place 

Citizen Citizen 

X10 Place (node) 

Fig. 14.7 XASDI hierarchical structure to manage agents

compiled and executed on Java environment [19, 20]. With this feature, XASDI
provides easy-to-use API with Java that is familiar to application programmer of
social simulations and can be developed with powerful IDE functionalities (e.g.,
Eclipse refactoring and debugger).

XASDI software stack contains core runtime written in X10 language for dis-
tributed agent and execution management and Java API bridge to enable application
programmer to utilize familiar Java languages (Fig. 14.6). By utilizing XASDI
framework, users can easily develop their social simulator with Java on distributed
parallel environment without studying the new X10 language.

The agent in XASDI is referred to as Citizen and Citizen has corresponding
CitizenProxy that is managed in the simulation environment to exchange messages.
To manage CitizenProxy, XASDI provides a hierarchical container structure called
Place, Region, and World (see Fig. 14.7). CitizenProxies belong to a Place and
Places belong to a Region. World can contain several Regions, but usually there
is only one Region in the World.

Here, we need to note that the confusing terminology of the X10 programming
language and the framework. The X10 use the term “Place,” too, but the meaning of
the term is different. The Place of X10 is used to denote the distributed execution
environment for multi-core or multi-node. For this meaning, we will use “X10 Place
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(node)” in distinction from the Place container of agents. Only one World instance
exists in one X10 Place and manages lists of entities in the world including Region
and Citizen. The world can also contain IDs of Citizens in other nodes.

Other important classes in XASDI are Message, MessageRepository and Driver.
MessageRepository manages Message exchange among CitizenProxy and environ-
ment, and this class also works as interface between Java environment and X10
environment to exchange Messages in distributed X10 Places. Driver manages
execution of the simulation with a corresponding thread. Each Driver is related to
Places (and Citizens in the Places) where it has a responsibility for execution.

Finally, XASDI provides a logging mechanism. By preparing log definitions for
the application, it can output the simulation log at each X10 Places.

Application users of XASDI need to develop their own simulation application by
utilizing these classes and execute the application with XASDI library on Java and
X10. We describe the execution process on XASDI and the simple customization
for the sample application bundled with XASDI.

A user starts the simulation by executing the shell script to invoke the X10 core
runtime. After the preparation of X10 environment, Launcher for the simulation
written by Java is called at each X10 Place. Launcher reads the initialization file
and generates a Region, Places and Drivers. If agents are needed to exist from the
beginning of the simulation, Launcher or Driver generates Citizens. Citizens can
also be generated by Driver through the method of the Region during the simulation
at given time or randomly. For example, consumer agents are generated when they
enter a shopping mall.

The main simulation process is executed through Drivers. Simulation managers
in the X10 core environment generate threads and invoke call back method in each
Driver in parallel. One simulation time step can be divided into phases. The number
of phases is determined at the beginning of the simulation with initialization file.
The method of the Driver looks at the time and phase given by the environment and
determines the action that the corresponding Places and Citizens should perform.

In one node, there is one Region instance that manages the execution of the sim-
ulator. The core framework written using X10 manages the Regions and Message
Repositories of distributed nodes. The Message Repository supports several kinds
of messages such as individual message, broadcast message, and control message
to move agents between X10 Places. An individual message is a standard message
from one agent to another. A broadcast message is sent to all nodes and received by
the Region or agents corresponding to the type of message. A move message is a
control message for X10 core runtime to remove the Citizen at the source node and
restore it at the destination node with serialized field data stored in the message.

As applications for large-scale simulation on XASDI, we developed a large-
scale traffic simulator for city [15] and a shopping mall simulator with integrated
model of walking and purchasing behavior [8]. Figure 14.8 shows the weak scaling
performance of XASDI by using our application for shopping mall simulation with
distributed consumer agents [18].
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Fig. 14.8 Weak scaling performance of XASDI with shopping mall application

14.4 Applications

14.4.1 Financial Market Simulation

We developed the platform software Plham (platform for large-scale and high-
frequency artificial market), which can simulate financial markets with thousands
of stocks and hundreds of thousands of market participants [22]. By joint research
with Tokyo Stock Exchange, the market simulation result using Plham supported
a new rule determination in the actual financial market. Simulation execution and
management utilized the execution control system OACIS developed in this project.
The information about the main part of OACIS, improvement of a user interface, and
the decision of analysis/visualization application acquired by simulation execution
was fed back to the OACIS development team. The result shown below was obtained
about the market simulation.

14.4.1.1 Policy-Making Support of Tick Size Reduction of Tokyo Stock
Exchange

About 100 kinds of parameter study were performed using the prototype program
of the small-scale financial market simulation in which 1,000 trading agents trade
one kind of stocks (Fig. 14.9) [9–11]. As compared with a simulation result and
the actual data of Tokyo Stock Exchange, the threshold of proper tick size (the
minimum price unit) was calculated from the fluctuation of a stock price. This
simulation result was reflected in the plan of selection of the target stocks in the tick
size reduction of Tokyo Stock Exchange in 2014. Furthermore, while developing
an analytical theory which reproduces a simulation result in good accuracy and
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Fig. 14.9 Impact analysis of the tick size reduction by a financial market simulation

helping an intuitive understanding of the simulation result, the simulation model
which reduces a computational complexity was developed.

14.4.1.2 Simulation of Flash Crash

The prototype model was extended using the parallel processing language X10 to
the larger-scale simulation which consists of 100 individual stocks and 1 index
security coupled to a stock price average [21]. We investigated the conditions to
which the high-frequency arbitrage trading propagates a rapid price change to other
stocks using this model. About 5000 kinds of parameter sets were analyzed using
social simulation management module OACIS, and the combination of the trading
strategies which a price decline propagates to other stocks and the flash crash may
occur was specified (Fig. 14.10). We introduced the circuit breaker into the model as
a financial regulation which prevents such fluctuation propagation and investigated
the conditions where a circuit breaker prevents propagation effectively, and the
conditions where it accelerated the propagation.

14.4.1.3 Analysis of the Influence of Risk Management Regulation

By the joint research with a financial institution, we developed the support method
of the institutional design financial regulation such as capital adequacy require-
ments [30]. As a result, the market became unstable when the market participants
who manage a market risk based on capital adequacy requirements increased in
number (Fig. 14.11). An increase of the kind of securities in which it trades showed
that the instability by regulation was eased (Fig. 14.12).

This artificial market simulation software Plham is released from April 2016
(https://github.com/plham/plham). Since it is implementation by an agent model, it
can reproduce the mixed environment of various investment strategies seen in actual
markets, such as an HFT and an automatic transaction. Since it is implemented
with the parallel processing language X10, it can run on various scales from

https://github.com/plham/plham
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Fig. 14.10 Analysis of the price decline propagation by a simulation

Fig. 14.11 The example of price fluctuation in having no capital adequacy requirements (left
figure) and a simulation with regulation (right figure)

Fig. 14.12 The ratio r of the agents imposed by regulation, and the relation between the number
G of trading capital, and the instability (vertical axis) of a market
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stand-alone PC to large-scale parallel execution environment according to the scale
of a simulation. We are targeting a researcher or not only an engineer but the
financial working member and the policy-maker as a user.

14.4.2 Pedestrian Simulation

CASSIA Framework can illustrate a trade-off structure of social problems. The
most of social problems like planning of evacuations from disasters are not simple
optimization problems but dilemmas among multiple objective functions. We will
show an example to apply CASSIA framework to find such trade-off structures
using evacuation planning for Nishiyodogawa-ku, Osaka, which includes over 300
control parameters [7]. Because of the large degrees of freedom, the search space of
this problem is so huge that the solution of this problem require high-performance
computing like K computers.

14.4.2.1 Pedestrian Simulator: CrowdWalk

In order to simulate evacuation situations, we employ CrowdWalk [27, 28]. Crowd-
Walk is a pedestrian simulator that limits human movement to one-dimensional
movement on the road network. Road network is composed of nodes and links, on
which CrowdWalk controls large number of pedestrian movements at high speed.

We use a road map of Nishiyodogawa-ku, which consists of 7,624 nodes
(intersections) and 10,707 road links (Fig. 14.13). This area has 86 official refuges
and 54,909 of the population, which are distributed in 146 small zones. We suppose
that every people in each zone follows one guidance rule that requests them to go
to a certain destination with one via point in a map. The destination and the via
point are selected from the 86 official refuges and from 533 major intersections,
respectively.

Fig. 14.13 Nishiyodogawa area (left) and road map (right) used in pedestrian simulation
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14.4.2.2 Multi-objective Optimization

In general, evacuation planning includes a dilemma between evacuation time and
simpleness of evacuation guidance. From the viewpoint of the minimization of
evacuation time, it is better to use the result of mathematical optimization like
maximum network-flow [6]. However, we need to guide large number of people
that include persons who are not acquainted with the place like visitors. So, the
guidance should be simple enough to understand and to follow easily.

In order to know the relationship of these two objectives, we apply NSGA-
II(Elitist Non-Dominated Sorting Genetic Algorithm) [3], a genetic algorithm for
multiple objective optimization.

For the first objection function, the evacuation time, is estimated by simulation
using CrowdWalk for each guidance plan.

For the second objective function, the simpleness of evacuation guidance, we
introduce “entropy” of the plan as follows. Suppose two connecting zones, zi and
zj in the area, whose populations are ni and nj , respectively. If the two rules for
these zones has same via point and destination, then the entropy is zero. Otherwise,
the entropy of this pair is defined by:

H(zi, zj )=−(ni/(ni +nj )) log(ni/(ni +nj ))−(nj /(ni +nj )) log(nj /(ni +nj )).

Finally, we use total entropy H = ∑
zi ,zj

H(zi, zj ) for the index of the complexity
of the guidance (opposite value of the simpleness).

14.4.2.3 Experimental and Discussion

In order to run NSGA-II for this guidance plan, we utilized OACIS described in
Sect. 14.2.2 to manage the large number of runs. The search space of this problem is
so huge (R73 ×533146 ×86146), and NSGA-II requires large number of populations
(about 100–1,000). So we need to run so many runs for the optimization. In the
experiment, we run 500 generations with 100 population for the optimization, which
means we run 500,000 simulations1 for this experiment.

To control we implemented NSGA-II procedure using Ruby API of OACIS. In
the actual GA procedure, we use “simulated binary crossover” and “polynomial
mutation” for creating new generations and Paleto ranking mechanism to determine
the selection.

Figure 14.14 shows the result of the experiment. In this graph, vertical and
horizontal axes indicate evacuation time and the complexity of plan (total entropy
scaled by 100), respectively. The color of the dot indicates the generations. From
this result, we can see that the evacuation plans are improved by progress of
generations and almost saturate to boundary of 3000 for evacuation time and 2100

1We runs 10 simulations for one guidance plan to calculate average evacuation time.
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Fig. 14.14 Result of evacuation simulation (wide road)

for complexity of guidance. In order to minimize the evacuation time, we need
to choose relatively complex guidance (the complexity is about 2200 rather than
2100). On the other hand, if we consider simplify the complexity, the evacuation
time increase drastically up to 7000. And, we can see reasonable guidance will exist
the most left-bottom area of the Paleto front in this graph.

Figure 14.15 also shows the result of the case that the people use only pedestrian
road. In this case, the boundary of the evacuation time increase to 4500, but the
complexity of guidance is similar to the previous case. Anyway, in both cases of
Figs. 14.14 and 14.15, we can see a clear trade-off structure of Paleto solution sets.

This result implies that OACIS with evolutionary methods have a great potential
to investigate such social problems. We also succeeded to apply CARAVAN to run
the same procedure on K computer. This combination enables to run larger scale of
simulations and search spaces.

14.4.3 Traffic Simulation

14.4.3.1 Simulation Cost and Benchmark

Traffic simulations are comprised of three parts: road map with traffic rules and reg-
ulations, origin and destination (OD) sets of cars with travel routes, and movements
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Fig. 14.15 Result of evacuation simulation (narrow road)

of cars on the map along their routes. There are two method to parallelize traffic
simulations. One is to parallelize geometrically, and the other car- or trip-wisely.
Geometrical parallelization is advantageous on modern supercomputers, because
necessary data transfer is states of cars which move out from an area on one node
and go to an area on other node, and only nearest-neighbor communications appear.

Parallelization of trip routings is more complicated, but most trips are short range
and are executed on one node using local map. Time-consuming long trips are few,
and their routing cost can be made negligible.

Parallelization feature of car-traffic simulations with the most parallelization
demanding case, that is, simulations using the simplest car movement, was mea-
sured in this CASSIA project. Each car continues to move along road and turn
randomly at each crossing. This means that no routing is done. This simulation
model will require the lightest processing in each computer node and the most
frequent internode communication. Results of strong scaling of parallelized perfor-
mance using the K computer up to its quarter configuration (20,736 nodes) for the
traffic simulation on entire road of Japan are shown in Fig. 14.16. Simulations were
up to 100 s and time step was 0.01 s. So totally 10,000 steps were done for about
11.7 million cars on totally 1.28 million kilometer-long roads using the “Open Street
Map.” Using the quarter nodes, simulations of 10,000 steps were executed in 11.5 s
apart from the initial preparation (66.1 s), and efficient parallelization is confirmed.
For another simulation of 100 million car on all-over the world with 30.9 million
kilometer took 116 s using quarter nodes of the K computer.
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Fig. 14.16 Results of strong
scaling using the K computer
for entire Japan traffic
simulation with the simplest
movements without routings
are plotted

This result implies that real-time or faster car-traffic simulation will be executed
on the K and the future supercomputers.

14.4.3.2 Traffic Factors

In traffic simulation models, numbers of input parameters and output results are
enormous. Each car has several input parameters, for example, its origin, destina-
tion, starting time, and driving preference, and also several output parameters, for
example, travel duration and gas consumption. Each traffic signal has its control
parameters. Each road segment has its speed limit and car flux. Such parameter-
number explosion is quite common in various social models. In Kobe city, as an
example, there are more than 30,000 road segments and about 100,000 trips (OD
pairs) daily. So the number of input parameters and output results are order of 105

at least. Without knowing behavior of simulation model, we cannot apply the model
to describe, predict, and design the real phenomena. But it is impossible to tame
a model with 105 input and output. So the first step is to eliminate unimportant
parameters and to extract relevant parameters. A standard method for this purpose
is the multivariate statistical analysis.

In this CASSIA project, a car-traffic model and simulator of Kobe city was
developed [1]. Using this simulator, Monte Carlo simulations for various OD sets
satisfying a constraint that daily trips be 100,000 and 70% of the trips are coming
from peripheral cities and just passing through Kobe city. A factor analysis was
applied to the output flux of road segments [23]. Numbers of estimated factors are
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Fig. 14.17 Number of factors estimated using a factor analysis are plotted. Green curve shows
square root of number of Monte Carlo samples, which is expected in the case of uniform
distribution of eigenvalues of correlation matrix, but this plot is interpolated by slower red curve

plotted in Fig. 14.17. It is observed in this Fig. 14.17 that thousands of samples
finally clarifies hundreds of factors. Hundreds are still large, but anyway we
succeeded to extract relevant factors.

This is still a model analysis, but this result will suggest that we will need
to measure traffic thousands times to extract the relevant factors from real traffic
phenomena, but real traffic will never repeat the same traffic thousands times. So
we can use plausible computer simulation models to get better description of the
real social phenomena.

14.4.3.3 Behavior Analysis of Taxi Drivers and Model Construction

Real-life urban traffic flows consist of different types of vehicles, each of which has
its own properties of behaviors. In the project, taxi is our primary target.

We use probe-car data provided by a taxi company in Kyoto City for a 1-
month period including approximately 700,000 location data points recorded per
day. In general, the driver’s behavior in VACANT state is driver-determined. That
is, after dropping off passenger(s), a driver can freely select next destination and
mode (queuing or cruising) for picking up the next passenger(s). In contrast,
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Fig. 14.18 Visualization of origins for each cluster: red (high ratio) ⇔ blue (low ratio). (a) Cluster
1. (b) Cluster 4. (c) Uniform

the destination in OCCUPIED state is passenger-determined. Given this fact, we
hypothesize that the tendency of the location that a taxi driver got passenger(s)
would be one of the main characteristics of the driver. For considering that, we
focused on the preferred location to pick up passenger(s) and try to classified drivers
based on that.

To extract popular regions to get passenger(s), we apply kernel density analysis
and the mean shift clustering algorithm which are widely used for extracting POI
(Point of Interest) from the two-dimensional information provided by photo geo-
tagging and GPS. From the results of Kernel density analysis, we can assume that
the activity range defining the average driver’s interest point is 50 s of longitude
and latitude. We use these values as the bandwidth for the mean shift clustering
algorithm so that we got 15 regions. We then calculated the ratio of picking
up passenger(s) at each region. We use the ratios and the affinity propagation
clustering algorithm to classify all taxi drivers. This yielded 10 clusters of driver
type. Figure 14.18 shows the departure points for the clusters. These figures clearly
indicate drivers tend to favor a specific territory for picking up passenger(s) . For
example, 112 drivers for Cluster 1 tend to operate on the north side of Kyoto City.
On the other hand, 33 drivers Cluster 4 are apt to go to the south side.

In simulations each taxi agent has two states: OCCUPIED and VACANT. When
the state changes from OCCUPIED to VACANT, taxi agents stochastically decide
next destination and mode according to current time zone and current location. To
analyze this decision-making process, we construct 10 driver models based on the
clustering results shown in Fig. 14.18. Further, if the taxi picks up a passenger(s)
and changes their state to OCCUPIED, the destination is given by the passenger
agent. Each passenger agent has an OD matrix whose contents stochastically
mirror the probe-car data. In this taxi model, the driver type is given by (1) ratio
of queuing/cruising and (2) selection of area used in searching for passenger(s).
We conduct traffic simulations in the city of Kyoto with constructed taxi agents.
Figure 14.19 shows a visualization of agents whose model followed taxi driver
cluster ID 1 or ID 4. ID 1 is a driver who tends to work in the northern part of
Kyoto City, while ID 4 is in the south. The characteristic behavior model confirmed
that there is a deviation in the preferred areas for each taxi driver class as expected;
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Fig. 14.19 Comparison of characteristic behavior model and uniform model

see Fig. 14.19a, b. Table 14.2 lists the ratios of staying time in each region. Com-
paring probe-car data, it seems that the tendencies of agents follow the clustering
result.

14.5 Computational Road Maps of Social Simulations
and Future

In this project, we also try to determine how HPC contributes to the advancement
of research on social simulation or to clarify the computational power required for
real applications of social simulation. In this section, we focus on three applications
and try to develop road maps for them [13].

In the development of these road maps, we adopted two indexes to measure
the computational cost, “number of situations” and “complexity of one simulation
session.” We considered exhaustive evaluation by simulation as a key methodology
of social simulation. Therefore, to evaluate the model, examining many conditions
and models is important. The index of “number of situations” indicates this number.



14 Project CASSIA —Framework for Exhaustive and Large-Scale Social. . . 293

Table 14.2 Ratio of staying
time in each region

Probe-data Behavior model

Cluster1 Cluster4 Cluster1 Cluster4

Region3 0.263 0.056 0.217 0.095

Region4 0.016 0.196 0.054 0.165

Meanwhile, ordinal computational cost of a simulation, which is determined by the
number of entities and the number of interactions among the entities, is important.
In addition, in multiagent simulation, the computational cost of thinking of each
agent is significant. In the following discussion, we integrate these complexities as
“complexity of one simulation session.”

14.5.1 Evacuation/Pedestrian Simulation

The main target of evacuation simulation is not to find an optimal plan of evacuation
for a given disaster situation, but to evaluate the feasibility and robustness of
executable candidates of evacuation plans or guidance policies.

Several simulations have been performed for evaluating such evacuation plans
[14, 25, 26, 29]. For example, a simulation of an evacuation from a Tsunami struck
city in Tokai area in Japan was performed. We conducted the following exhaustive
simulations considering various sizes and evacuation policies (evacuee’s origin-
destination (OD) plans). The simulation results tell that the scale of evacuation can
be grouped into two categories, namely, “large” (>3,000 evacuees) and “small”
(<3,000 evacuees), and that citizens and local governments should consider at least
two plans for large- and small-scale evacuations.

We execute the evacuation simulation described above to arrive at a reference
point for illustrating computational costs of various actual applications. In the above
simulation, we considered the following scenarios:

• 2,187 OD plans
• 8 cases of evacuation population (70–10,000 agents).

Therefore, in total, 17,497 simulation scenarios were executed over about 30 days
when using a single process on Xeon E5 CPU (2.7 GHz). We denote this reference
point as the rectangle “city zone, TSUNAMI” in Fig. 14.20.

We can easily extend the simulation scale. Although a population of only 10,000
is considered in “city zone, TSUNAMI,” we can extend the simulation to a more
densely populated area such as in Tokyo. For example, we performed a similar
simulation analysis in the Kanazawa area, which is located on the coast along the
Japan Sea and experiences snowfall in the winter. In this case, the population size is
similar (about 6,000 agents), but the number of combinations of scenarios increases
to 4,194,304 (222). The rectangle “city zone, TSUNAMI and HEAVY SNOW” in
Fig. 14.20 denotes this calculation cost.
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Fig. 14.20 Road map of evacuation simulation

We can further extend the simulation to a large scale with a larger number
of scenarios. Kitasenju area, a large transfer station surrounded by rivers, has a
population of 70,000, and the computational cost of simulating this area is denoted
by “dense-population zone, complex disaster” in Fig. 14.20. Because this area is
densely populated and complex, we have combinations of 44 policy candidates, that
is, 244 scenarios. In the case of Tokyo, we need additional computational power. In
Fig. 14.20, “megacity” corresponds a huge city such as Tokyo. In this case, the size
of evacuation and the number of possible scenarios is very large. Therefore, peta- or
exa-scale HPC is required to handle such simulations.

14.5.2 Traffic Simulation

To create a reference point for the road map of the traffic simulation, we considered
the case of evaluating road restriction policies for road construction in the Hiroshima
area [16]. In this case, we performed simulations of the following scales:

• 70,000 agents (trips), 120,000 road links, and 15 h
• 20 cases

In this case, the calculation required about one day when using a single process
on Xion E5 CPU. We denote this reference point as “million city, road plan” in
Fig. 14.21.

We can draw out the road map from this reference point. When considering the
Tokyo area, the number of agents increases up to about two million and the number
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Fig. 14.21 Road map of traffic simulation

of road links increases to about 610,000. Moreover, if we consider a larger area such
as the Tokyo metropolitan area, the population increases about four million, and the
number of road links increases to 2.5 million. These calculation costs are plotted as
“Tokyo, traffic control” and “metropolis, traffic control” in Fig. 14.21.

When we consider a big event, we must list a large number of cases to evaluate
the robustness of road traffic to accidents, whereas the scenarios mentioned above
pertain to normal situations that are repeated every day. Because various situations
affect traffics, the number of situations increases quickly. These costs are plotted
as “Tokyo, big event,” “metropolis, big event,” and “whole Japan, big event” in
Fig. 14.21, and they require exa-scale computational power.

14.5.3 Market Simulation

Market simulations are another important application of multiagent simulations, in
which agents directly affect each other by selling/buying stocks and/or currencies
[5]. Compared with evacuation and traffic simulations, market simulations are not
constrained by physical space. Therefore, the time cycles of agents’ interactions
may be quite short. Moreover, the ways of thinking of agents show large variations.
This means that the market simulations also require huge computational cost.

As the reference point of the calculation cost in market simulations, we present
the case of “tic size” evaluation. In this scenario, we conducted a simulation of
multiple markets having different tic sizes, which is the minimum price unit for
trading stocks. Market companies such as Japan Exchange Group internationally
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Fig. 14.22 Road map of market simulation

compete with each other by providing attractive services to traders. A small tic size
is one of such services that considerably increases cost. Therefore, such organi-
zations need evaluations of changes to such services in advance. In collaborative
works with Japan Exchange Group, we conducted a simulation experiment to find
key conditions that determine market share among markets. In the simulation, we
considered the following scenario:

• one good in two markets, 1,000 agents, and 10 million cycles
• five cases of tic size and 100 simulation runs per case

This simulation takes about one day when using a single thread on a Xeon E5 CPU.
As the reference point, we plot this as “tic size” in Fig. 14.22.

We are considering extending the market simulations to various applications used
for stock market analyses. For example, it is in the interest of market companies
to determine “daily limit” and “cut-off” prices [9]. In this case, the simulation
must handle 10–20 goods. Moreover, evaluating the effects of “arbitrage” [5],
which involves trading rather quickly in intervals of milliseconds, is important
from the viewpoint of maintaining sound market conditions. This will increase the
computational cost, as plotted in Fig. 14.22. Another topic is the evaluation of “Basel
Capital Accords,” which deal with the soundness of banks in markets. In the present
study, we executed the case of three names for the Basel Accords, but we will extend
it to 100 names in the real application.

The evaluation of “systemic risks of inter-bank network” is an important issue in
market evaluation. However, currently, the computational cost of a naive simulation
exceeds exa-scale HPC.
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14.6 Toward Smart Society

In the road map discussion, we count the number of scenarios naively based on
the actual numbers used in our works in this project. We suppose that we simply
apply exhaustive search on these scenarios. Of course, we can apply several methods
based on design of experiments or other optimization/learning methods to reduce the
number of scenarios we should run. OACIS and CARAVAN also provide facilities
to realize such intelligent and effective functions.

We also need to investigate the cost of thinking part of each agent. In the
evaluation above, we assume that the intelligence of each agent will not change,
so that the complexity of the thinking in each agent is constant. But, for further
simulation researches, we need to introduce more sophisticated and complex
thinking engine to realize more intelligent and adaptive behaviors like human. This
is still open issues.

The multiagent social simulation is an evolving research domain to realize smart
societies by IT and AI and is still under establishing phase. However, requests
from application fields become stronger and wider. So, it is important to determine
a measure to know achievements will be important. The road maps shown in
this article will become a testbed to provide such measures. Also, the CASSIA
framework shown in this chapter will provide powerful tool to push forward the
research on these road maps.
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Chapter 15
GPU-Accelerated Language and
Communication Support by FPGA

Taisuke Boku, Toshihiro Hanawa, Hitoshi Murai, Masahiro Nakao,
Yohei Miki, Hideharu Amano, and Masayuki Umemura

Abstract Although the GPU is one of the most successfully used accelerating
devices for HPC, there are several issues when it is used for large-scale parallel
systems. To describe real applications on GPU-ready parallel systems, we need
to combine different paradigms of programming such as CUDA/OpenCL, MPI,
and OpenMP for advanced platforms. In the hardware configuration, inter-GPU
communication through PCIe channel and support by CPU are required which
causes large overhead to be a bottleneck of total parallel processing performance. In
our project to be described in this chapter, we developed an FPGA-based platform
to reduce the latency of inter-GPU communication and also a PGAS language for
distributed-memory programming with accelerating devices such as GPU. Through
this work, a new approach to compensate the hardware and software weakness of
parallel GPU computing is provided. Moreover, FPGA technology for computation
and communication acceleration is described upon astrophysical problem where
GPU or CPU computation is not sufficient on performance.
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15.1 Introduction

We started the project named “Accelerator and Communication Unification for
Scientific Computing” where we utilize the FOG technology to realize a short
latency communication between accelerators such as GPUs for strong scaling on
accelerated parallel computing. Today’s GPUs such as NVIDIA CUDA devices
are equipped with a feature for device-to-device direct memory access within a
computation node. Our goal was to develop a special hardware technology as well
as system software to make over-node direct communication among GPUs. This
concept is named “TCA (Tightly Coupled Accelerators).” We also implemented a
prototype system to realize this concept with external link of PCIe (PCI Express)
to enable GPU-GPU direct memory access over nodes. We implemented it on an
FPGA system named PEACH2 (PCI Express Adaptive Communication Hub ver.2).

While PEACH2 provides very short latency of communication among GPUs on
different nodes, the system software stack to support application level coding is
required. We developed an API library to drive PEACH2 in a similar style of GPU
Direct access feature by NVIDIA to program this system based on CUDA-style
coding where we can call GPU-GPU direct access instead of MPI communication
over GPUs. However, this level of coding is still difficult for application users
such as advanced computational scientists. To support them, we developed a new
language named XcalableACC (XACC) for higher level coding in an incremental
manner. In an implementation of XcalableACC, we developed a special version
to support PEACH2 communication as well as ordinary MPI communication with
InfiniBand.

Finally, we stepped into a new method to utilize FPGA for PEACH2 not only
for PCIe base communication but also for sub-computation of the entire scientific
algorithm. It is a brand-new challenge to apply FPGA both for communication
and computation where a class of tightly coupled parallel computing can be
implemented to partially off-load the computation to the function of internode com-
munication. This concept is named “AiS (Accelerator in Switch).” We demonstrated
this new feature on an astrophysics application on enhanced version of PEACH2.

In this chapter, we introduce PEACH2 technology at first for the realization
of TCA concept and then briefly introduce the feature and implementation of
XcalableACC. Finally, we describe the AiS implementation for an astrophysics
code.

15.2 PEACH2

15.2.1 Realizing TCA Concept by PCIe

Recent GPUs such as NVIDIA CUDA devices are equipped with functions to apply
DMA (Direct Memory Access) through PCIe where these devices are connected
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Fig. 15.1 TCA implementation by PCIe bus (left, ordinary method; right, TCA by PCIe)

with other devices including the host CPU. For example, it is available to directly
access the global memory of GPU from InfiniBand HCA through PCIe where the
technology is called GPU Direct.

On the other hand, PCIe is possible to extend its communication link not just
on the motherboard of computation node but also to external link to connect it
to another node’s PCIe interface. Thus, it is theoretically possible to extend GPU
Direct to another node. However, there is a problem of PCIe device for master/slave
relationship. There is only one RootComplex that is allowed on PCIe bus, and
all other devices must be in EndPoint mode. If we can solve this problem with
some appropriate circuit with both sides of interface which is compatible with
PCIe specification, we can use PCIe for interconnection among nodes where GPU
Direct is possible to operate. Since all the communication is performed just within
simple PCIe protocol, it is very fast with short latency. It is one of the simplest
implementation of TCA (Fig. 15.1).

To realize above concept under TCA model, we implemented this feature to
FPGA. Here, Altera Stratix IV FPGA was used as the latest technology at that
time. This device is named as PEACH2 (PCI Express Adaptive Communication
Hub ver.2).1 A PEACH2 chip (FPGA) is equipped with four ports of PCIe gen2 x8
interfaces to be connected to host CPU or external link to other nodes. Figure 15.2
shows the block diagram of PEACH2. The port to the host CPU must be EndPoint of
course, but other three ports which are configured as RootComplex, EndPoint, or the
selection of them. The last port can be configured either RootComplex or EndPoint.
Theoretically, we can make any combination including ring/torus network with the
routing function inside PEACH2 chip.

1Before we started this research, we had made another PCIe base communication. Then it is named
as the second version.
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Fig. 15.2 Block diagram of
PEACH2 chip

Fig. 15.3 PEACH2 board

The PEACH2 FPGA chip is mounted on an PCIe board to be inserted to the
motherboard as like as ordinary PCIe devices. This board is called PEACH2 board
(Fig. 15.3).
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Fig. 15.4 PEACH2 latency

15.2.2 PEACH2 Performance

Since PEACH2 enables the simplest communication protocol on PCIe to connect
multiple GPUs over multiple nodes, it can achieve very low latency in the
communication for GPU-GPU remote memory copy. Figure 15.4 shows the point-
to-point communication latency comparison between PEACH2 and MVAPICH2 on
InfiniBand (QDR). “MVAPICH2-GDR 2.0” shows the latency of MVAPICH2 at
that date, while three lines “PIO,” “DMA(GPU),” and “DMA(CPU)” show that
of PEACH2. The actual use case of GPU-GPU communication is represented by
“DMA(GPU),” and it shows 2.1 μs of latency up to 2 KB of message. It is quite
faster than MVAPICH2.

For the bandwidth, the situation is different. Since our PEACH2 implementation
with Stratix IV allows to be interfaced by PCIe gen2 x8 lanes, its maximum band-
width is up to 4 GB/s. On the other hand, InfiniBand QDR can be connected by PCIe
gen3 x8 lanes where the maximum bandwidth reached to the double of PEACH2.
Figure 15.5 shows the ping-pong bandwidth of PEACH2 and MVAPICH2 over
InfiniBand(QDR). Since the latency of PEACH2 is much shorter than MVAPICH2,
the bandwidth is higher than it for short messages; then MVAPICH2 performance
overcomes PEACH2. It is caused by the physical performance difference on PCIe
technology, but still we can demonstrate that PEACH2 provides higher performance
when the message size is relatively short, and it is a better solution for strong scaling.
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Fig. 15.5 PEACH2
bandwidth

15.2.3 Conclusion

The basic research for development of PEACH2 to realize TCA concept shows the
possibility to reduce the communication latency between GPUs over multiple nodes.
PEACH2 technology is based on PCIe external link extension which provides a
very simple and flat communication protocol over remote GPU communication. The
FPGA implementation is just a prototyping method for easy and cost-effective way,
and we developed the PEACH2 chip only for the communication functionality with
intelligent PCIe controlling. Since we could utilize PCIe gen2 technology on that
date of FPGA (Altera Stratix IV), the absolute performance of following generations
such as InfiniBand FDR or EDR overcame the performance of PEACH2 later.

After this basic research on PEACH2 implementation, we expanded its uti-
lization to language level, introducing a new parallel language with PGAS model
named XcalableACC. The programmability and productivity of the scientific code
for large-scale parallel GPU clusters are enhanced by this research. We will describe
it in the next section. Another new challenge was to utilize FPGA not only for
communication but also for partial computation which is not suitable for GPU. It is
a unique solution to speed up the application by FPGA to be unified computation
with communication. This new concept is named as AiS (Accelerator in Switch).
We will describe this feature and actual application on this concept in the following
section.
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15.3 XcalableACC: A Directive-Based Language for
Accelerated Clusters

15.3.1 Introduction

A type of parallel computer that is composed of multiple nodes equipped with
accelerator devices (e.g., Graphics Processing Unit (GPU)) has become a popular
HPC platform. In fact, many supercomputers in the recent TOP500 lists are of this
type. We call it accelerated clusters.

To program accelerated clusters, the combination of Message Passing Interface
(MPI) for distributed-memory parallelism among nodes and a dedicated language
or application programming interface for off-loading works to accelerator devices
within a node (e.g., CUDA for NVIDIA’s GPU and OpenACC [15]) is usually
adopted. However such a style of programming is quite complicated and difficult
for most of application programmers, and an easier way to program accelerated
clusters is strongly demanded.

To meet this demand, some PGAS languages [3, 18] have already been extended
to support accelerators. On the other hand, there have been other approaches based
on C++ template library, such as Kokkos [4], RAJA [7], Alpaka [25], and Phalanx
[5], for heterogeneous architectures including accelerated clusters.

In this project, we propose a new language named XcalableACC [17], which
is a diagonal integration of two existing directive-based language extensions:
XcalableMP and OpenACC.

XcalableMP (XMP) [24], developed by the XMP Specification Working Group
of the PC Cluster Consortium, is a directive-based language extension for C and
Fortran to program distributed-memory parallel computers. Using XMP, program-
mers can obtain parallel programs just by inserting simple directives into their serial
programs.

OpenACC is another directive-based language extension designed to program
heterogeneous CPU/accelerator systems. It targets off-loading works from a host
CPU to attached accelerator devices and has an advantage of portability across
operating systems and various types of host CPUs and accelerators.

XcalableACC (XACC) has features for handling distributed-memory parallelism,
derived from XMP, and off-loading works to accelerators, derived from OpenACC,
and two additional functions: direct communication between accelerators and
data/work mapping among multiple accelerators. These two functions are the
advantages of XACC against the previous works.
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Fig. 15.6 Execution model of XACC for data distribution, off-loading, and communication

15.3.2 XcalableACC Language

XACC consists of three components: the XMP directives, the OpenACC directives,
and the XACC extensions, which have the following functions, respectively.

• XMP directives for distributed-memory parallelism
• OpenACC directives for off-loading works to accelerator
• XACC extensions for handling direct communication between accelerators and

multiple accelerators

15.3.2.1 Execution Model

Figure 15.6 shows the execution model of XACC for data distribution, off-loading,
and communication. On this model, data or works are distributed onto nodes
and then off-loaded onto accelerators within a node; communication of the data
in accelerator memory might be performed via the direct interconnect between
accelerators, if available.

An example code of XACC is given in Fig. 15.7.

15.3.2.2 XACC Extensions

The XACC extensions in the XACC language have specifically the following two
functions:

• Direct communication between accelerators
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1 #pragma xmp nodes p[*]
2 #pragma acc device d(*)
3
4 #pragma xmp template t[100]]
5 #pragma xmp distribute t(block) onto p
6
7 float a[100][100];
8 #pragma xmp align a[i][*] with t[i]
9 #pragma xmp shadow a[1:1][0]

10
11 #pragma acc declare copy(a) layout([*][block]) \
12 shadow([0][1:1]) on_device(d)
13
14 #pragma xmp reflect (a) acc
15
16 #pragma xmp loop (i) on t[i]
17 for (int i = 0; i < 100; i++){
18 #pragma acc kernels loop layout(a[*][j]]) on_device(d)
19 for (int j = 0; j < 100; j++){
20 a[i][j] = ...
21 }
22 }
23
24 ...

Fig. 15.7 Example code of XACC

– XMP’s communication directives, such as reflect, bcast, and gmove,
act on data that reside in the device memory when the acc clause is specified
in them (line 14 in Fig. 15.7).

– Data in device memory can be also declared as coarray, which can be
remotely accessed by other nodes.

• Data/work mapping onto multiple accelerators

– Data and works are distributed among nodes by an XMP directive and further
distributed among accelerators within each node by the additional layout
clause of the declare and loop directives (lines 11 and 18 in Fig. 15.7).

– The on_device clause can be put on some OpenACC directives (e.g.,
declare and data) to explicitly specify their target device (lines 12 and
18 in Fig. 15.7).

15.3.3 Omni XcalableACC Compiler

Omni XcalableACC is a compiler of XACC based on the Omni compiler infrastruc-
ture [14], which is being developed by RIKEN R-CCS and University of Tsukuba.

Omni XACC accepts an XACC source program and translates it into an
MPI+OpenACC program, which is then compiled and linked with the XACC
runtimes by the backend OpenACC compiler, such as PGI’s, to generate an exe-



310 T. Boku et al.

Fig. 15.8 Omni XACC
architecture
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cutable (Fig. 15.8). Note that Omni has already supported OpenACC and therefore
can work as the backend compiler for itself.

Omni XACC supports TCA-based direct communication between accelerators as
well as that based on MVAPICH2-GDR [16], which is an implementation of MPI
that takes advantage of the GPUDirect RDMA (GDR) technology [12]. In addition,
Omni XACC is also able to concurrently utilize a standard interconnect between
CPUs, such as Infiniband, and a dedicated direct interconnect between accelerators
to make the most of the interconnect throughput of the system [13].

15.3.4 Case Study: Lattice QCD Mini-application

15.3.4.1 Implementation

We evaluate performance and productivity of XACC through an implementation of
a Lattice Quantum Chromo-Dynamics (QCD) mini-application which is one of the
most important applications in the HPC field. Figure 15.9 shows the declarations of
distributed arrays on the accelerator memory. Note that these arrays have shadow
regions for halo exchange. Figure 15.10 shows how to exchange halo regions
between adjacent nodes. WD() in line 5 is the Wilson-Dirac operator [23], which
is the main kernel of this mini-application. Since WD() requires halo exchange,
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1 Gluon_t U[4][NT][NZ][NY][NX];
2 Quark_t X[NT][NZ][NY][NX];
3 #pragma xmp template t[NT][NZ]
4 #pragma xmp nodes n[PT][PZ]
5 #pragma xmp distribute t[block][block] onto n
6 #pragma xmp align [*][i][j][*][*] with t[i][j] shadow[0][1][1][0][0] :: U
7 #pragma xmp align [i][j][*][*] with t[i][j] shadow[1][1][0][0] :: X
8 #pragma acc enter data copyin(U, X)

Fig. 15.9 Declaration of distributed arrays

1 #pragma xmp reflect_init(U) width(0,/periodic/1:0, ...) orthogonal
2 #pragma xmp reflect_init(X, ...) width(/periodic/1, ...) orthogonal
3 :
4 #pragma xmp reflect_do(U, X) acc
5 WD(..., U, X);

Fig. 15.10 Halo exchange and calling Wilson-Dirac operator

the reflect_do directive performs halo exchange based on information set by the
reflect_init directive.

15.3.4.2 Performance Evaluation

We evaluate the performance of the Lattice QCD mini-application in XACC on
HA-PACS/TCA. The communication mechanism between GPUs of Omni XACC
is based on “hybrid” communication via TCA having low latency and Infiniband
having high bandwidth, which allows communication among sub-clusters of HA-
PACS/TCA. For a comparison purpose, we also evaluate it in the combination
of CUDA and MPI (CUDA+MPI) and the combination of OpenACC and MPI
(OpenACC+MPI). We assign a single process with a single compute node, and we
use up to 64 compute nodes. The problem size is (NT , NZ, NY , NX) = (16, 16,
16, 16) in Fig. 15.9, and we measure performance in strong scaling.

Figure 15.11 shows performance results of the implementations, where the
performance in XACC is the best at the high degree of parallelism. The performance
of XACC is up to 9% better than that of CUDA+MPI and up to 18% better than that
of OpenACC+MPI.

15.3.4.3 Productivity Evaluation

We evaluate the productivity of each the implementation using Delta Source Lines of
Code (DSLOC), which is one of evaluation criterions for productivity [19]. DSLOC
is a value to count the amount of changes (add, delete, and modify) required to
implement a parallel Lattice QCD code from a sequential Lattice QCD code. When
DSLOC is small, the programming costs and the possibility of program bugs will be
small as well. Table 15.1 shows DSLOC in each implementation, where XACC is
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Fig. 15.11 Performance results of lattice QCD mini-application

Table 15.1 Delta source
code of lines in each
implementation

XcalableACC CUDA+MPI OpenACC+MPI

Total 86 767 219

Add 80 348 173

Delete 0 73 0

Modify 6 346 46

the smallest. DSLOC of XACC is 89% less than that of CUDA+MPI and 61% less
than that of OpenACC+MPI.

15.3.5 Summary

We proposed XcalableACC that is a directive-based language extension for accel-
erated clusters and developed a compiler for it. It is basically an integration of
XcalableMP and OpenACC and has advanced features of direct communication
between accelerators and data/work mapping onto multiple accelerators. The case
study for a Lattice QCD mini-application showed that XACC would be useful in
both performance and productivity to program accelerated clusters.

15.4 Applying Accelerator in Switch for Astrophysics

15.4.1 Introduction

Simulations of gravitating collisionless particles, say N -body simulations, are a
fundamental tool in astrophysics. We have developed a gravitational octree code
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on GPU that adopts a block time step. Parallelization of the code is a mandatory
procedure to run N -body simulations with a large number of N -body particles that
cannot be stored in the memory of single GPU. Warren and Salmon proposed an
algorithm named Locally Essential Tree (LET) for the parallel tree code. Adopting
the LET reduces the communication between processes by paying an additional
cost to generate subtracted tree structure for all other processes. Accelerator in
Switch (AiS) is a framework to accelerate pre-/post-processes of communications
and provide better parallel efficiency. We have implemented LET generator on
PEACH3, which is a switching hub with Altera’s FPGA (Field Programmable Gate
Array) board, as a test bed for AiS in actual simulations. The LET generator on
PEACH3 is always faster than that on GPU and achieves 4.5 times acceleration.
Performance optimization on PEACH3 such as adopting lower accuracy of floating
point operations than single precision would provide further acceleration.

15.4.2 Development of Gravitational Octree Code Accelerated
by Block Time Step

Simulations of gravitating collisionless particles, say N -body simulations, are
a fundamental tool in astrophysics. In order to perform N -body simulations in
realistic elapsed time with a large number of N -body particles that are sufficient
to resolve astrophysical phenomena, the tree method [2] is frequently employed
to accelerate simulations through reducing the amount of force calculations. In
most astrophysical phenomena, the mass density and dynamical timescale are not
uniform and have difference by more than an order of magnitude. Therefore,
block time stepping (sometimes called hierarchical time stepping) is more effective
to accelerate N -body simulations than the shared time stepping [1, 8]. We have
developed a Gravitational Oct-Tree code Accelerated by Hierarchical Time step
Controlling, named GOTHIC, which adopts both the tree method and the block time
step [10]. The code is optimized for GPUs and adopts adaptive optimizations by
monitoring the execution time of each function on-the-fly and minimizes the time-
to-solution by balancing the measured time of multiple functions.

The decrease in the number of steps having long execution time is attributed
to the acceleration by the block time step. In the case of the block time step,
execution time in some steps is smaller than shared time step, because the number
of activated N -body particles is reduced by order of magnitude. Figure 15.12 shows
the execution time of tree traverse on NVIDIA Tesla K20X with CUDA 7.5. Out
of the first 201 steps, the number of steps having execution time above 1 s is 26
owing to the reduction of force calculations on slowly moving N -body particles;
this is the main reason for the acceleration by the block time step. The achieved
mean execution time per step is 0.21 s, and the contributions from the steps with
long execution time, which is 1.2 s ×26/201 = 0.16 s, are dominant.
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Fig. 15.12 Execution time of gravitational force calculation on NVIDIA Tesla K20X as a function
of the time step. The particle distribution is a model reproducing the Andromeda galaxy with
222 = 4,194,304 particles generated by MAGI [11]

15.4.3 Parallelization of the Code and Barrier for Scalability

Parallelization of the code is a mandatory procedure to run N -body simulations
with a large number of N -body particles that cannot be stored in the memory
of single GPU (N ∼ 10 M or N ∼ 30 M are the upper limit for GOTHIC on
NVIDIA Tesla K20X or NVIDIA Tesla P100, respectively). Warren and Salmon
proposed an algorithm named Locally Essential Tree (hereafter, LET) to reduce
the amount of the communication among processes for the parallel tree code [22].
When one applies the domain decomposition to the tree code, particle distribution
in other domains is necessary to calculate gravitational force. However, a subtracted
tree provides sufficient data to calculate gravitational force properly, since the
detailed information in the distant regions is not required for the tree method.
The LET contains the data that is necessary to calculate the gravitational force
on every N -body particle in a local domain pulled by particles in other domains.
Adopting the LET reduces the communication between processes by paying an
additional cost to generate subtracted tree structure for all other processes. The
difficulty in achieving the scalability comes from the collision with aspects of block
time step and computational cost for LET. The parallel efficiency decreases when
the execution time of LET-related operations exceeds or is comparable to that of
gravitational force calculations. As shown by Fig. 15.12, the execution time of force
calculations has various ranges: ∼1.2 s, ∼0.4 s, ∼ 0.1 s, and ∼2 ×10−3 s. Let
us consider a case of the LET-related operation takes ∼0.5 s, for example. The
operation becomes the dominant procedure in most time steps except for the steps
with execution times above 1 s, and therefore the parallel efficiency would become
worse. Since the execution time of the shared time step is corresponding to the
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longest execution time of the block time step, a condition to achieve good parallel
efficiency for the block time step is more severe than that for the shared time step.

15.4.4 Accelerator in Switch

Accelerator in Switch (AiS) is a framework to accelerate pre-/post-processes of
communications and provide better parallel efficiency [21]. Communications among
multiple processes are sometimes tightly coupled with related computations. In the
case of the LET, the communications require subtraction of local tree just before
sending data to other processes. Moreover, some of the recent switching hubs for
high-performance networks are equipped with high-end FPGAs [6, 9, 26]. Such
FPGAs in switching hubs now become a candidate for an accelerator device for
pre-/post-processes of communications among multiple processes by exploiting
redundant logic elements in FPGAs. We adopt PEACH3, which is a PCIe gen3
switch developed for tightly coupled accelerators, as a test bed for AiS in actual
simulations. PEACH3 is implemented on Stratix V GX EP5SGXA7N3F45C2, an
FPGA board by Altera, and possesses 622K logic elements with 512MB DDR3
SDRAM.

15.4.5 Development of LET Generator in PEACH3

The LET generator is one of the attractive applications suitable for AiS. LET con-
struction is implemented as tree traverse of a single imaginary particle representing
the particle distributions in a distant domain and decimating tree nodes which are
not required for gravitational force calculation by the target process. GPU is not
a very suitable candidate for accelerator device for the LET generator, because its
high performance mainly comes from massive parallelization utilizing its many-core
architecture. FPGA can handle the LET generation and makes GPUs concentrate
on gravitational force calculation by releasing them from the burden on unsuitable
tasks.

We have implemented LET generator on PEACH3 using Quartus II ver.16.1
Standard Edition. The LET module is redesigned for AiS and has an ability to
handle large data set based on the implementation by [20]. Figure 15.13 shows the
execution time of LET generators on GPU (NVIDIA Tesla K40 with CUDA 6.5)
and PEACH3, including communication between two GPUs. The LET generator on
PEACH3 is always faster than that on GPU and achieves 4.5 times acceleration as
shown in Fig. 15.13. The low latency communication of PEACH3 is also responsible
for the acceleration. The observed acceleration of LET generator and communica-
tion help GOTHIC to achieve a good parallel efficiency. Performance optimization
on PEACH3 such as adopting lower accuracy of floating point operations than single
precision would provide further acceleration. Since the LET generator does not
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Fig. 15.13 Execution time of
LET generator including
communication as a function
of the number of N -body
particles. Blue and red bars
show the results for LET
generator on GPU and
PEACH3, respectively

require accurate floating point operations and recent GPUs provide only limited
half-precision floating point operations such as fused multiplication and addition of
small matrices, the acceleration by lower precision operations is another potentiality
for FPGA-specific performance optimization.
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