
Modified RC4 Variants and Their
Performance Analysis

Poonam Jindal and Shikhar Makkar

Abstract Two modified RC4 variants have been discussed in this paper. First, the
weaknesses in the basic RC4 algorithm have been identified and further, the weak-
nesses have been removed in the two proposed algorithms. The implementation of
basic RC4, RC4+and the proposed variants RC4-1 and RC4-2 has been carried out in
both C++and VHDL. The performance analysis has been done in terms of encryp-
tion time, security, and resource usage. From the obtained numerical values, it is
found that the proposed algorithms provide better security without increasing the
encryption time of the basic RC4 algorithm.

Keywords Execution time · RC4 · Security · Stream cipher

1 Introduction

Information security becomes a critical issue, especially when one is vulnerable to
a plethora of cyberattacks. Cryptography provides the techniques to communicate
safely in the presence of third parties. Cryptographic primitives are classified as a
public key and private key encryption algorithms. Public key encryption algorithms
include block ciphers or stream ciphers [1]. Stream ciphers are bit or byte oriented
and encrypt the message bit or byte by byte. Block ciphers operate on a block of fixed
size and use padding if required. RC4 is one of the most widely used, high speed,
and easily implemented stream ciphers. It is used in the WEP protocol. However, it
has certain weaknesses [2]. KSA+ [3] removed most of them but it incorporates an
initialization vector (IV), which is generally not used with RC4. In this paper, two
RC4 variants/modifications; RC4-1 and RC4-2 have been proposed. The two RC4
variants keep the basic steps of the algorithm same but provide some changes in the

P. Jindal (B) · S. Makkar
National Institute of Technology, Kurukshetra, Kurukshetra, India
e-mail: poonamjindal81@nitkkr.ac.in

S. Makkar
e-mail: shikharmakkar@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
G. Panda et al. (eds.), Microelectronics, Electromagnetics
and Telecommunications, Lecture Notes in Electrical Engineering 521,
https://doi.org/10.1007/978-981-13-1906-8_38

367

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1906-8_38&domain=pdf


368 P. Jindal and S. Makkar

computations to provide a better security margin, i.e., security is achieved without
increasing the encryption time.

1.1 Brief Description of RC4

RC4 runs in two phases [4]. In the first phase, key scheduling is performed using Key
Scheduling Algorithm (KSA) and in the second phase, a random byte is generated
using Pseudo-Random Generator Algorithm (PRGA). KSA initializes the permuta-
tion a key of length between 40 and 256 bytes. After KSA, pseudo-random bits are
generated by PRGA. These bits are then used for encryption by combining them
with plain text bits using bitwise XOR operation. Encryption and decryption are
performed in a similar way. Keystream is generated by using an internal state[S].
Algorithm for conventional RC4 is presented in Algorithm 1.

Algorithm 1. Basic RC4

KSA PRGA

for i�0 to N – 1 do i�0

S[i]� i j�0

T[i]�k[i mod keylength] loop

end for i� (i+1) mod N

j�0 j� (j+S[i]) mod N

for i�0 to N–1 do swap S[i], S[j]

j� (j+S[i]+T[i]) mod N t� (S[i]+S[j]) mod N

swap S[i], S[j] key�S[t]

end for end loop

Previous Work. In 1995, the first RC4 weakness concerned with KSA was dis-
covered by Roo’s [5]. It was observed that perfectly random distribution has not been
obtained after RC4 KSA. It was investigated that no swapping was performed when
i� j. In [6], it was discovered that the statistical weaknesses in the keystream. For
the first few bytes, the output keystream is strongly nonrandom and makes the key
vulnerable to security attacks. More correlations between the RC4 keystream and
the key were observed in [7]. Further, the authors in [8] observed that the second
output byte of the RC4 was biased towards zero with a probability of 1/128, instead
of 1/256. A highly secure available RC4 variant is RC4+ [3], having complex three-
layer KSA, taking about three times more encryption time and a complex PRGA,
taking about 1.7 times more execution time as compared to basic RC4. In RC4+, the
first layer of KSA is the same as conventional RC4. In the second layer, more scram-
bling is carried out using IVs. In the last and final layer, keystream is scrambled in a
zigzag manner, where the keystream bytes take values in the order: 0, 255, 1, 254, 2,



Modified RC4 Variants and Their Performance Analysis 369

253… Though the algorithm is known to very secure but with increased complexity,
in turn, increased execution time and is not desirable in RC4. The elaborated discus-
sion along with the pseudo code of RC4+ is presented in [3, 9]. Various correlations
of PRGA have also been presented in [10]. A number of RC4 variants are available
in the literature [9], but till date, the algorithm is susceptible to a number of security
attacks.

Our Contributions. In this paper, we have modified the basic RC4 algorithm and
KSA+to improve the security without increasing the encryption time. This modifica-
tion is done bymodifying themathematical computations performed in the algorithm
and by adding more randomness, achieved through more scrambling in KSA+. It is
evident from the modifications that for every value of i and j, a swapping operation
is performed and makes the keystream more random and less vulnerable to attacks.

Structure of the Paper. Section 2 briefly elaborates the Roos’ biases and the
KSA+ algorithm. Section 3 explains the proposed modifications and the design strat-
egy used to implement the design in VHDL. Section 4 provides a comparative timing
analysis of the parameters obtained from implementations in C++and VHDL. The
conclusion is drawn in Sect. 5.

2 Known Weaknesses in RC4

A number of weaknesses were observed in RC4, both in KSA and PRGA. In this
paper, we have focused on Roo’s biases.

2.1 Roos’ Biases

Roos [5] investigated that the RC4 KSA did not exactly yield a perfectly random
distribution because of the following reasons:

1. In the initial permutations of KSA, it is highly likely that S[i]� i.
2. If an index has been swapped by i, it is highly likely that it will not be swapped

again. If we consider 256 bytes, the probability that an index is chosen at random
by j is 1/256 and the probability it will not be chosen is therefore 255/256. The
probability that it would not be chosen again during all the iterations of KSA
is (255/256)256. If i� j, no swapping will be performed and this corresponds to
approximately 37% [6].

Because of the above weakness, first, several thousand outputs from the PRGA
should be discarded to get the state table into a more even distribution.



370 P. Jindal and S. Makkar

3 Proposed RC4

In this paper, two RC4 variants have been proposed RC4-1 and RC4-2 to increase
the security of the algorithm. The available literature depicts that RC4 is the sim-
plest available stream cipher without incurring any overhead cost. While keeping in
mind, the simplicity of RC4, RC4-P1 has been proposed. It provides security without
incurring any overheads in terms of encryption time. RC4+ is a highly secure variant
of RC4. But, a number of attacks are possible till date. RC4-P2 has been proposed
to overcome the weakness of KSA+by increasing the depth of scrambling.

3.1 RC4-P1

The proposed RC4-1 is presented in Algorithm 2. The algorithm is a modification
over the basic RC4. It attempts to remove the first weakness pointed out by Arthur
Roo’s which, hinged on one of the observations that no swapping takes place when
i� j. In the modified algorithm RC4-1, instead of swapping S[i] and S[j], S[i + j + 1]
are swapped. It introduces no extra time but improves the security of the algorithm
by removing the byte biases.

Algorithm 2. Pseudo code for RC4-1

KSA-P1 PRGA-P1

for i�0 to N – 1 do i�0

S[i]� i j�0

T[i]�k[i mod keylength] loop

end for i� (i+1) mod N

j�0 j� (j+S[i]) mod N

for i�0 to N – 1 do swap S[i], S[i + j +1]

j� (j+S[i]+T[i]) mod N t� (S[i]+S[j]) mod N

swap (S[i], S[i + j +1]) Output Z�S[t]

end for end loop

3.2 RC4-P2

The proposed RC4-2 is presented in Algorithm 3. The proposed algorithm is a mod-
ification over existing RC4+. KSA+has been modified whereas PRGA is similar
to PRGA+. In KSA+the third and final layer has been modified by performing the



Modified RC4 Variants and Their Performance Analysis 371

scrambling operation in more depth as shown in Eq. (1), where, the index i takes
values in the order: 0, 255, 254, 1, 253, 252, 2… In general, if y varies from 0 to N
− 1 in steps of 1, then

i �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y
3 , y � 0 mod 3

N − y+2
3 , y � 1 mod 3

N − y+1
3 , y � 2 mod 3

(1)

Algorithm 3. Pseudo code for RC4-2 (KSA)

RC4-2 KSA
(Layer 1 and layer 2 are similar to KSA+)
for y�0 to N – 1 do if y�0 mod 3
i�y/3
else do if y�1 mod 3
i�N – (y+2)/3
j� j +S[i]+K[i]
swap S[i], S[j]
end for

The proposed RC4-2 further enhances the keystream randomness. It prevents the
formation of recursive equations linking the keybytes and the permutation bytes.
Further as the KSA runs only once in RC4, and the added operation does not affect
the performance of the cipher. It introduces no extra time as compared to RC4+but
improves the security of the cipher.

4 Performance Analysis of RC4 and Its Proposed Variants

RC4 and its proposed variants RC4-1 and RC4-2 in C++and VHDL using basic
coding techniques have been implemented in this paper. Performance analysis is done
in terms of execution time, security analysis, and resource usage by each algorithm.

4.1 Execution Time

Execution time is the time consumed by the algorithm to convert plaintext into
ciphertext. The encryption time for basic RC4, RC4+, RC4-1, and RC4-2 have been
analyzed in both C++ and VHDL. For C++ implementation, the time is the total run
time for 256 bytes including both KSA and PRGA. For VHDL implementation, the
time for PRGA is calculated for 12.5 million bytes. Execution time for all the RC4



372 P. Jindal and S. Makkar

Table 1 Timing analysis based on implementation in C++

Algorithm Time (s) in C++ Time (PRGA (ms), KSA (ns)) in VHDL

RC4 0.062 3.125, 51.25

KSA+ 0.168 12.5, 153.65

RC4-1 0.062 3.125, 51.25

RC4-2 0.172 12.5, 153.65
T

im
e 

(s
ec

) 0.2

0.1

0
RC4 KSA+ RC4-1 RC4-2

RC4 Variants

(a)

T
im

e 
(m

s)

15
10
5
0

RC4 KSA+ RC4-1 RC4-2
RC4 Variants

(b)

Fig. 1 Execution time for different RC4 variants implemented in a C++b VHDL

variants is presented in Table 1 and Fig. 1. From the obtained numerical values, ii is
found that execution time for RC-1 is similar to that of conventional RC4. Similarly,
the time consumed by RC4-2 is similar to that of RC4+. It is worth mentioning that
the proposed RC4-1 and RC4-2 are providing better security without incurring any
extra time as compared to basic RC4 and RC4+.

4.2 Resource Usage for VHDL Implementations

In VHDL, Algorithmic State Machine (ASM) and Register Transfer Level (RTL)
design strategy have been usedwhich, incorporates timing as wemove from one state
to another in the ASM chart [11, 12]. The control path controls the state transitions
and the data path controls various operations that occur in various states. The control



Modified RC4 Variants and Their Performance Analysis 373

Table 2 Resource usage by RC4 variants

Characteristics RC4 KSA+ RC4-1 RC4-2

ALMs 14,054 32,465 14,743 32,411

Dedicated logic
registers

4344 6808 4344 6808

Combinational
ALUTs (number
* input size)

(16 * 7)+ (10,915
* 6)+ (179 * 5)+
(515 * 4)+ (5552
* 3)

(39 * 7)+ (22,963
* 6)+ (2199 *
5)+ (6220 * 4)+
(10,507 * 3)

(16 * 7)+ (11,598
* 6)+ (430 * 5)+
(259 * 4)+ (5568
* 3)

(29 * 7)+ (20,561
* 6) + (2188 *
5)+ (11,541* 4)+
(99,113 * 3)

path can be easily implemented as a Finite State Machine (FSM) and the data path
can be implemented as a multiplexer (MUX). Since the KSA and PRGA consist
of many loops, to store the loop variables and other variables, registers are used to
store them. Due to the space constraints, the ASM charts have not been presented in
this paper. The hardware resource usage with all the RC4 variants is summarized in
Table 2. It is observed that the overall resource utilization with the proposed variants
is almost similar to the existing RC4 variants.

4.3 Security Analysis

In this paper, the theoretical security analysis has been performed and presented in
Table 3. It is observed that increased layer of operations enhances the security of
cipher by removing the identified weaknesses. The obtained results demonstrate that
RC4-1 provides comparatively less security as compared to RC4+/RC4-1, but the
execution time is very low. Therefore, for the applications like in multimedia, where
security is not of much concern but the performance matters, in such scenarios RC4-
1 is recommended. Similarly, for the scenarios where, security is of major concern
as compared to the network performance such as e-commerce, e-transactions, etc.,
RC4-2 is recommended to use.

Table 3 Security comparison of RC4 variants

Algorithm Security

RC4 Security compromised due to several weaknesses

KSA+ Improved security due to additional layers

RC4-1 Increased number of swapping, randomness and removal of one of causes of
Roos’ biases

RC4-2 Security increased due to increased depth of zigzag scrambling



374 P. Jindal and S. Makkar

5 Conclusion

Newer vulnerabilities are being discovered in RC4 every now and then. This raises
the need for a better design that is simple, robust and computationally efficient. Our
proposed modifications are directed towards the goal of achieving better security
without compromising on timing efficiency of the original stream cipher RC4.

In the future, apart from exploringmoreweaknesses, work can be done by improv-
ing the energy efficiency of the stream cipher RC4 when it is implemented in hard-
ware. A trade-off between energy efficiency, complexity, and security can be ana-
lyzed.

References

1. Stinson DR (1995) Cryptography: theory and practice, 2005th edn. CRC Press, Boca Raton
2. Mantin I (2005) A practical attack on the fixed RC4 in the WEP mode. In: ASIACRYPT, vol

3788, pp 395–411
3. Maitra S, Paul G (2008) Analysis of RC4 and proposal of additional layers for better security

margin. In: INDOCRYPT, vol 5365, pp 27–39
4. Jindal P, Singh B (2015) RC4 encryption-a literature survey. Proc Comput Sci 46:697–705
5. Roos A (1995) A class of weak keys in the RC4 stream cipher
6. Fluhrer S, Mantin I, Shamir A (2001) Weaknesses in the key scheduling algorithm of RC4.

In Selected areas in cryptography, vol 2259, pp 1–24
7. Klein A (2008) Attacks on the RC4 stream cipher. Des Codes Crypt 48(3):269–286
8. Mantin I, Shamir A (2001) A practical attack on broadcast RC4. In: International workshop on

fast software encryption, pp 152–164. Springer, Berlin, Heidelberg
9. Jindal P, Singh B (2017) Optimization of the security-performance tradeoff in RC4 encryption

algorithm. Wirel Pers Commun 92(3):1221–1250
10. Gupta SS, Maitra S, Paul G, Sarkar S (2011) Proof of empirical RC4 biases and new key cor-

relations. In: International workshop on selected areas in cryptography, pp 151–168. Springer,
Berlin, Heidelberg

11. Galanis MD, Kitsos P, Kostopoulos G, Sklavos N, Koufopavlou O, Goutis CE (2004) Com-
parison of the hardware architectures and FPGA implementations of stream ciphers. In: 11th
IEEE international conference on electronics, circuits and systems, ICECS 2004, proceedings
of the 2004, pp 571–574. IEEE

12. Rane DB, Jyoti UF, Shwetal GR, Chandreshwari PB (2013) Hardware implementation of RC4
stream cipher using VLSI. Int J Electron Commun Soft Comput Sci Eng (IJECSCSE) 70


	Modified RC4 Variants and Their Performance Analysis
	1 Introduction
	1.1 Brief Description of RC4

	2 Known Weaknesses in RC4
	2.1 Roos’ Biases

	3 Proposed RC4
	3.1 RC4-P1
	3.2 RC4-P2

	4 Performance Analysis of RC4 and Its Proposed Variants
	4.1 Execution Time
	4.2 Resource Usage for VHDL Implementations
	4.3 Security Analysis

	5 Conclusion
	References




