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Abstract The present study analyzes the effect of heat source on thermal convection
in an inclined porous layer and also examines the Hadley flow in an inclined porous
layer by applying the linear stability analysis. The stability of small-amplitude dis-
tributions is studied with corresponding longitudinal rolls using three-dimensional
normal modes. The corresponding eigenvalue problem is analyzed numerically by
applying the Chebyshev-Tau method for evaluating the critical thermal Rayleigh
number (Rz) corresponding to various flow parameters.
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1 Introduction

Many authors have analyzed the thermal convection in a horizontal fluid-saturated
porous medium, but very few have dealt with the thermal convection in an inclined
porous layer in the last decade. The current investigation on thermal convection
caused by an internal heat generation with an inclined porous medium is vital due to
many real-life problems such as geophysical, the hydrology of aquifers, underground
energy, transport and environmental problems, etc. The interest in the inclined porous
layer with the thermal convective instability situation arises most relative to the
transport in groundwater and in the exploitation of geothermal reservoirs. Other
important areas are like the transport of pollutants, oil extracting, and food processing
[1, 2]. The mechanism of thermal transport has a major application in environmental
problems [3]. The convection in porous layer has been surveyed in the literature [4, 5].

In the literature first time, the inclined porous medium is analyzed by Bories and
Combarnous [6], and later, it is extended by Weber [7]. Improving these studies,
an inclined porous medium was continued by Caltagirone and Bories [8]. Rees and
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Bassom [9] studied the thermal convection properties in an inclined layer, and they
mentioned some of the outstanding results using linear stability analysis. Thermal
convection in a saturated porous layer with internal heat source and mass flow is
studied by Matta et al. [10]. The fluid flow in an inclined porous layer is carried
out by Barletta and Storesletten [11], and further a fixed heat flux along the walls of
the inclined porous medium is studied by Rees and Barletta[12]; also, the thermal
convection of Darcy flow in an inclined layer is extended by Barletta and Rees [13].
A note is also given by Nield [14] on the inclined porous layer to give the answers
for well-preferred patterns of the natural thermal convection, and then after, Nield et
al. [15] find out the importance of the viscous dissipation effect of thermal instability
in an inclined porous layer. A little set of articles on the inclined porous medium is
available in the surveyed book of Nield and Bejan [16].

The importance of this analysis is to study the thermal convection on the inclined
porous medium with the influence of an internal heat source. The applied thermal
gradient and heat source lead to a possibly thermal instability in the inclined porous
medium. The problem stated that equations have been modified as an eigenvalue
problem, which is evaluated numerically by applying the Chebyshev-Tau method.

2 Mathematical Formulation

Let us choose an infinite length-inclined fluid-saturated porous layer with vertical
height H considered as shown in Fig. 1. The inclination angle of porous layer is φ,
which is along the x∗-axis. z∗-axis is taken vertically upward. The vertical thermal
difference along the walls is �T . The fluid flow inside the porous medium is ap-

T* = T0 z* y*

x* 

Porous medium 

T* = T0 +ΔT g

H  

φ

Fig. 1 The physical system
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plicable the Darcy law and Boussinesq approximation. The governing equations in
nondimensional form are

∇ · q = 0 , (1)

q + ∇P = Rzθ [sin(φ)e1 + cos(φ)e3] , (2)

∂θ

∂t
+ q · ∇θ = ∇2θ + Q , (3)

and the corresponding boundary conditions are

z = 0 : w = 0, θ = 1
z = 1 : w = 0, θ = 0

}
(4)

The corresponding dimensionless variables were used for dimensionless governing
equations,

(x, y, z) = 1

H

(
x∗, y∗, z∗) , t = αmt∗

aH 2
, q = Hq∗

αm
, P = K P∗

μαm
,

T ∗ = T0 + θ�T , Q = H 2Q∗

km�T
, (5)

where

αm = km(
ρcp

)
f

, a = (ρc)m(
ρcp

)
f

, Rz = ρ0gγT K H�T

μαm
. (6)

Here, the velocity is notated as q∗, T ∗ is the temperature, P∗ is the pressure, Q∗ is
a heat source, and g is the gravitational acceleration, where the subscripts m and f
are referred to porous medium and fluid, respectively. Here, K is the permeability
of the porous layer. Also, ρ, c, km , and μ denote the density, specific heat, thermal
conductivity, and viscosity, respectively.Also, γT is the thermal expansion coefficient
and the vertical thermal Rayleigh number is Rz .

3 Basic State Solution

The nondimensional governing Eqs. (1)–(3), corresponding to (4), has a steady-state
solution as follows:

us = u (z) , vs = 0, ws = 0, Ps = P (x, y, z) , θs = θ (z) . (7)
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There is no net flow along the x-axis, and then
∫ 1
0 u(z)dz = 0.Hence, the steady-state

solution is in the form of flow velocity and temperature in the given porous layer.

us = Rz sin(φ)

[
Q

2

(
z − z2 − 1

6

)
− z + 1

2

]
,

vs = 0 , ws = 0, Ts = Q

2

(
z − z2

) + 1 − z . (8)

4 Linear Stability Analysis

An arbitrarily disturbance quantities of the basic flow are defined as q = qs + ε q,
θ = θs + ε θ and P = Ps + ε P , where ε is the perturbation parameter and submit-
ted these disturbances in dimensionless governing Eqs. (1)–(3), and thereafter, by
neglecting the nonlinear terms, got the linear system in the following form:

∇ · q = 0 , (9)

q + ∇P =
[
Rzθ

]
(sin(φ)e1 + cos(φ)e3) , (10)

∂θ

∂t
+ qs · ∇θ + q · ∇θs = ∇2θ , (11)

where

∇θs =
(
0, 0,

Q

2
(1 − 2z) − 1

)
.

The boundary conditions at the walls are

z = 0 : w = 0, θ = 1
z = 1 : w = 0, θ = 0

}
(12)

These conditions in Eq. (12) are clear that there is a zero perturbation in the velocity
and temperature along the plates. The solution of Eqs. (9)–(11) funded in the form
of normal modes

[
P, θ,q

]
= [

P (z) , θ (z) ,q (z)
]
exp {i [kx + ly] + σt} , (13)

thereafter eliminates P from Eq. (10), and we get

(
D2 − α2

)
w + (

α2 cos(φ)θ + iksin(φ)Dθ
)
Rz = 0, (14)

(
D2 − α2 − ikus

)
θ −

(
Q

2
(1 − 2z) − 1

)
w = σθ. (15)
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Here, D = d
dz , and Eqs. (14)–(15) subject to boundary conditions (4) give an

eigenvalue problem for thermal Rayleigh number Rz with k and l wave numbers
along x and y directions. In the above, α = √

k2 + l2 is the overall wave number.

5 Results Analysis

The thermal instability analysis in an inclined fluid-saturated porous layer with effect
of heat source is studied. The inclination angle φ is tested from 0◦ to 80◦. The critical
thermal Rayleigh number (Rz) is defined as the minimum of all Rz values as the
wave number (α) is varied. The results are shown in Figs. 2, 3, and 4.

Variation of Rz is shown as a function of φ for different values of Q as given in
Fig. 2. In the absence of heat source (Q = 0), the critical value of Rz is increasing
slowly upto φ < 500, and thereafter the value of Rz is increasing very fast, which
indicate that as inclination angle increases, the system is stabilizing.

The response of critical values of Rz as a function of heat source (Q) is given
in Fig. 3, for the absence and presence of an inclined angle (φ). When the internal
heat source increases, then the critical Rz values are decreased, which means flow
is destabilized due to enhancement of the heat source. The inclination angle (φ) is
increased from 0◦ to 40◦, and then the critical values of Rz also enhance, and it
indicates that the flow is stable.
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Fig. 2 Variation of Rz with φ
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The thermal contours are shown in Fig. 4 in the absence and presence of heat
source Q. It is interesting to observe that the thermal profiles are parabolic in the
presence of heat source. It is clearly appeared that as an internal heat source increases,
the global temperature is also increased.

6 Conclusion

In this work, investigate the Hadley flow analysis of an inclined porous medium with
effect of heat source studied by linear stability analysis. The critical value of Rz is
studied in the longitudinal rolls, and those are investigated for various combinations
of the flow field parameters. It is concluded from the figures that

• As inclination angle increases, it causes the strong stabilization irrespective of heat
source.

• As heat source increases, it causes the strong destabilization irrespective of incli-
nation angle.

• It is clear that overall the considerable changes appeared in the Rz subject to
inclination angle and heat source.
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