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An Approximate Solution of Fingering
Phenomenon Arising in Porous Media
by Successive Linearisation Method

Bhumika G. Choksi, Twinkle R. Singh and Rajiv K. Singh

Abstract In this article, the phenomenon of fingering in a particular displacement
method concerning two immiscible fluids through a dipping homogeneous porous
medium with mean capillary pressure has been discussed analytically under cer-
tain conditions. This phenomenon gives a nonlinear partial differential equation as
a governing equation, which we have solved by Successive Linearisation Method
(SLM).

Keywords Fluid flow through porous media · Fingering phenomenon
Similarity transformation · Successive linearisation method (SLM)

1 Introduction

The fingering (instability) phenomenon [11] of the oil–water movement in a porous
medium [9] is an important phenomenon of petroleum technology [8], where water
drives are employed for the recovery of oil. In fact, the fingers are the discontinuities
arising on the smooth common displacement front. Buckley andLevrett [1] discussed
this problem without considering capillary pressure. While the other authors like
Scheidegger-Johnson [6], McEwen [3] and Verma [10] discussed this problem from
different viewpoints. Verma [11] and Mehta et al. [5] gave the numerical solution of
this problem with capillary pressure effect.

Here, we assume that the individual pressure of the two flowing phases can be
replaced by theirmean capillary pressure [10, 11] andwe have obtained an expression
for phase saturation distribution. Themathematical formulation gives a nonlinear par-
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Fig. 1 Fingering
phenomenon during the oil
recovery process

Injected 

Water
Native 

oil

tial differential equation. Also, the injection of water into an oil formation in porous
media is furnishing a two-phase liquid–liquid flow problem. Generally, such problem
is encountered in the secondary oil recovery process of petroleum technology [8],
replenishment problem of groundwater hydrology, geophysics, reservoir engineering
[8], etc. So it is very important to discuss this phenomenon.

2 Statement of the Problem

Here,we are injecting thefluidwater (w) uniformlywith constant velocity, into afinite
cylindrical piece of a homogeneous porous medium of length L, which is completely
saturated with a native fluid oil (o). This gives a well-developed finger flow, which
is called the fingering (instability) phenomenon. Also, x=0 (x is measured in the
direction of displacement) is called the initial boundary, and because of the effect
of injecting water the entire oil on the initial boundary is displaced through a small
distance. The cylinder is totally surrounded by an impermeable surface except its
initial boundary as shown in Fig. 1. Our main goal of the present article is to obtain
a solution of this phenomenon using Successive Linearization Method (SLM) [4],
which is a newly developed method.

3 Statics of Fingers

Scheidegger-Johnson [6] considered average cross-sectional area engaged by the
fingers only. It shows saturation of the displacing fluidwater Sw(x, t) at injectedwater
level xwith time t in the porousmedium. Figure 2 shows the schematic demonstration
of the fingering phenomenon [11].

Scheidegger-Johnson [1] gave the following relationship:

kw � Sw and ko � So � 1 − Sw (1)
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Fig. 2 Schematic diagram
of the fingering phenomenon

4 Fundamental Equations

By Darcy’s law, the filtration velocity (i.e. seepage velocity) of water (Vw) and oil
(Vo) can be written as [7]

Vw � − kw
μw

k
∂Pw
∂x

(2)

and Vo � − ko
μo

k
∂Po
∂x

(3)

The equations of continuity [6, 7] are given by

∅∂Sw
∂t

+
∂Vw

∂x
� 0 (4)

and ∅∂So
∂t

+
∂Vo

∂x
� 0 (5)

Here, we consider the phase densities as constant and the porous medium is
completely saturated, so we can write

Sw + So � 1 (6)

In a two-phase fluid flow, the capillary pressure (Pc) is the pressure discontinuity
between the phases across their common interface. Also, it is a function of phase
saturation [2]. So consider a continuous linear function defined as

Pc � −βSw and Pc � Po − Pw (7)

The value of the pressure of the oil (Po) is given as [10, 11]

Po � P̄ +
Pc
2

with P̄ � Po + Pw
2

(8)

Simplifying Eqs. (2–8), we get

∅∂Sw
∂t

+
1

2

∂

∂x

[
k
kw
μw

∂Pc
∂Sw

∂Sw
∂x

]
� 0 (9)
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Now, the fictitious relative permeability is a function of water saturation. So for
definiteness, consider [11]

kw � Sw (10)

By Eqs. (7), (9) and (10), we get

∂Sw
∂t

− k

2

β

μw∅
∂

∂x

[
Sw

∂Sw
∂x

]
� 0 (11)

Changing Eq. (11) into a dimensionless form by substituting

X � x

L
, T �

(
kβ

2μw∅L2

)
t

Weget
∂Sw
∂T

− ∂

∂X

[
Sw

(
∂Sw
∂X

)]
� 0 (12)

where Sw(0, T ) � 0; T > 0 and Sw(X, 0) � 1; X > 0 (13)

Equation (12) is a nonlinear partial differential equation describing the fingering
phenomenon with capillary pressure.

Using standard similarity transformation,

Sw(X, T ) � g(η); η � X

2
√
T

(14)

By Eq. (12), we get

g(η)g′′(η) + 2ηg′(η) +
(
g′(η)

)2 � 0 (15)

where g(0) � 0 and g(∞) � 1 (16)

To use SLM [4], consider a solution of Eq. (15) as

g � gi +
i−1∑
m�0

gm ; i � 1, 2, 3, . . . (17)

By Eqs. (15) and (17), and neglecting nonlinear terms in gi, we get

ai−1g
′′
i + bi−1g

′
i + ci−1gi � ϕi−1 (18)

with boundary conditions

gi (0) � 0 � gi (1) (19)
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where ai−1 � ∑i−1
m�0 gm , bi−1 � 2

(
η +

∑i−1
m�0 g

′
m

)
, ci−1 �

(∑i−1
m�0 g

′′
m

)
and

ϕi−1 � −
⎡
⎣2η

i−1∑
m�0

g′
m +

(
i−1∑
m�0

gm

)(
i−1∑
m�0

g′′
m

)
+

(
i−1∑
m�0

g′
m

)2
⎤
⎦ (20)

Choose

g0(η) � 1 − e−η (21)

which satisfies the boundary conditions (16).
By solving Eq. (18) iteratively, we get each solution for gi (i ≥ 1), and thus the

approximate solution for g(η) is obtained by assuming

lim
i→∞ gi � 0 (22)

as g(η) ≈
K∑

m�0

gm(η) (23)

Now ai−1, bi−1, ci−1 and ri−1 of Eq. (18) are known from the previous iterations
for i � 1, 2, 3, . . . , so it can be solved by any numerical methods easily. Here, we
solved Eq. (18) using the Chebyshev spectral collocation method [4]. To apply it,
transform the physical region [0, 1] into the region [−1, 1] using

η � ξ + 1

2
; −1 ≤ ξ ≤ 1 (24)

Consider the Gauss–Lobatto collocation points [4] to define the Chebyshev nodes
in [−1, 1], viz.

ξ j � cos
π j

N
; j � 0, 1, 2, . . . , N (25)

The variable gi can be written in the truncated Chebyshev series form as

gi (ξ) �
N∑

k�0

gi (ξk)Tk
(
ξ j

)
(26)

where Tk(ξ) � cos
[
k cos−1(ξ)

]
is the kth Chebyshev polynomial. The derivatives

of gi at points ξk can be given as

dr gi
dηr

�
N∑

k�0

Dr
kj gi (ξk) (27)
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where D � 2D with D is the Chebyshev spectral differentiation matrix, whose
entries are represented as

D jk � c j
ck

(−1) j+k

ξ j − ξk
; j �� k; j, k � 0, 1, 2, . . . , N ;

Dkk � ξk

2
(
1 − ξ 2

k

) ; k � 1, 2, . . . , N − 1;D00 � 2N 2 + 1

6
� −DNN (28)

Substituting the values of Eqs. (26–28) in Eq. (18), we get

Ai−1Gi � �i−1 (29)

subject to gi (ξN ) � 0,
N∑

k�0

DNkgi (ξk) � 0, gi (ξ0) � 0 (30)

where Ai−1 � ai−1D
2 + bi−1D + ci−1 (31)

Gi � [gi (ξ0), gi (ξ1), . . . , gi (ξN )]T (32)

�i−1 � [
φi−1(ξ0), φi−1(ξ1), . . . , φi−1(ξN )

]T
(33)

Now applying the boundary conditions gi (ξ0) � 0 and gi (ξN ) � 0, we obtained
solutions for gi (ξ1), gi (ξ2), . . . , gi (ξN−1) iteratively from solving

Gi � A−1
i−1�i−1 (34)

5 Numerical and Graphical Representation

The numerical, as well as the graphical representation of (34) for the saturation of
injected water, has been discussed using MATLAB. Figure 3 represents the graph of
saturation of water (Sw) versus distance (X) for fixed time T �0.01, 0.02, 0.03, 0.04,
0.05, 0.06, 0.07, 0.08, 0.09 and 0.10, and Table 1 indicates the numerical values.
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Fig. 3 Saturation of injected water Sw(X, T ) versus distance X for fixed time T � 0.01, 0.02, 0.03,
0.04, 0.05, 0.06, 0.07, 0.08, 0.09 and 0.10

Table 1 Saturation of water Sw(X, T ) for X and for time T

X T�0.01 T�0.02 T�0.03 T�0.04 T�0.05

0.1 0.0546 0.0498 0.0462 0.0452 0.0453

0.2 0.2863 0.2488 0.2276 0.2233 0.2241

0.3 0.4454 0.3771 0.3553 0.3557 0.3574

0.4 0.5423 0.4637 0.4512 0.4552 0.4562

0.5 0.6021 0.5277 0.5246 0.529 0.5292

0.6 0.6311 0.5708 0.5745 0.5776 0.5772

0.7 0.6321 0.5996 0.6053 0.6067 0.6063

0.8 0.6345 0.6179 0.6221 0.6224 0.6221

0.9 0.6384 0.6289 0.6302 0.6302 0.6301

1.0 0.6404 0.6321 0.6321 0.6321 0.6321

(continued)

Table 1 (continued)

X T �0.06 T �0.07 T �0.08 T �0.09 T �0.10

0.1 0.0454 0.0454 0.0454 0.0454 0.0454

0.2 0.2244 0.2244 0.2244 0.2244 0.2244

0.3 0.3574 0.3573 0.3573 0.3573 0.3573

0.4 0.4559 0.4558 0.4559 0.4559 0.4559

0.5 0.5289 0.5288 0.5289 0.5289 0.5289

0.6 0.5769 0.5770 0.5770 0.5770 0.5770

0.7 0.6062 0.6062 0.6062 0.6062 0.6062

0.8 0.6221 0.6221 0.6221 0.6221 0.6221

0.9 0.6301 0.6301 0.6301 0.6301 0.6301

1.0 0.6321 0.6321 0.6321 0.6321 0.6321
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6 Conclusion

By SLM, we can find the saturation of injected water during the secondary oil recov-
ery process for any distance X and any time T > 0. Looking at the graph, the
saturation of injected water is increasing exponentially for small change in distance
X and for any time T but the effect of time is very less for a small time T ≥ 0,
which is feasible with the physical phenomenon, i.e. as saturation of injected water
increases, more oil can be produced during the oil recovery process.
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Entropy Generation Analysis
for a Micropolar Fluid Flow
in an Annulus

D. Srinivasacharya and K. Himabindu

Abstract The present article investigates the entropy generation of micropolar fluid
flow between two circular cylinders. The fluid flow in an annulus is due to the rota-
tion of the outer cylinder with constant velocity. The two cylinders are maintained
at different constant wall temperatures. A numerical solution using spectral quasi-
linearisation method is obtained. The effect of coupling number, Brinkman num-
ber and Reynolds number on the fluid velocity, microrotation, temperature profile,
entropy generation rate and Bejan number are represented graphically and analysed
quantitatively.

keywords Entropy generation · Micropolar fluids · Annulus · Bejan number ·
Brinkman number

1 Introduction

The key concept of designing and developing the thermal machines in power plants,
pipe networks and heat engines involves entropy generation. It gives the details of
local andglobal losses of energydue to occurringof irreversibilities. The efficient util-
isation of energy can be achieved by entropy generation minimisation. The entropy
generation number concept is initially introduced by Bejan [1], and he examined
the entropy generation profiles distribution. The performance of commercial vis-
cometers, swirl nozzles, journal bearings, rotating electrical machines and chemical
and mechanical mixing devices purely depends on the flow between two cylinders,
where one or both may rotate. Mirzaparikhany et al. [2] studied the influence of Cou-
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ette–Poiseuille slip flow on entropy generation in axially moving micro-concentric
cylinders.

The fluids used in engineering and industrial processes exhibit flow properties
that cannot be explained by Newtonian fluid flow model. Several models have been
proposed to explain the behaviour of such fluids. One of these fluids is micropolar
fluid developed byEringen [3]. These fluids sustain body couples and couple stresses,
and stress tensor is not symmetric. The objective of this paper is to analyse the entropy
generation in an annulus due to micropolar fluid flow.

2 Mathematical Formulation

Consider the laminar, steady, incompressible micropolar fluid flow between vertical
concentric cylinders. The radii of inner and outer cylinders are ‘a’ and ‘b’ (a <b),
respectively. The inner cylinder is at rest, and outer cylinder is rotating with constant
angular velocityω. Cylindrical coordinate system (r, ϕ, z), and the flow depends only
on ‘r’. The inner and outer cylinders are maintained at a uniform temperatures Ta

and Tb, respectively. The equations governing the steady flow of an incompressible
micropolar fluid using the Boussinesq approximations are given by

∂u

∂ϕ
� 0 (1)

∂p

∂r
� ρu2

r
(2)

−κ
∂�

∂r
+ (μ + κ)

(
1

r

∂u

∂r
− u

r2
+

∂2u

∂r2

)
+ ρg∗βT (T − Ta) � 0 (3)

−2κ� + κ

(
∂u

∂r
+
u

r

)
+ γ

(
1

r

∂�

∂r
+

∂2�

∂r2

)
� 0 (4)

K f

(
1

r

∂T

∂r
+

∂2T

∂r2

)
+ 2κ

(
1

2r

∂(ru)

∂r
− �

)2

+ (μ + κ)

(
∂u

∂r
− u

r

)2

+ γ

(
∂�

∂r

)2

� 0

(5)

Introducing the following transformations

r � b
√

λ, u � �√
λ
f (λ), � � �

b
g(λ), T − Ta � (Tb − Ta)θ (λ) (6)

in Eqs. (1)–(5), we get

− 2N

1 − N
λg′ +

4λ

1 − N
f ′′ +

√
λ
Gr

Re
θ � 0 (7)

−g + f ′ +
2(2 − N )

m2
(g′ + λg′′) � 0 (8)
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(λ3θ ′′ + λ2θ ′) +
Br

1 − N

[
(N/2)λ2( f ′ − g)2 + ( f − λ f ′)2 +

N (2 − N )

m2
λ3g′2

]
� 0

(9)

The dimensionless boundary conditions are

f (λ0) � 0, g(λ0) � 0, θ (λ0) � 0, f (1) � b, g(1) �
[
d f
dλ

]
λ�1

, θ (1) � 1

where λ0 � (
a
b

)2 (10)

The entropy generation number [4–6] is given by

Ns � 4λ

(
dθ

dλ

)2

+
4Br

Tp

[
1

1 − N

(
f ′ − f

λ

)2

+
N

2(1 − N )

(
d f

dλ
− g

)2

+
Nλ

1 − N

(
2 − N

m2

)(
dg

dλ

)2
]

(11)

which can be expressed as the sum of the entropy generation due to heat transfer
irreversibility (Nh) and due to viscous dissipation (Nν).

Bejan number is the ratio of entropy generation due to heat transfer irreversibility
to the overall entropy generation which is given by Be � Nh

Nh+Nv
.

3 Results and Discussion

The numerical solutions for (1)–(7) are obtained using the spectral quasi-linearisation
method (for details, refer [5, 6]) by fixing the parameters as m � 2, Tp � 1 and
Gr � 1.

Figure 1 depicts the effect of coupling number N on the dimensionless veloc-
ity, microrotation, temperature, entropy generation and Bejan number. The velocity
decreases as N increases as observed in Fig. 1a. Moreover, it is observed that the
velocity in case ofmicropolar fluid is less than the viscousfluid case. Figure 1bdepicts
that increase in coupling number increases the microrotation. It is noticed that an
increase in coupling number increases the temperature shown in Fig. 1c. Figure 1d
shows an increase in the entropy generation with increase in N . It is observed from
Fig. 1e that the Bejan number decreases as N increases.

Figure 2a shows the velocity profile with increase in Re. As Re increases, the
flow velocity decreases. Figure 2b depicts that increase in Re increases the microro-
tation. From Fig. 2c, the increase in the value of Reynolds number slightly increases
the temperature near the outer cylinder. The effect of Reynolds number on entropy
generation is presented in Fig. 2d. As the value of Re increases, the entropy gen-
eration decreases at the inner cylinder and increases at the outer cylinder. As the
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Fig. 1 Effect of coupling number on a velocity, bmicrorotation, c temperature, d entropy genera-
tion and e Bejan number

Reynolds number increases, the Bejan number increases at the inner cylinder with
dominant effect of heat transfer irreversibility and decreases at the outer cylinder
with increasing effect of fluid friction irreversibility as demonstrated in Fig. 2e.

It is observed from Fig. 3a that velocity does not change as the Br increases. From
Fig. 3b, it is seen that as the Br increases the microrotation decreases at the outer
cylinder and there is no effect of Br near the inner cylinder. Figure 3c illustrates the
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Fig. 2 Effect of Reynolds number on a velocity, b microrotation, c temperature, d entropy gener-
ation and e Bejan number

effect of Br on the temperature profile. It is also noticed that as Br increases, the
temperature profile increases. According to definition, Br is the ratio of viscous heat
generation to external heating. Thus, the higher the values of Br, the lesser will be
the conduction of heat produced by viscous dissipation, and hence the larger is the
temperature. The entropy generation profile for different values of Br is described in
Fig. 3d. It is observed that as Br increases, the entropy generation at both cylinders
increases. It has been observed that the inner cylinder behaves as a strong concentrator
of irreversibility for all the parameters. As the temperature and velocity gradients
are high near the inner cylinder, thus, the entropy generation number is observed as
maximum in magnitude near the inner cylinder. It is observed from Fig. 3e that the
Br increases near the inner and outer cylinders, while it decreases in the centre of
the annulus.
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Fig. 3 Effect of Brinkman number on a velocity, bmicrorotation, c temperature, d entropy gener-
ation and e Bejan number

4 Conclusions

Entropy generation in a micropolar fluid flow between concentric circular cylinder is
analysed. The velocity decreases with increasing the coupling number, whereas the
microrotation and temperature increase. Bejan number decreases with the increase
in the coupling number. As Brinkman number increases, Bejan number increases
near the cylinders and decreases around the centre of the annulus. This is due to the
differences in temperature gradients.
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Solution of Eighth-Order Boundary
Value Problems by Petrov–Galerkin
Method with Quintic and Sextic
B-Splines

K. N. S. Kasi Viswanadham and S. V. Kiranmayi Ch

Abstract In this paper, quintic B-splines (QBS) as basis (test) functions and sextic
B-splines (SBS) as weight functions have been used in Petrov–Galerkin method to
solve an eighth-order boundary value problem. The approximate solution has been
modified into a form which takes care of most of the given boundary conditions. The
weight functions are modified into a new set which suits for the Petrov–Galerkin
method. Some examples are tested for the illustration purpose of the present method.

Keywords Boundary value problem · B-splines · Petrov–Galerkin method

1 Introduction

Consider a general eighth-order linear boundary value problem

p0(t)u
(8)(t) + p1(t)u

(7)(t) + p2(t)u
(6)(t) + p3(t)u

(5)(t) + p4(t)u
(4)(t)

+ p5(t)u
′′′(t) + p6(t)u

′′(t) + p7(t)u
′(t) + p8(t)u(t) � b(t), c < t < d (1)

subject to boundary conditions

u(c) � A0, u
′(c) � A1, u

′′(c) � A2, u
′′′(c) � A3,

u(d) � C0, u
′(d) � C1, u

′′(d) � C2, u
′′′(d) � C3 (2)

whereA0,A1,A2,A3,C0,C1,C2 andC3 are finite real constants and p0(t), p1(t), p2(t),
p3(t), p4(t), p5(t), p6(t), p7(t), p8(t) and b(t) are all continuous functions defined on
the interval [c, d].
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There are various physical processes in which an eighth-order boundary value
problem arises in many applied areas [1, 2]. For the existence and uniqueness of
the solutions for the problems of the type (1) and (2), one can refer [2]. Analytical
solutions of these problems are available in rare cases. To solve these problems
numerically, one can refer [3–10].

The present paper aims to present Petrov–Galerkin method with QBS as test
functions and SBS as weight functions to solve the boundary value problems of
the type (1)–(2). The quasilinearization technique has been applied to convert the
nonlinear problem into a sequence of linear problems [11]. The present method has
been applied to solve each one of the generated linear problems. The limit of solutions
of these linear problems is the solution of the nonlinear problem. The justification
of using the Petrov–Galerkin method is given in [12–14].

2 Description of the Method

The QBS, SBS and their properties are defined in [15–17]. Now suppose the approx-
imate solution of Eqs. (1) and (2) is given by approximation for u(t) as

u(t) �
n+2∑

k�−2

αk Bk(t) (3)

where αk’s are the unknown parameters and Bk(t)’s are QBS functions. If the approx-
imation satisfies many of the given boundary conditions, then it gives more accurate
results. Accordingly, new set of test functions are defined from the test functions.

The redefinition of the test functions is given below.
Applying the boundary conditions of (2) except the third-order derivative bound-

ary conditions to the approximation (3), we get

A0 � u(c) � u(t0) �
2∑

k�−2

αk Bk(t0) C0 � u(d) � u(tn) �
n+2∑

k�n−2

αk Bk(tn) (4)

A1 � u′(c) � u′(t0) �
2∑

k�−2

αk B
′
k(t0) C1 � u′(d) � u′(tn) �

n+2∑

k�n−2

αk B
′
k(tn) (5)

A2 � u′′(c) � u′′(t0) �
2∑

k�−2

αk B
′′
k (t0) C2 � u′′(d) � u′′(tn) �

n+2∑

k�n−2

αk B
′′
k (tn)

(6)

Eliminatingα−2,αn+2,α−1,αn+1,α0 andαn fromEqs. (3) to (6), the approximation
for u(t) can be obtained as
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u(t) � w(t) +
n−1∑

k�1

αk Rk(t) (7)

where

w(t) � w2(t) +
A2 − w′′

2 (t0)

Q′
0(t0)

Q0(t) +
C2 − w′′

2 (tn)

Q′′
n(tn)

Qn(t)

w2(t) � w1(t) +
A1 − w′

1(t0)

P ′−1(t0)
P−1(t) +

C1 − w′
1(tn)

P ′
n+1(tn)

Pn+1(t)

w1(t) � A0

B−2(t0)
B−2(t) +

C0

Bn+2(tn)
Bn+2(t)

Rk(t) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Qk(t) − Q′′
k (t0)

Q′′
0(t0)

Q0(t), k � 1, 2

Qk(t), k � 3, 4, . . . , n − 3

Qk(t) − Q′′
k (tn )

Q′′
n (tn )

Qn(t), k � n − 2, n − 1

Qk(t) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pk(t) − P ′
k (t0)

P ′−1(t0)
P−1(t), k � 0, 1, 2

Pk(t), k � 3, 4, . . . , n − 3

Pk(t) − P ′
k (tn )

P ′
n+1(tn )

Pn+1(t), k � n − 2, n − 1, n

Pk(t) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bk(t) − Bk (t0)
B−2(t0)

B−2(t), k � −1, 0, 1, 2

Bk(t), k � 3, 4, . . . , n − 3

Bk(t) − Bk (tn )
Bn+2(tn )

Bn+2(t), k � n − 2, n − 1, n, n + 1

The new test functions for the approximation u(t) are {Rj(t), j�1, 2, …, n − 1}.
Here, w(t) satisfies the given boundary conditions except the third-order derivative
boundary conditions and Rj(t)’s and its first two derivatives are zero on the boundary.
In Petrov–Galerkin method, the test functions for the approximation and weight
functions should be equal in number. Here, the test functions used to approximate
u(t) described in (7) are n − 1 and there are n+6 weight functions. We modify the
weight functions to a set which contains n − 1 weight functions. The modification
of weight functions procedure is given below.

Let the approximation v(t) is defined as

v(t) �
n+2∑

k�−3

γk Sk(t) (8)



20 K. N. S. Kasi Viswanadham and S.V. Kiranmayi Ch

where Sk(t)’s are SBS andwe assume that v(t) and its first two derivatives are zero at c,
d and third-order derivatives vanish at c. Applying this to (8), we get the approximate
solution v(t) as

v(c) � v(t0) �
2∑

k�−3

γk Sk(t0) � 0 v(d) � v(tn) �
n+2∑

k�n−3

γk Sk(tn) � 0

v′(c) � v′(t0) �
2∑

k�−3

γk S
′
k(t0) � 0 v′(d) � v′(tn) �

n+2∑

k�n−3

γk S
′
k(tn) � 0

v′′(c) � v′′(t0) �
2∑

k�−3

γk S
′′
k (t0) � 0 v′′(d) � v′′(tn) �

n+2∑

k�n−3

γk S
′′
k (tn) � 0

v′′′(c) � v′′′(t0) �
2∑

k�−3

γk S
′′′
k (t0) � 0

Eliminating γ −3, γ −2, γ −1, γ 0, γ n, γ n + 1 and γ n + 2 from the above set of equations
and (8), we get the approximation for v(t) as

v(t) �
n−1∑

k�1

γkV
∧

k(t) (9)

where

V
∧

k(t) �
⎧
⎨

⎩
Vk(t) − V ′′′

k (t0)
V ′′′
0 (t0)

V0(t), k � 1, 2

Vk(t), k � 3, 4, . . . ., n − 1

Vk(t) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Uk(t) − U ′′
k (t0)

U ′′−1(t0)
U−1(t), k � 0, 1, 2

Uk(t), k � 3, 4, 5, . . . , n − 4

Uk(t) − U ′′
k (tn )

U ′′′
n (tn )

Un(t), k � n − 3, n − 2, n − 1

Uk(t) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Tk(t) − T ′
k (t0)

T ′−2(t0)
T−2(t), k � −1, 0, 1, 2

Tk(t), k � 3, 4, 5, . . . , n − 4

Tk(t) − T ′
k (tn )

T ′
n+1(tn )

Tn+1(t), k � n − 3, n − 2, n − 1, n

Tk(t) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Sk(t) − Sk (t0)
S−3(t0)

S−3(t), k � −2,−1, 0, 1, 2

Sk(t), k � 3, 4, 5 . . . , n − 4

Sk(t) − Sk (tn )
Sn+2(tn )

Sn+2(t), k � n − 3, n − 2, n − 1, n, n + 1.
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Now the modified set of weight functions for v(t) is
{
V
∧

k(t) k � 1, 2, . . . , n − 1
}
.

Here, V
∧

k(t)’s, its first two derivatives are zero on the boundary. Also, its third-order
derivative at left boundary vanishes. Using the Petrov–Galerkin method to (1) with
the set of test functions {Rk(t), k�1, 2,…, n− 1} andwith the set ofweight functions{
V
∧

k(t), k � 1, 2, . . . , n − 1
}
, we get

tn∫

t0

[
p0(t)u

(8)(t) + p1(t)u
(7)(t) + p2(t)u

(6)(t) + p3(t)u
(5)(t) + p4(t)u

(4)(t)

+p5(t)u
′′′(t) + p6(t)u

′′(t) + p7(t)u
′(t) + p8(t)u(t)

]
V
∧

i (t) dt

�
pn∫

p0

b(t)V̂i (t)dt for i � 1, 2, . . . , n − 1. (10)

The first four terms in Eq. (10) have been integrated by parts. The resulting terms
are substituted in (10). After applying the approximation (7), we get a system of
equations as

Aα � B, A � [ai j ]; B � [bi ];α � [α1 α2 . . . αn−1]
T. (11)

ai j �
tn∫

t0

{
p4(t)V̂i (t)R

(4)
j (t) +

[
− d5

dt5

[
p0(t)V

∧

i (t)
]
+

d4

dt4

[
p1(t)V

∧

i (t)
]

+p5(t)V
∧

i (t)
]
R′′

j (t) +

[
d4

dt4

[
p2(t)V

∧

i (t)
]

− d3

dt3

[
p3(t)V

∧

i (t)
]

+p6(t)V
∧

i (t)
]
R′′

j (t) + p7(t)V
∧

i (t)R
′
j (t) + p8(t)V̂i (t)

]
R j (t)

}
dt

− d3

dt3

[
p0(t)V

∧

i (t)
]

tn
R(4)
J (tn),

bi �
tn∫

t0

{
b(t)V̂i (t) − p4(t)V

∧

i (t)w
(4)(t) −

[
− d5

dt5

[
a0(t)V

∧

i (t)
]

+
d4

dt4

[
a1(t)V

∧

i (t)
]
+ p5(t)V

∧

i (t)

]
w′′′(t) −

[
d4

dt4

[
p2(t)V

∧

i (t)
]

− d3

dt3

[
p3(t)V

∧

i (t)
]
+ p6(t)V

∧

i (t)

]
w′′(t) − p7(t)V

∧

i (t)w
′(t)

−p8(t)V
∧

i (t)
]
w(t)

}
dt +

d3

dt3

[
p0(t)V

∧

i (t)
]

tn
w(4)(tn) − d4

dt4

[
p0(t)V

∧

i (t)
]

tn
C3

+
d4

dt4

[
p0(t)V

∧

i (t)
]

t0
A3 +

d3

dt3

[
p1(t)V

∧

i (t)
]

tn
C3 +

d3

dt3

[
p2(t)V

∧

i (t)
]

tn
C2
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3 Procedure of Finding the Parameters

A general element in the matrix A is evaluated by
∑n−1

m�0 Im , where Im �∫ tm+1

tm
vi (t)r j (t)Z (t) dt and r j (t) are the QBS functions or their derivatives, and vi (t)

are the SBS functions or their derivatives. To evaluate Im , we used seven-point
Gauss–Legendre quadrature formula. Here, Im � 0 if (ti−3, ti+4) ∩ (t j−3, t j+3) ∩
(tm, tm+1) � ∅. With this, we can easily observe that the coefficient matrix A is a
twelve-band diagonal matrix. Using the band matrix method, the system Aα �B has
been solved to get the parameter vector α.

4 Numerical Results

To illustrate the proposed method, we have solved one linear and one nonlinear
boundary value problems. The absolute errors of approximations got by the proposed
method are presented in Table 1.

Example 1 Consider the linear problem

u(8) + sin t u(5) + (1 − t2)u(4) + u � (3 + sin t − t2)et , 0 < t < 1 (12)

subject to

u(0) � 1, u′(0) � 1, u′′(0) � 1, u′′′(0) � 1,

u(1) � e, u′(1) � e, u′′(1) � e, u′′′(1) � e.

The exact solution for (12) is u(t)�et . We have divided the interval [0, 1] into ten
equal parts. The maximum absolute error obtained is 9.906925×10−6.

Example 2 Consider the nonlinear problem

Table 1 Numerical results of examples 1 and 2

t Absolute errors for example 1 Absolute errors for example 2

0.1 9.906925E−06 3.085434E−07

0.2 9.091438E−06 2.723425E−06

0.3 7.221976E−06 7.243222E−06

0.4 4.820858E−06 1.098052E−05

0.5 2.629579E−06 1.149645E−05

0.6 1.105119E−06 8.762168E−06

0.7 3.141213E−07 4.655873E−06

0.8 4.153490E−08 1.447534E−06

0.9 3.933907E−10 1.364112E−07
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u(8) + sin u u′′′ � (1 + sin(et ))et , 0 < t < 1 (13)

subject to

u(0) � 1, u′(0) � e, u′′(0) � 1, u′′′(0) � 1, u(1) � 1,

u′(1) � e, u′′(1) � e, u′′′(1) � e.

The exact solution for the above problem is u(t)�et . Using quasilinearization
technique [11] to (13), we get the sequence of linear boundary value problems as

u(8)(m+1) + sin(u(m))u
′′′
(m+1) + cos(u(m))u

′′′
(m)u(m+1) � (1 + sin(et ))et

+ cos(u(m))u
′′′
(m)u(m), m � 0, 1, 2, . . . (14)

subject to

u(m+1)(0) � 1, u′
(m+1)(0) � 1, u′′

(m+1)(0) � 1, u′′′
(m+1)(0) � 1,

u(m+1)(1) � e, u′
(m+1)(1) � e, u′′

(m+1)(1) � e, u′′′
(m+1)(1) � e.

Here, u(m+1) is the (m+1)th approximation for u(t). We have divided the interval
[0, 1] into ten equal parts. The maximum absolute error obtained is 1.931190×10−5.

5 Conclusions

The numerical solutions of a linear and a nonlinear two-point eighth-order boundary
value problems by Petrov–Galerkin method with QBS as test functions and SBS as
weight functions are presented. To get the more accurate approximate solution, the
QBS are defined as a set which suits to satisfy the most of the boundary conditions.
The weight functions are modified according to the Petrov–Galerkin method. It is
found that the obtained results are giving a little error. The strength of the method
developed is the easiness of its application, accuracy, and efficiency.
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AMathematical Study on Optimum
Wall-to-Wall Thickness in Solar
Chimney-Shaped Channel Using CFD

Alokjyoti Dash and Aurovinda Mohanty

Abstract A number construct amendment in light of the laminar streams caused
by regular convection in entries, utilizing a sun-oriented stack setup, for Rayleigh
number � 105, a few estimations of the relative one end to the other space with
various temperatures on the dividers has been performed. Numerical results for the
average Nusselt number have been obtained for value of Rayleigh number � 105

for asymmetrical heating. The optimum thickness ratio for this condition has been
presented. Air development in a normally ventilated room can be caused using a sun-
based fireplace or Trombe divider. In this work, Trombe dividers are examined for
summer cooling of structures. Simulation was done using ANSYS FLUENT, with
adequate geometry design, meshing, and boundary condition. The present work is
focused on the laminar natural convection

(
Ra � 105

)
with varying the wall spacing

(0.005–0.5). The heating condition is asymmetrical (keeping outer wall as adiabatic
and inner wall a constant temperature). Finding the optimum wall spacing for max-
imum heat transfer which will facilitate the room air in summer cooling is the main
objective.

Keywords Asymmetrical heating · Trombe wall · Solar chimney

1 Introduction

Inactive solar heating has increasingly been applied internationally in last two tens.
Thermosiphons, heat siphon, or solar chimneys are the most commonly used passive
systems. They offer regular motions of air, by making temperature differences by
solar warming. All around, the temperature distinction is realized by a coated sun-
based smokestack that even can be called as Trombe wall. A Trombe divider is
a southerner-confronting cement or workmanship divider which is darkened and
secured on the outside by covering. The warm divider (stockpiling divider) serves
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(a) (b)

Fig. 1 Configuration for winter heating and summer cooling

to assemble sun-powered vitality. The vitality is kept between the ramparts. The
putaway vitality is transported to within working for winter warming or causes room
air development for summer cooling. In winter warming, air enters the space between
the room divider and coated divider from the back vent. It is plain to the front room
when the outside air temperature is lower or to the encompassing when the outside
temperature is direct, for instance, >10 °C. The air is warmed up by the putaway
sunlight-based vitality and streams upward because of the lightness impact. That hot
air comes back to the living space through the best vent to keep the room temperature.
For summer cooling, the form is set to such an extent that the lightness powers
produced by the sunlight-based warmed air between the warm divider and coated
divider draw room air through the back vent and outside air into the room through
open windows or vents in other outside dividers. The warmed wind streams out to
the encompassing through the summit vent. In hot districts, the outside air amid
the daytime is regularly fiery. So ventilation for sensible cooling is not successful;
however, the capacity divider gives a decent warm insulation to warm stream into the
room. During the dark, due to the warm Trombe wall, the cool ambient air is drained
into the gap between the walls and takes away heat from the inside of the edifice.
Depending on the ambient temperature, the work of Trombe wall is distinguished as
daytime ventilation or night cooling (Fig. 1).

1.1 Problem Description

A level section ought to be added to the vertical channel (measurements A*E) for
better recreation of sunlight-based smokestack channel and appropriate examination
of the smooth movement and the warmth exchange marvels. The gap between the
dividers is b. The trademark proportion of the focal upright channel is b/L, where L
is the tallness of divider 1. The high-temperature air is gathered between the external
divider 1 and the internal divider 2, and ascends because of thickness contrasts
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Fig. 2 Physical model and
geometry

(buoyancy impact). In every one of the cases, level dividers are viewed as adiabatic.
Uniformwall temperature, UWT (vertical walls at constant temperature), and heating
conditions havebeen studied. Inmost cases, both thewalls have the same temperature.
Some results for asymmetrical heating (i.e., one wall is taken as adiabatic) have been
additionally gotten. The geometry is given by thickness (b)/length (L)�0.1 and
horizontal section height (E)/length (L)�vertical height of inlet (A)/length (L)�
0.1. In parliamentary law to look at the impact of the one end to the other thickness
over the issue delineated, the accompanying occasions have been investigated: b/L
�0.005–0.5, in the interim, the proportion of horizontal channel A/L and E/L stays
equivalent to 0.1. Numerical answers for the normal Nusselt number have been
acquired for estimations of Rayleigh number � 105, for deviated warming. The
operational liquid is air (Pr�0.74) (Fig. 2).

2 Mathematical Models

The Rayleigh number in view of L has been characterized as = () (Pr), being the
Grashof number, for the UWT warming conditions.

GrL � gβ(Tw − T∞)L3

ν2
− For uniform wall temperature (1)
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Equations

The Boussinesq approximation is cast-off, accepting perpetual physical properties
of the fluid, except for variation in density in the y-momentum equation. The sim-
plified tensor formed averaged N–S equations of turbulent flow for steady, and 2-D
incompressible flow is as follows:

Continuity Equation:

∂Uj

∂x j
� 0 (2)

Averaged N–S Equation:

∂UiU j

∂x j
� − 1

ρ

∂P

∂xi
− giβ(T − T∞) +

∂

∂x j

(
v
∂Ui

∂x j
− uıuj

)
(3)

Energy Equation:

∂
(
TUj

)

∂x j
� ∂

∂x j

(
v

Pr

∂T

∂x j
− T ′uj

)
(4)

where Ui , T, and P are the velocity, temperature, and pressure, and β is the thermal
expansion coefficient.

For laminar flow conditions, the equations can be obtained by taking −UıUj �
−T ′Uj � 0.

2.1 Numerical Analysis

The computational area will be constrained to the space between dividers. In UWT
cases, the temperature of the vertical dividers is settled T �Tw. In every one of the
cases, the even dividers (entrance pipe) are taken as adiabatic. Some laminar calcu-
lations have been done with lopsided warming and after that divider 1 is accepted as
adiabatic. The simulation is done byANSYSFLUENTusingSIMPLE (semi-implicit
method for pressure-linked equation) algorithm. Special discretization methods used
are as follows:

Gradient—Least square cell based,
Pressure—Second-order upwind,
Momentum—Second-order upwind, and
Energy—Second-order upwind.

The residual values are set to 0.001 for continuity, x and y velocities and 1E−06
for energy. The above schemes are used to have lower error values in discretization
methods.
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Fig. 3 Asymmetrical
heating b/L=0.1 (Ra=105)

Fig. 4 Asymmetrical
heating b/L=0.2 (Ra=105)

Fig. 5 Asymmetrical
heating b/L=0.3 (Ra=105)

3 Conclusion and Future Work

The velocity contours for different thickness ratios obtained are shown in Figs. 3, 4,
5, 6.

The b/L ratios are 0.15, 0.2, 0.25, 0.3, 0.4, and 0.5, respectively (Table 1).
To get the ideal design of L-formed networks for greatest warmth exchange rate

and for asymmetrical warming (divider 1 as adiabatic and divider 2 warmed at uni-
form temperature), the estimation ofNusselt number is plottedwith various b/L ratios
at Ra � 105. Here, we are getting optimum ratio of 0.125. The following works have
to be done in future to find the optimum results,
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Fig. 6 Average nusselt
number NuL versus aspect
ratio b/L for Rayleigh
number105

Table 1 Average Nusselt
Number of the wall at
different aspect ratios

Sl. No. b/L NuL

1 0.15 9.14

2 0.2 8.44

3 0.25 7.69

4 0.3 7.18

5 0.4 6.2

6 0.5 5.69

(1) Studies on average Nusselt number with different b/L ratios have to be done for
both laminar and turbulent conditions, with symmetrical heating (constant wall
temperature) and constant heat flux.

(2) Find the optimum wall-to-wall spacing for each condition.
(3) Study the relation of Nusselt number to b/L ratio in case of turbulent flow (k−∈

model).
(4) Studies have to be done on convergent channels, finding the optimum wall-to-

wall spacing for maximum heat transfer.
(5) Also, study the flow rates and find the optimum thickness for it.



Estimation of Heat Transfer Coefficient
and Reference Temperature in Jet
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Heat Conduction Problem
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Abstract The heat transfer estimation in case of impinging jets has been considered
by mainly steady-state techniques. The present study reveals the transient technique
to characterize the impinging jets. A solution to three-dimensional inverse heat con-
duction problem (IHCP) is used to estimate the unknown transient surface tempera-
ture distribution at the jet impinging side (front side) from known non-impingement
side (backside) transient temperature distribution. Further to estimate front side heat
flux distribution, the temperature gradient close to the front surface is computed
by finite difference method, and then linearity between surface heat flux and corre-
sponding surface temperature is utilized to find out heat transfer coefficient (HTC)
and the reference temperature simultaneously. To validate and establish the present
technique, numerical simulations are carried out in fluent. The numerically estimated
back surface temperature data is used as input to the solution to IHCP. Hot as well as
cold impinging jets are characterized with the help of this solution. Along with lam-
inar jets, turbulent jets with varying Reynolds number are considered. The inversely
estimated results are compared with numerically simulated data and match is within
1%.
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1 Introduction

Impinging jets are widely used since decades for cooling and heating applications in
industrial and domestic application due to their high heat transfer ability. Researchers
over the decade have contributed to this research by their experimental and numerical
work on jet impingement. The reviews [1, 2] on experimental studies have reported
effect of parameters such as Reynolds number (Re), the nozzle-to-plate spacing
(Z/d), nozzle geometry, and turbulence intensity on the heat transfer characteristic
of an impinging jet. The work [3] has critically reviewed several numerical studies
on impinging jets and concluded that no RANS model is perfect in predicting the
heat transfer of impinging jets. The heat transfer estimation to and from impinging
jets has been studied bymostly steady-state techniques ranging from the naphthalene
sublimation technique, thin foil technique, liquid crystal method to heat flux sensors.
Further, heat transfer coefficient (HTC) is estimated as per Eq. (1).

q ′′ � h(Tref − Tw) (1)

The information of the reference temperature (RT) is important to obtain the
appropriate value of HTC. The reference temperature for isothermal jet is nearly
same as that of ambient temperature [4, 5]. Nonetheless, the evaluation of the RT is
not direct for the hot jet temperature as hot jet temperature is different than its sur-
rounding temperature, and in addition it changes along the plate in radially outward
direction. In most studied thin foil technique, linearity between surface heat flux and
corresponding surface temperature is utilized to find out HTC and RT simultane-
ously. The only other technique which can estimate HTC and RT simultaneously is
the application of inverse heat conduction problem (IHCP) to impinging jet studies.
Recently, study [6] has employed transient three-dimensional approach in analytical
IHCP study to estimate front surface temperature and corresponding heat flux from
back surface temperature data.

In the present study, a solution [6] to three-dimensional inverse heat conduction
problem (IHCP) is used to estimate the unknown transient surface temperature dis-
tribution at the jet impinging side. Further temperature gradient is computed near the
front wall to estimate front side heat flux distribution and then procedure similar to
thin metal foil technique is used to estimate HTC and RT simultaneously for imping-
ing jets. Laminar and turbulent jets with varying nozzle-to-plate spacing (Z/d) and
Reynolds numbers are considered.

2 Construction of the Problem and Solution Procedure

The transient IHCP can be formulated by the assumption of transient flux condition at
the impinging boundary [6] as shown in Fig. 1. The solution [6] assumes temperature-
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Fig. 1 Schematic of jet impingement setup

Table 1 Boundary
conditions for IHCP solution
[6]

Location Boundary condition Description

At t �0 T (x, y, z, t) � T∞ Initial

At x �0, y �0, z ∂T
∂n∗ � 0 Symmetry

At x � lx , y � ly, z ∂T
∂n∗ � 0 Insulated

At x, y, z �0 −k ∂T
∂z � q(x, y, t) Heat flux

At x, y, z � lz
∂T
∂z � 0 Insulated

*n is the direction vector alongside x- and y-axes

independent material properties (k, ρ, and C) to solve transient three-dimensional
IHCP. The boundary conditions assumed are as mentioned in Table 1.

This transient 3-D heat conduction problem is further brought to 1-D problem
thru modal representation [6] as specified in Eqs. (2)–(3).

θ (X,Y, Z , τ ) �
∑

m,n�0,1....

θmn(τ, Z ) cos
mπX

Lx
cos

nπY

Ly
(2)

f (X,Y, Z , τ ) �
∑

m,n�0,1....

fmn(τ ) cos
mπX

Lx
cos

nπY

Ly
(3)

The functions θmn(τ, Z) and fmn(τ ) represent modal temperature and modal flux,
respectively. Through thermal quadrupole, the relationship between temperature and
heat flux on the front and back surface is established in Laplace domain. These related
functions are further obtained in time domain through inverse Laplace transform
of these simple polynomials. To estimate flux and temperature at modal points of
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impinging face from the non-impinging face temperature, an iterative procedure is
utilized. The successive iteration (K) is accomplished by Eqs. (4)–(5).

θ (K+1)
mn (τ, 0) �

[
θ (K )
mn (τ, 0) +

1

[(2K + 1)π/2]2 + C2
mn

dθ (K )
mn (τ, 0)

dt

]
(4)

f (K+1)
mn (τ ) � f (K )

mn (τ )+
1

C2
mn + (Kπ)2

d f (K )
mn (τ )

dτ
(5)

To employ this iterative scheme, the modal temperature θmn(τ, Z) on the non-
impingement side is needed and it can be obtained as given in Eq. (6).

θmn(τ, 1) � 22−(δ0m+δ0n)

Lx L y

∑

i

∑

j

θ
(
Xi ,Y j , 1, τ

)
cos

mπXi

Lx
cos

nπY j

L y
δXiδY j (6)

where
(
Xi ,Y j

)
is the center of the (i, j)th grid and δXi and δY j are the sides of the

grid. δ0m and δ0n are Kronecker delta functions, m �0, 1, 2, … M and n �0, 1, 2,
… N .

Equation (6) works for all mode numbers aside from (m, n)� (0, 0). At (m, n)�
(0, 0), Eq. (7) which assumes constant uniform heat flux at the impingement side has
been used.

θ00(τ, Z) � f 000

[
τ +

Z2

2
− Z +

1

3
− 2

π2

∞∑

k�1

cos(kπ Z)

k2
e−(kπ)2τ

]
(7)

3 Simultaneous Estimation of HTC and RT

The linear correlation (of the form, mx + c � y, where m is the slope and c is the
y-intercept of the graph of x vs. y) between surface flux and corresponding surface
temperature has been used to estimate HTC and reference temperature simultane-
ously. Rearranging Eq. (1), as Eq. (8).

−q ′′

h
+ Tref � Tw (8)

Accordingly, inverse of slope and intercept of the linear fit gives heat transfer
coefficient and reference temperature, respectively.
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(a) (b)

Fig. 2 a Front temperature, b heat flux computed by method [6] is compared with simulation
results. The direction of arrow indicates the increasing value of t from 0.5 to 5 s in steps of 0.5

4 Results and Discussion

The solution to IHCP is validated, and then its application to obtain HTC and RT for
different configurations of impinging jets is discussed.

The 3-D IHCP code is confirmed with numerical simulations carried out using
CFD software Ansys (Fluent). The numerical procedure adopted is similar with the
procedure mentioned [7].

The numerically simulated back face temperature is used as input to the analytical
IHCP solution, and the front face temperature and surface heat flux are estimated.
Figure 2a, b shows the comparison between front face temperature and surface heat
flux data with numerically gained data, respectively. The estimated temperature data
is in agreement within 1% with simulated data; on the other hand, the surface flux
data estimated is overvalued at higher time. This overrated by the 3-D IHCP solution
is because of the assumption of constant surface heat flux at (m, n)� (0, 0).

Thus, to estimate accurate front side transient heat flux, the temperature gradient
(first-order approximation) is taken very close (0.1 mm inside) to the wall. The
surface heat flux estimated is in outstanding agreement with numerically simulated
surface heat flux data as presented in Fig. 3.

To check linearity, transient surface heat flux is plotted against corresponding
surface temperature for various r/d as shown in Fig. 4. At stagnation point, fit is
exactly linear and values of HTC and RT are very much accurate. However, away
from the stagnation point, reference temperature is continuously increasing which is
not true. Similar observation is made in case of cold turbulent jet impingement.

A forward numerical simulation is carried out with HTC and RT as a boundary
condition thru user-defined function (UDF). The demonstrative trend of HTC and
RT for cold impinging jet (Plate at 500 K and jet at 300 K) and hot impinging jet
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Fig. 3 Comparison of flux
computed by temperature
gradient method with
simulation results

Fig. 4 Linear fit at a r/d �0 and b r/d �4

(Plate at 300 K) applied thru UDF were taken from the published experimental work
[4, 8], respectively. The comparison plots are shown in Fig. 5.

5 Conclusions

The solution to IHCP is used to estimate front side temperatures with great accuracy.
Further, front wall heat flux is obtained with first-order accurate temperature gradient
method having match within 1% with simulated flux data. After validation, present
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Fig. 5 Comparative plot for a turbulent cold jet b laminar hot jet

technique is applied to cold jet and hot jet to obtain HTC and RT simultaneously.
For cold as well as hot jet, estimated heat transfer coefficient is in exceptional match
with input heat transfer coefficient data, whereas estimated reference temperature
exactly matches in stagnation region and overestimates around 2% at larger r/d.
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Investigation of Thermal Effects
in a Ferrofluid-Based Porous Inclined
Slider Bearing with Slip Conditions

Paras Ram and Anil Kumar

Abstract A theoretical model has been considered for the analysis of a ferrofluid
lubricated porous pad slider bearing under slip conditions. The lubricant is assumed
to be incompressible, and its viscosity varies exponentially with the temperature.
The expressions corresponding to the mean temperature, pressure, and the lifting
force (capacity of carrying the load) have been obtained as a function of various
parameters such as slip, material, thermal, magnetic field, and permeability. The
behavior of mean temperature with other bearing characteristics across the fluid film
thickness has also been investigated. The dependency of the lifting force and mean
temperature on various bearing parameters has been seen graphically.

Keywords Jenkins model · Magnetic fluid · Slider bearing · Slip velocity
Mean temperature

1 Introduction

Ferrofluid plays a vital role to enhance the lifting force and transfer of heat in lubrica-
tion of bearings. Due to long-term stability and high thermal conductivity, magnetic
fluids have attracted the scholars working on problems of various geometries like
helical pipes, cylinders, rotating disks, etc. [1–4].

In the present paper, the work done by Ram et al. [5] has been extended by
introducing the concept of heat transfer in the slider. Using ferrofluid as a lubricant,
thermal effects in the slider have been examined together with the slip boundary
conditions. The term co-rotational derivative for magnetization [6] has also been
taken into account because of its significant impact on the bearing characteristics.
The present work is also an improvement in the work done by Singh and Ahmad [7],
who have ignored the aforesaid term of the co-rotational derivative formagnetization.
The expressions corresponding to the mean temperature, pressure, and the lifting
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force have been obtained as a function of various parameters such as slip, material,
thermal, magnetic field, and permeability. For randomly chosen values of various
nondimensional parameters, the values corresponding to the mean temperature and
the lifting force have been computed by Simpson’s 1/3rd method. The variations in
mean temperature/thermal boundary layer thickness have been investigated across
the fluid film thickness to examine the rate of heat transfer.

2 Formulation of the Problem

The governing equations of the flow in vector notation due to Ram et al. [5] are as
follows:

ρ

[
∂q

∂t
+ (q · ∇)q

]
� −∇ p + μ∇2q + μ0(M · ∇)FH + ρα2∇ ×

(
M̃

M
× M∗

)
(1)

∇ · q � 0; ∇ × FH � 0; FH � −∇ϕ; ∇ · (FH + 4πM) � 0 (2)

β
D2M̃

Dt2
� −4πp

Ms

χ0

M̃

Ms − M
− 2α2

M
M∗ + FH ; (3)

where M∗ � DM̃
Dt + 1

2 (∇ × q) × M̃ .

In (1)–(3), ρ, q, p, β, α2, μ, M̃, M∗, M, Ms, FH , μ0, and χ0 are the fluid den-
sity, the fluid velocity, the pressure, the material constants, the coefficient of fluid’s
viscosity, the magnetization vector, co-rotational derivative of M̃ , the magnitude of
magnetization vector, the saturation magnetization, external applied field intensity,
free space permeability, and initial susceptibility of the fluid (Fig. 1).

Fig. 1 A porous pad slider bearing filled with ferrofluid as lubricant
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Now using all the appropriate boundary conditions, the expression for velocity
and pressure obtained by Ram et al. [5] is given as follows:

u �
∂
∂x

(
p − μ0μ̄

2 F2
H

)
(
μ − ρα2μ̄

2 FH

) y2

2
+

⎛
⎝U −

∂
∂x

(
p − μ0μ̄

2 F2
H

)
(
μ − ρα2μ̄

2 FH

) h2

2

⎞
⎠(1 + sy

1 + sh

)
(4)

∂

∂x

(
p − μ0μ̄

2
F2
H

)
� μ2[6Uh(2 + sh) + 12A(1 + sh)][

6kl
(
2μ(1 + sh) − ρα2μ̄FH

)
+ μh3(4 + sh)2

]

+
μFHρα2μ̄[6Uh(2 + sh) + 12A(1 + sh)][

6kl
(
2μ(1 + sh) − ρα2μ̄FH

)
+ μh3(4 + sh)2

]2
×
[
3kh

(
μ(1 + sh) − ρα2μ̄

2
FH

)
− μh3

2
(4 + sh)

]
(5)

where U, s and A denote the component of uniform velocity of the slider along
x-axis, the slip parameter, and the integral constant, respectively.

3 Solution of the Problem

The solution of the system is obtained by introducing the following nondimensional
quantities:

x̄ � x

L
, ȳ � y

h0
, h̄ � h

h0
, M̄ � μ

μ0
, Ā � 12A

Uh0
, u0 � u

U
,

p � ph20
μUL

, T � t

t0
, ᾱ2 � ρα2μ̄L

2μ
,

γ̄ 2 � 6k

h20
, β̄3 � 12kl

h30
, Tm � tm

t0
, Pr � μ0Cp

k̄
,

E � U 2

Cpt0
, B0 � βt0, μ̄

∗ � μ̄0μ̄h20L

μU
, s̄ � sh0

where Pr , E, B0,Cp, h0, h̄, h1, Tm, tm, t0, L , l, k, and k̄ are the Prandtl number, the
Eckert number, the nondimensional coefficient of temperature, the specific value of
heat, theminimumfilm thickness, the nondimensional film height, themaximumfilm
thickness, the nondimensional mean temperature, mean temperature across the fluid
film thickness, the temperature at ambient pressure, the bearing width, the bearing
wall thickness, the matrix porosity, and the thermal’s conductivity, respectively.

Assuming that the surfaces are inactive and flow of lubricant is active thermally
[7] and using the condition, T � 1 at the boundary, i.e., at ȳ � 0 and ȳ � h̄, the
expression for mean temperature has been obtained as
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Tm � 1 +
M̄ Pr E

240

[
6h̄4ϕ2 +

5h̄2s̄2
(
4 + h̄4ϕ2 − 4h̄2ϕ

)
(
1 + s̄h̄

)2 +
10h̄3s̄ϕ

(
2 − h̄2ϕ

)
(
1 + s̄h̄

)
]

(6)

where ϕ �
∂
∂ x̄

(
p̄− μ̄∗

2 (1−x̄)x̄
)

(1−ᾱ2
√
(1−x̄)x̄)

.

Equation (5) in dimensionless form is

∂

∂ x̄

(
p̄ − μ̄∗(1 − x̄)

2
x̄

)
�

1
s̄

(
12h̄ + Ā

)
+ h̄
(
6h̄ + Ā

)
1
s̄

(
β̄3
(
1 − ᾱ2

√
(1 − x̄)

√
x̄
)
+ 4h̄3

)
+ h̄
(
β̄3 + h̄3

)

+
ᾱ2h̄

[
1
s̄

(
12h̄ + Ā

)
+ h̄
(
6h̄ + Ā

)]
[
1
s̄

(
β̄3
(
1 − ᾱ2

√
(1 − x̄)

√
x̄
)
+ 4h̄3

)
+ h̄
(
β̄3 + h̄3

)]2

×
[
1

s̄

(
γ̄ 2 − 4h̄2 − ᾱ2

√
(1 − x̄)

√
x̄
)
+ h̄
(
γ̄ 2 − h̄2

)]
((1 − x̄)x̄)1/2 (7)

where the film thickness h̄(x̄) � a(1 − x̄) + x̄ , and a � h1/h0, 0 ≤ x̄ ≤ 1.
Particularly, we take a � 2 ⇒ h̄(x̄) � 2. Now, the lifting force is given by

W̄ �
1∫

0

( p̄)dx̄ � −
1∫

0

(x̄)

(
d p̄

dx̄

)
dx̄ (8)

Using (6) and (8), we obtain the final expression for the lifting force as

W̄ � μ̄∗

12
−

1∫
0

(
ᾱ2
√
(1 − x̄)x̄ − 1

)
x̄

√√√√√√ 1

6h̄2 + h̄4 s̄2 + 2h̄3 s̄

⎡
⎢⎣

240(Tm − 1)(1 + s̄h̄)2

h̄2 M̄ Pr E

−20s̄2 − 20ϕh̄s̄

⎤
⎥⎦ dx̄ (9)

4 Results and Discussion

On the behalf of the computation and investigations carried out for the present work,
the following findings are recommended.

The variations of mean temperature (Tm) across the fluid film thickness (h̄) have
been analyzed for different values of the thermal parameter (Pr · E) and the material
parameter (ᾱ2) in Figs. 2 and 3, respectively. As wemove from outlet (h̄ � 1) to inlet
(h̄ � 2) of the slider, it is noted that the behavior of the mean temperature is quite
irregular. The area under the mean temperature curve is negligible for 1 ≤ h̄ ≤ 1.5
and large for 1.5 ≤ h̄ ≤ 2. It implies that width of the thermal boundary layer is quite
large in the inner half of the bearing as compared to the outer half of the bearing.
Therefore, the heat dissipation is very slow in the inner part as compared to the outer
part of the slider, and hence the cooling is fast in the outer part as compared to the
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Fig. 2 Mean temperature
versus fluid film thickness
for different values of Pr · E
at 1/s̄ � 1, ᾱ2 � 0.8,
β̄ � 1.3, γ̄ 2 � 1.2

Fig. 3 Mean temperature
versus fluid film thickness
for different values of ᾱ2 at
1/s̄ � 1, β̄ � 1.3, γ̄ 2 � 1.2,
Pr · E � 1.2

inner part of the slider. Also from Fig. 7, we observe that the material parameter has
a large effect on the mean temperature. So, for desirable heat transfer, the material
parameter should be adjusted accordingly.

Figure 4 reveals the variation of mean temperature (Tm) with slip parameter (1/s̄)
for different values of the material parameter (ᾱ2). It is seen that the effect of the
material parameter on mean temperature depends on the value of slip parameter. For
slip, 1/s̄ ≤ 0.4, the material parameter does not have any effect on mean temperature
but for 1/s̄ > 0.4, it has a notable effect on mean temperature. Therefore, for 1/s̄ >

0.4, the material parameter should be adjusted according to the slip parameter.
In Figs. 5 and 6, the variations of the lifting force (W̄ ) versus permeability param-

eter (β̄) and slip parameter (1/s̄) under the effect of magnetic field parameter (μ̄∗)
have been observed. In these figures, it is noted that the lifting force enhances with
an increase in the magnetic parameter. Increase in the magnetic field intensity causes
an increase in the lubricant’s viscosity, which causes an enhancement in the pressure
and consequently, the lifting force. It is also seen that for β̄ < 0.5 and 1/s̄ > 0.6,
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Fig. 4 Mean temperature
versus parameter of slip for
different values of ᾱ2 at
β̄ � 1.3, γ̄ 2 � 1.2, x̄ � 0.6,
Pr · E � 1.2

Fig. 5 Lifting force versus
parameter of permeability
for different values of μ̄∗ a
1/s̄ � 1, ᾱ2 � 0.8,
γ̄ 2 � 1.2, Pr · E � 1.2

Fig. 6 Lifting force versus
parameter of slip for
different values of μ̄∗ at
ᾱ2 � 0.8, β̄ � 1.3,
γ̄ 2 � 1.2, Pr · E � 1.2

the lifting force is almost constant while for β̄ ≥ 0.5 and 1/s̄ ≤ 0.6, it has a notable
decrease with slip.
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Fig. 7 Lifting force versus
thermal parameter, i.e.,
Pr · E for different values of
μ̄∗ at 1/s̄ � 1, ᾱ2 � 1,
β̄ � 1.3, γ̄ 2 � 1.2

The lifting force (W̄ ) with the thermal parameter (Pr · E) for various values of
the magnetic field parameter (μ̄∗) has been plotted in Fig. 7. It is observed that an
increment in the thermal parameter causes an enhancement in the thickness of the
thermal boundary layer which results in a low heat transfer rate in the slider. These
developments cause decay in the lifting force and sometimes breaking of the bearing
due to the higher temperature.

5 Conclusions

In the inner part of the slider, the heat transfer is slow due to the high thickness of
the thermal boundary layer; therefore, the cooling is slow while in the outer part of
the slider, the heat transfer rate is quite high due to thin boundary layer and hence
the cooling is fast. The material parameter has also a notable effect on the thermal
boundary layer so for acquiring a desirable heat transfer rate; its value should be
adjusted accordingly.

Further, it is also concluded that the lifting force decelerates with an increase in
the permeability, slip, and thermal parameter. This decrease is negligible for β̄ <

0.5, 1/s̄ > 0.6 and notable for β̄ ≥ 0.5, 1/s̄ ≤ 0.6. Due to the higher value of the
thermal parameter, the thermal boundary layer thickness increases resulting in a low
heat transfer rate and it may cause breaking up of the bearing. Therefore, the value
of thermal parameter, i.e., Prandtl number and Eckert number, should be adjusted in
such a way that the loss due to heating can be minimized.
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Thermal Convection in an Inclined
Porous Layer with Effect of Heat Source

Anjanna Matta

Abstract The present study analyzes the effect of heat source on thermal convection
in an inclined porous layer and also examines the Hadley flow in an inclined porous
layer by applying the linear stability analysis. The stability of small-amplitude dis-
tributions is studied with corresponding longitudinal rolls using three-dimensional
normal modes. The corresponding eigenvalue problem is analyzed numerically by
applying the Chebyshev-Tau method for evaluating the critical thermal Rayleigh
number (Rz) corresponding to various flow parameters.

Keywords Linear stability analysis · Inclined porous layer · Heat source

1 Introduction

Many authors have analyzed the thermal convection in a horizontal fluid-saturated
porous medium, but very few have dealt with the thermal convection in an inclined
porous layer in the last decade. The current investigation on thermal convection
caused by an internal heat generation with an inclined porous medium is vital due to
many real-life problems such as geophysical, the hydrology of aquifers, underground
energy, transport and environmental problems, etc. The interest in the inclined porous
layer with the thermal convective instability situation arises most relative to the
transport in groundwater and in the exploitation of geothermal reservoirs. Other
important areas are like the transport of pollutants, oil extracting, and food processing
[1, 2]. The mechanism of thermal transport has a major application in environmental
problems [3]. The convection in porous layer has been surveyed in the literature [4, 5].

In the literature first time, the inclined porous medium is analyzed by Bories and
Combarnous [6], and later, it is extended by Weber [7]. Improving these studies,
an inclined porous medium was continued by Caltagirone and Bories [8]. Rees and
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Bassom [9] studied the thermal convection properties in an inclined layer, and they
mentioned some of the outstanding results using linear stability analysis. Thermal
convection in a saturated porous layer with internal heat source and mass flow is
studied by Matta et al. [10]. The fluid flow in an inclined porous layer is carried
out by Barletta and Storesletten [11], and further a fixed heat flux along the walls of
the inclined porous medium is studied by Rees and Barletta[12]; also, the thermal
convection of Darcy flow in an inclined layer is extended by Barletta and Rees [13].
A note is also given by Nield [14] on the inclined porous layer to give the answers
for well-preferred patterns of the natural thermal convection, and then after, Nield et
al. [15] find out the importance of the viscous dissipation effect of thermal instability
in an inclined porous layer. A little set of articles on the inclined porous medium is
available in the surveyed book of Nield and Bejan [16].

The importance of this analysis is to study the thermal convection on the inclined
porous medium with the influence of an internal heat source. The applied thermal
gradient and heat source lead to a possibly thermal instability in the inclined porous
medium. The problem stated that equations have been modified as an eigenvalue
problem, which is evaluated numerically by applying the Chebyshev-Tau method.

2 Mathematical Formulation

Let us choose an infinite length-inclined fluid-saturated porous layer with vertical
height H considered as shown in Fig. 1. The inclination angle of porous layer is φ,
which is along the x∗-axis. z∗-axis is taken vertically upward. The vertical thermal
difference along the walls is �T . The fluid flow inside the porous medium is ap-

T* = T0 z* y*

x* 

Porous medium 

T* = T0 +ΔT g

H  

φ

Fig. 1 The physical system
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plicable the Darcy law and Boussinesq approximation. The governing equations in
nondimensional form are

∇ · q = 0 , (1)

q + ∇P = Rzθ [sin(φ)e1 + cos(φ)e3] , (2)

∂θ

∂t
+ q · ∇θ = ∇2θ + Q , (3)

and the corresponding boundary conditions are

z = 0 : w = 0, θ = 1
z = 1 : w = 0, θ = 0

}
(4)

The corresponding dimensionless variables were used for dimensionless governing
equations,

(x, y, z) = 1

H

(
x∗, y∗, z∗) , t = αmt∗

aH 2
, q = Hq∗

αm
, P = K P∗

μαm
,

T ∗ = T0 + θ�T , Q = H 2Q∗

km�T
, (5)

where

αm = km(
ρcp

)
f

, a = (ρc)m(
ρcp

)
f

, Rz = ρ0gγT K H�T

μαm
. (6)

Here, the velocity is notated as q∗, T ∗ is the temperature, P∗ is the pressure, Q∗ is
a heat source, and g is the gravitational acceleration, where the subscripts m and f
are referred to porous medium and fluid, respectively. Here, K is the permeability
of the porous layer. Also, ρ, c, km , and μ denote the density, specific heat, thermal
conductivity, and viscosity, respectively.Also, γT is the thermal expansion coefficient
and the vertical thermal Rayleigh number is Rz .

3 Basic State Solution

The nondimensional governing Eqs. (1)–(3), corresponding to (4), has a steady-state
solution as follows:

us = u (z) , vs = 0, ws = 0, Ps = P (x, y, z) , θs = θ (z) . (7)



50 A. Matta

There is no net flow along the x-axis, and then
∫ 1
0 u(z)dz = 0.Hence, the steady-state

solution is in the form of flow velocity and temperature in the given porous layer.

us = Rz sin(φ)

[
Q

2

(
z − z2 − 1

6

)
− z + 1

2

]
,

vs = 0 , ws = 0, Ts = Q

2

(
z − z2

) + 1 − z . (8)

4 Linear Stability Analysis

An arbitrarily disturbance quantities of the basic flow are defined as q = qs + ε q,
θ = θs + ε θ and P = Ps + ε P , where ε is the perturbation parameter and submit-
ted these disturbances in dimensionless governing Eqs. (1)–(3), and thereafter, by
neglecting the nonlinear terms, got the linear system in the following form:

∇ · q = 0 , (9)

q + ∇P =
[
Rzθ

]
(sin(φ)e1 + cos(φ)e3) , (10)

∂θ

∂t
+ qs · ∇θ + q · ∇θs = ∇2θ , (11)

where

∇θs =
(
0, 0,

Q

2
(1 − 2z) − 1

)
.

The boundary conditions at the walls are

z = 0 : w = 0, θ = 1
z = 1 : w = 0, θ = 0

}
(12)

These conditions in Eq. (12) are clear that there is a zero perturbation in the velocity
and temperature along the plates. The solution of Eqs. (9)–(11) funded in the form
of normal modes

[
P, θ,q

]
= [

P (z) , θ (z) ,q (z)
]
exp {i [kx + ly] + σt} , (13)

thereafter eliminates P from Eq. (10), and we get

(
D2 − α2

)
w + (

α2 cos(φ)θ + iksin(φ)Dθ
)
Rz = 0, (14)

(
D2 − α2 − ikus

)
θ −

(
Q

2
(1 − 2z) − 1

)
w = σθ. (15)
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Here, D = d
dz , and Eqs. (14)–(15) subject to boundary conditions (4) give an

eigenvalue problem for thermal Rayleigh number Rz with k and l wave numbers
along x and y directions. In the above, α = √

k2 + l2 is the overall wave number.

5 Results Analysis

The thermal instability analysis in an inclined fluid-saturated porous layer with effect
of heat source is studied. The inclination angle φ is tested from 0◦ to 80◦. The critical
thermal Rayleigh number (Rz) is defined as the minimum of all Rz values as the
wave number (α) is varied. The results are shown in Figs. 2, 3, and 4.

Variation of Rz is shown as a function of φ for different values of Q as given in
Fig. 2. In the absence of heat source (Q = 0), the critical value of Rz is increasing
slowly upto φ < 500, and thereafter the value of Rz is increasing very fast, which
indicate that as inclination angle increases, the system is stabilizing.

The response of critical values of Rz as a function of heat source (Q) is given
in Fig. 3, for the absence and presence of an inclined angle (φ). When the internal
heat source increases, then the critical Rz values are decreased, which means flow
is destabilized due to enhancement of the heat source. The inclination angle (φ) is
increased from 0◦ to 40◦, and then the critical values of Rz also enhance, and it
indicates that the flow is stable.
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Fig. 2 Variation of Rz with φ
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The thermal contours are shown in Fig. 4 in the absence and presence of heat
source Q. It is interesting to observe that the thermal profiles are parabolic in the
presence of heat source. It is clearly appeared that as an internal heat source increases,
the global temperature is also increased.

6 Conclusion

In this work, investigate the Hadley flow analysis of an inclined porous medium with
effect of heat source studied by linear stability analysis. The critical value of Rz is
studied in the longitudinal rolls, and those are investigated for various combinations
of the flow field parameters. It is concluded from the figures that

• As inclination angle increases, it causes the strong stabilization irrespective of heat
source.

• As heat source increases, it causes the strong destabilization irrespective of incli-
nation angle.

• It is clear that overall the considerable changes appeared in the Rz subject to
inclination angle and heat source.
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MHD Flow and Heat Transfer
of Immiscible Micropolar and Newtonian
Fluids Through a Pipe: A Numerical
Approach

Ankush Raje and M. Devakar

Abstract This study deals with the MHD steady flow and heat transfer of
micropolar and Newtonian fluids, flowing immiscibly through a circular pipe. The
pipe is assumed to be filled with uniform porous media. The micropolar and Newto-
nian fluids occupy core and peripheral regions, respectively. The equations governing
the flow are coupled and non-linear. The solutions for velocity, microrotation and
temperature are acquired numerically employing finite difference method. At fluid–
fluid interface, continuity of velocities, shear stresses, temperatures and heat fluxes
are considered. The results for velocity, microrotation and temperature are displayed
graphically.

Keywords Micropolar fluid ·MHD flow · Heat transfer · Finite difference method

1 Introduction

The theory of classical Newtonian fluid model was inadequate to describe the exact
behaviour of complex fluids such as animal blood, liquid crystal, slurries, etc. This
inadequacy was overpowered to some extent by the theory introduced by Eringen
[1] in 1966. This theory is popularly known as the theory of micropolar fluids.
Micropolar fluid consists of rigid randomly oriented bar-like elements or dumbbell-
shapedmolecules.A striking feature ofmicropolar fluidmodel is that the fluidswhose
molecules can rotate independently of the fluid stream velocity and local vorticity
can be modelled by micropolar fluids. Unlike Newtonian fluids, the stress tensor in
this theory is non-symmetric. An independent kinematic vector called microrotation
vector is present in this model to take care of the rotation of the fluid particle. In view
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of the aforementioned speciality of the theory, many researchers [2–5] showed their
interest in studying micropolar fluids.

The study of immiscible fluid flows is having great importance due to its applica-
tions in thefield of bio-fluidmechanics and chemical engineering. Several researchers
[6–8] have contributed to the studies of this kind of flows in different geometries. In
recent times, the MHD flows through horizontal channel gained considerable atten-
tion due to its practical relevance in diverse fields of engineering and science. For
literature onMHD flows, [9, 10] and the references therein can be referred. The flow
through porousmedium is also of huge interest in bio-fluid dynamics and engineering
fields. The seepage of water in river bed, flow of blood through small blood vessels,
filtration of fluids, etc. can be modelled using flow through porous medium. In view
of these applications of flow through porous media, a good amount of research has
been reported in literature [11, 12]. The phenomena of heat transfer are used on
a large scale in functioning of numerous devices and systems in engineering like
thermal insulators, thermoelectric cooler and heat exchanger. Due to the abundant
applications in engineering, many investigators have shown interest in the study of
heat transfer [3, 13, 14].

The objective of the present paper is to investigate MHD flow and heat transfer of
two immiscible incompressible micropolar and Newtonian fluids through a circular
pipe filled with porous medium. A finite difference scheme is employed to obtain
numerical solutions for fluid velocities, microrotation and fluid temperatures. Results
are displayed through graphs, for variation of flow variables with flow parameters of
interest, and the conclusions are presented.

2 Mathematical Modelling of the Problem

Consider the fully developed, laminar and axisymmetric flowof two immisciblefluids
through a horizontal circular pipe of radius R0. Immiscibility of the fluids leads to
two distinct regions; region-I, i.e. core region and region-II, i.e. peripheral region.
Region-I (0 ≤ r ≤ R) is filled with micropolar fluid having density ρ1, viscosity μ1,
thermal conductivity K1 and vortex viscosity κ , whereas region-II (R ≤ r ≤ R0) is
occupied by Newtonian fluid of density ρ2, viscosity μ2 and thermal conductivity
K2. Fluids in both regions are assumed to be incompressible and are free from body
forces and body couples. A magnetic field of intensity H0 is applied in transverse
direction to the pipe. Both fluid regions are assumed to be filled with the uniform
porous media of permeability k∗. Cylindrical polar coordinate system (r, θ, z) is
used, with z-axis taken along the axis of the pipe (as shown in Fig. 1). A constant
pressure gradient is applied in positive z direction to generate the flow. Due to the
unidirectional nature of the flow, the fluid velocity in both regions is assumed to
be in the form qI = (0, 0, wI (r)) where the subscript I = 1, 2. These choices of
velocities automatically satisfy the incompressibility conditions in respective flow
regions. The fluids in both regions are assumed to be electrically conductive having
σ as the coefficient of electrical conductivity. The temperature of the solid boundary
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Fig. 1 Geometrical configuration

of pipe is assumed to be at fixed temperature Tw. In view of the unidirectional
nature of the fluid velocity, the microrotation vector of the micropolar fluid region
is taken as υ = (0, b(r), 0). Further, the temperature in both regions is assumed in
the form TI = TI (r), where I = 1, 2 denotes distinct fluid regions. Under the above
consideration, the governing equations of the current flow problem are given by
[1, 2]. The non-dimensional governing differential equations take the form,

Region-I: 0 ≤ r ≤ 1 [Micropolar fluid region]

(1 + n1)
1

r

d

dr

(
r
dw1

dr

)
+ n1

1

r

d

dr
(rb) + Re G −

[
M2 + 1

Da

]
w1 = 0, (1)

d

dr

(
1

r

d

dr
(rb)

)
− n2

dw1

dr
− 2n2b = 0, (2)

1

r

d

dr

(
r
dT1
dr

)
+ BR

[(
dw1

dr

)2

+ n1

(
dw1

dr
+ 2b

)2

− 2δ1
b

r

db

dr
+ δ2

((
db

dr

)2

+ b2

r2

)]
= 0. (3)

Region-II: 1 < r ≤ s [Newtonian fluid region]

1

r

d

dr

(
r
dw2

dr

)
+ Re G

m1
−

[
M2

m1
+ 1

Da

]
w2 = 0, (4)

1

r

d

dr

(
r
dT2
dr

)
+ BR m1

K

(
dw2

dr

)2

= 0. (5)

Correspondingly, the regularity, boundary and interface conditions, in non-
dimensional form are,
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dw1

dr
= 0,

db

dr
= 0 and

dT1
dr

= 0 at r = 0, (6)

w2(r) = 0 and T2(r) = 0 at r = s, (7)

w1(r) = w2(r) and T1(r) = T2(r) at r = 1, (8)

b(r) = −1

2

dw1

dr
,

(
1 + n1

2

)
dw1

dr
= m1

dw2

dr
and

dT1
dr

= K
dT2
dr

at r = 1, (9)

where s = R0
R ≥ 1, n1 = κ

μ1
is micropolarity parameter, Re = ρ1WR

μ1
is the Reynolds

number, G = − dp
dz is constant pressure gradient, M =

√
σ R2H0

2

μ1
is the Hartmann

number, Da = k∗
R2 is the Darcy number, BR = μ1 W 2

K1�T is the Brinkman number, δ1 =
γ

R2μ1
and δ2 = β

R2μ1
, m1 = μ2

μ1
is the ratio of viscosities, and K = K2

K1
is the ratio of

thermal conductivities.

3 Numerical Procedure for Solutions

The finite difference numerical technique is used to find approximate solution to
the problem. It can be recognized that the differential equations (1), (2) and (4) are
decoupled from the temperature; therefore, once the fluid velocities in both regions
and microrotation in micropolar fluid region are known from Eqs. (1), (2) and (4),
the temperature fields can be obtained subsequently from Eqs. (3) and (5).

3.1 Velocity and Microrotation Distributions

For obtaining fluid velocities and microrotation, the system of differential equations
(1), (2) and (4) subjected to conditions (6)–(9) concerningw1,w2 andb is solvedusing
finite difference method. For the numerical solution, let us fix s = 2 and discretize
the domain [0, 2] uniformly with step size h in radial direction. Let (ri ) be a point
in the computational domain, where i denotes the space discretization parameter.
In discretized form, the flow region can be represented by i = 0, 1, 2, 3, . . . l − 1, l,
where l = 2

h . Discretized points in micropolar fluid region (region-I) are represented
as i = 0, 1, 2, 3, . . .m − 1, and spatial points in Newtonian fluid region (region-II)
are represented by i = m + 1,m + 2, . . . l − 1, where m = l

2 is the liquid–liquid
interface.

Using the appropriate finite difference approximations of derivatives in equations
(1), (2) and (4), and, invoking the conditions (6)–(9) in the system, we get the fol-
lowing linear system of (3m + 1) equations in same number of unknowns,

Z X = Φ, (10)
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where Z is the banded sparse matrix of order (3m + 1) and Φ is the column vector
of (3m + 1) known entries. X is the column vector of unknown quantities, i.e. fluid
velocities and microrotation.

Solving linear system (10) gives velocities and microrotation values at each grid
point of the fluid regions.

3.2 Temperature Distribution

Having found the numerical values of velocities and microrotation, the aim now
is to obtain numerical solution for temperature in both regions from Eqs. (3) and
(5) invoking regularity, boundary and interface conditions (6)–(9) concerning the
temperature.

Discretizing the domain [0, 2] in similar fashion as before, governing equations
for temperature (3) and (5) after applying the finite difference schemes in both fluid
regions, invoking the temperature conditions of (6)–(9) in discretized form gives
again a linear system of 2m equations in 2m unknown temperature values as

Θ Y = Υ, (11)

whereΘ is a tri-diagonal matrix of order 2m, and Υ is a column of 2m known values
consisting of the values of velocities and microrotation obtained earlier. Y is the
column vector of unknown quantities, i.e. fluid temperatures.

The linear system (11) is solved to obtain the temperature distribution in both
fluid regions.

4 Results

The flow and heat transfer of two immiscible micropolar and Newtonian fluids
through a horizontal circular pipe is considered in present study. A finite difference
approach is used to compute numerical solution for fluid velocities, microrotation
and temperatures. The solutions are obtained considering the spatial mesh size to be
0.01, i.e. taking 201 × 201 grid. Figures2, 3, 4, 5, 6, 7, 8 and 9 display the velocity,
microrotation and temperature profiles for several sets of parameters appearing in
the problem. The set of fixed values of all parameters, when a particular parameter is
varied to see the variation, is considered as n1 = 0.5, Re = 1, m1 = 0.5, Br = 0.4,
K = 2, G = 10, M = 0.5, Da = 0.5, δ1 = 2, δ2 = 2.

It can be seen from Fig. 2 that, as the micropolarity effects are present only for
micropolar fluid region, the fluid velocities in micropolar fluid region are decreasing
with increase in values of n1, but no significant change can be seen in Newtonian
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Fig. 3 Fluid velocities with varying Darcy number

fluid region. From Figs. 3 and 4, a remarkable variation is observed in fluid velocity
values when they are plotted for various values of Darcy number Da and Hartmann
number M . Fluid velocities are decreasing with the increasing M , and a reverse trend
is seen with respect to Da. Microrotations are reducing with an increment of n1 and
are increasing with increasing Da (see Figs. 5 and 6).

Figure7 displays that the fluid temperatures are decreasing with increasing values
of micropolarity parameter. Brinkman number is the ratio between heat produced by
viscous dissipation and heat transported by molecular conduction. Hence, the more
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the Brinkman number, the more the viscous dissipation and the less the molecular
conduction. As the viscous dissipation converts the work done into heat, naturally, a
significant increase in the temperature is observed. In view of this, fluid temperatures
in both regions tend to increase with increase in the values of Brinkman number (see
Fig. 8). Also, it is evident from Fig. 9 that the fluid temperatures in both regions
increase with Darcy number.
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5 Conclusions

The main findings of the current study are listed as follows:

– Fluid velocities are increased by Darcy number and are decreased by the increase
of magnetic effects and micropolarity effects.

– Microrotation is reduced by micropolarity parameter and is hiked by the hiking of
Darcy number.

– The micropolarity parameter n1 and Hartmann number M are reducing the fluid
temperatures in both fluid regions, whereas temperature fields are increased by the
increasing values of Brinkman number and Darcy number.
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Modeling and Simulation of High
Redundancy Linear Electromechanical
Actuator for Fault Tolerance

G. Arun Manohar, V. Vasu and K. Srikanth

Abstract High redundancy actuator (HRA) is a linear actuator, having the
capability of inherent fault tolerance. It provides the fault tolerance by using a large
number of small actuation elements that are attached in series and parallel arrange-
ment within. These actuation elements will work collectively to form as a single
HRA. During the usual operation, some of these actuation elements may get faulty.
In this circumstances, the HRA will still work, but with a graceful degradation in its
performance. This paper discusses the mathematical modeling of the single actuator
based on electromechanical actuation elements and based on that, an HRAwith nine
actuation elements has been modeled. The results are simulated with the help of
MATLAB/Simulink module under both faulty and healthy conditions. The obtained
results show that there is no sudden failure of the HRA even though there are faulty
elements present within the actuator.

Keywords Electromechanical actuator · HRA · Fault tolerance

1 Introduction

Faulty elements in the system lead to system failure, which may cause disasters. The
consequences of faults might be damage to the system, people within its vicinity, or
its environment. So, there is a very much need to improve the safety of the system,
especially for safety-critical systems. A powerful tool for improving the safety in
any automated system was fault tolerance (FT), and it is the capability of a system to
continue functioning properly in the event of the failure of some of its components or
one or more faults within. Fault tolerance is generally achieved through redundancy.
Redundancy is the addition of information, resources, or time beyond what is needed
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Fig. 1 Example of a 3×3 high redundancy actuator

for a system to operate normally. FT system applications are found in aerospace like
Airbus fly-by-wire system and Boeing 737 trailing edge flap drive system [1].

In general, FT actuators are adopted with over-actuation, where two are more
actuation elements are connected in parallel, and each actuation element is having the
capability to do the task individually when the other actuation elements get defective.
But, by the adoption of over-actuation, the cost and size of the system increase; thus,
the effectiveness of the system reduces [2]. Parallel arrangement exclusively will
also of no use, in the existence of jamming of an actuator [2]. Thus to overcome this,
the concept of high redundancy actuator (HRA) has been introduced.

HRA is a fault-tolerant linear electromechanical actuator (EMA) which consists
of a large number of small actuation elements as shown in Fig. 1. All the actuation
elements work collectively to form as a single actuator. To improve the availability
and reliability, and also to reduce the need for oversizing, the arrangement of elements
in the HRA is in parallel and series [3].

2 Background and Motivation

The current research has focused on HRA based on electromechanical actuator with
a relatively low number of actuation elements. An initial work with four actuation
elementswas controlled through passive fault-tolerantmethod [1]. The four actuation
elements were attached in a 2×2 series-in-parallel arrangement [4]. Another work
with 16 elements HRA was modeled based on electromagnetic actuation elements.
Another work with 12 elements HRA was modeled based on electromechanical
actuation elements [2] to explore various fault detection and identification (FDI) and
condition monitoring methods [2].

The present work aims to expand the work of Du (2008) by considering nine
elements HRA based on electromechanical actuators in (3×3) series-in-parallel
arrangement as shown in Fig. 1. Using the nine elements HRA, mathematical mod-
eling equations were derived and a MATLAB/Simulink model was developed based
on the equations to examine the performance of the HRA under healthy as well as
faulty conditions.
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Fig. 2 Linear EMA physical model

Fig. 3 Equivalent schematic diagram of EMA

3 Mathematical Modeling of Single EMA

SingleEMAsystemmodeling is verymuchnecessary for constructing amultielement
actuator like HRA. The mathematical modeling of single EMA is addressed in this
section. EMAs can be divided into two parts: an electrical part and a mechanical
part. A DC motor is considered under the electrical part (Eqs. 1 and 2) whereas a
lead/ball screw and gearbox are considered under mechanical part (Eqs. 3 and 4).

All the components of the EMA are shown in Fig. 2. The DC motor converts the
electrical energy into mechanical torque whereas the lead/ball screw converts the
torque into linear motion. The coupling between the motor shaft and the lead/ball
screw was provided by the gearbox. By changing the energy (voltage) supplied to
the motor the desired position and force of the actuator can be achieved.

The schematic diagram of the linear EMA with all the parameter notations is
shown in Fig. 3. Current I is passing through the armature, and T indicates the motor
torque. XL and Xn indicate the linear displacement of the load and nut, respectively.
The term h in Eqs. (2) and (3) is to convert angular motion to linear motion, and it is
equal to l/2πN , where N is the gear ratio and l is the screw lead.

İ � 1

La

[
Vs − Ra I − Keθ̇m

]
(1)

θ̈m � 1

J

[
Kt I − Km

(
h2θm − hXn

) − Dθ̇m
]

(2)

Ẍn � 1

Mn
[Km(hθm − Xn) + Kn(XL − Xn) + Cn

(
Ẋ L − Ẋn

)
(3)
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Fig. 4 Free body diagram of a single EMA mechanical part

Fig. 5 Simulink model of single EMA

Ẍ L � 1

ML
[Kn(Xn − XL) + Cn

(
Ẋn − Ẋ L

)
(4)

The equations are solved using MATLAB/Simulink and the Simulink model was
shown in Fig. 5. All the parameter values used for solving themathematical equations
arementioned in Table 1. Equation (1) refers tomotor armature current, Eq. (2) refers
to mechanical loading of the motor, and motor armature current is same for all the
individual actuators in an HRA. Equations (3) and (4) refer to linear acceleration of
nut and the load derived from the free body diagram shown in Fig. 4. Similarly, the
equations of 3×3 HRA in series and parallel can be derived from their free body
diagrams, and the simulation results are discussed in Sect. 3.

4 Simulation Results

By developing and simulating the model of single EMA and nine elements HRA
using MATLAB/Simulink module, the performance of the actuator with faults and
without faults are monitored. The faults introduced in the simulation model are open
circuit failure and short circuit failure in the motor windings. In open circuit failure,
no current nor torque will be produced by the DC motor, and in the model, this fault
can be introduced by replacing the current value with zero.

In the short circuit failure, no voltage was supplied to the DC motor to generate
the torque, and in the model, this fault can be introduced by supplying a zero voltage
to the actuator.
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Table 1 Parameter values used in Simulink model

Parameter Notation Value

Supply voltage Vs 12 V

Armature resistance Ra 0.4 �

Armature inductance La 0.8 mH

Equivalent inertia at armature J 4.4574e−5 kg m2

Equivalent viscous friction D 8.2986e−4 Nm/rad−1

Motor back emf constant Ke 0.036868 V/rads−1

Motor torque constant Kt 0.030891 Nm/A

Screw lead l 2e−3 m/rev

Load mass ML 4 kg

Motor mass Mm 1 kg

Motor stiffness Km 201,060,000 N/m

Nut damping Cn 1200 N/ms−1

Nut stiffness Kn 1.8e5 N/m

Nut mass Mn 0.5 kg

Fig. 6 Three actuation elements in series (left) and three actuation elements in parallel (right)

The performance of the actuator like force (in Newton), linear velocity (in m/s)
and linear displacement (in meters) with respect to time are plotted under faulty
and healthy conditions. Figure 6 shows the performance of the actuation elements
when only three elements are connected in series and when only three elements are
connected in parallel, respectively.

From the results, it was clear that in series arrangement, the linear velocity and dis-
placements are increased but the force remains constant. And in the parallel arrange-
ment, the linear velocity and displacements remain constant but the force increased.
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Fig. 7 Performance of single EMA and HRA (left), and performance of HRA under faults (right)

Table 2 The outputs of single EMA and HRA with and without faulty elements

Output Single
EMA

HRA

Without faults With one faulty
actuator

With two faulty
actuators

With three
faulty actuators

Force (N) 120 360 318 277 225

Velocity (m/s) 0.24 0.72 0.67 0.6 0.48

Position (m) 0.037 0.11 0.0958 0.0845 0.0687

Thus, the faults affecting the displacement can be tolerated by series arrangement and
the faults affecting the force can be tolerated by parallel arrangement. Therefore by
using the advantage of both the series and parallel arrangements, the nine elements
in the HRA are arranged as 3×3 series-in-parallel configuration.

Figure 7 (left) shows the performance of single actuation element and HRAwith-
out faults and the observations show that the force, linear velocity, and displacement
of HRA are approximately thrice that of the individual actuation element. Figure 7
(right) shows the performance of HRA without fault and with one, two, and three
faults, respectively. The output performance values of single EMA and HRA are
shown in Table 2.

5 Conclusion

In this paper, a mathematical model of single EMA and an HRA with nine actuation
elements are discussed. The behavior of the HRA model under open circuit, short
circuit failure, and also without failure conditions is observed. The effects of these
failures on the displacement, velocity, and force of the actuator are studied, and there
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is no sudden failure of the actuator but depending upon the number of faults the
performance of the actuator will decrease. The values indicate that there is a certain
level of FT was achieved but in the future by implementing a suitable control system,
complete FT can be achieved even after three faulty elements present in the HRA.
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Thermal Radiation and Thermodiffusion
Effect on Convective Heat and Mass
Transfer Flow of a Rotating Nanofluid
in a Vertical Channel

V. Arundhati, K. V. Chandra Sekhar, D. R. V. Prasada Rao and G. Sreedevi

Abstract This paper presents a numerical study of thermal radiation and
thermodiffusion effect of moving wall (oscillatory) velocity on unsteady convective
heat transfer flow of two types of water-based nanofluids (Cu, Al2O3) in a vertical
channel under the influence of heat sources. Employing regular perturbation method,
the momentum and the energy equations are solved analytically. The results of the
fluid velocity, temperature, and concentration profiles are presented graphically and
discussed for the pertinent flow parameters.

Keywords Thermal radiation · Thermodiffusion · Nanofluids · Vertical channel

1 Introduction

The inherent heat transfer limitation of conventional fluid over metallic and non-
metallic materials has led to the innovation in heat transfer by adding a homogeneous
mixture of nanoscale particles to base fluid. The term nanofluids was first coined by
Choi [1]. Several authors [2–6] have examined the influence of nanoparticles in heat
and mass transfer problems with different models. The present work has considered
the nanofluid model proposed by Tiwari and Das [7].

Fluid flows, driven by heat convection in open channels involving inclined or ver-
tical plane surfaces, have assumed importance in electronic industry and specifically
in solar photovoltaic (PV) systems. Barletta et al. [8], Hang and Pop [9], Xu et al.
[10], Fakour et al. [11], Nield and Kuznetsov [12], Sheikholeslami and Ganji [13]
have investigated the nanofluid flow with various conditions in a vertical channel.
Sreedevi et al. [14] studied Soret effect in convective heat and mass transfer flow
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in vertical channel. Noreen et al. [15] studied Cu particles on peristaltically moving
fluid in vertical channel.

This paper investigates the thermal radiation and thermodiffusion effect ofmoving
wall (oscillatory) velocity on unsteady convective heat transfer flow of Al2O3–water
and Cu–water nanofluids in a vertical channel.

2 Formulation of the Problem

Consider a steady, fully developed tridimensional flow ofAl2O3 and Cu–water-based
nanofluids in a vertical channel. Ho, the magnetic field strength, is induced normally
to the channel. Following assumptions are made: (a) no applied voltage signifying
absence of an electric field, (b) flow moves upwardly chosen in x-direction, (c) z-
direction indicates normal to the channel, (d) Ω is the constant angular velocity
which is a rotating fluid at z-direction, (e) Radiation heat flux is negligible at x over
z-direction, (f ) flow variables are functions of z and t only, and (g) ∇. J̄ � 0 for
equation of conversation, results Jz as constant. Invoking Seth et al. [16], the below
governing equations are reduced to nondimensional coupled equations. Figure 1
shows the coordinate system of the problem.

Assuming the above and introducing the dimensionless variables, the momentum
and thermal energy equations are in the form of nondimensional as

−S
∂u

∂z
− 2Rv � 1

A1A3

∂2u

∂z2
+

A4

A3
Gθ − A6M2

A3
u (1)

−S
∂v

∂z
+ 2Ru +

1

A1A3

∂2v

∂z2
− A6M2

A3
v (2)

−S Pr
∂θ

∂z
� ∂2θ

∂z2
− αθ +

4

3F

∂2θ

∂z2
(3)

Fig. 1 Schematic diagram
of the problem

x

T w=T 2

T w=T 1 C w= C 2

C w= C 1

y

y = - L ⎯⎯g y = + L

Ω
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−SSc
∂C

∂z
� ∂2C

∂z2
− γC + ScSr

∂2θ

∂z2
(4)

where

A1 � (1 − ϕ)2.5, A2 � kn f
k f

, A3 � 1 − ϕ + ϕ(
ρs

ρ f
), A4 � 1 − ϕ + ϕ

((
(ρβ)s
(ρβ) f

)
,

A5 � 1 − ϕ + ϕ
(ρCP )s
(ρCP ) f

, A6 �
(
1 +

3(1 − σ )φ

(σ + 2)

)
, σ � σs

σ f

The boundary conditions are

u(±1) � 0, v(±1) � 0, θ (−1) � 0, θ (+1) � 1,C(−1) � 0,C(+1) � 1 (5)

Using Eq. (1), Uo (velocity characteristic) is defined as fluid velocity in the compo-
nent form as v(z, t) � u(z, t) + iv(z, t)
Equations (1) and (2) reduce to

−S
∂V

∂z
− 2i RV � 1

A1A3

∂2V

∂z2
+

A4

A3
Gθ − (A6M

2/A3)V (6)

The boundary conditions in (5) reduce to

V (±1) � 0, θ (−1) � 0, θ (+1) � 1, φ(−1) � 0, φ(+1) � 1 (7)

3 Method of the Problem

Solving Eqs. (4) and (6) by regular perturbation method (following Ganapathy [17]),
the resultant equations are

V (z) � exp

(
−b9z

2

)
(B5Cosh(m3z) + B6Sinh(m3z)

+ b14 exp((m1 − b1)z) + b15 exp(−(m1 + b1)z)

θ (z) � exp(−b1z)

(
Cosh(m1z)

Cosh(m1)
Sinh(b1) +

Sinh(m1z)

Sinh(m1)
Cosh(b1)

)
;

C(z) � exp(−b1z)

(
Cosh(m1z)

Cosh(m1)
Sinh(b1) +

Sinh(m1z)

Sinh(m1)
(m1)Cosh(b1)

)

The skin friction, Nusselt number, and Sherwood number are defined as
C f � τw

ρ f U 2
o
, Nu � xqw

k f (T1−T2)
, and Sh � xmw

DB (C1−C2)
, where τw is the wall shear,

qw is the wall heat, and mw is the mass flux of the channel. They are represented as
τw � μn f

(
∂u
∂z

)
z�±L

, qw � −kn f
(

∂T
∂z

)
z�±L

and mw � −DB
(

∂C
∂z

)
z�±L

.
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4 Important Results and Conclusions

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 explain the attributes of rotational parameter
R, radiation parameter F, thermodiffusion (Soret) Sr, chemical reaction parameter
γ , nanoparticle volume fraction parameter φ on the nanofluid velocities (primary f ′
and secondary g), temperature θ , concentration C, skin friction τ , Nusselt number
Nu, and Sherwood number Sh, which are discussed for Al2O3 and Cu–water-based
nanofluids in a rotating system. Figures 2 and 3 display that f ′ reduces with an
increase in R, whereas g reduces with increase in R. Further, it can be found that
the Al2O3–water nanofluid exhibits higher velocity than the flow as compared to
the Cu–water nanofluid. Over the boundary layer, f ′ and g accelerate due to value
increase in F resulting in heat transfer enhancement, owing to increase in thermal
boundary layer thickness, as displayed in Figs. 4 and 5. It is noticed that values of
velocity component in the case of Al2O3–water nanofluid is comparatively less than
that of Cu–water nanofluid. Figure 6 depicts that rise in F results in a growth in θ ,
consequently increasing the thermal boundary layer thickness. It should be noted
that to have a faster cooling process, the radiation should be minimized. From Fig. 7,
an increase in γ enhances C in both types of nanofluids.

From Fig. 8, it is found that higher the thermodiffusion effect, smaller the con-
centration in the flow region. Also, it can be noticed that the concentration reduces

Fig. 2 The effect of R on
f′(η)
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Fig. 3 The effect of R on
g(η)
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Fig. 4 The effect of F on
f′(η)
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Fig. 5 The effect of F on
g(η)
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Fig. 6 The effect of F on θ
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with increase in Sr in the vicinity of the left boundary, and in the remaining region,
the concentration reduces with increase in Sr ≤ 1.0 and for higher values of Sr, con-
centration depreciates in the flow region. From Figs. 9 and 10, it can be seen that
decrease in ϕ results in decrease of f ′ and g in the boundary layer. It can be noted
that thickness of the boundary layer and thermal conductivity can be decreased by
increasing the presence of nanoparticles.
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Fig. 7 The effect of γ on C
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Fig. 8 The effect of Sr on C
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Fig. 9 The effect of ϕ on
f′(η)
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In the case of f ′, the values in Al2O3–water nanofluid are lesser than Cu–water
nanofluid; however, in case of g, it is the opposite. Figure 11 illustrates that rise
in φ, results in reduction of θ and growth in C in the flow region, which is due to
diminishing thickness of thermal boundary layer. Further, comparatively, the values
in Al2O3–water nanofluid are higher than Cu–water nanofluid. Figure 12 represents
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Fig. 10 The effect of ϕ on
g(η)

-1.0 -0.5 0.5 1.0

-0.06

-0.04

-0.02

g

Cu 
Al2O3 -----

G=10, M=0.5, D¯¹=0.5, 
F=0.5, Pr=6.2, φ=0.1, 
R=0.1 

φ=0.1, 0.3, 0.5, 0.7

Fig. 11 The effect of ϕ on θ
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Fig. 12 The effect of ϕ on C
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ϕ on C. An increase in the values of ϕ, C enhances the flow region owing to growth
in the solutal boundary layer thickness.

Table 1 exhibits the local skin friction component |τ | behavior at the channel
η �±1. An increase in R enhances τ x at η �±1 in Cu–water nanofluid while in
Al2O3–water nanofluids, |τ | reduces at η �±1. An increase in φ, |τ | reduces at η

�±1 in Cu–water nanofluid, and in Al2O3–water fluid, it reduces at φ ≤ 0.3 and
enhances with higher φ ≥ 0.5 at the leftward wall, while at the rightward wall, it
uniformly enhances. |τ | enhances with increase inF at η �±1 in Cu–water nanofluid
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Table 1 Variation of skin friction τ x, τ y

Parameters Cu–water Al2O3–water Cu–water Al2O3–water

R F ϕ τ x (−1) τ x (+1) τ x (−1) τ x (+1) τ y (−1) τ y (+1) τ y (−1) τ y (+1)

0.2 0.5 0.1 4.5141 −0.9100 7.1389 −0.4570 −6.480 0.01537 −0.1286 0.0086

0.4 0.5 0.1 5.90001 −1.3827 0.01757 −1.0718 −0.2717 0.151059 −0.0892 0.03077

0.6 0.5 0.1 6.02916 −1.4369 0.51415 −0.9100 −0.4179 0.19911 −0.064 0.02153

0.1 1.5 0.1 5.87753 −1.3813 3.26748 −0.8981 −0.1391 0.05006 −0.0644 0.02788

0.1 5 0.1 6.05566 −1.4470 1.49755 −0.4854 −0.1447 0.05234 −0.0231 0.01198

0.1 0.5 0.3 3.26779 −0.8982 5.89692 −1.3810 −0.0644 −0.2717 −0.1390 0.05005

0.1 0.5 0.5 1.49751 −0.4854 6.05555 −1.4470 −0.0231 −0.4179 −0.1447 0.05234

Table 2 Variation of Nusselt number Nu and Sherwood number Sh

Parameter Cu–water Al2O3–water Parameter Cu–water Al2O3–water

F ϕ Nu
(−1)

Nu
(+1)

Nu
(−1)

Nu
(+1)

Sr γ Sh
(−1)

Sh
(+1)

Sh (−1) Sh
(+1)

1.5 0.1 0.5754 0.4609 0.57003 0.4634 1 0.5 0.7254 0.3583 0.7253 0.3508

5 0.1 0.5184 0.48848 0.51596 0.4894 1.5 0.5 0.7457 0.3508 0.7457 0.3527

0.5 0.3 0.5698 0.4635 0.5756 0.4608 0.2 1.5 0.7457 0.3508 0.7457 0.3527

0.5 0.5 0.5159 0.4894 0.51846 0.4884 0.2 −0.5 0.8658 0.3077 0.7406 0.3518

– – – – – – 0.2 −0.5 0.4591 0.4649 0.7558 0.3458

– – – – – – 0.2 −1.5 0.2815 0.546 0.756995 0.3453

while in Al2O3–water fluid, |τ | reduces with F at η �±1 fixing the other parametric
values.

Table 2 illustrates the variation of Nu and Sh with various parametric values. An
increase in F ≤ 1.5 reduces Nu and enhances with higher F ≥ 3.5 at both the walls
in Cu–water fluid and in Al2O3–water nanofluids, Nu reduces at the leftward wall
and enhances at the rightward wall. An increase in φ ≤ 0.3 enhances Nu at η �−1
and reduces at η �+1 in Cu–water fluid while in Al2O3–water fluid, it reduces at η

�+1. Higher Sr≤1, smaller Sh at η �−1 and larger Sh at η �+1. Further, a reversal
effect is noticed with higher values of Sr≥1.5 in both the fluids. With reference to
γ, Sh enhances at η �−1 and reduces at η �+1 in γ <0 case while in γ >0, Sh
exhibits a reversed behavior in Cu–water fluid. In Al2O3–water, Sh enhances at η �
−1 and reduces at η � +1 in both γ cases.

References

1. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng.
Div. 231, 99–105 (1995)

2. Watanabe, T., Pop, I.: Hall effects on magnetohydrodynamic boundary layer flow over a con-
tinuous moving flat plate. Acta Mech. 108, 35–47 (1995)



Thermal Radiation and Thermodiffusion Effect on Convective … 81

3. Yu, W., France, D.M., Choi, S.U.S., Routbout, J.L.: Review and Assessment of Nanofluid
Technology for Transportation and Other Applications. Argonne National Laboratory (ANL)
No. ANL/ESD, 07-09 (2007)

4. Wang, X.Q., Mujumdar, A.S.: A review on nanofluids—part I: theoretical and numerical inves-
tigations. Braz. J. Chem. Eng. J. 25(4), 613–630 (2008)

5. Makinde, O.D., Iskander, T., Mabood, F., Khan,W.A., Tshehla,M.S.:MHDCouette-Poiseuille
flow of variable viscosity nanofluids in a rotating permeable channel with Hall effects. J. Mol.
Liq. 221, 778–787 (2016)

6. Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A.J., Wongwises, S., Pop,
I.: Nanofluid flow and heat transfer in porous media: A review of the latest developments. Int.
J. Heat Mass Transf. 107, 778–791 (2017)

7. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially
heated square cavity utilizing nanofluids. J. Heat Mass Transf. 50, 2002–2018 (2007)

8. Barletta, A., Celli, M., Magyari, E., Zanchini, E.: Buoyant MHD flows in a vertical channel:
the levitation regime. Heat Mass Transf. 44, 1005–1013 (2007)

9. Hang, X., Pop, I.: Fully developed mixed convection flow in a vertical channel filled with
nanofluids. Int. Commun. Heat Mass Transf. 39, 1086–1092 (2012)

10. Xu, H., Fan, T., Pop, I.: Analysis of mixed convection flow of a nanofluid in a vertical channel
with the Buongiorno mathematical model. Int. Commun. Heat Mass Transf. 44, 15–22 (2013)

11. Fakour, M., Vahabzadeh, A., Ganji, D.D.: Scrutiny of mixed convection flow of a nanofluid in
a vertical channel. Therm. Eng. 4, 15–23 (2014)

12. Nield, D.A., Kuznetsov, A.V.: Forced convection in a parallel-plate channel occupied by a
nanofluid or a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 70, 430–433
(2014)

13. Sheikholeslami, M., Ganji, D.D.: Magnetohydrodynamic flow in a permeable channel filled
with nanofluid. Sci. Iran. B 21(1), 203–212 (2014)

14. Sreedevi, G., Prasada Rao, D.R.V., Rao, R.R.: Numerical study of convective heat and mass
transfer flow in channels. In: Ansari, A.R. (ed.) Advances in Applied Mathematics, Springer
Proceedings in Mathematics and Statistics, vol. 87, pp. 115–125, Springer, Kuwait (2014)

15. Noreen, S., Rashidi, M.M., Qasim, M.: Blood flow analysis with considering nanofluid effects
in vertical channel. Appl. Nanosci. 7, 193–199 (2017)

16. Seth,G.S.,Hussain, S.M., Sarkar, S.:Hydromagnetic oscillatoryCouette flow in rotating system
with induced magnetic field. Appl. Math. Mech. 35(10), 1331–1344 (2014)

17. Ganapathy, R.: A note on Oscillatory Couette flow in a rotating system. ASME J. Appl. Mech.
61, 208–209 (1994)



Transient Analysis of Third-Grade Fluid
Flow Past a Vertical Cylinder Embedded
in a Porous Medium

Ashwini Hiremath and G. Janardhana Reddy

Abstract The concept of heatlines formulates the present problem for cylindrical
flowgeometry through a porousmedium.The currentwork demonstrates the coupled,
highly nonlinear, complex equations of third-grade fluid with unsteady characteris-
tics. The Crank–Nicolson type of implicit numerical scheme is applied to the solution
domain subject to suitable initial and boundary conditions. In the considered flow-
domain for understanding the visualization technique of heat transfer, the heatlines
are the best alternate tools than usual isotherms and streamlines since it is connected
to the heat transfer rate all over the geometry. The flow visualization of thermal
energy transfer demonstrates that the heatline contours are thicker in the precinct of
base edge of the heated vertical surface. It is witnessed that as the Darcy number
increases, the heatlines show less deviation from the hot wall. Also, as third-grade
fluid parameter increases, the deviation of heatlines varies slightly for the fixedDarcy
number.

Keywords Finite difference method · Third-grade fluid parameter
Darcy number

1 Introduction

In recent years, non-Newtonian fluid theories are playing a dominant role because of
its emerging applications in biomedicine technology, mining engineering, heat stor-
age, and chemical industry. Out of those non-Newtonian fluids, viscoelastic fluids
have received unique attention in the research field. The classification of viscoelastic
fluids has been done by Rivlin and Ericksen [1]. Truesdell and Noll [2] have given
the constitutive relationship for stress tensor. The grouping of fluids with viscoelas-
tic characteristics is possible keeping their rheological phenomenon in mind. This
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categorization introduced the differential type model whose primary class is second-
grade fluid. The prediction of the normal-stress differences (which defines the non-
Newtonian characteristic) is the peculiar property of this kind. However, it fails to
account for the shear thickening (or thinning) phenomena. But the third-grade fluid
overcomes this disadvantage and also interprets the non-Newtonian characteristics.
The examples of third-grade fluid are slurries, dilute polymers (e.g., polyethylene
oxide in water, methyl-methacrylate in n butyl acetate, polyisobutylene, etc.), sili-
cone oils (with greater viscosity), all manufacturing oils, molten plastics, etc. Hayat
et al. [3] considered the temperature-dependent thermal conductivity for third-grade
fluid flowing past a surface which is stretching exponentially. Further, Hayat et al.
[4] deliberate the influence of third-grade and second-grade fluid parameters on the
flow region.

Also, the fluid flow in a porous medium is a crucial study due to its pervasive
applications in geophysics, biophysics, hydrology, computational biology, engineer-
ing (construction, petroleum, and bioremediation), drug delivery, transport in biolog-
ical tissue, advanced medical imaging and tissue replacement production, etc. To be
acquainted with this phenomenon, it is necessary to understand the flow characteris-
tics through a porous medium. A comprehensive study of convective flow on porous
media has been done by Nield and Bejan [5], Ingham and Pop [6]. Chamkha et al.
[7] investigated the thermophoresis effects through a porous medium for cylindrical
geometry. A numerical investigation has been given and showed that velocity and
thermal boundary layer increases as permeability parameter increases [8]. The facts
relating to temperature distribution will be furnished with the assistance of isotherms
in the considered domain. But, the visualization of heat transfer intensity is not fea-
sible using isotherms. Hence, the present study is focused on analyzing the heat
visualization effects applying the notion of heatlines in addition to streamlines and
isotherms. The heatline concept for the flow visualization was initially introduced
by Kimura and Bejan [9] and others [10, 11]. Also, recent studies on heatlines are
given in [12–18].

2 Problem Description

The unsteady 2D free convective flow of a third-grade viscoelastic fluid from a cylin-
der of radius r0 directed vertically up to semi-infinite height embedded in a porous
medium is taken. Figure 1 elucidated problemgeometry and symbolized the flowwith
all variables. The axial coordinate (“x-axis”) is precisely chosen along the cylinder’s
axis in vertically ascending direction. The coordinate in a radial direction (“r-axis”)
is orientated normal to the axial coordinate. The ambient temperature of fluid T ′∞,
which is stationary and same as the free stream temperature, T ′∞. At the initial time,
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Fig. 1 Geometrical explanation of the problem

i.e., t ′ � 0, both fluid and the geometry are maintained at same temperature T ′∞.
Later time (t ′ > 0), T ′

w

(
> T ′∞

)
is the amplified cylinder’s temperature and which

is preserved uniformly there afterward. The influence of dissipation of viscosity is
inconsequential in the thermal equation. Under these suppositions and Boussinesq’s
approximation, the non-dimensional conservative equations of third-grade fluid in a
porous medium are given by
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where the non-dimensionalized quantities are defined as U � Gr−1ur0/υ ,
V � vr0/υ, X � Gr−1x/ro, R � r/ro, θ � (

T ′ − T ′∞
)
/(T ′

w − T ′∞), t �
υt ′/r20 . In the above equations where Gr � {

gβT r3o
(
T ′

w − T ′∞
)}

/υ2 indicates
the thermal Grashof number, β—third-grade fluid parameter, Pr(� υ/α)—Prandtl
number, υ—kinematic viscosity, βT—volumetric coefficient of thermal expan-
sion, U, V—dimensionless velocity components of in X and R direction, respec-
tively, t—dimensionless time, T ′—fluid temperature, θ—dimensionless tempera-
ture, T ′

w—wall temperature, and T ′∞—free stream temperature.
The conditions at the initial time and at the boundary in their non-dimensionalized

forms are taken as

t ≤ 0 : θ � 0, V � 0,U � 0 for all X and R

t > 0 : θ � 1, V � 0,U � 0 at R � 1;

θ � 0, V � 0,U � 0 at X � 0;

U → 0,
∂U

∂R
→ 0, V → 0, θ → 0 as R → ∞ (4)

The non-dimensional form of stream function and heat function is given by
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3 Numerical Procedure

The time-dependent flow field Eqs. (1)–(3) along with (4) are elucidated using
implicit iterative numerical (“Crank–Nicolson type”) method [17]. The discretized
equations are resolved by using algorithms called Thomas and pentadiagonal. The
results of these finite difference equations obtained in the rectangular grid with
Xmax � 1, Xmin � 0, Rmax � 20 and Rmin � 0, where Rmax corresponds to
R � ∞.

4 Results and Discussion

Figures 2, 3, and 4 explain the “streamlines”, “isotherms”, and “heatlines” under
steady-state conditions for different values of β and Da, respectively. The values of
ψ , θ , and Ω are calculated by the central differences of order 2. The variation of
β and Da is shown in each figure. Few important remarks are made here from all
these figures. It is observed that the isotherms and heatlines occur very immediate
to the heated surface when matched with that of streamlines. Figure 2 depicts the
result that as β (third-grade parameter) intensifies, the variation is minimum in the
streamlines. Also, it is observed that from Fig. 2 the streamlines are moving to a
distance away from the wall as Da (Darcy number) upsurges. It is also noticed that
for augmenting Da, there are variations in the streamlines pattern. These lines are
thicker in the locality the leading edge of the cylinder, and it is noticed in Fig. 2.
Also, asX value amplifies the intensity of heat transfer is maximum from the cylinder
surface to the third-grade fluid and it is minimum for decreasing values of X.

From Fig. 3, the slight displacement of isotherms toward the hot wall is observed
asDa increases or β decreases. Also, the smallest variation in isotherms is noticeable,
as β or Da augments. Also, the temperature intensities in the flow-domain are key
factors to identify the isotherms, but heatlines are alternate tools to isotherms for
effective heat transfer visualization and analysis.

Henceforth, the visualization of heat transmission and fluid flow are the topics
of analysis which is possible with the assistance of heatlines which is revealed in
Fig. 4. A similar tendency is proposed for both isotherms and heatlines. The heatlines
demonstrates the process as heat drawing out from a hot surface. The heatlines are
the resourceful tools for the visualization of heat transmission as an alternative to the
isotherms. Heatlines show a little shift toward the hot wall as Da escalates and for
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Fig. 2 Time-independent state streamlines (ψ) in (X , R) for several values of β and Da with
Pr=0.63

β, it is totally reverse. Likewise, as β falls or Da upsurges, there will be an increase
in Ω to gain maximum value. Lastly, it is determined that the changes in heatlines
occur in the proximity of the hot wall compared to that of isotherms and streamlines.

5 Concluding Remarks

The present study is focused on the flow visualization of time-dependent free convec-
tive flow of third-grade fluid from a cylinder surrounded in a porous medium using
Bejan’s heatline concept. The technique called so Crank–Nicolson type is executed
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Fig. 3 Time-independent state isotherms (θ) in (X , R) for several values of β and Da with Pr=0.63

to simplify the governing equations. Bejan’s heat flow model embraces the heatline
plots very clearly. To understand the visualization of heat transmission in the flow-
domain, the physical characteristics of heatlines play a significant role. Also, at all
levels, the rate of heat transmission in a specified region is evaluated by heatlines.
The heat function analogy is used to analyze the flow region. On the hot cylindrical
wall, this function has the value which is closely related to the overall heat transfer
rate (Nusselt number). The influences of third-grade fluid parameter (β) and Darcy
parameter (Da) on flow profiles are discussed. The important observation is, flow
visualization indicates that the occurrence of streamlines spread all over the flow-
domain, whereas the heatlines and isotherms spread over restricted area immediate
to the heated wall .
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Fig. 4 Time-independent state heatlines (Ω) in (X , R) for several values of β and Da with Pr=0.63
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Natural Convective Flow of a Radiative
Nanofluid Past an Inclined Plate
in a Non-Darcy Porous Medium
with Lateral Mass Flux

Ch. Venkata Rao and Ch. RamReddy

Abstract This computational work aims to investigate the effects of lateral mass
flux and thermal radiation on the natural convective flow of a nanofluid along a semi-
infinite inclined plate in a non-Darcy porous medium. The effects of thermophore-
sis and Brownian motion are incorporated to initiate the Buongiorno’s nanofluid
model. The governing system of nonlinear boundary layer equations is cast into a
dimensionless form by introducing a set of similarity transformations. The result-
ing ordinary differential equations are then solved by employing a spectral local
linearization method (SLLM). In some special cases, the present outcomes are com-
pared with the published results in the literature, and they are in good agreement. The
combined effects of thermal radiation, inclination angle, non-Darcy parameter, and
suction/injection parameter on the velocity, temperature, and solid volume fraction
profiles along with Nusselt and nanoparticle Sherwood numbers are discussed.

Keywords Nanofluid · Inclined plate · Thermal radiation · Non-Darcy porous
medium

1 Introduction

The study of convective heat and mass transfer in porous media has been one of
the major research areas owing to its wide range of applications in geosciences and
engineering such as energy storage systems, thermal insulations, geothermal energy
systems, filtration processes, petroleum recovery, packed bed reactors, oil recovery
technology, disposal of nuclear and chemical wastage, etc. The study of heat transfer
in geothermal systems has been reviewed by Cheng [1]. The effects of fluid injection

Ch. Venkata Rao (B) · Ch. RamReddy
Department of Mathematics, National Institute of Technology,
Warangal 506004, Telangana, India
e-mail: venki003@gmail.com

Ch. RamReddy
e-mail: chittetiram@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
D. Srinivasacharya and K. S. Reddy (eds.), Numerical Heat Transfer
and Fluid Flow, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-13-1903-7_12

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1903-7_12&domain=pdf


94 Ch. Venkata Rao and Ch. RamReddy

and suction on the free convective flow with heat transfer in a Darcy porous medium
have been investigated byCheng [2] andMerkin [3]. Later, Plumb andHuenefeld [4],
Bejan and Poulikakos [5], Nakayama et al. [6] used the Forchheimer’s extension law
to investigate the natural convective heat transfer over the non-isothermal vertical
surface in a non-Darcy porous medium. The effects of lateral mass flux and thermal
dispersion on free convective flow over the vertical and horizontal plate in a non-
Darcy porous media have been studied byMurthy and Singh [7, 8]. A detailed survey
of convective heat and mass transfer in a non-Darcy and Darcy porous medium has
been reported by Nield and Bejan [9].

In the recent days, many researchers have focused their attention on nanofluids
due to its significant applications in science and engineering. The term “nanofluid”
is coined by Choi [10] and described as a suspension of nanoparticles or fibers with
1–100nm diameters in conventional fluids like oil, water, ethylene glycol, etc. The
main feature of nanofluids is the quality of improving thermal conductivity. Buon-
giorno [11] experimentally investigated seven slip mechanisms, namely, inertia,
Brownian diffusion, Magnus effect, diffusiophoresis, gravity settling, fluid drainage,
and thermophoresis. As an outcome of this experimentation, he noted that the ther-
mophoresis and Brownian diffusion effects are more important to investigate the
convective flows of a nanofluid. For more details on the nanofluids, one can follow
the works of Das et al. [12], Das and Stephen [13], and Kakac and Pramuanjaroenkij
[14]. Motivated by the above literature, the natural convective flow of a nanofluid
past an inclined plate in a non-Darcy porous medium with thermal radiation and
lateral mass flux is considered in this paper.

2 Boundary Layer Analysis

The 2-D steady, laminar natural convective flow of a nanofluid along a vertically
inclined plate, with an angle A (0◦ ≤ A ≤ 90◦), in a non-Darcy porous medium
is considered. An inclination angle is characterized by 0◦ (for the vertical plate
case), 0◦ < A < 90◦ (for an inclined plate case) and 90◦ (for the horizontal plate
case). The temperature of an inclined plate is assumed to be uniform T̃w and is
greater than to the ambient temperature T̃∞. The isothermal surface is considered
to be permeable with a lateral mass flux of the form ṽw(x̃) = A x̃l . It is noted that
ṽw(x̃) = 0 corresponds to the case of impermeable surface. Following the above
assumptions and Oberbeck–Boussinesq approximations, the boundary layer equa-
tions for the continuity, momentum, energy, and nanoparticle volume fraction (see
Murthy et al. [15]) are given by

∂ ũ

∂ x̃
+ ∂ṽ

∂ ỹ
= 0 (1)
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∂ ũ

∂ ỹ
+ c

√
K

(μ/ρ f∞)

∂ ũ2

∂ ỹ
= Kg(1 − φ̃∞) ρ f∞β1

μ

[
∂ T̃

∂ ỹ
− (ρp − ρ f∞)

(1 − φ̃∞) ρ f∞β1

∂φ̃

∂ ỹ

]
cos A

(2)

ũ
∂ T̃

∂ x̃
+ ṽ

∂ T̃

∂ ỹ
= αm

∂2T̃

∂ ỹ2
+ ε(ρc)p

(ρc) f

∂ T̃

∂ ỹ

[
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∂φ̃

∂ ỹ
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T̃∞

∂ T̃

∂ ỹ

]
+ 1

(ρc)p

16σ T̃ 3∞
3k∗

∂2T̃

∂ ỹ2

(3)
1

ε

(
ũ

∂φ̃

∂ x̃
+ ṽ

∂φ̃

∂ ỹ

)
= DB

∂2φ̃

∂ ỹ2
+ DT

T̃∞

∂2T̃

∂ ỹ2
(4)

where (ũ, ṽ) are the components ofDarcy velocities in (x̃, ỹ)-directions, respectively.
Next, T̃ and φ̃ are the temperature andnanoparticle volume fraction, respectively, K is
the permeability, g is the acceleration due to gravity, c is the empirical constant related
with the Forchheimer porous inertia, αm = km/(ρc) f is the thermal diffusivity, ε is
the porosity, σ is the Stefan Boltzmann constant and k∗ is the Rosseland mean
absorption coefficient. Further, β1, km , andμ are the volumetric thermal expansion
coefficient, thermal conductivity, and viscosity, while ρp is the nanoparticle density,
(ρc) f and (ρc)p are the heat capacity of the fluid and the nanoparticles, and DB and
DT are the thermophoretic and Brownian diffusion coefficients, respectively.

The associated boundary conditions are

ṽ = ṽw(x̃) = Ax̃l , T̃ = T̃w, DB
∂φ̃

∂ ỹ
+ DT

T̃∞

∂ T̃

∂ ỹ
= 0 at ỹ = 0

u = 0, T̃ = T̃∞, φ̃ = φ̃∞ as ỹ → ∞

⎫⎪⎬
⎪⎭ (5)

In view of the continuity Eq. (1), now we introduce the stream function ψ such
that ũ = ∂ψ/∂ ỹ, ṽ = −∂ψ/∂ x̃ and we recommend the following nondimensional
transformations:

η = ỹ Rax̃ 1/2

x̃ , F(η) = ψ

αm Rax̃ 1/2
, T (η) = T̃−T̃∞

T̃w−T̃∞
, G(η) = φ̃−φ̃∞

φ̃∞

}
(6)

where Rax̃ = [(1 − φ̃)ρ f∞gKβ1 (Tw − T∞) x̃]/[μαm] is the local Rayleigh num-
ber.

Using the stream function and Eq. (6), we obtain the following coupled and
nonlinear system of similarity equations:

F ′′ + 2G∗F ′F ′′ − (T ′ − Nr G ′) cos A = 0 (7)

(
1 + 4

3
Rd

)
T ′′ + 1

2
FT ′ + Nb T ′G ′ + Nt

(
T ′)2 = 0 (8)

1

Ln
G ′′ + 1

2
FG ′ + Nt

Nb
T ′′ = 0 (9)
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where the prime shows differentiation with respect to η, G∗ = [c√K αm Rax̃ ]/[ν x̃]
is the non-Darcy parameter, Nb = [ε(ρc)pDB φ̃∞]/[αm(ρc) f ] is the Brownian

motion parameter, Nt = [ε(ρc)pDT (T̃w − T̃∞)]/[αmT̃∞(ρc) f ] is the thermophore-

sis parameter, Ln = αm/[εDB] is the nanoparticle Lewis number, Rd = [4σ T̃ 3∞]/
[k k∗] is the thermal radiation parameter and Nr = [(ρp − ρ f∞)φ̃∞]/[ρ f∞β1

(1 − φ̃∞)(T̃w − T̃∞)] is the nanofluid buoyancy parameter.
The associated boundary conditions (5) in terms of F, T , andG are

F(0) = fw, T (0) = 1, Nb G ′(0) + Nt T ′(0) = 0

F ′(∞) → 0, T (∞) → 0, G(∞) → 0

}
(10)

where the suction/injection parameter is given by f w = − (2x̃/αm) ṽw(x̃)Ral
x̃
and

it will be independent of x̃ when l = −1/2, because it is necessary for the similarity
solution to exist. The negative power distribution for injection/suction will lead to
infinite injection/suction at the leading edge, which is unrealistic, but the method
of similarity solution will still give accurate results sufficiently far from the leading
edge.

The nondimensional local Nusselt and nanoparticle Sherwood numbers are given
by

Nux̃/Rax̃
1/2 = −T ′(0) and NShx̃/Rax̃

1/2 = −G ′(0) (11)

3 Results and Discussion

Following the work of Motsa [16, 17], the governing system of nonlinear ordinary
differential equations (7)–(9) together with the boundary conditions (10) is solved
by using spectral local linearization method (SLLM). The major steps in SLLM are
as follows: (i) First, we locally linearize all the equations in the sequential order of
F, T and G. (ii) Next, we convert the resulting linearized system of equations into
a matrix form of algebraic equations by using a pseudo-spectral collocation method.
(iii) Finally, we solve the system of algebraic equations by taking suitable initial
approximations.

The effects of thermal radiation, angle of inclination, suction/injection, and non-
Darcy parameters on the dimensionless nanofluid velocity, temperature, volume
fraction with heat and nanoparticle mass transfer rates along an inclined flat plate
are discussed. The computational work is carried out by taking the fixed values
Ln = 10, Nr = 0.2, Nt = 0.1 and Nb = 0.3. To validate the code generated in
MATLAB, the present numerical results have been compared with the results pub-
lished by Nield and Kuznetsov [18] in a special case and they are in good agreement
as shown in Table 1.

Figures 1, 2 and 3 depict the influence of thermal radiation (Rd) and angle of
inclination (A) on the nondimensional velocity (F), temperature (T ) and volume
fraction (G). It is seen from Figs. 1 and 2 that the velocity and temperature profiles
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Table 1 Comparison values of T ′(0) for natural convective flow of a nanofluid along a vertical
plate in a porous medium for G∗ = 0, A = 0, Rd = 0, Ln = 10, and f w = 0

Parameters Nield and Kuznetsov [18] Present

Nr = Nb = Nt = 0
(mono-diffusive regular fluid)

−0.4439 −0.44375103

Nr = Nb = Nt = 0.2
(mono-diffusive nanofluid)

−0.3343 −0.33415956

Fig. 1 Effects of A and Rd
on the velocity profiles
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Fig. 2 Effects of A and Rd
on the temperature profiles
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Fig. 3 Effects of A and Rd
on the nanoparticle volume
fraction profiles
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Fig. 4 Effects of Rd and G∗
on the Nusselt number with
varying A
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increase with an increase in the thermal radiation parameter whereas the volume
fraction profile decreases. It can also be noticed that the nanofluid velocity diminishes
as theflat plate changes its position from thevertical direction to inclined, and inclined
to horizontal direction. But the temperature and volume fraction profiles enhance for
the same. The combined effects of thermal radiation (Rd) and non-Darcy parameter
(G∗) on the variations of Nusselt number Nux̃/Rax̃ 1/2 and nanoparticle Sherwood
number NShx̃/Rax̃ 1/2 against the angle of inclination are shown in Figs. 4 and 5.
The Nusselt and nanoparticle Sherwood numbers decrease with an increase in G∗.
That is, the heat and nanoparticle mass transfer rates get decrease in a non-Darcy
porous medium in comparison with a Darcy porous medium as given in Figs. 4 and
5. Further, we notice that the Nusselt number decreases and nanoparticle Sherwood
number increases as the vertical flat plate moves from vertical direction to horizontal
direction.
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Fig. 5 Effects of Rd and G∗
on the nanoparticle
Sherwood number with
varying A
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Fig. 6 Effects of f w and
G∗ on the velocity profiles
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The combined effects of non-Darcy parameter (G∗) and suction/injection param-
eter ( fw) on the dimensionless velocity (F), temperature (T ), and volume fraction
(G) are plotted in Figs. 6, 7 and 8. The nanofluid velocity and temperature profiles
decrease but volume fraction increases with the suction/injection parameter. That
is, the velocity and temperature are more in the fluid injection case in comparison
with the fluid suction and impermeability cases. But the reverse behavior is noticed
for the volume fraction profiles. Moreover, the presence of non-Darcy parameter
diminishes the velocity and volume fraction of the nanofluid but the temperature
enhances. Figures 9 and 10 explore the combined effects of thermal radiation (Rd)

and non-Darcy parameter (G∗) on the Nusselt number Nux̃/Rax̃ 1/2 and nanoparticle
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Fig. 7 Effects of f w and G∗
on the temperature profiles
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Fig. 8 Effects of f w and
G∗ on the nanoparticle
volume fraction profiles
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Sherwood number NShx̃/Rax̃ 1/2 against the suction/injection parameter. With the
rise of a thermal radiation parameter, there is a rapid enhancement in the Nusselt
and nanoparticle Sherwood numbers in both the injection and suction cases. But the
Nusselt number decreases and the nanoparticle Sherwood numbers increase with
rising values of a non-Darcy parameter. Moreover, it is seen that the Nusselt num-
ber is more in the fluid suction case in comparison with the fluid injection case and
nanoparticle Sherwood number shows an opposite behavior.
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Fig. 9 Effects of Rd and G∗
on the Nusselt number with
varying f w
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Fig. 10 Effects of Rd and
G∗ on the nanoparticle
Sherwood number with
varying f w

4 Conclusions

The main observations from the present study are noticed as follows:

– When the plate changes its direction from vertical to horizontal, the velocity and
Nusselt number decrease whereas the temperature, volume fraction, and nanopar-
ticle Sherwood number increase.

– The nanofluid velocity, temperature, Nusselt, and nanoparticle Sherwood num-
bers enhance but the volume fraction profile diminishes with rising of a thermal
radiation parameter.

– The presence of non-Darcy parameter reduces the fluid velocity, volume fraction,
andNusselt number, but enhances thefluid temperature andnanoparticle Sherwood
number for fixed values A = π/6 and Rd = 0.5.
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– It is seen that the fluid velocity, temperature, and nanoparticle Sherwood number
are more, and the volume fraction andNusselt number are less in the fluid injection
case in comparison with the fluid suction and impermeability surface cases.
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Joule Heating and Thermophoresis
Effects on Unsteady Natural Convection
Flow of Doubly Stratified Fluid
in a Porous Medium with Variable
Fluxes: A Darcy–Brinkman Model

Ch. Madhava Reddy, Ch. RamReddy and D. Srinivasacharya

Abstract In the present article, the effect of Joule heating and thermophoresis on
unsteady natural convection flow of electrically conducting fluid along a vertical
plate is analyzed. In addition, double stratification and a Darcy–Brinkman porous
medium are considered. Initially, the governing nonlinear time-dependent equations
are transformed into a set of dimensionless equations by using nondimensional trans-
formations and then solved numerically by an accurate, efficient, and unconditionally
stable implicit finite difference scheme. The behavior of flow characteristics (specif-
ically, Nusselt number, Sherwood number, and local and average skin friction) with
pertinent flow parameters is discussed through graphs. The outcome of the explo-
rationmay be beneficial for applications of engineering, biotechnology, and chemical
industries.

Keywords Thermophoresis · Joule heating · Brinkman porous medium
Crank–Nicolson method · Double stratification · Electrically conducting fluid

1 Introduction

Several researchers conducted theoretical as well as a limited number of experimen-
tal studies on convective transport through porous media due to its wide range of
applications in science and technology, for example, geophysics, chemical reactors,
geothermal systems, heat exchangers, and thermal engineering, etc. The investigation
of porous media at first began with the basic Darcy model and after that gradually it
is extended to few non-Darcy models to defeat the constraints of the Darcy model,
namely, Darcy–Forchheimer, Darcy–Brinkman and Darcy–Brinkman–Forchheimer
model porous mediums. In view of above said applications, Poulikakos and Renken
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[1] scrutinized the Brinkman friction and variable porosity in the forced convection
flow in a channel saturatedwith a porousmedium.Nield et al. [2] examined the forced
convection flow in a vertical channel with the consideration of Darcy–Brinkman—
Forchheimer porous medium. Likewise, Murthy et al. [3], and Srinivasacharya and
RamReddy [4] studied the collective influence of thermal and solutal stratifications
on steady free convective flow embedded in both Darcian and non-Darcian porous
medium. Due to the important applications of thermophoresis effect in the aerosol
and optical fiber industries, many theoretical and experimental studies utilized the
effect of thermophoresis in the analysis of thermal and solutal transport phenomena
of fluid flow problems (for more details, see Talbot et al. [5], Batchelor and Shen [6],
Alam et al. [7], Loganathan and Arasu [8]).

Joule heating is one of the ways to producing heat by passing an electric current
through a metal and it occurs frequently in the electric heating devices, for example,
electric iron, hair dryer, electric heater, etc. Because of these developing utilization
of Joule effects on the steady and unsteady flows over various surface geometries,
some of the researchers (Ganesan and Palani [9], Alam et al. [10], Chen [11], Kawala
and Odda [12], and Zaib and Shafie [13]) revealed their findings utilizing various
numerical techniques. Hence, the objective of this work is to examine the joule
heating and thermophoresis effects on the MHD fully developed flow over a vertical
plate with the consideration of double stratification. Crank–Nicolson method is used
to obtain the numerical solution for the flow fields. This numerical study explores
the impact of pertinent parameters on the fluid flow characteristics through graphs
and the salient features are discussed in detail.

2 Mathematical Formulation

Consider an unsteady, laminar, incompressible, free convection two-dimensional
flow of doubly stratified fluid flow along a vertical plate embedded in Brinkman
porous medium. In addition, the effects of thermophoresis, MHD, and Joule heating
are incorporated in the flow equations. Initially at t̃ � 0, the fluid and the plate are
assumed to be at the constant temperature and concentration, whereas the surface
heat and mass fluxes are supplied to the fluid from the plate at a rate of qw(x̃) � x̃m

and q∗
w(x̃) � x̃ n , respectively, and both are maintained at the same level for all time

t̃ > 0. In the ambient medium, both temperature and concentration assumed to be
vertically linearly stratified in the form T̃∞(x̃) � T̃∞,0 + Ax̃ and C̃∞(x̃) � C̃∞,0 +
Bx̃ , respectively. Under the above said assumptions and with linear Boussinesq
approximations, the governing boundary layer equations of fluid flow are given by

∂ ũ

∂ x̃
+

∂ṽ

∂ ỹ
� 0 (1)
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(4)

Here, βC̃ ,Cp, T̃ , σ, μ, D, C̃, ρ, α, ε, ν, k, (ũ, ṽ), g, βT̃ , KT̃ denote the solutal
expansion coefficient, specific heat, temperature, electrical conductivity, the coeffi-
cient of viscosity, mass diffusivity, concentration, density, thermal diffusivity, poros-
ity, the kinematic viscosity, permeability, Darcy velocity components, acceleration
due to gravity, thermal expansion coefficient, and the thermophoretic coefficient (see
Batchelor and Shen [6]), respectively.

The boundary conditions are

ũ(x̃, ỹ, t̃) � 0, ṽ(x̃, ỹ, t̃) � 0,

T̃ (x̃, ỹ, t̃) � T̃∞(x̃), C̃(x̃, ỹ, t̃) � C̃∞(x̃) for t̃ ≤ 0

ũ(x̃, 0̃, t̃) � 0, ṽ(x̃, 0̃, t̃) � 0,

∂ T̃ (x̃,ỹ,t̃)
∂ ỹ

∣∣∣
ỹ�0

� − qw(x̃)
k ,

∂C̃(x̃,ỹ,t̃)
∂ ỹ

∣∣∣
ỹ�0

� q∗
w(x̃)
D for t̃ > 0

ũ(0, ỹ, t̃) � 0, ṽ(0, ỹ, t̃) � 0,

T̃ (0, ỹ, t̃) � T̃∞,0, C̃(0, ỹ, t̃) � C̃∞,0 for t̃ > 0

ũ(x̃,∞, t̃) → 0, T̃ (x̃,∞, t̃) → T̃∞(x̃),

C̃(x̃,∞, t̃) → C̃∞(x̃) for t̃ > 0

(5)

Using the following nondimensional variables

X � x̃

L̃
, Y � ỹ

L̃
Gr1/4, F � ũ L̃

υ
Gr−1/2, G � ṽ L̃

υ
Gr−1/4, t � t̃υ

L̃2
Gr1/2,

T �
(
T̃ − T̃∞(x̃)

)
Gr1/4

qw

(
L̃
)
L̃/k

,C �
(
C̃ − C̃∞(x̃)

)
Gr1/4

q∗
w

(
L̃
)
L̃/D

into Eqs. (1) to (4), we obtain the following system of nondimensional partial differ-
ential equations:

∂F

∂X
+

∂G

∂Y
� 0 (6)
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1

ε

∂F

∂t
+

F

ε2

∂F

∂X
+
G

ε2

∂F

∂Y
� 1

ε

∂2F

∂Y 2
− 1

DaGr1/2
F − 1

ε

M

Gr1/2
F

+ Gr−1/4T + Gr−1/4NC (7)

∂T

∂t
+ F

∂T

∂X
+ G

∂T

∂Y
� 1

Pr

∂2T

∂Y 2
− Gr1/4ε1F + Gr−1/4b∗F2 (8)

∂C

∂t
+ F

∂C

∂X
+ G

∂C

∂Y
� 1

Sc

∂2C

∂Y 2
− Gr1/4ε2F

+
τ

Gr1/4

[
C

∂2T

∂Y 2
+

∂T

∂Y
(
∂C

∂Y
+ ε2)

]
(9)

along with the corresponding initial and boundary conditions in a nondimensional
form

F(X,Y, t) � 0, G(X,Y, t) � 0, T (X,Y, t) � 0, C(X,Y, t) � 0 for t ≤ 0

F(X, 0, t) � 0, G(X, 0, t) � 0,

∂T (X,Y, t)

∂Y at Y�0
� −Xm,

∂C(X,Y, t)

∂Y at Y�0
� −Xn for t > 0

F(0,Y, t) � 0, G(0,Y, t) � 0, T (0,Y, t) � 0, C(0,Y, t) � 0 for t > 0

F(X,∞, t) → 0, T (X,∞, t) → 0, C(X,∞, t) → 0 for t > 0 (10)

Here N , Da, M, EC, Pr, Sc, τ , ε1, ε2, b∗, Gr, Gc denote the buoyancy ratio, Darcy
number, magnetic parameter, Eckert number, Prandtl number, Schmidt number, ther-
mophoretic parameter, thermal stratification parameter, solutal stratification parame-
ters, Joule heating parameter, and thermal and solutal Grashof numbers, respectively.
Mathematically, these parameters are given by

Gr � gβT L̃
4qw

(
L̃
)
/kυ2,Gc � gβC L̃

4q∗
w

(
L̃
)
/Dυ2,

N � Gc/Gr, Da � kυ/
(
μL̃2

)
, M � σ B2

0 L̃
2/(ρυ),

EC � n20/
(
Cpqw

(
L̃
))

, n0 �
(
kμυ/

(
ρ L̃3

))1/ 2
Gr1/ 2,

Pr � υ/α, Sc � υ/D, τ � KTqw

(
L̃
)
L̃/TWk,

ε1 � Ak/qw

(
L̃
)
, ε2 � BD/q∗

w

(
L̃
)
, b∗ � (M/Ec)

Nondimensional average forms of local Nusselt number

NuX � −
[
Gr1/4X

(
∂T
∂Y

)
Y�0

]/
TY�0, skin friction τX � Gr3/4

(
∂F
∂Y

)
Y�0

, and Sher-

wood number ShX � −
[
Gr1/4X

(
∂C
∂Y

)
Y�0

]/
CY�0 are given by

Nu � −Gr1/4
1∫

0

(
∂T
∂Y

)
Y�0

TY�0
dX , τ � Gr3/4

1∫

0

(
∂U

∂Y

)

Y�0
dX , Sh � −Gr1/4

1∫

0

(
∂C
∂Y

)
Y�0

CY�0
dX

(11)
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3 Results and Discussion

Equations (6) to (9) under the conditions (10) are solved by using theCrank–Nicolson
finite difference scheme (Ganesan and Palani [9] and also citations therein). We
have noticed that the present unsteady problem turns into a steady-state problem at
X �1.0 and the validation of present numerical results have been compared with
previously published work of Ganesan and Palani [9] in the literature. Variations of
physical quantities, namely, Nusselt number, Sherwood number, and skin friction in
nondimensional local and average forms, are determined in Figs. 1, 2, 3, 4, 5 and 6 for
thermal and solutal stratification parameters (ε1 and ε2), respectively. From Figs. 1
and 2, it can be seen that the τX and τ̄ diminish with an expansion in both ε1 and
ε2. Changes in local and Nusselt number with respect to stratification parameters ε1
and ε2 are prescribed in Figs. 3 and 4, and these are referred that an enhancement in
ε1 leads to increase both local and average Nusselt numbers, and with an expansion
in ε2, the NuX declines close to the plate and far from the plate, it demonstrates a
reverse trend, as shown in Fig. 3. Further, Fig. 4 reveals that there is no impressive
impact on the average Nusselt number with respect to the variation of ε2. Figures 5
and 6 uncover that both types of Sherwood numbers (i.e., local and average forms)
improves with the upgrade of ε2 in any case, whereas they show a reverse pattern
with increment in ε1.

Influence of Joule heating (b∗) and thermophoresis (τ ) parameters on the above-
mentioned physical quantities are projected through Figs. 7, 8, 9, 10, 11 and 12,
and from Figs. 7 and 10, one can notice that both the skin friction and heat transfer
gradients (for both local and average nondimensional quantities) diminish with the
rise of b∗, whereas these two gradients show opposite trend with τ . Figures 11 and
12 portray that local and average Sherwood number improves with an increment of
b∗ while the contrary pattern is recognized for high estimations of τ .

Fig. 1 Variation of τX for ε1
and ε2
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Fig. 2 Variation of τ̄ for ε1
and ε2

Fig. 3 Variation of NuX for
ε1 and ε2

Fig. 4 Variation of Nu for
ε1 and ε2
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Fig. 5 Variation of ShX for
ε1 and ε2

Fig. 6 Variation of Sh for ε1
and ε2

4 Conclusion

In the present work, the collective influence of Joule heating and thermophoresis on
the unsteady free convective flow of an electrically conducting doubly stratified fluid
along a vertical semi-infinite plate in a Darcy–Brinkman porous medium has been
analyzed. Variations of nondimensional physical quantities skin friction, and Nusselt
and Sherwood numbers are discussed in both local and average forms. For increasing
values of ε1, local and average skin friction, local and average Sherwood number
uncover a similar trend but they appear inverse pattern for expanding estimations of
ε2. Further, the Nusselt numbers (in both local and average forms) improve with the
rise in ε1, while with an expansion in ε2, there is no significant impact on the average
Nusselt number.
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Fig. 7 Variation of τX for τ

and b∗

Fig. 8 Variation of τ̄ for τ

and b∗

Fig. 9 Variation of NuX for
τ and b∗
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Fig. 10 Variation of Nu for
τ and b∗

Fig. 11 Variation of ShX
for τ and b∗

Fig. 12 Variation of Sh for
τ and b∗



112 Ch. Madhava Reddy et al.

The increment in the estimations of prompts increment in local and average skin
friction, Nusselt number but, the estimations of local and average Sherwood number
abatements. The local and average skin friction, Sherwood improves with an upgrade
of b∗ while the Nusselt numbers (in both local and average forms) reductions
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Performance Analysis of Domestic
Refrigerator Using Hydrocarbon
Refrigerant Mixtures with ANN
and Fuzzy Logic System

D. V. Raghunatha Reddy, P. Bhramara and K. Govindarajulu

Abstract This paper presents a newmethodology for the performance prediction of
domestic refrigeration system with hydrocarbon refrigerant mixture (R290/R600a),
which is used as a working refrigerant at different weight combinations. Artificial
neural network (ANN) and fuzzy logic system (FLS) techniques are used to predict
the system performance of such as coefficient of performance (COP). This paper
also describes the experimental test setup for collecting the required experimental
test data the experimental values are calibrated at steady state conditions. While
varying the input parameters like different masses of refrigerant charge, evaporator
temperature and varying length of capillary tube. The ANN and FLS models are
working under MATLAB toolbox. The back propagation algorithm with different
variants and logistic sigmoid transfer function were used in the network. The out-
puts predicted from the ANN model agree with experimental values with help of
coefficient of correlation (R2 >0.9886), and the percentage of error is less than 5%.
In the comparison of performance, results obtained by experimentally and same has
compared with the developed fuzzy model with COP are investigated, at all input
variants in the system. This result gives that the ANNmodel gives good accuracy and
reliability than the fuzzy logic system for predicting the performance of the domestic
refrigeration system.
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1 Introduction

Vapor compression refrigeration is a multidimensional problem such as to mini-
mization of input power consumption and increasing refrigeration effect. Theoretical
performance analysis of the vapor compression refrigeration system is too complex
because equations of the performance of system with many equations are required.
Refrigerator ismain power-consuming unit in a domestic appliance [1] and chloroflu-
orocarbons are the most important refrigerant gas in household applications because
it has excellent thermal as well as physical properties. Then, it may be phased out
quickly to permitting the Kyoto protocol due to its great global warming poten-
tial (GWP) of 1300 advanced than CO2. Ashford et al. [2–4] ensure that GWP of
hydrofluorocarbon (HFC) refrigerants are most important than that of chlorofluoro-
carbon (CFC) refrigerants. As regards the above problem, alternative refrigerants can
be investigated. Due to high GWP of R134a, the size of the system increases [5–7].
Various R134a refrigerant replacements that reach the requirements are an important
method in this investigation. Various investigators have been described the mixed
hydrocarbon refrigerants that are originated to be an excellent eco-friendly alterna-
tive refrigerant option in a household refrigerator.

The study of Fatouh and ElKafafy [8] reveals that single hydrocarbon refrigerants
are not accurate to substitute the R134a since the thermal properties and operating
pressures are very high. Jung et al. [9] done using R290/R600a (60/40 %wt.) as
substitute to R12 in a 299L and 465L capacity of domestic refrigerators and also
energy efficiency and coefficient of performance (COP) are enhanced by 4%& 2.3%
over R12. Akash and Said [10] conducted experiments with LPG (60% of R290 and
40% R600a) as an alternative refrigerant to R12 in a household purpose at different
weights like 50 g, 80 g, and 100 g. The results labeled from 80 g of LPG refrigerant
as confirmed the outstanding substitute in the direction of R12. Lee and Chimres
[11] presented an investigational report on the vapor compression refrigeration sys-
tem using isobutene (R600a) as the retrofit for R12 and R134a, because the COP of
the system was improved. Wongwises and Chimres [12] examined HC blends and
HC/HFC refrigerants blends at various weight combinations, which are used in a
239L of home appliances worked at surrounding temperature 298 K to substitute for
R134a. It concluded that the R290/R600 blend (60/40wt%) is the ultimate alternative
to R134a. Fatouh and Kafafy [13] conducted the test using LPG as a substitute to
R134a in a 280L household refrigerator worked at 316 K surrounding temperature.
The COP of the LPG refrigerator is improved by 7.6% than R134a. By using LPG
as a refrigerant in a domestic refrigerator, the energy consumption also reduced by
10.8%.Mani and Selladurai [14] conducted the experiments on a domestic refrigera-
tion system using different hydrocarbon refrigerant blends as alternative refrigerants
to HFC refrigerants. The investigational significances presented that hydrocarbon
refrigerant blends give 28.6–38.2% greater refrigerating capacity than R134a. The
R290/R600a combination is a zoetrope mixture which does not act as a single con-
stituent when it deviates from its segment. Stephan [15] find the zoetropic mixtures
are evaporates restricted in the tubes are unstable element (R290). In the combina-
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tion evaporates first in the liquid-based refrigerant and maintains a smaller amount
of unstable constituent (R600a). For the reason that of less unstable constituent
(R600a) in liquid, the saturation temperature becomes reduced. Colbourne et al. [16]
have find out the challenging issue for the hydrocarbon combinations is to be present
by chemically stable and nonreactive metallic constituents are used in compressor
[17]. Subsequently the amount and weight of the hydrocarbon refrigerant mixtures
are less than (about 50–55%) that of R134a. If any leakages happened in the hydro-
carbon mixtures does not affect the system because the usage of refrigerant is less
than 150 grams.

The above proposals disclose that most of the investigators [4–17] ensure that the
different hydrocarbon refrigerant combinations are used as substitute to R134a in
household appliances. However, the possibility of using HCM as R436A (54%R290
and 46%R600a) is a substitute to R134a at various evaporating and different ambient
temperature settings. The aim of the current experimental work is to search the
probability of using above HCM in a 175L household refrigerator through different
mass charges (60, 80, and 100 g), evaporator temperature (T e), and different capillary
tube lengths (Lc) that are studied. To find the performance of a refrigerator with help
of varying the evaporator temperatures and working at constant (29 °C) ambient
temperature. This study focused on the independent variation of refrigerant charge
(mr) or capillary tube geometries (Lc), while a study on the effect of simultaneous
variation of these parameters is still lacking. Therefore, this extent to investigational
thermodynamic performance to household refrigerator was experimentally studied
by simultaneously varying (mr) and (Lc). Based on above experimental study the
variation of input parameters, the performance of a domestic refrigerator can be
improved by usingR436A. So, the possibility of replacing ofR134awithR436A.The
primary objective of the experimental investigation is to find the finest combination
of (Le) and (mr) to give minimum pull-down time (to reach evaporator temperature
is −15 °C, according to IS1476 Part 1 [18]).

To optimize the domestic refrigeration system in a theoretical way we need so,
many properties are required. But in a fuzzy logic system can be used to adaptive
characteristics, which can achieve robust responses to uncertainties, parameter vari-
ations with a minimum values. Zadeh [18] introduced the fuzzy logic system in
this system to resolve ill-defined, nonlinear problems. Adcock TA et al. [19] have
investigated the fuzzy logic system are used in a variety of applications in a differ-
ent fields, especially in a industrial process control and identified the best technique
when compared to conventional system. Sugeno et al. [20] derived an application of
medical diagnosis and security system. Lee et al. [21] used a fuzzy logic system to
control nonlinear, time-varying, and ill-defined systems such as servomotor position
control with dynamics applications. Scharf and Mandic [22] find a new technique
for a robot-arm control. In this system, model predictions are compared with an
experimental data available in the literature for the validation of fuzzy model.
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Fig. 1 Experimental test rig

2 Experimental Details

In this experimental setup, a single door household refrigerator works with R134a
with the total capacity of 175L as shown in Fig. 1. It consists of deep freezer, hermet-
ically sealed reciprocating compressor air-cooled condenser, strainer, and five capil-
lary tubes with different lengths via ball valves. By using this experimental setup to
conduct experiments and find the output parameters such as the refrigerating effect,
power consumption and coefficient of performance of domestic refrigerator. In this
context, ball valves are used to operate the capillary tubes with changed combina-
tions. The capillary tube outlet is connected to evaporator and then the refrigerant
flows through it. Two pressure gauges are connected with refrigerator at compressor
inlet and outlet with a precision of ±0.25% to measure pressures. Seven thermo-
couple sensors are used for calibrating the (RTD Pt100) temperatures inside the
freezer, refrigerator cabin, evaporator, compressor, and condenser inlets and outlets;
the accuracy is ±0.25 K. During the experimentation, the total experimental system
is located in an open to atmosphere.

2.1 Experimental Setup and Testing Procedure

Initially, the system was evacuated by vacuum pump up to 30 PSI pressure. After
that, 100 g of R600a/R290 (56/44 by wt%) mixture was used as an alternative to
the system. Initially, fill the refrigerant charge R600a/R290 (56/44 by wt%) of 100 g
mass in the system and calculate cooling capacity, compressor work, and COP for
different length (4, 4.5,5 5.5, 6 m) and 0.036 inches diameter of capillary tube. The
outcomes can be carried out as per themethodology followed by Sekhar and Lal [23].
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For the period of testing, the ambient temperature to be maintained is around 29 °C
for changing capillary tube and varying weight of refrigerant. Total experimental
values are collected after reaching the steady-state conditions. The performance
tests are to be carried out at different evaporator temperatures (−15,−9 and−3 °C).
In this experimental analysis, there is no need to change major modification in a
household refrigerator. Therefore, in the experimental work the HCM are used as a
refrigerant without changing the compressor oils (polyesters). In this mixtures the
weight of refrigerant can be calibrated with the help of electronic balancing machine
and having the precision is ±0.01 g. The observation values are recorded for every
10 minutes. These HCMs are filled in a compressor in the form of liquid state and
the observation values are recorded for every 10 minutes.

3 Development of ANN Model

Artificial neural network (ANN) can be defined as a system of processing units called
neurons which are distributed over a finite number of layers and interconnected in a
predetermined manner to accomplish the desired task. It resembles the brain in two
respects; the interneuron connection strengths (also known as synaptic weights) are
used to store knowledge just like the brain’s neurons. Knowledge is acquired by the
network through learning process. The network stores knowledge during the learning
phase with the help of a learning algorithm. The objective of the learning rule is to
capture the implicit relationships in the given set of input–output pattern pairs and
store this knowledge by modifying the weights in an orderly design.

3.1 Modeling with the ANN

The performance parameters of domestic refrigerator is Refrigeration Effect,
POWER Consumption of a compressor, and COP of system can be predicted by
using Artificial Neural Network with back propagation Algorithm are used. The per-
formance of ANN is affected by two important characteristics of the network such
as number of hidden layers and number of neurons in the hidden layers. The output
performance compared with the desired experimental values and errors is computed.
These errors are back propagated to the neural network for adjusting the weight such
that the errors decrease with each iteration. After different iterations with a combina-
tions of different number of neurons in single hidden layer and changing the transfer
functions (log-sig and tan-sig). It is finalized the the ANN model gives best results
when compared with experimental values.
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4 Design of Fuzzy Logic System for a Domestic
Refrigeration System

Fuzzy logic system consists of fuzzifier, membership functions, fuzzy rule base
inference engine, and defuzzifier. In this fuzzy logic techniques the performance
of domestic system can be evaluated based on the input and desired outputs of the
system. In the conception of fuzzy reasoning is described briefly based on the inputs
and desired outputs of the system. In this work, a fuzzy controller has been devel-
oped with three inputs and three outputs. Three output parameters are Coefficient
of Performance (COP), Refrigeration Effect (RE), and power consumption (P) are
considered in this system. By using Mamdani fuzzy interface system with “if then”
rules has been adopted to find the optimization of total system. The defuzzifier is
used to convert fuzzy data to crisp response values. Fuzzy separation was performed
on input and output variables by using triangular membership functions.

5 Results and Discussions

The results found from the experimentations conducted on the domestic refrigeration
system performance evaluation and simulation with neural network and fuzzy logic
system developed for modeling of the refrigeration system are summarized in this
chapter. In this work, the effect of RE, POWER, and COP is studied on domestic
refrigeration system with hydrocarbon refrigerant mixtures.

5.1 Prediction of COP by Using FlS and ANN for R134a

The predicted values fromFLS andANNmodels are comparedwith the experimental
values. The validation is based on the data drawn from experimental runs of COP
for R134a. The errors (%) for the predicted values are also calculated based on the
deviation. The average error of fuzzy logic system is 2.4647%, whereas the error
percentage of ANN model is as low as 1.466%. The lower error values indicate
higher prediction ability. The ANN model prediction ability is higher compared to
the fuzzy logic system. The details are shown in Fig. 2. Training with more data can
make the prediction ability higher. Use of more data for training network process
has been taken large time but not gives better prediction capabilities. Based on the
error analysis, only the mass of refrigerant is a dominant parameter to increase the
COP in optimized conditions.
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Fig. 2 Comparison of test data, FLS, and ANN values of COP for R134a

5.2 Prediction of COP by Using FlS and ANN for R436A

The predicted values fromFLS andANNmodels are comparedwith the experimental
values. The validation is based on the data drawn from experimental runs of COP
for R134a. The errors (%) for the predicted values are also calculated based on the
deviation. The average error of fuzzy logic system is 2.836276%, whereas the error
percentage of ANN model is as low as 1.467%. The ANN model prediction ability
is higher compared to the fuzzy logic system based on the error analysis. The details
are shown in Fig. 3. Use of more data for training network process has been taken
large time but not gives better prediction capabilities are the capillary the percentage
contribution of input parameters to calculated values are given to higher priority for
capillary length and lower contribution for mass of refrigerant with increase in the
COP of the system.

6 Conclusion

In this paper, FLS and ANN modeling techniques are used to optimize the per-
formance of the domestic refrigeration system. Conventional modeling techniques
are usually complicated because they required huge data and engineering effort and
may be give incorrect results. To reduce above complications to propose FLS and
ANN simulating techniques are used to optimize the domestic refrigeration system.
The performance and optimization of total system can be evaluated based on input
variables such as weight of refrigerant, different capillary tube length and varying
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Fig. 3 Comparison of test data, FLS, and ANN values of COP for R436A

evaporator temperatures are considered. In order to collecting the data from a domes-
tic refrigeration system operating at steady-state conditions with a constant ambient
temperatures. The three input parameters aremass of refrigerantmixtureweight, cap-
illary tube length, and evaporator temperature. The output parameter is COP, which
is to be predicted with ANN-based system and a back propagation algorithm can be
developed,Whereas for FLS theMamdani fuzzy inference system are used to finding
optimization of total system. Finally, the performance of the ANN predictions was
measured using average error with experimental values. The ANNmodeling is good
statistical performance with an average error when compared to FLS.
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Numerical Computation of the Blood
Flow Characteristics Through
the Tapered Stenotic Catheterised Artery
with Flexible Wall

K. M. Surabhi, Dhiraj Annapa Kamble and D. Srikanth

Abstract This article explores the mathematical formulation of non-Newtonian
fluid flow through an asymmetric tapered stenotic artery in the presence of catheter.
Impact of the wall flexibility and pulsatile pressure is also considered. The governed
model is solved by using the finite difference method. Effects of the various geo-
metric parameters and the flow parameters are observed on the volumetric flow and
velocity components. Further impact on physiological parameter, impedance is also
estimated. This model is of significant importance in the pharmaceutical industry
and also in medical field.

Keywords Power-law model · Stenotic artery · Resistance to the flow ·
Volumetric flow

1 Introduction

Over the past few decades, cardiovascular diseases (CVDs) have been the leading
cause of death worldwide [1]. Most of the deaths occur because of heart attacks and
strokes apart from conditions of atherosclerosis and thrombosis. Heart attacks and
strokes are usually acute events, mainly caused by the blockages that prevent the flow
of blood to the heart or brain. The abnormal narrowing of blood vessels in various
locations of cardiovascular system, due to the deposition of the cholesterol and other
fatty substances leads to a medical condition nomenclatured as stenosis.

The blood rheology when considered as Newtonian is acceptable when the blood
flows through the larger arteries, and the same is not true in case the arterial radius is
very small.Gijsen et al. [2] examined a comparisonbetweenNewtonianfluid andnon-
Newtonian fluid using Reynolds numbers. Based on literature survey, authors [3–6]
demonstrated the impact of non-Newtonian fluid flow through the stenosed artery.
Power-law paradigm [7] is very effective in extracting non-newtonian structure of
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blood. Shear thickening and Shear thinning properties of the blood is well realised in
the power-law model, as evident from the expression of stress. Nadeem et al. [8] and
Ismail et al. [9] considered the power-law fluid model of blood flow in their analysis.

Based on the above literature survey, considered is the flow of power-law fluid,
through an asymmetric stenosed tapered artery with flexible wall in the presence of
catheter. The modelled governing equations are solved by using the finite difference
method.We analysed flow parameters like volumetric flow, radial and axial velocities
as well as the physiological parameter the resistance to the flow and the same are
interpreted graphically.

2 Mathematical Modelling of the Problem

2.1 Schematic Representation of the Axisymmetric Stenosis

The schematic diagram of the asymmetric stenotic, tapered and flexible catheterised
artery is as given in Fig. 1. Power-law equations are used to study the incompressible
flow through the annular region that is formed between the coaxial cylinders repre-
sented by the catheter and an artery, across the arterial length L. Here, r0 is the radius
of the non-tapered and non-stenotic artery while rc is the radius of the catheter which
is fixed. ζ (� tan(φ)) represents the tapering parameter with the taper angle φ. The
converging, diverging and non-tapered nature of the artery accords with the taper
angle φ < 0, φ > 0 and φ � 0. The geometry of the asymmetric stenotic tapered
artery with flexible wall is mathematically expressed as [3],

Fig. 1 Geometry of asymmetric stenosed artery
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h(z, t) �
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n
)]
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(r0 + ζ z) f (t); otherwise

(1)

Here, L0 and L1 are the upstream length and stenotic length of the artery, respectively.
n(≥ 2) is the stenosis shape parameter (symmetric stenosis is obtained when n � 2)
of the artery. ε corresponds to the height of the stenosis. At z � L0 +

L1
n1/(n−1) , the

maximum height of the stenosis is located for non-tapered artery. The time variant
parameter f (t) is expressed as f (t) � 1 − (b cosωt − 1)e−bωt .

2.2 Equations of the Governing Flow

For the fully developed unsteady, laminar, incompressible power-law fluid flow, the
governing equations are given as under,
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Here, vr (r, z, t) and vz(r, z, t) are the velocity components in the radial and axial
direction, respectively. Density of the blood is ρ, and σ ′s are the stress tensors
while p is the pressure. The pressure gradient as observed from [9] is −∂p/∂z �
P0 + P1cos(ωt), t > 0. In the pressure gradient, P0 is considered as constant ampli-
tude while the systolic and diastolic pressure in case of pulsatile flow occurs with
the amplitude P1 with ω � 2π f p, where f p is the frequency of pulse. Non-
dimensionalization is the partial or full removal of units from equations involving
physical quantities by a suitable substitution of variables. Non-dimensional param-
eters introduced are as given under

z′ � z

r0
, r ′ � r

r0
, v′

z � vz

u0
, v′

r � L1vr

u0ε
, t ′ � 
t L1

r0
, p′ � r0 p

u0μ
(8)

Equations (2)–(7) are transformed by using the non-dimensional parameters given
above.

2.3 Boundary Conditions and Initial Condition

There is no radial flow and axial flow on the catheter wall as it is considered to be a
rigid body and the same is mathematically expressed as

vr (t, r, z) � 0 � vz(t, r, z) on r � rc (9)

vr � ∂h

∂t
; on r � h(t, z) (10)

∂vz
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[
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μ
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]

; on r � h(z, t); where L0 ≤ z ≤ L0 + L1 (11)

vz � ub; on r � h(t, z); where z ≤ L0 & z ≥ L0 + L1 (12)

Initial Condition is given as
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β
eit/ β

}

; and vr � 0 (13)

Here, α � ρa
√

Ω

μ
is the Womersely number.

3 Solution Methodology

With the regard of this blood flow model, we are using finite difference method
(FDM) to obtain velocity profiles and other flow characteristics are volumetric flow
(Q) and the resistance to the flow (λ). FDM is relevant for the rectangular domain.
Having such kind of limitation, we transform the irregular domain to the rectangular
domain by introducing the radial co-ordinate transformation as given below
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x � r − rc
h(t, z) − rc

� r − rc
R(t, z)

(14)

The radial transformation is applied to the non-dimensionalized equations and the
boundary conditions. The discretized domain is zi � (i − 1)�z, x j � ( j − 1)�x
and tk � (k − 1)�t where �z,�x and �t are the discretization parameters in the
z, x and t directions, respectively. The time derivative is discretized by the forward
time difference first order accurate and space derivatives are discretized by central
difference second order accurate methods, respectively. The flow characteristic vol-
umetric flow as, Qi

k � 2
∏ ∫ 1

0 x j Ri (x j Ri + rc)(vz)ki. j dx j and resistance to the flow

as λk
i � |L(∂p/∂z)|

Qk
i

4 Results and Discussion

The resulting difference forms of the governing equations are explicit in nature.
The discrete time period works as long as it satisfies CFL condition for difference
schemes. The velocities and flow characteristics are generated by using the following
values of various physical parameters a r0 � 0.152; rc � 0.01; ε � 0.05;ϕ �
0.05; ub � 0.05;α � 2; Re � 10; Da � 0.1; γ � 0.1;μ � 0.012. From Figs. 2,
3 and 4, it is realised that the radial velocity and obstruction to the flow decreases
while the axial velocity increases as the asymmetric nature of the artery increases
in case of divergent artery. As depicted in Fig. 5, the volumetric flow is more in
divergent artery which is proportional to the axial velocity, and hence, the results
were simulated for the divergent case. In Fig. 6, it is shown that, as the height of
the stenosis increases, resistance to the flow increases; it is because pressure drop is
more dominant than the volumetric flow rate. Also as the catheter radius increases
the values of the flow variables decrease. The same is depicted through Figs. 6 and
7. For the treatment of the cardiac patients we should focus on these parameters.
Hence, such results are useful for the treatment of the CVDs.
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5 Conclusion

This paper presents the numerical computation of an unsteady power-law fluid flow
in a tapered arterywith stenosis. Tapering angle of blood vessel which is an important
factor is considered. Stenosis height is proportional to the resistance to the flow in the
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Fig. 6 Resistance to the flow at different heights of stenosis

Fig. 7 Axial velocity at different rc and n

arteries which results in the blood pressure. This model is applicable for the severe
case of stenosis.
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Combined Influence of Radiation
Absorption and Hall Current on MHD
Free Convective Heat and Mass Transfer
Flow Past a Stretching Sheet

J. Deepthi and D. R. V. Prasada Rao

Abstract The present article investigates the combined influence of thermal radi-
ation, radiation absorption, Soret and Dufour effect, and non-uniform heat source
on the steady convective heat and mass transfer flow of a viscous incompressible
fluid past a stretching sheet. The non-linear equations governing the flow, heat and
mass transfer have been solved by using a Runge–Kutta fifth-order together with
shooting technique. The influence of Sr/Du, A1, B1 on all flow characteristics has
been analysed.

Keywords Non-uniform heat source/sink · Hall current · Cross diffusion
Stretching sheet

1 Introduction

The analysis of boundary layer heat and flow transfer of fluids over a continuous
stretching surface has gained much attention from numerous researchers. Stretching
brings a one-sided direction to the extradite; due to this, the end product significantly
relies upon the stream and heat and mass process. Many researchers have studied
the flows with temperature-dependent viscosity in different geometries and under
various flow conditions with Hall effects (1–8). Some of its applications in Industrial
and Engineering domains are in polymeric sheets extraction, insulating materials,
fine fiber matters, production of glass fibre and sticking of labels on surface of hot
bodies. Some of the other applications are drawing of hot rolling wire, drawing of
thin films of plastic and the study of crude oil spilling over the surface of seawater.
In liquids-based applications such as petroleum, oils, glycerin, glycols and many
more, viscosity exhibits a considerable variation with temperature. The viscosity
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of the water decreases by 240% when the temperature increases from 10 °C (μ
� 0.0131 g/cm) to 50 °C (μ � 0.00548 g/cm). To estimate the heat transfer rate
accurately, it is necessary to take the variation of viscosity with temperature into
consideration.

2 Formulation of the Problem

The consequent equations, which are highly non-linear, are explained by using the
fifth-order Runge–Kutta–Fehlberg method (denoted by RKF method) with shooting
technique. Figure 1 explains the problem configuration of a stretching sheet having
momentous convective stream of Nu and Sh of a viscous and electrically conducting
liquid. A constant magnetic field B0 is introduced across the y-axis considering
Hall current effect. The temperature and the species concentration are maintained at
prescribed constant values Tw,Cw at the sheet and T∞,C∞ are the fixed values far
away from the sheet.

Taking Lai and Kulacki [1] proposition, μ the liquid viscosity is assumed to
change as inversely proportional to the linear function of temperature is provided by

1

μ
� 1

μ∞

[
1 + γ0(T − T∞)

] ⇒ 1

μ∞
� α(T − T∞) (1)

where α � γ0
μ∞ and Tr � T∞ − 1

γ0
in which α and Tr are constants, and their

respective values are based on the liquid’s thermal characteristic. Generally, α > 0,
α < 0 represent for liquids and gases, respectively. The governing equations taking
thermal radiating approximated by Rosseland approximation (Pal [2]) are

∂u

∂x
+

∂v

∂y
� 0, (2)

Fig. 1 Physical sketch of
the problem
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DmKT
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(6)

The pertinent boundary conditions are

u (0) � uw (x) � bx , v (0) � w (0) � 0, T (0) � Tw, C (0) � Cw (7)

u (∞) → 0 , w (∞) → 0, T (∞) → T∞, C (∞) → C∞ (8)

where Dm , KT , K f ,Cs andCp denotesMass diffusivity coefficient, thermal diffusion
ratio, thermal conductivity coefficient, concentration susceptibility and specific heat
at constant pressure. The below similarity transformations are introduced to study
the stream adjoining the sheet.

u � bx f ′(η); v � −√
bv f (η);w � bxg(η)

η �
√
b

v
y; θ (η) � T − T∞

Tw − T∞
;ϕ � C − C∞

Cw − C∞
(9)

where f , h, θ and ∅ are non-dimensional stream function, similarity space variable
and non-dimensional temperature and concentration, respectively. Equation (9) is
satisfiedbyu and v in the continuity equation (Eq. 2). SubstitutingEq. (9), Eqs. (2)–(6)
reduce to

(
θ − θr

θr

)(
f ′ − f f ′) + f ′′ −

(
θ ′

θ − θr

)
f ′

−
(

θ − θr

θr

)
G(θ + Nϕ) + M2

(
θ ′ − θr

θr

)(
f ′ + mg

1 + m2

)
� 0 (10)
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(
θ − θr

θr

)(
f ′g − f g′) + g′′ −

(
θ ′

θ − θr

)
g′ − M2

(
θ − θr

θr

)(
m f ′ − g

1 + m2

)
� 0

(11)
(
1 +

4Nrr

3

)
θ ′′ + Pr Ec( f ′′)

2
+

(
A1 f

′ + B1θ
)
+ PrDu∅′′ + Q1∅ � 0 (12)

ϕ′′ − Sc( f ϕ′ − γ ϕ) � −ScSrθ ′′ (13)

Similarly, the transformed boundary conditions are given by

f ′(η) � 1, f (η) � 0, g(η) � 0, θ (η) � 1, ϕ(η) � 1 at η � 0 (14)

f ′(η) → 1, g(η) → 0, θ (η) → 1, ϕ(η) → 0 as η → ∞ (15)

3 Formulation of the Problem

The non-linear ordinary differential Eqs. (10–13) with boundary conditions (14–15)
are solved numerically using Runge–Kutta–Fehlberg integration coupled with shoot-
ing technique. This method involves, transforming the equation into a set of initial
value problems (IVP) which contain unknown initial values that need to be deter-
mined by first guessing, after which the Runge–Kutta–Fehlberg iteration scheme is
employed to integrate the set of IVPs until the given boundary conditions are satisfied.
The initial guess can be easily improved using the Newton–Raphson method.

4 Comparison

The results of this chapter are comparedwith the results of previously published paper
of Shit et al. [3] as shown in Table 1, and the outcomes are in good concurrence.

5 Results and Discussion

An increase in heat source (A1, B1 >0) generates energy in the thermal boundary
layer, and as a consequence, the axial velocity rises. In the case of heat absorption
(A1, B1 <0), the axial velocity falls with decreasing values of A1, B1 <0, an increase
in the space-dependent/temperature-dependent heat generating source (A1, B1 >0),
and reduces in the case of heat absorbing source. The concentration increases with
the increase of space-dependent heat/temperature-dependent generating source (A1,
B1 >0) and reduces in the case of heat absorbing source (A1, B1 <0). And an increase
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Table 1 Comparison of Nu and Sh at η �0 with Shit et al. [3] with Sr�0, Du�0, A1 �0, B1 �
0, Ec�0, Q1 �0

M Nr γ λ θ r Shit et al. [3] Results Present results

Nu(0) Sh(0) Nu(0) Sh(0)

0.5 1 0.5 0.5 −2 −0.6912 0.6265 −0.69119 0.626499

1.5 1 0.5 0.5 −2 −0.6977 0.6543 −0.69765 0.654309

0.5 3 0.5 0.5 −2 −12.3751 0.9278 −12.7586 0.927799

0.5 1 1.5 0.5 −2 −0.6956 1.0959 −0.69559 1.095899

0.5 1 −0.5 0.5 −2 −0.6966 0.4898 −0.696599 0.489799

0.5 1 0.5 1.5 −2 −0.6968 0.4245 −0.696799 0.424489

0.5 1 0.5 1.5 −2 −0.5974 0.4071 −0.597399 0.407099

in A1, B1 enhances the skin friction component |τx| (Figs. 2, 3, 4, 5, 6, 7, 8 and 9).

An increase in the strength of space-dependent/temperature-dependent heat gen-
erating source (A1, B1 >0) results in an enhancement in |Nu| at η �0 and we find
that Sherwood number grows with A1, B1 >0 and reduces with A1, B1 <0 in the case
of heat source absorption. It can be observed from the profiles that increase in Sr (or
decrease in Du) smaller the axial velocity and cross flow velocity in the boundary
layer. It is also found that higher the radiative heat flux smaller the axial velocity in
the flow region and larger the cross flow velocity. It can be observed from the profiles
that increase in Sr (or decreasing Du) reduces the temperature and concentration in
the boundary layer. Increasing Soret parameter Sr (or decreasing Dufour parameter
Du) leads to an enhancement in |τx| at the wall. |τz|, |Nu| and |Sh| at η �0 (Table 2).
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Fig. 2 Variation of f ′ with A1, B1: G � 5, N � 1, Nr � 0.5, Sc � 1.3, Sr � 2, Du � 0.04,
θ r �−2, Q1 � 0.5
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6 Conclusions

This paper studies the influence of Soret andDufour effects, non-uniformheat source,
dissipation and radiation absorption and variable viscosity on mixed convective heat
andmass transfer flow past stretching sheet. Influence of Soret and Dufour parameter
on uniform heat source, dissipation and radiation absorption parameter on mixed
convective heat and mass transfer flow has been explored in detail. Increasing Sr (or
decreasing Du) reduces |Nu| and |Sh| at η � 0. |Nu| reduces and |Sh| enhances the
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increase in Ec. Nu and Sh at the wall grow with increase in the strength of A1/B1

and reduce with that of absorbing source. Excellent agreement with the present study
and Shit et al. [3] has been obtained.
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Table 2 Shear stress, Nusselt number and Sherwood number at h �0

Parameter τx (0) τy(0) Nu(0) Sh(0)

Sr/Du 2.0/0/03 −0.53308 0.458635 0.0584519 0.755636

1.5/0/04 −0.524227 0.46209 0.0548956 0.700006

1.0/0.06 −0.51499 0.465679 0.0508996 0.642667

0.6/0.1 −0.757774 0.493944 0.0451896 0.608179

A1/B1 0.01/0.01 −0.53308 0.458635 0.0584519 0.755636

0.03/0.03 −0.534201 0.45682 −0.120486 0.987539

−0.01/−0.01 −0.532554 0.460894 0.326161 0.411181

−0.03/−0.03 −0.799178 0.488237 0.45532 0.25806
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Numerical Study for the Solidification
of Nanoparticle-Enhanced Phase Change
Materials (NEPCM) Filled in a Wavy
Cavity

Dheeraj Kumar Nagilla and Ravi Kumar Sharma

Abstract In this paper, the results of a numerical simulation of solidification
phenomenon of nanoparticles mixed phase change materials are presented. The
nanoparticles of copper dispersed in water were considered as nanofluid filled in a
wavy cavity for this study. A parametric study concerning with the effect of nanopar-
ticle volume fractions, initial temperature of nanofluid, and temperature of cold wall
is carried out and findings are presented. Also, the effect of Grash of number on the
solidification time is investigated. The results of this numerical investigation reveal
that wavy cavity help to reduce the total solidification time of nanofluid over the
square cavity. Also, the increasing volume of nanoparticles reduces the solidification
time.

Keywords Solidification time · Nano-enhanced phase change materials
Cu nanoparticles · Wavy cavity

1 Introduction

Phase change materials (PCMs) use their latent heat for storing/releasing the energy
which can be used when required. In most of the applications, PCMs are kept in
a container. These containers help to avoid PCM leakage in their molten state and
direct contact of environment to materials. The organic PCMs generally possess low
thermal conductivitywhich is enhancedby the dispersion of nanosizedmetal particles
in them. This mixture of nanoparticles and base fluid is known as nanofluid [1]. An
aqueous solution of copper nanoparticleswas prepared and filled in a square cavity by
Khodadadi [2]. The results show that the addition ofmetal nanoparticles significantly
enhances the heat transfer rate. The container’s shape also significantly alters the
heat transfer rate of nanofluid filled in it. Ostrach [3] presented a review of all such
geometries to encapsulate the PCMs. Recently, Sharma [4] considered a trapezoidal
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cavity filled with a copper water nanofluid and carried out a parametric numerical
investigation. Authors found that trapezoidal shape of cavity helps in enhancing the
heat transfer performance of system. In the present work, solidification of a nanofluid
filled in a wavy cavity is analyzed numerically using ANSYS Fluent. The effects
of nanoparticle contents, initial temperature of nanofluid, temperature difference
between hot and cold wall, and Grashof number on the freezing phenomenon of
nanofluid are presented.

2 Methodology

2.1 Geometry and Boundary Conditions

A 2-D wavy cavity of 100 mm2 internal area and 10 mm length (L) is used as shown
in the Fig. 1. The height (H) and length (L) are adjusted in such way that area of
cavity is always 100 mm2.

It is assumed that the horizontal walls of this cavity are insulated and not allow-
ing any heat transfer to take place across them. It is also assumed that the shape
and size (10 nm) of nanoparticles are uniform and the thermophysical properties
are given in Table 1. The nanofluid is assumed Newtonian and the flow is laminar
and incompressible. Boussinesq approximation is being used for handling the den-
sity variation in momentum equation. The phase transition phenomenon in ANSYS
Fluent is traced by the Enthalpy-Porosity technique proposed by Brent [5]. Hot left
wall and cold right were considered as the boundary condition for this investigation.
Also, horizontal walls are considered impermeable.

Mathematical Formulations

The set of equations used by FLUENT for modeling solidification process are as
follows [6]:

Continuity:

Fig. 1 2-D wavy cavity
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Table 1 Thermophysical properties of basefluid (water), copper (Cu) nanoparticles, nanofluids

S.
No.

Property Cu-nano
particles

Base fluid
(∅ � 0)

Nanofluid
(∅ � 0.05)

Nanofluid
(∅ � 0.1)

1 ρ(kg/m3) 8954 997.1 1394.95 1792.79

2 μ(pas) – 8.9e−04 1e−03 1.158e−03

3 CP (J/kg.K) 383 4179 2960.67 2283.107

4 k(w/m.K) 400 0.6 0.698 0.8

5 β(1/K) 1.67e−05 2.1e−04 1.477e−04 1.13e−04

6 L(J/kg) – 3.35e05 2.27e05 1.68e05

7 Pr – 6.2 4.755 3.31

∇.v � 0 (1)

Momentum:

ρ

(
∂u

∂t
+ u.∇u

)
� −∇ p̄ + μ∇2u +

1

3
μ∇(∇.u) + ρg (2)

Energy equation:

∂

∂t
(ρH) + ∇.(ρ�vH) � ∇.

(
kt
cp

∇H

)
+ Sh (3)

The nanofluid’s density is given by

ρnf � (1 − ∅)ρ f + ∅ ρs (4)

Nanofluid’s viscosity is given by

μnf � μ f

(1 − ∅)2.5
(5)

The latent heat of fusion of nanofluid is calculated by

(ρLh)nf � (1 − ∅)(ρLh) f (6)

The thermal conductivity of the nanofluid is

knfo
k f

� ks + 2ks − 2∅(
k f − ks

)
ks + 2k f + 2∅(

k f − ks
) (7)

The effective thermal conductivity of nanofluid is given by
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Fig. 2 Comparison of total
solidification time in square
cavity

keff � knfo + C(ρcP)nf

√
u2 + v2 (8)

The constant C is obtained from the expression given by Wakao and Kaguei [7].

2.2 Numerical Methods

Initially, the nanofluid is maintained at 0 °C and this temperature was maintained
uniformly by running steady-state simulation for some time. The hot wall was main-
tained at 10 °C and cold at 0 °C. After steady-state simulation, the temperature of
both walls was reduced by 10 °C and nanofluid started solidifying from cold wall
side and the solid–liquid interface start moving from cold to hot wall.

3 Results and Discussions

3.1 Validating the Numerical Model

The CFD findings of the current numerical model of square cavity of internal area
100mm2 undergoing solidification process with nanofluid (∅ � 0, 0.1, 0.2) are com-
pared with the numerical predictions of Khodadadi [3] in Fig. 2. The results show
that the present numerical model validates the previously published results.

3.2 Solidification Time for Different Nanoparticle Volume
Fraction

Left vertical and the rightwavywalls of cavityweremaintained at a different and con-
stant temperaturewith the temperature difference (�T �10 °C). For all the numerical
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Fig. 3 a Instantaneous volume of nanofluid in the wavy cavity, b Colorized contours of nanofluid
in the wavy cavity

simulations for this study, the internal area of cavitywas kept constant, 100 mm2. The
results of the investigation on the solidification phenomenon of nanofluid with varied
nanoparticles fractions (∅ � 0, 0.05, 0.1) in a wavy cavity as shown in Figs. 3a, b,
reveal that the nanofluid’s total solidification time is 33% lesser than that of base fluid.
Results show that increase in the nanoparticle volume fraction decreases the solidifi-
cation time. Colorized contours of the solidification of nanofluid (∅ � 0, 0.05, 0.1)
at various time instants 100, 500, 1000, 1500s are shown in the Fig. 3b. The solid-
ification starts from cold right wall and the solid region is shown by blue color and
red color indicates the liquid region.
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Fig. 4 a Instantaneous volume of nanofluid in the wavy cavity, b Colorized contours of nanofluid
in the wavy cavity

3.3 Effect of Initial Temperature on the Total Solidification
Time

The results of the investigation on the solidification process of nanofluid (∅ � 0.1)
with different initial temperatures (T�273.15, 283.15, 293.15 K) filled in a wavy
cavity as shown in the Figs. 4a, b reveal that there is no change found in the solidifi-
cation time of nanofluid due to the change in its initial temperature.

3.4 Effect of Hot and Cold Wall Temperature Difference

The effect of three wall temperature differences (�T � 10, 20, 30 °C) between the
left vertical and right wavy walls on solidification time is investigated. This effect is
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Fig. 5 a Instantaneous volume of nanofluid in the wavy cavity, b Colorized contours of nanofluid
in the wavy cavity

investigated on nanofluid of 10%nanoparticles and findings are shown in Fig. 5a. The
results show that increasing temperature difference decreases the solidification time,
for example, for �T � 30°C, the solidification time is 85% lesser in comparison of
cavity subjected to �T � 10 °C. Also, results indicate that increasing temperature
difference does not deviate the profile of solid–liquid interface, whichmeans the heat
transfer is still being dominated by conduction phenomenon and shown in Fig. 5b.

3.5 Investigation of Solidification Time for Different Grashof
Number (Gr)

The Grashof number was varied in the numerical model from 103−105 and its effect
on the total solidification time was investigated. For these simulation cases also,
the nanofluid of 10% is considered and the results are shown in Fig. 6a. The figure
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Fig. 6 a Instantaneous volume of nanofluid in the wavy cavity, b. Colorized contours of nanofluid
in the wavy cavity

shows that increasing Grashof number significantly enhances the heat transfer which
in turn decreases the total solidification time. For

(
Gr ≤ 105

)
as shown in the Fig. 6b,

the conduction phenomenon dominates which can be understood by the appearance
of solid–liquid interface that is straight in these cases. When the Grashof number
increases beyond 105, the convection takes place and the phenomenon keeps exag-
gerating for higher values of Gr. Increasing the convection deflects the solid–liquid
interface and it does not remain straight for higher values of Gr.

4 Conclusions

Present numerical investigation shows that wavy cavity is a potential geometrical
structure for encapsulating the PCMs. Results show that higher nanoparticle fractions
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reduce solidification time of nanofluid. Also, the Grashof number changes the heat
transfer rate significantly.Heat transfer is higher for higher values ofGrashof number.
Higher Gr increases the convection phenomenon and solidification time decreases
significantly.
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Analysis of Forced Convection Heat
Transfer Through Graded PPI Metal
Foams

Banjara Kotresha and N. Gnanasekaran

Abstract A forced convection heat transfer through high porosity graded Pores
per inch (PPI) metal foam heat exchanger is numerically solved in this paper. The
physical domain of the problem consists of a heat exchanger system attached to
the bottom of a horizontal channel to absorb heat from the exhaust gas leaving the
system. Two different pore densities of the metal foam 20 and 40 along with two
different metal foammaterials are considered for the enhancement of heat transfer in
the present numerical investigation. The metal foam heat exchanger is considered as
a homogeneous porous medium and is modeled using Darcy Extended Forchheirmer
model. The heat transfer through the metal foam porous media is solved by using
local thermal equilibrium (LTE) model. The effect of graded pore density and graded
thermal conductivity is investigated and compared with the nongraded PPI metal
foam. The heat exchanger system is simulated over a velocity range of 6–30 m/s.
The pressure drop decreases for the graded pore density metal foams compared to
the higher PPI metal foam and also increases with increase in the fluid inlet velocity.
The results of temperature and velocity distribution for the graded and nongraded
metal foams are compared and discussed elaborately.

Keywords CFD · Heat exchanger · Metal foams · Graded PPI · LTE

1 Introduction

Metal foams are being widely used these days in thermal applications such as elec-
tronics cooling, refrigeration and air conditioning, etc. Mancin et al. [1] experimen-
tally studied the flow and heat transfer through different copper metal foams with
air as working fluid and concluded that the heat transfer coefficient increases with
increase in the flow rate but it does not depend on the heat flux applied. Kim et al.
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[2] experimentally studied the forced convection through aluminum metal foam in
an asymmetrical heated channel. They reported that the low permeable foam gives
significant improvement in the Nusselt number at the expense of friction factor. Lin
et al. [3] numerically studied the performance of heat transfer through aluminum
metal foams by applying both the LTE and LTNE (local thermal nonequilibrium)
thermal models and concluded that the performance of LTE model and LTNE model
was found the same at higher air velocities. Kamath et al. [4] carried out heat transfer
experiments on high porosity aluminum metal foams filled in a vertical channel.
Based on the Reynolds and Richardson numbers of the flow, they identified various
regimes such as mixed and forced convections. Xu et al. [5] examined forced convec-
tion studies on metal foams partially filled in a parallel-plate channel. They reported
that the friction factor can be reduced by increasing the porosity and decreasing the
PPI. Bernardo et al. [6] conducted experimental and numerical studies onmetal foam
partially filled in a horizontal channel. They presented the results of temperature pro-
files for both with and without metal foam and calculated the amount of heat given
to the surrounding. Sener et al. [7] carried out experiments on aluminum metal foam
filled in a rectangular channel for calculating pressure drop and heat transfer. They
concluded that the filling rate of the foam in the channel increases heat transfer. Lu
et al. [8] carried out analytical studies on forced convection through horizontal plate
channel partly filled with metallic foam. The effect of filling rate of the metal foam
on velocity and temperature distribution is reported.

From the above literature review, it is clear that though there are numerous exper-
imental and numerical studies on metal foams filled in channel, the authors found
very few studies related to graded PPI metal foams employed in the channel for the
enhancement of heat transfer. So, this paper presents the numerical study of forced
convection through the partially filled highly porous graded PPI metal foams.

2 Problem Statement

The problem domain considered for the present simulation is shown in Fig. 1. A layer
of graded metal foam is attached to the isothermal bottomwall to absorb heat leaving
the exhaust system. The high-temperature air flows through the channel where the
metal foam absorbs heat and then transfers to a cold fluid flowing in a secondary
loop. The dimensions of the heat exchanger system are 195 mm long (L), 8 mm
height (H), and 30 mm (W ) in width, where Hf is total foam height which is half of
H.

Aluminum and copper metal foams of two different pore densities 20 and 40
with porosity 0.937 is considered in the present study. The aluminum and copper
metal foams possess thermal conductivity of 165 and 385 W/mK, respectively. The
properties of the metal foam considered for the present simulations are tabulated in
Table 1. In the present study, two types of graded pore density and graded thermal
conductivity of the metal foams are studied, i.e., positive and negative gradients.
The positive gradient PPI represents the increase in the pore density and negative
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Fig. 1 Metal foam heat exchanger system

Table 1 Properties of metal foams

Aluminum/Copper metal foam

PPI 20 40

Permeability (K), m2 3×10−7 1×10−8

CF 0.1 0.2

gradient PPI represents the decrease of pore density along height of the channel.
Similarly, positive gradient thermal conductivity represents the increase in thermal
conductivity and negative gradient thermal conductivity represents the decrease of
thermal conductivity along height of the 20PPI metal foam. The heights of the metal
foams in the graded region are exactly half of the height of the metal foam of the
nongraded.

3 Computational Domain and Boundary Conditions

A two-dimensional computational domain consisting of partially filled graded metal
foam, upstream and downstream of the channel is considered for the computations.
The inlet of the domain is definedwith uniform velocity inlet boundary condition and
the outlet is defined with zero pressure (see Fig. 2). The bottom wall of the channel
is assigned with 300 K temperature while the top wall is adiabatic. Three different
inlet velocities of the fluid are considered entering at a temperature of 523 K.

Fig. 2 Computational domain with boundary conditions
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4 Numerical Details

The numerical computations are performed using the ANSYS FLUENT 15.0 soft-
ware. As discussed earlier, three different inlet velocities of fluid considered ranging
from 6 to 30 m/s, so the Reynolds number varies from 5000 to 26,000. To capture the
turbulent characteristics of the flow, the well-known two equation k-ε model is used
in both foam and open region of the channel. The metal foam region is considered
as an isotropic homogeneous porous medium and modeled as the source term to the
momentum equation using Darcy Extended Forchheirmer model as given in Eq. (1).

−dP

dx
� μeff

K
ux + CF

ρ√
K

|U |ux (1)

where μeff is the effective viscosity equal to the fluid viscosity, K is the permeability
(m2), ρ is density of air (kg/m3). The commonly used SIMPLE pressure–veloc-
ity coupling scheme considered in the present study and the convergence limit for
continuity, momentum is set below 1e-4 and for energy is 1e-8.

5 Results and Discussion

5.1 Grid Independency and Validation of the Methodology

To solve the governing equations, optimum number of grids is required for effective
computations. Hence, three different grids are considered in the numerical domain:
9200, 18,400 and 23,000. The variation of pressure drop and velocity distribution for
20PPI metal foam for an inlet velocity of 30 m/s is shown in Fig. 3a, b, respectively.
From the figures, it has been noticed that the variation of pressure drop and velocity
is almost the same for all the three grids considered, therefore a grid size of 18,400
is selected as the optimum grid for further investigations.

For the purpose of validation, the present numerical results are compared with
theory and experimental results available in literature. Such an exercise is shown in
Table 2 and the comparison of the exit air temperature and the pressure drop of the
channel are validated against [9, 10]. The results of temperature and pressure show
good agreement with the theory and experiments.

5.2 Hydrodynamic Results

The variation of pressure drop for the graded PPI metal foams is compared with the
20 PPI and 40 PPI metal foams and is shown in Fig. 4a. It is clear from the plot
that the pressure drop decreases for both the graded PPI metal foam compared to the
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Fig. 3 Grid independency comparison a pressure drop b velocity distribution

Table 2 Validation of results

Inlet velocity
(m/s)

Outlet temperature in K (nonporous
channel)

Pressure drop dp–dpnf in KPa
(porous channel)

Theory [9] Present study Expt. [10] Present study

10 496 477.38 0.53 0.572

30 501 492.14 5.5 4.38

40 PPI. The pressure drop increases as velocity increases for the all metal foams.
Similarly, the friction factor also decreases for the graded PPI compared to the high
pore density metal foam which can be seen in Fig. 4b. Figure 4c shows the velocity
variation along the channel height for all the metal foams studied. The velocity in the
metal foam region decreases and increases in the foam free region as PPI increases.
The velocity in the open region for the graded PPI foam decreases compared to 40
PPI because the flow rate in the graded PPI foam region increases compared to 40
PPI. The effect of graded PPI can also be seen clearly from this plot.

5.3 Temperature Results

The variation of temperature along the height of the channel for graded PPI metal
foam at the center and at the exit of the channel are shown in Fig. 5a, b. The temper-
ature variation for both the graded PPI foam is almost similar to 40PPI metal foam.
The heat absorption in the graded PPI foam region increases becausemore fluid flows
through the metal foam region that performs similar to higher PPI metal foam. The
effect of thermal conductivity gradient on the temperature results for 20PPI metal
foam is shown in Fig. 5c. The temperature in the open region decreases for graded
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Fig. 4 Hydrodynamic results a Pressure drop b friction factor c velocity distribution

thermal conductivity metal foam compared to the aluminum metal foam as a result
more heat is absorbed in the metal foam region.

6 Conclusion

Two-dimensional numerical simulations are carried out on graded PPI and graded
thermal conductivity metal foam heat exchanger partially filled in the channel using
the commercially available FLUENT software. The numerical results show that the
pressure drop increases as PPI increases and further it increases with increase in the
velocity of the fluid. The pressure drop for the graded PPI metal foams decreases
compared to the higher pore density metal foam. The thermal performance of the
graded PPI metal foams is similar to that of 40PPI metal foam. The effect of graded
thermal conductivity has not shown any significant impact on the performance of
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Fig. 5 Temperature variation along the height of the channel a at x � 0.1 m for all PPI b at x �
0.195 m for all PPI c effect of thermal conductivity gradient at x � 0.1 m of the channel

heat transfer. Eventually, it has been found that the graded PPI metal foam shows
better performance in terms of pressure drop, friction factor, and thermal performance
compared to the nongraded metal foam.
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Accelerating MCMC Using Model
Reduction for the Estimation
of Boundary Properties Within Bayesian
Framework

N. Gnanasekaran and M. K. Harsha Kumar

Abstract In this work, Artificial Neural Network (ANN) and Approximation Error
Model (AEM) are proposed as model reduction methods for the simultaneous esti-
mation of the convective heat transfer coefficient and the heat flux from a mild steel
fin subject to natural convection heat transfer. The complete model comprises of
a three-dimensional conjugate heat transfer from fin whereas the reduced model is
simplified to a pure conduction model. On the other hand, the complete model is
then replaced with ANN model that acts as a fast forward model. The modeling
error that arises due to reduced model is statistically compensated using Approxima-
tion Error Model. The estimation of the unknown parameters is then accomplished
using the Bayesian framework with Gaussian prior. The sampling space for both the
parameters is successfully explored based on Markov chain Monte Carlo method. In
addition, the convergence of theMarkov chain is ensured usingMetropolis–Hastings
algorithm. Simulated measurements are used to demonstrate the proposed concept
for proving the robustness; finally, the measured temperatures based on in-house
experimental setup are then used in the inverse estimation of the heat flux and the
heat transfer coefficient for the purpose of validation.

Keywords ANN · AEM · Reduced model

1 Introduction

Many studies have been proposed to find out the thermophysical properties which are
of great importance in engineering calculations. Because of the ill-posedness nature
of the inverse problems, regularization of the objective function is required for a
stable solution [1]. Many solution techniques for the inverse heat transfer problems
have been discussed in [2]. Nowadays, Bayesian statistics is more popular in the field

N. Gnanasekaran (B) · M. K. Harsha Kumar
Department of Mechanical Engineering, National Institute of Technology Karnataka,
Surathkal, Mangaluru 575025, India
e-mail: gnanasekaran@nitk.edu.in

© Springer Nature Singapore Pte Ltd. 2019
D. Srinivasacharya and K. S. Reddy (eds.), Numerical Heat Transfer
and Fluid Flow, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-13-1903-7_19

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1903-7_19&domain=pdf


160 N. Gnanasekaran and M.K. Harsha Kumar

of inverse estimation because of the uncertainty quantification of the parameters. In
addition, the kind of regularization provided by the Bayesian framework motivates
researcher to work upon the estimation of unknown parameters involved in the math-
ematical formulation. The Prior Probability Density function in the Bayesian frame-
work regularizes the Posterior Probability Density Function with the assumption that
the “a priori” about the unknown parameters are known beforehand [3].

Markov chain Monte Carlo method has been adopted to simultaneously estimate
the heat transfer coefficient and the thermal conductivity based on natural convection
fin heat transfer experiments [4]. Transient one-dimensional heat conduction fromfin
was considered to estimate the thermal diffusivity and fin parameter simultaneously
for the known measured data [5]. Wang and Zabaras proposed Posterior Probabil-
ity Density Function for the estimation of boundary heat flux and also computed
hierarchal parameters for the estimation of unknown function [6, 7].

Often researchers neglect themodeling error while proposing themodel reduction
to simplify the actual model which is much more complex to obtain the numerical
solution. Subsequently, the solution to the inverse problemusingMarkovchainMonte
Carlomethods is also expensivewithin theBayesian framework. Therefore, it ismore
desirable to have a reduced or approximation model to unveil the complexity of the
mathematical model and also to account for themodeling error. Lamien et al. [8] used
Approximation error model in the solution of state estimation problem involving the
laser heating of a subcutaneous tumor loaded with nanoparticles. To expedite the
estimation process, a reduced model is used in the solution of the coupled radiation-
bioheat transfer problemwhich resulted in large reduction of the computational time.
Gugercin and Antoulas [9] presented a comparative study based on seven types of
reduced model for four different dynamical systems. For the whole frequency range,
approximation balanced reduction provided the best results. Arridge et al. [10] in
their work showed that the accuracy of the computational model for the forward
problem can be relaxed if the approximation error model is used with the optical
diffusion tomography. They investigated the interplay between the mesh density and
measurement accuracy in the case of optical diffusion tomography and concluded
that with the application of approximation error model, it is possible to use mesh
densities thatwould not be possible using conventionalmethods.Cesar et al. [11] used
approximation error model for the simplification of three-dimensional and nonlinear
heat conduction problem for the estimation of heat flux applied to the small region
of the heat flux with transient temperature measurements measured on the opposite
side.

Based on the literature, it has been found that the simultaneous estimation of the
boundary properties for a conjugate heat transfer problem has not been adequately
dealt with because of the complexity of the forward model and the computational
cost involved in computing the inverse solution using MCMC. Therefore, this paper
explores the possibilities of model reduction for the mathematical model combined
with Bayesian framework in order to expedite the Markov chains for the estimation
problem.
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2 Mathematical Formulation of the Forward Problem

2.1 Description of the Complete Model

The complete model is a three-dimensional heat transfer from a mild steel fin of
dimension 250 × 150 × 6 (all are in mm) exposed to a constant heat flux at the base.
The numerical model is created using commercial software ANSYS. The problem is
treated as a conjugate heat transfer from fin thereby Navier Stokes equation is incor-
porated to obtain the information of velocity. Several numerical computations are
performed for the known boundary conditions to obtain the temperature distributions
of the fin.

2.2 Description of the Reduced Model

The complete model shown in Fig. 1 is time consuming for the solution of the inverse
estimation. Hence, the reduced models proposed in this work not only expedite
the computational process but also accounts for all the statistical information of
the complete model. Hence, two different models have been considered as model
reduction in the present work based on the complete model.

Fig. 1 Numerical model of the fin setup
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2.2.1 Artificial Neural Network (ANN) Model

The ANN model is developed based on the complete model. The complete model is
solved for a limited range of heat flux and the corresponding temperature distributions
of the fin along with the surface heat transfer coefficient are obtained. Now, ANN
model is developed based on the limited data set generated using complete model,
therefore, a large data set between the input (heat flux and heat transfer coefficient)
and the output (temperature distribution) is created based on training the network.
This in turn acts as a fast forward model.

2.2.2 Approximation Error Model (AEM)

The completemodel,which is based on the three-dimensional conjugate heat transfer,
consumes more time for the numerical computations of temperature. Therefore, it is
necessary to build up a reduced model which not only reduces the computation time
but also includes all necessary statistical parameters. The modeling error is proposed
as

Y � Θp(P) + e (1)

where �p(P) represents the solution of the forward model. In Eq. (1), “e” represents
the uncertainties in the measurement and is also assumed to be normally distributed
with zero mean and known covariance matrixW . Hence, in the light of all these facts,
the forward model can be written as

π (Y |P) � (2π )−
D
2 |W |− 1

2 exp

{
−1

2
[Y − Θp(P)]

TW−1[Y − Θp(P)]

}
(2)

In Eq. 2,D represents the total number of measurements and the forward solution
is obtained from �p(P). Let the reduced model be given as �r

p(P
r) and introducing

the reduced model into Eq. (1), thus the resulting equation becomes

Y � Θ r
p(P

r) + [Θp(P) − Θr
p(P

r)] + e (3)

The difference between the accurate and reduced models can be given as

ε(P) � Θp(P) − Θ r
p(P

r) (4)

Equation (3) is rewritten as

Y � Θ r
p(P

r) + η(P) (5)

η(P) � ε(P) + e (6)
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The great difficulty associated in Eq. (6) ismodeling of the error η(P) that accounts
for measurement uncertainties and modeling errors. Assuming η(P) as normal ran-
dom variable and the corresponding statistics can be computed from the knowledge
of prior distribution. Now, the likelihood function is rewritten in terms of approxi-
mation error model

π̃ (Y |P r) � (2π )−
D
2 |W̃ |− 1

2 exp

{
−1

2
[Y − Θ r

p(P
r) − η̄pr ]

TW̃−1[Y − Θ r
p(P

r) − η̄pr ]

}

(7)

3 Results and Discussion

The primary importance of the fin set up is to determine the heat flux supplied by
the heater at the fin base. To account for the heat loss to the ambient and various
other effects, a Gaussian prior with the information provided by the power source
voltage (V) and current (I) is incorporated in the Bayesian framework. Subsequently,
there is also a scope to estimate the heat transfer coefficient along with the heat flux
based on the temperature data; hence the present estimation problem focuses on the
simultaneous estimation of heat flux and heat transfer coefficient with the known
temperature data.

Table 1 shows the values of the estimated parameters for the experimental tem-
perature. The corresponding Markov chains and histograms are shown in Fig. 2a–d.
The burn-in period has been adopted in order to avoid the disturbance of initial guess.

Table 1 Results of estimated parameters for measured temperature data

Standard
deviation for the
measurements

Parameters Gaussian priors Parameters estimated

Mean Standard
deviation

σ �0.02 Heat flux,
q(W/m2)

μ �500
σ �0.02

501.84 9.68

Heat transfer
coefficient
(W/m2 K)

μ �3.5
σ �0.05

3.79 0.05



164 N. Gnanasekaran and M.K. Harsha Kumar

Fig. 2 a Markov states for heat flux. b Markov states for heat transfer coefficient. c Histogram of
heat flux. d Histogram of heat transfer coefficient

4 Conclusion

An Approximation Error Model has been proposed in order to reduce the computa-
tional cost for the inverse estimation of the heat flux and the heat transfer coefficient.
To accomplish this, complete and reduced models have been numerically solved
using commercial software Ansys. The results obtained based on MCMC with the
help of reduced model show good estimates of the unknown for the measured tem-
perature data.
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Boundary Layer Flow and Heat Transfer
of Casson Fluid Over a Porous Linear
Stretching Sheet with Variable Wall
Temperature and Radiation

G. C. Sankad and Ishwar Maharudrappa

Abstract A flow and heat transfer analysis is carried on non-Newtonian Casson
fluid through the thermal boundary layer over previous linear stretching membrane
with variable wall temperature and radiation. The governing equations for the present
problem are deformed into nonlinear ordinary differential equations with the aid of
similarity transformations. A regular perturbation method is applied to determine
the solution for the energy equation. The variations of Prandtl number, Casson fluid
parameter, suction parameter, and fluid thermal radiation parameter on temperature
and velocity profile are discussed through graphs.

Keywords Thermal boundary layer · Stretching sheet · Casson fluid
Perturbation method

1 Introduction

The study on boundary layer flow of non-Newtonian fluids is considered to be the
most important in the physical science and engineering field due to their vast usage in
the manufacturing industries and also, non-Newtonian fluid has more applications as
compared to Newtonian fluid in industries such as extraction of petroleum products,
polymer extrusion, manufacturing food products and paper production. Crane [1]
was the initiator to study the steady boundary layer flows through linear stretching
and shrinking surface. Further, he discussed the study on flow of boundary layer
through stagnation point and heat conduction past a stretching sheet. Chakrabarti
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and Gupta [2] explained the flow and heat transfer analysis of electrically conduct-
ing incompressible fluid over stretching surface. Also, several researchers [3–8] ana-
lyzed boundary layer flow with different non-Newtonian fluids along with various
situations by using either analytical or numerical methods.

Since, no attempt has been made to analyze the flow and heat conduction in
porous medium with Casson fluid model over linear stretching sheet. So, in this
paper, we have made an attempt to study the flow and heat transfer analysis on
non-Newtonian Casson fluid through thermal boundary layer over permeable linear
stretching membrane with variable wall temperature and radiation. The governing
equations are solved by the regular perturbation method by reducing the partial
differential equations to ordinary differential equationwith similarity transformation.

2 Mathematical Formulation

Let us consider the boundary layer flow of non-Newtonian Casson fluid through
porous linear stretching surface along x-axis and the fluid flow is restricted above
y > 0.

The governing equations are

∂u

∂x
+

∂v

∂y
� 0 (1)

u
∂u

∂x
+ v

∂u

∂y
� υ

(
1 +

1

β

)
∂2u

∂y2
− υ

k ′ u (2)

u
∂T

∂x
+ v

∂T

∂y
� k

ρcp

∂2T

∂y2
− 1

ρcp

∂qr
∂y

(3)

where u and v are the components of velocity in the x and y directions, respectively,
T is the temperature of the liquid, ρ is the density of the fluid, Cp is the specific
heat at constant pressure, and qr is the radiative heat flux. The associated boundary
conditions [8] are

u � bx , v � vc when y � 0

u → 0 as y → ∞

}
, (4)

where b > 0 is stretching rate, and vc is the mass suction velocity.
Using following similarity transformations:

u � bx f ′(η) , v � −√
bυ f (η) and η �

√
b

υ
y, (5)

in Eqs. (1) and (2), we obtain
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(
1 +

1

β

)
f ′′′(η) − [

f ′(η)
]2

+ f (η) f ′′(η) − Prk1 f ′[η] � 0 (6)

where υ � μ

ρ
, Pr � χ

k ′b , k1 � υ
χ
.

Corresponding boundary conditions are

f (η) � − vc√
bυ

, f ′(η) � 1 at η � 0

f ′(η) → 0 as η → ∞.

⎫⎬
⎭, (7)

On assuming f (0) � vc and it is followed that vc > 0 is for mass suction and
vc � 0 is for impervious surface. Solving Eqs. (5) and (6), we get

f (η) � vc +
1 − e−αη

α
, whereα �

vc ±
√

v2
c + 4

(
β+1
β

)
(Prk1 + 1)

2
(

β+1
β

) . (8)

Using Rosseland approximation for the radiative heat flux [6] is given by

qr � −4σ ∗

3k∗
∂(T 4)

∂y
and

∂qr
∂y

� −16 σ ∗T ∗∞
3k∗

∂2T

∂y2
, (9)

where σ ∗ is the Stefan–Boltzmann constant and k∗ is themean absorption coefficient.
On expanding T 4aboutT∞ using Taylor’s series and neglecting the higher order terms
beyond the first degree in (T − T∞) and is approximated as

T 4 ∼� −3T 4
∞ + 4T 3

∞ T (10)

Hence, the energy equation can be rewritten as

u
∂T

∂x
+ v

∂T

∂y
� 1

ρcp

∂

∂y

{(
k +

16 σ ∗T ∗∞
3k∗

)
∂T

∂y

}
, (11)

the subjected thermal boundary conditions for prescribed power law surface temper-
ature are

T � Tw � T∞ + D
(
x
l

)2
, at y � 0

T → ∞ as y → ∞

⎫⎬
⎭, (12)

where D is a constant, l is the characteristic length of the sheet, Tw is the wall
temperature, and T∞ is the temperature of the fluid at infinite distance from the
membrane. Here, the degree of variable wall temperature is taken as 2.

Introducing nondimensional temperature θ (η) as
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θ (η) � T − T∞
Tw − T∞

. (13)

From Eqs. (11) and (13), we get

(1+ ∈ θ + Tr)θ
′′(η) + Pr f (η) θ

′(η) − 2Prθ (η) f
′(η)+ ∈ (θ ′(η))2 � 0, (14)

where

Pr � μCp

k∞
, Tr � 16 σ ∗T 4∞

3k∞k∗ .

Using Eq. (13), the boundary conditions reduces to

θ (η) � 1 at η � 0, θ (η) → 0 as η → ∞. (15)

3 Solution of the Problem

Let us assume that the exact solution of Eq. (14) in terms of a small parameter ∈ be

θ (η) � θ0(η)+ ∈ θ1(η)+ ∈2 θ2(η)+ ∈\3 θ3(η) + · · · (16)

where θ0(η), θ1(η), θ2(η) , θ3(η) . . . are to be determined.
Zeroth-order BVP and its solution:

(1 + Tr) εθ
′′
0 +

{
1 + Tr − Prvc

α
− Pr

α2
− ε

}
θ ′
0 + 2θ0 � 0 (17)

The boundary conditions are:

θ0(ε) � 1 at ε0 � − Pr
α2

and θ0(ε) → 0 as ε0 → ∞.

Equation (17) can be transformed into confluent hypergeometric equation and its
solution is

θ0(η) � C0 e
−α(B/A)ηM

[
B + (n − 3)A, B + nA,

( ε

A

)]

− a1

(
Pr
α2

)
e−αη + a2

(
Pr
α2

)2

e−2αη (18)

where M is Kummer’s function with its usual notation, ε � −( Pr
α2

)
e−αη,



Boundary Layer Flow and Heat Transfer of Casson Fluid … 171

A � (1 + Tr), B � Prvc
α

+
Pr
α2

, a1 � (B − 2A)

A(A + B)

a2 � (B − 2A)(B − A)

A2(A + B)(2A + B)(2! )
,C0 � 1 + a1

( Pr
α2

) − a2
( Pr

α2

)2
M

[
B + (n − 3)A , B + nA ,

(−Pr
α2A

)]

First-order BVP and its solution

(1 + Tr) εθ
′′
1 +

{
1 + Tr − Prvc

α
− Pr

α2
− ε

}
θ ′
1 + 2θ1 � −{εθ0θ ′′

0 + θ0θ
′
0 + ε(θ ′

0)
2},
(19)

The boundary conditions are

θ1(ε) � 1 at ε1 � − Pr
α2

, and θ1(ε) → 0 as ε1 → ∞.

The solution of first-order equation for homogeneous part of the equation is given
by

θ11 � d0e
−α(B/A)ηM

[
B + (n − 3)A , B + nA ,

( ε

A

)]

− a1

(
Pr
α2

)
e−αη + a2

(
Pr
α2

)2

e−2αη, (20)

where

d0 � −∑
dr(ε)

2+r

M
[
B + (n − 3)A , B + nA ,

(−Pr
α2A

)]

The particular integral part of the equation has the solution in the form and is
obtained by comparing various powers of ε on both the sides

θ12 �
∑

dr ε
r+2

Therefore the solution of first order is

θ1 � θ11 + θ12

The results of the higher solution are neglected due to small values in the magni-
tude and we seek the final solution for the energy equation in the form

θ (η) � θ0(η)+ ∈ θ1(η) (21)
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Fig. 1 Velocity profile for
different values of suction
parameter. Here we have
taken β � 2, k1 � 1 , Pr � 1

Table 1 Values of − f ′′(0) for distinct values of the parameters

β Pr k1 vc 2 4 6 8 10

2 1 1 2.0 3.09717 4.3094 5.5726 6.861

2 2.23014 3.27698 4.44949 5.68513 6.95426

3 2.4305 3.44152 4.58199 5.79361 7.04518

4 2.61032 3.59411 4.70801 5.89845 7.13392

2 2.92744 3.87192 4.94392 6.09854 7.30546

3 3.33333 4.23927 5.26599 6.37851 7.5497

4 3.68513 4.56512 5.55903 6.63879 7.78055

4 Result and Discussion

In order to analyze the results of BVPs occurred in the study of boundary layer
flow of Casson fluid and heat conduction with variable wall temperature and thermal
radiation over stretching membrane has been carried out with the help of regular
perturbationmethod. To visualize the effect of various parameters on the velocity and
temperature distribution, graphs are plotted in Figs. 1, 2, 3, 4, 5, 6, and 7. FromFigs. 1
and 2, it is observed that velocity of the boundary layer at the wall decreases with the
increase in the suction parameter vc and decreases with the increase in the Casson
fluid parameter β for impermeable surface. Figure 3 visualizes the effect of Casson
fluid parameter β with the local skin friction coefficient. It is found that skin friction
coefficient f ′′(0) increases with the increase in Casson fluid parameter and mass
suction velocity and Prandtl number Pr. The temperature profile with the variations
of distinct parameters is shown in Figs. 4, 5, 6 and 7. It is noticed that temperature
decreases with increase of mass suction parameter, Casson fluid parameter, Prandtl
number, and radiation parameter, respectively. Further, the values of the local skin
coefficient and temperature gradient for the different values of pertinent parameters
are shown through Tables 1 and 2. The results are found in good agreement with
Bhattacharya [8] in absence of Prandtl number.
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Fig. 2 Velocity profile for
different values of Casson
fluid parameter, assuming
vc � 0, k1 � 1 , Pr � 1

Fig. 3 The effect of Casson
fluid and, suction parameter
with local skin coefficient

Fig. 4 Temperature profile
for different values of
suction velocity

5 Conclusion

The flow and heat conduction of Casson fluid over a stretching sheet with wall mass
transfer and thermal radiation effects are discussed in the presentwork. The important
outcomes in the present study are the boundary layer thickness decreases with the
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Fig. 5 Temperature profile
for different values of
Casson fluid parameter

Fig. 6 Effect of Prandtl
number on the temperature
distribution

Fig. 7 Effect of thermal
radiation parameter on
temperature distribution

increase of Casson fluid parameter, Prandtl number, radiation and radiation can be
reduced by maintaining the temperature of the system. Variable wall temperature
also plays an important role in the temperature distribution and the small values of
thermal conductivity (∈) must be chosen for the betterment of the cooling effect.
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Isogeometric Boundary Element
Method for Analysis and Design
Optimization—A Survey

Vinay K. Ummidivarapu and Hari K. Voruganti

Abstract Analysis of potential problems related to fluid flow and heat transfer can
be solved effectively with Boundary ElementMethods (BEMs) due to the reason that
the interaction takes place at boundaries. BEMs too suffer the traditional problem
of approximated geometry. A recent method called Isogeometric Analysis (IGA)
was proposed for exact geometric analysis. The combination of the IGA and BEM
leads to Isogeometric Boundary Element Method (IGBEM), which has the feature
of exact boundary analysis. It suits well for the problems where boundaries of the
domains are of interest like fluid structure interaction, shape optimization, etc. This
paper provides a brief review on IGBEM by clearly explaining its methodology,
applications, limitations and future directions.

Keywords IGA · BEM · Meshless · Shape optimization and potential flows

1 Introduction

As of today, there is a high need for integration of CAD and analysis modules. Many
industries like aerospace, automotive, and others are focused on this. The recent
research in the fields of design optimization, fluid structure interaction, and similar
analysis problems observed the need for a unified framework of both analysis and
geometric modeling. Among the available analysis tools, Computational Fluid Dy-
namics (CFD) and Finite Element Method (FEM) are the most widely used methods.
They involve approximation of geometry and discretization of the domain which is
computationally expensive [1]. BEM is an alternative method to FEM, in which only
the boundary of the domain is considered, thus making it a perfect choice for the
boundary interaction problems. BEM reduces the dimension of the problem by one.
The only similarity between FEM and BEM are their basis functions. Both use the
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same piecewise polynomial basis functions, thus making BEM also an approximated
geometry based tool [2].

IsogeometricAnalysis (IGA) is a recently developed tool as an alternative to FEM.
Its advantages like use of splines and exact geometry representationmade it attractive
for the research community [3, 4]. It has integrated the geometric modeling with
the analysis, hence removing the burden of meshing. Like FEM it is also a domain
analysis tool. The combination of IGA and BEM is IGBEMmethod. It was proposed
in 2009 and has become an emerging numerical tool. It inherits the advantages of
both the IGA and BEM, making it an apt method for the problems of fluid structure
interaction and shape optimization [2, 5]. The features like, no domain analysis, exact
boundary representation, no meshing, and remeshing of the physical problem make
IGBEM an effective choice among the available tools. But there are few limitations
of IGBEM, confining the applicability of the method to certain problems. The theme
of this paper is to explore these points, thus providing a brief survey on IGBEM.

The methodology of the IGBEM is explained in three parts: Fundamental solu-
tions, Discretization, and Numerical integration.

2 Fundamental Solutions

The fundamental solutions form the basis of the BEM. In this context, these solutions
are also called as kernels.Depending on the physics of the problem, the corresponding
set of governing equations are considered, for example, Laplace’s or Poisson’s equa-
tion for potential problems, equilibrium equations of stresses for structural problems,
etc. These equations are generally differential equations of field variables. Funda-
mental solutions are the complimentary functions of these differential equations [2].
In order to get actual solution to a particular problem, boundary conditions should be
applied along with the dimensionality theorem to convert the domain problem into a
boundary problem. For example, Greens second identity for the potential problems,
Betti’s reciprocal work theorem in the case of structural problems, etc. are used
to convert a domain problem to a boundary problem. The displacement boundary
integral equation for elastostatics is shown in Eq. (1).

Ci j ∗ ui (x
′) +

∮
Γ

Ti j (x
′, x) ∗ u j (x) ∗ dΓ (x) =

∮
Γ

Ui j (x
′, x) ∗ t j (x) ∗ dΓ (x)

(1)

where Ui j and Ti j are called fundamental solutions, Ci j is the jump term, Γ is the
boundary and ui , u j and t j are the corresponding displacement and traction field
variables.

These fundamental solutions are well established only for some category of prob-
lems which is one of the drawbacks of BEM. And also, these fundamental solutions
are of singular nature, i.e., discontinuous over the boundary. This is the main short-
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coming of BEM during integration which will be dealt in the following sections. The
fundamental solutions of various physical systems can be found in [6, 7].

2.1 Discretization

Using fundamental solutions alongwith the related theorems, the respective boundary
integral equation is formed. In order to solve any problem numerically, the geometry
of the problem should be discretized into elements using some CAD models. The
traditional BEM employs the piecewise polynomials to discretize both the geometry
and field variables. It is simple to apply, but is not efficient due to approximated
boundary. To correct this, adaptive refinement is required, which of course is a te-
dious task [2]. In IGBEM, NURBS are used as the basis functions for representing
both geometry and field variable variation. Here, the control points play the role of
nodal points in the traditional BEM. NURBS is the most reliable CAD technique to
generate any complex geometry exactly. These basis functions have advantages like
local control, higher order continuity, etc. More details on NURBS can be found in
[8, 9]. Figure 1 shows all the three parameterizations namely IGBEM, FEM, and
IGBEM. Recently, T-splines which require much lesser control points to represent
an equivalent NURBS curve or a surface are applied to IGBEM and shown much
better results [5].

2.2 Numerical Integration of Kernels

As stated earlier, the kernels in the boundary integral equations are of singular type
[11, 12]. They are not continuous over the entire boundary. When the field point
(integration point) is coinciding with the source or load point (collocation point),
the kernels are said to be strongly singular. Due to this, the renowned Gaussian-
Legendre numerical integration is not suited for BEM. Several alternative methods
were proposed to overcome this difficulty. Out of those, two robust and reliable
methods are Subtraction of Singularity Technique (SST) and Tellas Transformation

Fig. 1 a FEM, b BEM and c IGBEM discretization’s [10]
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Method (TTM). In the former, the singularity and non-singularity terms are separated
and integrated. In the TTM technique, the integrand is converted to a continuous
function using a transformation series. Among both, SST is more effective.

3 Applications

IGBEM has been applied to various applications. The trend in the applicability by
researchers is shown in Fig. 2a. The major applications include fluid flow and shape
optimization which are the most effective boundary based problems. The IGBEM
features are shown in Fig. 2b.

Fluid flow: Fluid flow problems interact with the surroundings only at the bound-
ary of the domain. The first work of IGBEM on fluid flow problem was carried out
by [13]. It is also the first ever publication on IGBEM. Convergence tests on some
problems were carried out to validate the method. Isogeometric boundary element
analysis of steady incompressible viscous flow was performed by [14]. The work
is on 2-D problems. The results of the simulation agree very well with the results
available in the literature. Gong et al. [15] formulated IGBEM for solving 3-D po-
tential problems. Few fluid flow problems of complex geometries were solved using
IGBEM and compared with the available results.

Shape optimization: It is the process of obtaining the best shape while satisfying
the given conditions. Change of shape involves only the boundary variation. The
entire domain need not to be considered thus making shape optimization another
best application for IGBEM. The primary work of shape optimization using IGBEM
was presented by Li and Qian [16]. This work finds that the boundary integral based
isogeometric analysis and optimization have many advantages like bypassing the
need for domain parameterization and tight integration of CAD and analysis. Lian et
al. [17] performed the sensitivity analysis for structural shape optimization. Kostas
et al. [18] performed Ship-hull shape optimization using T-splines for geometric
modeling. This work marks as a finest application of IGBEM.

Some of the other applications include Elastostatics, Crack growth etc. 2-D and
3-D structural problems were solved using IGBEM [2, 19]. The structural problems

Fig. 2 a The trend in the applicability of IGBEM. b Features of IGBEM
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were explored both with NURBS and T-splines. The elasto-plastic problems were
dealt in [20, 21]. When cracks evolve, only the boundary surfaces are needed to be
updated. IGBEM was also extended to solve crack growth problems [22, 23].

4 Research Groups and Other Information

Some of the active research groups of IGBEM are at University of Glasgow, Scot-
land, University of Luxembourg, Luxembourg, Nazarbayev University, Kazakhstan,
Technological Educational Institute of Athens, Greece, Graz University of Technol-
ogy, Austria, etc. There are some open source MATLAB codes for IGBEM available
at [24].

5 Conclusions and Future Directions

The above brief literature review showed that the IGBEMhas been applied to various
problems even though it was proposed very recently. The reason is that the accuracy
of the results produced by IGBEM is observed to be better than the existing results
due to the exact geometry representation. The computational efficiency is increased
as a result of meshless approach. Postprocessing does not take much efforts as the
entire domain need not be considered. 3-Dimensional problems are also analysed
in few applications. The IGBEM method could be much more improved to provide
better results. In future, IGBEM could be used for real world design problems. A
commercial package of IGBEM can accelerate the research and applicability of the
method to boundary-based problems.
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Unsteady Boundary Layer Flow
of Magneto-Hydrodynamic Couple Stress
Fluid over a Vertical Plate with Chemical
Reaction

Hussain Basha and G. Janardhana Reddy

Abstract The unsteady two-dimensional natural convective magneto-
hydrodynamic non-Newtonian couple stress fluid flow over a vertical plate
with homogenous first-order chemical reaction effect is addressed in this article.
The thermodynamic study is executed in the presence of momentum, heat and mass
transfer coefficients with chemical reaction. The highly nonlinear, coupled, time-
dependent non-Newtonian fluid flow equations are simplified by using numerically
stable Crank–Nicolson iteration method. For various flow parameter values, graphs
are drawn and analysed. A related thermodynamic study with available numerical
results is made.

Keywords Couple stress fluid · Magnetic field · Vertical plate

1 Introduction

In the modern days, the natural convection fluid flow with magneto-hydrodynamic,
chemical reaction effects appealed the curiosity of many scientists and engineers.
Due to the density differences in the fluid, the buoyancy forces will occur, and that
causes the free convection fluid flow.This type of flows have important uses in various
industrial applications such as nuclear reactors, solar collectors, producing electrical
power, ignition systems, and counting the parching vaporisation at the exterior sur-
face area of an aquatic body, energy transference in a showery refrigeration tower,
solidification of twofold alloys, flow in a desert cool box, processing of food, in
crystal growth, copses of fruit trees, dehydrating and drying up setups in food and
chemical processing plants, and ignition of atomized liquefied fuels, crops injury
because of freezing, etc. Many of the experimental diffusion processes show the
species diffusion at molecular level with chemical reaction phenomena across the
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boundary layer. Having these uses and applications in mind, the present manuscript
made an effort to analyse the chemically reacting free convective couple stress fluid
flow past a vertical plate with MHD effects. More information can be found in Cus-
sler [1]. For the first time, Ostrach [2] presented that for the determination of flow
nature, the Grashof number is the dominant factor and for the big Grashof num-
bers, the flow is of boundary layer type. The theoretic improvement was made to
deliberate the events of high Grashof number directly for the reason that, these are
having the greatest importance in the field of aeronautics and engineering applica-
tions. Recently,many of the researchers [3–7] studied the special impacts of chemical
reaction on heat and mass transfer with various circumstances in the boundary layer
flow of couple stress fluid. The phenomena of transient free convective heat and
mass transfer over a vertical plate, using finite difference method were studied by
Soundalgekar and Ganesan [8]. Also, they showed that the species absorption with
very small Schmidt number takes more time to reach the time-independent state as
compared to high Schmidt number. More details about the couple stress fluid can
be found in the available literature [9–12]. In the present manuscript, the species
concentration dispersion in the flow region is investigated for various couple stress
fluid parameter values. The time-dependent dimensionless governing equations of
the motion are simplified numerically by employing Thomas as well as pentadiag-
onal algorithms [13]. For the different physical variable values, the thermodynamic
behaviour of time-dependent and steady-state flow profiles are analysed in depth
with physical interpretation.

2 Mathematical Statement of the Problem

Theflowof two-dimensional, time-dependent, free convective, non-NewtonianMHD
couple stress fluid over a vertical plate with homogenous first-order chemical reac-
tion is discussed. Along the axial direction of the plate, x-coordinate is aligned in
upward direction and y-axis is considered perpendicular to the plate. Since the mag-
nitude of velocity in dominant flow region is negligible. Therefore, the influence of
dissipation due to viscosity is omitted from the thermal equation. By considering
the Boussinesq’s approximation with the above assumptions, the flow of magneto-
hydrodynamic laminar viscous incompressible couple stress fluid with the thermal
equation is given by the following nondimensional equations [3, 8, 9]:

∂U

∂X
+

∂V

∂Y
� 0 (1)

∂U

∂t
+U

∂U

∂X
+ V

∂U

∂Y
� θ + BuC +

∂2U

∂Y 2
− Co

∂4U

∂Y 4
− MU (2)

∂θ

∂t
+U

∂θ

∂X
+ V

∂θ

∂Y
� 1
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(
∂2θ

∂Y 2

)
(3)
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∂C

∂t
+U

∂C

∂X
+ V

∂C

∂Y
� 1

Sc

(
∂2C

∂Y 2

)
− KC (4)

The corresponding nondimensional boundary and initial conditions are given by

t ≤ 0 : θ � 0, C � 0, U � 0, V � 0 ∀ X and Y

t > 0 : θ � 1, C � 1, U � 0, V � 0 at Y � 0

θ � 0, C � 0, U � 0, V � 0 at X � 0

θ → 0, C → 0, U → 0, V → 0 as Y → ∞
∂U
∂Y � 1

Gr2T
∂V
∂X at Y � 0 and Y → ∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

The equivalent nondimensional numbers are given as follows:

X � Gr−1
T

x
L , Y � y

L , U � Gr−1
T

uL
ϑ

, Co � η

μL2 V � vL
ϑ

, t � ϑ t ′
L2

θ � T ′−T
′
∞

T ′
w−T ′

∞
,C � C ′−C ′∞

C ′
w−C ′∞

, M � σBo2
L2

ρϑ
, Sc � ϑ

D , K � k1L2

ϑ
,Bu � Grc

GrT

GrT � gβT L3(T ′
w−T ′∞)

ϑ2 , GrC � gβC L3(C ′
w−C ′∞)

ϑ2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(6)

It is important to evaluate momentum transport coefficient (C f ), heat transport
coefficient (Nu) and mass transport coefficient (Sh) because of their large number of
industrial and engineering advantages. Thus, the dimensionless C f , Nu and Sh are
defined as follows:

C f �
1∫

0

(
∂U

∂Y

)
Y�0

dX (7)

Nu � −
1∫

0

(
∂T

∂Y

)
Y�0

dX (8)

Sh � −
1∫

0

(
∂C

∂Y

)
Y�0

dX (9)

where U, V, θ and C are the dimensionless velocity, temperature and concentration,
respectively. Co is the couple stress fluid parameter, M is the magnetic number, Bu
is the buoyancy variable, Prandtl number is denoted by Pr, Sc is the Schmidt number
and K is the chemical reaction parameter and Gr is the Grashof number.
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3 Solution Methodology

The governing unsteady Eqs. (1)–(4) along with the appropriate conditions Eq. (5)
are highly nonlinear and coupled. Since there are no standard analytical techniques
available to solve these flow equations, an unconditionally stable fast converging
compatible implicit iterative method is applied, which is described in the reference
[3]. The region of integration with Xmin � 0, Xmax � 1, Ymin � 0 and Ymax(� ∞) �
20 is considered with Ymax far from the boundary layers. It is observed that 100× 500
grid compared with 50 × 250 and 200 × 1000 do not have considerable impact on
the solutions of time-independent state flow variables. Therefore, with this remark,
a uniform 100 × 500 grid size is chosen for the present analysis with the grid
dimensions of 0.01 and 0.04, along x and y coordinates. Also, time step size 	t
(t � n	t, n � 0, 1, 2, . . .) is fixed as 0.01.

4 Discussion of Numerical Results

Toconfirm the accuracyof current numericalmethod, the computer-generatednumer-
ical data is presented in terms ofU , θ and C graphs and these profiles are compared
with those of Soundalgekar and Ganesan [8] for Pr � 0.73, Sc � 0.78,Bu �
2.0, K � 0,Co � 0, M � 0. The present numerical results agree well with earlier
results [8]. Figure 1a illustrates that, initially, the unsteady velocity profile upsurges
with time (t) and reaches the maximum value, thereafter it decreases and over again
slightly upsurges, later attains the time-independent state. Also, it is remarked that the
transient behaviour of temperature profile at the other locations is almost same. From
Fig. 1a, b, as Co increases the time-dependent and steady-state velocity decreases
but the steady-state time increases. Also, the magnitude of the transient velocity
overshoots decreases as Co increases. Figure 2a illustrates that initially all the tem-
perature curves coincide with one another which indicates that at the starting time,
conduction is dominant over the convection. From Fig. 2a, b, the unsteady and time-
independent state temperature upsurges as Co rises. The steady-state time upsurges
for the increasing Co values. Figure 3 indicates that the time-dependent and time-
independent concentration increases as Co increases also the magnitude of the time-
dependent concentration overshoots increases. The steady-state time upsurges as Co
increases.
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Fig. 1 a Unsteady U profile at (1, 2.12), b time-independent state profile at X � 1.0

Fig. 2 a Unsteady temperature profile at (1, 0.4), b time-independent state profile at X � 1.0
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Fig. 3 a Unsteady concentration profile at (1, 0.4), b time-independent state profile at X � 1.0

At the beginning time, it is observed from Fig. 4a that, for all the Co values,
the average wall shear stress upsurges with respect to t, reaches the highest value,
decreases and later attains the asymptotic time-independent state. Figure 4a demon-
strates that the C f profiles decrease as Co increases also the steady-state time
increases. Figure 4b illustrates that, during the early time intervals, each curve in
the Nu profile coincides with one another and they deviate after some time. This
observation clears that, in the beginning time, conduction process takes place and it
dominates the convection heat transfer phenomena. The average Nu decreases as Co
increases. From Fig. 4c it is remarked that the average Sh decreases as Co magnifies.
Further, steady-state time upsurges for rising Co values.
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Fig. 4 Profiles of a average momentum transport coefficient (C f ), b average Nusselt number (Nu)
and c average Sherwood number (Sh) with time (t)
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5 Conclusions

The contemporary article thermodynamically discussed the time-dependent viscous
incompressible, free convective flow of non-Newtonian couple stress fluid over a
vertical platewithmagneto-hydrodynamic effect numericallywith homogenous first-
order chemical reaction. The present numerical simulations result in the following
important observations.

(i) Time-dependent and time-independent state velocity decreases asCo increases.
(ii) Unsteady and steady-state temperature and concentration upsurges as Co

increases.
(iii) The average momentum, Nusselt and Sherwood numbers decrease as Co

upsurges.
(iv) The time required to reach the steady-state magnifies as Co increases.
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AMathematical Approach to Study
the Blood Flow Through Stenosed Artery
with Suspension of Nanoparticles

K. Maruthi Prasad and T. Sudha

Abstract The present paper deals with the effects of an overlapping stenosis of a
micropolar fluid with nanoparticles in a uniform tube. The governing equations have
been linearized. The expressions for impedance and shear stress at wall have been
deduced. Effects of various parameters like coupling number, micropolar parameter,
Brownian motion parameter, thermophoresis parameter, local temperature Grashof
number, and local nanoparticle Grashof number on resistance to the flow and wall
shear stress of the fluid are studied. Effect of these parameters on arterial blood
flow characteristics are shown graphically and discussed briefly under the influence
nanoparticles and streamline patterns have been studied with particular emphasis.
It is noticed that impedance enhances with the increase of micropolar parameter,
thermophoresis parameter, local temperature Grashof number and local nanoparti-
cle Grashof number but reduces with the increase of coupling number and Brownian
motion parameter. Shear stress at wall increases with coupling number and Brownian
motion parameter but decreases with micropolar parameter, thermophoresis param-
eter, local temperature Grashof number and local nanoparticle Grashof number.

Keywords Micropolar fluid · Stenosis · Nanoparticles · Impedance
Shear stress at wall

1 Introduction

The Atherosclerosis or Stenosis is a serious medical issue because most of the deaths
are occurred due to cardiovascular diseases. It realized that cardiovascular diseases
are closely related with flow characteristics in the blood vessels. One of such diseases
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is stenosis, which is defined as a partial blockage of the blood vessels due to the
cholesterol, cellular waste products and deposits of fatty substances, calcium, and
fibrin in the inner lining of an artery. These substances are causes for the blockage
of blood flow in an artery. It leads to heart attack and stroke, etc. Mainly in this
condition flow behavior is quite different from that in a normal artery and it results
into significant changes in blood flow, pressure distribution, wall shear stress, and
the impedance (flow resistance). In the view of this, blood flow through the stenosed
arteries has become prominent and played a leading role of cardiovascular diseases.
Based on this, several researchers investigated the characteristics of blood flow in an
artery having stenosis by treating blood as non-Newtonian or Newtonian fluid [1, 2].

Micropolar fluid is a non-Newtonian fluid. Eringen [3] proposed the model of
micropolar fluid. The main feature of this fluid is that it takes care of the rotation of
fluid particles by means of independent kinematic vector known as micro rotation.
Several researchers have investigated stenosis by considering blood as micropolar
fluid [4, 5].

Present days, many researchers are concentrated on analysis of nanofluids for var-
ious flow geometries. A fluid containing nanoscaled particles is called as nanofluid.
Nanofluid particles are added to the fluids having low thermal conductivity to increase
the thermal conductivity of the fluids. Choi [6] was the first person to introduce the
nanofluids. Micropolar fluid having nanoparticles through peristaltic transport in
small intestines was studied by Akbar et al. [7].

It is realized that stenosis may develop in series like multiple stenosis or irreg-
ular shapes or overlapping. Based on this Srivastava and Shailesh [8] and Maruthi
Prasad et al. [9] studied the non-Newtonian arterial blood flow through an overlap-
ping stenosis. However, the effect of overlapping stenosis of a micropolar fluid with
nanoparticles has not been studied.

Motivated by the above studies, an effort has been made in this paper to examine
the effects overlapping stenosis of a micropolar fluid with nanoparticles has been
investigated under the assumption of mild stenosis. The analysis is done analyti-
cally. The effect of different relevant parameters on flow variables has been observed
through the graphs.

2 Mathematical Formulation

Consider the steady flow of blood through an axially symmetric but radially non-
symmetric overlapping stenosed artery. The geometry of Stenosis can be taken as
[8].

h � R(z)

R0

�
⎧
⎨

⎩

1 − 3δ
2R0L4

0

[
11(z − d)L3

0 − 47(z − d)2L2
0 + 72(z − d)3L0 − 36(z − d)4

]
d ≤ z ≤ d + L0,

1, otherwise.

(1)
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Fig. 1 Geometry of a uniform tube of circular cross section with overlapping stenosis

where R0(z) the tube radius without stenosis, R(z) is tube radius with stenosis, L0

is stenosis length and d indicates the location of stenosis, and δ is the maximum
stenosis height. Projection of stenosis at the two positions is denoted by z as z �
d + L0

6 , z � d + 5L0
6 , respectively. The critical height is taken as 3δ

4 at z � d + L0/2,
from the origin (Fig. 1).

Using the following nondimensional quantities

z̄ � z
L , L � L

L0
, ū � u

U , R(z) � R(z)
R0

, δ̄ � δ
R0

, ūz � uz
u0

,

ūr � Lur
u0δ

, v̄θ � R0vθ

u0
, P � P

μUL/R2
0
, q̄ � q

πR2
0U

, Re � ρUR0

μ
,

h̄ � h
h0

, Nb � (ρC)P DBC0

(ρC) f
, Nt � (ρC)P DT T 0

(ρC) f β
,Gr � gβT 0R3

0
γ 2 , Br � gβC0R3

0
γ 2 .

The equations of an incompressible micropolar fluid with nanoparticle under
assumption of mild stenosis approximation ( δ

R0
� 1, R∗

e (2δ/L0) � 1, and

2R0/L̃0(1)) are defined Maruthi Prasad et al. [10] as

∂p

∂r
� 0 (2)

(
∂2uz

∂r2
+
1

r

∂uz

∂r
+
N

r

∂

∂r
(rvθ )

)

+ (1 − N )(Grθt + Brσ) � (1 − N )
∂p

∂z
(3)

2vθ +
∂uz

∂r
− 2 − N

m2

∂

∂r

(
1

r

∂

∂r
(rvθ )

)

� 0 (4)

0 � 1

r

∂

∂r

(

r
∂θt

∂r

)

+ Nb
∂σ

∂r

∂θt

∂r
+ Nt

(
∂θt

∂r

)2

(5)

0 � 1

r

∂

∂r

(

r
∂σ

∂r

)

+
Nt

Nb

(
1

r

∂

∂r

(

r
∂θt

∂r

))

(6)

InwhichN is the coupling numberm is themicropolar parameter, uz is the velocity
in the axial direction, vθ is the micro-rotation in the θ direction, θt is the temperature
profile, σ is nanoparticle phenomena. Nt , Nb, Br , and Gr denote thermophoresis
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parameter, Brownianmotion parameter, local nanoparticle Grashof number and local
temperature Grashof number.

The relative nondimensional boundary conditions are

∂uz

∂r
� 0,

∂θt

∂r
� 0,

∂σ

∂r
� 0 at r � 0 (7)

uz � 0, θt � 0, σ � 0, vθ � 0 at r � h (8)

uz is finite, vθ is flinite at r � 0 (9)

3 Solution

The solutions of the coupled Eqs. (5) and (6) have been solved by using homotropy
perturbation method (HPM) as

H
(
qt,θt

) � (1 − qt )
[
L(θt ) − L

(
θt10

)]
+ qt

[

L(θt ) + Nb
∂σ

∂r

∂θt

∂r
+ Nt

(
∂θt

∂r

)2
]

(10)

H(qt , σ ) � (1 − qt )[L(σ ) − L(σ10)] + qt

[

L(σ ) +
Nt

Nb

(
1

r

∂

∂r

(

r
∂θt

∂r

))]

. (11)

Where qt is the embedding parameter which has the range 0 ≤ qt ≤ 1. For our
convenience, L � 1

r
∂
∂r

(
r ∂

∂r

)
is taken as linear operator. The initial guesses θt10 and

σ10 are defined as

θt10 (r, z) �
(
r2 − h2

4

)

, σ10(r, z) � −
(
r2 − h2

4

)

(12)

Adopting the same procedure as done by Maruthi Prasad et al. [10], the solution
for temperature and nanoparticle phenomena can be written for qt � 1 as

θt (r, z) �
(
r4 − h4

64

)

(Nb − Nt ) (13)

σ (r, z) � −
(
r2 − h2

4

)
Nt

Nb
. (14)

Substituting Eqs. (13) and (14) in Eq. (3), we get vθ as,
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vθ � AI1(mr ) + BK1(mr ) +
(N − 1)

(2 − N )

r

2

dp

dz

+
Gr (1 − N )(Nb − Nt )

(2 − N )

[
r5

384
+

r3

16m2
+

r

2m4
− h4r

128

]

+
Br (N − 1)

(2 − N )

Nt

Nb

[
r3

16
+

r

2m2
− h2r

8

]

(15)

where I1(mr ) and K1(mr ) are the modified Bessel functions of first and second
order, respectively. Substituting the value of vθ and using the boundary conditions
Eqs. (7)–(9) and expression for velocity uz is

uz � (1 − N )

(2 − N )

dp

dz

{
r2 − h2

2
+

Nh

2mI1(mh)
[I0(mh) − I0(mr )]

}

+
Gr (1 − N )(Nb − Nt )

2(2 − N )
⎧
⎪⎪⎨

⎪⎪⎩

N

I1(mh)

(
h5

96m
− h3

8m3
− h

m5

)

[I0(mh) − I0(mr )]

− r6

576
− h6

72
+
h4r2

64
− N

32m2

(
r4 − h4

) − 16N

32m4

(
r2 − h2

)

⎫
⎪⎪⎬

⎪⎪⎭

+
Br (N − 1)

2(2 − N )

Nt

Nb

⎧
⎪⎪⎨

⎪⎪⎩

N

I1(mh)

(
h3

8m
− h

m3

)

[I0(mh) − I0(mr )]

− 1

16

(
r4 + 3h4

) − N

2m2

(
r2 − h2

)
+
h2r2

4

⎫
⎪⎪⎬

⎪⎪⎭

(16)

The dimension-less flux q is

q �
h∫

0

2ruz dr . (17)

By substituting Eq. (16) in Eq. (17), the flux is

q � (1 − N )

(2 − N )

dp

dz

{−h4

4
+
Nh3 I0(mh)

2mI1(mh)
− Nh2

m2

}

+
Br (N − 1)

(2 − N )

Nt

Nb

{(
h5

16
− h3

2m2

)
N I0(mh)

mI1(mh)
+
Nh2

m4
− h6

24

}

+
Gr (1 − N )(Nb − Nt )

(2 − N )

⎧
⎪⎪⎨

⎪⎪⎩

(
h7

192
− h5

16m2
− h3

2m4

)
N I0(mh)

mI1(mh)

+
Nh4

4m4
+
Nh2

m6
− 5h8

1536

⎫
⎪⎪⎬

⎪⎪⎭

(18)

From Eq. (18), dP
dz can be given as
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dp

dz
� q(2 − N )

S(N − 1)
+
Gr (Nb − Nt )

S
{(

h7

192
− h5

16m2
− h3

2m4

)
N I0(mh)

mI1(mh)
+
Nh4

4m4
+
Nh2

m6
− 5h8

1536

}

− Br Nt

SNb

{(
h5

16
− h3

2m2

)
N I0(mh)

mI1(mh)
+
Nh2

m4
− h6

24

}

(19)

where S �
[
h4

4 − Nh3 I0(mh)
2mI1(mh) + Nh2

m2

]

The pressure drop over one wavelength p(0) − p(λ) is

�p � −
1∫

0

dp

dz
dz (20)

The impedance λ is defined as

λ � �p

q
(21)

The pressure drop without stenosis h � 1 is defined as

�pn �
⎡

⎣−
1∫

0

dp

dz
dz

⎤

⎦

h�1

(22)

The impedance in the normal artery is defined as

λn � �pn
q

(23)

The normalized impedance defined as

λ̄ � λ

λn
(24)

And the wall shear stress τh is defined as

τh � −h

2

dp

dz
(25)
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4 Result Analysis

Using MATHEMATICA 9.0 Software, computer codes are developed to evaluate
analytical solutions for impedance

(
λ̄
)
and shear stress at wall (τh). The effects of

pertinent parameters on impedance, shear stress at wall and nanoparticle phenomena
have been computed numerically for different values of height of the stenosis and are
presented graphically in Figs. 2, 3, 4, 5, 6, 7, 8, and 9 by considering the parameter
values as d � 0.2, L0 � 0.4, m � 1, q � 0.1, L � 1, N � 0.1, Nb � 0.3, Nt �
0.8, Br � 0.3, Gr � 0.5 [9, 10].

In Figs. 2, 3, and 4, it is observed that impedance
(
λ̄
)
increases with the heights

of the stenosis (δ), micropolar parameter (m), thermophoresis parameter (Nt ), local
temperature Grashof number (Gr ), and local nanoparticle Grashof number (Br ) but
decreases with coupling number (N) and Brownian motion parameter (Nb).

Fig. 2 Effect of δ and Nt ,m on λ̄

Fig. 3 Effect of δ and Nb, N on λ̄
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Fig. 4 Effect of δ and Gr , Br on λ̄

Fig. 5 Effect of δ and N , m on τh

Fig. 6 Effect of δ and Nt , Nb on τh
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Fig. 7 Effect of δ and Gr , Br on τh

Fig. 8 Stream line patterns for different values of Nb

Fig. 9 Stream line patterns for different values of Nt

The shear stress at wall (τh) acting over the height of the stenosis (δ) is shown
graphically in Figs. 5, 6 and 7, it is seen that shear stress at wall increases with the
heights of the stenosis (δ), coupling number (N) and Brownian motion parameter
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(Nb) but decreases with micropolar parameter (m), thermophoresis parameter (Nt ),
local temperatureGrashof number (Gr ), and local nanoparticleGrashof number (Br ).

Figures 8 and 9 illustrate the streamline patterns and it is noticed that size of bolus
increases with the increase of Brownian motion parameter (Nb) and size of the bolus
decreases with the increase in thermophoresis parameter (Nt ).

5 Conclusion

A mathematical analysis for the steady flow of an incompressible micropolar fluid
with nanoparticles in a tube having overlapping stenosis has been studied by assum-
ing stenosis is to be mild. The analytical solutions of the governing equations are
obtained by using Homotropy perturbation method. It is noticed that shear stress
at wall increases with the stenotic heights, coupling number, and Brownian motion
parameter but decreases with micropolar parameter, thermophoresis parameter, local
temperature Grashof number and local nanoparticle Grashof number. Impedance
increases with the heights of the stenosis, length of the stenosis, micropolar parame-
ter, thermophoresis parameter, local temperature Grashof number, and local nanopar-
ticle Grashof number but decreases with coupling number and Brownian motion
parameter.
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Non-Newtonian Fluid Flow Past a Porous
Sphere Using Darcy’s Law

M. Krishna Prasad

Abstract The present work describes the low Reynolds number flow of an
incompressiblemicropolar fluid past and through a porous sphere placed in a uniform
flow. Stokes equation is used for the flow outside the porous sphere and Darcy’s law
is used in the porous region. The boundary conditions used are the continuity of the
normal velocity components, continuity of pressures, Beavers–Joseph slip boundary
condition for tangential velocities and zero microrotation at the surface of the porous
sphere. The drag force exerted on the porous sphere is determined and its variation
versus permeability parameter is studied numerically. The limiting cases of microp-
olar fluid flow past a solid sphere in an unbounded medium and viscous fluid flow
past a porous sphere are obtained from the present analysis.

Keywords Stokes’ flow · Darcy’s law · Sphere · Drag

1 Introduction

The study of motion of fluids with microstructure attracts the attention of several
investigators due to its wide area of research in the fields of biomedical, engineer-
ing, and technology. Newtonian fluids fail to describe the correct behaviour of such
fluids because it neglects the effect of microstructure. A theory that accounts for
microstructure is themicropolar fluid theory introduced byEringen [1, 2]. The review
of microcontinuum theories with various applications has been presented by Ariman
et al. [3]. The study of fluids within porous media is of great practical importance
and has extensive applications, such as the filtration of solids from liquids, sedimen-
tation, enhanced oil recovery and so on. Stokes flow past a Newtonian homogeneous
porous sphere has been studied by many researchers [4–11]. Padmavathi et al. [12]
discussed Stokes flow of Newtonian fluid past a porous sphere. Vainshtein et al. [13]
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investigated slow flow past a porous spheroid. Srinivasacharya [14] studied flow past
a porous approximate spherical shell.

All the papers cited above are related viscous fluids, Rao andRao [15], Ramkisson
and Majumdar [16], Hoffmann et al. [17], Rao and Iyengar [18] and Iyengar and
Srinivasacharya [19] discussed the Stokes flowofmicropolar fluid past a solid sphere,
spheroid and approximate sphere, respectively. Recently, Iyengar and Radhika [20]
investigated flow past a porous prolate spheroidal shell with an impermeable core in
an unbounded micropolar fluid. In this paper, the micropolar fluid flow past a porous
sphere is studied using slip condition for tangential stress.

2 Statement of the Problem

Consider an axisymmetric translation of a porous sphere in an unboundedmicropolar
Stokes flow, moving in positive z-direction with uniform velocity U . The problem
is concerned by dividing the flow into two regions (see Fig. 1): I is the region of the
internal porous sphere and II is the region of the clear fluid.

The field equations governing the slow flow of an incompressible micropolar fluid
in the absence of body force and body couples [1–3, 21] are given by

∇ · v(1) = 0, (1a)

∇ p(1) + (μ + κ)∇ × ∇ × v(1) − κ ∇ × ν = 0, (1b)

−2 κ ν + κ ∇ × v(1) − γ0 ∇ × ∇ × ν + (α0 + β0 + γ0)∇∇ · ν = 0, (1c)

The equations for the fluid motion within the porous sphere are

Fig. 1 Geometry of the
problem
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∇ · v(2) = 0, (2a)

v(2) = − k

μ
∇ p(2), (2b)

where v(i), p(i), i = 1, 2 are the velocity vector, pressure. ν,μ, κ ,α0 andβ0 and γ0 are
the microrotation vector, the dynamic viscosity, vortex viscosity, bulk spin viscosity
and shear spin viscosity, respectively. k is the permeability of the porous medium.

Let (er , eθ , eφ) be the unit vectors in spherical coordinates system (r, θ, φ). For
an axially symmetric translational steady motion, velocity vector and microrotation
vector are independent of φ. Thus, we have

v(i) = v(i)
r (r, θ) er + v

(i)
θ (r, θ) eθ , i = 1, 2 (3)

ν = νφ(r, θ) e
φ
. (4)

It is convenient to introduce Stokes stream functions ψ(i), i = 1, 2 for both the
regions. The related velocity components are given by

v(i)
r = 1

r2
∂ ψ(i)

∂ ξ
, v

(i)
θ = 1

r
√
1 − ξ 2

∂ ψ(i)

∂ r
, i = 1, 2. (5)

Eliminating of the pressures from Eqs. (1) and (2), we get the fourth-order linear
partial differential equations for the stream functions ψ(i), i = 1, 2 and the micro-
rotation vector component νφ ,

E4 (E2 − λ2) ψ(1) = 0, (6)

νφ = 1

2 r
√
1 − ξ 2

(
E2 ψ(1) + (2 + τ)

τ λ2
E4 ψ(1)

)
, (7)

E2ψ(2) = 0, (8)

where

E2 = ∂2

∂r2
+ (1 − ξ 2)

r2
∂2

∂ξ 2
,

λ2 =
( γ0

a2 κ

)−1 (2 + τ)

(1 + τ)
, τ = κ/μ, ξ = cos θ.

The boundary conditions on the surface of the sphere r = 1

∂ ψ(1)

∂ξ
= ∂ ψ(2)

∂ξ
, (9)
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p(1) = p(2), (10)

(2 + τ)

[
2 r

∂

∂r

(
1

r

∂ψ(1)

∂r

)
− E2ψ(1) − 1

λ2
E4ψ(1)

]

= 2α σ

(
∂ ψ(1)

∂r
− ∂ ψ(2)

∂r

)
, (11)

νφ = 0, (12)

and uniform flow condition at infinity ψ(1) = 1
2r

2(1 − ξ 2) as r → ∞, α2 = a2

k
Using separation of variables, a solution to Eqs. (6)–(8) is

ψ(1) = [
r2 + A r−1 + B r + C

√
r K3/2(λ r)

]
ϑ2(ξ), (13)

νφ = 1

r
√
1 − ξ 2

[
−B r−1 + λ2(1 + τ)

τ
C

√
r K3/2(λ r)

]
ϑ2(ξ), (14)

ψ(2) = D r2ϑ2(ξ), (15)

where the dimensionless constants A, B and C are found from Eqs. (9)–(12).
ϑ2(ξ),Kn+1/2(λ), n = 0, 1 are Gegenbauer function of the first kind and modified
Bessel functions of the second kind, respectively.

The drag force exerted by the non-Newtonian fluid on the porous sphere is
obtained by

D = 2π a2
∫ π

0
r2

(
t (1)rr − t (1)rθ

)
|r=1 sin θdθ = 2π a U μ (2 + τ) B (16)

B = −6 K3/2(λ) λ α2 (1 + τ)w � (17)

�−1 = λ
(
−2 K1/2(λ) α2 τ w + K3/2(λ) λ (1 + τ)

(
4α3 σ + 3

(
2 α2 + w

)
(2 + τ)

))

w = (2 + α σ + τ).

Special cases

(i) If α → ∞,

D1 = −6π μ a U (1 + λ) (1 + τ) (2 + τ)[2 + τ + 2 λ + 2 λ τ ]−1 (18)

this result is identical to the drag force obtained in Rao and Rao [15] and
Ramkissoon and Majumdar [16].
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(ii) When τ → 0 in (18),
D2 = −6π μ a U (19)

which is Stokes’ law [22].
(iii) When τ → 0 in (16),

D3 = −6π μ a U

[
3α2 (2 + α σ)

6 + 6α2 + 3α σ + 2α3 σ

]
(20)

which agrees with the result obtained by Jones [9], Davis and Stone [11], and Srini-
vasacharya [14].

3 Results and Discussion

The normalized drag force DN (= D/(6π μ a U )) versus permeability k1(= 1/α),
is presented in Fig. 2 to study the effect of slip coefficient σ and micropolarity
parameter τ . Computations are carried out for fixed value γ0/(μ a2) = 0.3.

Figure 2a illustrates the influence of the micropolarity parameter τ on the drag
coefficient with permeability k1 keeping the slip coefficient σ = 0.1. It indicates the
value of drag coefficient increases with an increase in the value τ and it is decreasing
as k1 is increasing. The drag force acting on the porous sphere in an unbounded
micropolar fluid ismore than that of a porous sphere in viscous fluid. Figure 2b shows
the variation of drag coefficient with k1 for different values of the slip coefficient σ
for the case τ = 3. It shows that drag coefficient decreases with an increase in the
value of σ .

(a) (b)

Fig. 2 Variation of DN with k1 a σ = 0.1, b τ = 3
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4 Conclusions

Analytical solution for non-Newtonian fluid past a porous sphere is presented. The
drag force is obtained in the closed form and the dependence of the dimensionless
drag on the permeability parameter, micropolarity parameter and slip coefficient
is studied. It has been found that an increase in slip coefficient and micropolarity
parameter increases the drag force.

Acknowledgements This work was supported by the Chhattisgarh Council of Science and Tech-
nology, Raipur (C.G), India.
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Navier Slip Effects on Mixed Convection
Flow of Cu–Water Nanofluid in a Vertical
Channel

Surender Ontela, Lalrinpuia Tlau and D. Srinivasacharya

Abstract This article explores the steady laminar flow and mixed convection heat
transfer of a nanofluid in a vertical channel under the influence ofNavier slip and ther-
mal radiation. The Tiwari–Dasmodel has been employed for theCu–water nanofluid.
The governing equations of momentum and energy transports are solved analytically
and the results are presented graphically. The slip parameter and nanoparticle volume
fraction are found to have a strong influence on the skin friction coefficient, although
the influence of radiation parameter was found to be minimal.

Keywords Mixed convection · Nanofluid · Vertical channel · Navier-slip
Homotopy analysis method

1 Introduction

The term nanofluid was first introduced by Choi [1]. Since then rapid progress
has been made in the field. The analysis of nanofluid flows has attracted several
researchers due to their applications in cooling technology for high-performance
thermal systems, biofluid mechanics, etc. Nanotechnology-based coolants, lubri-
cants, hydraulic fluids, etc., are of great industrial importance.

The slip boundary condition was proposed by Navier [2], which states that slip
effects are directly proportional to shear stress. It was then later studied by Mooney
[3] extensively and even proposed a methodology to calculate the slip velocity. More
recently, Rao and Rajagopal [4] proved that slip velocity depended strongly on the
shear stress and even disproved traditional methods [3]. Further studies on the slip
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flow of viscous fluids were done by Ebaid [5], Ullah et al. [6], Haq et al. [7], Sun
et al. [8], Kaladhar and Makinde [9]. Effects of radiation on nanofluid flows were
investigated by Alam et al. [10], Dogonchi et al. [11], Mohyud-Din et al. [12].

Previous investigations of radiation effects on nanofluid flowswere done using the
Buongiorno [13] model for nanofluid flows. There has been no evidence of any form
of investigation on radiation effects on nanofluid flows with Navier slip effects using
the Das–Tiwari model [14]. Motivated by the above works, in this paper, an attempt
has been made to explore the flow of a nanofluid in a vertical channel with radiation
and slip effects. The effects of thermal radiation, nanoparticle volume fraction, and
slip parameters are of particular interest.

2 Mathematical Formulation

Consider a steady-state laminar flow of an incompressible Cu–water nanofluid in
a vertical channel. The x-axis is taken vertically along the flow while the y-axis is
taken normal to the x-axis. The channel walls are placed at y = ±d as shown in
Fig. 1. The governing equations are

∂v

∂y
= 0 ⇒ v = v0 = constant (1)

ρn f v0
∂u

∂y
= −dp

dx
+ μn f

∂2u

∂y2
+ g(ρβ)n f (T − T0) (2)

Fig. 1 Schematic diagram
with coordinate axes
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(ρCp)n f v0
∂T

∂y
= Knf

∂2T

∂y2
− ∂qr

∂y
(3)

where u and v are the velocity components along the x and y axes, respectively,
p is the pressure, g is the acceleration due to gravity, ρn f is the density, βn f is
the coefficient of thermal expansion, (Cp)n f is the specific heat capacity, μn f is
the coefficient of viscosity and Knf is the coefficient of thermal conductivity of
the nanofluid, respectively, and qr is the radiation heat flux. From the Rosseland
approximation, qr is taken as

qr = −4σ

3χ

∂T 4

∂y
(4)

where σ is the the Stefan–Boltzmann constant, χ is the mean absorption coefficient.
Assuming the temperature is sufficiently small and expanding T 4 using Taylor series
and neglecting the higher order terms, we take

T 4
� 4T 3

∞T − 3T 4
∞. (5)

The associated boundary conditions are

y = −d : u = β1
∂u

∂y
, T = T1 (6a)

y = +d : u = β2
∂u

∂y
, T = T2 (6b)

Invoking the following dimensionless variables:

η = y

d
; u = u0U ; θ = T − T1

T2 − T1
; p = μ f u0

d2
P (7)

in Eqs. (2) and (3), the dimesnsionless equations, thus, obtained are

U ′′ − A1RU
′ + A2

Gr

Re
θ + A = 0 (8)

(
αn f

α f
+ 4

3

Rd

B1

)
θ ′′ − RPrθ ′ = 0 (9)

and boundary conditions in terms of dimensionless variables are

η = −1 : U − β1U
′ = 0; θ = 0; (10a)

η = +1 : U − β2U
′ = 0; θ = 1 (10b)
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where the prime denotes differentiation with respect to η, Gr = gβ f (T2−T1)d3

ν2 is the
Grashof number, Re = u0d

ν
is the Reynolds number, R = v0d

ν
is the suction/injection

parameter, Rd = 4σT 3∞
K f χ

is the radiation parameter, Pr = μ f C f

K f
is the Prandtl number,

A = − dP
dx is the constant pressure gradient, β1, β2 are the slip parameters on the left

and right walls of the channel, respectively. αn f and α f are the thermal diffusivities
of the nanofluid and base fluid, respectively, φ is the nanoparticle volume fraction,

A1 = (1 − φ)2.5
[
(1 − φ) + φ

ρs

ρ f

]
, B1 =

[
(1 − φ) + φ

(ρβ)s
(ρβ) f

]
, A2 = (1 − φ)2.5B1

The shearing stress and heat flux along the vertical channel walls can be calculated
from

τw = μn f
∂u

∂y

∣∣∣∣
y=±d

; qw =
[
−Knf

∂T

∂y
+ qr

]∣∣∣∣
y=±d

.

Thus, the skin friction coefficient C f = τw

ρu20
and the Nusselt number Nu =

qwd
K f (T2−T1)

in non-dimensional form are given by

ReC f 1 = U ′(1); ReC f 2 = U ′(−1); Nu1,2 = −
[
Knf

K f
+ 4

3
Rd

]
θ ′(η)

∣∣∣∣
η=1,−1

3 Results and Discussion

The non-dimensional Eqs. (8) and (9) along with boundary conditions (10) represent
a system of coupled linear ordinary differential equations. The analytical solution has
been found for this system of equations. A Copper– Water nanofluid is considered
for the flow in the channel. The characteristic values of Cu nanoparticles are given
in Table 1. The velocity U (η) and temperature θ(η), skin friction coefficient and
Nusselt number profiles are calculated and shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17 and 18 for various values of φ, Rd, β1, β2.

Table 1 Thermophysical properties of base fluid and nanoparticles

Physical property Base fluid (water) Copper

Cp (J/kgK) 4179 385

ρ (kg/m3) 997.1 8933

K (W/mK) 0.613 401

β × 10−5 (K−1) 21 1.67
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Figures 2, 3 and 4 show the effects of nanoparticle volume fraction and slip
parameters on the velocity profile. An increase inφ causes a decrease in velocity. This
is due to the increase in density of the fluid, which is by an increase in concentration
of nanoparticles. The slip parameter β2 acts on the right wall of the channel and
hence has a greater influence at η = 1, but its influence decreases near the left wall
of the channel. A similar phenomenon is observed for β1. The slip parameter β1 acts
on the left wall of the channel and hence, has a greater influence at η = −1, but its
influence decreases near the right wall of the channel.

Fig. 2 Effect of φ on
velocity

Fig. 3 Effect of β2 on
velocity
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Fig. 4 Effect of β1 on
velocity

Fig. 5 Effect of Rd on
temperature

Figures 5 and 6 depict the effects of radiation parameter and nanoparticle volume
fraction on the temperature profile. An increase in the radiation parameter causes an
increase in temperature profile. This is due to the increase in heat energy toward the
fluid flow. An increase in nanoparticle volume fraction also causes an increase in
temperature profile.

Figures 7, 8, 9 and 10 exhibit the influence of Rdφ, β1, β2 on the skin friction on
the left side of the channel wall. An increase in the radiation parameter causes the
skin friction to increase. An increase in nanoparticle volume fraction also causes a
decrease in skin friction. An increase in the slip parameters also causes skin friction
to increase. This is due to the increase in drag at the wall.
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Fig. 6 Effect of φ on
temperature

Fig. 7 Effect of Rd on skin
friction

Fig. 8 Effect of φ on skin
friction
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Fig. 9 Effect of β2 on skin
friction

Fig. 10 Effect of β1 on skin
friction

Figures 11, 12, 13 and 14 show the effects of Rdφ, β1, β2 on the skin friction on
the right side of the channel wall. An increase in the radiation parameter causes a
slight decrease in the skin friction.While an increase in nanoparticle volume fraction
causes the skin friction to increase. An increase in the slip parameters also causes
skin friction to increase. This is due to the increase in drag at the wall as well.

Figures 15, 16, 17 and 18 show the effects of radiation parameter and nanoparticle
volume fraction on the Nusselt number. Both cause the Nusselt number to decrease,
which is due to the increase in thermal conductivity with an increase in both the
radiation parameter and nanoparticle volume fraction.
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Fig. 11 Effect of Rd on skin
friction

Fig. 12 Effect of φ on skin
friction

Fig. 13 Effect of β2 on skin
friction
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Fig. 14 Effect of β1 on skin
friction

Fig. 15 Effect of Rd on
Nusselt number

Fig. 16 Effect of φ on
Nusselt number
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Fig. 17 Effect of Rd on
Nusselt number

Fig. 18 Effect of φ on
Nusselt number

4 Conclusion

In this paper, theflowofCu–water nanofluid along avertical channel has been studied.
Special emphasis has been given to the effects of thermal radiation, nanoparticle
volume fraction, and the Navier slips.

– It was seen that as the nanoparticle volume fraction increases, the velocity
decreases.

– The dimensionless velocity profile increases on the left side of the wall, while it
increases on the right side of the wall as the slip increases.

– The dimensionless temperature profile increases slightly as the radiation parameter
and nanoparticle volume fraction are increased.
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– The skin friction decreases on the left side of the wall, while it increases on the
right side when an increase in the nanoparticle volume fraction is seen.

– The skin friction increases on the left side of the wall, while it decreases on the
right side when the radiation parameter is increased.

– As the slip parameter is increased, the skin friction increased on the both sides of
the wall.

– The Nusselt number decreases on the wall as the radiation parameter increases.
– When the nanoparticle volume fraction was increased, the Nusselt number was
observed to decrease.
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Heat Flow in a Rectangular Plate

M. Pavankumar Reddy and J. V. Ramana Murthy

Abstract Steady-state temperature distribution in a rectangular plane sheet with
nonhomogeneous boundary conditions is solved using Fourier series. The results
are compared with the numerical results. For different values of geometric ratio, the
isothermal curves are obtained.

Keywords Temperature distribution · Isothermal lines · Fourier series

1 Introduction

The problem of steady-state temperature distribution is classical and very old, since
the time of Laplace [1, 2]. Crank [3] in his treatise on Mathematics on diffusion
has discussed some typical problems with homogeneous boundary conditions. The
related problems involving the Laplacian equation in flow through channels of uni-
form cross-section were discussed by Langolois and Deville [4]. Recently analysis
of heat flow in microchannels by theoretical and experimental studies is increasing
due to their wide applications [5–8]. Lee et al. [9] presented the experimental study
of heat flow in rectangular microchannels. Schmith and Kadlikar have discussed
the pressure drop in a microchannel [10]. The problem of solving steady-state tem-
perature when nonhomogeneous derivative boundary conditions are given, though
classical, is not attempted by many analytically. Here, our aim is to solve this prob-
lem. The results of our paper are matched with the results of steady-state diffusion
problem of Crank [3] when in the problem q2 �0, T 2 �0 (pages 65–66).
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2 Mathematical Formulation

Consider the case of conduction of heat in a rectangular plate with the two adjacent
sides maintained at constant temperatures and with other two adjacent sides main-
tained at constant heat flux. The plate is insulated on the top and bottom surfaces so
that heat will not escape. To find the temperature profiles in the plate, the Cartesian
coordinate system is selected with origin at the left bottom corner of the plate with X
and Y axes along the sides of the plate. The plate has sides of length a and H along
X and Y directions. The temperature profiles in the plate follow heat conduction
equation in steady state as given by

∇2T � 0 (1)

subjected to the boundary conditions:

T � T1 on X � 0; T � T2 on Y � 0; k
∂T

∂X
� −Q1 on X � 1 and

k
∂T

∂Y
� −Q2 on Y � H (2)

where T is the temperature in the plate at a point (x, y), k is the coefficient of thermal
conductivity, andQ1,Q2 are heat fluxes imposed on the sides. The first two conditions
in (2) are for constant temperatures and the last two conditions of (2) are for constant
heat flux. We introduce the following non-dimensional scheme with capital on LHS
as physical quantities and small letters on RHS as the corresponding nondimensional
quantities:

X � ax ; Y � ay; H � ha; Q1 � q1k�T

a
; Q2 � q2k�T

a
and T � �T .θ + T1

where ΔT � T2 − T1 (3)

Now, we have the non-dimensional equation as

∇2θ � 0 (4)

subject to θ � 0 on x � 0; θ � 1 on y � 0;
∂θ

∂x
� q1 on x � 1 and

∂θ

∂y
� q2 on y � h (5)

Though it appears simple, it is difficult to solve (4) with conditions (5), since it
involves an infinite system of equations. Again this method is useful in solving heat
transfer with convection problems.

The solution of the problem can be obtained by twomethods given below (Fig. 1).
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Fig. 1 Temperature
distribution in a rectangular
plate

3 Solution of the Problem

3.1 Method-1

We assume the solution in two parts such that the first part satisfies homogeneous
conditions on x �0 and x �1 and the second part satisfies homogeneous conditions
on y=0 and y �h. The arbitrary constants in the general solution are adjusted such
that the boundary conditions are satisfied for the solution. Hence, the solution is
taken in the form as follows.

θ �
∞∑

n�1

sin(nπx)[An cosh(nπy) + Bn sinh(nπy)]

+ sin
(nπy

h

)[
Cn sinh

(nπy

h

)
+ Dn cosh

(nπy

h

)]
(6)

From the condition (5), we get Dn=0
From the condition (5), we get

∑∞
n�1 An sin(nπx) � 1

Expanding f (x)�1 on RHS in half range sine series over 0≤x≤1, we get

An � 4

nπ
if n � (2m + 1) and An � 0 if n � 2m

From the condition (5), we have

∂θ

∂x
�

∞∑

n�1

nπ

⎧
⎨

⎩

cos(nπx)[An cosh(nπy) + Bn sinh(nπy)]

+
Cn

h
sin

(nπy

h

)
cos h

(nπx

h

)

⎫
⎬

⎭ � q1

This implies that
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∞∑

n�1

nπ

{
(−1)n[An cosh(nπy) + Bn sinh(nπy)] +

Cn

h
cosh(

nπ

h
) sin

nπy

h

}
� q1

(7)

Expanding q1, cosh(nπy) and sinh(nπy) in half range sine series over 0≤y ≤h,
we get q1 � ∑∞

n�1 A
′
n sin

nπy
h which gives that A′

n � q1An if n is odd and A′
n � 0 if

n is even

cosh(nπy) � 2

π

∞∑

m�1

m(1 − (−1)m cosh(nπh))

h2n2 + m2
sin

mπy

h
�

∞∑

m�1

cn,m sin
mπy

h

sinh(nπy) � 2

π

∞∑

m�1

m(−1)m+1 sinh(nπh))

h2n2 + m2
sin

mπy

h
�

∞∑

m�1

sn,m sin
mπy

h

Substituting these above expressions in (7) and taking the coefficients of
sin(nπy/h), we get

nπ

h
cosh(

nπ

h
)Cn � q1An −

∞∑

m�1

(−1)mmπ (Amcm,n + Bmsm,n) (8)

Similarly, the condition (5) gives us

∂θ

∂y
�

∞∑

n�1

nπ

{
sin nπx[An sinh(nπh) + Bn cosh(nπh)] + (−1)n

Cn

h
sinh

(nπx

h

)}
� q2

Expanding q2, sinh(nπx/h) in half range sine series, and collecting the coefficients
of sin(nπx) on both sides we get

nπ [An sinh(nπh) + Bn cosh(nπh)] � q2An −
∞∑

m�1

mπ (−1)m
Cm

h
s1m,n (9)

where sinh
(
nπx
h

) �
∞∑

m�1
s1n,m sin(mπx)

Equations (8) and (9) can be simplified by introducing the following notation:

A∗
n � sinh(nπh)An, B∗

n � Bn cosh(nπh), C∗
n � Cn

nπ

h
cosh

(nπ

h

)
and

c∗
m,n � cm,n

sinh(mπh)
, s∗

m,n � sm,n

cosh(mπh)
, s1∗

m,n � s1m,n

cosh(mπ/h)

Now, Eqs. (8) and (9) become

C∗
n � q1An −

∞∑

m�1

(−1)mmπ (A∗
mc

∗
m,n + B∗

ms
∗
m,n) (10)
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and

q2An − nπ
(
A∗
n + B∗

n

) �
∞∑

m�1

(−1)mC∗
ms1

∗
m,n (11)

Substituting (10) in the Eq. (11), we get

∞∑

m�1

(−1)ms1∗
m,n

{
q1Am −

∞∑

k�1

(−1)kkπ (A∗
kc

∗
k,m + B∗

k s
∗
k,m)

}
� q2An − nπ (A∗

n + B∗
n )

Rewriting this we get

∞∑

k�1

{ ∞∑

m�1

(−1)k+mkπs∗
k,ms1

∗
m,n

}
B∗
k − nπBn

� −q2An + nπ A∗
n + q1

∞∑

m�1

(−1)ms1∗
m,n Am −

∞∑

k�1

∞∑

m�1

(−1)k+mkπc∗
k,ms1

∗
m,n A

∗
k

(12)

The first term on LHS within inner summation can be written as

bbk,n �
∞∑

m�1

(−1)k+mkπs∗
k,ms1

∗
m,n

� 4knh2

π
tanh(kπh)

∞∑

m�1

(−1)k+n tanh
(
mπ
h

)
(
k2h2 + m2

)(
m2 + n2h2

) if k �� n

ThusEq. (12) can be solved for B∗
n and then substituting B

∗
n in (10)we getC

∗
n . Now

all the constants An, Bn, and Cn are known. Hence, the temperature can be computed
from (6). By choosing q1 �2, q2 �4, the temperature profiles are obtained as below.
We can observe that as n increases the solution converges more near to an exact
solution. When we take only 5 terms (with each term containing 3 constants An, Bn,

and Cn) in the series, we can find many discrepancies in the corners. As n increases,
we get a good approximate solution at near to n �20. But again, if n is more than 20,
so many fluctuations will develop due to the multiplication of very large and very
small numbers (Fig. 2).

3.2 Method-2

In this method, the solution is taken in two parts as θ =θ1+θ2. The part θ1 satisfies
Laplacian and boundary conditions on y. The conditions on x will be homogeneous.
The part θ2 satisfies the Laplacian and boundary conditions on x. The conditions on
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Fig. 2 Method-1 with 5, 10, and 20 terms

y will be homogeneous. Hence, θ satisfies all the boundary conditions. We assume
the solution for

∇2θ � 0

with the conditions θ � 0 on x � 0; θ � 1 on y � 0; ∂θ
∂x � q1 on x � 1 and ∂θ

∂y �
q2 on y � h are split as

θ1 � 0 on x � 0 θ2 � 0 on x � 0
∂θ1
∂x � 0 on x � 1 ∂θ2

∂x � q1 on x � 1

θ1 � 1 on y � 0 θ2 � 0 on y � 0
∂θ1
∂y � q2 on y � h ∂θ2

∂y � 0 on y � h

The solution for θ1, which satisfies homogeneous conditions on x, is taken as

θ1 �
∞∑

n�1

sin
(2n + 1)πx

2

(
An cosh

(2n + 1)πy

2
+ Bn sinh

(2n + 1)πy

2

)

the constants An and Bn are found from the conditions on y as follows:

θ1 � 1 on y � 0 ⇒
∞∑

n�1

An sin
(2n + 1)πx

2
� 1 for 0 ≤ x ≤ 1

since sin((2n+1)πx/2) functions are orthogonal, we get

An � 2

1∫

0

sin
(2n + 1)πx

2
dx � 4

(2n + 1)π

again ∂θ1
∂y � q2 on y � h which reduces to the following:
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q2 �
∞∑

m�1

(2m + 1)π

2
sin

(2m + 1)πx

2

(
Am sinh

(2m + 1)πh

2
+ Bn cosh

(2m + 1)πh

2

)

multiplying by sin((2n+1)πx/2) on both sides and then integrating with respect to x
from 0 to 1, by orthogonal property of sin((2n+1)πx/2) functions, we get Bn as

Bn � q2A2
n

2
sech

(2n + 1)πh

2
− An tanh

(2n + 1)πh

2

Now the solution for θ2, which satisfies homogeneous conditions on y, is taken
as

θ2 �
∞∑

n�1

sin
(2n + 1)πy

2h

(
Cn sinh

(2n + 1)πx

2h
+ Dn cosh

(2n + 1)πx

2h

)

from the conditions on x, i.e., θ2 � 0 on x � 0 we get Dn=0 again since, ∂θ2
∂x �

q1 on x � 1, we have

q1 �
∞∑

n�1

Cn
(2n + 1)π

2h
sin

(2n + 1)πy

2h
cosh

(2n + 1)π

2h

Cn’s are obtained from the orthogonal property of sin((2n+1)πy/2h), as

Cn � hq1A2
n

2
sech

(2n + 1)π

2h

Now combining the two solutions θ1 and θ2 we get the complete solution. It
is computed numerically and presented below with n=20 number of terms in the
solution. The solution is more close to the exact solution than the solution obtained in
the first method. This problem is solved by five-point iterative formula by numerical
method. The solution obtained at 3500 iterations is presented in Fig. 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

Fig. 3 Isothermal lines between Method-2 with 20 terms and by numerical method at 3500 itera-
tions
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4 Results and Discussions

The analytical solution is very fast converging with 20 terms and accurate enough
whereas the numerical solution take hundreds of iterations even with Gauss-Seidel
iterations and is not as accurate as an analytical solution. The effect of heat flux at
the edges is shown below. When the ratio q=q1/q2 is very high as 200 (Fig. 4a),
the isothermal lines are vertical. When q = 0.1 (Fig. 4b), the isothermal lines are

Fig. 4 a Isothermal lines for q=200, b isothermal lines for and q �0.1

Fig. 5 Isothermal lines for q �0.001
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Fig. 6 Temperature at y �h

inclined with much variations near to down left corner and when q �0.001 (Fig. 5),
the isothermal lines are nearly parallel to the walls. In all the cases, there exists a
small region of no heat flow zone at which the pattern changes its nature in direction
of thermal flow.

In Fig. 6, temperature distribution at the top side of the plate is given. We notice
that, as q2, the heat flux increases, the temperature also increases.
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Flow of Blood Through a Porous
Bifurcated Artery with Mild Stenosis
Under the Influence of Applied Magnetic
Field

G. Madhava Rao, D. Srinivasacharya and N. Koti Reddy

Abstract The effect of porous medium on blood flow through an artery with
bifurcation and a mild stenosis in the parent lumen under the influence of an applied
magnetic field is investigated in the present work. Blood is taken to be couple stress
fluid. The arterial division is assumed to be symmetrical. The governing equations
for flow of blood are reduced to non-dimensional and a particular mapping is used to
make a well-shaped boundary. The developed system of equations is solved numeri-
cally using the finite difference scheme. The variation of physical quantities near the
apex is analyzed graphically with pertinent parameters.

Keywords Blood flow · Stenosis · Bifurcated artery · Porous medium

1 Introduction

The main cause to develop cardiovascular diseases is related to the characteristics
of blood flow and the mechanical behaviour of the arterial walls. The formation of
fatty material on the inner wall of the artery is medically termed as “stenosis”. The
deposition of fatty material, in general, occurs at the entrances of bifurcation of the
arteries [1]. Gupta [2] studied the fluid–structure interaction in the carotid artery.
The couple stress fluids theory was introduced by Stokes [3]. Srinivasacharya and

G. Madhava Rao (B)
Department of Mathematics, KL University, R.V.S Nagar, Moinabad Road,
Near AP Police Academy, Aziz Nagar, Hyderabad 500075, Telangana, India
e-mail: rao.gmr.madhav@gmail.com

D. Srinivasacharya
Department of Mathematics, National Institute of Technology, Warangal 506004,
Telangana, India

N. Koti Reddy
Department of Mathematics, Anurag Engineering College, Kodad 508206,
Telangana, India

© Springer Nature Singapore Pte Ltd. 2019
D. Srinivasacharya and K. S. Reddy (eds.), Numerical Heat Transfer
and Fluid Flow, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-13-1903-7_27

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1903-7_27&domain=pdf


234 G. Madhava Rao et al.

Madhava Rao [4] studied the effect of couple stress fluid parameters on blood flow
through bifurcated artery.

The behaviour of fluid flow through porous media is an important one because
some mass of the fluid is stored in the pores present in the media. Chaturvedi et al.
[5] investigated the flow of blood through a porous medium with the influence of the
magnetic field.

The liquid carriers work as magnetic particles, which are suspended in blood flow
serve as drug carriers to the diseased place. The influence of magnetic field on the
couple stress fluid flow through bifurcated artery has been studied by Srinivasacharya
andMadhava Rao [6]. The influence of suction and injection on saturated micropolar
fluid flow through the porous medium has been investigated by Ram Reddy and
Pradepa [7].

This article deals with the flow of couple stress fluid through a bifurcated artery
by treating walls as porous plates.

2 Mathematical Formulation

Consider the flow of blood in a bifurcated artery withmild stenosis in its parent artery
by treating the walls of the artery as porous plates. Blood is treated to be couple stress
fluid. The stenosis and bifurcation of the artery are taken to be in an axisymmetric
manner as shown in Fig. 1. The cylindrical polar coordinate system is considered for
frame of reference in which z-axis is taken along the central line of the parent artery.
In order to eliminate the flow separation zones, deflection is initiated at the start of
the lateral junction and the apex.

The governing equations for the flow of incompressible couple stress fluid under
the influence of uniform transverse magnetic field in the porous medium is given by

∇ · q � 0 (1)

Fig. 1 Oversimplified diagram of the bifurcated artery with stenosis
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ρ(q · ∇)q � −∇ p + μ∇2q − η∇4q − μ

k
q + J̄ × B̄ (2)

where η—couple stress viscosity parameter, μ—dynamic viscosity of blood,
ρ—density of blood, q—velocity vector, B̄—strength of magnetic field, J̄—current
density, κ—permeability parameter of porous medium and the body force and body
moments are neglected.

Simplified bifurcated artery with stenosis mathematically given by Murthy [8] is
as follows:

R1(z) �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, 0 ≤ z ≤ d ′ and d ′ + l0 ≤ z ≤ z1

(a − 4ε
l20
(l0(z − d ′) − (z − d ′)2), d ′ ≤ z ≤ d ′ + l0

(a + r0 −
√

r20 − (z − z1)2), z1 ≤ z ≤ z2

(2r1 secβ + (z − z2) tan β), z2 ≤ z ≤ zmax

(3)

R2(z) �

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ z ≤ z3
√
(r ′

o)
2 − (z − z3 − r ′

o)
2, z3 ≤ z ≤ z3 + r ′

o(1 − sin β)

(r ′
o cosβ + z4), z3 + r ′

o(1 − sin β) ≤ z ≤ zmax

(4)

where R1(z), R2(z) represents the outer and inner walls, r1 and a, respectively, stands
for the radius of daughter and parent artery, β is the 50% of the bifurcation angle,
l0 is length of the stenosis at a distance d′ from the origin, ε denotes the maximum
height of the stenosis at z � d ′ + l0

2 , and zmax represents the maximum length of the
artery.

The associated boundary conditions are

∂w
∂r � 0, ∂2w

∂r2 − σ
r

∂w
∂r � 0, on r � 0 for 0 ≤ z ≤ z3

w � 0, ∂2w
∂r2 − σ

r
∂w
∂r � 0, on r � R1(z) for all z

w � 0, ∂2w
∂r2 − σ

r
∂w
∂r � 0, on r � R2(z) for z3 ≤ z ≤ zmax

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(5)

where σ � η′/η—couple stress fluid parameter which is liable for the consequence
of local viscosity of particles apart from the bulk viscosity of the fluid μ. If η′ � η,

the influence of couple stresses will be absent in the fluid, which signify that couple
stress tensor is symmetric. In this case, the couple stresses are absent on the inner
and outer walls of the bifurcated artery (Eq. 5).

All the variables are not dependent of θ, because the flow is treated to be sym-
metric about z-axis. Therefore, velocity is q � (u(r, z), 0, w(r, z)). Now Eq. (2) in
nondimensional form as
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[
∂2

∂r2
+
1

r

∂

∂r

]

w − 1

α2

[
∂2

∂r2
+
1

r

∂

∂r

]2

w +

(
1

k
+ H 2

)

w � dp

dz
(6)

whereα2 � μa2

η
α2 � μa2

η
is couple stress fluid parameter, H � B0a

√
σ1
μ
is Hartmann

number. The effect of outer and inner walls of the boundary can be conveyed into
the ruling equations and boundary conditions by the following radial coordinate
transformation by ξ � r−R2

R , where R �R1 − R2. Therefore, Eqs. (5) and (6) take
the form

1
α2

∂4w
∂ξ 4 + 2R

α2(ξ R+R2)
∂3w
∂ξ 3 −

[
1 + 1

α2(ξ R+R2)2

]
R2 ∂2w

∂ξ 2

+
[

1
α2(ξ R+R2)3

− 1
(ξ R+R2)

]
R3 ∂w

∂ξ
+ ( 1k + H 2)R4w � −R4 dp

dz

⎫
⎪⎪⎬

⎪⎪⎭

(7)

The reduced boundary condition in the new coordinate system is

∂w
∂ξ

� 0, ∂2w
∂ξ 2 − σ R

(ξ R+R2)
∂w
∂ξ

� 0, on ξ � 0 for 0 ≤ z ≤ z3

w � 0, ∂2w
∂ξ 2 − σ R

(ξ R+R2)
∂w
∂ξ

� 0, on ξ � 1 for all z

w � 0, ∂2w
∂ξ 2 − σ R

(ξ R+R2)
∂w
∂ξ

� 0, on ξ � 0 for z3 ≤ z ≤ zmax

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(8)

The rate of flow along the parent (Qp) and daughter arteries (Qd) are calculated
by using

Qp � 2πR

⎡

⎣R

1∫

0

ξwdξ + R2

1∫

0

wdξ

⎤

⎦ and Qd � πR

⎡

⎣R

1∫

0

ξdξ + R2

∫

wdξ

⎤

⎦

(9)

The resistance to the flow in both the arteries is determined using

(λp)i �
∣
∣
∣
∣
∣

z3
dp
dz

Qp

∣
∣
∣
∣
∣
for z < z3 and (λd)i �

∣
∣
∣
∣
∣

(zmax − z3)
dp
dz

Qd

∣
∣
∣
∣
∣
for z ≥ z3 (10)

The shear stress is determined by using

τi j � 1

R

∂w

∂ξ
+

1

4Rα2(ξ R + R2)2
∂w

∂ξ
− 1

4α2R3

∂

∂ξ

(
∂2w

∂ξ 2

)

− 1

4R2α2(ξ R + R2)

∂2w

∂ξ 2

(11)
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Fig. 2 Influence of α on a resistance to the flow and b rate of flow on both sides of the apex for
fixed values of other parameters

Fig. 3 Influence of H on a resistance to the flow and b rate of flow on both sides of the apex for
fixed values of other parameters

3 Results and Discussion

Equations (7) and (8) are solved numerically using the finite difference scheme. We
used the following data: a �0.5 cm, d′ �1 cm, l0�0.5 cm, β �π/10, r1 �0.51a,
ε �2.

The effect of α on resistance to the flow and rate of flow in both sides of the flow
divider is shown in Fig. 2a, b. It is noticed from these figures that resistance to the
flow is low and rate of flow is more for greater values of α on both sides of the apex.

Figure 3a, b illustrates the effect of magnetic parameter H on resistance to the
flow and rate of flow on both sides of the apex. From these figures, it is identified that
resistance to the flow is rising and the rate of flow is falling with an enhancement in
the value of H.
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Fig. 4 The effect of κ on a resistance to the flow and b rate of flow on both sides of the apex for
fixed values of other parameters

Fig. 5 The effect of α on shear stress along the a inner and b outer walls of the daughter artery for
fixed values of other parameters

The variations of resistance to the flow and flow rate with κ near the flow divider
are depicted in Fig. 4a, b. It is noticed from these figures that resistance to the flow
is low and flow rate is more with an increased value of κ near the apex.

Figures 5a, b illustrates the effect of α on shear stress along the inner and outer
walls of the daughter artery. These figures explore that shear stress is diminishing
and advancing along the inner and outer walls of the daughter artery with an increase
in the value of α.

Figure 6a, b, respectively, explore the effect of Knudsen number κ on shear stress
along the walls of the daughter artery. It is seen from these figures that shear stress is
reducing along the inner wall and increasing along the outer wall with an advanced
value of κ.
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Fig. 6 Influence of Knudsen number κ on shear stress along the a inner and b outer walls of the
daughter artery

4 Conclusions

The results of the work concluded the following points, which are important in
biomedical engineering and medical sciences.

1. The rate of flow raised with a raise in the value of α, H and diminished with an
increase in the value of κ .

2. The resistance to the flowdecreasedwith a raise in the value ofα,H and increased
with a raise in the value of κ .

3. The shear stress is getting down with better values of α and κ along the inner
wall of daughter artery. But, along the outer wall of the daughter artery shear
stress getting better for increased values of α and κ .
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Finite Element Model to Study the Effect
of Lipoma and Liposarcoma on Heat
Flow in Tissue Layers of Human Limbs

Mamta Agrawal and K. R. Pardasani

Abstract Heat transfer processes play a very important role in the thermal control
system of the human body in order to maintain the structure and function of human
body organs. Any physical or physiological disorder can influence the heat transfer
processes leading to disorder in the thermal control system. The impact of various
disorders on heat transfer processes in human body organs is still notwell understood.
In this paper, amodel is proposed to study the effect of benign andmalignant disorders
on heat transfer processes in an elliptical-shaped human limb. The processes like
heat conduction, metabolic heat generation, and convective heat transfer by blood
perfusion are incorporated in the model. A tumor is considered to be present in the
human limb which may be benign or malignant. The benign and malignant tumors
considered here are lipoma and liposarcoma, respectively. The finite element method
has been employed to obtain the solution. The numerical results have been obtained
by using MATLAB and are used to compute the temperature profiles in the region.

Keywords Finite element method · Human limb · Heat transfer · Benign ·
Malignant · Fat tissues

1 Introduction

The assessment of heat transfer processes in human body organs in terms of thermal
response due to various physical and physiological conditions is of vital interest to
biomedical technologists and scientists for its applications in real-world problems of
mining, deep sea mining, space mission, sports, military operations, and health and
medical sciences. In view of the above, modeling of heat transfer processes in human
body tissues has gained interest among the mathematicians, scientists, and engineers
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since the past few decades. Various physical and physiological processes like blood
flow, metabolic activity, thermal conduction, convection, radiation, and evaporation
are responsible for the thermal behavior of tissues and thermoregulation as a whole,
which regulates the thermal response of the body with the environment. The heat
control system of a human body maintains the body core at an almost uniform
temperature of 37 °C by achieving a balance between heat generation within the
body cells and heat loss from body surface to the environment. The skin and deep
tissues play an important role in the transport of heat from the body core to the body
surface from where the heat is lost to the environment. Any abnormality like the
presence of tumors in the skin and deep tissues of human body organs can cause
thermal disturbances in the body organs.

Several investigations have been made by various research workers to study one-
dimensional heat flow in human organs [1, 2]. Also, attempts have been made to
study the temperature distribution in dermal regions of spherical and cylindrical
human organs for two-dimensional cases [3, 4]. Many researchers [5, 6] have studied
temperature distribution in the skin and subcutaneous region of human organs with
and without tumor. Agrawal et al. [7, 8] have studied temperature distribution in
elliptical-shaped human limbs for two-, and three-dimensional steady-state cases by
usingFEM, seminumerical, and cubic splines approaches under normal and abnormal
conditions.

No attempt is reported for the study of thermal disturbances due to tumors of fat
tissues like lipoma and liposarcoma in deep tissues of a human limb. In this paper,
a model is proposed to study the heat flow in tissue layers of a human limb due to
benign and malignant tumors in fat tissue layers.

2 Mathematical Model

The human limb has been modeled as a layered structure, consisting of a bone layer,
a muscle layer, a fat layer, and a skin layer as shown in Fig. 1. The bone layer has
been assumed as a core of the human limb. The FEM analysis is carried out for a two-
dimensional model by dividing the whole region into 24 coaxial sectoral elements.
The lipoma tumor (0.005 m) is assumed in the fat layer of about 0.0401 m above
the core (bone) of the limb between v � π/4 to ν � π/2 near the trunk. It is also
assumed that after some period of time, fat layer thickness increases by 0.01 m and
lipoma grows in size and forms a cancerous tumor liposarcoma, twice that of lipoma
[9].

In an elliptical-shaped limb, the bioheat equation [10] for a two-dimensional
steady-state case is given by

Ki
1

d2
i

(
sin h2μi + sin h2vi

)
[

∂

∂μi

(
∂Ti
∂μi

)
+

∂

∂vi

(
∂Ti
∂vi

)]

+ ρbcbmb(Tb − Ti ) + S̄i +W � 0 (1)
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Fig. 1 Layered model of
human limb with
liposarcoma tumor in the fat
layer

where ρb, cb,mb, Tb, and S denote the density, specific heat, blood perfusion rate,
the temperature of the blood and metabolic heat generation, respectively. In Eq. (1),
i denotes the specific skin layer.

Here, di is the eccentricity of the outer layer which is the function of radius of
tissue layers, i.e., di � f (μi ) and S̄i is the self-controlled metabolic heat generation
rate per unit volume and W is the rate of uncontrolled metabolic heat generation.
Also, W � 0 for the normal tissues and W � ηS1 for the malignant tissues. The
η denotes the ratio of metabolic heat generation in malignant and normal tissues.
The malignant tissues have higher rates of metabolic heat generation. Here, blood
perfusion and metabolic heat generation are assumed to be 3 times for benign lipoma
and 6 times for malignant liposarcoma than that in the normal skin tissues [11].

The initial and boundary conditions are as follows.
Along angular (ν) direction [7],

Ti0 � a1 + a2ν + a3ν
2; i � αwhen ν � 0 and ν � 2π ; i � β when ν � π (2)

where Tα0 and Tβ0, respectively, are the temperatures of the sides of the limb where
major arteries and veins are present.

At the outer surface of the limb [12].

−K
∂T

∂η
� h(T − Ta) + LE (3)

where h, Ta, L , E, and ∂T
∂η

are heat transfer coefficient, atmospheric temperature,
latent heat, rate of evaporation, and partial derivatives of T along the normal to the
skin surface, respectively. The variational form of Eq. (1) with boundary conditions
in Eqs. (2) and (3) are evaluated and assembled to obtain the following:

I �
24∑

e�1

I (e) (4)

Equation (4) can be written as follows in the linear system of equations:
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Table 1 The thermal properties of body tissues before and after increasing fat layer thickness [14]

Tissue layer μn (m) Kn (W m−1

K−1)
ρ (kg/m3) c (J kg−1

K−1)
mb

(
10−3

)

(1/s)
Sn (W/m3)

Bone 0.0153 0.75 1357 1700 0.0 0.0

Muscle 0.0343 0.42 1085 3768 2.7 684

Fat 0.0401 0.16 850 2300 0.08 58

Skin 0.0418 0.47 1085 3680 1.26 368

Tumor
(benign)
(malignant)

0.005
(0.010)

0.558 1030 3582 3.00 (6.00) 1104
(2208)

XT � Y (5)

where X, T,Y are matrices of order 32 × 32, 32 × 1 and 32 × 1, respectively.

3 Results and Discussion

The metabolic activity in tumors varies with type and size of tumors which may
be benign or malignant. The metabolic activity in tumor varies between 0 and 7
times than in normal tissues [8]. Some investigators have reported that metabolic
activity in a malignant tumor is 3–20 times [13]. Further, for the larger tumor, the
metabolic activity in a malignant tumor is found to be 20–200 times of that in normal
tissues [13]. The present study is performed for the two types of uniformly perfused
tumors of fat namely lipoma a benign tumor and liposarcoma a malignant tumor. We
initially assume that fat layer contains lipoma of metabolic activity 0–3 times that of
normal tissues and the same tumor after some period of time becomes malignant as
liposarcoma with metabolic activity 5–10 times that of normal tissues. The purpose
here is to differentiate between lipoma and liposarcoma. A computer program has
been developed and the system of Eq. (5) is solved using the Gaussian elimination
method to obtain nodal temperatures Tk � 1(1)32. The thermal properties of tissue
layers are presented in Table 1 [14].

The different graphs have been plotted for the temperature distribution in various
tissue layers of human limbs with and without tumor. In Figs. 2 and 3, we observe
elevation in temperature profiles between v � π/4 and v � π/2 due to presence of
lipoma tumor for Ta � 15 ◦C, η � 3 and E � 0.0 kg/m2 min. We also observe the
change in the slope of the curve at the junction of normal and benign tissue is at v �
π/4 to v � π/2.Themaximumelevation is observedbetweenv � π/4 and v � π/2.
The elevation in temperature profiles is observed in the tumor region and the effect
of tumor on temperature distribution decreases as we move away from the tumor to
the outer surface. In Fig. 4, we observe an elevation in temperature profiles between
v � π/4 and v � π/2 due to the presence of liposarcoma tumor for Ta � 15◦ C,
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Fig. 2 Temperature
distribution angular direct
for Ta � 15 ◦C, E �
0.0 kg/m2 min η � 3
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Fig. 3 Temperature
distribution along radial and
angular direction for
Ta � 15 ◦C, η � 3
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η � 10 and E � 0.0 kg/m2 min.We also observe the change in the slope of curves at
the junction of normal and malignant tissues at v � π/4 to v � π/2. The maximum
elevation is observed between v � π/4 and v � π/2. Figure 5 shows radial and
angular temperature distribution due to the presence of malignant liposarcoma tumor
for Ta � 15 ◦C and η � 10. The elevation in temperature profile is observed in the
tumor region and the effect of tumor on temperature distribution decreases as we
move away from the tumor to the outer surface.

Thus, the results obtained here give us the clear picture about the distinction
between benign (lipoma) andmalignant (liposarcoma) tumors on the basis of thermal
information generated from the proposed model. Further, the change in the slope of
the curves at the boundaries of the tumor gives us the idea about boundary, location,
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Fig. 4 Temperature
distribution along the
angular direction for
Ta � 15 ◦C, η � 10
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Fig. 5 Temperature
distribution along radial and
angular direction for
Ta � 15 ◦C, η � 10
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and size of the tumor. This information is useful to biomedical scientists for the
development of protocols and diagnosis of malignant tumors.

4 Conclusion

The proposed thermal model is able to predict temperature distribution in the normal
and abnormal deep tissues of elliptical-shaped human limb. The model is also able
to generate the thermal responses due to fat thickness below the skin layer, heat
exchange with the environment, heat generation rate, blood perfusion, and fatty-
tumor-like lipoma and liposarcoma in human limbs. The finite element method has
proved to be quite versatile and effective in the present study. The thermal responses
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by the proposed model are able to provide a clear distinction between lipoma and
liposarcoma in human limbs.
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Effects of Thermal Stratification
and Variable Permeability on Melting
over a Vertical Plate

M. V. D. N. S. Madhavi, Peri K. Kameswaran and K. Hemalatha

Abstract In the present paper, we studied the effect of thermal stratification with
variable permeability and melting on mixed convective heat transfer from a vertical
plate in a non-Darcy porous medium. The various physical parameters entering into
the problem on dimensionless velocity, temperature, and Nusselt number were dis-
cussed graphically. Using similarity variables, the partial differential equations are
transformed to ordinary differential equations and are solved using MATLAB bvp4c
solver numerically.

Keywords Melting · Thermal stratification · Variable permeability · Heat
transfer · Mixed convection

1 Literature Review

The various aspects of convective flow and heat transfer from a vertical plate in
a non-Darcy porous medium with the effects of melting and variable permeability
were explored by many researchers [1–11] owing to lot of industrial and biologi-
cal applications such as magma solidification, energy storage systems, geothermal
extraction, oil recovery, nuclear reactors, and hyperthermia treatment and so on. In
this context, Kameswaran et al. [12] found that the heat transfer rate increases with
an increase in the values of melting with variable permeability.
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Fig. 1 Schematic diagram

Also, the effect of thermal stratification of the medium plays an important role in
heat transport process but much work is not published. Researchers [13–17] studied
convective transport from a vertical plate in a thermally stratified porous medium
with different power function forms. Most of the researchers mentioned the above-
presented effect of thermal stratification without considering the effect of variable
permeability. Hence, in this paper, we made an attempt to analyze the effects of
thermal stratification on melting with variable permeability in a non-Darcy porous
medium.

2 Mathematical Formulation

Consider a vertical melting front at the melting point Tm . Coordinate system x-y
is attached to the melting front as shown in Fig. 1. The melting front is modeled
as a vertical plate. This plate constitutes the interface between the liquid and solid
phases during melting inside the porous matrix. The temperature of the solid region
is T0 and liquid phase temperature is T∞. A vertical boundary layer smoothens
the transition from Tm to T∞. By taking into consideration, the effects of thermal
stratification and melting with Variable permeability, the governing equations with
boundary conditions for steady non-Darcy flow in a porous medium can be stated as
follows:

∂u

∂x
+

∂v

∂y
� 0 (1)

u +
C f

√
K

ν
u2 � −K

μ

(
∂P

∂x
+ ρg

)
(2)

v +
C f

√
K

ν
v2 � −K

μ

∂P

∂y
(3)
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u
∂T

∂x
+ v

∂T

∂y
� ∂

∂y

(
α

∂T

∂y

)
, (4)

where density

ρ � ρ∞β(T − T∞) (5)

T � Tm, keff
∂T

∂y
� ρ

[
hs f + Cs(Tm − T0)

]
v at y � 0 u � u∞, T → T∞ at y → ∞,

(6)

where u and v are velocity components in x and y directions, respectively. C f is the
Forchheimer constant, K is the permeability of porous medium, v is the kinematic
viscosity, g is the acceleration due to gravity, β is the thermal expansion coefficient,
T is temperature, α is the effective thermal diffusivity of the porous medium, and
Cp is the specific heat at constant pressure. The subscripts, m is the melting and ∞
is the ambient condition).

Under these assumptions, invoking the Boussinesq approximations, Eqs. (2)–(5)
become

∂u

∂y
+
C f

υ

[
2
√
Ku

∂u

∂y
+

u2

2
√
K

∂K

∂y

]
± gβ

υ

[
K

∂T

∂y
+ (T∞ − Tm)(θ − 1)

∂K

∂y

]
� 0

(7)

u
∂T

∂x
+ v

∂T

∂y
� ∂

∂y

(
α

∂T

∂y

)
. (8)

The variation of permeability K (η) and the porosity ε(η) are taken as

K (η) � K∞
(
1 + be−η

)
and ε(η) � ε∞

(
1 + de−η

)
(9)

By Chandrasekhara et al. [8], the permeability and porosity are, respectively,
K∞, ε∞ and b, d are constants η � y

x

√
Pex ,

α � λm/
(
ρ∞Cp

)
f (10)

where

λm � λ f ε + (1 − ε)λs . (11)

Using Eqs. (9) and (11)

α � α∞
[
ε∞

(
1 + de−η

)
+ σ

{
1 − ε∞

(
1 + de−η

)}]
. (12)
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Introduce the stream function ψ(x, y) such that u � ∂ψ

∂y , v � − ∂ψ

∂x ,

where ψ � α∞
√
Pex f (η),

u � u∞ f ′ and v � −α∞
2x

√
Pex

[
f − η f ′]. (13)

The temperature is represented by T � Tm + (T∞ − Tm)θ(η),

T∞ � T∞,0 + Ax
1
3 . (14)

Using Eqs. (7), (8), (13) and (14) are transformed into the following boundary
value problem.

f ′′ + F
√
1 + be−η f ′ f ′′ − F

4

be−η

√
1 + be−η

f ′2

± Ra

Pe

[(
1 + be−η

)
θ

′ − be−η(θ − 1)
]

� 0 (15)

[
ε∞(1 − σ)

(
1 + de−η

)
+ σ

]
θ ′′ + ε∞de−η(σ − 1)θ ′ +

1

2
f θ ′ − f ′θε1 � 0 (16)

f (0) + 2Mθ ′(0) � 0, f ′(∞) → 1, θ(0) � 0, θ(∞) → 1, (17)

where dash represents differentiation with respect to η. The involved variables in the
above expressions (15)–(17) are non-Darcy parameter F, Local Rayleigh number
Rax , Local Peclet number Pex , and thermal stratification parameter ε1, which are
defined as

F � 2C f
√
K∞u∞
ν

, Rax � K∞ρ∞gβ�T x

μα∞
,

Pex � u∞x

α∞
, ε1 � 1

�T

A

3
x

1
3 , ε1 � A

3n
,

where T∞ − Tm � nx
1
3 .

3 Heat Transfer Coefficient

qw � −keff

(
∂T

∂y

)
y�0

. (18)
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The rate of transfer from the surface of the plate is given by

N ux � x qw

keff(T∞ − Tm )
. (19)

Using Eqs. (18) and (19), the local Nusselt number is defined as N ux√
Pex

� −θ ′(0).

4 Graphs and Discussions

In this problem, we studied, the effects of melting and thermal stratification with
variable permeability on convective heat transfer from a vertical plate in a non-Darcy
porous medium.

Figure 2 depicts velocity profiles for melting values ranging from M � 0 to 2
with variable permeability. Increase in velocity profile is observed with and without
stratification parameter. But the increment is more in the absence of stratification
parameter. The effects of thermal stratification and melting on temperature profile
with variable permeability are shown in Fig. 3. It can be noted that with the increase in
melting values, the temperature near the plate decreases in the presence and absence
of stratification parameter. But the increase in temperature is high in the presence of
stratification parameter than in its absence. Figure 4 illustrates the effect of thermal
stratification on velocity profilewithmelting and variable permeability.We noted that
an increase in stratification parameter decreases the velocity profile. In Fig. 5 with
variable permeability and melting, the effect of thermal stratification on temperature
profile is shown. It is observed that by increasing the stratification parameter, the
temperature profile also increases. The variation of heat transfer rate with melting
in the presence and absence of variable permeability is presented in Figs. 6 and 7.

Fig. 2 Thermal stratification
and melting effects on
velocity profile for F �
0.5, Ra/Pe � 2, ε∞ �
0.4, σ � 2, b � 3, d � 1.5
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Fig. 3 Thermal stratification
and melting effects on
temperature profile for
F � 0.5, Ra/Pe � 2, ε∞ �
0.4, σ � 2, b � 3, d �
1.5, M � 2
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Fig. 4 Thermal stratification
and variable permeability
effects on velocity profile for
F � 0.5, Ra/Pe � 2, ε∞ �
0.4, σ � 2, b � 3, d �
1.5, M � 2

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

η

η
)

VP, ε1 = 0.0

VP, ε1 = 0.4

VP, ε1 = 0.8

Fig. 5 Thermal stratification
and variable permeability
effects on temperature profile
for F � 0.5, Ra/Pe �
2, ε∞ � 0.4, σ � 2, b �
3, d � 1.5, M � 2
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We found that in both the cases, the heat transfer rate increases with stratification
parameter but the increment is significant with variable permeability.
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Fig. 6 Thermal stratification
and variable permeability
effects on Heat transfer for
F � 0.5, Ra/Pe � 2, ε∞ �
0.4, σ � 2, b � 3, d � 1.5,

Fig. 7 Effect of Thermal
stratification on Heat transfer
for
F � 0.5, Ra/Pe � 2, ε∞ �
0.4, σ � 2, b � 0, d � 0
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Effect of Chemical Reaction and
Thermal Radiation on the Flow over an
Exponentially Stretching Sheet with
Convective Thermal Condition

D. Srinivasacharya and P. Jagadeeshwar

Abstract The present work addresses the influence of thermal radiation and
chemical reaction effects on the viscous fluid flow over a porous sheet stretch-
ing exponentially by employing convective boundary condition. The numerical
solutions to the governing equations are evaluated using succesive linearization
procedure together with Chebyshev collocation method. The variation of fluid flow,
temperature, concentration and rate of heat, andmass transfers in presence of physical
parameters are portrayed graphically.

Keywords Chemical Reaction · Thermal Radiation · Velocity Slip · Heat and
Mass transfer

1 Introduction

The investigation of flow over an exponentially stretching sheet is of considerable
interest because of its applications in industrial and technological processes such
as fluid film condensation process, aerodynamic extrusion of plastic sheets, crystal
growth, the cooling process of metallic sheets, design of chemical processing equip-
ment and various heat exchangers, and glass and polymer industries. The pioneering
works of Sakiadis [1, 2] motivated the several researchers to investigate the flow due
to stretching sheet under various physical conditions.

Radiative heat transfer on convective flows has applications in areas of engineering
and physics such as solar power technology, space technology, and other industrial
areas. Yasir et al. [3] studied the influence of radiation on the heat transfer analysis of
the boundary layer flow toward exponentially shrinking sheet. Recently, Adeniyan
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andAdigun [4] investigated the influence of thermal radiation on heat transfer past an
exponentially stretching sheet. On the other hand, the study of heat and mass transfer
with chemical reaction has received considerable attention because of its importance
in chemical and hydrometallurgical industries such as the design of chemical process-
ing equipment, themanufacturing of ceramics or glassware, polymer production, etc.
Gorla and Mukhopadhyay [5] studied the flow and mass transfer analysis of Casson
fluid over an exponentially stretching surface with first-order homogeneous chemical
reaction. Recently, Srinivasacharya and Jagadeeshwar [6] investigated the influence
of Hall currents together with thermal radiation and chemical reaction effects on the
laminar slip flow of viscous fluid over an exponentially stretching surface.

A novel technique for the heating process by providing the heat with a finite
capacity to the convecting fluid through the bounding surface has attracted numer-
ous researchers. This type of thermal boundary condition, called convective boundary
condition, results in the rate of exchange of heat across the boundary being propor-
tional to the difference in local temperature with the ambient conditions [7]. Due
to the realistic nature of the convective thermal condition, the investigation of heat
transfer with this condition has rich significance in mechanical and designing fields,
for example, heat exchangers, atomic plants, gas turbines, and so forth. Hayat et al.
[8] investigated the importance of convective-type boundary conditions in modeling
the heat transfer process of MHD flow of viscous nanofluid over an exponentially
stretching surface in a porous medium. Khan et al. [9] analyzed the convective ther-
mal condition on the boundary layer flow of nanofluid past a bidirectional exponen-
tially stretching sheet. Recently, Srinivasacharya and Jagadeeshwar [10] investigated
the slip flow of viscous fluid over a sheet stretching exponentially with convective
thermal condition.

Therefore, the motto of the present work is to analyze the thermal radiation,
chemical reaction effects, andvelocity slip on the convectiveflowof viscousfluidover
an exponentially stretching permeable sheet. In addition to these physical conditions,
fluid suction/injection is also considered.

2 Mathematical Formulation

Consider a stretching sheet in a laminar slip flow of incompressible viscous fluid
with a temperature T∞ and concentration C∞. The Cartesian framework is selected
by taking positive x̃−axis along the sheet and ỹ−axis orthogonal to the sheet. The
stretching velocity of the sheet is assumed asU∗(x̃) = U0 e

x̃
L , where x̃ is the distance

from the slit. Assume that the sheet is either cooled or heated convectively through
a fluid with temperature Tf and, thus induces a heat transfer coefficient hf , where

hf = h
√
U0/2Le

x̃
2L . (ũx, ũy) is the velocity vector, C̃ is the concentration, and T̃

is the temperature. The suction/injection velocity of the fluid through the sheet is
V∗(x̃) = V0 e

x̃
2L , where V0 is the strength of suction/injection. The slip velocity of

the fluid is assumed as N∗(x̃) = N0 e
−x̃
2L , where N0 is the velocity slip factor. The
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fluid is considered to be gray, absorbing/emitting radiation, but is a non-scattering
medium. The Rosseland approximation [11] is used to describe the radiative heat flux
in the energy equation. Also, it is assumed that there exists a homogenous chemical
reaction of the first order with rate constant k1 = k0e

x̃
L , where k0 is constant, between

the diffusing species and the fluid. Hence, the governing equations for the present
flow problem are given by

∂ũx
∂x̃

+ ∂ũy
∂ỹ

= 0 (1)

ũx
∂ũx
∂x̃

+ ũy
∂ũx
∂ỹ

= ν
∂2ũx
∂ỹ2

(2)

ũx
∂T̃

∂x̃
+ ũy

∂T̃

∂ỹ
= α

∂2T̃

∂ỹ2
+ 16T 3∞σ∗

3k∗ρcp
∂2T̃

∂ỹ2
(3)

ũx
∂C̃

∂x̃
+ ũy

∂C̃

∂ỹ
= D

∂2C̃

∂ỹ2
− k1(C̃ − C∞) (4)

where D is the mass diffusivity, α is the thermal diffusivity, ρ is density, ν is the
kinematic viscosity of the fluid, k∗ is mean absorption coefficient, σ∗ is Stefan-
Boltzmann constant and cp is specific heat capacity at the constant pressure.

The conditions on the surface of the sheet are

ũx = U∗ + N∗ν ∂ũx
∂ỹ , ũy = −V∗(x̃),

hf (Tf − T̃ ) = −κ∂T̃
∂ỹ , C̃ = Cw at ỹ = 0

ũx → 0, T̃ → T∞, C̃ → C∞ as ỹ → ∞

⎫
⎪⎬

⎪⎭
(5)

Introducing the stream functions through ũx = − ∂ψ
∂ỹ and ũy = ∂ψ

∂x̃ and then the
following dimensionless variables:

y = ỹ
√
U0/2νLe

x̃
2L , ψ = √

2νLU0e
x̃
2L F(x, y),

T̃ = T∞ + (Tf − T∞)T (x, y), C̃ = C∞ + (Cw − C∞)C(x, y)

}

(6)

into Eqs. (1)–(4), we obtain

F ′′′ + FF ′′ − 2F ′2 = 0 (7)

1

Pr

(

1 + 4R

3

)

T ′′ + FT ′ = 0 (8)

1

Sc
C ′′ + FC ′ − γ C = 0 (9)
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The conditions at the boundary reduces to

F(0) = S, F ′(0) = 1 + λF ′′(0), T ′(0) = −Bi(1 − T (0)), C(0) = 1 at y = 0
F ′(∞) → 0, T (∞) → 0, C(∞) → 0 as y → ∞

}

(10)

where Bi = h
κ

√
ν is the Biot number, γ = 2Lk0

U0
is the chemical reaction parameter,

S = V0
√
2L/νU0 is the suction/injection parameter according as S > 0 or S < 0,

respectively, Sc = ν
D is the Schmidt number, R = 4 σ∗ T 3∞

κ κ∗ is the radiation parameter,
λ = N0

√
νU0/2L is the velocity slip parameter, Pr = ν

α
is the Prandtl number, and

the prime denotes derivative with respect to y.
The nondimensional skin friction Cf = 2τω

ρU 2∗
, the local Nusselt number Nux̃ =

x̃qw
κ(Tf −T∞)

, and the local Sherwood number Shx̃ = x̃qm
κ(Cw−C∞)

, are given by

√
Rex̃ Cf

√
2x̃/L

= F ′′(0), Nux̃√
x̃/2L

√
Rex̃

= −
(

1 + 4R

3

)

T ′(0) and
Shx̃√

x̃/2L
√
Rex̃

= −C′(0)

(11)

where Rex̃ = x̃U∗(x̃)
ν

is the local Reynolds number.

3 Numerical Solution

The system of Eqs. (7)–(9) is linearized using successive linearizationmethod (SLM)
[12, 13]. In this method, the functions F(y), T (y), and C(y) are expressed as

F(y) = Fr(y) +
r−1∑

i=0

Fi(y), T (y) = Tr(y) +
r−1∑

i=0

Ti(y), C(y) = Cr(y) +
r−1∑

i=0

Ci(y)

(12)
where Fr(y), Tr(y), and Cr(y) (r = 1, 2, 3, . . .) are functions, which are not known
and Fi(y), Ti(y) and Ci(y) (i ≥ 1) are approximations. Substituting Eq. (12) in
Eqs. (7) to (9) and taking the linear part, we get

F ′′′
i + χ11,i−1F

′′
i + χ12,i−1F

′
i + χ13,i−1Fi = ζ1,i−1 (13)

χ21,i−1Fi + 1

Pr

(

1 + 4R

3

)

T ′′
i + χ22,i−1T

′
i = ζ2,i−1 (14)

χ31,i−1Fi + 1

Sc
C ′′
i + χ32,i−1C

′
i − yCi = ζ3,i−1 (15)

where the coefficients χlk,r−1 and ζk,i−1, (l, k = 1, 2, 3) are in terms of the approxi-
mations Fi,Ti, and Ci, (i = 1, 2, 3, . . . , r − 1) and their derivatives.
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The boundary-associated conditions are

Fr(0) = λF ′′
r (0) − F ′

r(0) = F ′
r(∞) = T ′

r(0) − BiTr(0) = Tr(∞) = Cr(0) = Cr(∞) = 0
(16)

Choosing the initial approximation F0(y), T0(y) and C0(y) satisfy the conditions
(10) and solving Eqs. (13)–(16) recursively, we get the solutions for Fr(y), Tr(y), and
Cr(y) (r ≥ 1), and hence F(y), T (y), and C(y). To solve Eqs. (13)–(15) along with
the boundary conditions (16), Chebyshev collocation is used (see for reference [13]).

4 Results and Discussions

Numerical values for −T ′(0) of Magyari and Keller [14] are compared with the
results of current method for particular values of R = 0, λ = 0, γ = 0, S = 0 and
for large value of Bi, shown in Table 1 and found to be in good agreement.

To elucidate the significance of relevant parameters, the numerical calculations
are carried out by taking S = 0.5, γ = 0.5, Sc = 0.22, λ = 1.0, Pr = 1.0, R = 0.5,
Bi = 1.0, N = 100, and L = 20 unless otherwise mentioned.

The influence of slip and suction/injection parameters on the fluid velocity is
portrayed in Fig. 1a and b. It is evident from the Fig. 1a and b that the rise in the
slipperiness and the fluid suction diminish the velocity, while injection enhances the
velocity. On the other hand, the skin friction is enhancing with the slipperiness and
reducing with the suction of the fluid as depicted in Fig. 1c.

The variation of temperature distribution with S, R, and Bi is plotted through Fig.
2a– c. It is a well-known that wall suction reduces the thickness of thermal boundary
layer, and hence reduction in temperature. This phenomenon is graphically presented
in Fig. 2a. However, the wall injection produces the exactly contradictory nature.

Table 1 Comparative analysis for −T ′(0) by the current method for λ = 0, R = 0, γ = 0, S = 0,
and Bi → ∞
Nusselt number −T ′(0)
Pr Magyari and Keller [14] Present

0.5 0.330493 0.33053741

1 0.549643 0.54964317

3 1.122188 1.12208592

5 1.521243 1.52123757

8 1.991847 1.99183597

10 2.257429 2.25742182
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Fig. 1 Effect of a λ on F ′ b S on F ′ and c λ on F ′′(0) against S

Figure 2b illustrates that the temperature is enhancing with a rise in the value of
thermal radiation, and hence there is a gain in thickness of thermal boundary layer.
The variation of temperature with Bi is presented in Fig. 2c. With the rise in Biot
number, the temperature is enhancing. Further, for large value of Biot number, the
convective thermal condition from (10) transforms to T (0) → 1, which signifies
the constant wall condition, i.e., stronger convection leads to the higher surface
temperatures which appreciably increases the temperature.

The fluctuation of rate of heat transfer with S for diverse values of R, Bi, and λ is
portrayed through Fig. 3a–c. The rate of heat transfer is enhancing with the rise in
the radiation parameter as shown in Fig. 3a. Figure 3b demonstrates that the rate of
heat transfer is enhancing with an increase in the value of Bi. On the other hand, Fig.
3c shows that increase in λ diminishes the rate of heat transfer. Further, it is noticed
from these figures that the fluid suction enhances the rate of heat transfer.
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Fig. 2 Effect of a S, b R, and c Bi on T

The influence of λ, S, and γ on the concentration of the fluid is shown graphically
in Fig. 4a–c. It is clear from Fig. 4a that an increase in the slipperiness rises the
concentration. while, the wall injection is enhancing the fluid concentration as shown
in Fig. 4b. It is noticed from Fig. 4c that concentration of the fluid is increasing for
constructive reaction(γ < 0) and reducing for destructive reaction(γ > 0).

The variation of rate of mass transfer with S for different values of λ and γ is
shown in Fig. 5a and b. It is observed from Fig. 5a that an increase in slipperiness
reduces the rate of mass transfer. On the other hand, when there is an increase in
the chemical reaction parameter (positive values of γ), the rate of mass transfer is
enhancing as shown in Fig. 5b. Further, the rate of mass transfer is increasing with
the fluid suction.
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Fig. 3 Effect of a R, b Bi, and c λ on −(1 + 4R
3 )T ′(0) against S

5 Conclusions

The influence of thermal radiation and chemical reaction on the laminar slip flow
of viscous fluid over an exponentially stretching sheet in the presence of fluid suc-
tion/injection at the boundary of the stretching surface with the convective ther-
mal condition has been investigated. Successive linearization method along with the
Chebyshev spectral collocation method is used to solve the governing equations. The
following are the important findings from this study:

– The velocity of the fluid reduces with an increase in the velocity slip and fluid
suction. The skin friction diminishes with a rise in the fluid suction and enhances
with slipperiness.

– The fluid temperature escalates with the rise inR andBi and falls with fluid suction.
– The concentration increases with the rise in slip parameter and reduces with the
enhancement in the suction and chemical reaction parameters.
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– The rate of heat transfer escalates with the rise inR, S, andBi, while it reduces with
slipperiness. The rate of mass transfer is enhancing as the suction and chemical
reaction parameters increase but reducing with an increase in the velocity slip.
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Soret and Viscous Dissipation Effects on
MHD Flow Along an Inclined Channel:
Nonlinear Boussinesq Approximation

P. Naveen and Ch. RamReddy

Abstract In this study,we investigate the Soret and viscous dissipation effects on the
mixed convective flow of an electrically conducting fluid inside an inclined channel.
In addition, nonlinear Boussinesq approximation (i.e., nonlinear convection) is taken
into account to address thermal and solutal transport phenomena in some thermal
and solutal systems, which are performed at high-level temperatures. Initially, the
set of governing equations and the related boundary conditions are transformed into
dimensionless form under suitable transformations and after that homotopy analysis
method is used to obtain semi-analytic solutions of flow equations. The behavior of
flow characteristics with pertinent flow parameters is discussed through graphs.

Keywords Nonlinear Boussinesq approximation · Soret effect · Viscous
dissipation effect · Inclined channel

1 Introduction

Many of thermal systems are processed at high-level temperatures and in such situa-
tions, the density relationwith temperature and concentrationmay become nonlinear.
This nonlinear variation in temperature–concentration-dependent density relation (to
be specific, nonlinear Boussinesq approximation or nonlinear convection) gives a
strong influence on the fluid flow characteristics (for more details see Barrow and
Sitharamarao [1], Vajravelu and Sastri [2]) and the Soret and viscous dissipation
effects are of immense importance. The early writing and applications of nonlinear
convection can be seen in the paper by Partha [3]. A Darcy–Forchheimer model is
considered in the analysis of nonlinear convection and convective boundary condition
in a micropolar fluid by Ramreddy et al. [4].
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Analysis of mixed convective flow problems in vertical or horizontal channels is
the most relevant topic in engineering and industrial fields such as fluid transport,
chemical processing units, heat exchangers, etc. The earliest discussions on a fully
developed mixed convective flow along a vertical channel can be found in the works
of Tao [5]. Barletta [6] utilized the heat flux condition instead of the wall condition
to examine viscous dissipation effect in the combined free and forced convective
flows through vertical channels. Magnetohydrodynamic (MHD) effects have been a
topic of great interest in the problems of free and mixed convective flows. Due to this
attention, Umavathi and Malashetty [7] addressed the effect of MHD in forced and
free convective flows along the vertical channels. Applications and early literature of
MHD and Soret effect can be found in the work of Afify [8]. Surender and Ramreddy
[9] (also see the citations therein) analyzed the significance of cross-diffusion and
viscous dissipation effects on the natural convective flow of a nanofluid through the
vertical channel.

Much attention has not been given to the problem of mixed convective flow, a
regular fluid over an inclined geometry in the presence of a nonlinear Boussinesq
approximation, even though the study is useful in the mechanism of combustion,
solar collectors which are performed at high-level temperatures. Thus, the object of
this work is to examine the Soret and viscous dissipation effects on the MHD fully
developed flow in an inclined channel with the consideration of nonlinear Boussinesq
approximation. The homotopy analysis method is used to explore the impact of
pertinent parameters on the fluid flow characteristics through graphs and the salient
features are discussed in detail.

2 Mathematical Modeling

Consider the steady, laminar flow of an electrically conducting incompressible regu-
lar fluid in an inclined channel. The distance between thewalls, i.e., the channelwidth
is 2L and the channel is inclined at an angle Ω to the vertical direction. Choose the
coordinate system such that x-axis is along the inclined channel and y-axis normal to
the channel. A fluid flow rises in the channel driven by external forces. In this study,
the lower plate (i.e, at y = L) of the channel is maintained at a constant heat and mass
fluxes qw and qm, respectively, while the upper plate (i.e, at y = −L) of the channel is
kept at constant temperature T1 and constant concentration C1, respectively. Further,
the following assumptions are assumed in the analysis: (i) a uniform magnetic field
of constant strength B = B0 is applied, (ii) flow is assumed to be fully developed so

that the transverse velocity is zero, i.e, v = 0,
∂v

∂y
= 0,

∂p

∂y
= 0,

∂T

∂x
= 0,

∂C

∂x
= 0,

and (iii) the viscous dissipation and Soret effects are included.
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Under the consideration of the above said assumptions, the governing equations
for the fluid flow are given by

μ
d2u

dy2
+ ρg cosΩ − σB0

2u = dP

dx
(1)

k

ρCP

d2T

dy2
+ μ

ρCP

(
du

dy

)2

= 0 (2)

Dm
d2C

dy2
+ DmKT

Tm

d2T

dy2
= 0 (3)

by considering the nonlinear Boussinesq approximation (see ref. Parth [3]), the den-
sity can be written as

ρ = ρ0
[
1− β0 (T − T1) − β1(T − T1)

2 − β2 (C − C1) − β3(C − C1)
2
]

(4)

The subject to the boundary conditions are

u(−L) = 0, T (−L) = T1, C(−L) = C1,

u(L) = 0,
dT

dy

∣∣∣∣
y=L

= qw

k
,

dC

dy

∣∣∣∣
y=L

= qm
D

.
(5)

Here, u, P, μ, ρ, B0, σ, Dm, T , C, Cp, k, and KT denotes the velocity component,
pressure, dynamic viscosity, density, transverse magnetic field, coefficient of electric
conductivity, coefficient of mass diffusivity, dimensional temperature, dimensional
concentration, specific heat, thermal conductivity of the fluid, and thermal diffusion
ratio, respectively.

We define the nondimensional variables as

η = y

L
, f = u

U0
, θ = T − T1

qwL
k

, φ = C − C1
qmL
D

, α = L2

μU0

dp

dx
(6)

Substituting Eq. (6) into Eqs. (1)–(5), we obtain the following equation:

d2f

dη2
+ λ

[
θ(1+ χ1θ) + Bφ(1+ χ2φ)

]
cosΩ −M 2f = α (7)

d2θ

dη2
+ Br

(
df

dη

)2

= 0 (8)

1

Sc

d2φ

dη2
+ Sr

d2θ

dη2
= 0 (9)
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The boundary conditions (5) in terms of f , θ, φ become

f (−1) = 0, θ(−1) = 0, φ(−1) = 0, f (1) = 0,
dθ

dη

∣∣∣∣
η=1

= 1,
dφ

dη

∣∣∣∣
η=1

= 1

(10)

In the above equations: B, Gr , Re, λ, χ1 , χ2 , M , α, Br, Sr, and Sc represents the
Buoyancy ratio parameter, Grashof number, Reynolds number, mixed convection
parameter, nonlinear density-temperature (NDT) parameter, Schmidt number, Hart-
mann number, constant pressure gradient, Brinkman number, Soret number, and non-
linear density concentration (NDC) parameter, respectively. Mathematically, these
parameters are expressed in the following manner:

B = βCqmKp

DβT qw

, Gr = gβT qwL3

υ2
, Re = U0KP

υ
, λ = Gr

Re
, χ1 =

β2

β1

qwL

k
, Sc = D

Dm
,

M 2 = σB0
2L2

μ
, α = L2

μU0

dP

dx
, Br = μU0

2KP

LKqw

, Sr = DmKTqw

KPTmqm
, χ2 =

β3

β2

qmL

D

3 Results and Discussion

Numerical solution of Eqs. (7)–(9) together with the boundary conditions (10) has
been assessed with a homotopy analysis method (HAM) (Wang and Kao [10], Liao
[11]). This method has been used successfully by Srinivasacharya andKaladhar [12],
and others in different problems.

The effects of various pertinent parameters on the characteristics of fluid flow
(specifically, the velocity (f ), temperature (θ), and concentration (φ) have been pre-
sented graphically. The graphs are drawn by taking the value of the auxiliary parame-
ter h, at which the average residual error is minimized. The influence of Sr and Br on
the boundary layer profiles is determined for both the presence and absence of non-
linear convection parameters in Figs. 1, 2 and 3. From Figs. 1 and 2, one can notice
that the velocity and temperature of the fluid flow increased for the rise of Brinkman
number, whereas these profiles have opposite change with Soret number Sr. The
enhancement of Soret and Brinkman numbers leads to the decrease in the concen-
tration profile for both cases of linear and nonlinear Boussinesq approximations, as
shown in Fig. 3. Additionally, these two parameters are giving more influence on
the boundary layer profiles in the presence of χ1 and χ2 . It means the rate of change
(either increasing or decreasing) is more in the case of nonlinear convection when
compared to the results of linear convection.

The results presented in Figs. 4, 5 and 6 indicate the behavior of Hartmann number
(M ) and inclination of angle (Ω) on the flow, thermal, and concentration profiles of
the fluid. These illustrations are considered for both linear and nonlinear Boussinesq
approximation cases. By increasing the value of M , velocity decreases in the right
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Fig. 1 Effect of Sr and Br
on the velocity profile

Fig. 2 Effect of Sr and Br
on the temperature profile

half of the channel but the reverse trend can be noticed in the left half of the channel.
Moreover, the magnitude of the velocity is a decreasing function ofM and the same
effect is projected in Fig. 4. Also, Fig. 4 reveals the influence of Ω on the velocity,
and magnitude of the velocity is a decreasing function of Ω . The variation of M
is magnifying the concentration profile gradually and this variation gives an oppo-
site impact on temperature profile. However, the thermal boundary layer thickness
decreases and solutal boundary layer thickness is increased when the channel moves
from vertical to horizontal position, as displayed in Figs. 5 and 6. Here again, the
individual impact of M and Ω (i.e., when M varies, Ω is fixed, and vice versa) is
more provoking in the case of nonlinear convective flow over an inclined channel.
Physically, χ1 > 0 and χ2 > 0 imply that there will be a supply of heat and mass to
the flow region from the surface of the channel. Similarly, when χ1 < 0 and χ2 < 0
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Fig. 3 Effect of Sr and Br
on the concentration profile

Fig. 4 Effect of M and Ω

on the velocity profile

there will be a transfer of heat and mass from the fluid to the surface of the channel.
This nonlinear convection gives a strong influence on the fluid flow characteristics,
and then the impact of Sr,Br,M , andΩ is more prominent on the physical quantities,
compared therewith results of linear convection.

4 Conclusion

In the present work, the collective influence of thermal diffusion and viscous dissi-
pation, on a fully developed mixed convective flow between inclined channels in an
electrically conducting fluid in the presence of nonlinear Boussinesq approximation
has been analyzed. The major notice is that the impact of pertinent parameters on
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Fig. 5 Effect of M and Ω

on the temperature profile

Fig. 6 Effect of M and Ω

on the concentration profile

the physical quantities is prominent with the consideration of nonlinear convection,
compared therewith results of linear convection. The influence of magnetic param-
eter and angle of inclination leads to decrease in both the velocity and temperatures
of fluid but these increases the concentration profile. Brinkman number increases the
thickness of the thermal andmomentum boundary layers within the channel, whereas
it decreases the concentration boundary layer thickness. The profiles of fluid flow are
declined with the rise of the Soret parameter in both linear and nonlinear convective
flow cases. Due to the flux conditions considered at a lower plate η = 1, the changes
in the temperature and concentration profiles are more at η = −1 as compared with
that of the upper plate.
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Optimization of Temperature of a 3D
Duct with the Position of Heat Sources
Under Mixed Convection

V. Ganesh Kumar and K. Phaneendra

Abstract We consider a numerical investigation of a problem to determine the
optimal arrangement of ten discrete heat sources, mounted on a bottom wall of a
three-dimensional horizontal duct under turbulent mixed convection heat transfer
using finite volume method (FVM). The standard k−ε turbulence model modified
by including buoyancy effects with physical boundary conditions has been used for
the analysis. The objective is to find the configuration of ten heat sources so that
the total temperature of the duct is minimum at this configuration. The governing
equations are solved by FVM using FLUENT. Finally, an exhaustive search has been
made to determine the optimum.

Keywords k−ε turbulence model · FVM · Horizontal duct

1 Introduction

Making a better and better design plays an important role to improve the global
performance of electronic packages under the given constraints. da Silva et al. [1, 2]
addressed the optimal distribution of discrete heat sources on a wall cooled by forced
convection and natural convection separately to maximize the global conductance
between the wall and the coolant. Premachandran and Balaji [3, 4] investigated
the effect of buoyancy and surface radiation in a horizontal channel with four heat
sources under conjugate mixed convection. They also studied numerically about
mixed convection heat transfer from converging, parallel, and diverging channels
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with uniform volumetric heat generating plates. Sudhakar et al. [5] investigated
an optimal heat distribution among the five protruding heat sources under laminar
conjugate mixed convection heat in a vertical duct using the artificial neural network.

2 Mathematical Formulation

Normal to the flow direction, conjugate mixed convection in a 3D horizontal duct
is considered. Ten identical finite heat sources with uniform heat rate are placed on
the bottom wall of the duct at arbitrary positions. The dimensions of this duct are
30 cm length, 15 cm width, and 5 cm height. Each heat source has the dimensions
10 mm length, 10 mm width, and 5 mm height. The schematic view of the geometry
considered is shown in Fig. 1.

Air is considered as themedium,which is initially at 303K. The flow is considered
to be unsteady, incompressible, and turbulent with constant fluid properties except
for density for which Boussinesq approximation [6] is assumed to be valid. Radiation
heat transfer, compressibility effects, and contact resistance between the substrate
and the heat source are considered to be negligible. The objective is to locate ten
discrete heat sources so that the total temperature in the duct is under the target
temperature.Theupper limit is usually 353K, abovewhich the reliability of electronic
equipment goes down drastically. Based on these assumptions, the governing Eq. (5)
in nondimensional form are as follows:

Fig. 1 Schematic view of discrete heat sources
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2.1 Standard k−ε Turbulence Model

The viscosity multiplied by the fluctuating vorticity gives the rate of dissipation of
kinetic energy ε at high Reynolds numbers. Using Navier–Stokes equation, one can
derive exact transport equation for the fluctuating vorticity and thus the dissipation
rate. The k−ε model consists of the following two equations:

The turbulent kinetic energy equation is
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Equation for dissipation rate of turbulent kinetic energy is
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Here, Cμ, σk, σε, σT ,Cε1,Cε2 are all taken to be constants and are given, respec-
tively, the values 0.09, 1.0, 1.3, 1.0, 1.44, 1.92.
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2.2 Boundary Conditions

For all fluid–solid surface interfaces, no-slip conditions are applied U � V � W �
0 and the other solid surfaces are assumed to be adiabatic ∂T

∂n � 0. At the inlet
V � W � 0,U � u∞, T � T∞.

3 Method of Solution

The finite volume method (FVM) is used to solve the governing Eqs. (1)–(7) with
the associated boundary conditions. The FVM can accommodate any type of grid
when compared to FDM. It uses the integral form of the conservation equations as
its starting point. The solution domain is divided into a finite number of sub-volumes
for which the conservation equations are applied. To handle the pressure–velocity
coupling, the numerical procedure called SIMPLEC is used. As the convergence
criteria, a residual of 10−6 for the continuity andmomentum, and 10−2 for the energy
have been employed. When the maximum relative change between two consecutive
iteration levels fall below 10−4, then the convergence at a given time step is declared
for U, V, W, and θ .

Fig. 2 Values of wall y+p
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4 Validation of the Numerical Scheme

The location of the first cell adjacent to the wall is determined based on the region
of the turbulent boundary layer. Standard wall functions can be employed when the
flow resolution starts from the log-layer region. When the standard wall function is
considered, then the value of wall is y+p ≥ 30 − 300 for high Reynolds flow. Mesh
should be generated in such a way that the first cell adjacent to the wall does not fall
in buffer layer, i.e.,y+p � 5 − 30.

It can be observed from Fig. 2 that all values y+p are above the 40. It does not fall
between the buffer layers. So, the given numerical scheme is valid.

5 Results and Discussion

At high Reynolds number under mixed convection heat transfer, a detailed numerical
study has been carried out. Initially, a heat flux input of 25 × 104 W/m2 was given
to all the heat sources. In our study, 40 configurations are made arbitrarily. In every
configuration, each heat source is located at prescribed location. Table 1 represents
the location of all heat sources at prescribed configurations and Figs. 3, 4, 5, 6,
and 7 show the contours of temperature in the duct with the heat sources at those
configurations.

Fig. 3 Total temperature at configuration 1
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Table 1 Location of all heat sources at prescribed configurations

Conf. no. Chip no.
→

1 2 3 4 5 6 7 8 9 10

1 Distance
from +ve
x-axis

0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

Distance
from +ve
z-axis

0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19

2 Distance
from +ve
x-axis

0.18 0.18 0.16 0.16 0.14 0.14 0.13 0.11 0.06 0.04

Distance
from +ve
z-axis

0.16 0.19 0.22 0.26 0.17 0.21 0.25 0.27 0.18 0.20

3 Distance
from +ve
x-axis

0.16 0.16 0.16 0.12 0.12 0.11 0.09 0.08 0.06 0.04

Distance
from +ve
z-axis

0.11 0.13 0.16 0.12 0.12 0.11 0.09 0.08 0.06 0.04

4 Distance
from +ve
x-axis

0.19 0.19 0.19 0.13 0.13 0.09 0.09 0.04 0.04 0.16

Distance
from +ve
z-axis

0.05 0.09 0.15 0.07 0.22 0.10 0.17 0.13 0.24 0.13

5 Distance
from +ve
x-axis

0.17 0.17 0.16 0.14 0.13 0.14 0.08 0.08 0.08 0.05

Distance
from +ve
z-axis

0.03 0.11 0.18 0.05 0.15 0.22 0.07 0.12 0.25 0.01

Finally, Table 2 shows the values of the total temperature in the duct at prescribed
configurations when the constant heat flux is given to all heat sources. By observing
the temperature contours at configuration 4 in Fig. 6, the total temperature in the
duct is less than the target temperature (353 K). So, this configuration is one of the
required configurations to control the total temperature in the duct. This optimum
configuration is not unique. There are several near-optimal configurations for the
present problem. Among them, one is at configuration 5. The worst configuration is
at configuration 2.
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Fig. 4 Total temperature at configuration 2

Fig. 5 Total temperature at configuration 3
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Fig. 6 Total temperature at configuration 4

Fig. 7 Total temperature at configuration 5
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Table 2 Total temperature in the duct at prescribed configurations

Configuration
no.

1 2 3 4 5

Total
temperature in
K

552 965 946 348 478

6 Conclusion

The following conclusions are drawn from the above study:

(i) The temperature increases when the chips are placed close to each other due to
which there is an interaction of the boundary layers, and the cooling efficiency
comes down while the temperature decreases when the chips are placed away
from each other.

(ii) The temperature decreases when the chips are placed near the inlet face due to
the flow.

(iii) The heat source which is placed near the outlet face has the maximum temper-
ature due to heated fluid flow.
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Viscous Fluid Flow Past a Permeable
Cylinder

P. Aparna, N. Pothanna and J. V. Ramana Murthy

Abstract Uniform flow of a viscous fluid past a permeable circular cylinder is
considered. The flow across the surface of permeable cylinder is possible due to
jump in the pressure at the surface. The flow pattern for the outer and inner regions
of the cylinder is obtained in terms of stream function. The bounds for the perme-
ability parameter are estimated. For various values of permeability parameter, the
streamline pattern is drawn. The effect of permeability parameter on the drag is
studied numerically and the results are presented in the form of graphs.

Keywords Viscous fluid · Permeable cylinder

1 Introduction

The classical problem of flow past axi-symmetric bodies has been attracting many
researchers even in modern times. There is a vast literature available for the case
of sphere, spheroid and circular cylinder for the particular case of Stokesian flows
and non-Stokesian flows. But the attention paid by researchers towards flow past
permeable bodies is very less. The first work in this direction was presented by
Leonov [1] for the case of sphere.Wolfersdorf [2], Padmavathi et al. [3], andUsha [4]
studied viscous fluid flows past permeable sphere in different situations. It is observed
that the drag due to permeable body is lesser than the impervious body. The work of
Padmavathi [5] is worth mentioning for the case of permeable cylinder. In the case
of cylinders filled with porous medium similar problems were attempted by many
researchers. For the numerical solutions of the flow of fluids past cylinder, one can
refer the works of Rajani andMajumdar [6] and Catalano et al. [7]. Experimental and
analytical analysis of flow past D-shaped cylinder was studied byMhalungekar et al.
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[8]. They studied the flow past bluff body. The D-shaped cylinder is one of the bluff
bodies,which serve somevital operational function in aerodynamics. They calculated
analytically and experimentally the dimensions of D-shaped circular cylinder and
obtained the drag coefficient for different values of Reynolds’s number. Numerical
study of a viscous fluid flow past a circular cylinder was studied by Kawaguti and
Jain [9]. They calculated the pressure distribution and coefficient of drag. In this, we
consider the viscous fluid flow past a permeable circular cylinder.

2 Statement and Formulation of the Problem

The equations of motion for an incompressible viscous fluid under slow flow of
Stokesian assumption are given by

∇.Q � 0 (1)

0 � −∇P − μ∇ × (∇ × Q), (2)

where Q is the velocity vector, P is pressure, ρ is density and μ is the viscosity
coefficient.

We consider slow uniform flow with velocity U0 of an incompressible viscous
fluid past a fixed permeable cylinder of radius a (see Fig. 1). A cylindrical polar
coordinate system with (er , eθ , ez) as unit base vectors with origin at the centre of
the cylinder and with X-axis along the direction of the flow is considered. Since the
flow is two dimensional, velocity is taken independent of z as

Q � U (R, θ )ēr + V (R, θ )ēθ . (3)

We introduce the following non-dimensional variables:

R � ar, � � U0aψ, U � U0u, V � U0v, P � p ρU 2
0 and Re � ρU0a

μ
, (4)

Fig. 1 Physical view of flow
past cylinder
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where Re is the Reynolds number. Since the flow is two dimensional, the stream
function ψ(r, θ ) can be introduced as

u � 1

r

∂�

∂θ
, v � −∂�

∂r
. (5)

Substituting (5) in Eq. (2), we get the following three equations along base vectors:

Re
∂p

∂r
� 1

r

∂E2ψ

∂θ
(6)

Re
1

r

∂p

∂θ
� −∂E2ψ

∂r
(7)

Re
∂p

∂z
� 0, (8)

where

E2 � ∂2

∂r2
+
1

r

∂

∂r
+

1

r2
∂2

∂θ2
� ∇2

Eliminating pressure p from (6) and (7), we get

E4ψ � 0. (9)

3 Boundary Conditions

The stream function ψ can be obtained under the boundary conditions: (i) Regular-
ity condition, (ii) Continuity of normal velocity on the boundary and (iii) No slip
condition. These can be stated mathematically as

lim
r→∞ q̄ � ī i.e lim

r→∞ ψe � rsinθ (10)

∂ψe

∂θ
� ∂ψi

∂θ
on r � 1 (11)

∂ψe

∂r
� ∂ψi

∂r
on r � 1. (12)

4 Solution of the Problem

By the method of separation of variables, we observed that the stream function for
external flow and internal flow is given by
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ψe �
(
r +

a1
r

+ b1r log r
)
sinθ (13)

ψi � (
a2r + b2r

3
)
sinθ. (14)

The constants a1, b1, a2, b2 are obtained using the boundary conditions in (11) and
(12) as stated above. After finding the constants, the internal and external solutions
are obtained as

ψe �
{
r +

(
2a2
3

− 1

)
1

r
+

(
2a2
3

− 2

)
r log r

}
sinθ (15a)

ψi � a2

{
r − r3

3

}
sinθ. (15b)

The constant a2 is arbitrary and we can define it as permeability parameter since
when a2 �0, then ψi � 0, which implies the impermeability of the surface.

5 Pressure

Now, from Eqs. (6) and (7), the pressure can be obtained as follows:

P �
∫ (

∂p

∂r
dr +

∂p

∂θ
dθ

)

� 1

Re

∫ (
−1

r

∂E2ψ

∂θ
dr + r

∂

∂r
E2ψdθ

)
� 1

Re

∫ (g
r
cos θ dr − rg′ sinθ dθ

)

P � 1

Re
(rg′) cos θ. (16)

This is obtained by taking D2 f � −g and D2 g � 0.
From the above equations, we obtain the external pressure Pe and the internal

pressure Pi as

Pe � 2b1
cosθ

Re.r
� 4

(τ

3
− 1

) cosθ
Re.r

and Pi � −8b2r
cosθ

Re
� 8τ.r

cosθ

3Re
. (17)

6 Bounds for Permeability Parameter

On the surface of the cylinder for 0≤θ ≤π /2, the filtration velocity u0 must be
positive and for π /2≤θ≤π , u0 must be negative. If 	P � Pe − Pi at r �1, then
for 0≤θ ≤π /2, 	P ≤0 and for π /2≤θ ≤π , 	P ≥0 at r �1. The condition that
filtration velocity u0 ≥0 gives u ≥0 at r �1 or a2 +b2 ≥0, which implies that
2a2/3≥0 or a2 ≥0. The condition that 	P ≤0 gives the condition that b1 + 4b2 ≤0.
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This implies that a2 ≤ 3. We now introduce permeability parameter τ as a2. Hence,
the bounds for permeability parameter τ are given by 0≤ τ ≤ 3.

7 Drag Acting on the Cylinder

Drag on the cylinder per length

L � L
2π∫
0
(T11cosθ − T21sinθ)R|R�adθ (18)

T11 � −P + μ.
∂U

∂R
and T21 � μ

2

{
∂V

∂R
+

1

R

∂U

∂θ
− V

R

}
. (19)

Substituting the above expressions for T 11 and T 21 in drag, the reduced expression
for drag in non-dimensional form is given by (p and ψ are non-dimensional in (20a,
20b))

Drag � D � πU0μL
{
−Re. p̄ + D2 f

}
r�1

� πU0μL
(
g′ − g

)
r�1 � 2πρU2

0 aL

Re

(
1 − a2

3

)

(20a)

Coefficient of Drag � Cf � D/(1/2aLρU2
0) � 4

Re

(
1 − a2

3

)
. (20b)

8 Results and Discussions

8.1 Streamlines

The streamline pattern for the viscous fluid flow past permeable cylinder at low
Reynolds numbers is drawn based on Eq. (16). We can notice that in the flow region,
a fluid cylinder is formed in concentric to the permeable cylinder. Within this fluid
cylinder, flow reversal takes place and fluid passes through the permeable cylinder.
This flow circulation takes place due to the permeable nature of the cylinder. Note that
this is one novel feature for flow past a permeable body.This type of flow reversal will
not occur for flow past impermeable body or for a body filled with porous medium.
The flow past a porous cylinder at low Reynolds numbers is different from this. The
radius of the fluid cylinder increases as the value of the permeability parameter τ

increases. When τ � 0, the flow is exactly similar to the flow past an impermeable
cylinder.When τ � 3 (this is themaximumvalue of τ ), then flow collapses to uniform
flow, i.e. free flow. This is shown in Fig. 2 for four different values of τ . In Fig. 5,
the radius of the circle in which we observe the flow reversal at various values of
permeability parameter τ is shown. This is in conformity with above observations
as in Figs. 3 and 4. As τ increases, the radius of the circle increases slowly but
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Fig. 2 Pressure changes in and out of the body

τ=0.624 Flow at τ=1.25

Flow at τ=1.825 τ=2.5

Fig. 3 Streamline pattern for different values of permeability parameter τ

when τ is more than 2.7, the radius shoots to very big values. In Fig. 6, pressure is
shown at different Reynolds numbers and various permeability values based on the
expression (17). For Re � 1, τ � 0, the pressure is approximately in agreement with
the results of Nieuwstadt and Keller [10]. This is the case of impermeable cylinder
at low Reynolds numbers.

8.2 Drag

It can be observed from Eqs. (20a and 20b) that the drag decreases as permeability
parameter increases. This result is exactly the same as that of Nieuwstadt and Keller
[10], when nonlinear terms are deleted. Drag attains minimum value zero, when
permeability parameter is maximum, i.e. τ � 3 and drag is maximum, when τ � 0,
i.e. the case of impermeable cylinder. The formula for drag as given by Lamb [11] is

D � 4π

Re
(
0.5 − γ − log

(
Re
4

)) .
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Fig. 4 Stream function f
versus distance r
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Fig. 5 Radius of fluid
cylinder formed versus τ

The above formula is obtained by considering that at distance r,∇2 
q is comparable
with 1/Re. Barring this, our results are in agreement with Nieuwstadt and Keller [10]
for Re � 1. As in the case of impermeable cylinder, here also the drag is inversely
proportional to Reynolds number. From this, we can conclude that the permeability
of the body decreases the drag acting on the body. This result is similar to flow past
porous bodies, which reduce the drag.
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Fig. 6 Pressure at different values of Reynolds numbers and permeabilities τ

9 Conclusions

9.1 Drag

It is observed by mathematical analysis that at low Reynolds numbers the flow past a
permeable cylinder experiences reduction of drag and pressure on the surface. This
reduction is quite observable and can be comparable with impermeable case. This
has wide applications in aerospace research and industries.
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Numerical Solution of Load-Bearing
Capacity of Journal Bearing Using Shape
Function

Pooja Pathak, Vijay Kumar Dwivedi and Adarsh Sharma

Abstract The increasing demand of high speed with high reliability for longer life
and noiseless operation requires a compact size bearing. For the exact calculation
of load-bearing capacity requires mathematical expertise to solve two-dimensional
fluid flow Reynolds equation. In this chapter, Gauss–Legendre numerical integration
is used to calculate the load-carrying capacity of bearing.

Keywords Journal bearing · Shape function · Load bearing capacity

1 Introduction

Machine speed increased dramatically and bearings were central to rotary and linear
movements. Lubrication theory only gave its first step at the end of nineteenth century
though Hirn [1] and Petrov [2] verified experimentally that the drag was actually
caused by the shear rate within the fluid rather than by direct interaction between
two surfaces in relative motion. Sommerfeld [3] derived an analytical solution for the
Reynolds equation, which neglects the effect of bearing edges as well as occurrence
of film rupture. Gumbel [4] improved Sommerfeld solution by presenting the half-
Sommerfeld theory. In this approach, the negative pressure obtained at the divergent
portion of the gap is turned to zero. In the same context, Ockvirk [5] proposed
the short bearing theory and an approximate method to predict the behaviour of
narrowbearings,which aremore commonly used in industry because the long bearing
theory results were poor. Dwivedi et al. [6, 7] proposed a computer program for one-
dimensional journal bearing problem to find out journal trajectory as well as the
stability of bearing in different flow zones. To get the more realistic calculation of
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static and dynamic characteristics of journal bearing, the author proposed a two-
dimensional quadrilateral element for numerical integration in this chapter.

2 Analysis

Consider a journal bearing system as shown in Fig. 1, which shows the journal centre
Oj eccentric to bearing centreOb by eccentricity, e. External loadW is acting through
the journal centre Oj. Figure 2 is the expanded form of the bearing along the centre
line Ob-Oj.

The Reynolds equation which governs the flow of lubricating oil in the clearance
space of a journal bearing using linearized turbulence theory of Constantinescu [8]
is given by Eq. (1)

∂

∂x

[
h3

μKX

∂p

∂X

]
+

∂

∂Y

[
h3

μ KY

∂p

∂Y

]
� 1

2
U

∂h

∂X
+

∂h

∂t
(1)

where KX and KY are turbulent coefficients, and h can be expressed in terms of
journal centre (Xj, Zj) as

h � c − X j cosα − Z j sin α (2)

where h � h
c ; X j � X j

c ; Z j � Z j

c
Or

h � 1 − X j cosα − Z j sin α (3)

Fig. 1 Journal bearing
system with bearing
eccentricity, e
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For non-dimensionalization of Eq. (1), different terms of Eq. (1) are non-
dimensionalized as

h � h

c
; p � p

μrωr

( c

R

)2
;α � X

R
;β � Y

R
;μ � μ

μr

Ω � Ωr + ag
(
t − tr

)
, where t � ωt ; tr � ωr tr ;Ωr � Ωr

ωr
; āg � ag

ω2
r
.

After non-dimensionalization, Eq. (1) reduces to Eq. (4)

∂

∂α

[
h̄3

μ̄K̄α

∂ p̄

∂α

]
+

∂

∂β

[
h̄3

μ̄K̄β

∂ p̄

∂β

]
� 1

2
�̄

∂ h̄

∂α
+

∂ h̄

∂ t̄
(4)

After the substitution of h̄ fromEq. (3) into Eq. (4), the Reynolds equation reduces
to

∂

∂α

[
h̄3

μ̄K̄ α

∂ p̄

∂α

]
+

∂

∂β

[
h̄3

μ̄K̄ β

∂ p̄

∂β

]
� 1

2
�̄

(
X̄ j sin α − Z̄ j cosα

) − ¯̇X j cosα − ¯̇Z j sin α

(5)

If the approximation is made that the bearing is infinitely short such that the
pressure gradient in the circumferential direction is much smaller than the axial
direction, i.e.

∂ p̄

∂α
� ∂ p̄

∂β
(6)

Fig. 2 Development of fluid
film between journal surfaces
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The Reynolds equation reduces to

∂

∂β

[
h̄3

μ̄K̄ β

∂ p̄

∂β

]
� f (α) (7)

f (α) � 1

2
�̄

(
X̄ j sin α − Z̄ j cosα

) − ¯̇X j cosα − ¯̇Z j sin α (8)

Equation (7) is solved using boundary condition which is given as

(i)
∂ p̄

∂β
� 0 atβ � 0 (i i) p̄ � 0 atβ � ± L

D
� ±λ (9)

Integrating Eq. (7) with respect to β and using boundary conditions

∫
∂

∂β

[
h̄3

μ̄K̄β

∂ p̄

∂β

]
∂β � f (α)

∫
∂β i.e.

h̄3

μ̄K̄β

∂ p̄

∂β

� f (α)β + A1,
∂ p̄

∂β
� μ̄K̄β

h̄3
f (α)β + A2

Integrating again the above equation with respect to β

∫
∂ p̄

∂β
�

∫ (
μ̄K̄ β

h̄3
f (α)β + A2

)
∂β so, p̄ � μ̄K̄ β

h̄3
f (α)β2 + A2β + A3 (10)

Constant of integration A2 and A3 are obtained by using boundary condition p̄ �
0, at β � ±λ

A2 �0 and A2 � 0 and A3 � − μ̄K̄ β

h̄3
f (α)λ2

2
Now, by substituting values of A2 and A3 in Eq. (10), the pressure distribution is

obtained as

p̄ �
(

μ̄K̄ β

h̄3

)(
1

2
f (α)

(
β2 − λ2

))
(11)

The fluid film pressure is computed using Eq. (11) and to establish positive pres-
sure zone, all negative pressures are made zero.

The load-carrying capacity of journal bearing is found by integrating the pressure
over the positive pressure zone. Load-carrying capacity in circumferential and radial
direction is given by

FX � −
L/2∫

−L/2

α2R∫
α1R

p cosα dXdY ; (12)
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FZ � −
L/2∫

−L/2

α2R∫
α1R

p sin α dXdY (13)

Substituting X �α . R, Y �β . R and p � p̄μrωr
(
R
c

)2
in Eqs. (12) and (13), then

the load-carrying capacity FX and FY is obtained in non-dimensional form as given
by Eqs. (14a, b) and (15)

FX � −
λ∫

−λ

α2∫
α1

p̄μrωr

(
R

c

)2

. cosα Rdα . Rdβ (14a)

or

FXc2

μrωr R4
� −

λ∫
−λ

α1∫
α2

p̄. cosα dα.dβ; or F̄X � −
λ∫

−λ

α2∫
α1

p̄. cosα dα.dβ (14b)

and similarly load-carrying capacity in Z direction is given as

F̄Z � −
λ∫

−λ

α2∫
α1

p̄. sin α dα.dβ (15)

Now, substituting the value of p̄ fromEq. (11) in Eq. (14a, b), the non-dimensional
load-carrying capacity F̄X is given by

F̄X � −
λ∫

−λ

α2∫
α1

(
μ̄K̄ β

h̄3

)(
1

2
f (α)

(
β2 − λ2

))
. cosα dα.dβ

let

f1(α) � μ̄K̄ β

h̄3

(
f (α)

2

)
; (16)

So,

F̄X � −
λ∫

−λ

α2∫
α1

(
β2 − λ2

)
f1(α) cosα dα.dβ (17)

Similarly, for Z direction, the load-carrying capacity in non-dimensional form is
written as
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Fig. 3 Element in global
coordinates (α, β) and the
natural coordinates (ξ , η)

F̄Z � −
λ∫

−λ

α2∫
α1

(
β2 − λ2

)
f1(α) sin α dα.dβ (18)

Equations (17) and (18) are solved numerically using Gauss–Legendre numerical
integration over positive pressure zone. Implementation of numerical integration is
given below

For numerical integration, iso-parametric element equations are formulated using
natural coordinate system ξ and η that is defined by element geometry and not by the
element orientation in the global coordinate system,α andβ as shown in Fig. 3. There
are four nodes at the corners of the quadrilateral element. In the natural coordinate
system (ξ , η), the shape function can be generalized as follows:

Ni � 1

4
(1 + ξξi )(1 + ηηi ) where i � 1, 2, 3, 4

Hence,

N1 � 1

4
(1 − ξ )(1 − η); N2 � 1

4
(1 + ξ )(1 − η);

N3 � 1

4
(1 + ξ )(1 + η); N4 � 1

4
(1 − ξ )(1 + η) (19)

The transformation from global coordinate to natural coordinate is given as

∫ ∫
f (α, β)dα dβ �

1∫
−1

1∫
−1

f (ξ, η)Jdξ dη (20)

where J is Jacobian matrix of (α, β) with respect to (ξ , η), represented as
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[
dα
dβ

]
�

⎡
⎣

∂α
∂ξ

∂α
∂η

∂β

∂ξ

∂β

∂η

⎤
⎦

[
dξ

dη

]
� J T

[
dξ

dη

]
; (20a)

[
dξ

dη

]
�

⎡
⎢⎣

∂ξ

∂α

∂ξ

∂β

∂η

∂α

∂η

∂β

⎤
⎥⎦

[
dα
dβ

]
� J−T

[
dα
dβ

]
(20b)

where J−1 is inverse of the Jacobian matrix of (ξ , η) with respect to (α, β). For
numerical integration, f1(α) cosα and f1(α) sin α of Eqs. (17) and (18) are computed
at Gauss points after converting the equations in natural coordinate dα and dβ can
be obtained from Eq’s. (20a) and (20b) as

dα � ∂α

∂ξ
.dξ +

∂α

∂η
.dη (21)

dβ � ∂β

∂ξ
.dξ +

∂β

∂η
.dη (22)

Global coordinates (α, β) and the natural coordinates (ξ , η) are related with each
other by the help of shape functions (N1, N2, N3 and N4) as follows:

∂α

∂ξ
� α1

∂N1

∂ξ
+ α2

∂N2

∂ξ
+ α2

∂N3

∂ξ
+ α1

∂N4

∂ξ
; (23a)

∂α

∂η
� α1

∂N1

∂η
+ α2

∂N2

∂η
+ α2

∂N3

∂η
+ α1

∂N4

∂η
(23b)

∂β

∂ξ
� −λ

∂N1

∂ξ
+ λ

∂N2

∂ξ
+ λ

∂N3

∂ξ
− λ

∂N4

∂ξ
; (23c)

∂β

∂η
� −λ

∂N1

∂η
+ λ

∂N2

∂η
+ λ

∂N3

∂η
− λ

∂N4

∂η
(23d)

Derivatives of shape function with respect to natural coordinates can be obtained
by partially differentiating Eq. (19) which is given as

∂N1

∂ξ
� − (1 − η)

4
;
∂N2

∂ξ
� (1 − η)

4
;
∂N3

∂ξ
� (1 + η)

4
;
∂N4

∂ξ
� − (1 + η)

4
(24)

∂N1

∂η
� − (1 − ξ)

4
;
∂N2

∂η
� − (1 + ξ)

4
;
∂N3

∂η
� (1 + ξ)

4
;
∂N4

∂η
� (1 − ξ)

4
(25)

The values of ∂α
∂ξ

, ∂α
∂η

,
∂β

∂ξ
and ∂β

∂η
can be obtained by substituting the values of the

derivatives of shape function from Eqs. (24) and (25) into Eqs. (23a–23d) as

∂α

∂ξ
� α2 − α1

2
;
∂α

∂η
� 0,

∂β

∂ξ
� 0,

∂β

∂η
� λ (26)
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The values of dα and dβ can be obtained by substituting Eq. (26) into Eqs. (21)
and (22) as

dα � 1

2
(α2 − α1).dξ (27a)

and

dβ � λ.dη (27b)

Forces F̄X and F̄Z can be obtained by substituting the value of dα and dβ from
Eq. (27a) and (27b) into Eqs. (17) and (18), respectively. Now, Eq. (17) can bewritten
as Eq. (28a)

F̄X � −
ξ�1∫

ξ�−1

f (ξ)
1

2
(α2 − α1)

⎛
⎜⎝

η�1∫
η�−1

(
β2 − λ2

)
λdη

⎞
⎟⎠dξ (28a)

where f (ξ) � f1(α) cosα

or

F̄X �
ne∑
e�1

⎡
⎣NGauss point∑

i�1

Wi f (ξi )
1

2
(α2 − α1)

⎛
⎝NGauss point∑

j�1

Wj
(
β2 − λ2

)
λ

⎞
⎠

⎤
⎦ (28b)

where Wi and Wj are weights, depending on number of Gauss points selected for
integration.

Equation (18) can be written as Eq. (29a)

F̄Z � −
ξ�1∫

ξ�−1

f ′(ξ)
1

2
(α2 − α1)

⎛
⎜⎝

η�1∫
η�−1

(
β2 − λ2

)
λdη

⎞
⎟⎠dξ (29a)

where f ′(ξ) � f1(α) sin α

or

F̄Z �
ne∑
e�1

⎡
⎣NGauss point∑

i�1

Wi f
′(ξi )

1

2

(
αe
2 − αe

1

)⎛⎝NGauss point∑
j�1

Wj
(
β2 − λ2

)
λ

⎞
⎠

⎤
⎦ (29b)
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3 Conclusion

The investigations in this chapter were concerned with the theoretical study of load-
carrying capacity of the journals in laminar as well as super laminar regimewith short
bearing approximation. The analysis and numerical solution algorithm were used to
compute the load-carrying capacity of a bearing. These studies were conducted by
taking 0.5 aspect ratio, assuming bearing and journal axes parallel and ratio of nom-
inal clearance to the journal radius 0.001 (C/R�0.001). By using Gauss–Legendre
numerical integration method, the forces in X as well as Z direction are easily found
out with the help of a computer program. The output of the computer program is
further used to find out other static and dynamic characteristics of journal bearing.
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A Numerical Scheme for Solving
a Coupled System of Singularly
Perturbed Delay Differential Equations
of Reaction–Diffusion Type

Trun Gupta and P. Pramod Chakravarthy

Abstract In this work, a coupled system of singularly perturbed delay differential
equations of reaction–diffusion type is solved by applying a fitted numerical scheme
based on cubic spline in tension. Numerical examples are provided to illustrate the
efficiency and applicability of the method.

Keywords Singular perturbation · Coupled system · Delay differential equation
Reaction–diffusion problem

1 Introduction

If the future state of the system is dependent of past states, the governing differential
equations contain delay arguments. A subclass of these equations consists of singu-
larly perturbed delay differential equations. These types of equations arise frequently
in modelling of the human pupil light reflex [1], model of HIV infection [2, 3] and
many other areas in applied mathematics. The difference between the non-delay and
delay singularly perturbed problems is that sometimes delay problems exhibit extra
interior layers. Numerical analysis of singularly perturbed problems is a matured
mathematical research area but numerical analysis of singularly perturbed problems
with delay terms is in initial stage. Kadalbajoo and Sharma [4], PramodChakravarthy
et al. [5] proposed fitted operator schemes for solving singularly perturbed delay dif-
ferential equations. Only a few results are reported in the literature for solving system
of singularly perturbed delay differential equations. Subburayan and Ramanujam [6]
suggested initial value technique for solving these types of problems. For the numer-
ical solution of coupled system of singularly perturbed delay differential equations,
Selvi and Ramanujam [7, 8] proposed iterative numerical methods. In this work, we
studied a fitted operator scheme to solve the coupled system of singularly perturbed
reaction–diffusion delay differential equations.
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2 Statement of the Problem

Consider the following coupled system of singularly perturbed delay differential
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εy′′
1(x) + ∑2

k=1 a1k(x)yk(x)

+∑2
k=1 b1k(x)yk(x − 1) = f1(x), x ∈ Ω,

−εy′′
2(x) + ∑2

k=1 a2k(x)yk(x)

+∑2
k=1 b2k(x)yk(x − 1) = f2(x), x ∈ Ω,

y1(x) = φ1(x), x ∈ [−1, 0], y1(2) = l1,

y2(x) = φ2(x), x ∈ [−1, 0], y2(2) = l2,

(1)

where 0 < ε � 1, l1, l2 are real constants.

a11(x) > 0, a22(x) > 0, a12(x) ≤ 0, a21(x) ≤ 0,

ai1(x) + ai2(x) ≥ αi ≥ α > 0, i = 1, 2,

bij(x) ≤ 0, i = 1, 2, j = 1, 2,

− β ≤ −βi ≤ bi1(x) + bi2(x) < 0, i = 1, 2,

α − β > 0, the functions aik , bik , fi ∈ C4(Ω̄), i = 1, 2, k = 1, 2, Ω = (0, 2), Ω̄ =
[0, 2] and φi, i = 1, 2 is smooth function on [−1, 0]. Here, Cn(Ω) stands for class
of n times continuously differentiable functions in Ω .

3 Derivation of Method

A difference scheme based on cubic spline in tension is derived in this section.
Let x0 = 0, x2N = 2, xi = ih, i = 1, 2, .... 2N − 1, where h is step size.
The functions Sj(x, τ ) = Sj(x), j = 1, 2 satisfying the differential equations

S ′′
j (x) − τSj(x) = [S ′′

j (xi) − τSj(xi)] (xi+1 − x)

h
+ [S ′′

j (xi+1) − τSj(xi+1)] (x − xi)

h
(2)

in [xi, xi+1], where Sj(xi) = Yj(xi) � yj(xi), j = 1, 2 and τ > 0 are termed as cubic
spline in tension.
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Equation (2) is a linear second-order differential equation. On solving, we get

Sj(x) = Aje
λ
h x + Bje

− λ
h x +

(
Mj,i − τYj,i

τ

) (
x − xi+1

h

)

+
(
Mj,i+1 − τYj,i+1

τ

) (
xi − x

h

)

.

Here, Aj and Bj are the arbitrary constants which can be determined by using inter-
polatory conditions
Sj(xi+1) = Yj,i+1, Sj(xi) = Yj,i for j = 1, 2.
Writing λ = hτ

1
2 and Mj,i = S ′′

j (xi), we get

Sj(x) = h2

λ2 sinh λ
[Mj,i+1 sinh

λ(x − xi)

h
+ Mj,i sinh

λ(xi+1 − x)

h
]

− h2

λ2
[ (x − xi)

h
(Mj,i+1 − λ2

h2
Yj,i+1) + (xi+1 − x)

h
(Mj,i − λ2

h2
Yj,i)]. (3)

Differentiating Eq. (3) and taking limit x → xi, we get

S ′
j (x

+
i ) = Yj,i+1 − Yj,i

h
− h

λ2
[(1 − λ

sinh λ
)Mj,i+1 − (1 − λ coth λ)Mj,i].

Similarly, we can find

S ′
j (x

−
i ) = Yj,i − Yj,i−1

h
+ h

λ2
[−(1 − λ coth λ)Mj,i + (1 − λ

sinh λ
)Mj,i−1].

By equating both in the above and simplifying, we get a tridiagonal system

h2(λ1Mj,i−1 + 2λ2Mj,i + λ1Mj,i+1) = Yj,i+1 − 2Yj,i + Yj,i−1, i = 1, 2, . . . 2N − 1
(4)

for j = 1, 2, where λ1 = 1
λ2 (1 − λ

sinh λ
), λ2 = 1

λ2 (λ coth λ − 1) and Mj,i = S ′′
j (xi),

i = 1, 2, ...., 2N − 1.
We can solve the differential Eq. (4), provided it is consistent. This condition is
satisfied, when λ1 + λ2 = 1

2 .
We write the boundary conditions as Yj,i = φj,i, −N ≤ i ≤ 0,
Yj,2N = βj, where φj,i = φj(xi).
We consider the notation
a1j(xi) = a1j,i, a2j(xi) = a2j,i, b1j(xi) = b1j,i, b2j(xi) = b2j,i and fj(xi) = fj,i.
From Eq. (1), we have

εM1,k = a11,kY1,k + a12,kY2,k + b11,kY1(xk − 1) + b12,kY2(xk − 1) − f1,k

εM2,k = a21,kY1,k + a22,kY2,k + b21,kY1(xk − 1) + b22,kY2(xk − 1) − f2,k .
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Substituting M1,k and M2,k with k = i, i ± 1 in Eq. (4), we get the following linear
system of equations for Y1,i and Y2,i:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−ε + λ1h2a11,i−1)Y1,i−1 + (2ε + 2λ2h2a11,i)Y1,i + (−ε + λ1h2a11,i+1)Y1,i+1

+h2(λ1a12,i−1Y2,i−1 + 2λ2a12,iY2,i + λ1a12,i+1Y2,i+1)

= h2[{λ1f1,i−1 + 2λ2f1,i + λ1f1,i+1}
−{λ1b11,i−1Y1(xi−1−N ) + 2λ2b11,iY1(xi−N ) + λ1b11,i+1Y1(xi+1−N )}
−{λ1b12,i−1Y2(xi−1−N ) + 2λ2b12,iY2(xi−N ) + λ1b12,i+1Y2(xi+1−N )}],

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−ε + λ1h2a22,i−1)Y2,i−1 + (2ε + 2λ2h2a22,i)Y2,i + (−ε + λ1h2a22,i+1)Y2,i+1

+h2(λ1a21,i−1Y1,i−1 + 2λ2a21,iY1,i + λ1a21,i+1Y1,i+1)

= h2[{λ1f2,i−1 + 2λ2f2,i + λ1f2,i+1}
−{λ1b22,i−1Y2(xi−1−N ) + 2λ2b22,iY2(xi−N ) + λ1b22,i+1Y2(xi+1−N )}
−{λ1b21,i−1Y1(xi−1−N ) + 2λ2b21,iY1(xi−N ) + λ1b21,i+1Y1(xi+1−N )}]

for i = 1, 2, . . . 2N − 1. (5)

To obtain the solution of (1), we introduce a fitting factor (c.f. [9])

σj(ρ) = ρ2bjj(x)

4 sinh2( 12ρ
√
bjj(x))

, j = 1, 2,

where ρ = h
ε
in system (5).

By using the fitting factor, scheme (5) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−εσ1 + λ1h
2a11,i−1)Y1,i−1 + (2εσ1 + 2λ2h2a11,i)Y1,i + (−εσ1 + λ1h

2a11,i+1)Y1,i+1

+h2(λ1a12,i−1Y2,i−1 + 2λ2a12,iY2,i + λ1a12,i+1Y2,i+1)

= h2[{λ1f1,i−1 + 2λ2f1,i + λ1f1,i+1}
−{λ1b11,i−1Y1(xi−1−N ) + 2λ2b11,iY1(xi−N ) + λ1b11,i+1Y1(xi+1−N )}
−{λ1b12,i−1Y2(xi−1−N ) + 2λ2b12,iY2(xi−N ) + λ1b12,i+1Y2(xi+1−N )}],

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−εσ2 + λ1h
2a22,i−1)Y2,i−1 + (2εσ2 + 2λ2h2a22,i)Y2,i + (−εσ2 + λ1h

2a22,i+1)Y2,i+1

+h2(λ1a21,i−1Y1,i−1 + 2λ2a21,iY1,i + λ1a21,i+1Y1,i+1)

= h2[{λ1f2,i−1 + 2λ2f2,i + λ1f2,i+1}
−{λ1b22,i−1Y2(xi−1−N ) + 2λ2b22,iY2(xi−N ) + λ1b22,i+1Y2(xi+1−N )}
−{λ1b21,i−1Y1(xi−1−N ) + 2λ2b21,iY1(xi−N ) + λ1b21,i+1Y1(xi+1−N )}]

for i = 1, 2, . . . 2N − 1. (6)

Gauss elimination method with partial pivoting is used to solve the above system of
equations.
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4 Numerical Examples

To check the robustness of the proposed method, it is tested on two examples. Nu-
merical results are presented for λ1 = 1

12 , λ2 = 5
12 . To find the maximum absolute

pointwise errors, we use the double mesh principle given in Doolan et al. [9]

EN
i,ε = max

0≤j≤N
|YN

i,j − Y 2N
i,2j |,

for i = 1, 2. Here, YN
i,j and Y

2N
i,2j denote the jth and 2jth components of the numerical

solutions with mesh points N and 2N , respectively.

Example 1 Consider the system of delay differential equation with the boundary
conditions as follows [6]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−εy′′
1(x) + 11y1(x) − (x2 + 1)y1(x − 1) − (x + 1)y2(x − 1) = exp(x),

−εy′′
2(x) + 16y2(x) − xy1(x − 1) − xy2(x − 1) = exp(x),

y1(x) = 1, x ∈ [−1, 0], y1(2) = 1,

y2(x) = 1, x ∈ [−1, 0], y2(2) = 1.

The maximum absolute errors are tabulated in Tables1 and 2 for different values of
perturbation parameter ε. The numerical solution for this example is plotted in Fig. 1
for ε = 2−8,N = 128.

Example 2 Consider the system of delay differential equation with the boundary
conditions as follows [6]:

Table 1 Maximum absolute errors of Example 1 for different values of ε for Y1
ε/M 64 128 256 512 1024 2048

2−4 1.9055e−003 1.0824e−003 6.3655e−004 3.5180e−004 1.8562e−004 9.5420e−005

2−6 9.8148e−003 1.8815e−003 1.0747e−003 6.3428e−004 3.5118e−004 1.8546e−004

2−8 3.3235e−002 9.8070e−003 1.8763e−003 1.0726e−003 6.3356e−004 3.5097e−004

2−10 5.3896e−002 3.3120e−002 9.7970e−003 1.8753e−003 1.0719e−003 6.3330e−004

2−12 7.3776e−002 5.3626e−002 3.3057e−002 9.7905e−003 1.8752e−003 1.0716e−003

2−14 8.0605e−002 7.3775e−002 5.3488e−002 3.3024e−002 9.7868e−003 1.8752e−003

2−16 8.0891e−002 8.0605e−002 7.3774e−002 5.3418e−002 3.3007e−002 9.7849e−003
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Table 2 Maximum absolute errors of Example 1 for different values of ε for Y2
ε/M 64 128 256 512 1024 2048

2−4 2.7328e−003 6.7631e−004 2.6633e−004 1.4628e−004 7.7040e−005 3.9576e−005

2−6 1.1435e−002 2.7313e−003 6.7593e−004 2.6562e−004 1.4607e−004 7.6984e−005

2−8 3.8907e−002 1.1434e−002 2.7310e−003 6.7584e−004 2.6544e−004 1.4601e−004

2−10 7.5940e−002 3.8906e−002 1.1434e−002 2.7309e−003 6.7582e−004 2.6540e−004

2−12 9.9406e−002 7.5939e−002 3.8905e−002 1.1434e−002 2.7309e−003 6.7582e−004

2−14 1.0417e−001 9.9406e−002 7.5938e−002 3.8905e−002 1.1434e−002 2.7309e−003

2−16 1.0427e−001 1.0417e−001 9.9406e−002 7.5938e−002 3.8905e−002 1.1434e−002

Fig. 1 Numerical sol. of Example 1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εy′′
1(x) + 11y1(x) − (x2 + 1)y1(x − 1) − (x + 1)y2(x − 1) =

{
−1 0 < x < 1

1 1 < x < 2

−εy′′
2(x) + 16y2(x) − xy1(x − 1) − xy2(x − 1) =

{
1 0 < x < 1

−1 1 < x < 2

y1(x) = 1, x ∈ [−1, 0], y1(2) = 1,

y2(x) = 1, x ∈ [−1, 0], y2(2) = 1,

The maximum absolute errors are tabulated in Tables3 and 4 for different values of
perturbation parameter ε. The numerical solution for this example is plotted in Fig. 2
for ε = 2−8,N = 128.
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Table 3 Maximum absolute errors of Example 2 for different values of ε for Y1
ε/M 64 128 256 512 1024 2048

2−4 8.4748e−03 5.0222e−03 2.7915e−03 1.4784e−03 7.6160e−04 3.8662e−04

2−6 1.4385e−02 8.4814e−03 5.0225e−03 2.7912e−03 1.4783e−03 7.6156e−04

2−8 2.9969e−02 1.4403e−02 8.4872e−03 5.0233e−03 2.7913e−03 1.4783e−03

2−10 6.4678e−02 2.9913e−02 1.4414e−02 8.4906e−03 5.0238e−03 2.7913e−03

2−12 9.2219e−02 6.4674e−02 2.9888e−02 1.4420e−02 8.4924e−03 5.0241e−03

2−14 1.0075e−01 9.2218e−02 6.4673e−02 2.9875e−02 1.4423e−02 8.4934e−03

2−16 1.0111e−01 1.0075e−01 9.2218e−02 6.4673e−02 2.9869e−02 1.4424e−02

Table 4 Maximum absolute errors of Example 2 for different values of ε for Y2
ε/M 64 128 256 512 1024 2048

2−4 7.8748e−03 3.6345e−03 1.7272e−03 8.3931e−04 4.1335e−04 2.0507e−04

2−6 1.7163e−02 7.8617e−03 3.6326e−03 1.7269e−03 8.3927e−04 4.1334e−04

2−8 4.0925e−02 1.7117e−02 7.8546e−03 3.6316e−03 1.7268e−03 8.3924e−04

2−10 8.1107e−02 4.0923e−02 1.7094e−02 7.8509e−03 3.6310e−03 1.7267e−03

2−12 1.0651e−01 8.1109e−02 4.0923e−02 1.7082e−02 7.8490e−03 3.6307e−03

2−14 1.1166e−01 1.0652e−01 8.1111e−02 4.0923e−02 1.7076e−02 7.8481e−03

2−16 1.1176e−01 1.1166e−01 1.0652e−01 8.1112e−02 4.0923e−02 1.7073e−02

Fig. 2 Numerical sol. of Example 2
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5 Conclusions

In thiswork,weproposed afitted numerical scheme for a coupled systemof singularly
perturbeddelaydifferential equations of reaction–diffusion type.Themethod is based
on cubic spline in tension. The proposedmethod is tested on two numerical examples
and the results are presented in tables. Numerical experiments show that the proposed
method produces oscillation-free solution everywhere in the domain of integration. It
can also be observed that maximum absolute errors are decreasing with the decrease
of mesh parameter h. It shows the convergence of the computed solution.
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A Computational Study on the Stenosis
Circularity for a Severe Stenosed
Idealized Artery

B. Prashantha and S. Anish

Abstract Narrowing of blood vessels (stenosis) changes the nature of blood flow
through the arteries. The altered flow structures at the downstream of stenosis may
generate adverse effects on the arterial wall. Hence, an understanding of the effect
of stenosis circularity on the flow behavior at the downstream of stenosis is clini-
cally beneficial. The present study has been carried out on idealized stenosed artery
model with severe case of stenosis (75% area reduction) but with the same cross-
sectional area that has been selected for the study. The effect of different physiological
states (pulse rates) study has been examined through using FLUENT Inc. solver by
finite volume method, controlled through user-defined functions. The results indi-
cate that the velocity profiles, oscillatory shear stress, and fluid residence time are
significantly affected by the shape of the stenotic region. Fluid residence time in the
downstream plays a significant role in understanding the hotspots for the secondary
deposition/plaque.

Keywords Stenosis · Atherosclerosis · Streamlines · Oscillatory shear index
(OSI)

1 Introduction

Several autopsy studies have demonstrated 70–80% of cardiovascular diseases
(atherosclerosis/plaque) that occur at complex geometries [1]. Continuous develop-
ment of plaque causes narrowing of the vessel lumen (known as stenosis) and looses
its flexibility. These plaques/stenoses resist the blood flow in the vessels and create
significant flow disturbances. Quite often, the adhesion of new cells on the vessels’
wall occurs at regions where the wall shear stress is lower [2]. Large plaque for-
mation/uneven manner of plaque buildup in the artery changes the wall shear stress
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distribution on the arterial walls. In a normal healthy person, blood flow through
the artery is laminar. However, the presence of new cells in the blood flow and its
adhesion on the arterial wall make the flow transitional to turbulence [3]. Nature
of deposition of new cells on the arterial wall will not be uniform, resulting in an
asymmetric [4]. Plaque nature will vary from patient to patient [1]. Some plaque
curvature and/or arterial wall avoid accumulation of cells or secondary plaques on
the arterial wall [5]. A study on accurate prediction of plaque formation/development
with pulsatile flow has been more essential.

Blood flow through the stenotic arteries has been extensively studied in the past
few decades; however, up to the author knowledge, not much work has been reported
onpulsatile bloodflow through the stenosed artery having different circularity shapes.
The objective of the presentwork is to numerically analyze the blood flow through the
idealized stenotic arteries, in the presence of different stenosis circularity effects on
the flow stability. Consider plaques with a different curved nature of elliptical shapes
and maintain the same percentage of area reduction (75% area reduction). The study
has been mainly focused on being adhesion of platelets/new cells in the post-stenotic
region through OSI, RRT, and WSS. Recognizing the features of downstream flow
behavior contributes to the clinicians to make early interventions in patients.

2 Methods

Patient-specific model is too irregular and unique for each subject. Hence, the simu-
lations with patient-specific geometry create difficulties in identifying and separating
out the effect of any single parameter on the flow behavior. Hence, the present study
has followed the idealized Ahmed and Giddens models [6]. The idealized stenotic
geometry models were constructed with keeping the same degree of stenosis (75%
by area reduction). The geometry of an idealized artery model has been scaled up
keeping the dynamic similarity. Inlet and outlet diameters (D) are 2 in. Upstream
length will be 94D, and downstream region has length of 36D that is considered
from the throat section shown in Fig. 1. Different circularities at the stenosis models
have been constructed by increasing the percentage of minor axis distance of ellipse
and maintained the same percentage of area blockage (stenosis) for all the cases.
Three-dimensional model has been generated, and the grid generation is carried out
using ICEMCFD.

2.1 Problem Setup

Blood is treated as continuous fluid; time-averaged Navier–Stokes equation was
solved by means of using Pressure Implicit Splitting of Operators (PISO) algorithm.
The turbulence methodology adopted for this study is the traditional RANS simula-
tion with standard k-omegamodel, which incorporates low Reynolds number effects
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Fig. 1 Asymmetric stenosis
geometry with different
circularities at the throat
region

(a)

(b)

(c)

Case 1(a) Case 2(b) Case 3(c)

94D 36D
-1D 1D

Fig. 2 The pulsatile inflow velocity profile obtained from Ahmed and Giddens [6]. Where U/U0
is the normalized velocity and t/T is the normalized cardiac pulse. T1 and T2, are the peak and
decelerating time instances

and shear flow spreading. The turbulence intensity of 7.2% and a length scale of
0.003556 m are used. The simulation was carried out by finite volume method using
FLUENT. Time-varying velocity profile was used as inlet boundary condition one
used byAhmed andGiddens for the in vitro analysis shown in Fig. 2, and the velocity
profile as a function of time (t) may be expressed in Eq. (1). At the outlet, outflow
boundary condition is applied. The range of Reynolds number 200–1000 used in the
idealized artery model simulation is similar to the human non-bifurcating artery [6].
The boundary wall is assumed to be rigid, and no-slip condition is specified [5, 7].
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V (t) �
[
0.85

20
+
0.56

20
× cos(2 × π × t

20
) − 50.6

20

]
. (1)

2.2 Validation

The present computational study has been validated with Ahmed and Giddens [6]
experimental result as shown in Fig. 3. The results obtained by the present simulation
are compared with experimental results obtained by the Ahmed and Giddens [6].
Plotted results in the post-stenotic region at 1D and 1.5D show that the computed
values are in good agreement with the experimental results.

Grid independence studies are oneof themost important steps in the computational
work. It has been carried out to arrive at an optimum number of grid elements for
the numerical study. The study was carried out for four different mesh elements (3.5,
6.4, 7.8, and 8.7 lakh). Comparing the velocity profiles at proximal to the stenosis
(−1D) predicts 6.4 and 7.8 lakh elements that follow the same trend of fine-mesh
plot (8.7 lakh), and a discrepancy of less than 0.5% can be observed. Hence, further
simulations are carried out for grids with 6.8 lakh elements and the same number of
elements can be adopted for all the models.
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Fig. 3 Axial velocity comparison during peak time step in the post-stenosis region a Plane at 1D
location b Plane at 1.5D location
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3 Results and Discussion

3.1 Flow Behavior in the Downstream

The stenosis circularity in a diseased artery causes the flow scattering in the down-
stream during cardiac cycle [8]. Figure 4 represents the behavior of axial velocity
during peak and decelerating time instances. Circularity of stenosis is visible pri-
marily along the XY-plane, and hence it is worth to study the flow behavior along
the XY-plane. The results are plotted at different time instances (systolic, peak, and
decelerating) along the axial direction. The percentage variation in the minor axis of
stenotic region (ellipse) generates significant flow disturbances in the downstream.
Case-3 exhibits a symmetric pattern in the velocity distribution, similar to a fully
developed velocity profile. However, for the other two cases, where the stenosis is
more elliptic, the velocity profiles are far from symmetry.

Diseased artery with case-1 and case-2 types of stenoses follows similar trends
than case-3, which carries set of multiple vortices along the stream. However, in
case-1 and case-2, the reverse flows can be observed near to the wall region with
low magnitude of axial velocity at one side of the wall shown in Fig. 4. Shifting of
peak velocity from one end of the wall toward other predicts swaying motion of jet
in the cardiac cycle. The newly formed shear layers, by stenotic jet, fluctuate the

Fig. 4 Comparison of streamwise velocity profile with different stenosis circularities a Peak time
step b Deceleration time step
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Case-1

Case-2

Case-3

Reverse flow

Counter rota ng vortex

1D 1.5D 2D 3D 4D

Fig. 5 Distributed surface streamlines in the downstream during deceleration time step

flow of streamlines in the post-stenotic region. Swaying motion of plug flow in the
downstream side is an evidence for the presence of secondary flows [9], and this can
be observed in case-1 and case-2 types of stenoses.

The presence of transformational vortices and/or reverse flow in the downstream
can be analyzed with the help of surface streamlines shown in Fig. 5. Streamlines’
plot in the downstream clearly describing case-3 carries set of liked multiple vortices
and swirl nature of flow along the wall side. However, in case-1 and case-2 near to the
wall, reverse flow can be observed. Linge [5] and Zovatto [9] stated that swirl/helical
flow nature in the post-stenotic region slow downs the occlusion rate and improves
self-cleaning. Multiple linked vortices provoke fluid to move at faster rate, and hence
there will be less chances of occlusion in case-3.

3.2 Oscillatory Shear Index (OSI)

Atherosclerotic regions are widely observed in the complex geometries with high-
oscillatory and low-wall shear stress [4]. OSI measures the cyclic departure of the
wall shear stress vectors from its predominant flow direction. OSI values vary from 0
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Fig. 6 Spatial variation of oscillatory shear index along outer wall of the XY-plane

to 0.5; high values ofOSI predict rupture and/or further localization of atherosclerosis
(plaque) [1, 10], and it can be defined as

OSI � 0.5

⎡
⎢⎢⎢⎢⎣1 −

∣∣∣∣∣
T∫
0

−→
wss

∣∣∣∣∣
T∫
0

∣∣−→
wss

∣∣

⎤
⎥⎥⎥⎥⎦, (2)

where T is the pulse period and →
WSS

is the instantaneous wall shear stress. Figure 6a

and b represents the OSI values on the inner and outer walls of the lumen, starting
from throat to 11D. Sadeghi [11] stated that the larger oscillating nature of flow and
low WSS in the cardiac pulse represent the major plaque development in the post-
stenotic region. During pulsatile flow, stenosed artery with case-1 and case-2 shows
high values of OSI. Oscillated shear stress predicts that there will be more chances
of secondary plaque progression in the downstream.

4 Conclusion

The present study investigates the simulation of pulsatile blood flow through an
idealized artery with different elliptical stenosis curvatures. A thorough understand-
ing of flow behavior streamlines, vortices, and OSI in the artery concluded major
clinical interventions. An artery with circular (case-3) type of stenosis at the throat
generates more helical structures (spinning). Spinning nature of flow carries deoxy-
genated blood away from the stenosis region, which leads to lower residence time
of atherogenic particles. However, in case-1 and case-2, the presence of primary and
secondary recirculation zones in the downstream accumulates deoxygenated blood.
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Insufficient oxygen (mass transfer) in the blood makes the particles inactive and
later on the particles stick to the wall. Presence of multiple linked vortices (swirling
nature) in the flow improves self-cleaning in the arterial passage. Patients with com-
plex circularity in the stenotic region may have further chances of plaque deposition.
Hence, they may be advised for an early clinical intervention.
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Flow and Heat Transfer of Carbon
Nanotubes Nanofluid Flow Over a 3-D
Inclined Nonlinear Stretching Sheet
with Porous Media

Shalini Jain and Preeti Gupta

Abstract A numerical study of boundary layer flow of carbon nanotubes (CNTs)
nanofluid over a three-dimensional inclined nonlinear stretching sheet in the pres-
ence of seawater with porous medium under the convective boundary conditions
have been investigated. In this paper, we have considered both single-wall carbon
nanotube (SWCNT) andmultiwall carbon nanotube (MWCNT). Using suitable simi-
larity transformations, the governing equations are changed into ordinary differential
equations. The reduced equations are solved numerically by applying Runge–Kutta
fourth-order method with shooting technique. The influence of the relevant parame-
ters on the fluid velocity and temperature is discussed and presented graphically.

Keywords CNTs · Porous media · Nonlinear stretching sheet

1 Introduction

Boundary layer flow through a nonlinear stretching surface has wide applications in
engineering and industrial process such as aerodynamics, extrusion of plastic sheets,
paper and glass fiber production, etc. Hayat et al. [1] studied three-dimensional
nanofluid flowwith convective boundary conditions over a stretchingMHDnonlinear
surface. Jain and Parmar [2] studied radiative Williamson fluid flow over stretching
cylinder in the presence of porous medium with heat source. Gopal et al. [3] studied
Joule’s and viscous dissipation on Casson fluid flow with inclined magnetic field
over a chemical reacting stretching sheet. Kandasamy et al. [4] discussed MHD
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SWCNT-type nanofluid flow in the occurrence of the base fluids: water and seawater.
Among the usual nanoparticles, carbon nanotubes have attracted special interest
due to high thermal conductivity and hexagonally shaped arrangements of carbon
atoms that have been rolled into tubes. CNTs are used in several devices such as gas
storage, radar-absorbing coating, ultra-capacitors, batteries with improved lifetime,
conductive plastics, and also used in biosensors, medical devices due to their higher
chemical compatibility with biomolecules, i.e., DNA, proteins, and purification of
contaminated drinking water. First, nanofluids were introduced by Choi [5]. Hayat
et al. [6] discussed three-dimensional flow of CNTs for homogenous–heterogeneous
reactions in the presence of porous media. Jain and Choudhary [7] studied the impact
of boundary layer flow due to shrinking exponentially sheet with MHD, porous
media, and slip.

Convective boundary condition represents heat transfer rate across the surface. In
other words, the convective boundary condition increases the thermal conductivity
and the temperature of nanofluids. Many researchers Mahanthesh et al. [8], Jain and
Bohra [9], Das et al. [10], Junaid et al. [11], and Nayak [12] discussed radiative
heat transfer in 3D MHD flow of nanofluid over a stretching sheet with convective
boundary conditions.

This paper aimed to study flow and heat transfer of seawater-based CNT’s
nanofluid over an inclined 3D nonlinear stretching sheet under convective surface
boundary conditions. The governing inclined nonlinear system is evaluated through
Runge–Kutta fourth-order method with shooting technique. Velocity and tempera-
ture profiles are obtained and presented through figures.

2 Formulation of the Problem

Consider flow and heat transfer of seawater-based carbon nanotubes over a nonlinear
inclined 3-D stretching sheet with porous media under the convective boundary
condition. Velocities along x- and y-directions areUw � c(x + y)n, Vw � d(x + y)n,
where n >0, where c and d are positive constants (see Fig. 1).

The governing equations of continuity, momentum, and energy of nanofluid flow
are as follows:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
� 0 (1)

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
� υn f

∂2u

∂z2
− υn f

kp
u + g[βT (T − T∞)] cosα, (2)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
� υn f

∂2v

∂z2
− υn f

kp
v + g[βT (T − T∞)]sinα, (3)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
� kn f(

ρcp
)
n f

∂2T

∂z2
− 1

(
ρcp

)
n f

∂qr
∂z

, (4)
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Fig. 1 Schematic diagram

nf w
Tk (T T),
z

γ∂− = −
∂

x
α1

y
Vw

z

under the boundary conditions

at z � 0, u � c(x + y)n, v � d(x + y)n, w � 0

− kn f
∂T

∂z
� γ (Tw − T ) (5)

at z → ∞, u → 0, T → T∞, (6)

where u, v, w are fluid velocities along x-, y-, and z-directions, respectively;
kpv → 0 is the permeability of porous medium; βT is the thermal expansion.
Also, μn f , υn f , φ, ρn f , ρCNT are the viscosity, kinematic viscosity, volume fraction,
density, and carbon nanotube, respectively. Thermophysical properties of fluid and
nanoparticles are given in Table 1

μn f � μ f

(1 − φ)2.5
, υn f � μn f

ρn f
, (ρCp)n f � (1 − ϕ)2.5(ρCp) f + ϕ(ρCp)CNT . (7)

Table 1 Thermophysical properties of base fluid and nanoparticles

Physical
characteristics

Seawater (Basefluid) SWCNT
(nanoparticle)

MWCNT
(nanoparticle)

ρ (kg/m3) 1021 2600 1600

Cp(J/kg K) 4000 425 796

k(W/m K) 0.6015 6600 3000
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The thermal conductivity of nanofluid is expressed as

kn f
k f

�
⎛

⎝
1 − φ + 2φ

(
kCNT

kCNT −k f

)
ln

(
kCNT +k f

2k f

)

1 − φ + 2φ
(

k f

kCNT −k f

)
ln

(
kCNT +k f

2k f

)

⎞

⎠. (8)

The Rosseland approximation is expressed as

qr � −4σ ∗

3k∗
∂T 4

∂z
, (9)

where k∗ is the mean absorption coefficient and σ ∗ is the Stefan–Boltzmann con-
stant. The temperature difference has been considered very small, so that T 4 may be
communicated as a linear function of temperature.

T 4 ≈ 4T 3
∞T − 3T 4

∞ (10)

Similarity transformations are u � c(x + y)n f ′(η), v � c(x + y)ng′(η),

w � −
(
cυ f (n + 1)

2

)1/2

(x + y)
n−1
2

{
( f + g) +

n − 1

n + 1
η
(
f ′ + g′)

}
,

η �
(
c(n + 1)

2υ f

)1/2

(x + y)
n−1
2 z, T − T∞ � (Tw − T∞)θ, (11)

On substituting Eq. (11) in Eqs. (1)–(4), Eq. (1) is identically satisfied and
Eqs. (2)–(4) are converted into the following form:

f ′′′ + (1 − φ)2.5A1

{
( f + g) f ′′ − 2n

n + 1

(
f ′ + g′) f ′ + 2

n + 1
δ cosα1θ

}
− 2K

n + 1
f ′ � 0 (12)

g′′′ + (1 − φ)2.5A1

{
( f + g)g′′ − 2n

n + 1

(
f ′ + g′)g′ + 2

n + 1
δ sin α1θ

}
− 2K

n + 1
g′ � 0 (13)

1

A2 Pr

(
A3 +

4

3
R

)
θ ′′ + ( f + g)θ ′ � 0, (14)

under the boundary condition

at η � 0 f (0) � g(0) � 0, f ′(0) � 1, g′(0) � α, θ(0) � 1 +
A3

Bi
θ ′(0),

at η → ∞ f ′(∞) → 0, g′(∞) → 0, θ(∞) → 0, (15)

where K � υ f

k pc(x+y)n−1 is the local porosity parameter, α � d
c is the ratio parameter,

R � 4σ ∗T 3∞
k∗k f

is the radiation parameter, and Pr � μ f (cp) f

k f
is the Prandtl number.

Assuming A1 � (1 − φ) + φ
ρCNT

ρ f
, A2 � (1 − φ) + φ

(ρCp)CNT

(ρCp) f

, A3 � kn f
k f

.
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Converted nondimensional ordinary differential Eqs. (12–14) under the boundary
conditions (15) are solved by Runge–Kutta fourth-order method accompanied by
shooting technique.

3 Results and Discussion

The numerical results have been obtained for two different cases of CNTs, i.e., SWC-
NTs andMWCNTs and are presented graphically. Effects of relevant parameters like
ratio parameter α, porosity parameter K , radiation parameter R, Biot number Bi,
and nanoparticle volume fraction φ, on velocity and temperature are obtained and
presented through graphs. Consider α � 0.3, K � 0.1, R � 0.2, Bi � 0.5, φ �
0.2, α1 � π

4 , as fix values during computation.
Figure 2 shows the variation of stretching ratio parameter on the axial velocity. It is

noted that rises in stretching ratio parameter lead to reduce the boundary layer thick-
ness along the x-direction (axis), whereas it increases along the y-direction (trans-
verse). Figure 3 depicts that the velocity profile reduces when nanoparticle volume
fraction increases for SWCNT and MWCNT. Figure 4 shows that a rise in K shows
decreasing trend for velocity profile and boundary layer thickness. Figure 5 shows
that temperature increases when porosity parameter increases for both SWCNT and
MWCNT. Figure 6 shows the influence of Biot number and stretching ratio parame-
ter of the temperature distribution. It is noted that an increase in Biot number causes
enhancement in the temperature profile. Physically speaking, an enhance in Biot
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Fig. 2 Velocity for different values of α
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number decreases sheet’s thermal resistance and also an improves convective heat
transfer to the fluid on the sheet. While stretching ratio parameter decreases, the
temperature increases.



Flow and Heat Transfer of Carbon Nanotubes Nanofluid … 327

0 1 2 3 4 5
0

0.05

0.1

0.15

1.2 1.4 1.6 1.8 2 2.2

0.01

0.02

0.03

0.04

K = 0.1, 0.3, 0.5

             Sea-water, n=3

SWCNT = -------------------

MWCNT =....................

Fig. 5 Temperature for different values of K

0 1 2 3 4 5
0

0.05

0.1

0.15

           Sea-water, n=3

SWCNT = -------------------

MWCNT =....................

Bi = 0.1, 0.3

Fig. 6 Temperature for Bi and α

Figure 7 shows that the temperature is enhanced in the boundary layer with an
enhance in radiation parameter. The higher radiative heat transfer is responsible for
the enhancement of thermal boundary layer growth. Further, the temperature profile
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is lower for linear thermal radiation as compared with nonlinear thermal radiation.
Therefore, the nonlinear thermal radiation is more suitable for heating processes.

4 Conclusion

Analysis of seawater-based carbonnanotubes over a nonlinear inclined3-Dstretching
sheet with porous media is studied. The results obtained are as follows:

• Velocity components decay for higher local porosity parameter K.
• Both velocity components are lower for SWCNTswhen comparedwithMWCNTs.
• The nonlinear thermal radiation has high impact on flow fields as compared with
linear thermal radiation.
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MHD Boundary Layer Liquid Metal
Flow in the Presence of Thermal
Radiation Using Non-similar Solution

S. Mondal, P. Konar, T. R. Mahapatra and P. Sibanda

Abstract In this paper, we have studied the effects of thermal radiation
parameters on an incompressible boundary layer liquid metal (e.g., Mercury) flow
over a flat plate in the presence of magnetic field. The governing nonlinear partial dif-
ferential equations have been transformed using Görtler transformation on coupled
non-similar ordinary differential equations, which are solved numerically by the use
of finite difference technique together with Thomas algorithm. We have discussed
and interpreted the effects of thermal radiation parameters and streamwise pressure
gradient in the boundary layer on the fluid and the Görtler transformation in our
current study. A detailed comparison with previously published results is given.

Keywords Liquid metal · Thermal radiation · Non-similar solution

1 Introduction

The non-similarity boundary layer flows of Newtonian fluids over a plate have impor-
tant engineering applications such as polymer processing unit in a chemical plant,
working process ofmetals inmetallurgy, and aerodynamic extrusion of plastic sheets.
The laminar boundary layer equations were first introduced by Prandtl [1], and the
boundary layer theory has been developing greatly and applied in nearly all regions
of fluid mechanics. Later, Minkowycz, and Cheng [2] performed local non-similar
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solutions for free convective flowwith uniform lateral mass flux in a porous medium.
Recently, Beg et al. [3] studied non-similar, laminar, steady, electrically conducting
forced convection liquid metal boundary layer flow with induced magnetic field
effects. All these non-similar boundary problems had been solved using local non-
similarity method. In the present paper, we have investigated the effects of thermal
radiation on the plate considering the liquid metal flow in the presence of magnetic
field using Görtler transformation [4]. Blasius [5] presented a result for the boundary
layer flowover a plate. By the use ofGörtler transformation [4], the governing nonlin-
ear partial differential equations have been transformed into the coupled non-similar
ordinary differential equations and solved numerically by applying finite difference
method along with Thomas algorithm [6]. Our results have been shown graphically
and discussed quantitatively.

2 Mathematical Formulations

The magnetic field is investigated in this paper considering two-dimensional, steady,
incompressible, laminar, Newtonian boundary layer flow over a plate in the pres-
ence of liquid metal (e.g., Mercury). The buoyancy effects are negligible here. The
governing equations under these conditions are

∂u

∂x
+

∂v

∂y
� 0, (1)

u
∂u

∂x
+ v

∂u

∂y
� Ue

∂Ue

∂x
+ ν

∂2u

∂y2
− σ B2

0

ρ
(u −Ue), (2)

u
∂T

∂x
+ v

∂T

∂y
� λ

∂2T

∂y2
− 1

ρcp

∂qr
∂y

+
Qo

ρcp
(T − T∞). (3)

B0, ν, λ, qr , Q0, and cp denote magnetic field strength, kinematic viscosity,
thermal diffusivity, the radiation heat flux, heat generation constant, and specific heat
at constant pressure of the fluid. In addition, the radiation heat flux qr is considered
according to Rosseland approximation such that

qr � − 4σ ∗

3K ∗
∂T 4

∂y
, (4)

where σ ∗ and K ∗ are the Stefan–Boltzmann constant and the mean absorption coef-
ficient, respectively.
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2.1 Görtler Transformation

In order to solve the boundary layer equations more efficiently, Görtler [4] described
a transformation that converts the equations of continuity and momentum into a
single differential equation. After considerable algebraic transformations similar to
Görtler [4], we get the new nondimensional form of the equation

f ′′′ + f f ′′ + β(ξ )[1 − f ′2] � 2ξ [ f ′ f ′
ξ − fξ f

′′ − M f ′ + M], (5)

(1 + NR)θ
′′ + Pr f θ

′ � 2Prξ [θξ f
′ − fξ θ

′ − Heθ ], (6)

depending on ξ and η. Here, β represents the streamwise pressure gradient in the
boundary layer and M, NR , and He represent the uniform magnetic field, where

β(ξ ) � 2U ′
e

∫ x
0 Uedx

U 2
e

� 2νU ′
eξ

U 2
e

. (7)

Other nondimensional parameters are

M � νσ B2
0

U 2
e ρ

, NR � 16σ ∗T 3∞
3K ∗λρcp

,He � Qoν

U 2
e ρcp

, Pr � ν

λ
. (8)

The transformed boundary conditions

f (ξ, 0) � f ′(ξ, 0) � 0, lim
η→∞ f ′(ξ, η) � 1, (9)

θ (ξ, 0) � 1, lim
η→∞ θ (ξ, η) � 0. (10)

3 Method of Solution

3.1 Discretization and Grid

Now, the following steps are applied for discretization of Eq. (5). The first step was
to discretizing the Görtler equation. This was done using central differences for the
derivatives in the η direction and backward differences in the ξ direction. As the f ′
values in the Görtler equation represent the velocity relation u(x) � Ue(x), and
with most of the boundary conditions being with respect to f ′, it makes sense to
introduce the mapping G � f

′
and to solve the equation for G. The non-discretized

equation now presents itself as

G ′′ + G ′
η∫

0

G dη + β(ξ )[1 − G2] � 2ξ

⎡

⎣GGξ − G ′ ∂

∂ξ

⎛

⎝

η∫

0

Gdη

⎞

⎠ − M(G − 1)

⎤

⎦,

(11)

are discretized as
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2

η j+1 − η j+1

[
Gi, j+1 − Gi, j

η j+1 − η j
− Gi, j − Gi, j−1

η j − η j−1

]

+ fi, j
Gi, j+1 − Gi, j−1

η j+1 − η j−1

+ β(ξ )
[
1 − 2Gi, j Gi, jOLD + G2

i, jOLD

]

� 2ξi

[

Gi, jOLD
Gi, j − Gi−1, j

ξi − ξi−1
− fi, j − fi−1, j

η j − η j−1

Gi, j+1 − Gi, j−1

η j+1 − η j−1
− MGi, j + M

]

.

(12)

The index in the ξ direction is i, and in the η direction is j. After the mapping,
G � f

′
, all appearances of f itself are replaced with the integral over G from 0

to η, and the integral is calculated using the trapezoidal rule. In the η direction, a
nonuniformly spaced grid is used and a uniform grid is used in the ξ direction. The
nonuniform grid was conceived by starting off with an initial �η at the wall, which
is then multiplied with an amplification factor k > 1 at each step (e.g., k � 1.1).
The distance between two grid points gradually increases with greater distance from
the wall. With this strategy, it is possible to get good results with as little as 25 grid
points in the η direction over the whole domain. The downside to this approach is that
it becomes more difficult to use higher order schemes for the discretization. Since
the boundary condition is defined for η → ∞, a value of η � 10 is chosen as the
numerical value for infinity. Now, the similar procedure is applied for discretization
temperature equation as in Eq. (5) and then non-discretized equation of temperature
equation [see Eq. (6)] is

(1 + NR)θ
′′ + Pr f θ

′ � 2Prξ

⎡

⎣θξG − ∂

∂ξ

⎛

⎝

η∫

0

Gd η

⎞

⎠θ ′ − He θ

⎤

⎦. (13)

We get discretization form as follows:

2(1 + NR)

η j+1 − η j−1

(
θi, j+1 − θi, j

η j+1 − η j
− θi, j − θi, j−1

η j − η j−1

)

+ Pr fi, j

(
θi, j+1 − θi, j−1

η j+1 − η j−1

)

� 2Prξ

[(
θi, j − θi−1, j

ξi − ξi−1

)

Gi, j − ∂

∂ξ

(∫ η

0
Gdη

)(
θi, j+1 − θi, j−1

η j+1 − η j−1

)

− He θi, j

]

.

(14)

Here, central differences are used for the derivatives in the η direction and back-
ward differences are used in the ξ direction. The index in the ξ direction is i, and in
the η direction is j; and in the η direction, a nonuniformly spaced grid was used and
a uniform grid in the ξ direction.
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4 Results and Discussions

We choose Pr � 0.06 which is small. Therefore, the heat will diffuse very quickly
compared to velocity (momentum). This means that for the liquid metals, the thick-
ness of the thermal boundary layer is much bigger than the velocity boundary layer.
For this paper, the Blasius solution is used as the initial values at ξ � 0.01.

In Table 1 using same initial step size and the amplification factor for the step
size for various values of η and β. This table shows good agreement between the
numerical values and the results of the existing literature [7]. What can be nicely
shown in Fig. 1 is that how the velocity profiles increase for the increasing value
of β, when ξ � 0.11 near the boundary. As one would expect from boundary layer
observations, for higher values of β, the boundary layer becomes thinner. Figure 2
shows that the temperature profile decreases with the increasing thermal radiation
parameter. This is because the divergence of the radiation heat flux ∂qr

∂y decreases
with the increase in the Rosseland radiative absorption coefficient K ∗ [see Eq. (4)],
which in turn decreases the rate of radiative heat transfer to the fluid, which causes
the fluid temperature to decrease. From these figures, it is noteworthy that the thermal
boundary layer thickness increased with an increase in He as η.

Table 1 Comparison table of numerical values for the Blasius and Falkner–Skan solution

White
[7]

Present
result

White
[7]

Present
result

White
[7]

Present
result

β 0.0 0.0 0.3 0.3 10.0 10.0

η f f ′ f f ′ f ′ f ′ f ′ f ′
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.00235 0.04696 0.00235 0.04719 0.07597 0.07634 0.31843 0.31843

0.2 0.00939 0.09391 0.00939 0.09389 0.14894 0.14891 0.54730 0.54730

0.3 0.02113 0.14081 0.02113 0.14100 0.21886 0.21914 0.70496 0.70496

0.4 0.03755 0.18761 0.03755 0.18749 0.28569 0.28553 0.81043 0.81043

0.5 0.05864 0.23423 0.05864 0.23426 0.34938 0.34943 0.87954 0.87954

0.6 0.08439 0.28058 0.08439 0.28071 0.40988 0.41006 0.92414 0.92413

0.7 0.11474 0.32653 0.11475 0.32672 0.46713 0.46735 0.95259 0.95259

0.8 0.14967 0.37196 0.14968 0.37213 0.52107 0.52127 0.97057 0.97057

0.9 0.18911 0.41672 0.18912 0.41680 0.57167 0.57176 0.98185 0.98185

1.0 0.23299 0.46063 0.23299 0.46056 0.61890 0.61882 0.98888 0.98887
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Fig. 1 Variation of f ′(η)

with η for several values of
β, when
Pr � 0.06, M � 1.0, and
ξ � 0.11

Fig. 2 Variation of θ(η)

with η for different values of
NR , when Pr � 0.06, β �
0.3, M � 1.0,He � 1.0, and
ξ � 0.05

5 Conclusion

The main objective of the current investigation is to study the non-similar solution
procedure formagnetohydrodynamic boundary layer liquidmetal flow over a plate in
the presence of thermal radiation and heat generation. From the study, the following
conclusions can be made:

• Velocity profiles increase for the increasing value of β, when ξ � 0.11 exists near
the boundary. But opposite trend of velocity profiles can be found away from the
wall.

• Temperature profile decreases with the increasing thermal radiation parameter.
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Similarity Analysis of Heat Transfer
and MHD Fluid Flow of Powell–Eyring
Nanofluid

Govind R. Rajput and M. G. Timol

Abstract In this present analysis, the heat transfer for the flow of Powell–Eyring
nanofluid under the magnetic effects considering stretching sheet are derived. The
governing model is transformed to ODE using similarity analysis. The obtained
system of equation is then solved numerically using the MATLAB package. The
various effects of the different parameters like magnetic parameter M, δ, ε Prandtl
number Pr, suction parameter S and Schmidt number Sc on all profiles are plotted
and discussed through graphs.

Keywords Powell–Eyring model · Nanofluid · Similarity analysis

1 Introduction

Flow of fluid past a stretching surface has a great application in various sectors of
engineering and the industries. Production of papers and gas fibres, food manufac-
ture, crystal growing and metallic plate cooling are some of the examples of such
processes. In these processes, the fluids get interacted with the stretching surface. A
large number of problems considering heat and fluid flow past stretching surface are
taken into account by the researchers with Newtonian and non-Newtonian under the
influence of magnetic fields and radiation effects with different models. A lot of work
has been done by the researchers over different flow geometries with a stretching
surface which is shown in the references [1–5].

Nowadays, the nature of the fluids used by several industries is the non-Newtonian
fluids. Blood, ketchup, toothpaste, honey, mud and biological foods are some exam-
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ples of this fluid. Non-Newtonian fluids are divided into different classes like power
law, Prandtl–Eyring, Sisko fluid, Reiner–Philippoff, Powell–Eyring, etc. Out of these
models, thePowell–Eyring [6] is very important anduseful as compared to othermod-
els. This model plays a vital role almost in all chemical engineering operations and
also has benefits over the above said models. This model is derived from the kinetic
theory of liquids, and it acts as Newtonian fluids when the shear rate is high and low
[1].Most of the researchers have contributed a lot for the Powell–Eyringmodelwhich
is found in the literature. Akbar et al. [7] analysed the model of Powell–Eyring with
a magnetic effect numerically past stretching surface. Hayat et al. [8–10] discussed
the Eyring–Powell model over different flow geometries. Khan et al. [11] explained
the Eyring–Powell MHD fluid flow over homogeneous and heterogeneous reactions
with Newtonian heating. Patel and Timol [12] presented the numerical solution of
the model of the Powell–Eyring. Recently, Ramazan et al. [13] analysed the model
of Powell–Eyring with magnetic field and radiation. Panigrahi et al. [14] reported the
influence ofMHDmixed convection of flow of Powell–Eyring fluid past a non-linear
stretching sheet. The Eyring–Powell flow of unsteady nanofluid past stretching sheet
is addressed by Khan et al. [15].

2 Problem Formulation

Consider the two-dimensional, steady incompressible flow of Eyring–Powell
nanofluid past a stretching surface having velocity uw(x̄) and vw(x̄) which the veloc-
ity of suction/injection over the surface. We assumed that the temperature and the
nanoparticles fraction, i.e. T and C, respectively, have Tw and Cw as constant values,
respectively. On the other hand, these values are denoted by T∞ andC∞, respectively,
when y → ∞.

Consider the flow model for Eyring–Powell

∂ ū

∂ x̄
+

∂v̄

∂ ȳ
� 0 (1)

ū
∂ ū

∂ x̄
+ v̄

∂ ū

∂ ȳ
� μn f

ρn f

∂2ū

∂ ȳ2
− σ B2(x̄) ū +

1

ρn f

∂τx̄ ȳ

∂ ȳ
(2)

ū
∂T

∂ x̄
+ v̄

∂T

∂ ȳ
� αn f

∂2T

∂ ȳ2
(3)

ū
∂C

∂ x̄
+ v̄

∂C

∂ ȳ
� Dm

∂2C

∂ ȳ2
(4)

and

ȳ � 0 : ū � λūw(x̄), v̄ � v̄w(x̄), T � Tw,C � Cw

ȳ → ∞ : ū � 0, T → ∞,C → ∞, (5)
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where (ū, v̄) are the components of velocity along coordinate axis, ρn f is the base
fluid density, σ is the electrical conductivity, λ > 0 is the stretching parameter and

τ is the stress tensor, which can be expressed as τ � μ∂ ū
∂ ȳ +

1
B sinh−1

(
1
C

∂ ū
∂ ȳ

)
, where

μ is the viscosity, and B and C are the parameters of the fluid material. Following

[16], we have 1
B sinh−1

(
1
C

∂ ū
∂ ȳ

) ∼� 1
C

∂ ū
∂ ȳ − 1

6

(
1
C

∂ ū
∂ ȳ

)3
,

∣∣∣ 1
C

∂ ū
∂ ȳ

∣∣∣ � 1.

By putting above value in Eq. (2),

ū
∂ ū

∂ x̄
+ v̄

∂ ū

∂ ȳ
� μn f

ρn f

∂2ū

∂ ȳ2
− σ B2(x̄) ū +

(
v +

1

ρBC

)
∂2ū

∂ ȳ2
− 1

2ρBC3

(
∂ ū

∂ ȳ

)2
∂2ū

∂ ȳ2
.

(6)

Introducing the dimensionless quantities

x � x̄

L
, y � ȳ

√
Re

L
, u � ū

u∞
, v � v̄

√
Re

u∞
, θ � T − T∞

Tw − T∞
,

φ � C − C∞
Cw − C∞

, S(x) � L

u∞
S̄(x̄).

Here, L is the characteristic length, S(x) is the magnetic parameter, Re is the
Reynolds number and u∞ is the reference velocity. Using above dimensionless quan-
tities and the stream functions u � ∂ψ

∂y and v � − ∂ψ

∂x , Eqs. (1), (3) and (6) become

∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
� (1 + ε)

∂3ψ

∂y3
− εδ

(
∂2ψ

∂y2

)2
∂3ψ

∂y3
− S(x)

(
∂ψ

∂y

)
(7)

∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
� 1

Pr

∂2θ

∂y2
(8)

∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
� 1

Sc

∂2φ

∂y2
, (9)

with boundary conditions

y � 0 : u � λuw(x), v � vw(x), T � Tw,C � Cw

y → ∞ : u � 0, T → ∞,C → ∞. (10)

3 Problem Formulation

We introduced the following group G:

G : Q � ℘Q(ω)Q + ℵQ(ω), (11)
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where Q represents x, y, ψ, S, θ, ϕ also ℘’s and ℵ’s are real valued, which are at
least differentiable in the real argument ω.

The given differential equations are transformed via chain rule operations from
group G

Sī �
(

℘Q

℘i

)
Qi , Qī j̄ �

(
℘Q

℘i℘ j

)
Qi j

}
Q � ψ, S, θ, φ; i, j � x, y. (12)

The system of Eqs. (7)–(10) remains invariant by applying the group (11), and
the application of chain rule and can be written as

∂ψ̄

∂ ȳ

∂2ψ̄

∂ ȳ∂ x̄
− ∂ψ̄

∂ x̄

∂2ψ̄

∂ ȳ2
− (1 + ε)

∂3ψ̄

∂ ȳ3
+ εδ

(
∂2ψ̄

∂ ȳ2

)2
∂3ψ̄

∂ ȳ3
+ S(x̄)

(
∂ψ̄

∂ ȳ

)

� N1(ω)

[
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
− (1 + ε)

∂3ψ

∂y3
+ εδ

(
∂2ψ

∂y2

)2
∂3ψ

∂y3
+ S(x)

(
∂ψ

∂y

)]

∂ψ̄

∂ ȳ

∂θ̄

∂ x̄
− ∂ψ̄

∂ x̄

∂θ̄

∂ ȳ
− 1

Pr

∂2θ̄

∂ ȳ2
� N2(ω)

[
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y
− 1

Pr

∂2θ

∂y2

]

∂ψ̄

∂ ȳ

∂φ̄

∂ x̄
− ∂ψ̄

∂ x̄

∂φ̄

∂ ȳ
− 1

Sc

∂2φ̄

∂ ȳ2
� N2(ω)

[
∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y
− 1

Sc

∂2φ

∂y2

]
.

By putting Eqs. (11)–(12) in the system of equations discussed above, we get

(
℘ψ

)2
℘x (℘ y)2

(
∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2

)
−

(
℘ψ

℘ y3

)
(1 + ε)

∂3ψ

∂y3

+

(
℘ψ

℘ y2

)2

εδ

(
∂2ψ

∂y2

)2
∂3ψ

∂y3
+ ℘S S(x)

(
∂ψ

∂y

)

(
℘ψ

℘ y

)
∂ψ

∂y

(
℘θ

℘x

)
∂θ

∂x
−

(
℘ψ

℘x

)
∂ψ

∂x

(
℘θ

℘ y

)
∂θ

∂y
− 1

Pr

(
℘θ

℘ y2

)
∂2θ

∂y2(
℘ψ

℘ y

)
∂ψ

∂y

(
℘φ

℘x

)
∂φ

∂x
−

(
℘ψ

℘x

)
∂ψ

∂x

(
℘φ

℘ y

)
∂φ

∂y
− 1

Sc

(
℘φ

℘ y2

)
∂2φ

∂y2
.

The above system remains invariant if we summarize the group G as

G:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

GS:

{
x̄ � (℘ y)3x + ℵx

ȳ � ℘ y y
, ψ̄ � (℘ y)2ψ + ℵx .

S � 1
℘ y2

S, θ̄ � 1
℘ y θ, φ̄ � 1

℘ y φ

(13)

Also, a function g(x, y : ψ, S, θ, φ) is an absolute invariant only if it satisfies the
following equation:
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6∑
i�1

(αi Qi + βi )
∂g

∂Qi
� 0, Qi � x, y, ψ, S, θ, φ, (14)

where αi � ∂℘i

∂ω

∣∣∣
ω�ω0

and βi � ∂ℵi

∂ω

∣∣∣
ω�ω0

i � 1, 2, . . . 6.

Here, ω0 is the value of ‘ω’, which is the identity element in the group G.
The generator (14) and Eq. (13) give the relation between all α’s and β’s. Hence,

we obtained the following similarity variables:

η � y(x + β)−1/3, ψ � (x + β)2/3 f (η), θ � (x + β)−1/3g(η)

and ϕ � (x + β)−1/3h(η), where β � β1

α1
.

Using above similarity variables, Eqs. (7)–(9) become

(1 + ε) f ′′′ − εδ f ′′2 f ′′′ − 1

3
f

′2
+
2

3
f f ′′ − M f ′ � 0 (15)

1

Pr
g′′ +

2

3
f g′ +

1

3
f ′g � 0 (16)

1

Sc
h′′ +

2

3
f h′ +

1

3
f ′h � 0. (17)

To obtain the similarity solutions, we assume the free steam velocity and the mass
flux velocity as uw � (x + β)

1
3 and vw � − 2

3 (x + β)−1/3S, where S is the mass flux
velocity parameter which causes suction when S > 0 and injection when S < 0.
Since S(x) is a function of x only, which is free from the terms of y, it must be treated
as a constant which is given by S(x) � M(x + β)−2/3.

And the transformed boundary conditions are

f (0) � S, f ′(0) � λ, θ (0) � 1, φ(0) � 1

f (∞) � 0, θ (∞) � 0, φ(∞) � 0. (18)

4 Results and Discussions

Here, we have discussed the impact of the parameters like S, Pr, ε, δ andM on all pro-
files considering the constant value of λ � 2 (stretching sheet). Equations (15)–(18)
are numerically obtained. The obtained outcomes and computations are plotted
graphically and presented in Figs. 1, 2, 3, 4, 5, 6 and 7.

Figures 1, 2 and 3 illustrate the effect of the suction parameter S on the velocity,
the temperature and the nanoparticle volume fraction profile. It is clearly observed
from these figures that as S increases (i) the fluid is forced towards the surface of
the plate and this in turn causes a decrease in the boundary layer thickness as well
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Fig. 1 Effect of suction parameter S on velocity profile
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Fig. 2 Effect of S on temperature profile

as the velocity of fluid, (ii) nanofluid is sucked out, and hence it causes a decrease
in the temperature and the thickness of the thermal boundary layer and finally (iii) it
decreases the mass fraction of nanoparticles in the boundary layer due to which the
mass diffusivity also decreases.

Figure 4 reveals the impact of the magnetic parameter M on the velocity profile.
The fluid velocity falls down as themagnetic influence increases. Highmagnetic field
creates the Lorentz force due to which the velocity of fluid decreases. Figures 5 and
6 reveal the effect of the parameter ε and δ on the profile of temperature. It is shown
from Fig. 5 that as parameter δ increases, the fluid temperature as well as thickness
decreases, whereas the effect of ε is totally opposite which is shown in Fig. 6.
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Fig. 3 Effect of suction parameter S on nanoparticle volume fraction profile
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Fig. 4 Effect of M on velocity profile

Figures 7 and 8 show the impact of the Pr and Sc on the temperature and the
nanoparticle volume fraction profile. Keeping on increasing both the values cause a
decrease in both the (i) temperature and thickness of the thermal boundary layer and
(ii) the mass fraction of nanoparticles in the boundary layer.
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Fig. 5 Effect of parameter δ on temperature profile
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Fig. 6 Effect of parameter ε on temperature profile

5 Conclusion

The model of Powell–Eyring nanofluid flow with magnetic field considering stretch-
ing sheet is derived. The present investigation is done using the similarity analysis,
which transforms the system of PDEs to ODEs. Numerical solution is obtained for
different parameters. It is found that the velocity, temperature and the nanoparticle
fraction are decreases as suction parameter increases. Also, the parameter δ increases,
which decreases the fluid temperature and as ε increases, it causes an increase in tem-
perature of fluid.
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Fig. 7 Effect of Prandtl number Pr on temperature profile
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Fig. 8 Effect of Schmidt number Sc on nanoparticle volume fraction profile
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Entropy Generation Analysis
of Radiative Rotating Casson Fluid Flow
Over a Stretching Surface Under
Convective Boundary Conditions

Shalini Jain and Rakesh Choudhary

Abstract The three-dimensional radiative flow of rotating Casson fluid over a
stretching surface with magnetohydrodynamics and convective boundary conditions
has been analyzed. The entropy generation analysis is also done. Governing PDEs
are transformed into nondimensional ODEs using appropriate similarity transforma-
tions and are solved numerically by using R–K fourth-order method with shooting
technique. Influence of diverse parameters such as Casson fluid parameter β, radi-
ation parameter R, Biot number Bi, rotation parameter λ, magnetic field parameter
M, and Prandtl number Pr on temperature profile and local entropy generation Ns is
analyzed and depicted through graphs.

Keywords Casson fluid · MHD · Convective boundary condition

1 Introduction

The flow due to stretching surfaces has many scientific and engineering applica-
tions such as wire and fiber cutting process, extraction and manufacturing of rubber
and polymer sheets, and design of chemical and foodstuff processing equipment.
Initially, Crane [1] and Sakiadis [2] examined the boundary layer flow due to con-
tinuous stretching surface and moving surface, respectively. Later, Wang [3] investi-
gated the effects of 3D flow over a stretching flat surface. Many researchers such as
Najar et al. [4] and Jain and Choudhary [5] studied boundary layer phenomena over
various geometries. Design of turbines and rotating heat exchangers, industrial pro-
cesses, cosmic fluid dynamics, biomechanics , and astrophysical process are some
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applications of rotating fluid flow. Movement of oil and migration of underwater are
also observed as a significant application of rotating flows. Authors such as Rajeswari
and Nath [6] and Zaimi et al. [7] analyzed the rotating fluid over a stretching surface.
Entropy generation plays a significant role in the improvement of the heat exchanger
industry. Bejan [8] investigated the entropy generation minimization. San and Laven
[9] discussed the second law analysis of convective heat and mass transfer. Further,
Jain et al. [10],Makinde andOsalusi [11] and Butt and Ali [12] examined the entropy
generation characteristic with different aspects of boundary layer flow.

The Casson fluid model is a non-Newtonian fluid model, which has an infinite
viscosity at zero rate of shear. Casson [13] explained that the Casson fluid behaves
like a solid elastic fluid and had yield shear stress in the consecutive equation.Authors
such as Pramanik [14], Jain and Parmar [15], Butt et al. [16] and Jain and Choudhary
[17] have been analyzed the effects of Casson fluid flow over various geometries.
The current study is aimed to find out the radiative heat transfer effects and second
law analysis of rotating Casson fluid under convective boundary conditions.

2 Flow Analysis

We consider the steady, 3D flow of an incompressible rotating Casson fluid with
MHD and radiation over a stretching surface under convective boundary conditions.
The considered surface is stretching in the x-direction. Assume that the velocity
components u, v, and w are in the direction of x, y, and z axis, correspondingly
with an angular velocity ω in the z-direction as seen in Fig. 1. Magnetic field B0 is
applied normal to the surface. Due to the Coriolis force, the fluid is rotating in three-
dimensional structure with an angular velocity ω. Let Tf is the surface temperature
of the structure and T∞ is the temperature of the fluid at far away.

Rheological model that describes Casson fluid is defined as follows:

τi j �
⎧
⎨

⎩

2(μB + py/
√
2π )ei j , π > πc

2(μB + py/
√
2πc)ei j , π < πc

, (1)

Fig. 1 Physical diagram of
the problem

xoB

z

B0

y

uw(x)=ax

ω
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where py is the yield stress of the fluid, τij is the component of the stress tensor, π c is
a critical value of this product based on the non-Newtonianmodel, π is the product of
the component of the deformation rate with itself, andμB is plastic dynamic velocity
of the non-Newtonian fluid.

Under the above assumptions, the governing equations (follow Butt and Ali [12])
are given as

∂u

∂x
+

∂v

∂y
+

∂w

∂z
� 0 (2)

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− 2ωv � − 1

ρ

∂p

∂x
+ v

(

1 +
1

β

)

∇2u − σ B2
0u

ρ
(3)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ 2ωu � − 1

ρ

∂p

∂y
+ v

(

1 +
1

β

)

∇2v − σ B2
0v

ρ
(4)

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
� − 1

ρ

∂p

∂z
+ v

(

1 +
1

β

)

∇2w − σ B2
0w

ρ
(5)

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
� k

ρCp
∇2T

+
v

Cp

(

1 +
1

β

)[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]

+
1

ρCp

∂qr
∂z

. (6)

The boundary conditions for this particular problem are given as

at z � 0, u � uw(x) � ax, v � 0, w � 0, −k
∂T

∂z
� h f (T f − T )

at z → ∞, u → 0, v → 0, T → T∞, (7)

where ν is the kinematic viscosity, β � μB
√
2πc

py
is the Casson fluid parameter, a > 0 is

a constant, ρ is the density of the fluid,Cp is the specific heat of the fluid at a constant
pressure, k is thermal conductivity, h f is the heat transfer coefficient, and T is the
temperature of the fluid. The radiative heat flux in energy equation is qr � − 4σ1

3k1
∂T 4

∂z ,

where σ1 is the Stephan–Boltzmann constant and k1 is the mean absorption constant.
T 4 may be defined in terms of T that is given as T 4 ∼� 4T 3∞T −3T 4∞. Now introducing
similarity transformation

η �
√
a

v
z, θ � T − T∞

T f − T∞
, u � ax f ′(η), v � axg(η), w � −√

av f (η). (8)

Using Eqs. (3)–(6), Eq. (8) under the boundary conditions of Eq. (7) is converted
into nondimensional ordinary differential equations, which are as follows:

(

1 +
1

β

)

f ′′′ + f f ′′ + 2λg − M f ′ − f ′2 � 0 (9)
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(

1 +
1

β

)

g′′ − f ′g + f g′ − 2λ f ′ − Mg � 0 (10)

(1 + R)θ ′′ + Pr f θ ′ +
(

1 +
1

β

)

Pr Ec ( f ′′2 + g′2) � 0. (11)

Subjected to boundary conditions

at η � 0, f ′(0) � 1, f (0) � 0, g(0) � 0, θ ′(0) � −Bi[1 − θ (0)],

at η → ∞, f ′(∞) � 0, g(∞) � 0, θ (∞) � 0, (12)

where λ � ω
a is the ratio of rate of rotation to stretching rate, R � 16σ1T 3∞

3k1k
is the

radiation parameter, Pr � μCp

k is Prandtl number, M � σ B2
0

ρa is the magnetic field

parameter, Ec � u2w
Cp(T f −T∞) is local Eckert number, and Bi � h f

k

√
ν
a is the Biot

number.

3 Numerical Solution

Converted nondimensional coupled ordinary differential Eqs. (9)–(11) under the
boundary conditions (12) are solved by Runge–Kutta fourth-order method (RK4)
with shooting technique. Initially, we find out the guesses f ′′(0), g′ (0), and θ ′ (0),
respectively. Secant method is used to find out the approximate correct guesses.
Runge–Kutta fourth-order method needs a finite domain 0 ≤ η ≤ η∞; therefore, in
this study, we have chosen η∞ � 10.

4 Entropy Generation Analysis

Local entropy generation rate per unit volume SG of Casson fluid follows Bejan [8],
which is defined as

SG � k

T 2∞
(1 + R)

(
∂T

∂z

)2

+
μ

T∞

(

1 +
1

β

)[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]

+
σ B2

0

T∞
(u2 + v2).

(13)

The characteristic entropy generation rate is given as

SG0 � kT 2

T 2∞x2
. (14)
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Using Eqs. (13) and (14), nondimensional local entropy generation rate is given
as

NS � SG

SG0
� Re(1 + R)θ ′2 +

(

1 +
1

β

)
1

�
Br Re( f

′′2 + g′2)

+
1

�
Br ReM( f ′2 + g2), (15)

where Br � μu2w
k(Tw−T∞) is the Brinkmann number, Re � uwx

ν
is the local Reynolds

number, and � � T
T∞ is dimensionless temperature difference. Bejan number is

described as Be � NH
NH+NF

.

5 Results and Discussion

Table 1 shows that the results obtained in the present study by takingM �0, Ec�0,
R �0, Bi → ∞, and β → ∞ as a special case are very well in agreement with the
results obtained by Butt et al. [16].

Figure 2 shows that an increase in Lorentz force offers greater resistance to the
flow, and therefore to an increase in magnetic field M that causes an increase in
the temperature profile. Figure 3 exhibits that higher Prandtl number declines the
temperature profile. Prandtl number can be used to upsurge the rate of chilling in
fluid flows. The higher Prandtl number signifies that the fluid is more viscous and
with less velocity. The fluid with smaller Prandtl number is effective in monitoring
the heat transfer.

Figures 4 and 5 display that the temperature profile is the growing function of
radiation parameter and Biot number. Generally, the rise in the value of radiation
parameter producesmore heat to the fluid flowand due to this reason, an improvement
in the temperature field takes place . The Biot number contains the heat transfer

Table 1 Comparison of the values of θ ′(0) when M �0, Ec�0, R �0, Bi → ∞, and β → ∞
λ Pr � 0.7 Pr � 2.0 Pr � 7.0

Butt et al.
[16]

Present
work

Butt et al.
[16]

Present
work

Butt et al.
[16]

Present
work

0.0 −0.454 −0.453933 −0.911 −0.911359 −1.895 −1.895409

1.0 −0.321 −0.322178 −0.770 −0.770303 −1.788 −1.787645

2.0 −0.242 −0.248103 −0.638 −0.637760 −1.664 −1.664369
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Fig. 2 Temperature profile
for variation inM
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Fig. 3 Temperature profile
for variation in Pr
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coefficient, which rises the thermal conductivity of the fluid, and hence, higher Biot
number upsurges the temperature profile. Figure 6 demonstrates that by enhancing
the group parameter BrΩ−1, the fluid friction irreversibility becomes dominant at
the stretching surface when the impacts of viscous dissipation are also applied in
the fluid flow, and hence, the entropy generation rate rises. Figure 7 depicts that as
rotation parameter λ increases, Bejan number declines.
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Fig. 4 Temperature profile
for variation in R
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Fig. 5 Temperature profile
for variation in Bi
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Fig. 6 Entropy effects of Ns
for variation in BrΩ−1
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Fig. 7 Entropy effects of Be
for variation in λ
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6 Conclusion

The current study focuses on the investigation of entropy generation for three-
dimensional MHD boundary layer flow and radiative heat transfer due to the stretch-
ing surface in a rotating Casson fluid with the convective boundary condition. The
following results have been obtained:

1. Temperature profile is the rising function of magnetic field parameter, radiation
parameter, and Biot number.

2. Temperature profile reduces as the value of Prandtl number rises.
3. Entropy generation number enhances with group parameter Br�−1.
4. Bejan number falls down for rotation parameter.
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Study on Effects of Slots on Natural
Convection in a Rectangular Cavity
Using CFD

Rakesh Kumar, Jyotshnamoyee Behera and Prabir Kumar Jena

Abstract This paper investigates those characteristic convection wonders on a
rectangular nook hosting pit with separate opening proportion need to be investi-
gated utilizing CFD. The straight divider confronting those opening with slots is
heated by uniform heat flux and sides perpendicular to the heated side are insulated.
Conservation of mass, momentum, and energy equations are solved considering the
constant value of fluid properties and Boussinesq approximation. The isotherms and
streamlines are produced and heat transfer is calculated for Rayleigh number that
varies for a different number of slots from 2 to 5. Two different pit perspective pro-
portions, A = L/H >1 and A = L/H <1 are taken with constant Prandtl number value
of 0.7. The influence of Ra, N , and OR on the Nusselt number is investigated. The
results obtained reveal that the value of Nu increases with the increase in the value of
Ra and OR. The results show that at lower Rayleigh number the heat transfer across
the fluid layer is dominant by conduction due to the absence of circulation of air
inside the cavity.

Keywords Rectangular nook · Opening proportion · Slots · Cavity

1 Introduction

The investigation of characteristic convection in a fenced-in area gives a valuable
depiction of the kept fluid in numerous down-to-earth applications. In this present
period, open depressions are experienced inmany building applications, for example,
twofold sheet window, warm exchanger [1], open cavity warm recipients, revealed
level plate sun-based gatherers having columns of vertical strips, electronic chips,
warm sinks, inactive framework, and so on. Numerical investigations on open holes
with spaces in a walled-in area have been likewise the subject of many examina-
tions as spaces with various opening proportions can fundamentally influence the
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stream field and in this manner the execution of the general fenced-in areas [2–5].
Warmth expulsion of a hot body from a fenced area is a testing issue nowadays. So,
it is critical that the cooling framework ought to be composed such that the power
prerequisite for this procedure is to be least. So, for this reason, natural convection
is preferred over forced convection. For some situations because of the little size
of the equipment, it is not conceivable to present a fan or blower in the framework
as it will make the framework complex and now and again it is for all intents and
purposes additionally unrealistic. Therefore, characteristic convection is the main
possible method of cooling of warmth source in various applications.

As for the distinctive writing regarding the matter, another strategy is acquainted
by showing the numerous information of the warm execution of the nooks utilizing
the overall Nusselt number. For some particular relevant situations, the flow field,
the thermal field, and the heat transfer process are also presented and analyzed using
the isotherms, the heatlines, and the streamlines [6].

The present work is to study the laminar natural convection in open rectangular
cavity with multiple slots at one side proposed by Bejan [7–9]. The divider con-
fronting the open side is warmed by uniform transition and two flat dividers are
insulated. We want to decide the cooling attributes as an element of overseeing
warm and geometrical parameters.

2 Physical and Mathematical Demonstration

Two-dimensional rectangular enclosure of negligible wall thickness is shown in
Fig. 1. A uniform heat flux “q” is applied on the inner surface of the left wall, the
top and bottom (i.e., Horizontal) dividers would be aggravated similarly as insulated,
which prompts the adiabatic state and the dividers on the right side are aggravated
likewise the slots because of which the climatic air enters to prepare some cooling
impact for diverse opening proportion for separate warm state. Under the influence
of vertical gravitation field and presence of different temperature fields on the right
wall (i.e., vertical), it prompts an instance of natural convection inside the fenced-in
area.

The walled-in area is thought to be loaded with Newtonian liquid and there is no
impact of third measurement in the present issue. Due to pressure changes, there is
no impact on the fluid density (i.e., incompressible) yet it changes with temperature
changes. The density of the buoyancy term is temperature-subordinate. The remain-
ing thermophysical properties of the fluid are thought to be constant, aside from
this density showing up in the convective term that will likewise stay constant. The
stream is thought to be laminar. Following conservation Eqs. (1)–(4) are spoken to
in the dimensionless frame with a specific goal to reduce the number of parameters.

∂U

∂X
+

∂V

∂Y
� 0 (1)
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Fig. 1 Physical geometry is on the left and the corresponding meshed body on the right

∂U

∂T
+U

∂U

∂X
+ V

∂U

∂Y
� −∂P

∂X
+ Pr ∇2U (2)

∂V

∂T
+U

∂V

∂X
+ V

∂V

∂Y
� −∂P

∂Y
+ Pr ∇2V + Ra Prθ (3)

∂θ

∂T
+U

∂θ

∂X
+ V

∂θ

∂Y
� ∇2θ. (4)

Boundary conditions:
On the solid surface, velocities are assumed to be null

U � 0, V � 0 (5)

The best and base walls are assumed to be insulated, i.e.,

∂T

∂Y
� 0. (6)

On right wall,

∂T

∂X
� 0. (7)

The temperature at the interfaces between the solid wall and the fluid enclosure is
assumed to have same temperature, i.e., they follow the conservation of energy and
continuity of temperature, or mathematically it can be represented as

Ts � T f . (8)

Visualization of fluid flow can be obtained from the contours (streamlines) and at
the same time, it can be figured from its definition as
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U � − ∂ϕ

∂Y
, V � ∂ϕ

∂X
. (9)

The governing heat transfer parameters are Rayleigh number Ra, Prandtl number
Pr, aspect ratio, and total opening ratio. Here, the overall heat transferred through
the cavity is given by the overall Nusselt number along the wall, which is given by

Nu � − ∫1
0

∂T
∂X ∂Y

∫1
0(T0−TA)∂Y

Ra � gβq ′′H 4

ϑαk Pr � ϑ
α

.

3 Numerical Modeling

We have taken a two-dimensional laminar flow in this system, which is based on the
finite element method and which will be utilized to define the numerical arrange-
ment of the given issue. A broadly useful computational liquid flow (CFD) code,
ANSYS FLUENT 15.0, is chosen for the analysis of fluid flow and heat transfer
from a rectangular cavity having slots of different opening ratios. The code used here
is semi-implicit method for pressure-linked equations (SIMPLE) algorithm based
on control-volume application and using a pressure-based solver. A second-order
upwind implicit scheme is used as discretization tool here. Convergence criteria for
continuity, momentum, and energy equation are set to be 10-3, 10-3 and 10-4 respec-
tively. Convergence connects the computed solution to the differential equation.

4 Results and Discussion

See Figs. 2 and 3.

5 Conclusion

Isotherms and streamlines for the instance of N �3, for the vent proportion OR�
0.1, 0.2, 0.4, and 0.6 are got. The case with OR�0.1 demonstrates a conduction
overwhelmed administration and for OR�0.2, the convection is prevailing. As the
aggregate open territory proportion OR is expanded to 0.1 and 0.6, the convection
is additionally expanded. With expanding Ra, the depression air gets significantly
cooler, and furthermore at highRa there is some stratification and thuswarmexchange
might be made strides.
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Fig. 2 Isotherms on the top and streamlines at the bottom for N �3; a OR�0.1, b OR�0.2, c
OR�0.4, and d OR�0.6
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Fig. 2 (continued)

Fig. 3 Variation of Nusselt
number as a component of
Rayleigh number
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Numerical Investigation on Heat
Transfer and Fluid Flow Characteristics
of Natural Circulation Loop with Parallel
Channels

Ramesh Babu Bejjam and K. Kiran Kumar

Abstract The main objective of the present study is to numerically investigate heat
transfer and fluid flow characteristics of natural circulation loop (NCL) with parallel
channels. By imparting temperature difference to the fluid, the density gradient is
developed which causes to circulate the fluid flow in a loop. In the current study, the
steady-state analysis has been carried out on NCL with parallel channel at different
power inputs. For this study, a three-dimensional geometry of NCL with parallel
channel is developed and simulated using ANSYS-FLUENT 14.5. This kind of par-
allel channel NCL model would be useful in various heat transfer applications such
as geothermal heat extraction, solar energy, electronics cooling, etc. The results of
parallel channel NCL are compared to single channel NCL. The results show that
the steady-state mass flow rate is increased by 17.26% and average Nusselt number
is enhanced by 10.74% when compared to single channel NCL. All the simulation
results are validated with open literature.

Keywords Heat transfer · Natural circulation · Parallel channel

1 Introduction

Natural circulation loop (NCL) is a passive heat transfer arrangement to transfer
heat from one place to another place without any mechanical aid. The absence of
mechanical elements, NCLs gives advantages such as low maintenance cost, safety,
and high reliability. Therefore, it offers some applications such as solar water heaters,
geothermal heat extraction systems, electronic cooling systems, nuclear reactor core
cooling, etc. Vijayan et al. [1] studied the effect of uniform and nonuniform diam-
eter NCLs on the stability of the NCL and developed new correlations in terms of
modified Grashof number and Reynolds number. Basu et al. [2] have been proposed
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Fig. 1 Single channel NCL
configuration
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a-b: Heat source (heater)

c-d: Isothermal Heat sink (cooler)

d-a: Insulated right leg (downcomer) single channel

b-c: Insulated left leg (riser)-single channel
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Fig. 2 Parallel channel NCL
configuration
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d
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a-b: Heat source (heater)

c-d: Isothermal Heat sink (cooler)

d-a: Insulated right leg (downcomer) parallel channel

b-c: Insulated left leg (riser)-parallel channel

c

an analytical solution for different shapes of NCLs they concluded that the rectan-
gular NCL model has a stable flow. Kumar et al. [3] developed new relation for the
suitability of various fluids in NCL.

In the current study, two types of NCL configurations are studied. They are:
one is single channel type NCL and another is parallel channel type NCL and the
performance of both configurations are compared with each other. Single-channel
type NCL consists of one riser and one down comer. Parallel channel type NCL
consists of two risers and two downcomers and these are parallel to each other. The
detailed diagrams of these configurations are shown in Figs. 1 and 2.

2 Numerical Methodology

The schematic diagrams of NCL with single channel and parallel channel are shown
in Figs. 1 and 2, respectively. The geometrical specifications are given in Table 1.
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Table 1 Geometrical specifications of the NCL configurations

Parameter Single channel NCL (m) Parallel channel NCL (m)

Loop pipe diameter 0.015 0.015

Pipe wall thickness 0.0016 0.0016

Total length of the loop 5.44 8.44

Length of the heat source and
heat sink each

1.4 1.4

Height of the loop 1.26 1.26

Loop width 1.46 1.56

2.1 Governing Equations

The standard conservation equations are solved using the ANSYS -FLUENT 14.5.
For the simulations, power input over the range of 500–2500Wwith an increment of
500 W at heat source and isothermal wall temperature of 293 K at the heat sink are
applied as thermal boundary conditions. The riser and downcomers are considered
as insulated. The continuity, momentum, and energy equation are as follows [4],
respectively:

∇ ·
(
ρ �V

)
� 0 (1)

∇ ·
(
ρ �V �V

)
� −∇ p + ∇ ·

[
μ

(
∇ �V + ∇ �V T

)]
+ (ρ �g) (2)

∇ ·
(( �V (ρE + p)

))
� ∇ · (k∇T ) + ¯̄τeff · �V (3)

2.2 Solution Method and Grid Independency Test

The entire simulations are carried out at steady-state condition.REFPROP tool is used
to get the water properties. The implicit coupled condition is imposed. The governing
equations are discretized by the finite volume method. The moment and energy
equations are iterated by using the second-order upwind scheme. The continuity,
moment equations are converged by reaching the velocity and pressure residuals to
10−3 and energy equation is converged when its residual reaches to 10−6.

Meshing of a loop fluid at the bend of a single channel NCL and a parallel channel
NCL is shown in Figs. 3 and 4, respectively. Gird independency test has been carried
out with different grid sizes (varied in mm) and they are 1 × 1 × 1, 2 × 2 × 2, 3 ×
3 × 3 and 4 × 4 × 4. The influence of grid size on Reynolds number is presented in
Table 2. The maximum deviation in the values of Reynolds number for the present
simulation case with input power of 500 W is 0.25%. Therefore, the mesh with 2 ×
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Fig. 3 Mesh of the loop
fluid at bend

Fig. 4 Mesh of loop fluid at
bend of the parallel channel
NCL

Table 2 Grid independency test result

Power input
(500 W)

4 × 4 × 4 3 × 3 × 3 2 × 2 × 2
(present study)

1 × 1 × 1

Number of
elements

48,000 72,350 150,920 782,784

Reynolds number 854.5 925.81 1052.6 1055.2

2 × 2 grid size is considered for the simulations in order to save the computational
time and utilization of the resources.



Numerical Investigation on Heat Transfer and Fluid Flow … 371

0

250

500

750

1000

1250

1500

1750

2000

0 1E+10 2E+10 3E+10 4E+10 5E+10 6E+10

R
ey

no
ld

s 
nu

m
be

r (
R

e s
s)

Grm/NG 

    Parallel channel NCL  -  Present study
    Parallel channel NCL  -  Vijayans correlation
    Single channel NCL     -  Present study
    Single channel NCL     -  Vijayans correlation

Fig. 5 Validation

3 Results and Discussion

In the present study, the two types of NCL configurations (single channel type and
parallel channel type) are investigated with water as working fluid. Both NCLs are
operated at different power inputs. As part of the validation, the simulation results
are compared with the analytical results calculated fromVijayan’s correlation Eq. (4)
[1].

Ress � 0.1768

[
Grm
NG

]0.5

(4)

Grm � gβd3ρ2QZ

Acsμ3Cp
(5)

Figure 5 illustrates that the simulation results are well matched with analytical
results over a range of Reynolds number for both configurations of NCL. The max-
imum difference between the analytical and simulation results is less than 9% for
single channel NCL and 7% for parallel channel NCL. Therefore, further analysis
is carried out with the developed model. Figures 6 and 7 show the temperature con-
tours of loop fluid in single and parallel channel configurations respectively. High
temperatures are observed in case of parallel channel configuration at given power
input condition.

Figure 8 explicits the variation ofmass of flow ratewith power input. By increasing
the power input to heat source, the higher density gradient is developed between the
source and sink which causes for enhanced mass flow rate. It is noticed from Fig. 8,
the mass flow rate of parallel channel NCL is more than the single channel NCL due
to improved buoyancy forces. From Fig. 8, it is observed that the steady-state mass
flow rate of the loop fluid in parallel channel NCL is enhanced by 17.26% when
compared to single channel configuration. The average Nusselt number at the heat
source is calculated based on thewall function average heat transfer coefficient which
is obtained from the simulation results. As can be seen in Fig. 9, the average Nusselt
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Fig. 6 Temperature contour profile of loop fluid in single channel NCL

Fig. 7 Temperature contour profile of loop fluid in parallel channel NCL

number increases with increase in the power input. From the Fig. 9 it is observed that
the average Nusselt number of parallel channel configuration is enhanced by 10.74%
when compared to single channel configuration.
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Fig. 8 Variation of
steady-state mass flow rate
with power input
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Fig. 9 Variation of average
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4 Conclusions

In the present study, the steady-state analysis has been carried out on different Nat-
ural Circulation Loop (NCL) configurations with water as working fluid. A three-
dimensional geometry of the rectangular NCL model is developed and simulated
using Ansys-Fluent 14.5. The simulation results follow the same trend with the pub-
lished data. The mass flow rate and average Nusselt number increases with power
input. The mass flow rate of the loop fluid in parallel channel NCL is enhanced when
compared to single channel configuration. The average Nusselt number is enhanced
by adding channels to the NCL.
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Numerical Study of Heat Transfer
Characteristics in Shell-and-Tube Heat
Exchanger

Ravi Gugulothu, Narsimhulu Sanke and A. V. S. S. K. S. Gupta

Abstract The heat exchangers are essential elements in a wide range of thermal
systems including automobiles, computers, power plants, etc. The most commonly
used type of heat exchanger is the shell-and-tube heat exchangers. In paper has been
made an attempt with shell and tube heat exchanger that has been designed based on
TEMA code to improve the performance of shell side fluid with the help of helical
baffles of 40° helix angle and the Reynolds numbers are considered for shell side
2,500–16,500 and tube side 3,000–22,000 respectively. The variation of heat transfer
coefficient and the friction factor with the increase of Reynolds number is studied
and noticed that heat transfer coefficient is increasing while the friction factor is
reduced.

Keywords Shell-and-tube heat exchanger · Helical baffle · Helix angle
Reynolds number · Pressure drop · Overall heat transfer coefficient

1 Introduction

The shell-and-tube heat exchangers are commonly used in petroleum and power
generation industries because of their relatively simple manufacturing technology
and adaptability to different operating conditions; their robustness and shape make
them well suitable for high-pressure operations. The baffles may be mainly used in
shell-and-tube heat exchangers for inducing cross-flow over the tubes for improving
the heat transfer performance and also to reduce the pressure drop. The segmental
baffles are used in shell-and-tube heat exchanger, which forces the shell-side fluid
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into a zigzag manner. But due to some drawbacks in these baffles such as larger
pressure drop in the shell side, fouling problem, and high risk of vibration failure
on the tube bundles, a number of new methods were proposed to overcome these
drawbacks in shell-and-tube heat exchanger with segmental baffles.

2 Literature Review

Many experimental and numerical investigations on the structure parameters of heat
exchangerswith segmental baffles and helical baffles have been performed in the past,
and those are listed out here. In the world market, the shell-and-tube heat exchangers
are more served by process industries like power generation, oil refineries, etc.,
because of their robust geometry construction, possible upgrades, and reliability.
Over the years, more significant research and development efforts are devoted by
academicians, scientists, and researchers to understand the geometry of the shell-
and-tube heat exchangers. The pioneering work published by Gao et al. [1], Lutcha
and Nemcansky [2], Wang et al. (2007), and Zhang et al. [3] on helical baffles proved
the way to shift from a conventional/clear understanding of baffles’ role in a shell-
and-tube heat exchanger.

Gao et al. [1] experimentally studied the effects on baffle helix angles (8°, 12°,
20°, 30°, and 40°) on shell-and-tube heat exchangers. The heat exchangerwith helical
baffles at 40° helix angle presents the best comprehensive performance among all the
five testing heat exchangers. Zhang et al. [4] experimentally studied and compared
the segmental baffle heat exchanger with four different helix angles (20°, 30°, 40°,
and 50°) based on the same shell-side flow rate and found that the 40° helix angle
gives the best performance. Zhang et al. [5] numerically studied three different helix
angles (30°, 40°, and 50°) and found that the 40° helix angle of helical baffle is the
best one.

Wen et al. [6, 7] experimentally studied the performance of shell-and-tube heat
exchangers with different baffles (ladder-type baffles and helical baffles) and found
that the helical-type baffles have shown great improvement in heat exchanger when
compared with the ladder-type baffle.Wen et al. [8] studied the flow and heat transfer
characteristics of shell-and-tube heat exchanger with helical baffles using multi-
objective genetic algorithms (MOGA). In this study, helix angle and overlapped
degree of helical baffles were chosen as the optimization parameters, while overall
heat transfer coefficient and pressure drop of the shell-and-tube heat exchanger with
helical baffle were optimized using MOGA. They found that the helix angle 40° was
considered as an optimum angle.

Gugulothu et al. [9] studied the different types of baffles used in shell and tube
heat exchangers along with helix angles (8°, 12°, 20°, 30°, 40° and 50°) and found
that the 40° helix angle is the optimum angle for designing a shell and tube heat
exchangers.



Numerical Study of Heat Transfer Characteristics in Shell-and-Tube Heat … 377

Fig. 1 Shell-and-tube heat exchanger with helical baffle

3 Mathematical Model and Analysis

The heat exchangers are devices that transfer heat between two fluids which are at
different temperatures. A shell-and-tube heat exchanger consists of a bundle of tubes
enclosed within a cylindrical shell. One fluid flows through the shell and another
fluid flows through the tubes. The fluid flow and heat transfer processes are turbulent
in nature and assumed as steady state. The shell-and-tube heat exchanger considered
in the present study with helical baffles is shown in Fig. 1.

4 Formulations

The heat exchanger has 2000 mm length, and 114.3 and 102.10 mm of shell’s outer
and inner diameters are chosen with four numbers of tubes with outer diameter as
25.4mm, arranged in an angle of 45° rotating square arrangement. From the literature,
the optimum helix angle (β) is 40° and the same has been considered for the present
work and thickness of the baffle is 3 mm. Hot fluid is considered in shell side at a
temperature of 343.15 K, and cold fluid is considered in tube side at a temperature
of 298.15 K. In this study, the shell-side flow rate (

.

QS) and the tube-side flow rate
(

.

Qt ) are considered as 20–60 and 10–30 lpm.

Baffle spacing (S) � 0.2 × Di or 51mm (Whichever is greater) (1)

Tube outer diameter (d0) � 25.4mm from Table RCB-4.52 (2)

p � 1.25 × d0 (3)

Bhelical � √
2Di tan(β) (4)

Number and size of tie rods: No fewer than four tie rods and not less than 9.5 mm
of diameter are chosen. Any baffle segment requires a minimum of three points of
support.
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5 Shell-Side Calculation

.
m � Qs × ρs (5)

As � 0.25π
(
D2

i − (
N × d2

0

))
(6)

Vs �
.
ms

ρs As
(7)

De � 4
(
P2
t − (

0.25π − d2
0

))

πd0
(8)

Equivalent/Effective diameter varies with the flow arrangements.

ReS � VS × De

ν
(9)

PrS � μCp

kShell Fluid
(10)

hS � 0.023 ×
(
kShell Fluid

De

)
× (Re)0.8 × (Pr)0.3 (11)

NuS � hS × De

kShellFluid
(12)

fS � 0.184 × (Re)−0.2 (13)

�pS � ρ × fS × LS × V 2
S

2 × B
(14)

6 Tube-Side Calculation

.
mt � .

Qt × ρt (15)

At � N × Ao (16)

Vt �
.
mt

ρt × At
(17)

Ret � Vt × di
ν

(18)

Prt � μCp

ktube fluid
(19)

ht � 0.023 ×
(
ktube fluid

di

)
× (Re)0.8 × (Pr)0.4 (20)

The heat transfer coefficient can be calculated by the Nusselt number equation.
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Nut � ht × di
ktube fluid

(21)

ft � 0.184 × (Re)−0.2 (22)

�pt � ρ × ft × L × V 2
t

2 × di
(23)

7 Results and Discussions

Numerical analysis has been done on the shell-and-tube heat exchangers with helical
baffles of helix angle 40° based on Zhang et al. [5].

Figure 2 indicates the variation of Reynolds number for different mass flow rates.
It is observed that the Reynolds number increasing with the increasing of mass flow
rate in shell side as well as tube side. It indicates that higher mass flow rate gives the
higher Reynolds number.

Figure 3 predicts the variation of pressure drop for different Reynolds numbers
ranging from 2500 to 16,500 in shell side and 3000 to 22,000 in tube side. It is
being observed from the figure that the pressure drop is increasing with increase in
Reynolds number and this may be due to an increase in the density of the fluid at
given Reynolds number.

Figure 4 shows the increasing heat transfer coefficient with the increasing
Reynolds number ranging from 2500 to 16,500 in shell side and 3000 to 22,000
in tube side. This is caused by the increasing mass flow rates within the range of
Reynolds number.
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8 Conclusion

In this present work, flow, pressure drop, and heat transfer characteristics were per-
formed for different mass flow rates of shell-and-tube heat exchanger with helical
baffle of 40° helix angle. Both the pressure drop and heat transfer coefficients are
the major parameters of heat exchanger performance. The shell-side and tube-side
Reynolds number, pressure drop, and heat transfer coefficient are increasing with
the increase in inlet mass flow rate in shell side and tube side. Increasing the flow
velocities will cause a rise in the heat transfer coefficient and more pressure drop in
the heat exchanger.
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Application of Green’s Function
to Establish a Technique in Predicting Jet
Impingement Convective Heat Transfer
Rate from Transient Temperature
Measurements

Ritesh Kumar Parida, Anil R. Kadam, Vijaykumar Hindasageri
and M. Vasudeva

Abstract Jet impingement heat transfer has gained attention of the researchers due
to its very high rate of convective heat transfer. The objective of this study is to
establish an analytical technique to predict the convective heat transfer coefficient
and the reference temperature over a surface being impinged. This technique is based
on the fundamental mathematical concept of Green’s function. A code in MATLAB
is developed to predict both local convective heat transfer coefficient and reference
temperature over the impinging surface,which requires the transient temperature data
at both faces of the impinging plate as input. Radiation correction is also considered
to incorporate radiation losses in high-temperature applications. This code works on
the principle of one-dimensional heat transfer across the impinging plate, for known
dimensions, thermal diffusivity, and surface emissivity. A numerical simulation of
hot jet at Reynolds number equal to 1000, over a cold plate of thickness 10 mm, is
carried out for a given set of spatially varying convective heat transfer coefficient
and reference temperature values, along the impinging surface. The impinging plate
is considered to be orthotropic to ensure one-dimensional heat conduction across the
plate thickness. Transient temperature at both the faces for a duration of 10 s with
an interval of one second was recorded and used as input to the code to validate
the proposed technique. Local heat transfer coefficient and the reference tempera-
ture predicted are in good agreement with those input values for numerical analysis
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using ANSYS, having a maximum deviation of 2 and 10%, respectively. Further,
it is observed that estimated values of convective heat flux at a given location on
the impinging surface varies linearly with temperature at the same location, which
confirms Newton’s law of cooling.

Keywords Jet impingement · Greens function · Convective heat transfer
coefficient

1 Introduction

Principle of jet impingement heat transfer is extensively studied for industrial, mil-
itary as well as space technology applications, because of its very high convective
heat transfer rate, faster heating response time, possibility to heat or cool locally,
thereby improving product quality or process efficiency. A very high rate of heat
transfer occurs at stagnation point, which creates dynamism in temperature change
within the object being impinged. Numerous fundamental experiments have been
undertaken to understand the heat transfer characteristics of jet impingement heat
transfer [1–5].

Qualitative as well as quantitative analysis of heat transfer due to impinging jets
have been summarized in the review papers [6–10]. Dependence of convective heat
transfer coefficient on various parameters like turbulence, induced swirl, nozzle-to-
plate spacing, orientation of nozzle, arrays of jets, jet-to-jet spacing, jet shape and
size, Reynolds number, and equivalence ratio has been reported in literature [11–13].
Empirical correlations for convective heat transfer distributions are developed based
on analytical and semi-analytical studies. Predicting exact heat transfer rate asso-
ciated with jet impingement heat transfer is very complex [14–20]. Researcher has
attempted to express the exact heat transfer rate analytically usingmathematical tools
like Duhamel’s theorem, Laplace transform technique and inverse heat transfer tech-
nique, which have their own limitations to handle practical problems holistically. For
example, inverse heat transfer algorithm is multifaceted and hence computationally
complex.

With reference to the literature, it is concluded that most of the research articles on
jet impingement heat transfer are experimental in nature, and are based on parametric
studies. Fluid flow pattern over the impinging surface being very complex and tur-
bulent, it is difficult to quantify the exact heat transfer rate. It is pertinent to mention
that, because of turbulent fluid flow over the impinging surface, the nature of heat
transfer within the impinging surface is transient in nature. Therefore, formulating a
standard, reliable, and accurate technique to estimate rate of heat transfer from or to
impinging jet is very essential.

In this paper, an alternative approach to predict the convective heat transfer coef-
ficient using Green’s function is presented. Green’s function is a mathematical tool
capable of dealing transient heat transfer problems with transient boundary condi-
tions and spatially varying initial condition. Orthotropic material is considered to
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ensure one-dimensional transient heat conduction for easy validation and confirma-
tion of the solutions numerically. The objectives of the present work are as follows:

(a) To present the application of Green’s function to solve problems on jet impinge-
ment heat transfer.

(b) To predict local convective heat transfer coefficient and corresponding refer-
ence temperature over impinging surface from transient surface temperature
measurements.

2 Methodology and Mathematical Formulation

With reference to the objectives of this paper listed in the last paragraph, the problem
statement is to solve a case of one-dimensional transient heat conduction problem
with transient temperature boundary conditions (BCs) at both front and rear face
of the plate under consideration, which is impinged by hot jet at front face. The
material of impinging plate is considered to be orthotropic. The required BCs are
derived from the numerical analysis (ANSYS) of one-dimensional transient heat
conduction within an orthotropic material with known boundary heat flux at the
impinging face, and the other face being insulated [21].

Governing equation for one-dimensional transient conduction problem is given
by, ∂2T

∂x2 � 1
α

∂T
∂t for 0 < x < L and t > 0 where BCs are Tx�0 � f1(t) and Tx�L �

f2(t) and initial condition is Tt�0 � F(x). Corresponding Green’s function is given
by G

(
x, t : x I , τ

) � 2
L

∑∞
n�1 sin λnx sin λnx I e−αλn (t−τ ) and hence the temperature

distribution is given by,

T (x, t) � 2

L

∞∑

n�1

sin λnxe
−αλn t

L∫
x I�0

sin λnx
I F(x I )dx I + α

2

L

∞∑

n�1

sin λnxe
−αλn t

t∫
τ�0

eαλnτ f1(τ )dτ

− α
2

L

∞∑

n�1

(−1)n sin λnxe
−αλn t

t∫
τ�0

eαλnτ f2(τ )dτ (1)

where the eigenvalues are given by, λn � nπ
L .

Equation (1) is valid in the open interval “0 < x < L”. Such phenomenon
occurs when the solution derives its basis from the orthogonal expansion technique
with the BC being utilized to develop the eigen condition [22]. In this study, both
BCs are expressed in terms of quadratic polynomials as Tx�0 � at2 + bt + c and
Tx�L � pt2 + qt + r ; and the IC as Tt�0 � Tinitial. On simplifying further, using
integration by parts in second and third term of Eq. (1) and applying the limits of
integration, transient temperature profile is expressed as
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T (x, t) � 2

L

∞∑

n�1

sin λnxe
−αλn t

[
1 − (−1)n

]Tinitial
λn

+ α
2

L

∞∑

n�1

sin λnx

[
at2 + bt + c − ce−αλn t

αλn
− 2at + b − be−αλn t

(αλn)
2 +

2a − 2ae−αλn t

(αλn)
3

]

− α
2

L

∞∑

n�1

(−1)n sin λnx

[
pt2 + qt + r − re−αλn t

αλn
− 2pt + q − qe−αλn t

(αλn)
2 +

2r − 2re−αλn t

(αλn)
3

]

(2)

It is clear from Eq. (2) that all the terms converge. This equation is handled using
a computer code, for 0 < x < L and t > 0. The temperature at an infinitely small
distance (�l) from the impinging surface and at an interval of 1 s is evaluated.

2.1 Procedure to Calculate Heat Transfer Coefficient
and Reference Temperature

Using Eq. (2), the conductive heat flux at the impinging face Qcond � Tx�0−Tx��l
�l can

be estimated. Further, convective heat flux over the surface being impinged upon
can be estimated by adding radiative heat flux leaving the surface to conductive
heat flux (i.e., Qconv � Qrad + Qcond). Here, radiative heat flux leaving the surface
is given by Qrad � εσT 4

w , where Tw is nothing but the measured temperature at
impinging face. The method of calculating convective heat transfer coefficient and
reference temperature is based on Newton’s law of cooling. As we know, convective
heat transfer coefficient is expressed as, h � Qconv

(Tw−Tref)
, which can also be rewritten as

Tw � Qconv
h + Tref, a form of an equation of line having slope, 1

h and y-intercept, Tref.
With estimated value of Qconv and corresponding known Tw, the variation of Qconv

along x-axis with Tw along y-axis can be plotted. Ideally, this plot must be a straight
line, which is the first indication that the method is valid.

3 Results and Discussions

The convective heat transfer coefficient and reference temperatures at impinging
zone are estimated analytically. Comparison of estimated convective heat transfer
coefficient with the input convective heat transfer coefficients to the ANASYS soft-
ware is presented in Fig. 1a. The convective heat transfer coefficient profiles are in
agreement with each other, with a maximum deviation of 2%. Similarly, the compar-
ison of predicted reference temperatures with the input reference temperature profile
is shown in Fig. 1b.Maximum difference between predicted and input reference tem-
peratures is 10%. Since the trend of both predicted as well as input convective heat
transfer coefficient profile follow each other, it can be concluded that the technique
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Fig. 1 a Comparison of
estimated convective heat
transfer coefficient with
those input data (to ANSYS),
b Comparison of estimated
reference temperature with
the input (to ANSYS)
reference temperature
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Fig. 2 Variation of front
wall temperature with
estimated heat flux for
different x/L ratio
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is useful in estimation of local convective heat transfer coefficients over impinging
surface.

A linear trend of front wall temperature versus predicted convective heat flux at
the impinging face is observed and presented in Fig. 2. Since this linear trend is
expected from the principle of Newton’s law of cooling, it can strongly be stated that
the proposed mathematical technique for estimation of local convective heat transfer
coefficient at the impinging zone is valid.
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4 Conclusion

In this paper, an analytical technique to predict heat transfer rate over an impinging
surface of an orthotropic material using Green’s function is discussed. Linear trend
of front wall temperature versus predicted convective heat flux at the front face
confirms the validity and reliability of the technique. Since the multidimensional
Green’s function formulations are available in literature, and radiation corrections are
incorporated, itwould be easy to extend this technique for analysis of jet impingement
heat transfer for a real material even at higher temperature. Computational time in
the proposed technique as compared to existing analytical techniques is much lesser.
The proposed method of determining heat transfer coefficient offers flexibility in
designing an experiment to study phenomenon relating to jet impingement heat
transfer. Instead of requiring direct measurements of heat flux and temperature at
the surface where heat transfer coefficient is to be determined, the experiment can
be designed so that temperature measurements are taken at locations where sensors
can be conveniently placed and the sensors do not disturb the fluid flow field.
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Mathematical Simulation of Cavitation
with Column Separation in Pressurized
Pump Pipeline Systems

Nerella Ruben and Erva Venkatarathnam

Abstract Hydraulic transient analysis is important in design stage as well as the
execution stage of pipeline systems for diagnosis of problems arises due to pipe
burst, pipe collapses and leakages. The calculations necessary to analyse transient
conditions must be very precise, more realistic and less time consuming. To fulfill
this objective, a suitablemathematicalmodel incorporating different components that
simulates the real physical phenomenon is the need of hour. In this paper, column
separation model called Discrete Vapour Cavitation Model (DVCM) is described
and applied to a reference problem that consists of pump pipeline system. The cal-
culations of this model are compared with calculations of the reference problem
by conventional Method of Characteristics (MOC) approach. The results show that
MOC could not able to capture the real physical phenomenon of cavitation with
water column separation due to drawbacks in basic modelling.

Keywords Hydraulic transients · Water column separation · Method of
characteristics

1 Introduction

In the water field, mathematical modelling of water distribution systems has become
a necessary component to analyse, design and diagnose the systems. The numerical
representation of the water installation components leads to optimized and efficient
safe design of the systems. Thus, the numerical models allow greater reliability and
command over the entire system operation. Nowadays, the simulations of hydraulic
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transients or water hammer analysis in complex pipe system are a real need. In this
era of powerful computers, many mathematical models were developed or devoted
to simulate the hydraulic transients. The numerical model used must be reliable,
efficient, and must solve wide range of problems encountered in real field. Many
notable works were performed in the realm of this component.

Izquierdo and Iglesias [1] developed a mathematical model called DYAGATS
which uses elastic model, also known as water hammer, to model the behaviour
of fluid within the pipeline. The Method of Characteristic (MOC) and the wave
plan methods were used and applied to simple pipe systems. The same authors [2]
extended the model and applied it to complex systems. A review on water hammer
equations [3] suggests that the governing 1Dwater hammer can be solved analytically
by using most popular technique called MOC which has the desirable advantages of
simplicity and numerical efficiency. Other than MOC technique, the wave plan [4],
finite difference [5], and finite volume [6] methods have been applied to governing
equations. Many MOC-based schemes were developed to solve numerical solutions
of hyperbolic equations. A fixed gridMOC also called method of fixed time intervals
was applied to a reservoir-pipe-valve system [7]. It was found that fixed grid MOC
was easier and gives user full control of the grid selection. Similarly, pressure fluc-
tuations were captured at the middle and at the valve of simple reservoir systems by
using the MOC method [8]. In addition, the recent knowledge that negative pressure
phases of transients can result in contamination of potable water systems, meaning
that the need to understand and deal effectively with transient phenomena is more
acute than ever [9]. The negative phase in a pipeline results from column separations
and cavitation when pressure drops to vapour pressure of the liquid.

Much theoretical and experimental analysis have been done in the realm of cavita-
tion andwater column separationwhichwas first identified by JouKowsky early in the
twentieth century [10, 11]. The intensity ofwater column separation and its associated
pressure valve system was studied and analysed by three numerical models namely,
Discrete Vapour Cavity Model (DVCM), Discrete Gas Cavity Model (DGCM), and
Generalized Interface Vapour Cavity Model (GIVCM) [12]. It reveals that DVCM
involves simple algorithm and takes smaller computational time. Similarly, a labo-
ratory test was conducted and the numerical prediction of pressure changes during
water hammer with liquid column separation by DVCMwere compared with exper-
imental results [13]. In this experiment, visualization of cavities and its associated
pressures were observed not only at the vicinity of the shutoff valve but along some
discrete points of the pipeline. Numerical prediction of water hammer and column
separation with DVCM and GIVCM approach for the simple reservoir-pipe-valve
system and simple pump pipeline was analysed [14]. The pressure heads predicted
by both models show no difference and the effect of various hydraulic and geo-
metric parameters like pipe diameter, pump-motor inertia, and specific speed were
investigated.
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2 Methodology

The water hammer equations Eqs. (1) and (2) are one-dimensional hyperbolic partial
differential equations that describe transient state flows in closed conduits are derived
by

gA
∂H

∂t
+ a2

∂Q

∂x
� 0 (1)

gA
∂H

∂x
+

∂Q

∂t
+ f

Q|Q|
2DA

� 0 (2)

where H, t, a, and g are the piezometric pressure head, time, wave speed, and gravi-
tational acceleration, respectively, and A, Q, x, f, and D are the pipe area, discharge,
distance, Darcy–Weisbach friction factor and inner diameter of pipe, respectively.
The method of characteristics (MOC) is a widely used numerical method which
can transform the partial differential equations of Eqs. (1) and (2) into of ordinary
differential equations valid along two characteristic lines. These equations are then
converted into compatibility equations Eqs. (3) and (4) by finite difference approach.

Along the C+ characteristic line (�x/�t � a) :
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∣
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Along the C− characteristic line (�x/�t � a) :
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(
Hi,t − Hi+1,t0

)
+ a

(
(Q)i,t − (Qu)i+1,t0

)
+

f �x

2gDA2
Qi,t

∣∣(Qu)i+1,t0

∣∣ � 0 (4)

3 Discrete Vapour Cavitation Model

In DVCM model, a vapour cavity can form in computational grids and the head
should be set to saturated vapour pressure head

Habs � H v
abs (5)

The variation of discharge in the system can be simulated at ith computational
node by assigning upstream discharge as (Qu)i and downstream discharge as (Qi )

to include discrete vapour cavity model. In conventional MOC model they are made
equal and identical, i.e. Qu ≡ Q. Conversely in discrete vapour model Qu �≡ Q at
points where liquid becomes vapour. The staggered grid is used to get the unknown
values at computation grids (Fig. 1). Along with Eqs. (3) and (4), continuity equation
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− ∆ − +
−+

Fig. 1 Staggered grid in (x, t) plane

Eq. (6) is required to solve for variables along at each time step and Eq. (6) must be
integrated to be used in DVCM model. The integration yields Eq. (7)

dV ∗
v

∂t
� Qu − Q (6)

V n+1 � V n−1 +
{
ψ

(
Qn+1 − Qn+1

u

)
+ (1 − ψ)

(
Qn−1 − Qn−1

u

)}
2�t (7)

whereV n+1, V n−1 are the vapour volumes at the new time and2�t earlier respectively
and ψ is a weighting factor (ψ � �t ′/2�t) used in time direction.

4 Numerical Simulation—Results and Discussions

A simple pumping system is adopted from a reference article [1] and numerical sim-
ulations were performed to validate the conventional MOC model with the column
separation model. This pumping system delivers water from lower reservoir to upper
reservoir through a pump. The nominal parameters of the pump given are: Pump
Rated discharge QR �0.1 m3/s, Pump Head HR �37 m, Specific speed Ns �0.46
(SI Units). Similarly, the geometrical dimensions of pipe 1 consist of length L1 �
400 m, diameter, D1 �250 mm, thickness of pipe, e1 �20 mm and wave speed,
a1 �919 m/s. Similarly, the dimensions of pipe 2 are length L2 �100 m, diameter,
D2 � 250 mm, thickness of pipe, e2 �20 mm and wave speed, a2 �919 m/s. The
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steady-state analysis, i.e. when the pump runs its rated speed were performed and
the results are shown in Fig. 2.

Numerical simulations were performed after sudden pump trip or power failure
to pumps. The results show that the maximum pressure head simulated at pump
locations are 205 m byMOC and 195 m by DVCM as shown in Fig. 3. It is observed
that through the results are similar, but the time of occurrence of these pressure heads
is different. The vapour volumes formed at appropriate times due to local pressure
are shown in Fig. 4. The total vapour volumes calculated at pump location is 61 m3

where the maximum vapour volume is 3.54 m3.
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5 Conclusions

Mathematical model used to simulate the cavitation with column separation in a
simple pump pipeline system has been described. To model the hydraulic transients
in pipe systems, use is made of conventional MOC method. The main emphasis in
this paper is put on use of DVCMmodel in pressurized pump pipeline systems rather
than simple reservoir-pipe-valve systems. For a reference case of pump system, the
DVCM could able to capture the physical phenomenon of cavitation and column
separation than MOC has been theoretically proved. The model uses staggered grid
computations that can compute unknowns at every 2�t time step. This helps, in
principle, to obtain more realistic pressures.
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MHD Flow of Micropolar Fluid
in the Annular Region of Rotating
Horizontal Cylinders with Cross
Diffusion, Thermophoresis,
and Chemical Reaction Effects

G. Nagaraju, S. Shilpa and Anjanna Matta

Abstract The influence of magnetic field, thermophoresis, and the first-order
reaction of a dissipative micropolar flow involving two coaxial inner rotating hor-
izontal cylinders are studied both analytically and numerically. The motion of the
fluid is generated due to the rotation of the inside cylinder with a constant angular
velocity. The internal and external cylinders are kept maintained at different uniform
temperatures and concentrations. The transformed systems of differential equations
are solved systematically using modified Bessel functions and numerically with the
fourth-order Runge–Kutta scheme along with a shooting method. The temperature
and concentration are examined for a variety of parameters which govern the flow
through graphical illustrations. The results obtained are in very good agreement with
benchmark solutions for a particular case.

Keywords MHD flow · Micropolar fluid · Hyper-stick condition · Soret
parameter · Chemical reaction

1 Introduction

The studies of fluid involving two horizontal cylinders through inner rotating walls
have received the topic of a vast interest for its significance as an idealization
of numerous industrial applications. In the design of cooling systems for electric
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machines, information of such fluid flow is desired to limit the rotor temperature to
less than the highest permitted value. Besides other applications in drilling, rotat-
ing machinery, swirl nozzles, porous bearings, the ballistics of projectiles with spin
and electrical motors [1] and combustion chambers. Richard et al. [2] investigated
the viscous flow through the annular gap between vertical concentric cylinders with
the internal rotation and an imposed axial pressure gradient. The problem of non-
Newtonian fluid flow between two coaxial cylinders has been studied by different
authors [3–5]. The magnetohydrodynamic (MHD) study has received more interest
for its broad range of industrial applications in geophysics, MHD pumps, fire engi-
neering, the extraction of geothermal energy, nuclear reactors. TheMHD flow of vis-
cous fluid through coaxial cylinders was examined by many researchers [6–10]. The
Soret effect (thermophoresis) mass flux through a temperature gradient is ignored in
many cases related to cross diffusions due to a lower order magnitude than the prop-
erties given by Fick’s and Fourier law. Eringen [11] initiated the theory of micropolar
fluids, in which the fluid molecules can experience microrotation. This theory allows
two independent vectors, velocity and microrotation vectors for each fluid particle.
Micropolar fluid can exhibit couple stresses in addition to the usual stresses and can
have micro-inertia. These fluids consist of elongated molecules such as polymeric
fluids, Ferrofluid, liquid crystals, bubbly liquids, animal blood, etc. Comprehensive
list of studies on micropolar fluids can be seen in [12–15]. Very recently Gajjela
et al. [16] studied Soret, Dufour, and chemical reaction effects in the magnetized
micropolar rotating annular flow.

Themain of the current work is investigating the double-diffusivemicropolar flow
through the rotating annular region between two horizontal coaxial cylinders.

2 Problem Statement

The geometry of the problem under this study is steady, incompressible, and unidi-
rectional (see Fig. 1); therefore the axial and radial velocity components are functions
of radial distance r only. A uniform magnetic field B0 is working in Z-direction. The
internal and external cylinders are kept at temperatures T 1 and T 2, concentrations
C1 and C2, respectively. Additionally, the Soret effect with first-order chemical reac-
tion is considered. Under the above hypothesis, the governing flow equations for an
incompressible magnetized micropolar fluid in the annular region are as follows:
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dR
� ρ

V 2

R
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Fig. 1 Physical diagram of the concentric inner rotating annulus
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The boundary conditions considering for internal and external cylinders are taken
as follows:

(i) V � RΩ, N1 � Ω, T � T1,C � C1 at R � R1 and

(ii) V � 0, N1 � 0, T � T2,C � C2 at R � R2 (6)

We introduce the following nondimensional scheme:

V � vR1Ω, R � r R2, N1 � NΩ, R1 � ηR2, P � pρΩ2R2
1,

T � θ(T1 − T2) + T2, C � φ(C1 − C2) + C2

The basic equations together with boundary conditions are given in the nondi-
mensional form:
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1

r

dφ
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)
+ ScSr
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d2θ
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+
1

r

dθ

dr

)
− (K1 + Crφ) � 0 (11)

(i) v � N � θ � φ � 1 at r � η and

(i i) v � N � θ � φ � 0 at r � 1 (12)

Coupling number c, Hartmann numberHa, couple stress parameter s, couple stress
parameter δ, Eckert number Ec, Prandtl number Pr, Schmidt number Sc, chemical
reaction parameterCr, Soret number Sr, andmodified Reynolds numberRe are given
by

c � κ

κ + μ
, Ha � B0(R2 − R1)

√
σ

μ + κ
, s � κR2

2

γ
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1
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The dimensionless coefficient of skin-friction, Nusselt as well as Sherwood num-
bers are taken as

C f � 2η

Re

(
dv

dr
− (1 − c)

v

r
− c

η
N

)
, Nu � −η

dθ

dr
and

Sh � −η
dφ

dr
at r � η and r � 1 (13)

Eliminating dN
dr from Eqs. (8) and (9), we get the subsequent equation for v as

D4v − (
Ha2(1 − η)−2 + (2 − c)s

)
D2v + 2sHa2(1 − η)−2v � 0 (14)

which can be expressed as
(
D2 − λ2

1

)(
D2 − λ2

2

)
v � 0

Where D2 � d2

dr2 +
1
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d
dr − 1

r2 , λ2
1 + λ2

2 � Ha2(1 − η)−2 + (2 − c)s and λ2
1λ

2
2 �

2sHa2(1 − η)−2

The velocity v is finite in η < r < 1, the solution of Eq. (14) can be taken as

v � a1 I1(λ1r) + a2K1(λ1r) + a3 I1(λ2r) + a4K1(λ2r) (15)

The constants a1, a2, a3, a4 could be established by using the no-slip condition
on v and hyper-stick condition on microrotation N .
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Table 1 Comparison of test results of variation of velocity (v), temperature (θ), concentration (ϕ)
for ‘r’ at c �0.4, s �1.4, and ï �0.2

r Velocity (v) Temperature (θ) Concentration (ϕ)

Analytical Numerical Analytical Numerical Analytical Numerical

Ha � 2

0.25 0.79195 0.79195 1.10798 1.10798 0.811847 0.811847

0.3 0.649151 0.649151 1.11272 1.11272 0.675011 0.675011

0.4 0.461357 0.461357 0.994953 0.994953 0.482536 0.482536

0.5 0.338812 0.338812 0.818814 0.818814 0.349045 0.349045

0.6 0.248304 0.248304 0.63352 0.63352 0.248315 0.248315

Ha � 4

0.25 0.703419 0.703419 1.15253 1.15253 0.80803 0.80803

0.3 0.514152 0.514152 1.16249 1.16249 0.672217 0.672217

0.4 0.296583 0.296583 1.02669 1.02669 0.483103 0.483103

0.5 0.183414 0.183414 0.851523 0.851523 0.35142 0.35142

0.6 0.118527 0.118527 0.634307 0.634307 0.251352 0.251352

3 Numerical Method for Solution

The coupled collection of nonlinear differential Eqs. (8)–(11) with boundary condi-
tions (12) formed a boundary value problem of second order and it is solved by a
shooting with Runge–Kutta scheme through an initial value problem.

4 Comparison of Analytical and Numerical Solutions

To test the accuracy of shooting method calculations, the outcomes of v, θ , ϕ, Cf,
Nu, and Sh profiles in Tables 1, 2 and 3 are compared by the analytical solutions. It is
precisely seen from Tables 1, 2 and 3 that the results are smart admirable agreement.
It shows that the efficiency concerning the numerical solutions is excellent for the
analytical and numerical computations of v, θ , and ϕ are close to each other.

5 Results and Discussions

On the way to understand the behavior of the fluid characteristics, velocity (v),
microrotation (N), temperature (θ ), and concentration (φ) are calculated for different
parameters like aspect ratio, Hartmann number, coupling number, Prandtl number,
Eckert number, Schmidt number, Soret, and first-order reaction parameter. The influ-
ence of Hartmann number (Ha) on v and N are presented in Fig. 2a, b. Hartmann
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Table 2 Comparison of test results of skin-friction coefficients at c � 0.4, s � 1.5, η � 0.2, Ha �
4

Analytical results Numerical results

c Re Cf (η) Cf (1) Cf (η) Cf (1)

0.2 100 0.0416478 0.00053881 0.0416478 0.00053881

0.4 100 0.0300744 0.000643984 0.0300744 0.000643984

0.6 100 0.0192766 0.000588999 0.0192766 0.000588999

0.5 200 0.0122893 0.000318244 0.0122893 0.000318244

0.5 300 0.00819888 0.000212163 0.00819888 0.000212163

0.5 400 0.00614466 0.000159122 0.00614466 0.000159122

Table 3 Validation of test results of heat and mass transfer coefficients at c �0.4, s �1.5, η � 0.2,
δ � 0.05, k1 � 0.1, Ha � 4

Ec Pr Sc Sr Cr Analytical results Numerical results

Nu
(η)

Nu
(1)

Sh (η) Sh (1) Nu
(η)

Nu
(1)

Sh (η) Sh (1)

0.25 0.5 0.22 0.5 0.25 0.1690 0.178 0.6972 0.1062 0.1699 0.1781 0.6982 0.1082

0.5 0.5 0.22 0.5 0.25 0.2811 0.2313 0.7475 0.1014 0.2814 0.2318 0.7475 0.1024

0.5 0.75 0.22 0.5 0.25 0.7322 0.2853 0.7963 0.0963 0.7328 0.2856 0.7967 0.0966

0.5 0.5 0.66 0.5 0.25 0.2813 0.2310 0.9441 0.0790 0.2811 0.2318 0.9446 0.0792

0.5 0.5 0.22 1.5 0.25 0.2811 0.2312 0.9442 0.0796 0.2812 0.2319 0.9446 0.0792

0.5 0.5 0.22 0.5 0.35 0.2812 0.2311 0.7521 0.1011 0.2813 0.2318 0.7529 0.1012

The number in bold indicates the different values of parameters

Fig. 2 a,bEffect ofHartmann number on velocity v, microrotationN for c � 0.4, s � 1.5, η � 0.2

number for flow profiles characterizes the proportion of electromagnetic force to
viscous force. Presently, it is a well-recognized case that the magnetic field allows a
damping reaction on velocity through generating drag force that resists the motion,
lead to velocity decrease. The effect of Ha on micro-rotation (N) is insignificant for
small values of Ha<10. Figure 3a, b displays the control of coupling number (c)
on v and N , is given for stipulated values of alternative parameters. The coupling
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Fig. 3 a, b Effect of Coupling number on velocity (v), microrotation (N) for Ha � 4, s � 1.5, η �
0.2

Fig. 4 a, b Effect of Eckert number (Ec) and Prandtl number (Pr) on temperature (θ) for s �
1.5,Ha � 4, c � 0.5, η � 0.2, Ec � 0.5, δ � 0.05,Pr � 0.7

Fig. 5 a,b, cEffect of Schmidt number (Sc), Soret parameter (Sr), and chemical reaction parameter
(Cr) on concentration (φ) for s � 1.5,Ha � 4, c � 0.5, η � 0.2, Ec � 0.5, δ � 0.05,Pr �
0.7, K1 � 0.1

number (c) describes the combination of rotational and linear movement originating
from the micro-motion of the flow particles. Therefore, c represents the coupling
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involving the rotational Newtonian viscosities. It is clear that in presence of c, tan-
gential velocity profiles increase. The flow velocity in case of micropolar fluid has
fewer analyses toward Newtonian fluid. The increasing values of c have an insignif-
icant effect on microrotation (N). The rise in temperature profiles due to enhancing
of the Eckert number and Prandtl number is observed in Fig. 4a, b. The response
of Schmidt number (Sc), Soret number (Sr), and chemical reaction parameter (Cr)
on ϕ for constant values of various alternative parameters are shown in Fig. 5a–c.
Figure 5a shows the increase in Schmidt number increases the concentration. The
Soret parameter indicates the contribution of the temperature gradient to the mass
flux in the fluid flow. Figure 5b displays that the rise in Sr decelerates the concen-
tration. Figure 5c displays the responses of chemical reaction (Cr) on dimensionless
concentration ϕ. The concentration (ϕ) decelerate as Cr increases. Large values of
Cr amount to a decrease in molecular diffusivity, i.e., small diffusion. Hence, the rise
in Cr will suppress species concentration.

6 Conclusions

The following specific conclusions were derived from the above study:

1. The fluid velocity increases with the rise in coupling number; and is pragmatic
to decelerate with an increase in Hartmann number.

2. The temperature of the fluid increaseswith the enhancement in Prandtl andEckert
numbers.

3. The concentrations of the fluid decelerate with the rise in Schmidt number, Soret,
and reaction parameters.

4. The numerical (shooting) results are in excellent agreement with analytical solu-
tions.

References

1. Maron, D.M., Cohen, S.: Hydrodynamics and heat/mass transfer near rotating surfaces. Adv.
Heat Transf. 21, 141–183 (1991)

2. Richard,M.L., Andreas, D., Kyungyoon,M.: Stability of axial flow in an annuluswith a rotating
inner cylinder. Phys. Fluids 4, 2446 (1992)

3. Maia, M.C.A., Gasparetto, C.A.: A numerical solution for entrance region of non-Newtonian
flow in annuli. Braz. J. Chem. Eng. 20, 201–211 (2003)

4. Ravanchi,M.T.,Mirzazadeh,M., Rashidi, F.: FlowofGiesekus viscoelastic fluid in a concentric
annulus with inner cylinder rotation. Int. J. Heat Fluid Flow 28, 838–845 (2007)

5. Kumari, M., Nath, G.: Unsteady natural convection from a horizontal annulus filled with a
porous medium. Int. J. Heat Mass Transf. 51, 5001–5007 (2008)

6. Omid, M., Shohel, M., Pop, I.: Analysis of first and second laws of thermodynamics between
two isothermal cylinders with relative rotation in the presence of MHD flow. Int. J. Heat Mass
Transf. 55, 4808–4816 (2012)



MHD Flow of Micropolar Fluid in the Annular Region of Rotating … 407

7. Sofiane, A., Mourad, M., Malika, I., Abderahmane, G.: Effect of magnetic field on the heat and
mass transfer in a rotating horizontal annulus. In: Proceedings of the International Conference
on Heat Transfer and Fluid Flow Prague 2014, vol. 67, pp. 1–9, Czech Republic (2014)

8. Mohsen, S., Shirley, A.: Two-phase simulation of nanofluid flow and heat transfer in an annulus
in the presence of an axial magnetic field. IEEE Trans. Nanotechnol. 14(3), 561–569 (2015)

9. Srinivas, J., Nagaraju, G., Beg, O.A.: Mathematical modeling of entropy generation in magne-
tized micropolar flow between co-rotating cylinders with internal heat generation. Alexandria
Eng. J. 55, 1969–1982 (2016)

10. Eringen, A.C.: The theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)
11. Ariman, T., Cakmak, A.S., Hill, L.R.: Flow of micropolar fluids between two concentric cylin-

ders. Phys. Fluids 10, 2545–2550 (1967)
12. Ramkissoon, H., Majumdar, S.R.: Unsteady flow of a micropolar fluid between two concentric

circular cylinders. Can. J. Chem. Eng. 55, 408–413 (1977)
13. Aparna, P., Ramana Murthy, J.V.: Uniform flow of an incompressible micropolar fluid past a

permeable sphere. IEEMS 8, 1–10 (2010)
14. Ramanamurthy, J.V., Nagaraju, G., Muthu, P.: Micropolar fluid flow generated by a circular

cylinder subject to longitudinal and torsional oscillations with suction/injection. Tamkang J.
Math. 43(3), 339–356 (2012)

15. Nagaraju, G., Kaladhar, K., Sai, K.S.: Magnetohydrodynamic effect on rotating free surface
flow of micropolar fluid in a cylindrical container with porous lining. Int. J. Dyn. Syst. Differ.
Equ. 5(3), 191–205 (2015)

16. Nagaraju, G., Anjanna, M., Kaladhar, K.: The effects of Soret and Dufour, chemical reaction,
Hall and ion currents on magnetized micropolar flow through co-rotating cylinders. AIP Adv.
7(115201), 1–16 (2017)



Numerical and CFD Analysis of Joints
in Flow-Through Pipe

Rupesh G. Telrandhe and Ashish Choube

Abstract The present work is aimed at performing experimental, CFD, and
mathematical investigations on the fluid flow and the flow characteristics of the
fluid (water) through gradual expansion and gradual contraction joint of pipes. Head
loss suffered by the flow after passing through Gradual Contraction and Gradual
Expansion junction and to study the reliability of the classical engineering formulas,
and to find the head loss for gradual contraction and gradual expansion junction of
pipes were used. In this, we have compared our results with CFD software pack-
ages with classical formula and made an attempt to determine optimum cone angle.
The experimentation is also carried out for measurement of pressure and further, the
CFD result is compared with experimentation. In this work, the CFD software is
used to simulate the flow at gradual contraction and gradual expansion junction of
pipe with FLUENT and observed flow properties inside the junction and analyzed
the head loss suffered by fluid flow after passing through the gradual contraction
and gradual expansion junction. One of the purposes of this study is also to study
the change in pressure loss with change in a cone angle of gradual contraction and
gradual expansion junction and to find out an optimum cone angle.

Keywords Pipe · Gambit · Fluent · CFD

1 Introduction

Pipe networks aremainly used for transportation and supply of fluids andgases. These
networks vary from fewer pipes to thousands of pipes (e.g., water supply network of
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Fig. 1 Water distribution in
industries

a large city, see in Fig. 1). In addition to pipes, the network also consists of elbows,
T-junctions, bends, contractions, expansions, valves, meters, pumps, turbines, and
many other components. All these components cause a loss in pressure due to change
in momentum of the flow caused due to friction and pipe components. This means
conversion of flow energy into heat due to friction or energy lost due to turbulence.

Pipe networks are very common in industries, where fluid or gases are to be
transported from one location to the other. The head loss (pressure loss) may vary
depending on the type of components occurring in the network, material of the pipe,
and the type of fluid transported through the network. In industries, the networks are
usually large and require very precise pressure at certain points of the network. It is
also sometimes essential to place valves, pumps, or turbines of a certain capacity to
control the pressure in the network. The placement of valves, pumps, and turbines is
important to overcome pressure loses caused by other components in the network.
This is one of the important reasons why this study was conducted.

2 Experimental Setup and Operating Procedure

The design and fabrication of the experimental setup used to generate the sufficient
data to measure the heat loss and the fluid flow characteristics at different pressure
for gradual contraction and gradual expansion joints through circular Pipe. Extensive
data was generated by varying different parameters over wide ranges. This experi-
mentation was carried out in the fluid mechanics laboratory of the institute.
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Fig. 2 Experimental setup

2.1 Experimental Setup

The schematic of the experimental setup used for the present investigation is shown
Fig. 2. The setup consisted of the following components

(1) PVC Pipes
(2) Water tanks
(3) Centrifugal pump (0.5 Hp)
(4) Stop Watch
(5) Pressure Gauges
(6) Discharged measuring device.

A schematic of the experimental setup is shown in Fig. 2. It consists of a long
PVC pipe connected to the centrifugal pump, for the circulation of water through
the pipe. In order to measure discharge at different pressures, a pressure gauge of
range 0–100 kg/cm2 has been used. The gradual contraction joint with the ratio of
2 and 1.3 and gradual expansion joint with the ratio of 1.5 and 2 has been taken
into consideration to measure the heat loss at these ratios and find out optimum cone
angle.

2.2 Operating Procedure

Adjust the pipe at the desired height.
Set the water tank on the adjustable stand.
Fill the water tank.
Adjust discharge measuring tank at the outlet.
Placed the flow regulator valve on the certain distance before and after gradual

contraction and gradual expansion joint of pipe.
Switch on the power supply.
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Table 1 Experimental results of gradual expansion ratio�1.5

Inlet
pressure

Discharge
(Q)

Inlet
veloc-
ity

Outlet
veloc-
ity

Head loss (hL �k(v21/2 g)10
−5)

P1 ml/min v1
(m/sec)

v2
(m/sec)

600 400 300 200 150 100

10 170 0.023 0.01 1.56 1.29 1.05 0.67 0.35 0.17

15 142 0.019 0.0085 1.06 0.88 0.71 0.45 0.23 0.12

20 106 0.014 0.0063 0.58 0.48 0.4 0.25 0.13 0.07

25 100 0.013 0.006 0.5 0.41 0.34 0.22 0.11 0.06

30 68 0.009 0.0041 0.24 0.2 0.16 0.1 0.053 0.03

Table 2 Experimental results of gradual contraction ratio�2

Inlet
pressure

Discharge
(Q)

Inlet
velocity

Outlet
velocity

Head loss (hL �k(v21/2 g)10−5)

P1 ml/min v1
(m/sec)

v2
(m/sec)

1500 1200 1050 900 760 500–600 150–400

10 120 0.004 0.016 0.45 0.34 0.28 0.22 0.16 0.08 0.052

15 100 0.0033 0.013 0.298 0.29 0.2 0.15 0.11 0.051 0.034

20 90 0.003 0.012 0.25 0.19 0.16 0.12 0.09 0.04 0.02

25 70 0.023 0.009 0.14 0.11 0.091 0.07 0.05 0.02 0.016

While taking the reading for gradual contraction joint keep the gradual expansion
joint closed and vice versa.

Measure the discharge ‘Q’ for 60 s at different inlet pressures, i.e., on 10, 15, 20,
25, and 30 kg/cm2 for gradual contraction and expansion joint.

3 Results and Discussion

3.1 Experimental Results

The followings results are obtained after conducting the experiment for different
pressure and different diameter ratios of gradual contraction and gradual expansion
joint of pipe (Tables 1 and 2).

Case 1. Gradual Expansion Ratio�1.5, Inlet Pipe Diameter (d1)�12.5 mm, Out-
let Pipe Diameter (d2)�18.75 mm, Length�1 m.

Case 2. Gradual Contraction Ratio�2, Inlet Pipe Diameter (d1)�25 mm, Outlet
Pipe Diameter (d2)�12.5 mm, Length�1 m.
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Fig. 3 Gradual contraction
joint

Fig. 4 Gradual expansion
joint

4 CFD Analysis

CFD is concerned with the study of fluid flow problems using computational tech-
niques, as opposed to analytical or experimental methods. For this particular geom-
etry and problem, GAMBIT and FLUENT software were used to analyze the flow.
Gambit is a Geometry and Mesh Building Intelligent Toolkit. It is a preprocessing
unit in which create a geometry. FLUENT is the general name for the collection of
Computational Fluid Dynamics (CFD) programs.

4.1 Modeling Details

The gradual expansion joint and gradual contraction joints are represented in 2D.
The joint geometries of gradual expansion and contraction are displayed in Figs. 3
and 4.

The geometry andmesh consists of a joint of various dimension created by joining
the coordinates. There are some boundary conditions applied for the above geometry
like velocity inlet and pressure outlet and fixed wall with no-slip condition.
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Fig. 5 Velocity contours for
gradual expansion ratio�1.5

Fig. 6 Velocity contours for
gradual contraction ratio�2

4.2 Post-processing

This section consists of the final steps of FLUENT, which contains the results to be
plot and shows the various contours of a pipe.

Figure 5 shows the Contour of velocity of flow of pipe having inlet diameter
12.5 mm & outlet diameter 25 mm. The color contours shows that how the velocity
gets decrease at the entrance edges of expandable pipe due to which velocity loss
occurred in pipe.

Figure 6 shows the contour of velocity of flow of pipe having inlet diameter
12.5 mm and outlet diameter 25 mm. The color contours show that how the velocity
gets increased at the entrance edges of expandable pipe due to which velocity loss
occurred in pipe. The details of velocity losses in pipe are quoted in Table 3.
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Table 3 Case 1: comparison of the CFD results with the experimental results

Gradual expansion ratio�1.5

Inlet pressure Discharge (Q) Inlet velocity Outlet
velocity

CFD result % Error

P1 ml/min v1 (m/sec) Exp. result v2
(m/sec)

v2 (m/sec)

10 170 0.023 0.01 0.0059 0.41

15 142 0.019 0.0085 0.0049 0.36

20 106 0.014 0.0063 0.0039 0.24

25 100 0.013 0.006 0.0034 0.26

30 68 0.009 0.0041 0.0019 0.22

5 Comparison of the CFD Results with the Experimental
Results

The following comparative results were obtained after conducting the experimenta-
tion and CFD analysis for different pressure and different diameter ratio of gradual
contraction and gradual expansion joint of pipe. The following Table 3 shows the
comparative results.

Case 1GradualExpansionRatio�1.5, Inlet PipeDiameter (d1)�12.5mm,Outlet
Pipe Diameter (d2)�18.75 mm, Length�1 m.

Case 2 Gradual Contraction Ratio�2, Inlet Pipe Diameter (d1)�25 mm, Outlet
Pipe Diameter (d2)�12.5 mm, Length�1 m.

6 Conclusion

The main conclusions of the present work are as follows:

1. The velocity of water flow is strongly influenced by gradual contraction and
gradual expansion joint of pipe.

2. The head loss can be decreased by decreasing the cone angle of gradual expansion
and gradual contraction joint of pipe.

3. In case of gradual expansions joint for the diameter ration of 1.5 and 2 the
optimum cone angle would be 100.

4. The experimental results and CFD results have very less percentage of error as
shown in Tables 3 and 4.
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Table 4 Case 2: comparison of the CFD results with the experimental results

Gradual contraction ratio�2

Inlet pressure Discharge (Q) Inlet velocity Outlet
Velocity

CFD result % Error

P1 ml/min v1 (m/sec) Exp. result v2
(m/sec)

v2 (m/sec)

10 120 0.004 0.016 0.015 0.01

15 100 0.0033 0.013 0.013 0

20 90 0.003 0.012 0.01 0.02

25 70 0.023 0.009 0.008 0.01
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2D Numerical Analysis of Natural
Convection in Vertical Fins on Horizontal
Base

Sunirmal Karmakar and Aurovinda Mohanty

Abstract Natural convection heat transfer from a finned horizontal flat plate at a
constant temperature has been studied in this work. It analyzes the fin performance
and; natural convection behavior of the finned horizontal flat plate. A complete
picture of heat transfer on the horizontal finned surface (temperature and velocity
contours) is captured. Then behaviors of multi-number of fins (2, 4, 6, 8, 10 and 12
fins) were analyzed in the current progressed work. The base body is subjected to
constant temperature difference from the surrounding �T �40 K for all cases in
the laminar range, i.e., Raleigh number 5 < Ra < 108. The types of plumes caused
are pictorially viewed. This work is progressed by comparing the graphical relation
between Q (heat transfer) to S∗ � S/L .

Keywords Natural convection heat transfer · Constant temperature difference
Raleigh number · Nusselt number

Nomenclature

A Area of fins for convection m2

G Gravitational acceleration m/s2

Hb Height of base surface mm
Hfin Height of the fin mm
hc Average heat transfer coefficient W/m2 K
K Conductivity of fin apparatus W/m K
L Length of the cylinder mm
N Number of fins
Nu Average Nusselt number
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P Pressure N/m2

Patm Atmospheric pressure N/m2

Q Convected heat transfer W
R Specific gas constant J/kg K
Ra Raleigh Number
S Spacing between fins mm
S/L Nondimensional fin spacing
T Thickness of the fin mm
Ts Surface temperature K
T∞ Ambient temperature K
u, v, w Velocity components of fluid m/s
x, y, z Cartesian spatial Coordinates m

Greek Letters

α Thermal diffusivity m2/s
β Thermal expansion coefficient 1/K
�T Temperature difference K
ν Kinematic viscosity m2/s
ρ Density kg/m3

1 Introduction

Longevity of devicesmade engineers to comeupwith the concept of fins. Researchers
came up with ideas improving the performance of these fins. This study also deals
with the thermal performance of the fins at different condition(s) varying various
factors which usually affect the heat transfer rate of the fins. These factors are spacing
between the fins; length of the fins; thermal conductivity of the fun apparatus made
material; Alignment of the fins; Cross section of fins; temperature of the base surface,
etc. Churchill and Chu [1] have developed a general correlation of Nusselt number
(Nu) depending on theRaleigh number (Ra) andPrandtl number (Pr). This correlation
can be used in both natural convection in laminar and turbulent regime. Leung et al.
[2, 3], Sara [4] and Nada [5] encountered that natural convection by horizontal
and vertical fin(s); for high range of Ra, heat dissipation Q from a flat surface in
a rectangular channel flow by attaching array of staggered pin fins or continuous
fins is varied keeping base area constant. And it was experimentally elaborated by
modifying the array of such pattern, resulting decrement in clearance with enclosure
and fin spacing on a constant base due to which Nusselt number was increased
keeping every other factor(s) constant to constrainedmeasures. An empirical relation
was developed making Nu depending on C/H [4]. Some authors also gave a slight
variation by giving interruption in the fin array resulting drastic changes in natural
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convection of fins on a surface. Narasimha et al. [6] explained the compact ratio of fin
in an enclosure to its own base surface and the fin performance was stated in pictures.
Senapati et al. [7–9] experimented numerically a finned cylinder on wide range of
Ra in vertical and horizontal setup and modifying it by applying annular heating and
eccentric fin arrangement from the base cylinder axis and correlation is developed to
find the optimum spacing and annular displacement. Considering all covered areas
of study done before by above authors, this led to addition to the curiosity of fin
performance on fins installed on a horizontal base surface. This numerical study
has encapsulated the study of vertical fins performance on the horizontal surface on
constant temperature surface from the same base with visualized behaviors extracted
numerically.

2 Problem Description

On a 2D Rectangular horizontal surface of length L shown in Fig. 1 containing array
of vertical fins equidistant to each other is taken for 2D analysis. The length (L)
along horizontal axis is about 190 mm with fins of height (H �30 mm) installed
of thickness (t �3 mm) with inter-fin spacing as (S). The fin is mounted on a base
surface of thickness (tbase � 30mm). The fin apparatus is made of aluminum due to
higher conductivity of material. The setup is encapsulated in an enclosure of height
5Htotal and a width of 3L filled with air in it. For the enclosure, the behavior of the
enclosure fluid is to be Bossenique Approximation. The analysis of the fluid is done
in multi-fin of number of fins n �2, 4, 6, 8, 10, 12 and 14. The inter-fin spacing is
dependent on the number of fins on a constant horizontal surface. The main task of
this project is Nusselt number (Nu) is a function of Raleigh number (Ra), S∗ and
H∗. Thereafter now, the base body surface is kept at a constant surface temperature
(TS) of 340 K. The operating condition of the enclosure fluid air (T∞) is 300 K.
The pressure at the edge of the enclosure is at Patm. The project is progressed by
analyzing the heat transfer of the fin setup on one side of the base body. The mesh
contains 35,505 cells with 36,906 nodes when taken in symmetry form and mesh
grid is aligned structured and fine to analyze the natural convection with very low
skewness of grid of order of 10−10.

2.1 Mathematical Model

For the type of flow around fins in the setup above is within Ra less than 108 that is
laminarflowand thefluidproperties are assumedunderBossenique’sApproximation.
The governing equation for this flow is listed below.

∂u

∂x
+

∂v

∂y
� 0 (1)
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Fig. 1 (Left) Shows the geometrical view of fin setup; (Right) shows the computational grid of
analysis of the fin apparatus setup in ANSYS R16

u
∂u

∂x
+ v

∂u

∂y
� ν

(
∂2u

∂x2
+

∂2u

∂y2

)
(2)

u
∂T

∂x
+ v

∂T

∂y
� α

(
∂2T

∂x2
+

∂2T

∂y2

)
(3)

Q � hc A�T (4)

The above-listed equation(s) is the governing equation while Eq. (1) is continuity
equation; Eq. (2) is theNSmomentumequation for x-velocity; Eq. (3) is heat equation
considering no heat generation and Eq. (4) is the convected heat equation.

Boundary Condition(s).

In the flow around fins, characteristic is found to be steady (d/dt � 0) no-slip
boundary condition on the walls at the fin fluid interface (u, v)�0. The numerical
calculation is assumed to have the density characteristics as flow in Bossenique
approximation(s). The flow encountered to be Laminar flow [Ra<108] The apparatus
is set to enclosure with ambient pressure:Pout The temperature of base body set to
Ts � 340K. In a mesh design in Fig. 2 of the setup, fin wall and fin tip are coupled
to the base and fluid region. Enclosure fluid temperature: T∞ � 300K. The equation
of steady-state heat transfer in the base body taking no heat generation into account
gives the temperature of the base body ∇2T � 0. From the geometry perspective,
the inter-fin spacing between the fins

S � {L − (nt)}/n and Atotal � 2(L + Hbase) + 2nHfin

At the interface, the heat conducted by the fin body is the convected heat transfer

Q � hc ∗ A ∗ �T � −k
dT

dx
(5)
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Fig. 2 Shows the temperature contour of 12, 10, 8, and 2 fins

The analysis is carried bynondimensionalizing the equationswhich rose to various
nondimensional numbers. The flow in which regime laminar or turbulent is given by
Raleigh number (Ra) where (Ra) � β∗g∗�T∗H 3

αν
. In the above analysis, the Raleigh

number is less than 108 so it is in laminar range of flow condition. Nusselt number
helps in knowing whether conduction is dominant on convection phenomenon or the
vice versa. Nusselt number is given by (Nu) � Q∗S

k∗A∗(Ts−T∞)
.

Numerical modeling
The governing differential equations were integrated over a control volume and
then discretized using the finite volume technique. The resulting algebraic equa-
tions were solved by the algebraic multigrid solver of FLUENT R16 in an iterative
manner by imposing the boundary conditions. Second-order upwind scheme for the
x-momentum, y-momentum, and continuity were considered for the momentum and
energy equations. SIMPLE (Semi Implicit Momentum and Pressure Linked Equa-
tion) algorithm scheme was used for coupling the pressure and the velocity terms for
the pressure correction equation. The relative convergence criterion for the energy
equation was set to 10−6 and the continuity; x-momentum and y-momentumwere set
to 10−3. The cells vertical along with fins are made smaller and also the fin till the end
of the base body have been made of small cell. It results in very small computation
calls near the fins and larger cell away from the fin setup. The case of computation
grid for 8 fins is shown in Fig. 2 in the enclosure. The dense cells are in the vertical
direction because the variation in heat flux temperature is encultured near the fins in
vertical direction.

Analysis Parameters.

During analysis done in FLUENT R16 environment, it is very necessary to converge
the solution to find a significant result. To converge it takes a minimum under-
relaxation factors for pressure, density, body force, momentum, and energy. Table 1
indicates the set of under-relaxation factors were mostly used in all cases of multi-
number fins having cases where n �2, 4, 6, 8, 10, 12, 14.
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Table 1 Under-relaxation factors used in FLUENT R16

Pressure Density Body force Momentum Energy

0.8 1 0.7 0.01 1

Table 2 Quantitative record
of heat flux (Q) and S* (S/L)
for different cases of fins

No. of fins S/L Q (W)

2 0.4862 51.88

4 0.2342 53.48

6 0.1508 54.14

8 0.1089 54.28

10 0.08421 56.7

12 0.06754 51.62

14 0.05563 48.34

Fig. 3 Graph plotted of Q
(heat Flux) and S* (S/L)

3 Results

On a same base body surface, the number of fins is increased lowering the spacing
in different cases. When at constant �T �40 K, less number of fins the heat transfer
is low, as the fin number is increased, the heat transfer increases until, it is decreased
to optimum spacing. Later if the spacing is decreased further, the heat transfer will
decrease again. It is given by the graph in Fig 3 showing the variation of heat transfer
with respect to spacing. The records of the heat transfer have been tabulated inTable 2.
If observed keenly the contours presented below in Fig. 2, the red region indicated
is conduction. It increases with increase in fin number later becomes responsible for
less heat transfer (Fig. 3).

By constraining others factors like height, Ra, etc., graphically the optimum num-
ber of fins for this case is obtained to be 10 fins with a heat transfer of 56.7W. 12 and
14 fins decrease the heat transfer from the base surface according to the information
extracted from the graph.
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4 Conclusion

The heat transfer first increases with the more fins and decreases with further added
fins. The visualization of the temperature contour can make the reader know the
behavior of the temperature distribution. It deduces the S/L (opt) among these cases
is 0.08421. These fins performance can be tested when installed on both sides and
different alignments and can be used in plate heat exchangers used in different ther-
modynamic cycles. This can be used as heat dissipation mechanism from ducts of
large sides acting as horizontal base.
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Effect of Loop Diameter on Two-Phase
Natural Circulation Loop Performance

S. Venkata Sai Sudheer, K. Kiran Kumar and Karthik Balasubramanian

Abstract This paper aims to present the effect of loop diameter on
steady-state performance of the two-phase rectangular natural circulation loop. A
one-dimensional homogeneous equilibrium model is developed to estimate the two-
phase pressure drop across each section of the loop. Thermophysical properties and
state properties are considered at local pressure. Uniform heat flux is applied at both
evaporator and condenser sections. Mass flux is obtained by solving loopmomentum
equation using iterative procedure. Results are presented for different loop diameters
under same heat load, gravitational head, and fluid quantity. The effect of the loop
diameter on the mass flow rate is also analyzed.

Keywords Two-phase NCL · Loop diameter · Quality

1 Introduction

In the present scenario, effective utilization of energy plays a prominent role in day
to day life. Versatile needs of energy, demanding various energy transporting mecha-
nisms. Forced Circulation Loops (FCLs) and Natural Circulation Loops (NCLs) play
a key role, in the vicinity of energy transport for different industrial and commercial
applications. The fluid circulation can be attained either by external power sources
like pumps in case of FCLs or by buoyancy in NCLs. In natural circulation, thermally
developed density gradients are the driving force. In precise and safety apparatus,
one cannot rely on the external source to run the loop for longer period. Therefore,
NCL is a lucrative choice. In NCL, riser and downcomer connect the source and
sink for energy transfer. Simplicity in configuration and reliability in performance
grabs the attention of researchers to make use of NCL for diversified applications
like cooling of nuclear reactor, gas turbine blades, solar heaters, waste heat recovery
boilers, and so on [1–3].
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Based on the state of working fluid, NCLs can be either single or two phases.
Larger density gradient of working fluid across the loop is the inherent advantage
of two-phase NCL over single-phase NCL. From the past few decades, different
analytical approaches are reported in the literature to study the performance of two-
phase NCL. Few of them which are giving closer prediction to the experimental
results are homogeneous model [4, 5], drift flux model [5, 6], and one-dimensional
two-fluid model with thermodynamic nonequilibrium [7]. The present work aims to
develop a model to study the performance of two-phase NCL with one-dimensional
approach. Pressure drop in two-phase regions is estimated by using homogeneous
equilibrium model. The effect of diameter on loop performance is also analyzed.

2 Mathematical Modeling

A uniform cross-sectional rectangular loop is considered for the analysis. Evaporator
and condenser sections are positioned on horizontal arms at an elevated distance to
add the favorable gravity gradients to the loop fluid. These two sections are connected
by two vertical arms called riser and downcomer. Constant heat flux boundary con-
dition is considered at evaporator and condenser sections. Schematic representation
of two-phase NCL is as shown in Fig. 1. Based on the state of loop fluid, the loop is
divided into six regions, which are represented in Fig. 1 and Table 1.

The following assumptions are made to simplify the solution:

1. The bulk temperature of the loop fluid reaches saturation temperature in the
evaporator section.

2. Thermophysical properties are considered at a local pressure only instead of
system pressure.

3. Loop is perfectly insulated.
4. Minor losses in the loop are neglected.
5. Quality in the loop linearly varies.
6. The flow is in counterclockwise direction.

Table 1 Loop regions

S. No. Regions Zone description

1 a–b Subcooled heating region

2 b–c Vaporization region

3 c–d Adiabatic two-phase region

4 d–e Condensation region

5 e–f Subcooled cooling region

6 f–a Adiabatic single-phase region
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Fig. 1 Schematic diagram
of a two-phase NCL

2.1 Governing Equations

One-dimensional steady-state continuity equation at any section in the loop is given
by

d(ρuA)

ds
� 0 (1)

The total loop momentum equation is given by

∮
2 f G2

Dρ̄
ds +

∮
ρ̄g sin θds +

∮
dϑ̄

ds
ds � 0 (2)

The governing equation for energy in the loop at any section is given by
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For single-phase region:

d(h)

ds
� QP

Acs
(3.a)

For two-phase region:

dx

ds
� QP

Acs
(3.b)

where Q is amount of heat interaction with evaporator, condenser and this value will
be zero in adiabatic riser and downcomer sections.

Loop is filled with two-phase mixture as well as single-phase fluid; hence, the
pressure drop at every section is given by

For single-phase fluid:

dp

ds
� 2 f G2

Dρ
± gρ sin θ (4)

For two-phase mixture

dp

ds
� 2 ftpG2

Dρ̄
+ G2ϑ f

(
ϑ f g

ϑ f

)
dx

ds
± g sin θ

ϑ f

(
1 + x

(
ϑ f g

ϑ f

)) (5)

where ftp is the two-phase friction factor, and it is estimated as for laminar flow
ftp � 16

Retp
, for turbulent flow ftp � 0.079

Re0.25tp
.

The two-phase Reynolds number can be estimated by Retp � GD
μtp

.
The pressure drop in the loop is evaluated by using Eq. (4) for single-phase fluid

and Eq. (5) for two-phasemixture. The two-phase pressure drop is estimated by using
homogenous equilibrium model. The different zone lengths are evaluated by using
the energy equation (3.a, 3.b). A suitable iterative procedure is applied to solve the
total loop momentum equation for estimating the final mass flow rate.

3 Result and Discussion

Bykeeping themass of the loop and height of the loop constant, the required diameter,
horizontal section length, and heat section length are derived. These values are shown
in Table 2. Figure 2 shows the effect of diameter on loop mass flow rate for different
heat inputs. As the heat flux increases, mass flow rate increases up to certain limit
and then after decreases. As the diameter increases, mass flow rate increases and the
peak value is shifted to right. This happens because of the quality and pressure drop
in the riser section.
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Table 2 Two-phase NCL configuration

Diameter (m) Horizontal section
length (m)

Height of the loop (m) Heating section length
(m)

0.01225 1.5098 2 0.5408

0.01325 1 2 0.5

0.01425 0.5937 2 0.4649

Figure 2b shows the variation of quality in the loop. In homogeneous 1Dmodeling,
quality is estimated as the area averaged value. As diameter increases, the evaporator
length decreases, even though the fluid quantity in the evaporator increases. Thus,
for the same amount of heat flux supplied at evaporator, exit quality of loop fluid
decreases and higher quality can be obtained at higher heat fluxes. Figure 3 shows
the two-phase pressure drop in the loop for different diameters. As loop diameter
increases, the friction loss and quality reduce. The decrease in quality provokes
gravitational head in the riser. Hence, the overall two-phase pressure drop increases.
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(a)

(b)

Fig. 2 a Effect of diameter on loop mass flow rate and b effect of diameter on loop quality
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Fig. 3 Two-phase pressure drop in the loop at different heat flux

4 Conclusions

The steady-state performance of a two-phase natural circulation loop by varying loop
diameter is analyzed. One-dimensional homogeneous model is used. Loop steady-
state solution is obtained in terms of mass flux by solving the momentum equation.
The following important findings are noted during the analysis.

• The performance of the NCL is strongly affected by loop diameter.
• For a particular loop height and quantity of loop fluid, loop diameter has a signif-
icant influence on quality.

• There is an optimum value of heat flux for any configuration of the loop.
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Studies on Heat and Mass Transfer
Coefficients of Pearl Millet in a Batch
Fluidized Bed Dryer

D. Yogendrasasidhar and Y. Pydi Setty

Abstract Drying is the mechanism for separation of moisture content from the
solids. The heat transfermechanism in dryers is by several modes such as conduction,
convection, and radiation and sometimes in the combination of two or three of them.
Fluidized bed dryer is adapted to process industries like pharmaceuticals, food, and
cement due to a wide range of applications. Generally, fluidized bed dryers are
operatedwith preheated air at high temperatures. The bed particles behave like a fluid
with hot air. Heat and mass transfer plays a main role in fluidized bed dryer. In the
process of drying, heat and mass transfer coefficients of particles in the bed changes
rapidly. India is one of the major producers of grains in the world. Fluidized bed
dryer is widely used in particulate drying. In this study, experiments were performed
to determine heat and mass transfer coefficients of pearl millet varying different
parameters in fluidized bed dryer.

Keywords Pearl millet · Heat transfer coefficient · Mass transfer coefficient

1 Introduction

Drying is one of the traditional moisture separation processes in pharmaceutical,
food, and fertilizer industries. Dryers are classified mostly by the mode of heat sup-
plied to the wet solids, which may be conduction, convection, and radiation and
sometimes in the combination of two or three of them. The disadvantage with other
conventional dryers is nonuniform drying and material property changes that leads
to damage of product quality. To get uniform quality of the product, the fluidized
bed dryers are adapted in the process industries. In fluidized beds, the solids are
suspended in the hot gas stream, which is the heating medium that results in high
heat and mass transfer rates in the fluidized beds [1]. Fluidized bed dryers have many
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advantages compared to other conventional dryers such as uniform drying due to high
solids mixing, uniformmoisture distribution due to very high particle circulation rate
and very high rates of heat and mass transfer because of good gas-to-solid contact
in the bed. Generally, in fluidized beds, different types of heat transfer phenomena
takes place, like wall-to-particle, gas-to-particle, and particle-to-particle heat trans-
fer. The gas-to-particle heat transfer plays a major role because of carryover of the
moisture from the particle. The mass transfer coefficient of particles is based on
moisture removal rate in fluidized bed dryer. Previously, some of the researchers
conducted drying studies on different food grains [2]. The heat and mass transfer
studies were conducted with sand, grains, porousmaterials, and ammonium chloride,
etc., in fluidized bed dryer by many researchers [3–5]. Srinivasakannan and Bala-
subramanian have studied the drying behavior of pearl millet in fluidized bed dryer
[6]. In the present study, experiments were carried out to determine the mass trans-
fer coefficient of pearl millet varying air velocity, temperature, and initial moisture
content. Also, studies were conducted on heat transfer to determine the heat transfer
coefficient of pearl millet in fluidized bed dryer.

2 Experimental Setup and Procedure

Fluidized bed dryer was designed with a cylindrical column having a fluidization
column of 1 m, calming section of 1 m, and diameter of 0.083 m. Distributor plate
with 5 mm orifices was used for the uniform distribution of gas. Air is drawn from
the compressor and passed through air heater, followed by the calming section. The
air inlet temperature is controlled by a rheostat, the air flow rate was controlled using
a bypass valve, and measured using rotameter of range 0–120 kg/h. Insulation is
provided over the air heater to prevent heat losses. Thermocouples connected to a
temperature indicator were used to measure the air and solid temperatures. In the
present study, pearl millet having a diameter of 2.2 mm and density of 1350 kg/m3

was used. Experimental setup of fluidized bed dryer is presented in Fig. 1. A known
amount of millet with known initial moisture content has been used inside the flu-
idized bed dryer. After attaining the experimental conditions, airflow has been ini-
tiated and the samples were collected at the top of the bed at regular intervals. The
collected sample’s moisture was analyzed using hot air oven and microbalance.

3 Results and Discussion

3.1 Heat Transfer Studies

Generally, heat transfer environment created for fluidized bed dryer is by solar heat-
ing, microwave heating, or by manual heating using heating coils. The moisture
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Fig. 1 Batch fluidized bed
dryer

removal rate mainly depends on heat transfer between gas-to-solid and gas-to-solid
contact ratio. Many authors studied and developed heat transfer correlation between
gas to solid in fluidized bed dryer [3, 7].Minimumfluidization velocity and Reynolds
number of pearl millet were calculated using Eqs. (1) and (2) [8]. Based on exper-
imental air velocities presented, Reynolds numbers of pearl millet are presented in
Fig. 2. Initially, gas was sent through the bed of particles and bed porosity changes
with air velocity. Due to this, the heat transfer between gas to solid also changes with
bed porosity. Here, heat transfer coefficient of pearl millet in fluidized bed dryer is
calculated based on bed porosity and theNusselt number are presented in Eqs. (3)–(6)
given [3, 8]. The Nusselt number of pearl millet varying with air velocity is presented
in Fig. 3. It can be observed from the figure that heat transfer coefficient is increased
with increasing air velocity in fluidized bed dryer. From Fig. 4, it can be observed
that the drying rate of pearl millet increased with increasing air velocity, as moisture
removal rate of particles in bed increases due to increasing air velocity.

dpum f ρg

μ
�

[
(28.7)2 + 0.0494

(
d3
pρg

(
ρs − ρg

)
g

μ2

)]1/2

− 28.7 (1)
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Fig. 4 Effect of air velocity on drying characteristics of pearl millet (Air temperature—55 °C, bed
height—4 cm, and initial moisture content—10%)

3.2 Mass Transfer Studies

In a fluidized bed dryer, moisture transport generally occurs from solid to gas. It is
influenced by different parameters of the dryer. Many authors estimated diffusion
coefficients of several materials with the help of Fick’s law [6]. In the present study,
experimentswere performedbychanging air velocity from1.1 to 2.2m/s, temperature
from 40 to 70 °C, and bed height from 3 to 5 cm with 10% moisture content of pearl
millet.

The mass transfer coefficient, K was calculated using Eq. (7) incorporating the
experimentalmoisture content of pearlmillet at different air velocity, air temperature,
and bed height [9].

K � Rw

Mt − Me
(7)

Here, Mt is transient moisture content of pearl millet, Rw is drying rate, and Me

is equilibrium moisture content.

Effect of air velocity on the mass transfer coefficient
Experiments were performed with air velocity from 1.1 to 2.2 m/s, and the remaining
parameters are kept constant in fluidized bed dryer. From Fig. 5, it can be noticed that
the mass transfer coefficient of pearl millet increased with increasing air velocity.

Effect of air temperature on the mass transfer coefficient
Experiments were performed with air temperature from 40 to 70 °C, and the remain-
ing parameters are kept constant in fluidized bed dryer. FromFig. 6, it can be observed
that the mass transfer coefficient of pearl millet increased with increasing air tem-
perature.
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Effect of bed height on the mass transfer coefficient
Experiments were performed with bed height from 3 to 5 cm, and the remaining
parameters are kept constant in fluidized bed dryer. From Fig. 7, it can be observed
that themass transfer coefficient of pearl millet decreased with increasing bed height.

From the results, the highest mass transfer coefficient is found to be 0.87 s−1 at
air velocity 2.2 m/s, air temperature of 50 °C, and bed height of 4 cm.

4 Conclusion

Experimentswere performedwith pearlmillet usingfluidized bed dryer.Heat transfer
studieswere carried out using pearlmillet. TheNusselt number andReynolds number
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Fig. 7 Effect of bed height on the mass transfer coefficient of pearl millet (Air velocity—1.7 m/s,
Air temperature—55 °C, and initial moisture content—10%)

of pearl millet were presented at different velocities in fluidized bed dryer. It can be
observed that the heat transfer coefficient of pearl millet increased with increasing
air velocity in fluidized bed dryer. Studies were also conducted on mass transfer
changing air velocity, air temperature, and bed height in fluidized bed dryer. From
the results, it was observed that mass transfer coefficient increasedwith increasing air
temperature, velocity, and decreased with increasing bed height. In these studies, the
highest Nusselt number was found to be 10.65 at 2.2 m/s and highest mass transfer
coefficient of pearl millet was observed as 0.087 s−1 at air velocity of 2.2 m/s, air
temperature of 50 °C, and bed height of 4 cm.
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Effect of Channel Confinement
and Hydraulic Diameter on Heat
Transfer in a Micro-channel

D. Sathishkumar and S. Jayavel

Abstract The study of fluid flow and heat transfer in a micro-channel plays a major
role in electronic cooling. The effect of micro-channel confinement and hydraulic
diameter on heat transfer characteristics is investigated. Three-dimensional numeri-
cal simulation is carried out using ANSYS Fluent 15 for a wide range of hydraulic
diameter ranging from 0.1 to 1 mm. Further, the simulations are extended for various
Reynolds numbers. Water is the working fluid. The present numerical results are
validated with those available in literature. The computational results are presented
in the form of temperature contours and Nusselt number variation. The results show
that the Nusselt number increases with increasing hydraulic diameter.

Keywords Rectangular micro-channel · Hydraulic diameter
Thin-walled model

1 Introduction

Today, all the machines engaged in diverse fields such as computing, communica-
tion, mechanical, etc., involve electronic devices. Thermodynamically, all electronic
devices undergo irreversible process with the net result being the generation of heat.
The main basis for this concern is the increasing cost and complexity of thermal
management in electronic systems. The air cooling strategy is still a viable option
in some areas although other factors such as operating costs, chip reliability, and
waste heat recovery may still encourage the use of liquid cooling [1]. Subsequent
paragraphs, however, are indented.

The micro-channel investigation is first introduced by Tuckerman and Pease et al.
[2]. They considered rectangular micro-channel to dissipate high heat flux value
using laminar water flow. Peng et al. [3] experimentally investigated the rectangular
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micro-channels with the range of hydraulic diameter from 0.113 to 0.367 mm. The
critical Reynolds number value was found to depend on channel hydraulic diameter.
Mokrani et al. [4] experimentally investigated the fluid flow and convective heat
transfer in rectangularmicro-channels by varying both channel height (0.05–0.5mm)
and the hydraulic diameter (0.1–1 mm). They concluded that the micro-channel
hydraulic diameter has no effect on the Nusselt number and for the micro-channel
having hydraulic diameter greater than 1, the conventional laws and correlations are
applicable. On the other hand, Liu and Garimella [5] explained that conventional
correlations are giving same predictions for the laminar flow in rectangular micro-
channels over a hydraulic diameter range of 0.244–0.974mm. There are fewmethods
to predict the effect of wall boundary.

Sahar et al. [6] conducted a numerical study on heat transfer in micro-channels
considering different models for simulation such as 2D, 3D thin-walled, and 3D full
conjugate model. They concluded that 3D thin-walled model gives results that match
with experimental data. Based on the literature study, in the present study, 3D thin-
walled model is used with constant heat flux boundary conditions. Gunnasegaran
et al. [7] explained the effect of channel size and shape on heat transfer in different
multi-micro-channels. They considered three different geometries and all three cases
simulated for a wide range of hydraulic diameter and aspect ratio. They concluded
that rectangular micro-channel with small hydraulic diameter gives high heat trans-
fer coefficient values than triangular and trapezoidal geometries. This claim is also
supported by the results due to Wang et al. [8].

2 Model Description

In this present numerical investigation, the geometry considered is rectangularmicro-
channel with the channel length of L �62 mm as shown in Fig. 1. In order to avoid
the conjugate effect, 3D thin-walled model is selected for the numerical study. To
study the effect of channel confinement and hydraulic diameter on heat transfer, the
Dh is varied from 0.1 to 1 mm while keeping aspect ratio as constant, (W /H)�1.
Further, Reynolds number effect is studied in the range, 300≤ Re ≤ 2000.

ICEM CFD is used for grid generation as shown in Fig. 1 while ANSYS Fluent
15 is used for simulation. Uniform inlet velocity condition is imposed at the inlet of
channel and a zero static pressure is given to the outlet of the channel. Constant heat
flux is applied at three walls except for top wall. The shaded top wall as shown in
Fig. 1 is considered adiabatic as applicable to most of the electronics cooling. Using
10-6 as convergence criterion indicates the level of accuracy maintained in the study.
Both momentum and energy equations are solved by first-order upwind scheme. To
solve pressure–velocity coupling, a SIMPLE scheme is applied. In order to save the
computation time, constant grid size of 20×15×400 is chosen.
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Fig. 1 Schematic representation of computational domain and enlarged view of mesh near the inlet

3 Mathematical Formulations

The general governing equations applicable to the present study are given in
Eqs. (1)–(3). Further, the following assumptions are imposed: (1) Incompressible
laminar steady flow and (2) negligible radiation heat transfer. Parameters used in the
present study are listed in Eqs. (4)–(7).

Continuity equation is

∇
(
ρ �V

)
� 0 (1)

Momentum equation is

�V .∇
(
ρ �V

)
� −∇ p + ∇.

(
μ∇ �V

)
(2)

Energy equation is

�V .∇(
ρCpT f

) � ∇.(K f ∇T f ) (3)

Nondimensional Reynolds number is defined as

Re � ρ f VchDh

μ f
(4)

Channel aspect ratio and hydraulic diameter is defined as,

AR � Hf

W f
, Dh � 4(HchWch)

2(Hch +Wch)
(5)

Local Nusselt number and local heat transfer coefficient are defined as
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Nu(x) � h(x)Dh

K f
, h(x) � q ′

Tw,av(x) − T f,av(x)
(6)

Similarly, the average Nusselt number and average heat transfer coefficient are
defined as

Nu,av � havDh

K f
, hav � 1

Lch

Lch∫

0

h(x)dx . (7)

4 Results and Discussions

This section presents the simulation results of channel confinement and hydraulic
diameter effect on heat transfer enhancement for all cases considered in the present
study.

4.1 Validation of the Computed Results

The Nusselt number computed in the present study are compared with the values
predicted from the correlation of Bejan [9] for developing a flow. Figure 2 shows
variation of Nusselt number for two different Reynolds numbers, i.e., for 500 and
1500. From the figure, it is observed that closematch exists between computed values
and literature results.

Fig. 2 Validation of the present results (Nusselt number)
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Fig. 3 Validation of the present results (hydrodynamic entry length)

4.2 Hydrodynamic Entry Length

The velocity variation along the channel length for hydraulic diameter of 0.5 mm is
shown in Fig. 3. For Re�500, the fully developed flow is observed at around 10 mm
from the inlet. This hydrodynamic entry length value is compared with the value
obtained from the Eq. (8) available in the literature. The computed value of entry
length exactly matches with the literature.

For a fully developed laminar flow, the hydrodynamic entry length can be calcu-
lated from the following relation:

δhx � 0.04DhRe (8)

4.3 Comparison of Fluid and Wall Temperature

This section explains the effect of hydraulic diameter on heat transfer in the micro-
channel while keeping aspect ratio value as 1. To understand the effect of geometric
parameter on heat transfer enhancement, the temperature variation along wall and
fluid is shown in Figs. 4 and 5 for Re�500. Figure 4 shows the temperature contour
along the constant heat flux wall. The temperature from the inlet to outlet varies from
300 to 326K for the case Dh�0.5mm. The variation in temperature along the fluid is
shown in Fig. 5. The same case has taken for understanding the temperature variation.
But, in this case, the range of temperature from inlet to outlet is being 300–306 K.
From the above two cases, the temperature variation in fluid is very small compared
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Fig. 4 Temperature distribution along wall

Fig. 5 Temperature distribution along fluid

to the temperature variation along wall. Thus, the geometry variation has significant
effect on heat transfer.

4.4 Effect of Hydraulic Diameter on Heat Transfer

The average Nusselt number variation for the range of hydraulic diameter from 0.1
to 1 mm while keeping AR�1 for Re=500 and Re �1500 is shown in Fig. 6. The
constant heat flux value is applied at bottom and side walls while the top wall is
imposed with adiabatic condition. The hydraulic diameter variation gives significant
effect on Nusselt number where the average value of Nu is found to increase with
increasing Dh value. For thermally developing flow, the Nu value increases gradually
for both the cases, i.e., Re = 500 and Re �1500.
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Fig. 6 Effect of hydraulic diameter on Nusselt number

5 Conclusions

In this work, a three-dimensional rectangularmicro-channel is studied numerically to
understand the effect of channel confinement and hydraulic diameter on heat transfer
characteristics. Micro-channel of different hydraulic diameter (0.1–1mm) with fixed
AR is analyzed over a range of Reynolds number. Fluent 15 is used to simulate the
simplified thin-walled model. In this study, the constant wall heat flux boundary
condition is applied except for top wall, which is considered as adiabatic. The effect
of hydraulic diameter variation is favorable from heat transfer point of view. Based
on the simulation results, we can conclude that the effect of the hydraulic diameter
and channel confinement on heat transfer is more important and average Nusselt
number value increases with increasing hydraulic diameter for thermally developing
flow.
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Numerical Study on Performance
of Savonius-Type Vertical-Axis Wind
Turbine, with and Without
Omnidirectional Guide Vane

Mahammad Sehzad Alli and S. Jayavel

Abstract Savonius-type vertical-axis wind turbine is a suitable candidate for
decentralized power generation in urban locations, due to its self-starting nature,
large starting torque and ability to accept wind from any direction. In the present
work, 2D, transient CFD analysis was performed on an S-shaped Savonius vertical-
axis wind turbine (VAWT) using ANSYS Fluent 15.0, and the results thus obtained
are validated by comparing with the experimental result published in the literature.
Numerical study on the effect of omnidirectional guide vane (ODGV) on power- and
torque coefficients of S-shaped Savonius VAWT is carried out. The results showed
that the presence of ODGV increases power and torque, thus the performance of
VAWT is increased in the presence of ODGV. Further, the computations are system-
atically extended to study the effect of ODGV in the range of 0.45–0.8 tip-speed
ratio (λ). Optimal performance of the VAWT is noted at a tip-speed ratio of 0.6.

Keywords Savonius rotor · Omnidirectional guide vane · Numerical simulation
Vertical-axis wind turbines

1 Introduction

Rapid urbanization and the subsequent increase in power consumption have taken
a toll on the environment. Currently, two-thirds of the energy demand in India is
met using fossil-based non-renewable resources [1]. To reduce the dependence on
conventional energy resources and minimize its impacts on the environment, use of
renewable energy is promoted. In the urban area, the localization of energy produc-
tion can be achieved using renewable energy-based microgrids. Most of them rely
on solar energy. However, the quantity of energy obtained from solar panels depends
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on the solar intensity at that particular time, location and climate. Hence, harvesting
additional renewable energy from the wind can augment the capacity of such micro-
grids and can help in generating additional revenue by supplying back the excess
available power to the main grid. This research work aims to augment the renewable
energy-based microgrid system by developing a suitable wind turbine.

The Savonius VAWTwas proposed by S. J. Savonius in 1922 [2]. The advantages
of Savonius rotor aremany [3], viz., it is independent ofwind direction, therefore does
not require a yaw system, has relatively large start-up torque, has simple structure
and low cost and produces less operating noise. However, Savonius turbines have
some drawbacks such as relatively low power coefficient and low rotational velocity.

The wind turbine performance is assessed using the power coefficient,Cp, Eq. (1)
[4].

Cp � Protor
Pwind

� Cmλ (1)

where Cm and λ are defined as Cm � M
1
2 ρV 2

o As R
, λ � ωR

Vo
, P is shaft power, M is

moment, ρ is air density, Vo is free-stream air velocity, As is projected area, R is
radius, Cm is coefficient of moment, ω is angular velocity and λ is the tip-speed ratio
of the wind turbine.

2 Problem Description and Solution Methodology

2.1 Geometry and Computational Domain

Numerical computations are carried out to study the performance of S-bucket Savo-
nius VAWT as shown in Fig. 1a using ANSYS Fluent 15.0. The buckets have a
semicircular profile and have a full 180° arc with a diameter of 500 mm. The thick-
ness of the bucket is taken as 1.5 mm. Further, ODGV is attached to study its impact
on performance and torque characteristics. The detailed dimensions of the 2D S-
bucket are shown in Fig. 1b. The gap width, s, separating the inside edges of the
buckets, is kept such that the non-dimensional gap width, s/d, is 1.5. The radius of
the rotor, R, is measured from the centre of rotation to the outer edge of the buckets,
thus it is measured to be 464 mm. The span of the rotor is taken as 1 m. The rotor
geometry corresponds to the data available in [5]. The ODGV design corresponds to
the data available in [6], such that the number of the guide vanes is 4, θ is 20°, φr is
30° and Dsi

Dso
� 0.55, it is illustrated in Fig. 1c.

Dsi and Dso are the inner and outer diameters of ODGV, respectively. Here, we
have assumed Dsi as 1.6D and span of the guide vane to be 1 m.

Computational domain was created using a CAD software. Mesh generation has
been carried in such a way to suit the complexity involved such as steep gradients
near the surface and turbulence. A circular computational domain is considered for
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Fig. 1 Savonius VAWT a Pictorial view b S-bucket dimensions c with ODGV

Fig. 2 a Computational domain. b Enlarged view of the mesh near the surface of bucket

numerical analysis, which has a radius 25D, for generating a structuredmesh, Fig. 2a.
The rotor in the rotating zone rotates in a circle of 928mmdiameter, while the rotating
zone is 1.5D in diameter. The computational domain is discretized using quadrilateral
elements using ANSYSWorkbench. Meshing near the bucket edges are made dense
as shown in Fig. 2b to capture the steep gradients.

Steady-state incompressible wind flow has been assumed uniformly distributed
torque along the rotor height. The central shaft is excluded in the 2D numerical
model. An appropriate thickness of the buckets is assumed, as it is not reported in
the literature. The influence of end plates is neglected. For better accuracy, the y+

value is kept low as per requirement of the turbulence model [7]. The parameter y+

is given in Eq. (2), where Uτ is shear velocity and �y is the grid spacing near the
wall.

y+ � ρUτ�y

μ
(2)
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2.2 Formulae and Solver Settings

The continuity equation for steady incompressible flow is given in Eq. (3), where
vx , vy, vz are the component of the velocity of the fluid in the x, y and z directions,
respectively, and ρ is the density of the fluid.

∂(vx )

∂x
+

∂
(
vy

)

∂y
+

∂(vz)

∂z
� 0 (3)

TheReynolds-averageNavier–Stokes (RANS) equation is given in Eq. (4). RANS
equation can be closed using two-equation turbulence models, by applying Boussi-
nesq’s hypothesis, which states that the transfer of momentum generated by turbulent
eddies can be predicted by an eddy viscosity, μt . According to this, the Reynolds
stress tensor is proportional to the rate of strain tensor s̄i j , given in Eq. (5).

∂

∂t
(ρui ) +

∂

∂x j

(
ρuiρu j

) � − ∂p

∂xi
+

∂

∂x j

[
μ

(
∂ui
∂x j

+
∂u j

∂xi
− 2

3
δi j

∂ul
∂xl

)]

+
∂

∂x j

(
−ρu′

i u
′
j

)
(4)

S̄i j � 1

2

(
∂ ūi
∂x j

+
∂ ū j

∂xi

)
(5)

Themost commonly used two-equation turbulencemodels known for better accu-
racy are the K–ε proposed by Jones and Launder and the K–ω model developed by
Wilcox. Shear-stress transport (SST) k–ω turbulence model uses the k–ε model to
obtain flow properties in the far-field (turbulent) flow region, away from the wall,
but uses a modified k–ε model near the wall using the specific dissipation rate ω as
a variable in lieu of the turbulent dissipation rate, ε, where, ω �ε/k [s−1].

The numerical result in the present study is heavily influenced by near-wall flow,
and proper modelling of this boundary layer flow can improve the accuracy of the
solution. Therefore, the SST k–ω turbulence model is considered as the turbulence
model for numerical analysis. The selected solver is pressure based, well suited
to compute an incompressible flow field. The numerical results are validated by
comparing it with the experimental results available in [5].

The solver was set to solve the RANS equations using SIMPLE (Semi-Implicit
Method for Pressure-Linked Equations) method. At the inlet, the x component of
the velocity is set as 7 m/s, the outlet is set with zero-gauge pressure value and the
angular velocity of the rotating zone is set corresponding to the desired λ. A monitor
for the moment coefficient (Cm) on the surface of the buckets is defined to obtain
a mean torque value at different time steps, and it is averaged to get Cm avg. Using
Eq. (1) Cp is calculated from Cm avg.
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Fig. 3 Power coefficient as
a function of speed ratio

3 Results and Discussion

The power coefficient, Cp values at different TSR is obtained numerically and Cp

versus λ is plotted as shown in Fig. 3. This plot serves the purpose of validation. It
can be noted that the results of the numerical models and the reference values have a
good agreement. At higher tip-speed ratio, the deviations between experimental and
numerical results are observed. At lowTSR, the fluid flow at rotor bucket experiences
more laminar nature [8]. The error associated with the computed results becomes
considerable at higher TSRs since RANS turbulencemodels used in the present study
assumes fully turbulent flow behaviour during the fluid flow. Other factors such as
2D simplification of the problem, discretization strategy, tolerance values, turbulence
models and solution stability might have contributed to the deviation. However, at
the power coefficient obtained by numerical analysis at lower TSRs (λ <0.85) are
very close to the experimental values. Hence, for further analysis of the effect of
ODGV on the performance of S-Savonius rotor λ <0.85 is used.

The ODGV is studied and presented in Fig. 4. It is evident that for the given
configuration of ODGV, there is an 11.62% increase of power coefficient observed
at λ �0.6. If the rotor runs at optimum loading condition such that the λ hovers
around 0.6, using an ODGV will positively increase the power output. Also, from
Fig. 5, it is noted that the starting torque characteristic is also improved by the same
percentage (11.62%).

4 Conclusion

From the result of the numerical analysis, it is evident that the SST k–ω model is the
best choice for modelling the CFD problem where near-wall performance is needed
to be captured, for example Savonius rotors which works primarily due to drag. Both
numerical and experimental results suggest that SavoniusVAWTsperformwell under
low (<0.8) TSR (tip-speed ratio), i.e. at low wind speed conditions. It also has a very
good starting torque, hence can be used as a passive starter system for the Darrius
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Fig. 4 Effect of ODGV on
Cp for various TSR

Fig. 5 Effect of ODGV on
Cm for various TSR

rotor which lacks self-starting ability. However, with additional features like ODGV,
the performance of Savonius rotor can be increased. From the numerical analysis,
around 11.62% increase in the performance is obtained for the assumed configuration
of ODGV. Further investigation can be performed on a different configuration of
ODGV to find the best suitable geometry for Savonius rotor.
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Free Convection of Nanofluid Flow
Between Concentric Cylinders with Hall
and Ion-Slip Effects

D. Srinivasacharya and Md. Shafeeurrahman

Abstract The natural convection of electrically conducting nanofluid flow in an
annular region between two concentric circular cylinders considering Hall current
and ion-slip effects. The governing equations are nondimensionalized and solved uti-
lizingHAM.The influence ofHall, ion-slip parameter, thermophoresis parameter, the
magnetic parameter, and Brownian motion on dimensionless velocity, temperature,
and nanoparticle concentration are studied and represented geometrically.

Keywords MHD · Nanofluid · Concentric cylinders · Hall effect · Ion-slip
effect · Free convection · HAM

1 Introduction

Nanofluid, pioneered by Choi [1], is a combination of a base fluid and small nano-
sized solid particles. Choi [1] verified that the nanofluids have the highest thermal
conductivity compared with the base fluids. This can be obtained even at very small
volume fractions of nano-sized particles. Nanofluids have several applications of
engineering in microfluidics, microelectronics, biomedical, manufacturing, solid-
state lighting, transportation, scientific measurement, material synthesis, high-power
X-rays, material processing and medicine etc... On the other hand, the study of free
convective heat transfer in an annulus has acquired considerable attention due to its
diverse application in the designs of cooling devices for electronic and microelec-
tronic equipment, solar energy collection, etc. Number of studies were conducted
on the convective heat transfer and nanofluid flow through concentric cylinders by
considering distinct types of conventional base fluids with particular nanoparticles.
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Dawood et al. [2] presented a review of literature on free and mixed-convection heat
transfer and fluid flow in the annulus.

Interest in studying the free convective heat transfer of nanofluids in the annular is
of fundamental importance due to its high range of applications in engineering. Togun
et al. [3] presented a detailed review on heat transfer of free and mixed convective
nanofluid flow through various annular passage configurations. The study of the flow
of magnetohydrodynamics (MHD) flow of nanofluids has gained much attention due
to its several engineering and industrial applications. Chamkha et al. [4] presented
a review on various research work done on the MHD convection of nanofluids in
various geometries and applications. The effects of Hall current on electrically con-
ducting viscous steady fluid in channels was studied by Tani [5]. Srinivasacharya and
Kaladhar [6] analyses the impact of Hall, ion-slip current effects on MHD natural
convective fluid flow of couple stress fluid in an annulus. Odelu and Naresh Kumar
[7] investigated the influence of the Hall and ion-slip on unsteady two-dimensional
MHD natural convection heat and mass transfer of couple stress fluid in a porous
medium between expanding or contracting walls with chemical reaction, Soret and
Dufour effects. Motsa and Shateyi [8] numerically analyzed the impacts of Hall cur-
rent and ion-slip parameter on the magnetomicropolar fluid flow through a porous
medium with suction, variable thermal diffusivity, and chemical reaction.

2 Mathematical Formulation

Consider the nanofluid flow in the annular space between two infinitely long con-
centric cylinders of radius a and b (a < b) and kept at temperatures Ta and Tb,
respectively. Assume that the outer cylinder is rotating with a uniform angular veloc-
ity �, whereas the inner cylinder is constant. The flow is induced by the rotation of
the exterior cylinder. The flow is subjected to a standard uniformmagnetic field B0 in
an axial direction. The assumption of very small magnetic Reynolds number leads to
neglect of the inducedmagnetic field. Assume relatively high electron-atom collision
frequency, so that the impact of Hall and ion-slip cannot be omitted. Thermophysical
characteristics of the nanofluid are taken as constant. The velocity component along
ϕ direction is u, dimensionless temperature is T , and nanoparticle volume fraction
is φ. Under the above assumptions and along with Boussinesqs approximation, the
governing equations are

∂u

∂ϕ
= 0 (1)

∂p

∂r
− ρu2

r
+ σ B2

0 βh u

(α2
e + β2

h )
= 0 (2)
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μ
∂

∂r

[
1

r

∂

∂r
(r u)

]
+ (1 − φ)ρ f g βT (T − Ta) − (ρp − ρ f ) g(φ − φa) − σ B2

0 αe u

(α2
e + β2

h )
= 0

(3)

α

[
∂2T

∂r2
+ 1

r

∂T

∂r

]
+ μ

(ρc)p

[(
∂u

∂r

)2

− 2
u

r

∂u

∂r
+

(u
r

)2
]

+τ

[
DB

∂T

∂r

∂φ

∂r
+ DT

T0

(
∂T

∂r

)2
]

= 0 (4)

DB

[
∂2φ

∂r2
+ 1

r

∂φ

∂r

]
+ DT

T0

[
∂2T

∂r2
+ 1

r

∂T

∂r

]
= 0 (5)

where the density is ρ, the pressure is p, the specific heat capacity isCp, the viscosity
coefficient is μ the acceleration due to gravity is g, the electrical conductivity is σ ,
ion-slip parameter is βi , Hall parameter is βh , Brownian diffusion coefficient is DB ,
the coefficients of thermal expansion is βT , thermophoretic diffusion coefficient is
DB , the effective thermal diffusivity is α, the coefficient of thermal conductivity is
K f = α (ρ C)p, the mass diffusivity is D, and the mean fluid temperature is T and
αe = 1 + βh βi is a constant.

The conditions on the boundary are

u = 0, T = Ta, φ = φa at r = a,

u = b�, T = Tb, φ = φb at r = b, (6)

Introducing the following nondimensional variables:

λ = r2

b2
, f (λ) = u

√
λ

�
, θ = T − Ta

Tb − Ta
, S = φ − φa

φb − φa
, P = bp

μ�
(7)

in Eqs. 1–5, we get the nonlinear differential equations as (8)–(10)

4 f ′′λ + √
λ (θ − Nr S) − Ha2 αe f

αe
2 + βh

2 = 0 (8)

λ3θ ′′ + λ2θ ′ + Br
[
( f ′)2 − 2 λ f f ′ + ( f )2

] + Pr Nb λ θ ′ S′ + Pr Nt λ
2 (θ ′)2 = 0

(9)

λ S′′ + S′ + Nt

Nb
(λ θ ′′ + θ ′) = 0 (10)

where the derivative with respect to λ is denoted by the prime, the Prandtl num-

ber is Pr = μCP

k f
, Hartman number is Ha2 = σ B0

2 b2

μ
, Brinkman number is
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Br = μ�2

k f (Tb − Ta)
, the Brownian motion parameter is Nb = τ DB(φb − φa)

ν
, ther-

moporesis parameter is Nt = τ DT (Tb − Ta)

Ta ν
, and the buoyancy ratio is

Nr = (ρp − ρ f )(φb − φa)

ρ f βT (Tb − Ta)(1 − φ)
.

The corresponding boundary conditions (6) are

S = 0, θ = 0, f = 0 at λ = λ0

S = 1, θ = 1, f = b at λ = 1
(11)

3 Results and Discussion

The systemof nonlinear differential equations Eqs. (8)–(10) and alongwith boundary
conditions (11) is solved using Homotopy analysis method [9].

The influence of magnetic parameter Ha, Brownian motion parameter Nb, ther-
mophoresis parameter Nt , andHall parameterβh and ion-slipβi on the velocity f (λ),
temperature θ(λ), and nanoparticle volume fraction S(λ) are shown graphically in
Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. To study the effect of these parameters,
the remaining parameters are taken as Br = 0.5, Pr = 1.0, and Nr = 1.0.

Fig. 1 Effect of magnetic
parameter on velocity
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Fig. 2 Effect of magnetic
parameter on temperature
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Fig. 3 Effect of magnetic
parameter on nanoparticle
concentration
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Figures 1, 2 and 3 represents the influence of the magnetite parameter Ha on
dimensionless velocity, temperature, and nanoparticle volume fraction. Figure 1
reveals that the dimensionless velocity is decaying with the rise in Ha. The magnetic
field which is applied orthogonally to the flow direction gives a resistive force known
as Lorentz force. This Lorentz force resists the flow of nanofluid therefore the veloc-
ity decreases. Figure 2 presents the variations in dimensionless temperature with Ha.
From this figure, it observed that the temperature θ(λ) is increasing with the increase
in Ha. Figure 3 depicts the variations of S(λ) with Ha. A decay in a nanoparticle
volume fraction S(λ) is noticed as the magnetic parameter Ha increases.
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Fig. 4 Effect of Hall
parameter on velocity

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Bh=0
Bh=1
Bh=2
Bh=3

f

λ

Fig. 5 Effect of Hall
parameter on temperature
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The variation of the velocity f (λ), temperature θ(λ) and nanoparticle volume
fraction S(λ)withHall parameter βh is presented in Figs. 4, 5 and 6. It is noticed from
Fig. 4 that the velocity is incrementing with a rise in the valued of the Hall parameter
βh . From Fig. 5, it is observed that, the dimensionless temperature θ(λ) is decreasing
with an increase in βh . There is an increment in a nanoparticle volume fraction S(λ)

with the increment in the value of βh as depicted in Fig. 6. The inclusion of Hall
parameter reduces the effective conductivity and hence drops the magnetic resistive
force. Hence, increase in βh raises the velocity component f (λ), the nanoparticle
volume fraction S(λ) and decreases temperature θ(λ).
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Fig. 6 Effect of Hall
parameter on nanoparticle
concentration
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Fig. 7 Effect of ion-slip
parameter on velocity
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The variation of the velocity in flow direction f (λ), temperature θ(λ), and
nanoparticle volume fraction S(λ) with ion-slip parameter βi are depicted in Figs.
7, 8, and 9. Figure 7 reveals that the velocity in flow direction is enhanced with the
enhancement in the parameter βi . From Fig. 8, it is seen that the temperature θ(λ)

decreases with the increase in βi . The nanoparticle volume fraction S(λ) is enhanced
with an increase in βi as shown in Fig. 9. The effective conductivity increases as
increase in βi , hence the damping force on the dimensionless velocity decreases and
due to this the dimensionless velocity increases.
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Fig. 8 Effect of ion-slip
parameter on temperature
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Fig. 9 Effect of ion-slip
parameter on nanoparticle
concentration
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The impact of the thermophoresis parameter Nt on the dimensionless velocity
f (λ), the dimensionless temperature θ(λ), and nanoparticle volume fraction S(λ)

are depicted in Figs. 10, 11, and 12. The dimensionless velocity f (λ) is raising with
rise in Nt as shown in Fig. 10. Figure 11 reveals that the dimensionless temperature
θ(λ) is enhanced with an enhancement in Nt . Increase of Nt leads to increases the
effective conductivity, hence the nanoparticle volume fraction S(λ) is decreasing as
recognized in Fig. 12.

The influence of the Brownian motion parameter Nb on the velocity f (λ), dimen-
sionless temperature θ(λ), and nanoparticle concentration S(λ) are depicted in



Free Convection of Nanofluid Flow Between Concentric … 465

Fig. 10 Effect of
thermophoresis and
Brownian motion parameters
on velocity
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Fig. 11 Effect of
thermophoresis and
Brownian motion parameters
on temperature profile
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Figs. 10, 11, and 12. The velocity f (λ) is increasing with the increment in the value
of Nb as shown in Fig. 10. Figure11 explains that the dimensionless temperature
θ(λ) rises with the rise in the value of Nb. Enhancement in Nb leads to increase in
the effective conductivity, therefore nanoparticle volume fraction S(λ) is decreasing
as given in Fig. 12.
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Fig. 12 Effect of
thermophoresis and
Brownian motion parameters
on nanoparticle
concentration profile
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4 Conclusions

This article investigates the effects of thermophoresis, Brownian motion, magnetic,
and Hall and ion-slip parameter on the natural convective flow of nanofluid through
the annulus between two concentric coaxial cylinders. The nondimensional nonlinear
differential equations are solved using the HAM procedure. The main findings are
encapsulated below:

– The dimensionless velocity and nanoparticle concentration decreases, whereas the
dimensionless temperature rises with the increment in magnetic parameter.

– As the Hall parameter increments, the dimensionless velocity and the nanoparticle
concentration rise but the dimensionless temperature decreases.

– The increment in ion-slip parameter leads to enhance the dimensionless velocity
and the nanoparticle concentration and decrease in the dimensionless temperature.
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Chemically Reacting Radiative Casson
Fluid Over an Inclined Porous Plate:
A Numerical Study

MD. Shamshuddin , S. R. Mishra and Thirupathi Thumma

Abstract The present study analyzes unsteady magnetohydrodynamic free
convection flow of a chemically reacting Casson fluid flow over an inclined porous
plate. The thermal radiation effects have also been considered. The governing partial
differential equations are transformed to nonlinear partial differential equations by
using nondimensional quantities. The solutions of these simplified coupled nonlin-
ear equations are calculated using a Galerkin finite element method with weighted
residual approach. The physical significance of emerging physical parameters on
flow field, temperature, and concentration profiles is presented through graphs and
discussed.

Keywords Casson fluid · Inclined plate · Thermal radiation
Viscous dissipation · Mass transfer · Chemical reaction

1 Introduction

Most of the investigations have consideredMHD (Magnetohydrodynamic) flow, heat
and mass transfer in porous and nonporous media. MHD features in a wide spec-
trum of modern industrial processes including bubble levitation, alloy manufacture,
nuclear heat transfer control, power generators, etc. Cassonfluids (sauce, jelly, human
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blood, honey, etc.) first coined by Casson [1] constitute a significant advance in the
fluid dynamic technology. Hussain et al. [2] used Laplace transform to analyze the
impact of heat transfer in MHD flow of Casson fluid with Newtonian heating, which
was again examined by Khalid et al. [3] and Das et al. [4] to obtain closed-form solu-
tion. Owing to high-temperature thermal radiation, the heat transfer and chemical
species present under a large temperature are significant. By considering radiation
and chemical reaction effects various analytical procedures have been implemented
for Casson fluid over oscillating channels [5–8]. These studies all demonstrated
the significant influence of thermal radiation and chemical reaction on thermofluid
dynamic characteristics in Casson fluids.

External convective boundary layer flows over horizontal or vertical flat plates
have been studied by many researchers. Recently, some contributions dealing with
oblique surfaces which include Gurram et al. [9] who used perturbation technique,
and Jain and Preeti [10] who used Crank–Nicolson implicit finite difference method.
This motivation leads us to develop a mathematical model for radiative chemically
reactingCasson thermo-solutal transport froma tilted permeable plate. Finite element
computational solutions are developed to illustrate the influence of magnetic field
parameter, Casson parameter, thermal and solutal Grashof numbers, plate inclination
angle, phase angle, thermal radiation parameter, and first-order chemical reaction
parameter on key characteristics of flow phenomena. Extensive interpretation of
computations is provided.

2 Mathematical Formulation

Free convective flow of unsteady two-dimensional magnetohydrodynamic Casson
fluid from an inclined porous plane (with inclination angle α to the vertical) is con-
sidered. The plane oscillates in its own plane with velocity V � U H

(
t ′
)
Cos

(
ω′t ′

)

fixed at y �0, which is measured in the normal to the direction of the plate; there-
after, the plate is maintained at constant wall temperature Tw and concentration Cw.
Assume that the plate temperature and concentration are greater than the ambient
temperature T∞ and concentration C∞. A uniform magnetic field of strength B0 is
applied in the direction perpendicular to the plate. Inducedmagnetic field is neglected
due to the assumption of low Reynolds number. Owing to high temperature, the ther-
mal radiation effects are included in the energy equation. The reactive species present
in magnetic Casson fluid obeys first-order chemical reaction. The constructive equa-
tions for the Casson fluid can be referred in Khalid et al. [3].

Under the above assumptions, the equation that describes the physical situation
with species concentration conservation equation is given as follows, Khalid et al.
[3] and Reddy et al. [8]:
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ρ
∂u′

∂t ′
� μB

(
1 +

1

γ

)
∂2u′

∂y′2 − σ B2
0 u′ − μ

K1
φ u′

+ ρ g βT
(
T ′ − T∞

)
cosα + ρ g βC

(
C ′ − C∞

)
cosα, (1)

ρCp
∂T

∂t ′
� κ

∂2T

∂y′2 − ∂qr
∂y

, (2)

∂C

∂t ′
� D

∂2C

∂y2
− K ′r

(
C ′ − C∞

)
(3)

The relevant and appropriate initial and boundary conditions are given as follows:

t < 0 :
{
u′ � 0, T ′ � T∞, C ′ � C∞ for all y > 0

t ≥ 0

⎧
⎨

⎩
u′ � U H

(
t ′
)
Cos

(
ω′t ′

)
, T � Tw,C � Cw, at y � 0

u′ → 0, T ′ → T∞, C ′ → C∞ as y → ∞ (4)

Here, u′, t ′, T ′,C ′, μB, γ, ρ, g, βT , βC ,Cp, α, κ, σ, μ, φ and K1 are the velocity
of fluid in x-direction, time, temperature, concentration, plastic dynamic viscosity,
Casson parameter, density, acceleration due to gravity, volumetric coefficient of ther-
mal expansion, volumetric coefficient of solutal expansion, specific heat at constant
pressure, thermal conductivity, electric conductivity of the fluid, fluid dynamic vis-
cosity, porosity of the fluid, and permeability of the fluid, respectively. Although
the primitive conservation equation and boundary conditions can be solved with a
variety of numerical methods, e.g., Crank–Nicolson difference scheme, the solution
requires explicit data for the thermophysical properties. It is, therefore, judicious to
render the system dimensionless. Following Rosseland approximation [11], the net

radiative heat flux ∂qr
∂y′ � 16 σ ∗T ′3∞

3k∗
∂2T ′
∂y′2 and nondimensional variables are

u � u′

U
, y � U

ν
y′, t � U 2

ν
t ′, θ � T ′ − T∞

Tw − T∞
,

ϕ � C ′ − C∞
Cw − C∞

, ω′ � ν

U 2
ω. (5)

Assimilating the nondimensional variables (5) into (1)–(4) yields the following
system of unsteady nondimensional partial differential equations:

∂u

∂t
�

(
1 +

1

γ

)
∂2u

∂y2
− Nu + (Grθ + Gmϕ)cosα, (6)

∂θ

∂t
� 1

�

∂2θ

∂y2
, (7)

∂ϕ

∂t
� 1

Sc

∂2ϕ

∂y2
− Kr ϕ (8)
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Dimensionless initial and boundary conditions are

t < 0 :
{
u � 0, θ � 0, φ � 0 for all y > 0

t ≥ 0 :

{
u � H (t) Cos (ωt), θ � 1, φ � 1 at y � 0

u → 0, θ → 0, φ → 0 as y → ∞ (9)

where N � (
M2 + (1/K )

)
andΓ � (1 − (4/3R + 4))Pr.Here, the nondimensional

parameters are given as follows: γ � μB

√
2πc/Py is the dimensionless Casson

parameter, Gr � ν g βT (Tw − T∞)/U 3 is the thermal Grashof number, Gm �
νgβC(Cw − C∞)/U 3 is the species Grashof number, M2 � σ B2

0 ν/ρ U 2 is the
magnetic body force parameter, K � K1 U 2/φ ν2 is the permeability parameter,
Pr � νρCp/κ is the Prandtl number, R � kk∗/4σ ∗T 3∞ is the conduction–radiation
parameter, Sc � ν/D is the Schmidt number, and Kr � K ′rν/U 2 is the first-order
chemical reaction parameter.

3 Numerical Solution with Galerkin Finite Element
Method

The transformed, coupled boundary value problems (6)–(8) with (9) are solved
employing finite element method (FEM), a numerical method. Variational finite
element method is detailed in Reddy [12] and Bathe [13]. A brief description of
fundamental steps that occur in FEM can be referred in Shamshuddin et al. [14]. For
computational purpose, ymax �4 represents the infinity.

Skin friction, rate of heat, andmass transfer in nondimensionalized form are given
as follows:

C f �
(
1 +

1

γ

)
u′(0), Nu/Rex � −θ ′(0), and Sh/Rex � −ϕ′(0) (10)

4 Results and Discussion

Khalid et al. [3] focused principally on the influence of heat transfer and that to a
vertical plate. Herein, we address both heat and mass transfer effects of an inclined
porous plate under the influence of thermal radiation and chemical reaction via finite
element method. Pertinent parameters effecting the flow are depicted graphically in
Figs. 1, 2, 3, 4, 5, 6, 7, and 8. Figure 1 shows the influence of M on the velocity
profile. It is observed that with the increase in magnetic parameter, the amplitude of
the velocity as well as the boundary layer thickness decreases. Physically, this results
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Fig. 1 Effect of M on velocity profiles

from the impeding nature of the transverse magnetic field, which exerts a retarding
Lorentzian body force on the free convective flow. With the increasing values ofM,
the magnetohydrodynamic drag decelerates the flow, i.e., suppresses the velocities
across the boundary layer. Figure 2 illustrates the impact of Casson parameter γ

on velocity; an increase in the Casson parameter results in the depreciation in the
velocity profiles. Figures 3 and 4 show the variations in velocity distributions for
different values of Gr and Gm. The velocity profiles of inclined plate are enhanced
with an increase in thermal Grashof number as well as solutal Grashof number. This
is attributing to the dominance of buoyancy forces over the viscous forces, which
serves to assist momentum diffusion and accelerates the flow. Figure 5 shows the
effect of angle of inclination (α) of the surface on velocity profiles. It is clear to be
remarked that the velocity profile decreases as angle of inclination increases. Further-
more, the buoyancy effects decrease to a component of themaximum buoyancy force
for a vertical plate, since the buoyancy forces scale with the factor cosα. Hence, the
fluid attains high-velocity profiles for the vertical plate, i.e., α � 0 and progressively
decreases with greater inclination of the plate. Figure 6 illustrates the evolution in
linear velocity distributions with different values of phase angle, ωt . A weak oscil-
latory behavior is computed for the linear velocity and with increasing phase angle
(four different values are chosen), there is a progressive deceleration in the flow. In
fact, at maximum phase angle, flow reversal is induced since the linear velocities
attain negative values at ωt � π . At zero phase angle, the maximum velocity is
achieved at the plate, whereas for ωt � π , the maximum velocity is attained in the
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Fig. 2 Effect of γ on velocity profiles

free stream. Strong damping is, therefore, generated in the flowwith increasing phase
angle. From Fig. 7, it is clear to remark that the thermal boundary layer thickness
decreases with an increase in radiation–conduction parameter. Therefore, the fluid
temperature also reduceswith greater values ofR. It is noticed fromFig. 8 that with an
increase in chemical reaction concentration, the distribution decreases. Physically, in
case of destructive chemical reaction, the original species is destroyed significantly.
Therefore, molecular diffusion of species leads to decrease in magnitude of concen-
tration, and as a result, the concentration boundary layer thickness decreases. Finally,
the numerical computation for the physical parameters is obtained and presented in
Table 1. The validation of the presented results is obtained and found to be in good
agreement with Khalid et al. [3]. It is also observed that Prandtl number increases
both the local skin friction and Nusselt number. Thermal Grashof number and the
phage angle reduce the skin friction whereas magnetic and porosity increases sig-
nificantly. Both Schmidt number and chemical reaction parameter favor to increase
the Sherwood number.
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Fig. 3 Effect of Gr on velocity profiles

Fig. 4 Effect of Gm on velocity profiles
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Fig. 5 Effect of α on velocity profiles

Fig. 6 Effect of ωt on velocity profiles
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Fig. 7 Effect of R on temperature profiles

Fig. 8 Effect of Kr on concentration profiles

5 Conclusions

Casson fluid model is a particular type of non-Newtonian fluid that is widely used for
modeling blood flow in narrow arteries. The main findings of the present mathemati-
cal analysis are as follows.Thepresent analysis has shown that increasingM, γ, α, ωt
decelerates the linear velocity and conversely accelerates the flow as Gr and Gm
increase. Increasing radiative effect elevates the temperature magnitudes. Increasing
chemical reaction parameter depresses the concentration magnitudes. Finally, FEM
achieves very rapid convergence and highly accurate solution and shows excellent
promise in simulating Casson fluid dynamic problems. Hence, in view of the results
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Table 1 Local skin friction and Nusselt and Sherwood numbers when Gm � α � 0, R → ∞
Analytical
results

FEM results

Pr Gr γ ω t M K t Sc Kr C f Nu C f Nu Sh

0.3 3 0.5 π/4 0.5 0.2 0.3 ∞ 0 1.029920 0.564 1.0299371 0.5646 –

0.71 ∞ 0 1.291660 0.867 1.2916732 0.8678 –

5 ∞ 0 0.856995 – 0.8569471 – –

1 ∞ 0 0.939520 – 0.9394304 – –

π/2 ∞ 0 1.050090 – 1.0501406 – –

1.0 ∞ 0 1.084720 – 1.0848311 – –

1.0 ∞ 0 0.670201 – 0.6702979 – –

0.5 ∞ 0 0.692367 – 0.6925091 – –

0.3 0.6 ∞ 0 – 0.398 – 0.3991 –

0.6 0 – – – – 0.5935

1.0 0.5 – – – – 0.7014

0.6 0.5 – – – – 1.2028

obtained, we conclude that the present study may be considered as an improvement
in the studies of the mathematical modeling of blood flow in narrow arteries.

Acknowledgements Authors are thankful to the reviewers and conference chair, NHTFF-2018 for
their insightful and constructive suggestions, which enhanced the quality and novelty of the paper
significantly.
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Field-Driven Motion of Ferrofluids
in Biaxial Magnetic Nanowire
with Inertial Effects

Sharad Dwivedi

Abstract This work deals with the field-driven motion of magnetic nanofluids in
biaxial ferromagnetic nanowire in the presence of inertial effects and crystallographic
defects. We obtained the analytical results under the theoretical model of extended
Landau–Lifshitz–Gilbert equation comprising the nonlinear dissipation components,
viz., dry friction and viscous along with the inertial effects. More specifically, using
the regular perturbation expansion technique, we derive an expression for the leading
order travelingwave solutions under the action of the small transversemagnetic field.

Keywords Ferrofluids · Domain wall · Inertia · Nonlinear dissipations
Micromagnetism

1 Preamble

In recent years, the study of ferrofluids, a colloidal liquid made of ferromagnetic
nanoparticles, has attracted a huge attention due to its tremendous application in
various sectors such as in modern electronic devices, magnetic sensors, nuclear sys-
tems, biomedical, and environmental sciences (cf. [1]). In storage devices, ferro-
magnetic nanowires (nanostrips) are enormously used to design the new magnetic
memories. One of themost recent advancements is the racetrackmemory [1], a three-
dimensional storage device in which an array of U-shaped ferromagnetic nanowires
is used to encode the information. In these memories, the information is accumulated
as a pattern of the domain along the nanowires. Domains are the uniform magne-
tized regions in themedium separated by the thin continuumzones referred as domain
walls (DWs). For the comprehensive description of magnetic domains, we refer the
reader to the excellent monograph by Hubert and Schäfer (cf. [2]).
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In this report, we delineate the zero-order traveling wave solutions (TWs) for a
one-dimensional theoretical model of the extended Landau–Lifshitz–Gilbert equa-
tionwith an inclusion of inertial effects. In recent works, there are primarily two tech-
niques that have been extensively used to explain the DWmotion. The first approach
is based on the regular perturbation expansion technique in which we establish a
regular asymptotic expansion considering the transverse magnetic field (TMF) and
material anisotropy as a small parameter (cf. [3–6]). Moreover, the other approach
relies on approximating the dynamics near the DW center (cf. [7–9]). We adopt the
former approach to examine the DW motion.

The paper is organized in the following manner. In “Micromagnetic model and
governing dynamics”, we describe the theoretical model under consideration and
the equation of motion which elucidate the evolution of magnetization inside the
medium. In “Explication of DWmotion”, we characterize the DWpropagation under
the small TMF. More precisely, we derive an expression for the static wall profile in
two faraway domains which separate a transverse domain wall (TDW) and then we
investigate the dynamics of TWs in the presence of an applied TMF.

2 Micromagnetic Model and Governing Dynamics

We conceive a straight infinite ferromagnetic nanowire with the circular cross
section. It is considered to be uniform in shape and placed along the e1-direction,
(e1, e2, e3) denotes the standard basis of R3. The magnetization inside the nanowire
is given by the time-dependent spontaneous unitary vector field u = (u1, u2, u3)
with u (x, t) = U(x, t)/Us , where Us represents the saturation value of magnetiza-
tion. We consider a biaxial nanowire with uniaxial anisotropy in the along the wire
axis, i.e., toward e1-direction and the hard-axis anisotropy along the perpendicular
e2-direction. We assume the easy-axis also referred as energetically preferred orien-
tation of magnetization vector toward e1-direction. Further, we keep this system to
an applied TMF Hext = H1e1 + H3e3 which is constant in both the time and space
variables.

A tail-to-tail TDW (types of DW in which the magnetization at the center of the
wall oriented perpendicular to the wire axis) is supposed to be nucleated along the
nanowire as portrayed in Fig. 1. More precisely, we take into an account of a TDWof
width λwhich separates the domains with u(x, t) ∼ u∗ as x → −∞ and the domain
with u(x, t) ∼ u� as x → +∞ together with the static wall constraints ut → 0 and
ux → 0 as |x | → ∞.

The one-dimensional generalized Landau–Lifshitz–Gilbert equation comprising
the nonlinear dissipations and inertial effects is described as follows (cf. [7–10]):

∂tu +
[
αG

(
1 + αv

γ 2
(∂tu)2

)
+ λαd

|∂tu|
]

(u × ∂tu) + αGτ (u × ∂t tu)

= γ
(
u × Hef f

)
, (1)
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Fig. 1 Sketch of a tail-to-tail TDW in a biaxial ferromagnetic nanowire along with the reference
axes exhibiting the polar and azimuthal angle as θ and ϕ, respectively

with

Hef f = 2Aex

μ0U 2
s

∂xxu + 2K1

μ0U 2
s

u1e1 − 2K2

μ0U 2
s

u2e2 + (−u2e2 − u3e3) + H1e1 + H3e3.

Throughout the paper, ∂x = ∂
∂x and ∂xx = ∂2

∂x2 stand for the first- and second-order
partial derivatives, respectively. In Eq. (1), second term on the L.H.S. describes the
energy dissipation in the system and consists of linear, nonlinear viscous, and dry-
friction dissipation terms, respectively. More precisely, linear viscous dissipation
also known as Gilbert dissipation characterizes the dissipation of energy in the ideal
ferromagnets while the nonlinear viscous dissipation delineates the large angle varia-
tion in the DWmotion and the dry-friction dissipation reflects the energy dissipation
due to the dislocations, impurities, and other defects present in the material. The
positive parameters αG , αv , and αd reflect the standard phenomenological Gilbert
damping, nonlinear viscous, and dry-friction dissipation factors, respectively. Also,
the positive constant γ is defined in terms of Landè factor g, electron charge e,
permeability of the vacuum μ0, and the electron mass me as γ = (μ0Usge) /me.

Furthermore, the subsequent term elucidates the inertial effects in which the
parameter τ represents the relaxation time of the angular momentum describing the
relaxation of magnetization acceleration from the inertial dynamic regime to preces-
sional dynamic regime. However, the term on the R.H.S. of Eq. (1) depicts the preces-
sion of magnetization toward the total effective field Hef f . In the considered expres-
sion of total effective field Hef f , the terms denote the exchange, anisotropy (easy-axis
and hard-axis), demagnetizing, and the applied TMF, respectively. Also, Aex , K1, and
K2 stand for the exchange, easy-axis anisotropy, and hard-axis anisotropy constants,
respectively. We remark that in ferromagnets, except for few favorable geometries
such as a straight ferromagnetic nanowire with circular cross section (cf. [11]) and
uniform magnetized ellipsoid (cf. [12, 13]), the stray field calculations are highly
complicated and require a numerical evaluation.



484 S. Dwivedi

Next,we propose the dimensionless space, inertial, and timevariables x̃ = x
√

K1
Aex

,

τ̃ = γ τ and t̃ = γ t , to reduce Eq. (1) in the dimensionless form ( cf.[14]):

∂t̃u +
[
αG

(
1 + αv (∂t̃u)2

) + αd

|∂t̃u|
]

(u × ∂t̃u) + αG τ̃ (u × ∂t̃ t̃u)

=
(
u × H̃e f f

)
, (2)

with

H̃e f f = K̃1∂x̃ x̃u + K̃1u1e1 − (K̃2 + 1)u2e2 − u3e3 + H̃ext .

In Eq. (2), K̃1 = 2K1/
(
μ0U 2

s

)
and K̃2 = 2K2/

(
μ0U 2

s

)
denote the dimensionless

constants and H̃ext =
(
H̃1, 0, H̃3

)
exhibits the dimensionless applied TMF.

3 Explication of DWMotion

To analyze the DW motion, we use the spherical coordinate system and express the
unitary magnetization vector field as

u(x̃, t̃) = (cos θ, sin θ cosϕ, sin θ sin ϕ) . (3)

In Eq. (3), θ(x̃, t̃) represents the polar angle and ϕ(x̃, t̃) exhibits the azimuthal angle
of magnetization as exhibited in Fig. 1. In the polar system, Eq. (2) gives the pair of
partial differential equations of the form:

sin θ (∂t̃ϕ) + [
αG

(
1 + αv

(
(∂t̃θ)2 + sin2 θ (∂t̃ϕ)2

))
+αd

(
(∂t̃θ)2 + sin2 θ (∂t̃ϕ)2

)−1/2
]
(∂t̃θ) + αG τ̃ (∂t̃ t̃θ) − αG τ̃ sin θ cos θ (∂t̃ϕ)2

= −H̃1 sin θ − sin θ cos θ + H̃3 cos θ sin ϕ + K̃1(∂x̃ x̃θ)K̃1 sin θ cos θ(1 + (∂x̃ϕ)2)

−1

2
K̃2 sin 2θ cos

2 ϕ, (4)

− (∂t̃θ) + [
αG

(
1 + αv

(
(∂t̃θ)2 + sin2 θ (∂t̃ϕ)2

))
+αd

(
(∂t̃θ)2 + sin2 θ (∂t̃ϕ)2

)−1/2
]
sin θ (∂t̃ϕ) + αG τ̃ sin θ (∂t̃ t̃ϕ)

+ 2αG τ̃ cos θ (∂t̃θ) (∂t̃ϕ) = H̃3 cosϕ + K̃1 sin θ(∂x̃ x̃ϕ)2K̃1 cos θ(∂x̃θ)(∂x̃ϕ)

+ 1

2
K̃2 sin θ sin 2ϕ. (5)



Field-Driven Motion of Ferrofluids in Biaxial Magnetic … 485

With the help of Eqs. (4) and (5), we derive an expression for the static profile of
magnetization vector in the two faraway domains separated a TDWof width λ. In the
left domain, as x̃ → −∞,we consider the polar and azimuthal angle ofmagnetization
vector as θ∗ andϕ∗, respectively,which in turn gives the closed-formexpression ofu∗.
In addition, due to the symmetrical nature of TDWabout theDWcenter, as x̃ → +∞,
the two angles π − θ∗ and ϕ∗ yield the direction of magnetization u� on the right
domain. We use the static and DW condition to derive the expression for θ∗ and ϕ∗:

(
∂t̃θ

∗) = 0,
(
∂t̃ϕ

∗) = 0 and
(
∂x̃θ

∗) = (
∂x̃ x̃θ

∗) = 0; (
∂x̃ϕ

∗) = (
∂x̃ x̃ϕ

∗) = 0. (6)

Under the light of Eqs. (6), (4), and (5) renders

− H̃1 sin θ∗ + H̃3 cos θ∗ sin ϕ∗ − K̃1 sin θ∗ cosϕ∗ − K̃2 sin θ∗ cos θ∗ cos2 ϕ∗

− sin θ∗ cos θ∗ = 0, (7)

H̃3 cosϕ∗ + K̃2 sin θ∗ sin ϕ∗ cosϕ∗ = 0. (8)

On solving Eqs. (7) and (8), we obtain

θ∗ = cos−1

(
−H̃1

1 + K̃1 + K̃2

)
; ϕ∗ = sin−1

⎛
⎜⎜⎜⎝

−H̃3(1 + K̃1 + K̃2)

K̃2

((
1 + K̃1 + K̃2

)2 − H̃ 2
1

)1/2

⎞
⎟⎟⎟⎠ .

(9)
It is worth to mention that under the prescribed conditions, the TDW structure

exists as long as the longitudinal component of an applied TMF H̃1 remains smaller

than the entity
(
1 + K̃1 + K̃2

)
. We establish the closed-form explicit expression of

magnetization orientation u∗ and u� in the two distant domains with the help of Eq.
(9). Moreover, the static wall profiles of magnetization do not depend on the inertial
effect and remain unchanged.

To understand the dynamic properties of TDW under the small magnetic field, we
seek the solutions of Eqs. (4) and (5) depending on the various parameters along with
the prescribed boundary conditions. We use the perturbation expansion technique to
capture the long-time behavior of the solutions. In this method, we write the solution
in a regular asymptotic expansion form by taking the parameters H̃ext , K̃2 to be small.
To carry out the analysis, we introduce an infinitesimal scaling parameter ε and set
H̃ext = (εh1, 0, εh3), K̃2 = εk2, and t̄ = εt̃ .

Using the regular asymptotic expansion, we attempt for a solution of Eqs. (4) and
(5) in the following form which depends on x̃ and t̄ only:

θ(x̃, t̃) = θ0(x̃, t̄) + εθ1(x̃, t̄) + · · · , (10)

ϕ(x̃, t̃) = ϕ0(x̃, t̄) + εϕ1(x̃, t̄) + · · · . (11)
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along with the boundary condition

u(±∞, t̄) = (±1, 0, εh3) + O(ε2). (12)

By substituting Eqs. (10) and (11) in Eqs. (5) and (6), we have the following
couple of equations, to the zero order of parameter ε:

αd(
(∂t̄θ0)

2 + sin2 θ0 (∂t̄ϕ0)
2
)1/2 (∂t̄θ0) = K̃1 (∂x̃ x̃θ0) − 1

2 K̃1
(
1 + (∂x̃ϕ0)

2
)
sin 2θ0

− 1
2 sin 2θ0, (13)

αd

K̃1
(
(∂t̄θ0)

2 + sin2 θ0 (∂t̄ϕ0)
2
)1/2 sin θ0 (∂t̄ϕ0) = 2 cos θ0 (∂x̃θ0) (∂x̃ϕ0)

+ sin θ0 (∂x̃ x̃ϕ0) . (14)

The only meaningful solution which is consistent with the boundary condition
given by Eq. (12) takes the formϕ0 (x̃, τ ) = ϕ∗. Under this situation, Eq. (13) renders

(∂x̃ x̃θ0) −
(
1 + K̃1

)

2K̃1

sin 2θ0 = αd

K̃1

. (15)

It is difficult to find an explicit analytical solution to Eq. (15); however, an approx-
imate solution under the assumption of small angle deviation can be obtained and
given as

(
θ0 +

(
2αd

1 + K̃1

))
+

((
θ0 +

(
2αd

1 + K̃1

))2

−
((

2αd

1 + K̃1

)2

− C1

μ

))1/2

= eμx̃+C2 , (16)

where the constants C1 = −
(
2

(
αd/K̃1

)
θ∗ + μ (θ∗)2

)
and μ =

(
1 + K̃1

)
/2K̃1.

Also, we determine the integration constant C2 at the center of the DW (0 ≤ θ ≤ π)

by applying the condition that at θ = (π/2) /2, x̃ = x̄
(
t̄
)
, x̄

(
t̄
)
stands for the time-

varying position of the center of DW and (dx̄/dτ) represents the DW velocity.
We remark that the obtained analytical solution exists locally and valid only in the
vicinity of the center of DW. In addition, the solution of Eq. (15) imitates the classical
Walker-type form in the absence of nonlinear dissipation αd and given as (cf. [15]):

θ0
(
x̃, t̄

) = 2 arctan
(
e−(

√
μx̃−x̃(t̄))

)
. (17)
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4 Conclusion

In this report, we investigated the field-induced TDW dynamics in biaxial ferromag-
netic nanowire in the presence of inertial and crystallographic effects. We notice that
even the zero-order traveling wave solution is difficult to obtain under the prescribed
boundary conditions, i.e., to find an analytical solution which exists globally. It is
worth to point out that to capture the ultrafast magnetization processes, we need to
draw our attention toward the higher order traveling wave solutions. In nutshell, this
work opens the door for some relevant problems in the same research lines such as
to obtain the steady DW velocity, threshold, and breakdown value of the external
sources for which the DW motion remains in the steady-state dynamic regime.
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Analytical Study of Fluid Flow
in a Channel Partially Filled with Porous
Medium with Darcy–Brinkman Equation

J. Sharath Kumar Reddy and D. Bhargavi

Abstract Analytical study of the fluidflow in the developed region of a parallel-plate
channel partially filled with a porous medium has been studied. A porous substrate
is inserted in the middle of the channel. The Darcy–Brinkman equation is used to
describe the fluid flow in the porous region. At the fluid–porous interface, continuity
in velocity and jump in the tangential stresses are employed. Analytical solutions are
obtained for velocity, flow rate, and the skin friction coefficient. The effects of the
parameters such as Darcy number, Da, porous fraction, γ p, stress jump coefficient,
and β on the flow variables have been studied. The effects of these parameters are
considered in order to study hydrodynamics in the channel configuration.

Keywords Darcy–Brinkman equation · Fully developed · Porous medium
Partially filled with porous medium

1 Introduction

Several researchers have studied the fluid flow and heat transfer in porous medium,
in recent times in view of their significant applications in situations such as enhanced
recovery of oil by thermal methods, cooling of electronic components, risk assess-
ment of disposal of nuclear waste, and proton exchange membrane (PEM) fuel cells.

The slip condition at the fluid–porous interface has been considered by several
authors. Beavers and Joseph [1] were the first to consider this slip condition, whereas
Saffman [2] gave theoretical justification for this condition. The conditions of the
continuity in velocity and shear stresses at the interface have been used by Vafai and
Kim [3]. Ochoa-Tapia and Whitaker [4, 5] considered the continuity in velocity and
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jump in the tangential stresses. These interface conditions have been used extensively
by Kuznetsov [6] and Bhargavi et al. [7]. However, the problem of channel partially
filled with porous medium using Darcy–Brinkman equation in porous media without
using the boundary layer approximation has not received much attention.

In view of the above, in this paper, flow in a channel is with porous medium at
the center, assuming that flow in porous medium is described by Darcy–Brinkman
equation. The flow in the fluid region is described by Poiseuille description. The
effects of relevant parameters on flow variables such as velocity, flow rate, and the
skin friction coefficient have been studied.

2 Mathematical Formulation

The governing equations are rendered nondimensional by introducing the following
nondimensional variables:

Y � y

H
, Up � u pμ f(

− dp
dx

)
H 2

, U f � u f μ f(
− dp

dx

)
H 2

,

Ui � uiμ f(
− dp

dx

)
H 2

, uref �
(

−dp

dx

)
H 2/μ f . (1)

In Eq. (1), Y is the nondimensional coordinate and U is the nondimensional
velocity. The subscripts f and p refer to fluid and porous regions. The nondimensional
porous layer thickness γ p, which shall be referred to as porous fraction, is defined
by

γp � l p/H (2)

On introducing the nondimensional variables given by Eq. (1), the governing
equation for conservation of momentum in the fluid and the porous regions and the
boundary conditions in nondimensional form become
Fluid region:

d2U f

dY 2
+ 1 � 0 for − 1

2
≤ Y ≤ −γp

2
(3)

Porous region:

d2Up

dY 2
− ε

Da
Up + ε � 0 for − γp

2
≤ Y ≤ 0. (4)

In Eq. (4), Da, the Darcy number and ε are defined by

Da � K/H 2 and ε � μ f /μeff. (5)
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(a) Dimensional                (b) Non-dimensional

Fig. 1 Physical model and the coordinate system

Nondimensional Boundary Conditions

dUp

dY
� 0 at Y � 0 (Symmetry condition) (6)

U f � 0 at Y � −1/2 (7)

U f � Up � Ui ,
dU f

dY
− 1

ε

dUp

dY
� β√

Da
Ui at Y � −γp/2. (8)

It may be noted that the boundary conditions given by Eqs. (6)–(8) in Fig. 1 are
written for the half channel, making use of the symmetry. The conditions given in
Eq. (8) ensure the continuity in velocity and jump in the tangential stresses that have
been given by Ochoa-Tapia and Whitaker [4, 5] at the interface.

3 Velocity Profiles

Fluid region: Upon solving Eq. (3) along with the boundary conditions given by
Eqs. (7) and (8), velocity in the fluid region is obtained as

U f [Y ] � − (1 + 2Y )
[
8Ui +

(
γp − 1

)(
2Y + γp

)]

8
(
γp − 1

) , (9)

where

Ui � −
⎧
⎨
⎩

√
Da

[
4
√
Da

(
eγp

√
ε
Da − 1

)
−

(
1 + eγp

√
ε
Da

)√
ε
(
γp − 1

)](
γp − 1

)

4
[
2
√
Daε + eγp

√
ε
Da

(
2
√
Daε +

(
β
√

ε − 1
)(

γp − 1
))

+
(
β
√

ε + 1
)(

γp − 1
)]

⎫
⎬
⎭.

(10)

Porous region: Similarly, solving Eq. (4) alongwith the boundary conditions given
by Eqs. (6) and (8) velocity in the porous region is obtained as
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Up[Y ]

�
e−Y

√
ε
Da

[
Uie

γp
2

√
ε
Da

(
1 + e2Y

√
ε
Da

)
+ Da

(
eY

√
ε
Da − e

γp
2

√
ε
Da + e(Y+γp )

√
ε
Da − e

(4Y+γp )
2

√
ε
Da

)]

1 + eγp
√

ε
Da

.

.

(11)

New normalized velocities are defined by

U f,N [Y ] � U f [Y ]

uref
, Up,N [Y ] � Up[Y ]

uref
, Ui,N [Y ] � Ui [Y ]

uref
, (12)

where
uref is the average velocity defined by

uref � 2

⎡
⎢⎣

−γp/2∫

−1/2

U f dY +

0∫

−γp/2

UpdY

⎤
⎥⎦. (13)

Uf,N ,Up,N expressions are not given explicitly, sinceUf ,Up, and uref expressions
are given in Eqs. (9), (11), and (13).
Skin friction coefficient:

C f f � 1

Re

(
dU f,N

dY

)

|Y�− 1
2

. (14)

4 Result and Discussions

It has been assumed that ε=μf /μeff �1. The channel is referred to as the clear fluid
channel when γ p �0. Similarly, when γ p �1.0, the geometry shall be referred to as
the channel fully filled with the porous material. When the porous fraction is 0<γ p

<1.0, the channel is referred as the channel partially filled with the porous material.

4.1 Limiting Cases

Clear Fluid Channel: By setting γ p = 0 in Eqs. (9), (10), and (13), Uf for the clear
fluid reduce to

U f,N [Y ] � 3

2

(
1 − 4Y 2

)
. (15)

Channel fully filled with the porous material: Similarly, putting γ p=1.0 in Eqs. (10),
(11), and (13), Up for the channel fully filled with porous material reduce to
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Up,N [Y ] �
[
cosh

( √
ε

2
√
Da

)
− cosh

(
Y

√
ε√

Da

)]√
ε

√
ε cosh

( √
ε

2
√
Da

)
− 2

√
Da sinh

( √
ε

2
√
Da

) . (16)

Equations (15) and (16) are available in Schlichting and Gersten [8], Haji-Sheikh
and Vafai [9], and Bhargavi and Sharath Kumar Reddy [10], respectively.

4.2 Velocity Profiles

Variation of fully developed velocity profiles of Uf,N, Up,N is shown in Fig. 2a for
γ p �0.2, Da �0.005 and Fig. 2b for γ p �0.8, Da �0.005 for different values of
β =−0.7, −0.5, 0, 0.5, and 0.7. Variation of fully developed velocity profiles Uf,N,

Up,N is shown in Fig. 3a for γ p �0.2,Da �0.05 and Fig. 3b for γ p �0.8,Da �0.05
for different values of β =−0.7, −0.5, 0, 0.5, and 0.7. As β increases, the velocity
in the fluid region decreases, whereas velocity in the porous region increases at a
lower porous fraction, say γ p �0.2. Whereas for γ p �0.8, this behavior is reversed.
This may be due to β. For β �0 (i.e., no jump in the tangential stresses), the slopes
are equal at the interface, though they differ when β �� 0. This can be seen from
Figs. 2 and 3. The maximum value of velocity decreases as γ p increases. As Da
increases, the velocity in the porous region increases for a given γ p and for all β,
whereas velocity in the fluid region decreases for a given γ p and for all β. This is
due to retain mass balance in a channel partially filled with porous material. As β

increases, the flow rate increases for small porous fraction, γ p �0.2, whereas flow
rate is constant for higher γ p �0.8. This is due to the quantity of porous medium
larger in channel partially filled with porous material. Hence, when there is a small
porous fraction, effect of stress jump coefficient is more, which means tangential
stresses in the fluid region are higher than tangential stresses in the porous medium.
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Fig. 2 Velocity profiles at different values of β, for a γ p �0.2 and b γ p �0.8 for Da �0.005
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Fig. 3 Velocity profiles at different values of β, for a γ p �0.2 and b γ p �0.8 for Da �0.05
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Fig. 4 Interfacial velocity with β for γ p �0.2 and 0.8 for a Da �0.005, b Da �0.05

Interfacial velocity: Variation of interfacial velocity Ui,N with β is shown in
Fig. 4a for Da �0.005, Fig. 4b for Da �0.05 for γ p �0.2 and 0.8. From Fig. 4a, b,
as β increases, the interfacial velocity increases for all Da and γ p. As Da increases,
the interfacial velocity decreases. As Da is larger, the larger interfacial velocity
becomes zero. If Da is larger, then porous region behaves like a fluid region so there
will not be any interface in the channel.

Skin friction coefficient: Variation of ReCff with porous fraction, γ p, is shown
in 5a for Da �0.005, Fig. 5b for Da �0.05 for different β. From Fig. 5a, b, ReCff

increases up to certain γ p and then decreases. From Fig. 5a, as β increases, ReCff

decreases up to γp ≈ 0.7 and then increases up to γ p=1.0. This behavior is the same
for Fig. 5b. But the value of γ p decreases as Da increases. As Da increases, say
Da=1.0, ReC f f → 6 given in Schlichting and Gersten [8].



Analytical Study of Fluid Flow in a Channel Partially … 495

0.0 0.2 0.4 0.6 0.8 1.0
0

4

8

12

16

20

24

γp

β = -0.5
β = 0.0
β = 0.2

Re
 C

ff

Da =0.005

0.0 0.2 0.4 0.6 0.8 1.05.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

Re
 C

ff

γp

Da =0.05

β = -0.5
β = 0.0
β = 0.2

(a) (b) 

Fig. 5 Skin friction coefficient ReCff with γ p at different values of β for a Da �0.005, b Da �
0.05

5 Conclusions

Fluid flow in parallel-plate channels partially filled with porous medium has been
studied analytically by assuming fully developed flow condition. The porous insert
of thickness, lp, placed symmetrically in the middle of the channel. The problem
is characterized by Darcy number, Da, the porous fraction, γ p, and stress jump
coefficient, β. Analytical results are obtained for the velocity, flow rate, and the skin
friction coefficient. The effects ofDa, γ p, and β on flow variables have been studied.
So, when there is a less quantity of porous medium, then the slope in the fluid region
is higher than the slope in the porous region.

1. Fully developed velocity in the fluid region decreases and velocity in the porous
region increases for lower porous fraction, as stress jump coefficient increases.
But this behavior is reversed for higher porous fraction for all Darcy numbers.

2. Skin friction coefficient, ReCff , attains maximum value at a certain porous frac-
tion and then decreases for all Darcy numbers.

3. Flow rate increases for small porous fractions, but the flow rate is constant for
higher porous fractions.
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Dissipative Effect on Heat and Mass
Transfer by Natural Convection over
a Radiating Needle in a Porous Medium

S. R. Sayyed, B. B. Singh and Nasreen Bano

Abstract The paper deals with the effects of buoyancy (N ), Lewis number (Le),
radiation parameter (R), and viscous dissipation (Ec) on the natural convective
heat and mass transfer from a radiating needle in a porous medium. In the analysis
of the problem, an integral approach of Von Karman type has been adopted, and
the numerical values computed pertaining to the local Nusselt and local Sherwood
numbers have been compared with the earlier published values. The results have
been found in excellent agreement.

Keywords Natural convection · Viscous dissipation · Thermal radiation

1 Introduction

On account of the numerous engineering applications of natural convective heat and
mass transfer flows with dissipation and radiation effects in groundwater pollution,
moisture transport in thermal insulation, grain storage installation, hypersonic flights,
gas turbines, space technology, etc., researchers like Lai et al. in [1], Lai and Kulacki
in [2], Nakayama and Hossain in [3], Singh and Queeny in [4], Angirasa et al. in [5],
Amahmid et al. in [6], Yih in [7], Chamakha in [8], Bansod et al. in [9], Bansod in
[10], Singh and Chandarki in [11], Vyas and Shrivastava in [12], Vyas and Ranjan
in [13], Chauhan and Kumar in [14], Baoku et al. in [15] and Babu in [16], etc. have
done pioneering work in this flow field by taking various geometrical configurations.

The objective of the present paper is to do the integral analysis of the effects of vis-
cous dissipation, radiation, buoyancy, and Lewis number on the flow in conjunction
with heat and mass transfer from radiating needle embedded in a porous medium.
To serve the purpose, an integral method of Von Karman type has been employed on
the lines of Singh and Chandarki in [11].
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2 Mathematical Formulation of the Problem

By taking the Darcys law, boundary layer and Boussinesq approximations, and the
radiative fluid properties into consideration, the similarity boundary layer equations
governing the flow field are given in cylindrical coordinates as (cf. Lai et al. [1])

f ′ = 1

2
(θ + Nφ) (1)

(1 + R)θ ′′ = 1

2η
[a f ′θ − [2(1 + R) + f ]θ ′] − ηEcf ′′2 (2)

φ′′ = 1

2η
[bLe f ′φ − (2 + Le f )φ′] (3)

with boundary conditions given by

η = η0 : f + (a − 1)η f ′ = 0, θ = 1, φ = 1 (4)

η → ∞ : f ′ = 0, θ = 0, φ = 0. (5)

The schematic diagram of the flowmodel is as shown in Fig. 1. Here, N represents
the buoyancy ratio; f ′, θ,andφ represent the dimensionless velocity, temperature, and
concentration profiles, respectively; Le represents Lewis number; Ec is the Eckert
number, and R is the radiation parameter. Furthermore, the primes denote derivatives
with respect to the similarity variable η, η ∈ [0,∞).

Here, a and b are the constant. In the present analysis, it has been shown that
the Eqs. (1)–(3) permit solutions for the case a = b = 1 which represents a vertical
needle with linear temperature and concentration.

Fig. 1 Physical model and
coordinate system
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One can study the relative significance of the mass and thermal diffusion with the
help of buoyancy ratio (N ). Here, N = 0 represents flow driven purely by thermal
buoyancy; N = ∞ represents flow which is purely mass driven; N > 0 represents
aiding flow, and N < 0 an opposing flow.

3 Integral Treatment

The energy Eq. (2) and the mass transfer Eq. (3) can be integrated with respect to η

from η = η0 to η = ∞, to obtain for a = b = 1.

− 2η0 (1 + R) θ ′(η0) = 2

∞∫

η0

f ′ θ dη + Ec

4

∞∫

η0

η2 f ′′2 dη (6)

−η0 φ′(η0) = Le

∞∫

η0

f ′ φ dη. (7)

Now, the temperature and the concentration profiles can be expressed exponen-
tially in the following manner so that they satisfy the buoyancy conditions (4)–(5):

θ(η) = exp

{
−

(
η − η0

δT

)}
(8)

φ(η) = exp

{
−ξ

(
η − η0

δT

)}
. (9)

In the above equations, δT represents an arbitrary scale for thermal boundary layer
thickness, while ξ represents the ratio of thermal boundary thickness to the concen-
tration boundary layer thickness.

Equations (6)–(7), by taking into account the relation (1) and using relations (8)
and (9), get reduced to two distinct expressions for δT as

[
1

2
+ N

ξ + 1
− Ec

8
− NξEc

(ξ + 1)2

]
δ2T+η0Ec

4

(
1 + 4Nξ

(ξ + 1)2

)
δT

−η2
0
Ec

4

(
1

2
+ 2Nξ

ξ + 1
+ ξ

2

)
− 2η0(1 + R) = 0

(10)
and

Le

[
1

ξ + 1
+ N

2ξ

]
δ2T − 2η0ξ = 0. (11)
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The thermal boundary layer thickness δT is governed by the above two Eqs. (10)–
(11). From Eqs. (10) and (11), we, respectively, obtain

δ∗
T = δT

2η
1
2
0

, (12)

where

δT = −

[
2(1 + R)η0 − 4η0ξ 2

[
1
2 − Ec

8 − EcNξ

(ξ+1)2
+ N

ξ+1

]
Le[(N+2)ξ+N ]

]
+ 1

4 Ec η2
0

(
1
2 + ξ

2 + 2Nξ

ξ+1

)

Ec η0

(
1 + 4Nξ

(ξ+1)2

) (13)

and δT = 2η
1
2
0

Le
1
2

ξ

[
ξ + 1

(N + 2)ξ + N

] 1
2

. (14)

Equations (10) and (11) can be combined to obtain the algebraic equation

A9ξ
9 + A8ξ

8 + A7ξ
7 + A6ξ

6 + A5ξ
5 + A4ξ

4 + A3ξ
3 + A2ξ

2 + A1ξ + A0 = 0,
(15)

where the coefficients A0, A1, . . ., A9 have been calculated using MATHEMATICA
software.

The value of ξ is determined from Eq. (15) by using computer software MATH-
EMATICA.

As ξ is determined from Eq. (15), the local Nusselt and local Sherwood numbers,
which are of main interest in terms of heat and mass transfer, respectively, are given
as

Nu = η
1
2
0 (Ra)

1
2

δ∗
T

and Sh = η
1
2
0 Le

1
2

[
(N + 2)ξ + N

ξ + 1

] 1
2

(Ra)
1
2

4 Results and Discussion

The combined effect of buoyancy (N ), Lewis number (Le), radiation (R), and vis-
cous dissipation (Ec) on the rate of heat and mass transfer from a vertical needle are
investigated numerically and graphically and are presented in Table 1 and in Figs. 2,
3, 4, and 5

Table 1 shows the comparison of numerical values of heat and mass transfer
coefficients obtained in the present analysis with the corresponding values of Lai
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Table 1 Variation of local Nusselt and local Sherwood numbers for R = 0 and Ec = 0

Le N Present
(Nu(Ra)− 1

2 )
Lai et al. [1]
(Nu(Ra)− 1

2 )
Le N Present

(Sh(Ra)− 1
2 )

Lai et al. [1]
(Sh(Ra)− 1

2 )

0.1 0 0.0900 0.1368 0.1 0 0.01537 0.0168

2 0.18516 0.1824 2 0.04393 0.0540

4 0.245422 0.2384 4 0.059638 0.0594

6 0.293533 0.2868 6 0.071965 0.0682

8 0.334794 0.3283 8 0.082463 0.0848

10 0.371497 0.3698 10 0.091765 0.0896

Fig. 2 Local Nusselt number versus Lewis number (Ec = 0.1, N = 4)

Fig. 3 Local Sherwood number versus Lewis number (Ec = 0.1, N = 4)
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Fig. 4 Local Nusselt number versus Lewis number (R = 0.4, N = 4)

Fig. 5 Local Sherwood number versus Lewis number (R = 0.4, N = 4)

et al. [1] obtained through scale analysis in the absence of radiation and viscous
dissipation. It is evident from Table 1 that the results are in good agreement.

Figures 2 and 3 explain the effect of radiation parameter (R) on the rates of heat
and mass transfer for fixed values of N and Ec(N = 4, Ec = 0.1). A decline in the
heat transfer rate but a rise in the mass transfer rate is observed for increasing values
of R.

The variations of heat and mass transfer rates along with Ec are given in Figs. 4
and 5 for fixed values of N & R (N = 4, R = 0.4). It is noted that the rate of heat
transfer decreases, whereas the rate of mass transfer is boosted subject to increasing
Ec.
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5 Conclusion

The following significant conclusions are drawn from the analysis:

1. An increase in the values of buoyancy ratio (N ) shows an increase in both the
heat and mass transfer rates.

2. The heat transfer rate exhibits a decreasing trend, while the mass transfer rate
shows an increasing trend for the increasing values of radiation parameter.

3. With an increase in the values of Eckert number (Ec), the heat transfer rate
decreases while the mass transfer rate increases.
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Numerical Solution of Sixth Order
Boundary Value Problems by Galerkin
Method with Quartic B-splines

Sreenivasulu Ballem and K. N. S. Kasi Viswanadham

Abstract In this paper, Galerkin method with quartic B-splines has been
developed to solve a sixth order boundary value problem. The approximation solu-
tion has been modified into a form, which takes care of given boundary conditions.
For the illustration purpose of the present method, we have solved sixth order linear
and nonlinear boundary value problems. The numerical results are compared with
the exact solutions.

Keywords Sixth order boundary value problem · Galerkin method
Quartic B-splines · Absolute error

1 Introduction

Consider a general sixth order linear boundary value problem

a0(x)y
(6)(x) + a1(x)y

(5)(x) + a2(x)y
(4)(x) + a3(x)y

′′′(x)
+ a4(x)y

′′(x) + a5(x)y
′(x) + a6(x)y(x) � b(x), c < x < d (1)

subject to boundary conditions

y(c) � A0, y(d) � C0, y
′(c) � A1, y

′(d) � C1, y
′′(c) � A2, y

′′(c) � C2 (2)

where A0, C0, A1, C1, A2, and C2 are finite real constants and a0(x), a1(x), a2(x),
a3(x), a4(x), a5(x), a6(x), and b(x) are all the continuous functions defined on the
interval [c, d].
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There are various physical processes in which a sixth order boundary value prob-
lem arises in various areas of science and engineering, which include astrophysics,
structural engineering, optimization, and economics. For the applications of sixth
order boundary value problems, one can refer [1–4]. For the existence and uniqueness
for the solutions of these types of problems, one can refer [5]. Analytical solutions to
these problems are available in rare cases. The researchers have developed numerical
methods such as finite difference method, homotopy analysis method, variation of
parameters method, variational iterationmethod, differential transformationmethod,
Ritz method, Sinc–Galerkin method, Adomain decomposition method, etc. Siddiqi
et al. [6, 7] used the quintic and septic spline techniques to solve special case of
sixth order boundary value problems. Kasi Viswanadham and Murali Krishna [8]
developed a sextic B-spline Galerkin method to solve a special case of sixth order
boundary value problem. Kasi Viswanadham and Shwori Raju [9] developed the
solution of a general sixth order boundary value problem by using quintic B-spline
collocation method.

The present paper aims to present Galerkin method with quartic B-splines to solve
the boundary value problems of the type (1)–(2). The quasilinearization technique
has been applied to convert the nonlinear problem into a sequence of linear prob-
lems [10]. The present method has been applied to solve each one of the generated
linear problems. The limit of solutions of these linear problems is the solution of
the nonlinear problem. The justification for using the Galerkin method is given in
[11–13].

2 Description of the Method

The quartic B-splines and its properties are defined in Prenter [14], Carl de-Boor
[15], and Schoenberg [16]. Now suppose that the approximate solution of Eqs. (1)
and (2) is given by

y(x) �
n+1∑

j�−2

α j B j (x) (3)

where α′
j s are the nodal parameters to be determined and Bj(x)’s are quartic basis

functions. If the approximation satisfies the given boundary conditions, then it gives
more accurate results. Accordingly, the basis functions are redefined into a new set
of basis functions. The redefinition of the basis functions is given below.

Applying the given boundary conditions of (2) to the approximation (3), we get

A0 � y(c) � y(x0) �
1∑

j�−2

α j B j (x0),C0 � y(d) � y(xn) �
n+1∑

j�n−2

α j B j (xn) (4)
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A1 � y′(c) � y′(x0) �
1∑

j�−2

α j B
′
j (x0),C1 � y′(d) � y′(xn) �

n+1∑

j�n−2

α j B
′
j (xn)

(5)

A2 � y′′(c) � y′′(x0) �
1∑

j�−2

α j B
′′
j (x0),C2 � y′′(d) � y′′(xn) �

n+1∑

j�n−2

α j B
′′
j (xn).

(6)

Eliminating α−2, α−1, α0, αn−1, αn , and αn+1 from Eqs. (3) to (6), the approxima-
tion for y(x) can be obtained as

y(x) � w(x) +
n−2∑

j�1

α j B̃ j (x) (7)

w(x) � w2(x) +
A2−w′′

2 (x0)
Q′′

0(x0)
Q0(x) +

C2−w′′
2 (xn )

Q′′
n−1(xn )

Qn−1(x)

w2(x) � w1(x) +
A1−w′

1(x0)
P ′−1(x0)

P−1(x) +
C1−w′

1(xn )
P ′
n (xn )

Pn(x)

w1(x) � A0
B−2(x0)

B−2(x) +
C0

Bn+1(xn )
Bn+1(x)

B̃ j (x) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q j (x) − Q′′
j (x0)

Q′′
0(x0)

Q0(x), j � 1

Q j (x), j � 2, 3, . . . , n − 3

Q j (x) − Q′′
j (xn )

Q′′
n (xn )

Qn(x), j � n − 2.

Q j (x) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Pj (x) − P ′
j (x0)

P ′−1(x0)
P−1(x), j � 0, 1

Pj (x), j � 2, 3, . . . , n − 3

Pj (x) − P ′
j (xn )

P ′
n (xn )

Pn(x), j � n − 2, n − 1.

Pj (x) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bj (x) − Bj (x0)
B−2(x0)

B−2(x), j � −1, 0, 1

Bj (x), j � 2, 3, . . . , n − 3

Bj (x) − Bj (xn )
Bn+1(xn )

Bn+1(x), j � n − 2, n − 1, n.

Applying the Galerkin method to (1) with the new set of basis functions{
B̃ j (x), j � 1, 2, . . . , n − 2

}
, we get
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xn∫

x0

[
a0(x)y

(6)(x) + a1(x)y
(5)(x) + a2(x)y

(4)(x) + a3(x)y
′′′(x) + a4(x)y

′′(x)

+a5(x)y
′(x) + a6(x)y(x)

]
B̃i (x)dx �

xn∫

x0

b(x)B̃i (x) dx, for i � 1, 2, . . . , n − 2.

(8)

The first three terms on the left side of the above equation have been integrated
by parts. The resulting terms are substituted in (8). After applying the approximation
(7), we get a system of equations as

Aα � B (9)

A � [ai j ];

ai j �
xn∫

x0

{[
− d3

dx3
(a0(x)B̃i (x)) +

d2

dx2
(a1(x)B̃i (x)) − d

dx
(a2(x)B̃i (x))

+a3(x)B̃i (x)
]
B̃ ′′′

j (x) + a4(x)B̃i (x)B̃
′′
j (x)

+a5(x)B̃i (x)B̃
′
j (x) + a6(x)B̃i (x)B̃ j (x)

}
dx (10)

for i=1, 2,…, n − 2; j=1, 2,…, n − 2.

bi �
xn∫

x0

{
b(x)B̃i (x) +

[
d3

dx3
(a0(x)B̃i (x)) − d2

dx2
(a1(x)B̃i (x)) +

d

dx
(a2(x)B̃i (x))

−a3(x)B̃i (x)
]
w′′′(x) − a4(x)B̃i (x)w

′′(x) − a5(x)B̃i (x)w
′(x) − a6(x)B̃i (x)w(x)

}
dx (11)

for i=1, 2, …, n − 2; and α � [
α1α2 . . . αn−2

]T
.

3 Procedure to Find a Solution for Nodal Parameters

A general element in the matrix A is evaluated by
∑n−1

m�0 Im , where Im �∫ xm+1

xm
ri (x)r j (x)Z (x)dx and ri (x) , r j (x) are the quartic B-spline basis functions

or their derivatives. We can observe that Im � 0, if (xi−2, xi+3) ∩ (x j−2, x j+3) ∩
(xm, xm+1) � ϕ. To evaluate each Im , we used five point Gauss–Legendre quadrature
formula. With this, we can observe that the coefficient matrix A is a nine diagonal
band matrix. Using the band matrix method, the system Aα � B has been solved to
get the nodal parameter vector α.
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4 Numerical Results

To illustrate the proposed method, we have solved one linear and one nonlinear
boundary value problems. The absolute errors of approximations got by the proposed
method are presented in Table 1.

Example 1 Consider the linear boundary value problem

y(6) + y′′′ + xy′′ − xy � (−114 + 72x − 3x2 − 6x3)e−x , 0 < x < 1

subject to y(0) � 0, y(1) � e−1, y′(0) � 0, y′(1) � 2e−1, y′′(0) � 0, y′′(1) � e−1.

(12)

The exact solution for (12) is y(x) � x3e−x . The space variable domain [0,1] is
divided into 10 equal subintervals. The maximum absolute obtained is 8.842908×
10−07.

Example 2 Consider the nonlinear boundary value problem

y(6) − 20e−36y � −40(1 + x)−6, 0 < x < 1 (13)

subject to y(0)�0, y(1)� ln2/6, y′(0)�1/6, y′(1)�1/12, y′′(0)�−1/6, y′′(1)�
−1/24. The exact solution for the above problem is y(x)� ln(1+x)/6. Applying
quasilinearization technique [10] to (13), we get the sequence of linear boundary
value problems as

y(6)(n+1) + 720e−36y(n) y(n+1) � 720e−36y(n) y(n) + 20e−36y(n) − 40(1 + x)−6, n � 0, 1, 2, 3, . . . .

(14)

subject to y(n+1)(0) � 0, y(n+1)(1) � ln2/6, y′
(n+1)(0) � 1/6, y′

(n+1)(1) � 1/12,

y′′
(n+1)(0) � −1/6, y′′

(n+1)(1) � −1/24.

Table 1 Numerical results of Examples 1 and 2

x Absolute errors for example 1 Absolute errors for example 2

0.1 7.311464E−07 1.117587E−08

0.2 8.842908E−07 1.583248E−07

0.3 6.631017E−07 3.539026E−07

0.4 1.452863E−07 5.960464E−07

0.5 2.756715E−07 6.631017E−07

0.6 5.215406E−07 5.811453E−07

0.7 4.023314E−07 3.352761E−07

0.8 3.874302E−07 2.011657E−07

0.9 3.576279E−07 1.117587E−07
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The space variable domain [0,1] is divided into 10 equal subintervals. The maxi-
mum absolute obtained is 6.631017×10−07.

5 Conclusions

The numerical solution of linear and nonlinear two point sixth order boundary value
problems by Galerkin method with quartic B-splines is presented. To get a more
approximate solution, the quartic B-splines are defined into a new set. It is found that
the obtained results are giving a little error. The strength of the developed method
lies in the easiness of its application, accuracy, and efficiency.
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Numerical and Experimental Studies
of Nanofluid as a Coolant Flowing
Through a Circular Tube

N. Praveena Devi, Ch. Srinivasa Rao and K. Kiran Kumar

Abstract In this paper, a comparison is made between the numerical and
experimental results of nanofluid as a coolant flowing through the circular tube.
Effect of nanofluid as a heat transportation fluid is studied both experimentally and
numerically. Numerical simulations are performed using commercial computational
dynamics software ANSYS FLUENT. Experimental studies are carried out on an
in-house test rig. Al2O3/water and CuO/water nanofluids are prepared and used for
experimentation. Two-phase homogeneous model is considered for the simulation
of nanofluid flows. Thermo-hydraulic parameters such as heat transfer coefficient
and friction factor are calculated and compared for different Reynolds numbers in
laminar flow regime (Re varies between 200 and 2000) and different nanofluid con-
centrations (varies between 1 and 3% V/V). Performance parameter index is used to
compare nanofluid thermo-hydraulic behavior with that of base fluid. It is concluded
that nanofluids are good substitute for conventional fluids.

Keywords Nanofluids · Heat transfer · Laminar flow

1 Introduction

Many engineering applications require either quick heat transfer or less temperature
rise of working fluid across the heat source. For example, electronic components
need to be maintained at 65 °C, wherein the inlet temperature of fluid may be around
45 °C (in tropical counties like India). That means allowable temperature gradient is
only 20 °C. At the same time, many electronic appliances will not allow to increase
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the effective heat transfer area. Hence, it is customary to increase the heat transfer
coefficient of working fluid. Conventional working fluids such as air, water, and ethy-
lene glycol have low thermal conductivity values which restrict its usage for high
heat flux conditions. Addition of high thermal conductive solid particles to the base
fluid increases heat transfer rates. However, the size of the particles is very impor-
tant as it may lead to agglomeration and settling down. Hence, in the last decade,
researchers are concentrating on use of nano-sized particles (size less than 100 nm)
to prepare heat transportation fluid, which is termed as “nanofluid”. However, addi-
tion of nanoparticles into base fluid increases the pressure drop [1]. Applications of
nanofluids can be found in different engineering fields such as solar energy harvest-
ing [2], nuclear reactor cooling [3], electronic cooling [4], etc. Al2O3/water nanofluid
with 1.6%V/V concentration increases heat transfer coefficient up to 47% compared
to the base fluid [5].

The main objective of this paper is to carry out numerical and experimental inves-
tigations to predict the thermo-hydraulic behavior of nanofluid flowing through a
circular tube.

2 Experimental Setup

Figure 1 shows the flow loop schematic and components used for the present inves-
tigation. Figure 2 shows the actual experimental setup. Test rig a closed-loop setup
where heat is added at along the length of channel, and flow rate is controlled by
means of regulating valve in order to maintain required Reynolds number. Heated
working fluid is cooled in the pin-fin heat exchanger before it is collected in the stor-
age tank. Temperatures aremeasured at different locations as shown in the schematic,
and all values are recorded using DAQ. Rotameter is calibrated before and after the
experimentation.

Fig. 1 Schematic of the test
facility
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Fig. 2 Photograph of test
facility

Nanopowders are purchased from reliable supplier. Nanoparticles with mean size
of 40 nm are mixed with DI water by means of ultrasound sonicator. C-TAB is used
as surfactant.

Data reduction
Heat transfer transferred:

Q � h.A.�Tm � V .I � m.cp.(Tout − Tin)

Here, measured values are as follows:

1. T out and T in are temperatures of fluid at the outlet and inlet of test section,
respectively.

2. m is the mass flow rate.
3. V and I are voltage and current.
4. �Tm is themean temperature can bemeasured usingwall and fluid temperatures.

With known surface area “A” and measured cp (from standard correlations), heat
transfer coefficient “h” can be calculated.With known “h”, Nusselt number (Nu)
can be calculated.
Pressure drop across test section is given by

�P � f lv2

2gd

Performance parameter is defined as

K � Nunanofluid/�Pnanofluid
Nuwater/�Pwater
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2.1 Numerical Modeling and Simulation Procedure

Figure 3 shows the geometry and meshing of the circular pipe which is considered
for the purpose of present study. Three governing equations, mass, momentum, and
energy for the incompressible, laminar, and steady state with no radiation effect, are
given below (Table 1):

Continuity equation: ∇ ·
(
ρm �Vm

)
� 0

Momentum equation: ∇ ·
(
ρm �Vm �Vm

)
� −∇ p + ∇ ·

[
μm

(
∇ �Vm + ∇ �V T

m

)]

Energy equation: ∇
(
ρmCm �Tm �Vm

)
� ∇ · (Keff∇T )

To solve the above equations, base fluid properties are taken from NIST software.
Nanofluid properties calculated from the standard correlations given by Drew [6],

Fig. 3 Cross-sectional view
of pipe modeled for
simulation

Table 1 Details of numerical
and experimental modeling

Parameter Numerical Experimental

Pipe diameter (m) 0.0134 0.0134

Pipe length (m) 2 2

Material SS SS

Flow Laminar (Re �200–2000)

Pipe roughness Smooth NA

Boundary condition Heat flux Heat flux
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Yang et al. [7], Brinkman [8], and Hamilton [9] for density, specific heat, viscosity,
and thermal conductivity, respectively, are used. Uniform velocity at the inlet and no-
slip boundary conditions is adopted. Grid independency test is performed in order
to save the computational time. Appropriate residual values and under-relaxation
factors are adopted in order to get the accurate results.

3 Results and Discussion

Figures 4 and 5 show the experimental and numerical results drawn as ratio ofNusselt
number ratio (ratio of Nusselt number of nanofluid to the Nusselt number of water)
as a function of Reynolds number and volume fraction. Comparison is made among
the considered working fluids, i.e., Al2O3/water and CuO/water. It can be observed
that numerical results are well matched with experimental results and difference
between them is within the valid limits of±15%. By increasing Reynolds number
from 200 to 2000, Nusselt number ratio of Al2O3/water nanofluid is increased from
1.054 to 1.083 which is 3% and for CuO/water nanofluid, Nusselt number ratio is
increased from 1.062 to 1.109 which is 5%. This clearly indicates the usefulness
of nanofluid in place of water for the cooling purpose. Similarly, from Figs. 4 and
5, it can be depicted that, for any Reynolds number flow, heat transfer rate is more
for higher concentration. However, it is to worth note that Nusselt number ratio of
CuO/water nanofluids is more than Al2O3 nanofluid, for any Reynolds number and
any concentration, within the range of study.

Numerical and experimental results are compared in Figs. 6 and 7. From Fig. 6,
it can be interpreted that pressure drop of Al2O3/water nanofluid increases with the
Reynolds number. Also, friction factor has strongly affected by the concentration.
This trend may be attributed to the higher viscosities at higher concentrations. The
same trend is observed for CuO/water nanofluid as well. As concentration increases,
pressure drop increases substantially. So, it can be concluded that, within the laminar

Fig. 4 Variations of Al2O3
nanofluid-to-water ratio of
average Nusselt number
(Nunf/Nubf) with particle
volume concentration for
different values of Reynolds
number
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Fig. 5 Variations of CuO
nanofluid-to-water ratio of
average Nusselt number
(Nunf/Nubf) with particle
volume concentration for
different values of Reynolds
number
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Fig. 6 Variations of Al2O3
nanofluid-to-water ratio of
pressure drop (�nf/�bf) with
Reynolds number (Re) for
different values of particle
volume concentration
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Fig. 7 Variations of CuO
nanofluid-to-water ratio of
pressure drop (�nf/�bf) with
Reynolds number (Re) for
different values of particle
volume concentration
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flow regime, pressure drop is a strong function of concentration rather than Reynolds
number.

Further to accomplish the usefulness of nanofluid in place of conventional water, a
term “performance parameter (k)” is used. Since heat transfer coefficient is favorable
and pressure drop is unfavorable with the nanofluid flows, performance parameter
is the good index for evaluation. From Figs. 8 and 9, it can be seen that, as concen-
tration increases, performance index increases initially and reaches maximum and
thereafter starts decreasing. This can be attributed to the disproportional change in
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Fig. 8 Variation of
performance index (k) of
Al2O3/water with Re and
concentration
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Fig. 9 Variation of
performance index (k) of
CuO/water with Re and
concentration
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the thermophysical properties of the working fluid. Increase in the pressure drop
is offsetting the increase in Nusselt number. Similar trend is observed in the both
working fluids considered here.

4 Conclusions

This study presents the experimental and numerical results on thermo-hydraulic
behavior of nanofluid flowing through a circular channel. Laminar flow conditions
are adopted (Varied from 200 to 2000) and concentration varied from 1 to 3%.
Comparison ismade betweenAl2O3/water nanofluid andCuO/water nanofluid. It can
be concluded that Nusselt number is significantly higher for nanofluids compared
to the water. Meanwhile, the efficacy of using nanofluids is evaluated against the
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pressure drop. Finally, to evaluate the combined effect of thermal and hydraulic
behavior, performance index is calculated and presented.

It can be concluded that

1. Nusselt number of nanofluid is substantially more than base fluid and this value
increased with concentration and Reynolds number.

2. Compared to Al2O3/water nanofluid, CuO/water nanofluid shows good thermal
behavior.

3. Since both pressure drop and Nusselt number are increasing with concentration,
there needs a trade-off to choose the concentration for specific application.
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Influence of Slip on Peristaltic Motion
of a Nanofluid Prone to the Tube

K. Maruthi Prasad and N. Subadra

Abstract Influence of slip on peristaltic motion of a nanofluid prone to the tube is
studied under the assumption of long wavelength and low Reynolds number. The
equations governing the flow are solved and closed-form expressions for velocity,
pressure drop, time-averaged flux and frictional force have been obtained. The effects
of various parameters like Brownian motion parameter, thermophoresis parameter,
local temperature Grashof number, local nanoparticles Grashof number, slip param-
eter and inclination on these flow variables have been studied. Streamline patterns
and trapping phenomena have been studied and sketched through graphs at the end.

Keywords Nanofluid · Permeable walls · Brownian motion parameter
Thermophoresis parameter · Local temperature Grashof number · Local
nanoparticle Grashof number

1 Introduction

‘Peristalsis is amechanismof fluid transport that occurswidely inmanyphysiological
situations such as food mixing and chyme movement in the intestines, movement
of ovum in the female fallopian tube, transport of urine through ureters’. Peristaltic
motion of Newtonian fluids has been investigated by many researchers under various
conditions [1–3].

Nanometer dimension materials show unique physical and chemical characteris-
tics. Therefore, nanotechnology has a vast contribution in the industry. Nanofluids
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have many applications on heat transfer. Subject to wide-ranging applications of
nanofluids, several researchers investigated peristaltic flow with nanofluids [4–6].

No-slip boundary condition has been used by many of the researchers at the
walls of the vessels. But arteries show permeable nature in physiological systems.
Therefore, there exists some amount of slip at the walls. Some of the researchers who
studied in this area are [7–9]. However, the influence of slip on peristaltic motion of
nanofluid in an inclined tube has not been studied.

Motivated by these studies, the influence of slip on peristaltic motion of nanofluid
prone to tube under the assumption of long wavelength and low Reynolds num-
ber is investigated. The nonlinear coupled equations of the temperature profile and
nanoparticle phenomenon are solved by using homotopy perturbation technique. The
analytical solutions of velocity, pressure rise, frictional force and effect of heat and
mass transfer coefficients are obtained. The effects of various parameters on these
flow variables are investigated graphically.

2 Mathematical Formulation

Consider the peristaltic motion of an incompressible nanofluid in an inclined tube.
The tube is having radius ‘a’ with uniform cross section and sinusoidal waves are
travelling along the boundary of the tube with constant speed c, amplitude b and
wavelength λ. Also, suppose that the tube is prone with the horizontal axis at an
angle α. Here, heat transfer and nanoparticle phenomenon have been considered.
The temperature at the walls of the tube is T̄o and nanoparticle volume fraction is
C̄o. Cylindrical polar coordinate system

(
R̄, θ̄ , Z̄

)
is considered, such that Z̄ axis

accords with the middle line of the tube and R̄ is at right angles to it. The geometry
of the wall surface is given by

R̄ � h̄
(
z̄, t̄

) � a + bSin
2π

λ

(
Z̄ − ct̄

)
. (1)

By using the transformation

z̄ � Z̄ − ct̄, r̄ � R̄,

w̄ � W̄ − c, ū � Ū θ̄ � θ̄ , (2)

from stationary to moving frame and introducing the non-dimensional quantities.
The governing equations for an incompressible nanofluid prone to the tube under

lubrication theory are defined as

∂u

∂r
+
u

r
+

∂w

∂z
� 0, (3)

∂P

∂r
� −cos α

F
(4)
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∂P

∂z
− sin α

F
� 1

r

∂

∂r

(
r
∂w

∂r

)
+ Gr θ̃ + Br σ̃ (5)

0 � 1

r

∂

∂r

(

r
∂θ̃

∂r

)

+ Nb
∂σ̃

∂r

∂θ̃

∂r
+ Nt

(
∂θ̃

∂r

)2

(6)

0 � 1

r

∂

∂r

(
r
∂σ̃

∂r

)
+

Nt

Nb

(
1

r

∂

∂r

(

r
∂θ̃

∂r

))

. (7)

The dimensionless boundary conditions are

∂w

∂r
� 0,

∂θ̃

∂r
� 0,

∂σ̃

∂r
� 0 at r � 0 (8)

w � −k
∂w

∂r
, θ̃ � 0,

σ̃ � 0 at r � h � 1 + ε sin 2π z. (9)

3 Solution of the Problem

The coupled equations of temperature profile and nanoparticle phenomenon are
solved using homotopy perturbation method as done by He [10]. By solving Eqs. (6)
and (7) using boundary conditions (8) and (9), the expressions for temperature profile
and nanoparticle phenomenon are obtained as follows:

θ̃ (r, z) �
(
r4 − h4

64

)
(Nb − Nt ) (10)

σ̃ (r, z) � −
(
r2 − h2

4

)
Nt

Nb
. (11)

Substituting the Eqs. (10) and (11) in Eq. (5) and applying boundary conditions
of Eqs. 7–8, the expression for velocity is obtained as

w � dp

dz

(
r2

4
− h2

4
− kh

2

)
− sin α

F

(
r2

4
− h2

4
− kh

2

)

− Gr (Nb − Nt )

(
r6

2304
− r2h4

256
+

h6

288
− kh5

192

)

+ Br

(
Nt

Nb

)(
r4

64
− r2h2

16
+
3h4

64
+
kh3

16

)
. (12)

Further, non-dimensional flux q, pressure gradient dp
dz and pressure rise over the

wavelength 	Pλ are calculated.
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	Pλ � qL1 + L2, (13)

where

q � −dp

dz

(
h3k

2
+
h4

8

)
+
sin α

F

(
h3k

2
+
h4

8

)
− Gr (Nb − Nt )

(
5h8

3072
− kh7

192

)

+ Br

(
Nt

Nb

)(
h6

48
+
kh5

16

)

L1 �
1∫

0

− 1

S
dz

L2 � −
1∫

0

sin α

F
dz − Gr (Nb − Nt )

1∫

0

(
5h8

3072
− kh7

192

)
1

S
dz

+ Br

(
Nt

Nb

) 1∫

0

(
h6

48
+
kh5

16

)
1

S
dz.

Then, the time-averaged flux Q̄ and dimensionless friction force F̄ are calculated.

4 Results and Discussions

In the previous section, the expressions for velocity, pressure rise, time-averaged
flux and frictional force have been calculated. Different graphs have been drawn
by using Mathematica 9.0 software. It is noticed from Figs. 1, 2 and 3 that the
pressure rise (−	pλ) increases with the increase of thermophoresis parameter Nt ,
local nanoparticle Grashof number (Br ) and inclination (α) and decreases with the
increase of Brownianmotion parameter (Nb), local temperatureGrashof number (Gr )
and slip parameter (k). It can be seen fromFigs. 4, 5 and 6 that the absolute value of the
frictional force

(∣∣F̄
∣∣) decreaseswith the increase ofBrownianmotion parameter (Nb)

and slip parameter (k) and increases with the increase of thermophoresis parameter
(Nt ), local temperature Grashof number (Gr ), local nanoparticle Grashof number
(Br ) and inclination (α). It is noticed from Figs. 7, 8 and 9 that the size of the
trapped bolus enhances with the increase of thermophoresis parameter (Nt ) and slip
parameter (k) and the size of the trapped bolus reduces with the increase of Brownian
motion parameter (Nb).
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Fig. 1 Effect of Q̄ and
Nb, Nt on (−	Pλ)

Fig. 2 Effect of Q̄ and
Gr , Br on (−	Pλ)

Fig. 3 Effect of Q̄ and α, k
on (−	Pλ)
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Fig. 4 Effect of Q̄ and
NB , Nt on

∣∣F̄
∣∣

Fig. 5 Effect of Q̄ and
Gr , Br on

∣
∣F̄

∣
∣

Fig. 6 Effect of
Q̄&α, kon

∣∣F̄
∣∣
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Fig. 7 Streamline patterns for different values of Nb

Fig. 8 Streamline patterns for different values of Nt

Fig. 9 Streamline patterns for different values of k

5 Conclusion

Influence of slip on peristaltic motion of nanofluid model prone to the tube has been
investigated using long wavelength and low Reynolds number approximations. Pres-
sure rise, frictional force and streamline patterns for the nanofluid in an inclined tube
have been shown graphically for different variables. It is noticed that the pressure rise
increases with the increase of thermophoresis parameter, local nanoparticle Grashof
number and inclination and decreases with the increase of Brownian motion param-
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eter, local temperature Grashof number and slip parameter. It is also observed that
the size of the trapped bolus increases with the increase of thermophoresis parameter
and slip parameter and decreases with the increase of Brownian motion parameter.
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Exact Solutions of Couple Stress
Fluid Flows

Subin P. Joseph

Abstract Exact solutions of non-Newtonian fluid flows are very rare. In this paper,
the couple stress fluid flows are considered and certain exact solutions of these flows
are derived. The governing equations of motion of an incompressible steady-state
couple stress fluid in the absence of body forces and body couples are considered.
Certain special cases are discussedwhere these equations canbe converted to ordinary
differential equations, which can be solved in terms of special functions.

Keywords Exact solution · Couple stress fluid · Special functions

1 Introduction

The exact solutions of differential equations play an important role in analyzing any
physical phenomena. A large number of physical phenomena are governed by non-
linear partial differential equations. To find an exact solution of such problems is a
tedious task in most of the cases. In the case of Newtonian fluid flows, the partial
differential equations are nonlinear so that exact solutions are difficult to obtain. The
available exact solutions in this case are very less. The solutions available in the lit-
erature are mainly in one- or two-dimensional flows or axisymmetric flows [4, 10].
Most of the solutions are derived under restricted conditionswhich reduce the nonlin-
ear partial differential equations to ordinary differential equations that can be solved.
There are other methods such as semi- analytical methods and similarity methods to
solve certain type of flows. But it is found that most of the real fluids appearing in
industrial applications are non-Newtonian fluids. The constituent equations of such
flows are much more complicated. So, the exact solutions of such flows are very rare
in the literature. Due to the nonlinearity and occurrence of higher partial derivative in
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such equations, the availability of exact solutions even in one-dimensional flows are
difficult to obtain. Obtaining solutions through numerical analysis of such flows are
also difficult and time consuming. Exact solutions are needed to check the degree of
exactness of such numerical techniques developed. In this paper, certain exact solu-
tions of non-Newtonian fluid flows which are characterized as couple stress fluids
are obtained. There are some papers which dealt with unidirectional couple stress
fluid flows [1–3]. Also, some authors studied two-dimensional flows of such fluids
[5, 6]. In the next section, the constituent equations of couple stress fluid flows are
given. In the third section, some possible exact solutions of such flows are derived.
Some concluding remarks on the results obtained are given in the last section.

2 Couple Stress Fluids

The governing equations of motion of an incompressible steady-state couple stress
fluid in the absence of body forces and body couples are given by [8]

∇ · v = 0 (1)

and

(v∇)v = −∇p

ρ
+ ν∇2v − η∇4v, (2)

where v is the velocity vector, ρ is the constant density, p is the pressure, ν is the
coefficient of kinematic viscosity, and η is the parameter due to couple stress. Taking
the curl of this equation, the vorticity equation of couple stress fluids is obtained as

∇ × (v × ω) + ν∇2ω − η∇4ω = 0 (3)

where ω = ∇ × v is the vorticity vector. Any vector v satisfying this equation gives
a possible velocity field of a couple stress fluid. If η = 0, this becomes the vorticity
equation of an incompressible Navier–Stokes fluid flow under conservative body
forces. The generalized Beltrami flow of an incompressible Navier–Stokes equation
is characterized by the equations [9]

∇ × (v × ω) = 0 (4)

and
∇2ω = 0 (5)

There are several papers dealing with the exact solutions of these equations, which
give rise to solutions of Navier–Stokes flows. In the case of steady couple stress flows
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under consideration, the equations to be satisfied by a generalized Beltrami flow are
the Eq. (4) and the equation

ν∇2ω − η∇4ω = 0 (6)

In the next section, certain exact solutions of generalized Beltrami flows in couple
stress fluids satisfying Eqs. (1), (4), and (6) are derived. For real flows, boundary con-
ditions are needed. But considering the difficulty of such real problems, the theme of
this paper is limited to obtain theoretically possible solutions. So, no specific bound-
ary conditions or initial conditions are prescribed while obtaining such theoretical
solutions.

3 Exact Solutions

Since the flow is incompressible, it is assumed that the velocity vector field v is
the curl of some vector field A. Then, Eq. (1) is trivially satisfied. To obtain some
particular solutions, it is also assumed that this velocity potential takes some special
forms. Then substitute these special forms in the above Eqs. (4) and (6). This will
result in certain differential equations, which may be solved to obtain the solutions
of generalized Beltrami flows in couple stress fluids. Different forms of the velocity
potential and corresponding solutions are given below.

3.1 Velocity Potential A = (
0, 0, f (x2 + y2)

)

Consider the case where there exists a stream function in the following form:

ψ(x, y) = f (x2 + y2) (7)

Then, the velocity vector and the vorticity vector become

v = (2yf
′
(x2 + y2),−2xf

′
(x2 + y2), 0) (8)

and
ω = (0, 0,−4(f

′
(x2 + y2) + (x2 + y2)f

′′
(x2 + y2))) (9)

Then we can easily verify that the Eq. (4) is satisfied. So this is a solution to an
incompressible steady-state couple stress fluid flow if it satisfies Eq. (6). Substi-
tuting in this equation, on simplification, it is obtained that (0, 0,D(u))= 0, where
D(u)= 16(−2νf

′′
(u) − 4(−6η + uν)f (3)(u) + (72ηu − u2ν)f (4)(u) + 36ηu2f (5)(u) +

4ηu3f (6)(u)) and u = x2 + y2. So any solution to the differential equation D(u) = 0
will give an exact solution of an incompressible steady-state couple stress fluid flow.
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One of the exact solutions of this equation is given by

c1I0

(√
νu

η

)
(10)

where I0(t) denotes the modified Bessel function of first kind of order zero and c1
is any constant. Hence, an exact solution of the incompressible steady-state couple
stress fluid flow is given by the velocity field

(
c1νy 0F1

(
2; (x

2 + y2)ν

4η

)
/4η,−c1νx 0F1

(
2; ν(x2 + y2)

4η
)

)
/4η, 0

)
(11)

and the vorticity field is given by

(
0, 0,−c1ν 0F1

(
1; ν

4η
(x2 + y2)

)
/η

)
(12)

where 0F1(a, t) is the confluent hypergeometric function in the variable t [7]. Another
important exact solution of this equation is given by

c2K0

(√
ν(x2 + y2)/η

)
(13)

where K0(t) denotes the modified Bessel function of second kind of order zero and
c2 is any constant. Hence, another exact solution of the incompressible steady-state
couple stress fluid flow is given by the velocity field

(
−c2

√
νy K1

(√
ν(x2 + y2)/η

)
, c2

√
νx K1

(√
ν(x2 + y2)/η

)
, 0

)
/
√

η(x2 + y2)

(14)
and the vorticity field is given by

(
0, 0,−c2ν K0

(
ν(x2 + y2)

η

)
/η

)
(15)

The third important solution for this differential equation can be expressed in
terms of Meijer G-function [7]

Gm,n
p,q

(
t

∣∣∣∣ a1, ..., apb1, ..., bq

)
(16)

in the variable t and is given by

c3(x
2 + y2)

3
2 G2,2

2,4

(
ν(x2 + y2)

4η

∣∣∣∣ − 1
2 ,− 1

2

− 1
2 ,− 1

2 ,− 3
2 ,− 3

2

)
(17)
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Fig. 1 Certain stream lines of the flow given by Eq. (11)

Hence, the third exact solution of the incompressible steady- state couple stress fluid
flow is given by the velocity field

2c3(x
2 + y2)

1
2

(
y G2,1

1,3

(
ν(x2 + y2)

4η

∣∣∣∣ − 1
2

− 1
2 ,− 1

2 ,− 3
2

)
,

−x G2,1
1,3

(
ν(x2 + y2)

4η

∣∣∣∣ − 1
2

− 1
2 ,− 1

2 ,− 3
2

)
, 0

)
(18)

and the vorticity field is given by

⎛
⎝0, 0,−16c3η K0

⎛
⎝

√
ν(x2 + y2)

η

⎞
⎠ /

√
ν

⎞
⎠ (19)

Some stream lines of the first solution are given in Fig. 1. The other two solutions
also have similar stream lines.

3.2 Velocity Potential A =
(
0, z+f (r)

r , 0
)

Now, consider the case where there exist an axisymmetric stream function in cylin-
drical coordinates in the following form:

ψ(r, z) = z + f (r) (20)
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Then, the velocity vector and the vorticity vector become

v =
(

−1

r
, 0,

f
′
(r)

r

)
(21)

and

ω =
(
0,

f
′
(r) − rf

′′
(r)

r2
, 0

)
(22)

This is a solution to an incompressible steady-state couple stress fluid flow if it
satisfies Eq. (3). Substituting in this equation and on simplification, it can be seen
that ψ(r, z) is steam function of such a flow if f (r) satisfies the ordinary differential
equation

3
(
(ν − 1)r2 − 15η

)
f

′
(r)+r

(
45η − 3(ν − 1)r2

)
f

′′
(r) + r2

(
(2ν − 1)r2 − 24η

)
f (3)(r)+

r3(9η − νr2)f (4)(r) + ηr5f (6)(r) − 3ηr4f (5)(r) = 0 (23)

So any solution to this differential equation will give an exact solution of an incom-
pressible steady-state couple- stress fluid flow. One of the important exact solution
for this equation is given by

c1r
4
1F2

(
1 + 1

2ν
; 2, 3; νr2

4η

)
(24)

where 1F2(a; b, c; t) is the generalized hypergeometric function in the variable t [7].
Hence, an exact solution of the incompressible steady-state couple stress fluid flow
is given by the velocity field

⎛
⎝−1

r
, 0, 4c1r

2
1F2

(
1 + 1

2ν
; 2, 3; νr2

4η

)
+

c1(2ν + 1)r4 1F2

(
2 + 1

2ν ; 3, 4; νr2

4η

)
24η

⎞
⎠

(25)

and the vorticity field is given by

(
0,− c1

1152η2

(
9216η2r 1F2

(
1 + 1

2ν
; 2, 3; νr2

4η

)

+ (2ν + 1)(4ν + 1)r5 1F2

(
3 + 1

2ν
; 4, 5; νr2

4η

)
(26)

+384ηr3 1F2

(
2 + 1

2ν
; 3, 4; νr2

4η

))
, 0

)
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3.3 Velocity Potential A = (
0, r2f (r), 0

)

Consider the axisymmetric stream function given by ψ(r, z) = r3f (r). Here, f (r) is
multiplied by r3 to reduce the difficulty of solving the resulting differential equation.
Then, the velocity vector and the vorticity vector become

v = (0, 0, r2f
′
(r) + 3rf (r)) (27)

and
ω =

(
0,−r2f

′′
(r) − 5rf

′
(r) − 3f (r), 0

)
(28)

Also, we can easily verify that Eq. (4) is satisfied. Substituting these in Eq. (6), it is
easy to see that f (r) should satisfy the ordinary differential equation

rf
′
(r)(9η − 3νr2) + 2r3f (3)(r)(12η − 5νr2) + r4f (4)(r)(54η − νr2)

+ ηr6f (6)(r) + 15r5f (5)(r) − 3r2f
′′
(r)(9η + 7νr2) + f (r)(3νr2 − 9η) = 0

(29)
So any solution to this differential equation will give an exact solution of an incom-
pressible steady-state couple stress fluid flow. One of the important exact solution
that can be obtained for this equation is given by

c1
1

r
0F1

(
2; νr2

4η

)
(30)

Hence, an exact solution of the incompressible steady-state couple stress fluid flow
is given by the velocity field

(
0, 0, 2c1 0F1

(
1; νr2

4η

))
(31)

and the vorticity field is given by

(
0,−c1νr 0F1

(
2; νr2

4η

)
/η, 0

)
(32)

Another important exact solution of this equation is given by

1

r2
K1

(
−r

√
ν

η

)
(33)
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Hence, the second exact solution of the incompressible steady-state couple stress
fluid flow is given by the velocity field

(
0, 0,

√
ν

η
K0

(
−r

√
ν

η

))
(34)

and the vorticity field is given by

(
0,−νK1

(
−r

√
ν

η

)
/η, 0

)
(35)

3.4 Conclusion

In this paper, certain exact solutions of incompressible steady-state couple stress
fluid flows are derived. The correctness of our solutions has been verified by directly
substituting the solutions to the corresponding ordinary differential equations. Here,
no boundary conditions or initial conditions are considered. Since the availability
of exact solutions of couple stress fluid flow is very rare, the solutions that are
obtained in this paper can be utilized to explore the properties of such flows. Also,
availability of such exact solutions can be used for checking any numerical code
developed for studying real flows occurring in nature or in laboratory. Three types
of flows which admit exact solutions in terms of special functions are discussed.
Even in the simplified versions of velocity potentials, the solutions obtained are in
terms of special functions such as generalized hypergeometric functions or Meijer
G-functions.
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Finite Element Study of Convective
Heat and Mass Transfer of Two Fluids
in a Vertical Channel of Variable Width
with Soret and Dufour Effects

B. Suresh Babu, G. Srinivas and G. V. P. N. Srikanth

Abstract Amathematicalmodel for convective heat andmass transfer of two immis-
cible fluids in a vertical channel of variable width with thermo-diffusion, diffusion-
thermal effects is presented. The governing boundary layer equations generated for
momentum, angular momentum, energy and species concentration are solved with
appropriate boundary conditions using Galeriken finite element method. The effects
of the pertinent parameters are studied in detail. Furthermore, the rate of heat transfer,
mass transfer, and shear stress near both the walls is analyzed.

Keywords Micropolar fluid · Viscous fluid · Finite element method ·Magnetic
field · Soret and Dufour effects

1 Introduction

The subject ofmicropolar fluids attained a higher degree bymany researchers because
when the fluid is with the suspended particles we cannot analyze the properties of
fluid flow by regular Newtonian fluid characteristics. Eringen [1] had taken initiation
in describing the subject of micropolar fluids. Chamkha et al. [2] analyzed the free
convection of micropolar fluid in a vertical channel.
Thediffusion effects namely thermal-diffusion (Soret) anddiffusion-thermo (Dufour)
are highly important in fluid mechanics. The problems concerned to heat and mass
transference and density variations with temperature and concentration lead to inte-
grated buoyancy force under convection. The diffusion impacts influence the flow
field in boundary layer over a vertical channel. Anwar Beg et al. [3] described the
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thermal-diffusion and diffusion-thermo impacts by numerically studying the free
convection MHD heat and mass transfer over a stretching layer with saturated per-
meable structure. The MHD flow of two immiscible fluids between moving plates
has been investigated by Stamenkovic et al. [4]. For many years, scientists and engi-
neers have been showing interest in two phase flows, which arise in many industrial
applications. The two-phase fluid flow phenomena are important in pipe flows, flu-
idized beds, sedimentation, gas purification, transport processes, and shock waves.
Malashetty and Leela [5, 6] studied two-fluid flow in a vertical channel. Such inves-
tigations are beneficial to understand the slag layer effects over heat transfer features
of a coal-fired magnetohydrodynamic generator. Vajravelu et al. [7] dealt with the
heat tranfer through hydromagnetic unstable motion of two immiscible between two
plates. Umavathi et al. [8] determined the stable and unstable motion of immiscible
fluid in a horizontal system. Prathap Kumar [9] investigated the systematic solution
for a solute dispersal in a conducting immiscible fluid moving within two horizontal
sheets under transverse magnetic effect. Ramanamurthy et al. [10] resolved the issue
of stable Poiseuille flow of two immiscible incompressible micropolar fluids within
two horizontal sheets of uniformwall temperatures in accordancewith entropymech-
anisms. Suresh Babu et al. [11] studied the heat and mass transfer along a vertical
channel filled with micropolar and viscous fluids. Gupta et al. [12] described the
state of stable completely progressed flow and heat transference of two immiscible
MHD and viscous fluid, partly occupied with permeable medium and pure fluid. The
motion of 2-immiscible stress fluids within two homogeneous permeable beds was
dealt by Srinivas et al. [13]. Motivated by the above studies, in the present study
emphasis is given to diffusion effects on heat and mass transfer of immiscible flows
in a vertical channel of variable viscous layer width. Highly nonlinear and coupled
governing differential equations are solved numerically using finite element method.

2 Mathematical Formulation

The two infinite plates are kept at Y = −h1 and Y = h2 initially as shown in Fig. 1.
The first region occupies micropolar fluid and the other with viscous fluid. Here, the
buoyancy force determines the fluid flow. The governing equations for the problem
are developedwith the assumptions that the flow is assumed to be 1D, steady, laminar,
immiscible, and incompressible, the transport characteristics of the twofluids are kept
at constant, the flow of the fluid is fully developed and T1 > T2, C1 > C2.

2.1 Governing Equations

Region-1:
dν1

dY
= 0, ρ1 = ρ0[1− β1T (τ1 − τ0) − β1C(φ1 − φ0)] (1)
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Fig. 1 Schematic diagram

μ1 + K

ρ1

d2ν1

dY 2
+ K

ρ1

dη

dY
+ gβ1T (τ1 − τ0) + gβ1C(φ1 − φ0) − σB2

0ν1

ρ1
= 0 (2)

γ
d2η

dY 2
− K

[
2η + dν1

dY

]
= 0 (3)

k1
ρ1Cp

d2τ1

dY 2
+ 1

ρ1Cp

[
μ1(

dν

dY
)2 + ρ1D1KT1

CS1

d2φ1

dY 2

]
= 0 (4)

D1
d2φ

dY 2
+ D1KT1

TM

d2τ1

dY 2
= 0 (5)

Region-2:

dν2

dY
= 0, ρ2 = ρ0[1− β2T (τ2 − τ0) − β2C(φ2 − φ0)] (6)

μ2

ρ2

d2ν2

dY 2
+ gβ2T (τ2 − τ0) + gβ2C(φ2 − φ0) − σB2

0ν2

ρ2
= 0 (7)

k2
ρ2Cp

d2τ2

dY 2
+ 1

ρ2Cp

[
μ2

(dν2

dY

)2 + ρ2D2KT2

CS2

d2φ2

dY 2

]
= 0 (8)
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D2
d2φ

dY 2
+ D2KT2

TM

d2τ2

dY 2
= 0 (9)

The following boundary and interface conditions proposed by Arimen [14] are
considered to solve the following system of equations (1)–(9): ν1 = 0 at Y = −h1,
ν2 = −w0 at Y = h2, U2 = −w0 at Y = h2,
ν1(0) = ν2(0), τ = τ1atY = −h1, τ = τ2atY = h2, τ1(0) = τ2(0),
φ = φ1 at Y = −h1, φ = φ2 at Y = −h1, φ1(0) = φ2(0), η = 0 at Y = −h1,
μ1 + K dν1

dY + Kη = μ2
dν2
dY at Y = 0, dη

dY = 0, k1
dτ1
dY = k2

dτ2
dY at Y = 0,

D1
dφ1

dY = D2
dφ2

dY at Y = 0.
The following variables are used to convert the system of equations (1)–(7) to dimen-
sionless form:
y = Y

h1
(region-1), y = Y

h2L
(region-2), u1 = ν1

ν0
(region-1), u2 = ν2

w0
(region-2),

θ1 = τ1−τ0
ΔT , θ2 = τ2−τ0

ΔT , N = h1
ν0

η, j = h2, κ = K
μ1
, ϕ1 = φ1−φ0

Δφ
, ϕ2 = φ2−φ0

Δφ
,

Re = ν0h1
υ1

, Gr = gβ1TΔτh31
υ2
1

, Gc = gβ1CΔτh31
υ2
1

, Sr = D1KT1Δτ
TM Δ

.
The dimensionless forms of governing equations thus obtained are as follows:
Region-1:

d2N

dy2
− 2κ

2+ κ
(2N + du1

dy
) = 0 (10)

(1+ κ)
d2u1
dy2

+ κ
dN

dy
+ Gr

R
θ1 + Gc

R
ϕ1 −Mu1 = 0, (11)

1

PrRe

d2θ1

dy2
+ Ec

R
(
du1
dy

)2 + Du

R

d2ϕ1

dy2
= 0,

1

ScRe

d2ϕ1

dy2
+ Sr

d2θ1

dy2
= 0 (12)

Region-2:

L2
d2u2
dy2

+ m

b1ρh2
Gr

R
θ2 + m

b2ρh2
Gc

R
ϕ2 − mM

h2
u2 = 0 (13)

ρh

α

1

PrRe

d2θ2

dy2
+ ρh

m

Ec

R
(
du2
dy

)2 + csh

DKT

Du

Re

d2ϕ2

dy2
= 0 (14)

h

D
(

1

ScRe
)
d2ϕ2

dy2
+ h

KtD
Sr

d2θ2

dy2
= 0 (15)

The dimensionless boundary and interface conditions thus formed are as follows:
u1 = 0 at y = −1, u2 = −1 at y = L, u1(0) = u2(0), θ1 = 1 at y = −1, θ2 = 0 at y
= 1, θ1(0) = θ2(0), ϕ1 at y = −1, ϕ2 = 0 at y = 1, ϕ1(0) = ϕ2(0), N = 0 at y = −1,
du1
dy + K

1+κ
, N = 1

mh(1+κ)
du2
dy at y = 0.
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3 Solution of the Problem

The finite elementmethod as described by Reddy [15] has been implemented to solve
the dimensionless coupled differential equations generated by the fluid flows. The
widths of the viscous region is considered as L. For the problem discussed here, it is
considered that each region is divided into 100 linear elements and each element is
3 nodded.

4 Results and Discussion

The numerical solution of the system of equations is analyzed for different values
of the governing parameters. The profiles are studied with fixed values Gr = 5, Gc
= 5, Re = 3, M = 3, = 0.1, Du = 0.08, Sr = 0.1, Sc = 0.66, Sr = 0.001 excepting the
varying parameter. Figures2, 3, 4, and 5 illustrate the effect of Gr and Gc on velocity,
angular velocity. As Gr and Gc increase the velocity and angular velocity increase
substantially. The buoyancy enhances the flow in both regions, i.e., thermal buoyancy
force dominates the viscous force in both regions of the channel and it is found to
be more in micropolar region. The lowest velocity corresponds to Gr = 2. Higher
Gr values boost up the flow in both regions. Figures 6 and 7 illustrate the effect of
Re. The reduction of velocity is found with the increase of Re due to domination of
inertial force on viscous force in both regions of the channel and found more drastic
in viscous region. Also reduces the microrotation with increase of Re. Figures 8 and
9 explain the effect of Dufour number (Du) on temperature and diffusion. As Du
increases, i.e., molecular diffusivity increases and it is noticed that the temperature
decreases and the diffusion profiles increases with increase of Du.

Figures10 and 11 depict the effect of Sr on temperature and diffusion, as Sr
increases increases an increase in the temperature and the decay in the fluid con-
centration is observed. Figures12 and 13 depict the effect of Sc on temperature and
diffusion, as Sc increases it is noticed that the temperature decreases concentration
of the fluid increases with increase of Sc.

Fig. 2 Velocity profiles
with Gr
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Fig. 3 Microrotation
profiles with Gr

Fig. 4 Velocity profiles with
Gc

Fig. 5 Microrotation
profiles with Gc

Fig. 6 Velocity profiles with
R

Fig. 7 Microrotation
profiles with Gc
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Fig. 8 Temperature profiles
with Du

Fig. 9 Concentration
profiles with Du

Fig. 10 Temperature
profiles with Sr

Fig. 11 Concentration
profiles with Sr

Fig. 12 Temperature
profiles with Sc
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Fig. 13 Temperature
profiles with Sc

Table 1 illustrates that the absolute shear stress enhanceswith increase ofGrGc on
both the boundaries. For the increase of Re, the stress reduces on both the boundaries.
Table 2 illustrates that heat transfer rate decreases on the left boundary and enhances
on the right boundary Sr, Sc. For Du, the effect is reversal Table 3 explains rate
of mass transfer increase on the boundary at and decrease at the boundary for the
parameters Sr, Sc because the rise in convection and inertial forces leading to enhance
the concentration.

Table 1 Shear stress values

L Gr St-I St-II Gc St-I St-II R St-I St-II

0.8 2 −0.7128 2.43951 2 −0.74944 2.48635 1 −3.56296 3.57305

0.8 5 −1.08569 2.58882 5 −1.08569 2.58882 2 −1.70547 2.83547

0.8 10 −1.70725 2.83778 10 −1.64609 2.75955 5 −0.58843 2.38967

0.6 2 −0.70319 3.23412 2 −0.73823 3.29385 1 −3.46199 4.5879

0.6 5 −1.06424 3.41276 5 −1.06424 3.41276 2 −1.66419 3.70742

0.6 10 −1.66605 3.71064 10 −1.60756 3.61087 5 −0.58268 3.17433

Table 2 Nusselt number values

L Du Nu-I Nu-II Sr Nu-I Nu-II Ec Nu-I Nu-II

0.8 0.05 0.555931 0.555942 0.05 0.565096 0.544494 0.001 0.556363 0.555451

0.8 0.1 0.556661 0.555113 0.1 0.556363 0.555451 0.002 0.556047 0.55675

0.8 0.5 0.565483 0.546527 0.13 0.55086 0.562354 0.1 0.524944 0.684568

0.6 0.05 0.624778 0.626497 0.05 0.633626 0.611761 0.001 0.624841 0.626456

0.6 0.1 0.624885 0.626429 0.1 0.624841 0.626456 0.002 0.624504 0.628208

0.6 0.5 0.480479 0.868736 0.13 0.619266 0.635781 0.1 0.591306 0.800688
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Table 3 Sherwood number values

L Du Sh-I Sh-II Sr Sh-I Sh-II Sc Sh-I Sh-II

0.8 0.05 0.728628 0.338354 0.05 0.639395 0.450318 0.22 0.6109 0.486086

0.8 0.1 0.728198 0.338815 0.1 0.728374 0.338628 0.66 0.728374 0.338628

0.8 0.5 0.723008 0.343099 0.13 0.784427 0.268265 1.5 0.981557 0.0208

0.6 0.05 0.78963 0.349488 0.05 0.704496 0.491933 0.22 0.677403 0.537283

0.6 0.1 0.789561 0.349503 0.1 0.789589 0.349498 0.66 0.789589 0.349498

0.6 0.5 1.90769 −1.52595 0.13 0.843583 0.259119 1.5 1.03589 −0.06278

5 Conclusions

The reduction of width of viscous region leads to decrease of magnitude of shearing
stress on the left wall and increase on the right wall, heat transfer rate rises on
both boundaries and the same effect is obtained for mass transfer rate. The effect
of the change of thickness of one layer does not shown significance on the other
layer because of the immiscibility. The temperature is found to be linear across the
channel for all the effects and the temperature is reduced with reduction of viscous
region.The diffusion falls rapidly in the micropolar region than viscous region due to
density variations. It is very clear near the interface.The diffusion is enhanced with
reduction of viscous region.The shearing effect is observed more in viscous region
than micropolar region.

References

1. Eringen, A.C.: Simple microfluids. Int. J. Eng. Sci. 2(2), 205–207 (1964). https://doi.org/10.
1016/0020-7225(64),90005-9

2. Chamkha, A.J., Groan, T., Pop, I.: Fully developed free convection of a micropolar fluid in a
vertical channel. Int. Commun. Heat Mass Transf. 29(8), 1119–1127 (2002). https://doi.org/
10.1016/s0735-1933(02),00440-2

3. Anwar Beg, O.A., Bakier, Y., Prasad, V.R.: Numerical study of free convection mhd heat and
mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour
effects. Comput. Mater. Sci. 46(1), 57–65 (2009). https://doi.org/10.1016/j.commatsci.2009.
02.004

4. Stamenkovic, Z., Nikodijevic, D., Kocic, M., Nikodijevic, J.: Mhd flow and heat transfer of two
immiscible fluids with induced magnetic field effects. Thermal Sci. 16(3), 323–336 (2012).
https://doi.org/10.2298/tsci120430172s

5. Malashetty, M.S., Leela, V.: Magnetohydrodynamic heat transfer in two phase flow. Int. J. Eng.
Sci. 30(3), 371–377 (1992). https://doi.org/10.1016/0020-7225(92)90082-r

6. Malashetty, M.S., Leela, V.: Magnetohydrodynamic heat transfer in two fluid flow. In: Pro-
ceedings of National Heat Transfer conferences, Phase Change Heat Transfer (1991)

7. Vajravelu, K., Arunachalam, P.V., Sreenadh, S.: Unsteady flow of two immiscible conducting
fluids between two permeable beds. J. Math. Anal. Appl. 196(3), 1105–1116 (1995)

https://doi.org/10.1016/0020-7225(64),90005-9
https://doi.org/10.1016/0020-7225(64),90005-9
https://doi.org/10.1016/s0735-1933(02),00440-2
https://doi.org/10.1016/s0735-1933(02),00440-2
https://doi.org/10.1016/j.commatsci.2009.02.004
https://doi.org/10.1016/j.commatsci.2009.02.004
https://doi.org/10.2298/tsci120430172s
https://doi.org/10.1016/0020-7225(92)90082-r


546 B. Suresh Babu et al.

8. Malashetty, M.S., Umavathi, J.C., Kumar, J.P.: Flow and heat transfer in an inclined channel
containing fluid layer sandwiched between two porous layers. J. Porous Media. 8(5), 443–453
(2005). https://doi.org/10.1615/jpormedia.v8.i5.30

9. Prathap Kuma, J., Umavathi, J.C., Pop, I., Biradar, B.M.: Fully developed mixed convec-
tion flow in a vertical channel containing porous and fluid layer with isothermal or isoflux
boundaries. Transp. Porous Media. 80(1), 117–135 (2009). https://doi.org/10.1007/s11242-
009-9347-8

10. RamanaMurthy, J.V., Srinivas, J.: Second lawanalysis for Poiseuille flowof immisciblemicrop-
olar fluids in a channel. Int. J. Heat Mass Transf. 65, 254–264 (2013). https://doi.org/10.1016/
j.ijheatmasstransfer.2013.05.048

11. Suresh Babu, B., Srinivas, G., Srikanth, G.V.P.N.: Finite element analysis of diffusion effects
on convective heat and the mass transfer of two fluids in a vertical channel. Int. J. Auto. &
Mech. Eng. 14 (1), 3998–4012 (2016). https://doi.org/10.15282/ijame.14.1.2017.14.0324

12. Gupta, V.G., Jain, A., Jha, A.K.: Convective effects on MHD flow and heat transfer between
vertical plates moving in opposite direction and partially filled with a porous medium. J. Appl.
Math. Phys. 4(2), 341–358 (2016). https://doi.org/10.4236/jamp.2016.42041

13. Jangili,D.S., Josyula,R.M.: Flowof two immiscible couple stress fluids between twopermeable
beds. J. Appl. Fluid Mech. 9 (1), 501–507 (2016). https://doi.org/10.18869/acadpub.jafm.68.
224.24013

14. Ariman, T., Turk, M.A., Sylvester, N.D.: Micro continuum fluid Mechanics-a review. Int. J.
Eng. Sci. 11(8), 905–930 (1973). https://doi.org/10.1016/0020-7225(73)90038-4

15. Reddy, J.N.: An Introduction to the Finite Element Method, 3rd edn. McGraw-Hill, New York
(2006)

https://doi.org/10.1615/jpormedia.v8.i5.30
https://doi.org/10.1007/s11242-009-9347-8
https://doi.org/10.1007/s11242-009-9347-8
https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.048
https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.048
https://doi.org/10.15282/ijame.14.1.2017.14.0324
https://doi.org/10.4236/jamp.2016.42041
https://doi.org/10.18869/acadpub.jafm.68.224.24013
https://doi.org/10.18869/acadpub.jafm.68.224.24013
https://doi.org/10.1016/0020-7225(73)90038-4


Thermal Modeling of a High-Pressure
Autoclave Reactor for Hydrothermal
Carbonization

D. Sushmitha and S. Srinath

Abstract In the present study of hydrothermal carbonization, the waste biomass
sample collected fromnear local woodmills is processed in a high-pressure autoclave
reactor by varying the temperature, i.e., at 180, 200, and 220 °C and residence
time (1, 3.5 and 6 h) to investigate the thermal behavior of the autoclave reactor.
A simplified dynamic analytical model is built based on the lumped capacitance
method. The overall heat capacity and thermal resistance of the reactor is subjected
to external heat flux supplied by the external heater. In this model, the reactor inside
temperature is simulated by discretizing the reactor into its components and solving
the equations using finite difference method in MATLAB. The main temperatures
required for modeling is heater temperature, temperatures of top and bottom surface
of the reactor were measured during the process through which heat loss takes place
to the surroundings. Simulation results are in good agreement with the experimental
results. For the hydrothermal carbonization of waste biomass, the experiment shows
that the maximum yield of hydrochar was obtained at a temperature of 180 °C at a
residence time of 1 h.

Keywords Hydrothermal carbonization (HTC) · Hydrochar · High-pressure
autoclave reactor · Lumped heat capacitance

1 Introduction

Hydrothermal carbonization (HTC) is a thermochemical conversion process by
which organic material is converted into carbonized material, known as hydrochar.
HTC is performed at the temperature range of 180–260 °C during which biomass
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is submerged into water and is heated under pressure (10–60 bar) for 5 min–12 h.
During the HTC process threemain products forms: solid (hydrochar), liquid (bio-oil
mixed with water) and small fractions of gases (mainly CO2) [1, 2].

As the HTC process is carried out in the presence of water, therefore, is not
affected by the high moisture content of the feedstock. This unique advantage of the
HTC process eliminates the pre-drying requirement of wet biomass, which is a huge
energy-intensive process and a financial load in biomass pre-processing especially
when performed under conventional thermal pre-treatments like slow-pyrolysis and
dry torrefaction

These process can yield nano-size and micro-size carbon particles, which has
properties like high heating value, better thermal and chemical stability and have good
adsorption capacity. The liquid product also has some important chemicals, which
can be used for further applications [1–3]. In view of the importance of hydrothermal
carbonization, the waste biomass sample is processed in a high-pressure autoclave
reactor to study the effect on hydrochar by varying the process parameter.

For the analyzing the thermal behavior of high-pressure autoclave reactor, a ther-
mal model was made based on the lumped capacitance method. This thermal model
was compared with the actual temperature profile which was experimentally gener-
ated.

2 Thermal Modeling of Autoclave Reactor

This model is based on the lumped capacitance method, which reduces the thermal
system to a number of discrete components, assuming that the temperature difference
inside each object is negligible. In the present case, it is considered just one com-
ponent, i.e., the HTC reactor, with its overall heat capacity and thermal resistance,
subjected to the external heat flux by the electrical heater.

The assumption taking for developing this model

1. The temperature at each point inside the reactor is identical.
2. The temperature at the wall surface and bottom surface is uniform.
3. Heat loss is taking place from the top and a bottom surface of the reactor.
4. The thermal conductivity of water is not changing with time and temperature.

The overall energy balance equation is given by [4]
Rate of accumulation of energy�energy input − energy output − energy loss to

the surrounding.

C0
dT

dt
� (Th − T )

R0
− Q (1)

The overall thermal resistance of the reactor shell is defined as

R0 � Rcond + Rconv (2)
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where

Rcond � 1

2πKstL

(
ln

ro
ri

)
(3)

Rconv � 1

(2πri L)hc
(4)

Heat capacity of the system is defined as the sum of heat capacity of water and
heat capacity of stainless steel

C0 � Cw + Cs (5)

where

Cw � mw ∗ Cpw (6)

Cst � mst ∗ Cpst (7)

Heat loss to the surrounding is given by

Q � ha At (Tt − T0) + ha Ab(Th − T0) (8)

As the physical properties of water vary with the temperature so that some of the
correlation has been used to define the physical properties of water as a function of
time. The physical properties of stainless steel were assumed to be constant.

Change in specific heat of water as a function of temperature is given by [5]

Cpw � 2.7637 × 105 − 2.0907 × 103 × T + 8.1250 × T 2

− 1.4116 × 10−2 × T 3 + 9.3701 × 10−6 × T 4 (9)

Change in viscosity of water as a function of temperature is given by [6]

μw � 2.414 ∗ 10−5 ∗ 10(
247.8
T−140 ) (10)

The change in the density of water as a function of temperature is given by [7]

ρw � 1000 ∗
(
1 − (T + 288.9414)(T − 3.9863)2

508,929.2 ∗ (T + 68.12963)

)
(11)
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The heat transfer coefficient of the water inside the reactor is the function of
temperature, and also varies during the HTC process. The heat transfer coefficient
of water inside a reactor is defined by using Chilton, Drew, and Jebens’ correlation
[8]

hcd

k
� A ∗ (Re)0.667(Pr)0.33

(
μw

μwwall

).14

(12)

where A �0.56 for turbine-type stirrer.
The Reynolds number for water inside the reactor is defined as [9]

Re �
(
L2 ∗ N ∗ ρw

μw

)
(13)

And the Prandtl number is defined as [9]

Pr �
(
Cpw ∗ μ

k

)
(14)

The overall energy balance equation will be solved by Eq. (1).
Assuming that

T ′ � Th − T (15)
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Equation (1) will be

−dT ′

dt
�

(
T ′ − R0Q

τ0

)
(16)

where

τ0 � R0C0 (17)

Integrating the Eq. (16) gives

Th−T∫
Th−To

dT ′

T ′ − R0Q
� −

t∫
0

dt

τ0
(18)

Final expression for the thermal balance of reactor balance is

T � (Th − QR0) + (T0 − Th + QR0)exp

(
− t

τ0

)
(19)

The value of thermal, physical, and geometrical parameters are shown in Table 1.
To test the model, experimental tests were performed by recording the temperature
data in different sections of the reactor. The experimentally measured temperature
profile was measured by a thermocouple which was placed inside the reactor. As
the reactor shell was surrounded by the heating pad, the heater imposes the heat
to the outer surface of it. So the temperature profile Th imposed by the heater was
measured using a thermocouple which was placed in such a way that it touches the
outside surface of the reactor shell. The heat loss was taking place from the top and
bottom surface of the reactor. The assumption has been taken that the bottom surface
temperature was equal to the reactor shell surface temperature. So the bottom surface
temperature was Texp. To measure the heat loss from the top surface of the reactor,
a thermocouple was placed which recorded the temperature of the top surface at
each time interval. The temperature of the reactor at various places was recorded by
various thermocouples at 60 s time interval.

The HTC reaction was carried out for the 200 °C reaction temperature. Once
the heater was switched on, the heating pad started to heat the reactor. The heater
was controlled by the PID controller. When the inside temperature of the reactor
reaches 200 °C, the heater stopped automatically and the reactor temperature was
maintained by the controller in the same condition. The temperature was recorded
until the temperature inside the reactor reaches the steady state condition.

The simulating temperature was calculated by using the temperature profile
imposed by the heater at each time interval. By substituting thermal, physical, and
geometrical parameters into Eq. (19) based on that interval temperature data the
simulation temperature was calculated. The initial temperature was 27 °C which
increases up to 200 °C for 52 min. The temperature was recorded for more 10 min to
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Table 1 Thermal, physical
and geometrical parameters
of the thermal model

Parameter Value (unit)

T0 25 (°C)

Mw 0.15 (kg)

Mst 5 (kg)

ro 0.049 (m)

ri 0.0405 (m)

L 0.16 (m)

Da 0.045 (m)

b 0.015 (m)

N 150 (rpm)

At 0.39 (m2)

Ab 0.0075 (m2)

Cpst 500 (J/kg K)

Kst 16.3 (W/mK)

k 0.643 (W/mK)

ha 30 (W/mK)

Fig. 1 Thermal model:
experiment versus model
temperature profile inside the
reactor
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reach the steady-state condition. The simulation temperature profile was generated
after the calculating the temperature at each time interval.

The simulating profile (Tmodel) based on the actual temperature profile (Th)
imposed by the reactor external heater is shown in the Fig. 1. The dashed line rep-
resents the temperature profile imposed by the reactor. The solid line represents the
simulating profile while the dotted line represents the experimentally measured tem-
perature profile. It is clearly observed from Fig. 1 that simulating temperature profile
following the same trend as an experimentally measured temperature profile. The
simulating profile shows the relative error of less than the 7% of the experimental
temperature profile.
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2.1 Algorithm for Thermal Modeling

The modeling of the thermal behavior of an autoclave reactor was performed on the
MATLAB script file. The algorithm for the simulation are follows:

1. Define all the thermal, physical, and geometrical parameters in the script file.
2. Define the shell outer surface temperature (measured by using thermocouples,

act as input for the reactor) at each time interval in form of vector.
3. Define the top surface temperature of the reactor (heat loss taking place) at the

same time interval in form of vector.
4. Define each variable which is a function of the temperature (specific heat of

water, viscosity of water, density of water, and heat capacity) inside the for loop,
5. Define the Reynolds number and Prandtl number for the stirrer batch reactor to

calculate the heat transfer coefficient between the reactor wall and water inside
the for loop.

6. Define the function for heat loss and the inside reactor temperature (T ) inside
the for loop.

7. Run the simulation for the T (temperature inside the reactor).

3 Conclusion

The simulating profile based on the actual temperature profile imposed by the reac-
tor external heater was carried out successfully. The simulation temperature profile
shows the same trend as experimentally observed temperature profile with a relative
error of less than 7%.

References

1. Mumme, J., Eckervogt, L., Pielert, J., Diakité, M., Rupp, F., Kern, J.: Bioresour. Technol. 102,
9255–9260 (2011)

2. Benavente, V., Calabuig, E., Fullana, A.: J. Anal. Appl. Pyrol. 113, 89–98 (2015)
3. Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.-M.,

Fühner, C., Bens, O., Kern, J., Emmerich, K.-H.: Biofuels 2, 71–106 (2011)
4. Baratieri, M., Basso, D., Patuzzi, F., Castello, D., Fiori, L.: Chem. Eng. Trans. 43, 505–510

(2015)
5. Liley, P.E., Thomson, G.H., Friend, D.G., Daubert, T.E., Buck, E.: Perry’s Chemical Engineers’

Handbook. Physical and Chemical Data, Section 2, 7th edn. McGraw-Hill, New York (1997)
6. Al-Shemmeri, T.: Engineering Fluid Mechanics, pp. 17–18. Ventus Publishing ApS (2012)
7. McCutcheon, S.C., Martin, J.L., Barnwell Jr., T.O.: Water quality. In: Maidment, D.R. (ed.)

Handbook of Hydrology. McGraw-Hill, New York (1993)
8. Chilton, T.H., Drew, T.B., Jebens, R.H.: Ind. Eng. Chem. 36, 510–516 (1944)
9. McCabe,W.L., Smith, J.C.: Unit Operations of Chemical Engineering. McGraw-Hill, NewYork

(1967)



Effects of MHD and Radiation on
Chemically Reacting Newtonian Fluid
Flow over an Inclined Porous Stretching
Surface Embedded in Porous Medium

Ch. RamReddy and T. Pradeepa

Abstract An attempt has been made to investigate the influence of magnetic field
and radiation on the Newtonian fluid flow over an inclined porous stretching sheet
embedded in a porous medium in the presence of chemical reaction effect. In addi-
tion, heat and mass flux conditions are taken into consideration. The system of non-
linear differential equations is obtained using similarity transformations and hence
solved using spectral quasilinearization method. The effects of physical parameters
on velocity, temperature, and concentration are displayed graphically and salient
features are discussed.

Keywords MHD · Thermal radiation · Chemical reaction
Darcy porous medium

1 Introduction

The study of magnetic properties of an electrically conducting fluid is known as
Magnetohydrodynamics(MHD). Magnetohydrodynamic boundary layer with heat
and mass transfer over a stretching sheet is found in various geophysical and engi-
neering applications such as geothermal reservoirs, nuclear reactors cooling, ther-
mal insulation, catalytic reactors of packed-bed, and enhanced oil recovery. Ishak
et al. [1] considered the MHD stagnation point flow toward the stretching sheet.
Ibrahim and Shankar [2] investigated the boundary layer flow and heat transfer of
an electrically conducting nanofluid past a porous stretching sheet by considering
the velocity, thermal, and solutal slip boundary conditions. The effect of radiation
on heat and mass transfer plays an immense role in manufacturing industries for the
fins design, nuclear power plants, turbines of gas, steel rolling, etc. The influence of
radiation on magneto-hydrodynamics flow, heat, and mass transfer has becomemore
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prominent industrially. Raptis and Perdikis [3] analyzed the influence of magnetic
field on laminar flow of an incompressible and electrically conducting viscous fluid
over a nonlinear stretching sheet with chemical reaction effect. Rashidi et al. [4]
examined the free convective flow over a permeable stretching sheet with buoyancy,
radiation, and magnetic field effects.

The study of heat and mass transfer problems embedded in a porous medium has
predominantly elevated during the past decades ascribed to immense applications in
engineering and industrial process such as food processing, pollutant dispersion in
aquifers, storage of nuclear waste material, etc. A review of convective heat andmass
transfer in the porous medium is presented in the books by Ingham and Pop [5] and
Nield and Bejan [6]. The analysis of boundary layer flow over an inclined stretching
sheet has gainedmuch attention in recent years owing to its significant applications in
engineering and industrial applications. For instance, paper production, hot rolling,
plastic films drawing, glass–fiber, cooling of metallic sheets in a cooling bath, wire
drawing, etc. A few literature is noticed on the fluid flow through inclined stretching
sheet with various effects [7–9].

The aim of the present article is to study the effect of radiation on laminar bound-
ary layer flow of an electrically conducting and chemical reacting fluid over an
inclined stretching sheet embedded in a porous medium subject to heat and mass
flux conditions. Further, the resulting nonlinear equations are solved numerically
using Spectral Quasilinearization Method.

2 Mathematical Formulation

Consider the steady, 2-D and laminar flow of viscous, incompressible and electrically
conducting fluid past an inclined stretching porous sheet with an acute angle A,
embedded in a porous medium. The surface is assumed to be porous and moving
with velocity U = ax, (where a is the constant called stretching rate). Let x-axis be
taken along the leading edge of the inclined stretching sheet and y-axis be taken
perpendicular to it and extends parallel to x-axis. The fluid is considered to be gray,
emitting and absorbing radiation but non-scattering medium, and approximation
of Rosseland is used to describe the radiative heat flux in the energy equation. A
nonuniform magnetic field is applied normal to the flow direction. The induced
magnetic field is ignored based on the assumption of lowmagnetic Reynolds number.

Under the above assumptions along with Boussinesq’s approximation, the gov-
erning equations are

∂u

∂x
+ ∂v

∂y
= 0 (1)

1

ε2

(
u

∂u

∂x
+ v

∂u

∂y

)
= ν

ε

∂2u

∂y2
+ g [βT (T − T∞) + βC(C − C∞)] cosA

− ν u

Kp
− σ B2

0 u

ε ρ

(2)
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u
∂T

∂x
+ v

∂T

∂y
= k

ρCp

∂2T

∂y2
+ 4σ1

3ρCpk∗
∂2

∂y2
(
4T 3

∞T − 3T 4
∞

)
(3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− K1 (C − C∞) (4)

where u and v are components of Darcy velocity along the direction of x and y,
respectively, ε is the porosity, T is the temperature, C is concentration, g is the accel-
eration due to gravity, μ is the coefficient of viscosity, σ is the electrical conductivity,
Cp is the specific heat, Kp is the permeability, k is the thermal conductivity of the
fluid, σ1 is the Stefan–Boltzmann constant, k∗ is the mean absorption coefficient, ρ is
the density, B0 is the magnetic field intensity, βT is the thermal expansion coefficient,
βC is the solutal expansion coefficient, α is the thermal diffusivity,D is the mass dif-
fusivity, K1 is the chemical reaction. In Eq. (3), the last term is obtained by assuming
that the differences in temperature within the flow are very small and power function
may be expressed as temperature linear function by neglecting the terms of higher
order.

The associated boundary conditions are

u = U = ax, v = vw, −k
∂T

∂y
= qw = E0x

r, (5a)

− D
∂C

∂y
= mw = E1x

r at y = 0

u = 0, T = T∞, C = C∞ as y → ∞ (5b)

where vw is the suction-injection velocity, E0 and E1 are positive constants. Here, r
is the exponent parameter of heat or mass flux. The accelerating sheet is subject to
uniform heat or mass flux when r = 0.

In view of the continuity equation (1), we introduce the stream function ψ by

u = ∂ψ

∂y
, v = −∂ψ

∂x
(6)

Introduce the following similarity transformations

η =
(a
ν

)1/2
y, f (η) = ψ

(aν)1/2x
, T − T∞ = E0xr

k

√
ν

a
θ(η), (7)

C − C∞ = E1xr

D

√
ν

a
φ(η)
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Substitute Eqs. (6) and (7) in Eqs. (1)–(4) and boundary conditions (5), we get the
following system of nonlinear ordinary differential equations

1

ε
f ′′′ + 1

ε2
f f ′′ − 1

ε2
f ′2 − 1

ε
M 2 f ′ − 1

Da
f ′ + (Grθ + Gcφ) cosA = 0 (8)

1

Pr

(
1 + 4

3
R

)
θ′′ + f θ′ − rf ′θ = 0 (9)

1

Sc
φ′′ + f φ′ − rf ′φ − γφ = 0 (10)

where the prime shows differentiation with respect to η, R = 4σ1T 3∞
kk∗ is the Radi-

ation parameter, Pr = μCp

k
is the Prandtl number, γ = K1

D
is the Chemical reac-

tion parameter, Da = Kpa

ν
is the Darcy number, Sc = ν

D
is the Schmidt number,

M = σ B2
0

ρ a
is the Magnetic parameter, Gr = g∗ βT E0

a2k

√
ν

a
is thermal Grashof num-

ber, Gc = g∗ βc E1

a2D

√
ν

a
is solutal Grashof number, and ε is the porosity.

The associated boundary conditions (5) in terms of f , θ, andφ are

f (η) = λ, f ′(η) = 1, θ′(η) = −1, φ′(η) = −1 at η = 0 (11a)

f ′(η) = 0, θ(η) = 0, φ(η) = 0 as η → ∞ (11b)

In the boundary conditions, λ = −vw(aν)1/2 is the suction/injection parameter. If
λ > 0 represents the suction velocity and λ < 0 denotes injection velocity.

3 Results and Discussion

The system of nonlinear homogeneous differential equations Eqs. (8)–(10) and along
with boundary conditions (11) is solved numerically using spectral quasilinearization
method [10, 11]. The solutions for velocity, temperature, and concentration have been
computed for both suction and injection velocities are shown graphically in Figs. 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15. In order to study the effects of
M ,R,A,Da and γ, computations have been carried out for Pr = 0.72, Sc = 0.22,
ε = 0.9, r = 1, Gr = 5.0 and Gc = 5.0.

Figures1, 2, and 3 display the effect of the magnetic parameter on velocity, tem-
perature, and concentration for both suction and injection. Figure1 reveals that the
velocity reduces with the magnetic parameter enhancement for both suction and
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Fig. 1 Effect of M on
velocity profile

0.0

0.2

0.4

0.6

0.8

1.0

f '( )

 = 0.5, A = 450, Da = 0.1, R = 1.0
 =-0.5, M = 0.0
 =-0.5, M = 1.0
 =-0.5, M = 2.0
 = 1.0, M = 0.0
 = 1.0, M = 1.0
 = 1.0, M = 2.0

0 2 4 6 8 10 12

Fig. 2 Effect of M on
temperature profile
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Fig. 3 Effect of M on
concentration profile
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Fig. 4 Effect of R on
velocity profile
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Fig. 5 Effect of R on
temperature profile
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Fig. 6 Effect of R on
concentration profile
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Fig. 7 Effect of A on
velocity profile
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Fig. 8 Effect of A on
temperature profile
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Fig. 9 Effect of A on
concentration profile
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Fig. 10 Effect of Da on
velocity profile
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Fig. 11 Effect of Da on
temperature profile
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Fig. 12 Effect of Da on
concentration profile
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Fig. 13 Effect of γ on
velocity profile
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Fig. 14 Effect of γ on
temperature profile
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Fig. 15 Effect of γ on
concentration profile
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injection. This is due to the fact that, the introduction of a transverse magnetic field
normal to the direction of flow has a tendency to form the drag called as Lorentz force
which tends to resist the flow. Hence, the velocity reduces as the magnetic param-
eter enhances. Figure 2 depicts that the temperature enhances with an increase in
the magnetic parameter. As explained above, the transverse magnetic field creates a
resistive force which is called as the Lorentz force of an electrically conducting fluid.
By increasing the friction between its layers the Lorentz force makes the fluid expe-
rience a resistance and hence increases the temperature. As the magnetic parameter
increases, the concentration increases as shown in Fig. 3.

Figures4, 5, and 6 represent the effect of radiation on velocity, temperature,
and concentration for both suction and injection cases. As the radiation parame-
ter increases the velocity raises for both suction and injection as shown in Fig. 4. For
both suction and injection cases, the temperature increases with an increase of radia-
tion parameter. The concentration decreases with the rise of the radiation parameter
for both injection and suction. From Figs. 4, 5, and 6 observed that the velocity and
temperature are more, whereas concentration is less in the presence of radiation as
compared with those values in the absence of radiation.

Figures7, 8, and 9 display the effect of angle of inclination on nondimensional
velocity, temperature, and concentration for both λ = −0.5 and λ = 1.0. Figure7
illustrates that for both the cases of suction and injection, the velocity reduces with
the rise of angle of inclination parameter. With the increment of angle of inclination
parameter, the temperature and concentration are enhanced for both λ = −0.5 and
λ = 1.0 as depicted in Figs. 8 and 9.

Thevariation of velocity, temperature, and concentrationwith theDarcyparameter
are portrayed in Figs. 10, 11 and 12 for both suction and injection. Figure 10 depicts
that the dimensionless velocity increases with the increase of Darcy parameter for
both suction and injection. For both λ = −0.5 and λ = 1.0, the temperature reduces
with an increase ofDarcy parameterwhich is shown in Fig. 11. Figure12 displays that
the concentration diminishes with an increase of Darcy parameter for both λ = −0.5
and λ = 1.0.

The effect of chemical reaction parameter on the velocity, temperature, and con-
centration are shown in Figs. 13, 14, and 15 for both suction and injection. Figure13
depicts that the dimensionless velocity reduces with the increase of chemical reac-
tion parameter for both suction and injection. For both λ = −0.5 and λ = 1.0, the
temperature increases with the increase of chemical reaction parameter which is
shown in Fig. 14. Figure15 reveals that concentration decreases with the increase of
chemical reaction parameter for both suction and injection. This is due to the fact
that the chemical reaction in this system results in the consumption of the chemical
and hence results in the decrease of concentration.



Effects of MHD and Radiation on Chemically Reacting … 565

4 Conclusions

In this paper, thermal radiation and chemical reaction effects on the boundary layer
flow of an electrically conducting Newtonian fluid over an inclined stretching sheet
embedded in a porous medium, have been investigated. The governing equations
are solved by using spectral quasilinearization method. The main conclusions are
summarized as follows:

– Velocity increases with an increase of radiation and Darcy parameters whereas it
reduces with magnetic, chemical reaction, and angle of inclination parameters.

– The temperature reduces with increase of Darcy parameter, but it enhances with
an increase of magnetic, radiation, chemical reaction, and angle of inclination
parameters.

– The concentration increaseswithmagnetic and angle of inclination parameters, but
decreases with an increase of radiation, chemical reaction, and Darcy parameters.
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Couple-Stress Fluid Flow Due
to Rectilinear Oscillations of a Circular
Cylinder: Case of Resonance

T. Govinda Rao, J. V. Ramana Murthy and G. S. Bhaskara Rao

Abstract Theflowdue to a circular cylinder oscillating rectilinearly, about its axis of
symmetry in a couple-stress fluid is considered. There occurs a rare but an important
special case referred to as resonance flow. The material constants satisfy a specific
relation called resonance condition. In this case, the flow is analyzed under Stokesian
approximation. The velocity component of the flow is derived. The effect of physical
parameters likeReynolds number and couple-stress parameter on the drag is analyzed
through graphs.

Keywords Couple-stress fluids · Rectilinear oscillations · Resonance flow
Drag

1 Introduction

The fluids, used in many technological applications do not satisfy the regular New-
tonian stress and strain rate relations. These fluids are referred to as non-Newtonian
fluids. We consider couple-stress fluid, which is one of such non-Newtonian flu-
ids. Several flow problems concerning with couple-stress fluids have been studied
by many authors over the past five decades, ever since Stokes [1] introduced the
couple-stress fluid theory. Lakshmana Rao et al. [2–5] examined the oscillatory
flows generated due to circular cylinder, sphere, spheroid, and elliptic cylinder in
micropolar fluids to determine the drag or couple on the oscillating body. However,
in all these problems, as far as the authors know, a special case, which is branded as
“Resonance” type that arises when the material parameters of the fluids are related
in a particular form (to be stated later) have not been investigated till now.
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The flow problems in couple-stress fluids have been attracting many researchers
due to their mathematical interest and importance in many applications. Ramkissoon
et al. [6, 7] and Rajagopal [8] considered a flow generated due to longitudinal and
torsional oscillations of a rod in polar fluids and non-Newtonian fluids. In these
papers, the authors analyzed drag on the object. The flows due to longitudinal and
torsional oscillations of a cylinder in various fluids were investigated by different
authors [9–12]. Ramana Murthy et al. [13–15] studied a flow of micropolar fluid
under transversemagnetic fieldwith suction. Aparna et al. [16] studied the oscillatory
flow of micropolar fluid due to a rotating a permeable sphere. Nagaraju et al. [17]
examined the longitudinal and torsional oscillations of a cylinder in a micropolar
fluid. Recently, the resonance-type flows due to a circular cylinder in micropolar
fluids [18] are investigated.

In this paper, we propose to investigate this case of resonance-type flow, in couple-
stress fluids, due to rectilinear oscillations of a circular cylinder about its axis of
symmetry.

2 Basic Equations

The basic equations of an incompressible couple-stress fluid introduced by Stokes
[1] are given by

div Q̄ � 0 (1)

ρ

(
∂ Q̄

∂τ
+ Q̄.∇ Q̄

)
� −∇P − μ∇ × ∇ × Q̄ − η∇ × ∇ × ∇ × ∇ × Q̄ (2)

where Q̄ is fluid velocity vector, ρ is density, τ is time, μ is viscosity coefficient.
The stress tensor T and couple-stress tensor M satisfy the constitutive equations as
follows:

T � −P I + λ(∇1.Q)I + μ
(∇1Q + (∇1Q)T

)
+
1

2
I × (∇1.M) (3)

M � mI + 2η∇1(∇1 × Q) + 2η′[∇1(∇1 × Q)]T (4)

3 Statement and Formulation of the Problem

A circular cylinder of radius a and of infinite length is performing rectilinear oscil-
lations with velocity U0eiστ about its diameter in an incompressible couple-stress
fluid. A cylindrical coordinate system (R, θ , Z) with origin on the axis of the cylinder
is considered. Hence, the fluid velocity will be in cross-sectional plane with the base
vectors (er , eθ ). The geometry of the present problem as shown in (Fig. 1):
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Fig. 1 Geometry of the oscillating cylinder

The velocity is assumed as:

Q � eiστ (U (R, θ)er + V (R, θ)eθ ) (5)

The following nondimensional scheme is introduced.

R � ar, U � U0u, V � U0v, Q � qU0, P � pρU 2
0 , τ � at

U0
(6)

The following are nondimensional parameters, viz., ω is frequency parameter, S
is couple-stress parameter, and Re is oscillations Reynolds number for couple-stress
fluids.


 � σa

U0
, s � μa2

η
,Re � ρU0a

μ
, Re.
 � ρσa2

μ
(7)

Substituting (5) in (1) we notice that stream function ψ can be introduced as

u � 1

r

∂ψ

∂θ
and v � −∂ψ

∂r
, i.e., q � ∇ × (ψez) (8)

Using (5), (6), (7) in (2) we get

Re.S
∂q
∂ t

� −Re.S.∇ p − S∇ × ∇ × q − ∇ × ∇ × ∇ × ∇ × q (9)

Substituting Eq. (8) in Eq. (9) and after eliminating pressure we get

∇2
(∇2−λ2

1

)(∇2−λ2
2

)
ψ � 0 (10)

where ∇2 � ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2

λ2
1 + λ2

2 � S and λ2
1λ

2
2 � Re.S.i
 (11)
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The solution forψ if λ1 ��λ2 in (10) is given in [2]. The solution forψ for the case,
λ1 �λ2 cannot be obtained as a limiting case of λ1 →λ2. This case is referred to as
‘Resonance’. This resonance occurs if the material coefficients follow the following
relation in dimensional form.

S � 4Re.i
 (12)

In this paper, we are interested in the solution for ψ for the case of resonance
λ1 �λ2 �λ. In this case, the equations for ψ is given by

∇2
(∇2−λ2

)2
ψ � 0 (13)

4 Boundary Conditions

The cylinder is oscillating in the direction ofX-axis. Using the no-slip and hyper-stick
conditions on the cylinder, we get

u � cos θ and v � − sin θ on r � 1 and υ � 1

2
(curl q) � 0 on r � 1 (14)

5 Solution of the Problem

To match with the boundary conditions, stream function ψ is assumed in the form

ψ � f (r) sin θ (15)

Substituting (15) in (13), we get f for Resonance case as

D2
(
D2−λ2

)2
f � 0 with D2 � d2

dr2
+
1

r

d

dr
− 1

r2
(16)

From the conditions in (14) and (15), the conditions on f are obtained as

f (1) � f ′(1) � 1 and D2 f � 0 on r � 1 (17)

Since the equation for f is linear, f is considered as

f � A0 f0 + A1 f1 + A2 f2,

with
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D2 f0 � 0,
(
D2−λ2

)
f1 � 0 and

(
D2−λ2

)2
f2 � 0 (18)

On solving (18), the solution for f is obtained as

f (r) � A0

r
+ A1K1(λr) + A2λr K

′
1(λr) (19)

We notice that

D2 f1 � λ2 f1 and D2 f2 � λ2(2 f1 + f2) (20)

The constants A0, A1, A2 are obtained from the boundary conditions (17) in matrix
form as

⎡
⎢⎢⎣

1 K1(λ) λK ′
1(λ)

−1 λK ′
1(λ)

(
λ2 + 1

)
K1(λ)

0 K1(λ) λK ′
1(λ) + 2K1(λ)

⎤
⎥⎥⎦

⎡
⎢⎣
A0

A1

A2

⎤
⎥⎦ �

⎡
⎣ 1
1
0

⎤
⎦ (21)

On solving the Eq. (21) for A0, A1, A2, we get completely f and hence ψ .

6 Pressure

By comparing components in Eq. (9), the pressure is obtained as follows.

Re.S
∂p

∂r
� −Re.Si


1

r

∂ψ

∂θ
+
S

r

∂

∂θ

(∇2ψ
) − 1

r

∂

∂θ

(∇4ψ
)

(22)

Re.S
∂p

∂θ
� Re.Si
r

∂ψ

∂r
− Sr

∂

∂r

(∇2ψ
)
+ r

∂

∂r

(∇4ψ
)

(23)

By using (19) and integrating, we get in nondimensional form

p � iωA0

r
cos θ (24)

7 Drag Acting on the Cylinder Per Length L

Drag � D∗ � aL

2π∫
0

(
T ∗
rr cos θ − T ∗

θr sin θ
) |R�adθ (25)
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On simplifying (25), the dragD* on the cylinder (without the factor ei
 t ) is given
as

D∗ � −πLμU0Re.i
(1 + 2A0)

nondimensional form

D � Real
{
i
Re(1 + 2A0)e

i
 t
}

(26)

8 Results and Discussions

The roots x2−Sx + iωReS � 0 are taken as the values of λ2. Hence,

λ � √
x �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
S±

√
S2−4S.Re.iω

2 for nonresonance
√

S
2 for resonance

, (27)

Here ω, Re, and c are chosen independently, with 0≤c ≤1, Re
1 and ω �1
such that ω.Re is not negligibly small (say>1) then λ is obtained from (27). Then
A0, A1, and A2 and hence ψ and drag are obtained. To get the physical quantity, the
corresponding real part of the quantities are taken.
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Fig. 2 Drag versus Reynolds number
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Fig. 3 Stream function f versus distance r

Resonance flow due to cylinder at
Re=0.1
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Fig. 4 Stream lines at Re�0.1

We observe that (fromFig. 2)Drag decreases asReynolds number increaseswhich
is an opposite behavior for nonresonance case (from Fig. 3). As Reynolds number
increases stream values decrease. From Fig. 4, the flow of the fluid is similar to a
flow past a fluid cylinder which is enclosing the original solid cylinder.
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Abstract The impact of heat generation viscous dissipation and thermal radiation
on an unsteady three dimensional magnetohydrodynamic Casson nanofluid flow
over an impermeable stretching sheet under time dependent velocity, convective
wall temperature and zero mass flux boundary conditions is elaborated numeri-
cally. Thermophoresis and Brownian motion and low magnetic Reynolds number
are accounted in this model. The governing boundary layer non-linear partial differ-
ential equations are transformed into the coupled ordinary differential equations with
similarity transformations and then solved numerically for convergent solutions. The
numerical results so obtained are depicted with the aid of the graphs and elaborated
in tabular form also these results indicate that the fluid velocity, temperature and
concentration profiles are greatly influenced by the pertinent physical parameters
which governs the flow problem. The numerical computations which exists in the
literature are used for validating the numerical results so obtained and are found to
be in good correlation.
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1 Introduction

Nanofluid was first introduced by Choi [1]. From a stretching sheet the transport
phenomena have attracted many researchers and in this area Sakiadis [2, 3] was
presented the pioneering work. Further, Sakiadis model was extended by Crane [4].
To study the rheological properties of non-Newtonian fluids researchers proposed
various type of non-Newtonian fluid models such as, the rate type and the inte-
gral type. The non-Newtonian fluids are pertinent due to their potential applications
in biomedical applications, production process, industry and food processing. The
Casson fluid is categorized as differential type non-Newtonian fluid model and is
defined as shear thinning fluid at zero shear rate, zero viscosity at infinite shear rate
and below yield stress at which no flow occurs. Examples for Casson fluid are blood,
molten chocolate, honey, soup, concentrate fruit juice and yoghurt. At high and low
shear rates the Casson fluid model is very accurate. Therefore, recently researchers
investigated Casson fluid flows past a various geometries under several boundary
conditions in 2D and 3D spaces which includes Nadeem [5], Haq [6], Mukhopad-
hyay [7], Bhattacharyya [8] and Pramanik [9]. Very recently, Ibrahim and Makinde
[10] examined the 2DMHD stagnation point flow of Casson nanofluid over a stretch-
ing sheet with f ′(0) � 1 + δ(1 + γ −1) f ′′(0) and θ ′(0) � −Bi(1 − θ (0)) boundary
conditions by adopting RKF45 method with shooting technique. Gnaneswara Reddy
et al. [11] adopted KBM to investigate numerically the influence of double strat-
ification on MHD 3D Casson nanofluid flow over a stretching sheet with linear
velocities f ′(0) � 1 and g′(0) � λ and stratified temperature and concentration
θ (0) � (1 + St ), φ(0) � (1 + Sm) and the same problem is extended by Gnaneswara
Reddy et al. [12] with the effect of second order slip f ′(0) � 1+β1 f ′′(0)+β2 f ′′′(0).
Sulochana et al. [13] presented slip boundary condition, θ ′(0) � −Bi1(1 − θ (0))
and φ′(0) � −Bi2(1 − φ(0)) solved by using classical RK method shooting tech-
nique. The SRM (Spectral Relaxation Method) is adopted by Oyelakin et al. [14]
to investigate the effects of on Casson nanofluid flow over a stretching sheet under
f ′(0) � 1 + δ f ′′(0), θ ′(0) � −Bi(1 − θ (0)) and Nbφ′(0) + Ntθ ′(0) � 0 boundary
conditions.

Motivated by the literature survey cited above and in view of the widespread of
engineering and industrial applications, the prime aim of this paper is to explore
the 3D MHD Casson nanofluid flow over an impermeable stretching sheet under
zero mass flux and convective wall temperature boundary conditions. To predict the
characteristics of heat transfer the thermal radiation, heat generation and viscous
dissipation are considered. To explore the impact of diverse parameters on flow
characteristics RK method integrated with shooting technique is implemented and
the results are plotted and elaborated numerically by using tables. Validation of the
present results is obtained with that of earlier in a particular case.
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2 Analysis and Solution of the Problem

Three-dimensional, transient, incompressible, MHD flow of an electrically con-
ducting Casson nanofluid over a linearly stretching sheet with velocities uw(x) �
cx/(1− λt) and vw(x) � by/(1− λt) along x and y directions respectively has been
considered, where b, c are constants and λ ≥ 0 . The fluid is placed along z -axis and
the physical model is illustrated in Nadeem et al. [15]. A uniform magnetic field of
strength Bo is applied in the transverse direction z axiswhich is normal to the sheet and
induced magnetic field is assumed to be negligible, therefore it justifies small mag-
neticReynolds number. It is assumed that the temperature Tw � T∞+(b1x2)/(1−λt)2

and concentration Cw � C∞ + (b2x2)/(1 − λt)2 at the stretching sheet surface are
vary with space and while the ambient temperature and concentration are T∞ and
C∞ as y → ∞ respectively. The nanofluid is assumed to be thermal equilibrium,
single phase, no external force (such as gravity) is taken into account and there
is no slip occurs between the base fluid and nanoparticles. It is also assumed that
uw, vw, Tw andCw are valid only for t < (1/λ) but not when λ � 0. Subject to
the aforementioned assumptions along with rheological equation [7] of state for an
isotropic flow, the boundary layer approximations for the continuity, momentum,
energy and species concentration equations following Nadeem et al. [15], the gov-
erning boundary layer equations for Casson nanofluid are as follows:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
� 0 (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
� υ

(
1 +

1

β

)
∂2u

∂z2
− σ B2

o

ρ f
u (2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
� υ

(
1 +

1

β

)
∂2v

∂z2
− σ B2

o

ρ f
v (3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
� KT

ρcp

∂2T

∂z2
+

1

ρcp

16σ ∗T 3∞
3k∗

∂2T

∂z2
+

Q0

ρcp
(T − T∞)

+
μ

ρcp

(
1 +

1

β

)(
∂u

∂z

)2

+
(ρc)p
(ρc) f

[
DB

∂C

∂z

∂T

∂z
+
DT

T∞

(
∂T

∂z

)2
]

(4)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
� DB

∂2C

∂z2
+
DT

T∞
∂2T

∂z2
(5)

The phenomena of zero mass flux and convective temperature effects near the
boundary layer surface hasmany applications in nuclear plants, transpiration process,
prevention of energy etc. which motivates to consider the present flow problem with
the following boundary conditions:
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at z � 0;

⎧⎪⎨
⎪⎩
u � uw, v � vw,w � 0,−k f

∂T

∂z
� h f (Tw − T ),

DB
∂C

∂z
+
DT

T∞
∂T

∂z
� 0

as z → ∞ {u → 0, v → 0, T → T∞,C → C∞

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6)

Here u, v and w are the velocity components along the x-axis, y-axis and z-axis
directions respectively, υ is the kinematic viscosity, β � μB

√
2πc/py is the Casson

nanofluid parameter, σ be the electrical conductivity, KT is thermal diffusivity, τ �
(ρc)p/(ρc) f be the ratio of heat capacities of both nanoparticle and base fluid, DB

is the Brownian and DT is the thermophoretic diffusion coefficient, Q0 is the heat
generation constant, k f is the thermal conductivity, h f is the convective heat transfer
coefficient. Using the following similarity transformations [13]

u � cx f ′(η)/1 − λt, v � cyg′(η)/1 − λt, w � −√
(cυ/1 − λt) ( f (η) + g(η)),

η � z
√
c/υ(1 − λt), a � b/c, Tw � T∞ + ((b1x

2)/(1 − λt)2)θ (η),

Cw � C∞ + ((b2x
2)/(1 − λt)2)φ(η) (7)

Using Eq. (7) in Eqs. (1)–(6), the boundary layer equations and boundary condi-
tions in dimensionless form are:

(
1

β
+ 1

)
f ′′′ − A

(
f ′ +

η

2
f ′′

)
− f ′2 + ( f + g) f ′′ − M f ′ � 0 (8)

(
1

β
+ 1

)
g′′′ − A

(
g′ +

η

2
g′′

)
− g′2 + ( f + g)g′′ − Mg′ � 0 (9)

(1 +
4

3
R)

θ ′′

Pr
− A

(
2θ +

η

2
θ ′

)
− 2 f ′θ + ( f + g)θ ′ +

(
1 +

1

β

)
Ec f ′′2

+ Nbφ′θ ′ + Ntθ ′2 + Qθ � 0 (10)

φ′′ − A Pr Le
(
2φ +

η

2
φ
)

− 2 Pr Le f ′φ + Pr Le( f + g)φ′ + (Nt/Nb)θ ′′ � 0 (11)

f (0) � 0, f ′(0) � 1, g(0) � 0, g′(0) � a, θ ′(0) � −Bi(1 − θ (0)),

Nbφ′(0) + Ntθ ′(0) � 0 and f ′(η) � g′(η) � θ (η) � φ(η) � 0 as η → ∞ (12)

where f , g, θ and φ are functions of η represents velocities along x, y directions, tem-
perature and concentration distributions respectively. The non-dimensional parame-
ters are: A � λ/c is the unsteadiness parameter, M � σ B2

o/ρc is the magnetic field
parameter (Hartmann number), Pr � υρcp/KT is the Prandtl number, Q � Q0/cρcp
is the heat generation parameter, Nb � τ (DB(Cw −C∞))/υ is the Brownian motion
parameter, R � 4σ ∗T 3∞/(kk∗) is the radiation parameter, Ec � c2/b1cp is the Eckert
number, Nt � ((ρc)p/(ρc) f )(DT (Tw − T∞))/υT∞ is the thermophoresis parameter,
Le � KT /DBρcp is the Lewis number, Bi � (h f /k0)

√
υ/c is the Biot number.

Here prime denotes derivatives with respect to η and a � b/c is the velocity ratio.
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Furthermore, the physical quantities of interest are the skin friction coefficientC f ,
the localNusselt number Nux and local Sherwoodnumber Shx in its non-dimensional
form can be expressed as Re1/2x C fx � (1 + (1/β))( f ′′(0)), (x/y)Re1/2x C fy � (c(1 +
(1/β))(g′′(0)), Re−1/2

x Nux � −θ ′(0) and Re−1/2
x Shx � −φ′(0), here Rex � xuw/υ

is the local Reynolds number.
Numerical solution of the transformed nonlinear coupled and non-homogeneous

ordinary differential Eqs. (8)–(11) subject to the boundary conditions Eq. (12) are
obtained by using Runge-Kutta iterative scheme integrated with shooting technique.
The domain of the problem is discretized and free streamboundary condition η → ∞
are replaced by f ′(ηmax) � g′(ηmax) � θ (ηmax) � φ(ηmax) � 8 where ηmax is
sufficient large value of η atwhich boundary conditions are satisfied. For convergence
criterion the difference between two successive approximations used sufficiently
small (≤ 10−6).

Comparison analysis of skin friction coefficient, local Nusselt number and local
Sherwood number is made with [15] the results, in the absence of radiation, viscous
dissipation and heat generation which are documented in Tables 1 and 2. It is evident
from Tables 1 and 2 that present numerical values correlate closely and found to
be in good agreement. Therefore, confidence in the present numerical solutions is
highly justified. From Table 3 it is observed that increase in M enhances the −(1 +
(1/β)) f ′′(0),−c(1+(1/β))g′′(0) and−φ′(0)while the opposite behaviour is observed
for Nusselt number. With an increasing values of Q, R and Ec the values of −φ′(0)
whereas reverse trend is observed for −θ ′(0).

Table 1 Comparative analysis for Re1/2x C fx and cRe1/2x C fy when β → ∞, c � 0.5

M β −(1 + (1/β)) f ′′(0) −c(1 + (1/β))g′′(0) −(1 + (1/β)) f ′′(0) −c(1 + (1/β))g′′(0)
Nadeem et al. [15] Present results

0 1 1.5459 0.6579 1.545721 0.657654

10 1 4.7263 2.3276 4.726932 2.327452

10 5 3.6610 1.8030 3.661216 1.803365

Table 2 Comparative analysis for −θ ′(0) and −φ′(0) when β → ∞, c � 0.5

Nt Nb −θ ′(0) −φ′(0) −θ ′(0) −φ′(0)
Nadeem et al. [15] Present results

0.3 0.3 0.293872 1.585361 0.2938735 1.5853624

0.5 0.3 0.277199 1.584743 0.2771968 1.5847478

0.7 0.5 0.177710 1.774545 0.1777114 1.7745436

0.7 0.7 0.109759 1.810687 0.1097523 1.8106845
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Table 3 Numerical values for the distinct values of the variables M, Q, R and Ec

M Q R Ec −(1 + (1/β)) f ′′(0) −c(1 + (1/β))g′′(0) −θ ′(0) −φ′(0)
1 3.2952 0.7869 0.3263 −0.1087

3 4.0579 0.9844 0.3147 −0.1049

0.3 3.0779 0.73005 0.3295 −0.1098

0.7 3.0779 0.73005 0.3051 −0.1077

0.2 3.0779 0.73005 0.3391 −0.1130

0.6 3.0779 0.73005 0.3266 −0.1088

0.01 3.0779 0.73005 0.3472 −0.1157

0.1 3.0779 0.73005 0.3295 −0.1098

3 Results and Discussion

The behaviour of diverse parameters A, β, M,Nb,Nt, Q, R and Ec on
f ′(η), g′(η), θ (η) andφ(η) in Casson nanofluid boundary layer regime are inter-
preted in Figs. 1, 2, 3, 4, 5, 6, 7 and 8. From the figures it is seen that increase in
A, the values of thermal and concentration boundary layer thickness is decreased
which are shown in Figs. 1 and 2. This is due to heat loss at the surface and the
Brownian motion intensify the particle displacements away from the stretching sheet
surface. Thus the rate of cooling is much faster for transient flows. The variations of
velocity distributions with respect to Casson parameter β are shown in Fig. 3. It is
evident from Fig. 3 that momentum boundary layer thickness is decreased due to an
increase in Casson parameter causes plastic dynamic viscosity which intern induces
the resistance of the fluid motion.

Fig. 1 Effect of A on θ
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Fig. 2 Effect of A on φ

Fig. 3 Effect of β on
f ′ and g′

Hence with increasing Casson parameter velocities in both the directions are
decreased.Whenever we applymagnetic field to the electrically conducting fluid, the
dual interaction between the two forces causes an opposing force called as Lorentzian
force, due to this an increase inM decrease the thickness of the momentum boundary
layer and hence the velocities of the fluid flow as shown in Fig. 4. The effect of
Nb andNt on φ(η) are shown in Fig. 5. It is evident from the graph that increasing
values of Nt first causes decrease in φ(η) while the reverse trend is noticed for
increasing Nb near the surface of the sheet up to certain value of η but afterwards
reverse trend is remarked for both the parameters. The influence of Q, R and Ec on
θ (η) are shown in Figs. 6, 7 and 8. The increase in parameter values enhances the
thermal boundary layer thickness due to releasing of heat energy to the fluid flow
and hence increases in the temperature profiles.



582 T. Thumma et al.

Fig. 4 Effect of M on
f ′ and g′

Fig. 5 Effect of Nb andNt
on φ

Fig. 6 Effect of R on θ
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Fig. 7 Effect of Q on θ

Fig. 8 Effect of Ec on θ



584 T. Thumma et al.

4 Conclusions

The effect of heat generation and viscous dissipation on MHD 3D Casson nanofluid
flow past an impermeable stretching sheet are studied in the present paper. Similarity
transformations is used to transform the governing boundary layer equations into
ordinary differential equations. Finally, numerical computations are obtained and
compared with earlier literature which found to be in good agreement. The important
findings are summarized as below.

Velocity profile decreases for increasing values of Magnetic field and Casson
parameter, Temperature of the Casson nanofluid increases for heat source, radiation,
Eckert number and Brownian motion parameter whereas it is decreased for unsteady
parameter and thermophoretic parameter, Concentration is decreased for unsteadi-
ness parameter. For M, Q, R and Ec Nusselt number is decreased while opposite
trend is observed in Sherwood number.With increase inM, skin friction is increased.

Acknowledgements The authors are grateful to the reviewers and conference chair, NHTFF-2018
for their valuable suggestions which helped to improve the quality of the paper.
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Radiation, Dissipation, and Dufour
Effects on MHD Free Convection Flow
Through a Vertical Oscillatory Porous
Plate with Ion Slip Current

K. V. B. Rajakumar, K. S. Balamurugan, Ch. V. Ramana Murthy
and N. Ranganath

Abstract In this paper, the Dufour, radiation absorption, chemical reaction, and
viscous dissipation effects on unsteady magneto hydrodynamic free convective flow
through a semi-infinite vertical oscillatory porous plate of time-dependent perme-
ability with Hall and ion slip current in a rotating system were investigated. The
governing equations of the problem are solved by using Multiple Regular Pertur-
bation law. The possessions of various parameters on velocity, temperature, and
concentration are shown graphically.
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B0 Magnetic component
B* Concentration expansion coefficient
C* Dimensionless fluid concentration
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CW Concentration at the plate
C∞ Concentration outside of the plate
Dr Dufour number
Gr Grashof number
Gr Modified Grashof number
g Acceleration due to gravity
Kr Chemical reaction parameter
k Magnetic permeability of the porous medium
Nu Nusselt number
Pr Prandtl number
Q0 Heat absorption quantity
Sc Schmidt number
TW Temperature at the plate
T∞ Temperature outside of the boundary lyre
T* Dimensionless fluid temperature
U0 Uniform velocity
U Dimensionless primary velocity
W Dimensionless secondary velocity
ξ Heat generation/absorption coefficient
Ω Rotational velocity component
η Radiation parameter
τw Skin friction coefficient
β Thermal expansion coefficient
βe Hall parameter
β i Ion slip parameter
α Heat source parameter
ϑ Kinematic velocity
ρ Density of the fluid
σρ Electrical conductivity
σ Thermal conductivity

1 Introduction

As ion slip and Hall currents are likely to be essential in flows of laboratory plasma
when a strong magnetic field of a uniform strength is applied, the attention of the
researchers is drawn due to their varied significance in liquid metals, electrolytes
land ionized gases. The Hall effect is the having of a voltage effect over an electrical
conductor, transverse to an electric current in the transmitter and an electromagnetic
field and opposite to the current. It is found byHall et al. [1]. The present improvement
of magneto-hydrodynamic application is towards a solid magnetic field and towards
a low thickness of the gas. Under this condition, the Hall current becomes important.
That significance is considered by numerous analysts. Anika et al. [2] the effect of
Hall, ion slip over an infinite vertical plate for micropolar fluid within the magnetic
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field was investigated. Srinivasacharya et al. [3] analyzed the significance of Hall and
ion slip parameters on the steady mixed convective flow of a nanofluid in a vertical
channel. From this paper, I observed that the increase of Hall parameter leads to the
increase in velocity and temperature, but the induced flow velocity and nanoparticle
concentration is decreased. Srinivasacharya et al. [4] analyzedHall and ion slip effect
on mixed convective flow through a vertical channel with couple stress fluid. Bilal
et al. [5] magneto-micropolar nanofluid flow in a porous medium over a stretching
sheet with suction or injection was analyzed. In this investigation hall and ion slip
effectswere considered. The energyflux caused due to composition gradient is known
as diffusion thermo effect or Dufour effect. Ojjela et al. [6] investigated the Hall and
ion slip current on free convection flow, heat and mass transform of an electrically
conducting couple stretch fluid through permeable channels with chemical reaction,
Dufour, and Soret effects. Alivene et al. [7] combined the influence of radiation,
viscous dissipation and Hall effects on MHD free convective heat, and mass transfer
flow of a viscous fluid past a stretching sheet was investigated.

Motivated by the above studies, the main objective of this paper is to study the
effect of the Dufour, radiation absorption, chemical reaction, and viscous dissipation
on unsteady MHD free convective flow through a semi-infinite vertical oscillatory
porous plate of time-dependent permeability with Hall and ion slip current in a
rotating system.

2 Mathematical Formulation

Consider the two-dimensional unsteady laminar flow of a viscous incompressible,
electrically conducting fluid past a semi-infinite vertical moving porous plate y �0
with the x-axis is considered as along the plate. The plate velocity is assumed as

U(t)�U0 (1+cosnt) oscillates in t with a frequency n. Let the x*and y* are the
dimensional distance along the perpendicular to the plate and t* is the time. The
physical model of the flow problem is shown in Fig. 1. u* and v* are the components
of dimensional velocities along x*and y* directions. The flow is considered to be in
x-direction which is taken along the plate in upward direction and y-axis is normal to
it. At first, the fluids as well as the plate are at rest but for time t >0 the whole system
is allowed to rotate with a constant angular velocity � about the y-axis. Assuming
transverse magnetic field of the uniform strength B0 to be utilizable normal to the
plate. Viscous dissipation, radiation absorption, the heat source, and Dufour effects
are considered.

Hence dimensional governing equations are

[
∂u∗

∂τ ∗

]
� ϑ

[
∂2u∗

∂y∗2

]
+ gβ

(
T ∗ − T ∗

∞
)
+ gβ∗(C∗ − C∗

∞
)
+ 2�w∗ − ν

k∗
[
u∗]

− B2
0σe[αeu∗ + βew

∗]
ρ
[
α2
e + β2

e

] (1)
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Fig. 1 The physical model in the problem

[
∂w∗

∂τ ∗

]
� ϑ

[
∂2w∗

∂y∗2

]
− 2�

[
u∗] − ϑ

k∗
[
w∗] + B2

0σe[βeu∗ − αew
∗]

ρ
[
α2
e + β2

e

] (2)

[
∂T ∗

∂τ ∗

]
� K

ρCp

[
∂2T ∗

∂y∗2

]
+
DmKT

CSCP

[
∂2C∗

∂y∗2

]
+

Q0

ρCp

[
T ∗ − T ∗

∞
] − 1

kρCp

∂q∗
r

∂y∗

+
ϑ

Cp

[(
∂u∗

∂y∗

)2

+

(
∂w∗

∂y∗

)2
]
+ R∗[C∗ − C∗

∞
]

(3)

[
∂C∗

∂τ ∗

]
� Dm

[
∂2C∗

∂y∗2

]
− Kr

[
C∗ − C∗

∞
]

(4)

The initial and boundary conditions are as follows:

at y∗ � 0

⎧⎨
⎩
u∗ � U0

[
1 + ε

2

(
ein

∗t∗ + e−in∗t∗)], w∗ � 0,

T ∗ − T ∗
w � ε(T ∗

w − T ∗∞)ein
∗t∗ , C∗ − C∗

w � ε(C∗
w − C∗∞)ein

∗t∗

as y∗ → ∞ u∗ � 0, w∗ � 0, T ∗ � T ∗∞, C∗ � C∗∞

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(5)

Using the relation in the radiative heat flux (qr ) for the optically thin non-gray

gas near equilibrium is given by ∂qr
∂y � 4I 1T [T − T1], I 1 �

∞∫
0
Kλ1w

∂ebλ1
∂T dλ1,

the porous medium is taken to be k∗ � k0
[
1 + εe−nt

]
. Introducing the following

nondimensional quantities in the (1)–(4):

U0u � u∗, U0w � w∗, ϑy � y∗U0, tϑ � U 2
0 τ ∗, nU 2

0 � ϑn∗

T ∗ − T ∗∞ � (
T ∗

w − T ∗∞
)
θ, C∗ − C∗∞ � (

C∗
w − C∗∞

)
φ,

⎫⎬
⎭ (6)
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[
∂u

∂t

]
�

[
∂2u

∂y2

]
+ Gr [θ ] + Gm[φ] + 2R[w] − γ [u] − M[αeu + βew][

α2
e + β2

e

] (7)

[
∂w

∂t

]
�

[
∂2w

∂y2

]
− 2R[u] − γ [w] +

M[βeu − αew][
α2
e + β2

e

] (8)

[
∂θ

∂t

]
� 1

Pr

[
∂2θ

∂y2

]
− N [θ ] + Dr

[
∂2φ

∂y2

]
+ Ec

[
∂F

∂y

∂F

∂y

]2

+ Ra[φ] (9)

[
∂φ

∂t

]
� (Sc)−1

[
∂2φ

∂y2

]
− Kr [φ] (10)

Here
ξ � ϑQ0

ρU 2
0CP

, M � σe B2
0ϑ

ρU 2
0

, Gm � ϑβ∗g[C∗
w−C∗∞]

U 2
0

, R � �ϑ

U 2
0
, Sc � ϑ

Dm
, Pr �

ρϑCp

σ
, γ � ϑ2

k∗U 2
0
, Kr � k1ϑ

V 2
0
, N � [ξ + η], αe � 1 + βeβi , F � u + iw, Ec �

U 2
0

(
Cp

)−1[
T ∗

w − T ∗∞
]−1

, Kr � (
V 2
0

)−1
k1ϑ , Gr � ϑβg

[
T ∗

w − T ∗∞
](
U 2

0

)−1
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[[
2Ri + γ

]
+ M[−αe + iβe]

[
α2
e + β2

e

]−1
]
, η �

4ϑ I ′(KpCpU 2
0

)−1
, Ra � R∗ϑ

[
C∗

w − C∗∞
](
U 2

0

[
T ∗

w − T ∗∞
])−1

, Dr �
DmKT

[
C∗

w − C∗∞
](

ϑCSCP
[
T ∗

w − T ∗∞
])−1

Equations (7) and (8) are displayed, in a reduced form, as

∂F

∂t
� ∂2F

∂y2
+ Grθ + Gmφ − λF (11)

At y � 0 F � [
1 + ε

2

(
eint + e−int

)] � 1, θ � 1 + εeint , φ � 1 + εeint

As y → ∞ F → 0, θ → 0, φ → 0

}
(12)

3 Method of Solution

The resulting system of nonlinear ODEs Eqs. (9), (10) and (11) subject to the bound-
ary conditions presented in Eq. (12) has been explored numerically throughMultiple
Regular Perturbation law.

F � F0(y) + εeint F1(y) + o
(
ε2

)
, θ � θ0(y) + εeintθ1(y) + o

(
ε2

)
φ � φ0(y) + εeintφ1(y) + o

(
ε2

)
⎫⎬
⎭ (13)

Substitute (13) in Eqs. (9), (10), and (12) then we get

F ′′
0 − λF0 � −Grθ0 − Gmφ0 (14)
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F ′′
1 − (λ + ni)F1 � −Grθ1 − Gmφ1 (15)

θ ′′
0 − PrNθ0 � −Pr Drφ′′

0 − Pr Ec
(
F ′
0

)2 − Pr Raφ0 (16)

θ ′′
1 − Pr(N + in)θ1 � −PrDrφ′′

1 − 2Pr EcF ′
0F

′
1 − Pr Ra φ1 (17)

φ′′
0 − ScKrφ0 � 0 (18)

φ′′
1 − Sc(Kr + n)φ1 � 0 (19)

Corresponding boundary conditions are

F0 � 1, F1 � 0 , θ0 � 1 θ1 � 1, φ0 � 1 , φ1 � 1, at y � 0

F0 � 0, F1 � 0, θ0 → 0, θ1 → 0, φ0 → 0, φ1 → 0, as y → ∞

}
(20)

First, we solve Eqs. (17) and (19) by using Eq. (20). Then

φ0 � e−(
√
ScKr)y (21)

φ1 � e−(
√
Sc(Kr+n))y (22)

Now using multi-parameter perturbation technique and assuming Ec � 1.

F0 � F00 + EcF01 + 0(ε)2, θ0 � θ00 + Ecθ01 + 0(ε)2,

F1 � F10 + EcF11 + 0(ε)2, θ1 � θ10 + Ecθ11 + 0(ε)2

}
(23)

F ′′
00 − λF00 � −Gr θ00 − Gm φ0 (24)

F ′′
01 − λF01 � −Gr θ01 (25)

F ′′
10 − [λ + ni]F10 � −Grθ10 − Gmφ1 (26)

F ′′
11 − [λ + ni]F11 � −Grθ11 (27)
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θ ′′
10

− Pr [N + in]θ10 � −Raφ1Pr − PrDr φ′′
1 (28)

θ ′ ′
01 − PrNθ01 � −Pr F ′

00F
′
00 (29)

θ ′′
11 − Pr [N + in]θ11 � −2Pr F ′

00F
′
10 (30)

θ ′ ′
01 − PrNθ01 � −Pr F ′

00F
′
00 (31)

θ ′′
00 − PrN θ00 � −Pr Ra φ0 − Pr Dr φ′′

0 (32)

at y � 0; F00 � 1, F01 � 0, F10 � 0, F11 � 0, θ00 � 1, θ01 � 0, θ10 � 1, θ11 � 0

As y → ∞ F00 � 0, F01 � 0, F10 � 0, F11 � 0, θ00 � 0, θ01 � 0, θ10 � 0, θ11 � 0

}

(33)

Solve Eqs. (23)–(32) subject to boundary conditions by using (33).

3.1 Velocity (F), Temperature (θ) and Concentration (φ)

By virtue of Eqs. (9), (10), (11) we obtain for the velocity, temperature, and concen-
tration as follows:

F � [
(F00 + EcF01) + εeint(F10 + EcF11)

]
, θ � [

(θ00 + Ecθ01) + εeint(θ10 + Ecθ11)
]

φ � φ0 + εeintφ1

⎫⎬
⎭ (34)

4 Results and Discussion

In the present study, we have taken t � 1.0, n � 0.5, ε � 0.03, ï � 0.003 ξ � 0.03
whileDr, β i and βe are varied over a range, which listed in the figures. The variations
in velocity and temperature profiles with y for various values inDr and β i are shown
in Figs. 2, 3, 6 and 7. These figures reflect that with increase in Dr and β i, there is
an increase in fluid velocity and temperature. In Figs. 4 and 5, it is noticed that the
velocity and temperature decrease with the increase of β i.
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Fig. 2 Velocity profile for different values of Dr

Fig. 3 Temperature for different values on Dr

Fig. 4 Effect of βe on velocity
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Fig. 5 Temperature profile for effect of βe

Fig. 6 Velocity profile for different values of β i

Fig. 7 Effect of β i for different values on temperature
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5 Conclusions

• As the Ion slip parameter β i increases, the velocity and temperature profiles
decrease but the velocity and temperature decrease with increases of Hall cur-
rent parameter βe.

• As theDufour effect parameterDr increases, the velocity and temperature increase.
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Bottom Heated Mixed Convective Flow
in Lid-Driven Cubical Cavities

H. P. Rani, V. Narayana and Y. Rameshwar

Abstract The mixed convective flow of air in three-dimensional cubical lid-driven
cavity flows are carried out numerically. The top lid assumed to be slide in its own
plane at a constant speed. The horizontal walls are kept at an isothermal temperature
in which the bottom wall has high temperature than the top. Numerical results are
acquired for the control parameters arising in the system, namely, the Reynolds
number (Re) in the range of 100–400 and the Richardson number (Ri) varying from
10−3 to 10. The fluid flow and heat transfer characteristics are visualized using the
contours of streamlines, isotherms, vortex corelines with respect to different Ri and
Re. The results are compared with the experimental/numerical results available in
the literature and are found to be in good agreement.

Keywords Mixed convection · Vortex coreline · Richardson number

1 Introduction

Theproblemof the laminar incompressible three-dimensional (3D)mixed convection
lid-driven cubical cavity has a large number of applications in engineering and science
such as crystal growth, electronic device cooling, food processing, metal casting
and phase change as the freezing of water for latent thermal storage systems, solar
power collector, glass production, etc. A number of numerical experiments for a free
convection dominated heat transfer has been conducted for the past few decades,
few of such numerical experiments are called as the benchmark solutions, which are
used in investigating the performance of numerical methodologies and solving the
incompressible laminar Navier–Stokes equations for complicated problems. From
the literature, it is found that majority of numerical work has been confined to 2D
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flow. Kosef and Street [1, 2] stressed the necessity to study the 3D nature of the flows
arising in the lid-driven cavity due to the presence of no-slip boundary conditions
along with the sparse characteristics of incompressible flows. A similar problem was
numerically analyzed by Iwatsu andHyun [3] with themoving topwall kept at higher
temperature than at the bottom wall for the possibility of air temperature distribution
for awide range of control parameters such as 102 ≤ Re ≤ 2000, and 0≤Ri ≤ 10.Both
2D and 3D lid-driven cavity problems are analyzed byMohammad and Viskanta [4].
They established that this movement of the lid in a cavity can get rid of all convective
cells due to bottom heating. For a 2D lid-driven cavity, the effect of buoyancy on
the flow and heat transfer for higher values of Pr was analyzed by Moallemi and
Jang [5] with 102 ≤ Re ≤ 2000 for different levels of the Ri. They showed that
free convection contribution always assists the forced convection magnitude. The
mixed convection in a top wall moving lid-driven 2D cavity was examined by Prasad
et al. [6]. They showed that when the negative Grashof number (Gr) is more and
aspect ratio (AR) is equal to 0.5 and 1.0, a strong convection is exhibited, and when
AR is 2, a Hopf bifurcation is observed. Sharif [7] analyzed a supplementary flow
visualization of a laminar incompressible combined free and forced convective heat
transfer in 2D rectangular driven cavities with AR of 10. They observed that the local
Nusselt number (Nu) at the heated moving wall initiates with a higher value and
decreases rapidly to a lower value towards the right side. However, the Nu at the
cold wall shows the fluctuations close to the right wall. This is due to the presence
of a vortex at the cold wall. In an inclined cavity with Ri � 0.1, Benkacem et al. [8]
remarked that the average Nu augments slowly with the inclination while for Ri �
10, it increases rapidly in the case of natural convection. Aydin et al. [9] analyzed the
mixed convection in a shear and buoyancy-driven cavity with lower wall heated and
moving cold sidewalls. With the motivation of the above work, in the present article,
the mixed convective flow of air in 3D cubical lid-driven cavity flows are carried out
numerically. Numerical results are obtained for 100 < Re < 400 and 0.001 < Ri < 10.
The fluid flow and heat transfer characteristics are visualized using the contours of
streamlines, isotherms, vortex corelines with respect to different Ri and Re.

2 Physical System

The lid-driven 3D cavity filled with air is considered as shown in Fig. 1.
The top wall, Y = L(m), is moving in its own plane with a constant velocity U0

(m/s), and the other boundary walls are at rest. The top and bottom walls are kept
at the isothermal temperature in which the bottom wall has the higher temperature
(TH ) than the top wall (TC) with ΔT = TH − TC > 0. Also, the remaining four walls
are assumed as adiabatic.

Steady laminar 3D nondimensional form for the conservation of mass, momen-
tum, and energy equations with an inclusion of the buoyant Boussinesq approxima-
tions for the density variation is written as
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Fig. 1 3D cubical-driven
cavity of length L

div V � 0 (1)

(V . grad)V � −grad p +
1

Re
.∇2V + Ri . T ∗e (2)

(V . grad)T ∗ � 1

Re .Pr
.∇2T ∗ (3)

where V � (U, V , W ), e � (0, 1, 0), p, t, and T * � T −TC
�T represents dimensionless

velocity vector along (X, Y , Z) directions, the unit vector in the vertical direction,
pressure, time, and temperature, respectively. The reference scales for nondimen-
sionalization are U0, ρU2

0, and L/U0 for velocity, pressure, and time, respectively,

Re �U0L/ν, Rayleigh number Ra � gβ(�T )L3

να
, where β is the thermal expansion

coefficient, ν is the kinematic viscosity; Grashof number Gr � gβ(�T )L3

ν2 , and g is the
gravity; Prandtl number Pr �ν/α; and the mixed convection parameter, Ri = Gr

Re2
.

For the above mathematical problems (1)–(3), the boundary conditions are
V =(1, 0, 0) at Y �1 and V = 0 at Y = 0, X � 0, 1, and Z �0, 1
T * �1 at Y �0, and T * �0 at Y �1 and ∂T ∗

∂ X � 0, at X �0, 1 and
∂T ∗
∂ Z � 0, Z �0, 1.
The nondimensional heat transfer rate at the hot wall is calculated by the Nusselt

number, whose local value along the hot wall is given by Nu � (
∂T ∗
∂Y

)
Y�0

. The
average Nusselt number is obtained by integrating the local Nusselt number along
the hot wall and is calculated as Nu = − ∫ X�1

X�0

∫ Z�1
Z�0

(
∂T ∗
∂Y

)
Y�0

dX dZ .
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Table 1 Validation of
present simulations with
respect to Nu at the hot wall
for Re �400 and Ri �1

Present work 1.518

Iwatsu et al. [3] 1.50

Ouertatani et al. [10] 1.528

3 Numerical Method

The flow model, geometry, the initial and boundary conditions for this problem
were set in the buoyant Boussinesq SimpleFoam of the computational fluid dynam-
ics solver, namely, OpenFOAM. It is a steady-state solver for the buoyant flow of
incompressible fluids including Boussinesq approximation. To calculate the spatial
derivatives, the second-order upwind finite volume numerical method was used. For
acceleration means, conjugate gradient squared method was used. Divergent and
Laplacian terms are discretized by the QUICK and Gauss linear schemes respec-
tively.

Table 1 shows the comparison between the present laminar solution and numerical
results found in the literature [3, 10] in terms of Nu along the hot wall. There is
an excellent agreement between the present results and the results available in the
literature.

4 Results and Discussion

The simulated results are presented in terms of isotherms and streamlines in terms
of the control parameters arising in the system.

Figure 2 depicts the isotherms for different Re and Ri. The patterns of isotherms
show that for the small Ri (=0.001), the mechanically driven forced convection
controls the buoyancy-driven convection. Figure 2a, d, show the forced convection
induced by the movement of lid. While as Ri augmented to the value 1, the buoyant
convection deforms the isotherms and these 3D structures become stronger further
when Re moved to the value of 400 (Fig. 2c, f). The deformation of the isotherm
field increases with Ri. Especially, the flow is dominated by the buoyancy and the
heat transfer is controlled due to the natural convection, assigning that the forced
convection due to the movement of the lid is almost absent. For Ri =1, an agreement
between the these free and forced convections, is clearly seen in Fig. 2b.

Figure 3 illustrates the streamlines and the vorticity in the cubical cavity for
different Re and Ri. There are two similar vortices in the cavity and interact with
each other at the middle of the cavity. The swirling nature of the streamlines around
the vortex line in each case is clearly seen. The vortex corelines have their origin/end
at the boundingwalls and surrounded by the streamlines. The strength of the vorticity
increases asRe orRi increases. The energy exchange between the two closed vortices
occurs at the middle of the cavity.
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(a) Re =100, Ri Re =100, Ri= 0.001 (b) = 1 (c) Re =100, Ri = 10  

(d) Re =400, Ri Re =400, Ri= 0.001 (e) = 1 (f) Re =400, Ri = 10  

Fig. 2 Isotherms for different Ri and Re

(a) Re =100, Ri Re =100, Ri Re =100, Ri = 10  

(d) Re =400, Ri Re =400, Ri

= 0.001 (b) = 1 (c)

= 0.001 (e) = 1 (f) Re =400, Ri = 10

Fig. 3 Visualizing vortex corelines and streamtraces for different Re and Ri
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5 Conclusion

The present investigation directed the 3D mixed convection in a cubical lid-driven
cavity for suitable collaborationof three differentRe andRi values and their effects are
explored with respect to behaviors of the fluid flow and thermal fields. With lower
Re values, the isotherm maintains a two dimensionality but when Re is large, the
thermal field shows vigorous three dimensionalities for small Ri values. On the other
hand, the stabilizing buoyancy effects become dominant at largeRi. In the considered
problem the heat transfer rate is mostly convective and the three dimensionality of
the thermal field is weak.

The implications of Ri play a key role in Nu at the vicinity of the walls. When Ri
is large, overall heat transfer is vanquished, and the conductive heat transfer model
prevails. For very small values of Ri with the combination of large Re, complex 3D
structures are noticeable. It can be concluded that the present results show that the
overall heat is enhanced by vigorous forced convection.
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Effect of Magnetic Field on the Squeeze
Film Between Anisotropic Porous
Rough Plates

P. Muthu and V. Pujitha

Abstract In this paper, the effect of externally applied magnetic field on squeeze
film lubrication between anisotropic porous and rough rectangular plate is studied.
A general probability density function with nonzero mean, skewness, and variance
is used to model the roughness. Analytical expressions for pressure and load car-
rying capacity are derived. Runge–Kutta method is used to calculate thickness of
the squeeze film. Externally applied magnetic field and surface roughness improve
the squeeze film lubrication mechanism. The anisotropic nature of porous surface
increases the squeeze film characteristics as compared with isotropic porous case.

Keywords Squeeze film · Anisotropic porous medium · Magnetic field

1 Introduction

The study of squeeze film mechanism has significant applications in gears, bearing,
and engines. This study is also useful in understanding the mechanism of human
joints. From the literature, it is understood that all bearing surfaces are rough and
the order of the height of the roughness asperities is same as that of mean separa-
tion of plates. Christensen [1] developed a stochastic model to study the effect of
roughness on lubrication mechanism and assumed a symmetric probability density
function with zero mean. Prakash and Tiwari [2], Bujurke and Naduvinamani [3]
used Christensen’s model for the analysis of effect of surface roughness on squeeze
film lubrication between porous plates. In general, the surface roughness is not sym-
metric. Andharia et al. [4] used an asymmetric probability density function with
nonzero mean, variance, and skewness to model the roughness. Lin [5] analyzed the
influence of magnetic field between smooth rectangular plates with electrically con-
ducting fluid as lubricant. Bujurke et al. [6] studied the effect of surface roughness
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on squeeze film between rectangular plates in the presence of transverse magnetic
field by assuming an asymmetric probability density function with nonzero mean
and variance.

In this paper, an attempt has been made to study the combined effect of surface
roughness, external magnetic field, and anisotropic nature of porous material on
squeeze film between finite rectangular plates. An asymmetric probability density
function which has nonzero mean, skewness, and variance is considered.

2 Analysis

Figure 1 represents the squeeze film geometry. Consider the squeeze filmmechanism
between rectangular plates where one plate is moving with velocity dH/dT towards
bottom fixed plate. Let L1 and L2 be the length and width of the plates, respectively.
The modified Darcy’s law for the fluid flow in the porous region is given as [7]

V′ = −K

μ
∇p′ (1)

where V′ = (u′, v′, w′) is the velocity vector in porous region, K is the anisotropic
permeability tensor, and p′ is pressure in porous region. It is assumed that principle
directions of K are constant and parallel to the coordinate axis. Hence the K =⎡
⎣
kx 0 0
0 ky 0
0 0 kz

⎤
⎦ where (kx, ky, kz) are the constant permeability coefficients in (x, y, z)

directions, respectively.

Fig. 1 Geometry of the
problem

z

x
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Due to the surface roughness, the fluid film height has two parts h(T ) and hr .
Hence the film height is: H = h(T ) + hr , where h(T ) represents the height of the
smooth part and hr is a random variable measured from the nominal level. The hr
has the probability density function g(hr) where −c < hr < c, and c indicates the
maximum deviation from nominal level. α, ε and σ are mean, skewness and standard
deviation of the randomly varying quantity, given as,α = E(hr), σ2 = E((hr − α)2),
ε = E((hr − α)3) where E is the mathematical expectation given by

E(R) =
∫ ∞

−∞
R g(hr) dhr (2)

Assume that α and ε can take both negative and positive values whereas σ takes
always positive values [6]. In the system, isothermal, incompressible electrically
conductingfluid is taken as lubricant. In the z-direction, a constantmagnetic fieldB0 is
considered. The fluid film is assumed to be thin and inertia free. Except Lorentz force,
remaining body forces are negligible. Further, the induced magnetic field is small in
comparisonwith the appliedmagnetic field. Therefore, under the above assumptions,
the governing equations of fluid flow in two different regions are given as

For film region:
∂p

∂x
= μ

∂2u

∂z2
− σ̄B0

2u (3)

∂p

∂y
= μ

∂2v

∂z2
− σ̄B2

0v (4)

∂p

∂z
= 0 (5)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (6)

For porous region: u′ = − kx
μ

∂p′
∂x

(
1 + kxσ̄B20

μm′

)−1

(7)

v′ = − ky
μ

∂p′

∂y

(
1 + kyσ̄B2

0

μm′

)−1

(8)

w′ = − kz
μ

∂p′

∂z
(9)

∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
= 0 (10)

where (u, v, w) are the velocity components along the (x, y, z) directions in film
region, ρ is density, p is pressure, μ is dynamic viscosity of the fluid, σ̄ is electrical
conductivity, B0 is applied magnetic field, and m′ is porosity.

Boundary Conditions are

At z = 0 : u = v = 0 and w = w′ (11)
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At z = H : u = v = 0 and w = dH

dT
. (12)

From Eqs. (3) and (4) by using (11) and (12), we get u and v,

u = h20
μM 2

∂p

∂x

⎧⎨
⎩cosh

(
Mz

h0

)
− 1 −

[
cosh

(
MH
h0

)
− 1

]

sinh
(
MH
h0

) sinh

(
Mz

h0

)⎫⎬
⎭ (13)

v = h20
μM 2

∂p

∂y

⎧⎨
⎩cosh

(
Mz

h0

)
− 1 −

[
cosh

(
MH
h0

)
− 1

]

sinh
(
MH
h0

) sinh

(
Mz

h0

)⎫⎬
⎭ (14)

where M denotes the Hartmann number defined byM = B0h0

(
σ̄

μ

) 1
2

.

Substituting Eqs. (13) and (14) in Eq. (6) and integrating with respect to z and
using the boundary conditions on w, we get the modified Reynolds equation as

∂

∂x

{
h30

μM 3 f (H ,M )
∂p

∂x

}
+ ∂

∂y

{
h30

μM 3 f (H ,M )
∂p

∂y

}
= dH

dT
+ kz

μ

[
∂p′

∂z

]

z=0
(15)

where f (H ,M ) = MH

h0
− 2 tanh

(
MH

2h0

)
. By taking the mathematical expectation

on both sides of Eq. (15), we get

∂2E(p)

∂x2
+ ∂2E(p)

∂y2
= μM 3

h30

1

E (f (H ,M ))

{
E

(
dH

dT

)
+ kz

μ

[
∂p′

∂z

]

z=0

}
(16)

where

E(f (H ,M )) = M

h0
(h + α) − 2 tanh

(
Mh

2h0

)
−

(
1 − tanh2

(
Mh
2h0

))

12[
12Mα

h0
− M 3

h30

(
ε + α3 + 3ασ2)

]

From Eqs. (7) to (9), the governing equation for the pressure in the porous region is
obtained as

kx
d1

∂2p′

∂x2
+ ky

d2

∂2p′

∂y2
+ kz

∂2p′

∂z2
= 0 (17)

where d1 = 1 + kx
m′

M 2

h20
and d2 = 1 + ky

m′
M 2

h20
. The boundary conditions for

solving Eq. (16) are:

E(p) = 0 at x = 0,L1 and y = 0,L2 (18)
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The boundary conditions for solving Eq. (17) are:

p′ = 0 at x = 0,L1 and y = 0,L2 (19)

∂p′

∂z
= 0 at z = −δ (20)

and E(p) = p′ at z = 0. (21)

3 Squeeze Film Characteristics

The solution of Eq. (17) is written as

p′(x, y, z) =
∞∑
m=1

∞∑
n=1

Amn sin(αmx) sin(βny) cosh[γmn(z + δ)] (22)

where αm = mπ
L1

, βn = nπ
L2

, γmn =
(

α2
mkx
d1kz

+ β2
n ky
d2kz

)1/2
. From the Eq. (21), we get

E(p) =
∞∑
m=1

∞∑
n=1

Bmn sin(αmx) sin(βny) (23)

From the orthogonal condition of the eigen functions, Amn is written as

Amn = −16μ dh
dt

αmβnL1L2
M 3

(
h30E(f (H ,M )) cosh(γmnδ)(α

2
m + β2

n) + kzM
3γmn sinh(γmnδ)

)−1

(24)

if m and n are odd and Amn = 0, otherwise.
The nondimensional form of film pressure is

−E(p)h30
μL21

dh
dT

= p̄ = 16M 3δ̄
√

β

π2

∞∑
m=odd

∞∑
n=odd

sin(mπx̄) sin( nπȳ
β

)

C̄mn
(25)

where C̄mn = mn

[
E(f (H̄ ,M ))(m2 + n2

β2
)π2δ̄

√
β + �0γ̄mnM

3 tanh(γ̄mnδ̄
√

β)

]

The load carrying capacity can be determined from

E(W ) =
∫ L1

x=0

∫ L2

y=0
E(p) dx dy (26)
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The nondimensional load carrying capacity is

−E(W )h30
μL31L2

dh
dT

= W̄ = 64δ̄
√

β

π4

∞∑
m=odd

∞∑
n=odd

M 3

mnC̄mn
(27)

We define the dimensionless response time as [5], T̄ = E(W )h20
μL31L2

T .

dh̄

dT̄
= −π4

64δ̄
√

βM 3
∑∞

m=odd

∑∞
n=odd (mnC̄mn)−1

(28)

Equation (28) is a nonlinear, first-order ordinary differential equation, which can be
solved using Runge–Kutta method of order four with the initial condition h̄ = 1 at
T̄ = 0 and with step size �T̄ = 0.01.

4 Results and Discussion

The combined effect of external magnetic field, anisotropic nature of porous mate-
rial, and surface roughness on squeeze film lubrication is studied. α, σ, and ε are
parameters of the surface roughness andM signifies the magnetic field. Permeability
of the porous material is characterized by ψ0.

Variation of p̄ with x̄ is shown in Fig. 2 for different values of M as well as for
different values of ky/kx = 0.1 and 1 (isotropic case). The external magnetic field
reduces the velocity of the lubricant flowing out of the plate. The asperities of the

p
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Fig. 2 Effect of M on p̄
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Fig. 3 Effect of ψ0 on p̄

surface roughness decrease the leakage of lubricant. Due to this, the lubricant is
retained in the system. This increases the pressure distribution between the plates.
Figure 3 shows the variation of p̄ with x̄ for different values of the permeability
parameter ψ0. As ψ0 increases the pressure decreases. Figure 4 indicates the vari-
ation of p̄ with x̄ for different values of α. Variation of squeeze film pressure for
different values of ε is shown in the Fig. 5 and it can be observed that positively
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skewed roughness decreases the squeeze film pressure p̄ whereas negatively skewed
roughness increases the pressure.

Figure 6 indicates the variation of load carrying capacity with Hartmann number
M . As Hartmann number M increases the load carrying capacity also increases for
both isotropic and anisotropic porousmaterials. Figures 7 and 8 indicate the variation
of h̄ as a function of T̄ for different values of M for both isotropic and anisotropic
cases. The time height relationship for nonporous case is shown in Fig. 9.
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5 Conclusions

In this paper, we have studied squeeze film lubrication between an anisotropic porous
plate and a plate with surface roughness. Further, the effect of applied magnetic field
on the performance of lubrication mechanism is seen. Variation of squeeze film
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pressure, load carrying capacity, and response time under the influence of different
parameters are noted. It is observed that positively skewed roughness decreases the
squeeze film pressure. This study may be useful in understanding the mechanism of
synovial joints.

References

1. Christensen, H.: Stochastic models for hydrodynamic lubrication of rough surfaces. Proc. Inst.
Mech. Eng. J. J. Eng. Tribol. 184(55), 1013–1022 (1969–1970)

2. Prakash, J., Tiwari, K.: An analysis of the squeeze film between porous rectangular plates
including the s urface roughness effects. J. Mech. Eng. Sci. 24(1), 45–49 (1982)

3. Bujurke, N.M., Naduvinamani, N.B.: A note on squeeze film between rough anisotropic porous
rectangular plates. Wear 217, 225–230 (1998)

4. Andharia, P.I., Gupta, J.L., Deheri, G.M.: Effect of surface roughness on hydrodynamic lubri-
cation of slider bearings. Tribol. Trans. 44(2), 291 (2001)

5. Lin, J.-R.: Magnetohydrodynamic squeeze film characteristics for finite rectangular plates. Ind.
Lubr. Tribol. 55(2), 84–89 (2003)

6. Bujurke, N.M., Naduvinamani, N.B., Basti, D.P.: Effect of surfaceroughness on magnetohydro-
dynamic squeezefilm characteristics between finite rectangular plates. Tribol. Int. 44, 916–921
(2011)

7. Fathima, S.T., Naduvinamani, N.B., Shivakumar, H.M., Hanumagowda, B.: A study on the
performance of hydromagnetic squeeze film between anisotropic porous rectangular plates with
couplestress fluid. Tribol. Int. 9(1), 1–9 (2014)



A Numerical Study on Heat Transfer
Characteristics of Two-Dimensional Film
Cooling

Vashista G. Ademane, Vijaykumar Hindasageri and Ravikiran Kadoli

Abstract Determination of reference temperature and heat transfer coefficient in
case of three temperature problems such as film cooling is one of the fundamental
tasks in the design of gas turbines. In the present work, a two-dimensional numerical
simulation is carried out for flat surfacewith 35° angle of injection from slot in case of
filmcooling problem.The reference temperature,which is represented as filmcooling
effectiveness, and heat transfer coefficient on the flat surface for different blowing
ratio are studied. Heat transfer coefficient obtained from the present simulation is
compared with the experimental results from the literature and found to be matching
at lower blowing ratios. Turbulence intensity is found to a major contributor in
enhancing the heat transfer coefficient. There is an increase in heat transfer with the
blowing ratio due to increased turbulence intensity is observed.

Keywords Film cooling · Effectiveness · Heat transfer coefficient
Turbulence intensity

1 Introduction

The efficiencyof gas turbine enginesmainly depends upon the temperature of the inlet
hot gas. But there is a limitation on the inlet temperature due to the thermal stresses
developed in turbine blades. So blades are cooled by taking a part of compressed air
and passing them from inside of the blade surface and ejecting out through small
holes into the mainstream. The coolant air coming out from the blade surface will
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create a layer of low-temperature fluid which is a well-established technique known
as film cooling.

Major parameters which affect the performance of film cooling are blowing ratio,
density ratio, injection angle, hole geometry, turbulence intensity, and mainstream
Reynolds number. These parameters are studied on flat surfaces with jet injecting at
certain angles to the surface. The experimental work on flat surface film cooling was
done by many researchers. Experiments on film cooling have been conducted by [1]
from circular holes and later [2] reported heat transfer study. Effect of boundary layer
thickness, Reynolds number and free stream turbulence intensity on film cooling is
reported by [3, 4] conducted experiment and numerical study.

With the development of different computational techniques and turbulence mod-
els, the effort involved in the analysis of the film cooling has reduced. A three-
dimensional numerical studies on film cooling was conducted by [5].

Studies are reported on slot jet film cooling by [6, 7], where the secondary air was
injected at different angles through a rectangular slot on a flat surface.A2Dnumerical
simulation of film cooling was carried out by [8, 9]. Numerical and experimental
work with various slot angles was performed by [10] and they found that for jet
angle larger than 40°, the formation of a recirculation bubble in the downstream
of jet. They concluded that the optimum value for the injection angle lies between
30° and 40° to the mainstream. Recently the study of [8] was extended by [11] and
conducted numerical investigation for two different Reynolds number with density
ratio varying from 1.1 to 5 and blowing ratios of 1–3. They suggested a relation that
yields an optimum film cooling effectiveness based on velocity ratio which is nearly
equal to sine of the angle of injection.

Even though there are numerouswork in the area of film cooling still there is a lack
of fundamental understanding on the physics of the fluid behaviour.Many researchers
reported on film cooling effectiveness but a few study have been conducted on the
heat transfer between the fluid and the surface.

In the present work, a two-dimensional numerical study on a flat surface film
cooling is conducted using a commercial simulation software,ANSYSFLUENT.The
film cooling effectiveness and the heat transfer coefficient is computed for different
blowing ratios. Heat transfer coefficient is compared with the experimental results
available in the literature. Effect of turbulence level on the variation of heat transfer
coefficient is discussed.

2 Problem Formulation and Boundary Conditions

The domain for computational study in the present work is shown in Fig. 1. The
geometrical dimensions for the domain are considered based on the work of [5]. The
secondary fluid is made to enter through the slot of widthD, into themainstreamwith
an angle of 35° to the surface. The value of D is considered as 5 mm in the present
study. The grid required for the computational domain is generated using ANSYS
ICEM with non-uniform structured grid, as shown in Fig. 2. Capturing the turbulent
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Fig. 1 Geometry of the flow domain considered for the present study

Fig. 2 A structured mesh generated with zoomed view near the mixing region of fluids

boundary layer needs very fine grid size near the wall with a y+ value close to unity.
The zoomed view in Fig. 2 shows the formation of very fine grid near the wall.

Air is used as working fluid in the present simulation and the solution domain is
considered as a 2D, steady, incompressible and turbulent flow. The governing equa-
tions solved for continuity, momentum and energy conservation and the Reynolds
stress for turbulence are modeled by using Realizable k-ε turbulence model. Second-
order upwind interpolation scheme is used for the discretization and equations are
solved by using SIMPLE algorithm procedure.

In this study, the velocity and temperature are specified at the inlet of mainstream
and outlet is considered as constant zero gauge pressure. The secondary flow is
introduced as mass flow inlet into the plenum. A uniform velocity of 20 m/s with a
temperature of 300 K is mentioned at the inlet of both primary and the secondary.
Turbulence intensity is given 2% with length scale as 1/10th of the inlet extent as
mentioned in [5]. Other boundaries are considered as wall and the turbulence scalars
are solved by using enhanced wall treatment near wall boundaries.
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3 Result and Discussions

3.1 Heat Transfer Coefficient

The heat transfer coefficient is calculated as

h � q ′′

(Tw − T∞)
(1)

where q′′ is the heat flux applied on the wall surface and Tw is the computed wall
temperature. While calculating the heat transfer coefficient, the temperature of the
mainstream and the secondary fluid is maintained equal and is denoted as T∞. In
the case where temperature of primary and secondary flows are different, the fluid
temperature has to be replaced by the corresponding reference temperature.

Heat transfer coefficient is represented in terms of ratio of heat transfer coefficient
with film cooling to the without film cooling. Figure 3a, b shows the distribution of
heat transfer coefficient for flat surface in the downstream direction of injection for
blowing ratios of 0.5 and 1.0, respectively. Also, the results are compared with the
experimental results of [2] for the case of film cooling through circular holes. When
the blowing ratio is very low, the heat transfer is not greatly affected due to the
secondary injection. As shown in Fig. 3a, the heat transfer coefficient is nearly equal
to with that of without film cooling. The comparison of the present simulation with
the experimental result of three-dimensional film cooling shows similar behaviour.
In the region immediately downstream of injection, there is a slight decrease in the
heat transfer can be observed in both experimental as well as numerical results. The
addition of mass flux into the boundary layer results in decreasing the heat transfer
near to the injection region, but in the far downstream this effect will disappear
making the ratio equal to 1.

In Fig. 3b, a slight decrease in the heat transfer can be observed near the jet exit
in the experimental result of [2], but in the present simulation, there is an increase
in heat transfer to 1.3 times that of without injection. The reason may be attributed
to the spreading of the jet in lateral direction will reduce the velocity of the jet and
hence heat transfer would be less.

A comparison of heat transfer coefficient obtained from the present simulation for
blowing ratio from 0.5 to 2.0 is shown in Fig. 4. When the blowing ratio is below 1.0,
there is a small increase in heat transfer coefficient in the immediate downstream of
injection is observed. But at higher blowing ratio, there is significant increase in the
heat transfer coefficient is noted compared to the case without injection. Not only
near the jet exit but in the far downstream but also heat transfer has increased to
almost 1.6–1.8 times higher than that of without injection.
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Fig. 3 Heat transfer
coefficient distribution along
the flat surface form the
injection point
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3.2 Turbulence Intensity

One of the major reasons behind the increase in heat transfer coefficient is due to
turbulence created at the mixing region. Increase in the blowing ratio will increase
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(a) M= 0.5

(b) M= 1.0

(c) M= 1.5

(d) M= 2.0

Fig. 5 Turbulence level in the region of interaction of two streams for different blowing ratios

the turbulence due to increased velocity of secondary fluid. And hence heat transfer
increases. Figure 5a–d shows the distribution of turbulence intensity in the region of
interaction of the two fluid streams for blowing ratios of 0.5, 1.0, 1.5 and 2.0. The
turbulence intensity at the free stream is given as 2%. Increased turbulence level is
observed at the jet exit and in the immediate downstream region of the flow near the
surface.

When the blowing ratio is at 0.5, a slight increase in the turbulence level of
12–14% is observed and it has covered a very small region as shown in Fig. 5a.
Since the addition of coolant fluid will reduce the temperature of the boundary layer,
at lower blowing ratio, there is a decrease in heat transfer coefficient is identified as
shown in Fig. 3a. As the blowing ratio is increased to 1.0, turbulence intensity is also
increased to 20–22%. When the blowing ratio is increased to 1.5 and 2.0, there is a
drastic increase in the turbulence level is identified and is greater than 30 and 40%,
respectively. When Figs. 4 and 5 are compared, it can be clearly observed that as
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the turbulence intensity is increased, there is an increase in heat transfer coefficient.
This increased turbulence level can be attributed to the increase in the blowing ratio.

4 Conclusion

A two-dimensional numerical simulation is carried out for film cooling on flat surface
with inclined slot of 35° angle of injection. The film cooling effectiveness and the heat
transfer coefficient are investigated for different blowing ratios and results for heat
transfer coefficient are compared with the experimental results from the literature.
Following conclusions were made from the present study,

• The heat transfer coefficient computed form two-dimensional analysis matches
with the experimental results only at lower blowing ratios.

• At higher blowing ratios there is a significant increase in heat transfer coefficient
than the experimental results.

• Primary reason behind the increase of heat transfer coefficient is due to increased
turbulence intensity at the mixing region of two fluids.

• Increase in the secondary flow velocity induces turbulence in the flow.
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Instability Conditions in a Porous
Medium Due to Horizontal Magnetic
Field

A. Benerji Babu, N. Venkata Koteswararao and G. Shivakumar Reddy

Abstract Oscillatory convective instability in a porous medium due to horizon-
tal magnetic field was studied using the Darcy–Lapwood–Brinkman model with
Boussinesq approximation is used to study linear stability analysis. Finite amplitude
solutions are obtained for force-free boundary conditions. An explicit expression at
the onset of convection in terms of leading parameters of the system is obtained.

Keywords Darcy–Lapwood–Brinkman model · Linear stability · Bifurcation
point · Horizontal magnetic field

1 Introduction

Convection in a plane horizontal fluid heated from below and cooled from above is a
typical problem in hydrodynamic stability theory. Thompson [1] and Chandrashekar
[2] were studied the effect of vertical magnetic field on the onset of convection. The
margin of monotones instability is pretentious only by the vertical component of
the magnetic field. However, the property of isotropy is kept in the case of a purely
vertical magnetic field. Magnetoconvection in an electrically conducting fluid in a
nonporousmedium has been studied widely by Chandrasekhar, S., Proctor andWeiss
[3], Tagare [4–6], Jones and Roberts [7], Kloosterziel and Carnevale [8], and Brand
et al. [9, 10]. Palm et al. [11] investigated Rayleigh–Benard convection problem in
a porous medium. Brand and Steinberg [12] investigated convecting instabilities in
binary liquid in a porous medium. Palm et al. [11] and Brand et al. [12] have made
use of Darcy’s law. However, horizontal magnetoconvection in a porous medium has
not received any attention in spite of its applications in geophysical and planetary
fluid dynamics. In this paper, we showed that convection arises in the form of rolls
with the axes parallel to horizontal magnetic field.
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2 Basic Equations

The thermally and electrically conducting fluid in an unbounded horizontal layer
of a thinly packed porous medium with a magnetic field “Ho” of depth “d” is in
the horizontal x-direction. This layer is heated from below, and the top and bottom
bounding surfaces of the layer are assumed to be force-free. The temperature variation
across the force-free boundaries is “�T ′”. The flow in the thinly packed porous
medium is governed by the Darcy–Lapwood–Brinkman model. The dimensionless
equations are

∇.V � 0, ∇.H � 0, (1)

1

M2φPr1

[
∂V

∂t
+
1

φ
(V .∇)V

]
− Q

Pr2
Pr1

(H .∇)H − Q
∂H

∂y

� −∇
(

P

MPr1
+
Q

2

Pr2
Pr1

|H |2+QHy

)
− 1

MDa
V +

Λ

M
∇2V + Rθ êz, (2)

∂θ

∂t
+

1

M
(V .∇)θ � w

M
+ ∇2θ, (3)

φ
Pr2
Pr1

∂H

∂t
− M∇2H � ∇ × (V × êy) +

Pr2
Pr1

∇ × (V × H ). (4)

Using Eqs. (2), (3), and (4) can be reduced in a form

Lw � N , (5)

L � (DφDPr1 − Q∂2
y )D∇2 − R

M
∇2

h Dφ, (6)

N � QD∇2 Pr2
Pr1

∂y[(H .∇)w − (V .∇)Hz]

+ DDφ êz .

{
[

1

M2φ2Pr1
∇ × [(V .∇)ω − (ω.∇)V ]]

− [Q
Pr2
Pr1

∇ × [(H .∇)J − (J .∇)H ]]

}
− R

M
∇2

h Dφ(V .∇)θ, (7)

∇2
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∂2

∂x2
+
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∂y2
), D �

(
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∂t
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)
, Dφ �
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MDa
− �

M
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3 Boundary Condition

For absolutely conducting upper and lower borders, z � 0 and z � 1 with θ �
0, Hz � 0 and w � 0.

4 Linear Stability Analysis

The stability of the problem is by considering

w � W (z)ei(lx+my)+pt . (8)

In Lw � 0, we get an equation{
(D2 − q2 − p)

(
M(D2 − q2) − pφ

Pr2
Pr1

)
(D2 − q2)

[
�

M
(D2 − q2)

− 1

MDa
− p

M2φPr1

]
+
Rq2

M

(
M(D2 − q2) − pφ

Pr2
Pr1

)}
W

� {−Qm2(D2 − q2)(D2 − q2 − p)
}
W. (9)

We assume force-free boundary conditions, and then W � D2W � 0 on z � 0,
z � 1. Thus, we can assume W � sin π z.

4.1 Marginal Stability When Rayleigh Number R Is
a Dependent Variable

Putting W (z) � sin π z and p � iω into Eq. (9), we get

R � M

q2

[
A1 + iω(A2ω

2 + A3)
]
, (10)

A1 � K

[(
m2MQδ4 +

Mδ6

Da
+ Mδ8Λ

)
+

(
δ4�φ2Pr22
MPr21

+
δ2φ2Pr22
DaMPr21

+
m2Qφ2Pr2

Pr1
− δ4

φPr1

)
ω2 − φPr22

M2Pr31
ω4

]
, (11)

A2 � K

[
δ2φPr22
M2Pr31

+
φ2Pr22

DaMPr21
+

δ2�φ2Pr22
MPr21

]
, (12)

A3 � K

[
m2MQδ2 +

Mδ4

Da
+ Mδ6� +

δ6

φPr1
− m2Qφδ2Pr2

Pr1

]
. (13)
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where K � δ2(
M4δ4+ω2φ2 Pr22

Pr21

) , δ2 � (π2 + q2), and q2 � l2 + m2.

4.1.1 Stationary Convection (ω � 0)

Substituting ω � 0 in Eq. (12), we get

Rs � δ2s

q2
s

[
δ2s

(
1

Da
+ δ2s �

)
+ Qm2

]
, (14)

where Rs is the value of Rayleigh number for stationary convection. The critical
Rayleigh number Rs gives the onset of stationary convection at Pitchfork bifurcation.
Take l2 � x , m2 � y then δ2 � x + y + π2 and q2 � x + y. Take x � 0,

Ry � (y + π2)Q + (y + π2)2
[

1

Da
+ (y + π2)�

]
(15)

differentiate w.r.t y and substitute R in the above equation. We get

2�
(m

π

)6
+

(
3� +

Q

π2
+

1

Daπ2

)(m
π

)4 − Q

π4

(m
π

)2 � Q

π4
+

1

Da
π2 + � (16)

msc �
(

Qπ2

2�

) 1
6
and the critical Rayleigh number Rsc ≈

(
Qπ2

2�

) 2
3
.

4.1.2 Oscillatory Convection (ω2 > 0)

For oscillatory convection,

A2ω
2 + A3 � 0 (17)

ω2 � −M2φ2Pr21
[
MφPr1(Dam2Q + δ2 + Daδ4�) + Da(δ4 − m2QPr2)

]
φ2Pr22

(
Daδ2 + M(1 + Daδ2�)φPr1

) , (18)

A necessary condition for ω2 > 0 is Pr2
Pr1

> 1
φ
. Substituting ω2 into real part of

Eq. (10) by taking Da → 0, we get

Ro � δ2

B2q2
0

[
δ40 + Qm2B1

]
(19)

where B1 � M2Pr21
(MPr1+φPr2)(1+M�φPr1)

,

B2 � φ3Pr22
(MPr1 + φPr2)(1 + M�φ2Pr2)

.
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However, it is not sufficient condition and we must have another condition

Q >

Mδ2o
Da + δ2o

(
M� + 1

φPr1

)
m2

(
φ Pr2

Pr1
− M

) (20)

mc �
[
(QPr2 − MPr1)Qφ

(1 + M�φPr1)

] 1
2

and msc �
(
Qπ2

2�

) 1
6

From the monotonic dependence of mc and msc on Q, we may conclude
that for Pr2 > Pr1, there exist a Q(M,�, φ, Pr1, Pr2) such that for Q <

Q(M,�, φ, Pr1, Pr2), the onset of first instability will be stationary convection
at Hopf bifurcation. Q(M,�, φ, Pr1, Pr2) is a function of Prandtl numbers Pr1
and Pr2 and for Q � Q(M,�, φ, Pr1, Pr2) and Rct � Roc(qoc) � Rsc(qsc) but
qoc �� qsc. The critical wave number obtained for q � qoc forms the following
equation:

2
(m

π

)6
+ 3

(m
π

)4 � 1 +
Q

π2

M2Pr21
(MPr1 + φPr2)(1 + M�φPr1)

. (21)

From the above equation, we will not give positive roots for Pr2 � Pr1. For
large Chandrasekhar number Q → ∞, we have

moc �
(

Qπ4M2Pr21
2(MPr1 + φPr2)(1 + M�φPr1)

) 1
6

and Roc � 1

B2

(
QB1π

4

2

) 1
6

. (22)

4.2 Marginal Stability When Rayleigh Number R Is
an Independent Variable

Putting W � sin π z into (11), we get a third-order polynomial in p of the following
form:

p3 + Bp2 + Cp2 + D � 0, (23)

where

B � δ2 + Pr1

(
M

(
1

Da
+ δ2�

)
φ +

Mδ2

φPr2

)
, (24)

C � 1

DaMφPr1
(Daδ6 + Mδ2(Dam2Q + δ2 + Daδ4�)φPr1

+ (−Daq2R + δ4 + Daδ6�)φ2Pr2), (25)
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D � 1

δ2Pr2
M2(−q2Rδ2 + m2Qδ4 + δ6Da + δ8�)Pr21 . (26)

In cubic polynomial (23), B is always positive. The classification of stability
modes of the system is the roots of Eq. (23). Unstable means there exists at least one
root of Eq. (23) with Re(p) > 0; stable means all roots of Eq. (23) with Re(p) < 0.
We get pitchfork difurcation when D � 0 and BC − D > 0. We get the Hopf
bifurcation when D > 0 and BC − D � 0.

4.2.1 Stationary Convection (w � 0)

When p � 0, the cubic equation becomes D � 0

1

δ2Pr2
M2(−q2Rδ2 + m2Qδ4 + δ6Da + δ8�)Pr21 � 0

Rs � δ2

q2

[
Qy +

1

Da
(y + π2) + �(y + π2)2

]
, (27)

Take x � 0 then Rs � y+π2

y

(
δ2

(
1
Da + δ2�

)
+ Qm2

)
minimizing Rs by differentiat-

ing w.r.t y

R � 3Λ(y + π2)2 + 2

(
1

Da

)
(y + π2) − Qπ2, msc �

[(
R

3Λ

) 1
2

− π2

] 1
2

.

where Da → ∞.We consider only positive values ofm.Weget criticalChandraseker
number

Q � Qsc(R) � 9π2�R − 4
√
3�R

3(
√
R − √

3π2
√

�)
. (28)
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Fig. 1 Solid lines represent stationary convection Rs and dotted lines represent oscillatory R0.
Numerically calculated marginal stability curves are plotted in (R−q)-plane for Da � 1500; � �
2; M � 0.9; Pr1 � 1; Pr2 � 1.65; ϕ � 0.85 a Q � 550, b Q � 650, c Q � 750, d Q � 100

4.2.2 Oscillatory Convection (w2 > 0)

The classification of the modes of the system is given in [12]. The positive D is not
enough to discuss the system stability. The sign of BC − D is along with the sign of
D for the stability of the system. Thus, BC − D � 0 given �(y + π2)3 + QB1y(y +
π2)2 − RB2y � 0. Comparing Eq. (27) with (15), we get Q � QB1 and R � RB2.
We get

moc �
[(

RB1

3�

) 1
2

− π2

] 1
2

and Qoc � 9π2ΛRB1 − 4
√
3ΛRB1

B23
(√

RB1 − √
3π2

√
Λ

) (29)

5 Conclusion

We investigated linear stability analysis of convection in a porous medium due to
horizontal magnetic field at the onset of convection identified. We determine the sta-
bility regions for stationary convection for force-free boundary conditions. Evolved
the parameter values that were emerge rolls at the onset of convection.We get Taken-
s–Bogdanov bifurcation point and co-dimensional two bifurcation points. Figures 1
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Fig. 2 Stationary convection Qs curves are solid lines and Oscillatory convection Qo are dotted
lines at M � 1, Pr2 � 4, φ � 0.9, � � 0.85 a Pr1 � 1.85, b Pr1 � 1.9, c Pr1 � 1.95, d
Pr1 � 2.

and 2 show that the effects of Q and porous parameters made the systemmore stable.
The presence of horizontal magnetic field changes the flow structure from monocel-
lularity to multicellularity convective patterns.

References

1. Thompson,W.B.: The London, Edinburgh, and Dublin Philosophical and Science, 7, 42 (1951)
2. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, Oxford University

(1961)
3. Proctor, M.R.E., Weiss, N.O.: Magnetoconvection. Rep. Prog. Phys. 1317 (1982)
4. Tagare, S.G., Benerji Babu, A.: J. Porous Medium 823 (2007)
5. Tagare, S.G., Benerji Babu A., Rameshwar, Y.: Int. J. Heat Mass Transf. 51, 1168 (2008)
6. Tagare, S.G.: J. Plasma Phys. 58, 395 (1997)
7. Jones, C.A., Roberts, P.H.: Geophys. Astrophys. Fluid Dyn. 93, 289 (2000)
8. Kloosterziel, R.C., Carnevale, G.F.: J. Fluid Mech. 490, 333 (2003)
9. Brand, H.R., Steinberg, V.: Phys. Lett. 93A, 333 (1983b)
10. Brand, H.R., Steinberg, V.: Physica 119A, 327 (1983a)
11. Palm, E., Weber, J.E., Kvernvold, O.: Journal of Fluid Mech. 64, 153 (1972)
12. Brand, H.R., Lomdahl, P.S., Newell, A.C.: Physica D23, 345 (1986)



Mathematical Analysis of Steady MHD
Flow Between Two Infinite Parallel Plates
in an Inclined Magnetic Field

V. Manjula and K. V. Chandra Sekhar

Abstract The present paper deals with the study of incompressible fluid flow of
electrically conducting fluid between two parallel porous plates under the influence
of the inclined magnetic field. In the present study, a special focus has been empha-
sised to identifyMHDflow of a compressible fluid between parallel plates. However,
a fluid moves through a magnetic field, an electric field will be generated, and as a
result current may be induced. The interaction ofmagnetic fieldwith the combination
of conducting fluid modifies the flow. The nature of the fluid is strongly dependent on
the orientation of magnetic field. The flow between parallel plates is the fundamental
theme and basis for understanding the dynamics of fluid flow. Hence, the mathemat-
ical analysis of effects of magnetic parameter with fluid velocity at various angles of
previous work was analysed, and the velocity profile in the absence of magnetic field
and perpendicular to direction of fluid flow were depicted graphically. As such, a
modest attempt is made to analyse the effects of Hartmann number at various angles
of inclination, regarding the solution in the absence of magnetic field, which are
presented.

Keywords Introduction · General solution
1 Introduction

In fluid dynamics, MHD flow between parallel plates is classical. The solution has
tremendous applications in power generations, polymer technology, petroleum indus-
try, purification of crude oil, sprays, etc. Hartmann and Lazarus studied the flow of a
conducting fluid between two infinite parallel plates under the influence of a trans-
verse uniform magnetic field. Then, the problem was extended by Serclif [1], Drake
[2], Singh and Ram [3]. Attia et al. [4]. Again, Abdeen [5] throw some light on the
concept of velocity and temperature distributions between parallel porous plates with
Hall effect and variable properties. Chand et al. [6] stressed the effect of Hall current
and rotation on heat transfer inMHDflowwith focus on dusty fluid in porous channel.
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Srikala and Kesavareddy [7] gave commendable contributions towards steady MHD
Couette flow of an incompressible viscous fluid through porousmediumbetween two
infinite parallel plates under the effect of inclinedmagnetic fieldKirubhashankar et al.
[8] revealed the importance of topic.

Kieima and Manyonge [9] explored the topic of the steady MHD Poisulle fluid
flowbetween infinite parallel porous plates. Parvin et al. [10] brought valuable data on
unsteady MHD flow through parallel porous Plates. Joseph and Daniel [13] revealed
the importance of unsteady MHD flow with heat transfer. Further C.B. Singh’s con-
tributions [14] about the concept is recognizable. Finally Kiema and Manyonge [15]
had shown vivid picture on the steady MHD poiselle flow fluid flow between infi-
nite parallel plates. This motivates me to consider mathematical analysis of steady
MHD flow between parallel plates with inclined magnetic field. I could cherish basic
structure from text books Chorlton et al. [16, 17] and the above references.

2 Mathematical Formulation

Consider MHD fluid flow as incompressible fluid between parallel porous plates
separated by a distance h. X-axis is taken as the flow parallel to the direction of
the flow The MHD phenomena can be described by an electrically conducting fluid
with velocity V. Let B be the magnetic field and assume that the flow is steady. The
interaction of two fields, velocity and magnetic fields, and an electric field E can be
induced perpendicular to both V and M. It is denoted by

E � V × B (1)

According to Ohm’s law

J � σ (2)

J � Density of induced current in the conducting fluid
σ � Electrical conductivity� scalar

From (1) and (2),

J � σ(V × B) (3)

Lorentz force F � J × B (4)

Maxwell’s equations together with ohms law and law of magnetic conservation
are

∇ × E � −∂B

∂t
(5)

∇ × H � J +
∂D

∂t
(6)
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where H �Magnetic field intensity and D �Electric displacement vector

J � σ(E + V × B)

∇.B � 0 (7)

∇.D � 0 (8)

The continuity and momentum equations for incompressible fluid are

∇.V � 0 (9)

ρ

{
∂V

∂t
+ (∇.V )V

}
� −∇P + μ∇2u + J × B (10)

Basic assumptions are

The fluid flow is steady and incompressible,
The fluid flow is laminar and unidirectional in x-axis, and
The fluid is electrically neutral.

Hence, the governing equations reduce to

∂v

∂y
� 0 (11)

− 1

ρ
+

∂p

∂x
+ v

∂2u

∂y2
+
FX

ρ
� 0 (12)

− 1

ρ

∂p

∂y
� 0 (13)

Fx component of magnetic force in x-direction

Fx

ρ
� −σ

ρ
B2
0u

1 (14)

∂2u1

∂y12
− σ

μ
B2
0u

1 � 1

u

∂p1

∂x1
(15)

→ ∂2u1

∂y12
− σ

μ
B2
0 sin(α)u1 � 1

u

∂p1

∂x1
(16)

Here, α is the angle between v and B, α ε (0, π)
Differentiating (16)

d2 p2

dx12
� 0 → dp1

dx1
� −C
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d2u

dy2
− σ

μ
B2
0L

2sin2α u � 1

μ

dp

dx
(17)

d2u

dy2
− M2u − 1

μ

dp

dx
� 0

where M2 �
(

σ
ρ

)
B2
0 L

2 sin α

M � Ha sin α

where Ha is the Hartmann number given by

H 2
a � σ B2

0 L
2

μ

It can be expressed as

d2u

dy2
− M2u + c � 0 (18)

The boundary conditions are u �0, y �±1.
v does not change with y, ∂u

∂y � 0
The x and y momentum equations are

v0
∂u

∂y
� v

∂2u

∂y2
− 1

ρ

∂p

∂x
(19)

− 1

ρ

∂p

∂y
� 0 (20)

(20) becomes ∂p
∂x � p

v
∂2u
∂y2 − v0 ∂u

∂y

dp

dx
� ρ

v

d2u

dy2
− v0

du

dy
+

p

μ
− M2u � 0 (21)

d2u

dy2
− v0

v

du

dy
� − p

ρv
(22)

By adding M2u,

d2u

dy2
− v0

v

du

dy
+

p

μ
− M2u � 0 (23)

d2u

dy2
− r

du

dy
− M2u + s � 0 (24)

where r � v0
v
and s � p

μ
are constants.
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3 General Solution

The ratio of electromagnetic force to viscous force is known as theHartmann number.
Ha�0.5, 1.5, 2.5 Angle α�15

U � 119.47431302270012 + e−0.016468779308101065yC[1] + e1.016468779308101yC[2]

U � 13.272280841462607 + e−0.13300078988892264yC[1] + e1.1330007898889227yC[2]

U � 4.777728142490964 + e−0.3176851472296657yC[1] + e1.3176851472296658yC[2]

Ha�0.5, 1.5, 2.5 Angle α�30

U � 3.197953309881676 + e−0.43562813125728533xC[1] + e1.4356281312572854xC[2]

U � 5.327650506126797 + e−0.2908223567907018xC[1] + e1.2908223567907018xC[2]

U � 1.2800819252432156 + e−0.8462540622037135xC[1] + e1.8462540622037136xC[2]

Ha�0.5, 1.5, 2.5, Angle α�45

U � 16.005121638924457 + e−0.11233977496158129xC[1] + e1.112339774961581xC[2]

U � 1.778030653248462 + e−0.6725357137418033xC[1] + e1.6725357137418033xC[2]

U � 1.1314137014199241 + e−0.9204576727238303xC[1] + e1.9204576727238303xC[2]

Ha�0.5, 1.5, 2.5, Angle α�90

U � 0.8888888888888888 + e−1.0811388300841895xC[1] + e2.08113883008419xC[2]

U � 8 + C(1)e−0.20710678118654754x + C(2)e1.2071067811865475x

U � 0.32 + e−2.0495097567963927xC[1] + e3.0495097567963922xC[2]

Angle α�0
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U � 2x + exC[1] + C[2]

According to boundary conditions u �0, y �1 and u �0, y �−1, the solutions
are as follows:

Angle-0, U � [{x},− 1
2 e

−x
(
3 − 4ex + e2x

)]
Angle α�15, Ha�0.5

U � [{y},−1.6040824826650273e−0.016468779308101065y(72.90887017079228

− 74.48140249259822e0.016468779308101065y + 1.e1.0329375586162022y
)]

Angle α�15, Ha�1.5,

U � {y},−1.0845958426118651y(10.431166915160706

−12.237075157416257e0.13300078988892264y + 1.e1.2660015797778454y
)

Angle α�90, Ha�0.5

U � [{y},−0.8623600458475917e−0.20710678118654754y(7.2983536139105825

− 9.276867636112483e0.20710678118654754y + 1.e1.414213562373095y
)]

4 Results and Discussions

The solution of the velocity equations for various values of α is presented. The solu-
tion along with graphical plots of the equation is presented for boundary conditions u
�0, y �1 and u �0, y �−1. According to previous work, the increase of Hartmann
number leads to decrease of velocity. By the application of constant inclined mag-
netic field, velocity decreases due to the Lorentz force generated. By increasing the
angle of inclination, there is no change in the direction of flow but by the removal of
the magnetic parameter the flow becomes parabolic. All calculations are carried out
for r �1, s �2. The solutions for angle of 15°, 30°, and 45° of Hartmann numbers
Ha�0.5, 1.5, 2.5 are presented. The solution plots through Mathematica are
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5 Conclusion

The above analysis is a class of solution of MHD flow between two infinite parallel
plates in an inclined magnetic field as presented. The solutions with boundary con-
ditions are represented graphically. Figures are drawn for Ha�0.5, 1.5, and 2.5 at
angles of 0, 15, 30, 45, and 90°. Velocity profiles give us steady laminar flow under
the influence of transverse magnetic field and parabolic nature for α �0
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Laminar Mixed Convection Flow
of Cu–Water Nanofluid in a Vertical
Channel with Viscous Dissipation

Surender Ontela, Lalrinpuia Tlau and D. Srinivasacharya

Abstract The influence of viscous dissipation on mixed convection laminar flow of
a nanofluid in a vertical channel is investigated. A case of Cu–water-based nanofluid
is considered employing the Das–Tiwari model. The resultant coupled momen-
tum energy equations are solved using the homotopy analysis method after non-
dimensionalization. The influence of pertinent parameters on the flow characteris-
tics is analyzed in both the cases where the channel walls are symmetrically and
asymmetrically heated.

Keywords Mixed convection · Nanofluid · Vertical channel · Viscous
dissipation · Homotopy analysis method

1 Introduction

Ever sinceChoi [1] coined the termnanofluid, theoretical and experimental studies on
the topic have seen a rapid rise. The study of nanofluids has been a topic of great inter-
est for more than a decade, in view of its industrial applications. Nanofluids are used
in cooling technology, medical applications like cancer therapy, drug delivery, etc.

The influence of viscous heating on mixed convection flow in a vertical channel
was studied in great detail by Barletta [2–4] for symmetric and asymmetric heating of
the channelwalls and channelwallswith prescribed heat fluxes. Barletta, Lazzari, and
Magyari [5] investigated buoyant Poiseuille Couette flow with viscous dissipation
in a vertical channel. Magyari, Pop, and Storesletten [6] and Sheikholeslami et al.
[7] explored the influence of transverse magnetic field on nanofluid flow in a semi-
porous channel. Studies on mixed convection flow of nanofluid in a vertical channel
under various physical conditions were reported by several authors (Xu and Pop [8];
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Akgul and Pakdemirli [9]). Motivated by these works, in this paper, we have made
an attempt to explore the influence of viscous dissipation on mixed convection flow
of nanofluid in a vertical channel.

2 Formulation of the Problem

A steady laminar flow of a Cu–water nanofluid in a channel is considered. The x-axis
is taken parallel to walls of the channel and y-axis normal to the wall. The velocity
component u is taken along the x-axis as shown in Fig. 1. Themomentum and energy
balance equations are

μn f
d2u

dy2
+ g(ρβ)n f (T − T0) − dp

dx
= 0 (1)

αn f
d2T

dy2
+ μn f

(ρCp)n f

(
du

dy

)2

= 0 (2)

and the associated boundary conditions are

u

(
− L

2

)
= u

(
L

2

)
= 0; T

(
− L

2

)
= T1; T

(
L

2

)
= T2 with T2 ≥ T1 (3)

where p is the pressure, g is the acceleration due to gravity, and T is the temperature.
And, ρn f is the density, βn f is the thermal expansion coefficient, (Cp)n f is the specific
heat capacity, andμn f is the coefficient of viscosity of nanofluid. The thermophysical
properties of base fluid and nanofluid are given in Table 1.

Fig. 1 Schematic diagram
with coordinate axes
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Table 1 Thermophysical properties of base fluid and nanoparticles

Physical property Base fluid (Water) Copper

Cp (J/kgK) 4179 385

ρ (kg/m3) 997.1 8933

K (W/mK) 0.613 401

β × 10−5 (K−1) 21 1.67

Invoking the following nondimensional variables

U = u

U0
, θ = T − T0

�T
, X = x

D
,Y = y

D
, T0 = T1 + T2

2
, RT = T1 + T2

�T

into Eqs. (1)–(3), we have the following dimensionless form:

(1 − φ)−2.5U ′′ +
[
1 − φ + φ

(ρβ)s

(ρβ) f

]
Riθ + A = 0 (4)

αn f

α f
θ ′′ + Br

μn f

μ f

1[
1 − φ + φ

(ρβ)s
(ρβ) f

]U ′2 = 0 (5)

The associated boundary conditions in dimensionless form are

U

(
−1

4

)
= U

(
1

4

)
= 0; θ

(
−1

4

)
= −RT

2
; θ

(
1

4

)
= RT

2
(6)

where Gr = gβ f �T D3

ν f
is the Grashof number, Re = U0D

ν f
is the Reynolds number,

A = −D2

U0

dP
dx is the dimensionless pressure gradient, αn f = μn f

(ρCp)n f
is the thermal dif-

fusivity of the nanofluid, α f = μ f

(ρCp) f
is the thermal diffusivity of the base fluid,

Br = μ f U 2
0

�T K f
is the Brinkman number, and Ri = Gr

Re is the mixed convection param-
eter. The dimensionless Nusselt numbers are calculated as

Nu1 = dθ

dY

∣∣∣∣
Y=− 1

4

= θ ′
(

−1

4

)
; Nu2 = dθ

dY

∣∣∣∣
Y= 1

4

= θ ′
(
1

4

)
(7)

3 Results and Discussion

The coupled ordinary differential equations (4)–(5) along with the boundary condi-
tions (6) are solved using Homotopy Analysis Method (HAM) [10]. The h-curves
(shown in Figs. 2 and 3) are plotted, and the optimum values of the h are fixed
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Fig. 2 h1 curve

Fig. 3 h2 curve

as h1 = −0.68 and h2 = −0.95 obtained from the average residual error analysis
with different orders of approximation of the solutions. When φ = 0.0, the values of
Nusselt numbers calculated using HAM are compared with that of Barletta [2], and
results are found to be in good agreement, as presented in Table 2.

3.1 Asymmetric Heating

In this case, the boundary temperatures are different, i.e., T2 > T1, RT = 1.
Figure 4 shows that the velocity decreases with an increase in the nanoparticle

volume fraction. This is due to the increase in density of the fluid with increase
in nanoparticle concentration. An increase in the Brinkman number causes a slight
increase in the velocity profile as shown in Fig. 5. An increase in Brinkman number
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Table 2 Comparison of values of Nu1 and Nu2 for asymmetric heating with Ri = 100, φ = 0.0
with that of Barletta [2]

Br Nu1 Nu2
Barletta [2] Present Barletta [2] Present

0 2 2 2 2

0.05 2.048 2.05302 1.918 1.91197

0.01 2.099 2.10798 1.834 1.82141

0.02 2.205 2.22425 1.657 1.63203

0.03 2.319 2.35002 1.471 1.43038

0.04 2.443 2.48672 1.271 1.21471

0.05 2.578 2.63616 1.058 0.982796

Fig. 4 Effect of φ on
velocity

and nanoparticle volume fraction have minimal effect on temperature as shown in
Figs. 6 and 7.

An increase in the Brinkman number increases the Nusselt number on the left
wall as shown in Fig. 8. An increase in the nanoparticle volume fraction diminishes
the Nusselt number on the left wall as shown in Fig. 9. An increase in the Brinkman
number causes the Nusselt number to decrease on the right wall of the channel as
shown in Fig. 10, while the increase in nanoparticle volume fraction causes the
Nusselt number to increase on the right wall of the channel as shown in Fig. 11.

3.2 Symmetric Heating

In this case, the temperatures of the walls of the channel are same, i.e., T2 = T1,
RT = 0.
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Fig. 5 Effect of Brinkman
number on velocity

Fig. 6 Effect of φ on
temperature

Fig. 7 Effect of Brinkman
number on temperature
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Fig. 8 Effect of Brinkman
number on Nusselt number

Fig. 9 Effect of φ on
Nusselt number

Fig. 10 Effect of Brinkman
number on Nusselt number
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Fig. 11 Effect of φ on
Nusselt number

Fig. 12 Effect of φ on
velocity

An increase in the nanoparticle volume fraction decreases the velocity as shown
in Fig. 12. Figure 13 shows that there is a slight increase in the velocity profile with
an increase in the Brinkman number. The temperature decreases with an increase in
the nanoparticle volume fraction as shown in Fig. 14, while it increases with increase
in the Brinkman number as depicted in Fig. 15.

An increase in Br increases the Nusselt number on left wall as shown in Fig. 16,
while it decreases on right wall as shown in Fig. 18. The Nusselt number decreases
with an increase in nanoparticle volume fraction on left wall as shown in Fig. 17,
and it increases on right wall as shown in Fig. 19.
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Fig. 13 Effect of Brinkman
number on velocity

Fig. 14 Effect of φ on
temperature

Fig. 15 Effect of Brinkman
number on temperature
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Fig. 16 Effect of Brinkman
number on Nusselt number

Fig. 17 Effect of φ on
Nusselt number

Fig. 18 Effect of Brinkman
number on Nusselt number
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Fig. 19 Effect of φ on
Nusselt number

4 Conclusion

The laminar mixed convection flow of Cu–water nanofluid in a vertical channel
in the presence of viscous dissipation has been investigated. The HAM has been
successfully applied to solve the governing equations. An increase in nanoparticle
volume fraction decreases the velocity, temperature, and heat transfer coefficient on
the left wall but increases heat transfer coefficient on the right wall of the channel
in both symmetric and asymmetric heating cases. But the opposite orientation is
observed in the case of an increase in Brinkman number.
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A New Initial Value Technique
for Singular Perturbation Problems
Using Exponentially Finite Difference
Scheme

Narahari Raji Reddy

Abstract In the present analysis, an ε-uniform initial value technique is presented
for solving singularly perturbed problems for linear and semi-linear second-order
ordinary differential equations arising in a chemical reactor theory having a boundary
layer at one end point. In this computational technique, the original problem is
reduced to an asymptotically equivalent first-order singular initial value problem and
a terminal boundary value problem. The required approximate solution is obtained
using Box and Trapezoidal schemes after introducing an exponential factor to the
singular perturbed initial value problem. Accuracy and efficiency of this technique
are validated by considering error estimates and with well-established numerical
examples.

Keywords Singular perturbation problems · Boundary value problems · Boundary
layer · Exponential fitted difference scheme · Box and trapezoidal schemes

1 Introduction

In the fields of fluid mechanics, elasticity, and chemical reactor theory, there is
a huge scope to have a problem of singular perturbation with a small parameter
(disturbance) ε to analyze flow phenomena of convection–diffusion problems. This
type of problems was solved numerically by Ascher and Weis [1], Lin and Su [2],
Vulanovic [3, 4], and asymptotically by O’Malley [5, 6], Nayfeh [7], Kevorkian and
Cole [8], Bender and Orszag [9], Eckhaus [10], Van Dyke [11], and Bellman [12].

Exceptional studies are available in the literature to provide the approximate
solutions for convection–diffusion problems with different finite difference meth-
ods. A comprehensive evaluation of convection–diffusion initial and boundary value
problems with uniform numerical methods can be seen in the textbook by Doolan
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and Miller [13]. Bawa and Clavero [14] discussed the problems of singularly per-
turbed reaction–diffusion with higher order global solution and normalized flux. In
work of Ervin and Layton [15], the approximation of the un-weighted derivative is
considered only at the outside of the layer, whereas Kopteva and Stynes [16] are uti-
lized special kinds of nonuniformmeshes (namely, piecewise-uniformShishkinmesh
and Bakhvalov mesh) to derive the derivative approximation on the entire domain.
Recently, Raji Reddy and Mohapatra [17] discussed the stability of an exponen-
tially fitted finite difference scheme for evaluating singularly perturbed two-point
boundary value problems using fitting factor.

Analysis of singular perturbations problems is a field of great interest to applied
mathematicians. In view of this interest, we consider the following singular pertur-
bation problem:

εy′′(x) + a(x)y′(x) − b(x)y(x) � f (x), (1)

for x ∈ � � (0, 1) with the boundary conditions

y(0) � α and y(1) � β, (2)

where ε is a small positive parameter such that 0 < ε � 1 and α, β are given
nonnegative constants. We assume that a(x), b(x) and f (x) are sufficiently con-
tinuously differentiable functions in the interval �̄ � [0, 1]. Moreover, we assume
that a(x) ≥ M > 0 though out the interval �̄, where M is a positive constant and
b(x) ≤ 0. Under these assumptions, the problem (1)–(2) has a unique solution y(x)

which exhibits a boundary layer of width O(ε) at x � 0 for small values of ε [6, 8].
Note that if a(x) ≤ M < 0 then the boundary layer occurs at the right end x � 1.
Here, we discuss the problem of having the left end boundary layer and the results
for the right end boundary layer are analogous.

Let Y N be the numerical approximation, N be the number of mesh elements
used, y be the solution of the continuous problem and ‖y‖� � maxx∈�|y(x)| be
the maximum point-wise norm, and the error constant C be independent of any
perturbation parameters and the mesh parameter N . A numerical method is said to
be parameter uniform of order p if

∥
∥y − Y N

∥
∥

�N ≤ C p N−p, p > 0,

where �N is the discretization of � (domain of the problem), and the constant C p

is independent of any perturbation parameters and the mesh parameter N. In other
words, the numerical approximations Y N converge to y for all values of ε in the
range 0 < ε � 1.
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2 Description of the Method

First, the given interval �̄ � [0, 1] is divided into N equal subintervals, each of
length h. Let 0 � x0 < x1 < x2 < · · · < xN � 1 be the mesh points such that
xi − xi−1 � h � constant for i � 1, 2, . . . , N . Let �N � {xi }N

i�0. Thus, we have
xi � ih for ∀0 ≤ i ≤ N . The outer region solution as an asymptotic expansion is of
the form

y(x) �
∞

∑

i�0

yn(x)εn (3)

where yn(x) are unknown functions to be determined and for any ‘n’, there exist a
constant Bn such that

∣
∣y(x, ε) − yn(x, ε)

∣
∣ ≤ Bnε

N+1 (4)

On substituting y(x) from (3) into (1), we get

ε
(

y′′
0 + εy′′

1 (x) + ε2y′′
2 (x) + · · ·) + a(x)

(

y′
0 + εy′

1(x) + ε2y′
2 + · · ·)

− b(x)
(

y0 + εy1 + ε2y2(x) · · ·) � f (x) (5)

with

y0(1) + εy1(1) + ε2y2(1) + · · · � β (6)

Equating the coefficients of like powers of ε on both sides of (5) and (6), we obtain
the problems for the terms y0(x), y1(x), y2(x), . . . of the series (3) as follows:

a(x)y0(x) − b(x)y0(x) � f (x), with y0(1) � β (7)

y′′
k−1(x) + a(x)y′

k(x) − b(x)yk(x) � 0,with yk(1) � 0, k � 1, 2, 3, . . . (8)

Solving (7) and (8), we get y0(x), y1(x), y2(x) . . . and hence y(x) given in (3) is
obtained next. We shall call this solution throughout as an outer solution and write
it as yout(x). Now integrating (1) from x to 1 and neglecting εy′(1), we get

εy′(x) + a(x)y(x) � z(x), (9)

with

y(0) � α, (10)

where z(x) is given by z(x) � a(1)y(1) − θ(x)

Here, θ(x) is the solution of the following initial value problem:
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θ ′ � −(

a′(x)yout(x) + b(x)yout(x) + f (x)
)

(11)

with

θ(1) � 0, (12)

where y(x) is replaced with the outer solution yout(x) in Eq. (11).
Therefore, the new initial value problem is

Ly(x) ≡ εy′(x) + a(x)y(x) � z∗(x), (13)

with

y(0) � α (14)

From (11) to (12) and z(x), one can easily get {zi }N
i�0. We next solve the singular

initial value problem (13)–(14) by an exponentially fitted finite difference scheme
given in the next section.

Now describe the initial value problem (13)–(14) by the exponentially fitted finite
difference scheme (EFFD) [15]

L N ui ≡ εσ (ρ)D+ui + ai ui � z∗
i , i � 0(1)N − 1 (15)

with

u0 � α, (16)

where σ(ρ) � ρa(0)
1−exp(−ρa(0)) . But by Box and Trapezoidal scheme for Eqs. (17)–(18),

it is given by

εσ (ρ)

[
ui+1 − ui

h

]

+
ai ui + ai+1ui+1

2
� z∗

i + z∗
i+1

2
(17)

with

u0 � α. (18)

We can approximate the solution of boundary value problem (1)–(2) by approxi-
mating the initial value problem (15)–(16). One can easily solve (17)–(18) by forward
substitution.



A New Initial Value Technique for Singular Perturbation … 653

3 Error Estimates

In this section, we derive error estimates using the maximum principle. Now, we will
show that the exponentially fitted finite difference scheme given in Sect. 3 is of O(h)

uniformly in ε.

Lemma 4.1 (Continuous Maximum Principle) Consider the problem (13)–(14). If

y(x) ≥ 0, Ly(x) ≥ 0, ∀x ∈ �, then y(x) ≥ 0 for ∀x ∈ �̄

Proof It can be easily proven by contradiction, let x∗ ∈ �̄ be such that y(x∗) �
min
x∈�

y(x) and assume that y(x∗) < 0.

Then, it is clear that y′(x∗) � 0, so therefore Ly(x∗) ≡ εy′(x∗)+a(x∗)y(x∗) < 0,
which is contradiction to the statement.

Lemma 4.2 (Stability) Consider the problem (13)–(14). Then, the solution of the
problem satisfies

|y(x)| ≤ C max{|y0|, max|Ly(x)|}, for x ∈ �̄ where C is a positive constant.

Proof Define φ± � C max{|y0|,max|Ly(x)|} ± y(x)

It is clear that φ±(x) ≥ 0, and Lφ±(x) ≡ a(x)C{|y0|, max|Ly(x)|} ± y(x) ≥ 0
Therefore, by Lemma 4.1, we get φ±(x) ≥ 0, x ∈ �̄.
Thus, we get |y(x)| ≤ Cmax{|y0|,max|Ly(x)|}.

Lemma 4.3 (Discrete Maximum Principle) Consider the scheme (15)–(16). If ui be
a mesh function such that u0 ≥ 0 and L N ui ≥ 0 for all xi ∈ �N , then ui ≥ 0 for all
xi ∈ �N .

Proof Suppose that there exists a positive integer k such that uk+1 < 0 and uk+1 �
min

0≤ j≤N
u j

Then, we have

L N ui ≡ εσi (ρ)D+ui + ai ui � εσi (ρ) ui+1−ui
h + ai ui

< 0,which is a contradiction.

Hence the result.

Lemma 4.4 (Discrete Stable Principle) If ui is any mesh function in the scheme

(15)–(16), then |ui | ≤ C max

{

|u0|, max
xi ∈�N

∣
∣L N ui

∣
∣

}

, where C is a positive constant.

Proof Define 
±
i � C max

{

|u0|, max
xi ∈�N

∣
∣L N ui

∣
∣

}

± ui .
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It is clear that 
±
0 ≥ 0, and L N 
±

i ≡ ai C

{

|u0|, max
xi ∈�N

∣
∣L N ui

∣
∣

}

± L N ui ≥ 0, for a

proper choice of C . Then, by maximum principle, we get 
±
i ≥ 0, ∀xi ∈ �N ; thus,

we get |ui | ≤ C max

{

|u0|, max
xi ∈�N

∣
∣L N ui

∣
∣

}

. Hence the result.

Lemma 4.5 If u(x) and ui be the solutions of the problems (13)–(14) and (15)–(16),
respectively, then we have |u(x) − ui | ≤ Ch, where C is independent of i, h and ε.

Proof Reference [15].

Theorem 4.1 If y(x) is the solution of Eqs. (1)–(2) and uN is the solution of
Eqs. (17)–(18), then

∣
∣y(x) − uN

∣
∣ ≤ C(h + ε) for some positive constant C.

Proof It is easy to see that the problems (1)–(2) and (13)–(14) are equivalent. Equa-
tion (13) is obtained from Eq. (9) after replacing z(x) by z∗(x).

By Lipchitz condition, with |y(x) − yout (x)| < ε, for x ∈ �̄ we get
|z(x) − z∗(x)| ≤ Cε.

Let p(x) � y(x) − u(x), where u(x) is the solution of Eq. (13).
Now by Lemma 4.2 for p(x), we get |p(x)| ≤ C |z(x) − z∗(x)|, that is,

|y(x) − u(x)| ≤ Cε for x ∈ �̄.
Now, we have

L N
(

u − uN
)

(xi ) � (

L N − L
)

u(xi )

� ε(σ − 1)D+ui + ε
(

D+ui − u′
i

)

+
(ai ui + ai+1ui+1

2
− ai ui

)

+
(gi + gi+1

2
− gi

)

.

Taking the absolute value, we get
∣
∣
∣L N

(

u − uN
)

(xi )

∣
∣
∣ ≤ ε|σ − 1|∣∣D+ui

∣
∣ + ε

∣
∣D+ui − u′

i

∣
∣ +

∣
∣
∣
∣

ai+1ui+1 − ai ui

2

∣
∣
∣
∣
+

∣
∣
∣
∣

gi+1 − gi

2

∣
∣
∣
∣

�
∣
∣
∣
∣

σ − 1

ρ

∣
∣
∣
∣
|ui+1 − ui | + ε

∣
∣D+ui − u′

i

∣
∣ +

∣
∣
∣
∣

ai+1ui+1 − ai ui

2

∣
∣
∣
∣

+

∣
∣
∣
∣

gi+1 − gi

2

∣
∣
∣
∣

But we have ai+1 � a(xi + h) � a(xi ) + o(h) ≈ ai . Similarly, gi+1 ≈ gi .

∣
∣L N

(

u − uN
)

(xi )
∣
∣ ≤

∣
∣
∣
∣

σ − 1

ρ

∣
∣
∣
∣
|ui+1 − ui | + ε

∣
∣D+ui − u′

i

∣
∣ +

ai

2
|ui+1 − ui | ≤ Ch.

By Lemma 4.4, we get

∣
∣ui − uN (x)

∣
∣ ≤ Ch.
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But by triangular inequality and by Lemma 4.5, we get

∣
∣y(x) − uN

∣
∣ ≤ |y(x) − u(x)| + |u(x) − ui | +

∣
∣ui − uN (x)

∣
∣ ≤ C(h + ε).

Hence the theorem.

4 Numerical Examples and Results

The applicability and advantages of the present method have demonstrated the con-
sideration of linear and nonlinear singular perturbation problemswith left end bound-
ary layerswhich are broadly examined in the literature. Themaximumabsolute errors
for the problems are presented in the tables for different values of ε and N . For any
value of ε and N , the exact maximum absolute point-wise errors E N

ε and the corre-
sponding rates of convergence are calculated by

E N
ε � max

0≤i≤N
|y(xi ) − yi | and r N

ε � log2

(
E N

ε

E2N
ε

)

,

where yi is the exact solution and y(xi ) is the numerical solution obtained by using N
number ofmesh subintervals. The ε-uniformnodal errors and the numerical rates of ε-
uniform convergence are computed using E N � max

0≤ε≤1
E N

ε and r N � log2
(

E N

E2N

)

.

The maximum absolute errors E N
ε , the rates of convergence r N

ε , ε-uniform nodal
errors E N , and the numerical rates of ε-uniform convergence r N have been presented
in the tables.

Example 5.1 Now consider the nonhomogeneous linear problem ([17], Example 2):

εy′′(x) + y′(x) � 1 + 2x, y(0) � 0, y(1) � 1.

The exact solution is

y(x) � x(x + 1 − 2ε) + (2ε − 1)
(

1 − exp
(

− x

ε

))/(

1 − exp

(

−1

ε

))

.

The outer solution is yout(x) � x2 + x − 1 + 2ε(1 − x) (Table 1).

Example 5.2 In this example, we consider the nonlinear problem ([10], p. 56):

εy′′(x) + y(x)y′(x) − y(x) � 0, y(0) � −1, y(1) � 3.9995.

The concerned linear problem is εy′′(x) + (x + 2.9995)y′(x) � x + 2.9995
(Table 2).

The uniformly valid approximation [5] is y(x) � x + C1 tan h
((C1

2

)(
x
∈ + C2

))

,
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where

C1 � 2.9995, C2 �
(

1

C1

)

loge

(
(C1 − 1)

(C1 + 1)

)

.

5 Conclusions

A numerical asymptotic scheme is presented for solving two-point singularly per-
turbed boundary value problems with boundary layer at left end point. Initially, the
given problem is converted into two initial value problems for the computation of
approximate solution of the given problem. The outer solution of the problem is
calculated first and then using this, we calculated the solution of the first initial value
problem. With the help of this solution, the second initial value problem is solved
with box and trapezoidal schemes. Numerical results are considered for various val-
ues of ε and the respective results given in tables. Also, the rate of convergence
and maximum absolute errors is tabulated separately. It is noticed that the numerical
results of present method are closely approximated to the exact solutions.

Table 1 Maximum point-wise errors E N
ε and the rate of convergence r N

ε for Example 5.1

ε Number of intervals (N)

16 32 64 128 256 512

1e−4 9.179e−2
0.9847

4.634e−2
0.9924

2.314e−2
0.9963

1.168e−2
0.9981

5.851e−3
0.9988

2.928e−3

1e−8 9.179e−2
0.9847

4.638e−2
0.9925

2.331e−2
0.9962

1.168e−2
0.9980

5.852e−3
0.9991

2.928e−3

E N r N 9.179e−2
0.9847

4.638e−2
0.9945

2.331e−2
0.9962

1.168e−2
0.9980

5.852e−3
0.9991

Table 2 Maximum point-wise errors E N
ε and the rate of convergence r N

ε for Example 5.1

ε Number of intervals (N)

16 32 64 128 256 512

1e−4 3.092e−2
0.9926

1.554e−2
0.9963

7.792e−3
0.9981

3.901e−3
0.9989

1.952e−3
0.9986

9.770e−4

1e−8 3.092e−2
0.9926

1.554e−2
0.9963

7.792e−3
0.9981

3.901e−3
0.9989

1.952e−3
0.9986

9.770e−4

E N r N 3.092e−2
0.9926

1.554e−2
0.9963

7.792e−3
0.9981

3.901e−3
0.9989

1.952e−3
0.9986



A New Initial Value Technique for Singular Perturbation … 657

References

1. Ascher, U., Weis, R.: SIAM J. Sci. Stat. Comput. 5, 811 (1984)
2. Lin, P., Su, Y.: Appl. Math. Mech. 10, 1005 (1989)
3. Vulanovic, R.: Computing 41, 97 (1989)
4. Vulanovic, R., Vychisl, Zh.: Mat. Mat. Fiz. 31, 522 (1991)
5. O’Malley, R.E.: Introduction to Singular Perturbations. Academic Press, New York (1974)
6. O’Malley, R.E.: Singular Perturbation Methods for Ordinary Differential Equations. Springer,

New York (1991)
7. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)
8. Cole, J.D., Kevorkian, J.: Perturbation Methods in Applied Mathematics. Springer, New York

(1979)
9. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientist and Engineers.

McGraw-Hill, New York (1978)
10. Eckhaus, W.: Matched Asymptotic Expansions and Singular Perturbations. North-Holland,

Amsterdam (1973)
11. Van Dyke, M.: Perturbation Methods in Fluid Mechanics. Parabolic Press, Stanford (1975)
12. Bellman, R.: Perturbation Techniques inMathematics, Physics and Engineering, Holt. Rinehart

& Winston, New York (1964)
13. Doolan, E.P.,Miller, J.J.H., Schilders,W.H.A.: UniformNumericalMethods for Problemswith

Initial and Boundary Layers. Boole Press, Dublin (1980)
14. Bawa, R.K., Clavero, C.: Appl. Math. Comput. 216, 2058 (2010)
15. Ervin, V., Layton, W.: SIAM J. Sci. Comput. 8, 265 (1987)
16. Kopteva, N., Stynes, M.: Appl. Numer. Math. 39, 47 (2001)
17. Raji Reddy, N., Mohapatra, J.: Natl. Acad. Sci. Lett. 38, 355 (2015)


	Contents
	About the Editors
	An Approximate Solution of Fingering Phenomenon Arising in Porous Media by Successive Linearisation Method
	1 Introduction
	2 Statement of the Problem
	3 Statics of Fingers
	4 Fundamental Equations
	5 Numerical and Graphical Representation
	6 Conclusion
	References

	Entropy Generation Analysis for a Micropolar Fluid Flow in an Annulus
	1 Introduction
	2 Mathematical Formulation
	3 Results and Discussion
	4 Conclusions
	References

	Solution of Eighth-Order Boundary Value Problems by Petrov–Galerkin Method with Quintic and Sextic B-Splines
	1 Introduction
	2 Description of the Method
	3 Procedure of Finding the Parameters
	4 Numerical Results
	5 Conclusions
	References

	A Mathematical Study on Optimum Wall-to-Wall Thickness in Solar Chimney-Shaped Channel Using CFD
	1 Introduction
	1.1 Problem Description

	2 Mathematical Models
	2.1 Numerical Analysis

	3 Conclusion and Future Work

	Estimation of Heat Transfer Coefficient and Reference Temperature in Jet Impingement Using Solution to Inverse Heat Conduction Problem
	1 Introduction
	2 Construction of the Problem and Solution Procedure
	3 Simultaneous Estimation of HTC and RT
	4 Results and Discussion
	5 Conclusions
	References

	Investigation of Thermal Effects in a Ferrofluid-Based Porous Inclined Slider Bearing with Slip Conditions
	1 Introduction
	2 Formulation of the Problem
	3 Solution of the Problem
	4 Results and Discussion
	5 Conclusions
	References

	Thermal Convection in an Inclined Porous Layer with Effect of Heat Source
	1 Introduction
	2 Mathematical Formulation
	3 Basic State Solution
	4 Linear Stability Analysis
	5 Results Analysis
	6 Conclusion
	References

	MHD Flow and Heat Transfer  of Immiscible Micropolar and Newtonian Fluids Through a Pipe: A Numerical Approach
	1 Introduction
	2 Mathematical Modelling of the Problem
	3 Numerical Procedure for Solutions
	3.1 Velocity and Microrotation Distributions
	3.2 Temperature Distribution

	4 Results
	5 Conclusions
	References

	Modeling and Simulation of High Redundancy Linear Electromechanical Actuator for Fault Tolerance
	1 Introduction
	2 Background and Motivation
	3 Mathematical Modeling of Single EMA
	4 Simulation Results
	5 Conclusion
	References

	Thermal Radiation and Thermodiffusion Effect on Convective Heat and Mass Transfer Flow of a Rotating Nanofluid in a Vertical Channel
	1 Introduction
	2 Formulation of the Problem
	3 Method of the Problem
	4 Important Results and Conclusions
	References

	Transient Analysis of Third-Grade Fluid Flow Past a Vertical Cylinder Embedded in a Porous Medium
	1 Introduction
	2 Problem Description
	3 Numerical Procedure
	4 Results and Discussion
	5 Concluding Remarks
	References

	Natural Convective Flow of a Radiative Nanofluid Past an Inclined Plate  in a Non-Darcy Porous Medium  with Lateral Mass Flux
	1 Introduction
	2 Boundary Layer Analysis
	3 Results and Discussion
	4 Conclusions
	References

	Joule Heating and Thermophoresis Effects on Unsteady Natural Convection Flow of Doubly Stratified Fluid in a Porous Medium with Variable Fluxes: A Darcy–Brinkman Model
	1 Introduction
	2 Mathematical Formulation
	3 Results and Discussion
	4 Conclusion
	References

	Performance Analysis of Domestic Refrigerator Using Hydrocarbon Refrigerant Mixtures with ANN and Fuzzy Logic System
	1 Introduction
	2 Experimental Details
	2.1 Experimental Setup and Testing Procedure

	3 Development of ANN Model
	3.1 Modeling with the ANN

	4 Design of Fuzzy Logic System for a Domestic Refrigeration System
	5 Results and Discussions
	5.1 Prediction of COP by Using FlS and ANN for R134a
	5.2 Prediction of COP by Using FlS and ANN for R436A

	6 Conclusion
	References

	Numerical Computation of the Blood Flow Characteristics Through the Tapered Stenotic Catheterised Artery with Flexible Wall
	1 Introduction
	2 Mathematical Modelling of the Problem
	2.1 Schematic Representation of the Axisymmetric Stenosis
	2.2 Equations of the Governing Flow
	2.3 Boundary Conditions and Initial Condition

	3 Solution Methodology
	4 Results and Discussion
	5 Conclusion
	References

	Combined Influence of Radiation Absorption and Hall Current on MHD Free Convective Heat and Mass Transfer Flow Past a Stretching Sheet
	1 Introduction
	2 Formulation of the Problem
	3 Formulation of the Problem
	4 Comparison
	5 Results and Discussion
	6 Conclusions
	References

	Numerical Study for the Solidification of Nanoparticle-Enhanced Phase Change Materials (NEPCM) Filled in a Wavy Cavity
	1 Introduction
	2 Methodology
	2.1 Geometry and Boundary Conditions
	2.2 Numerical Methods

	3 Results and Discussions
	3.1 Validating the Numerical Model
	3.2 Solidification Time for Different Nanoparticle Volume Fraction
	3.3 Effect of Initial Temperature on the Total Solidification Time
	3.4 Effect of Hot and Cold Wall Temperature Difference
	3.5 Investigation of Solidification Time for Different Grashof Number (Gr)

	4 Conclusions
	References

	Analysis of Forced Convection Heat Transfer Through Graded PPI Metal Foams
	1 Introduction
	2 Problem Statement
	3 Computational Domain and Boundary Conditions
	4 Numerical Details
	5 Results and Discussion
	5.1 Grid Independency and Validation of the Methodology
	5.2 Hydrodynamic Results
	5.3 Temperature Results

	6 Conclusion
	References

	Accelerating MCMC Using Model Reduction for the Estimation of Boundary Properties Within Bayesian Framework
	1 Introduction
	2 Mathematical Formulation of the Forward Problem
	2.1 Description of the Complete Model
	2.2 Description of the Reduced Model

	3 Results and Discussion
	4 Conclusion
	References

	Boundary Layer Flow and Heat Transfer of Casson Fluid Over a Porous Linear Stretching Sheet with Variable Wall Temperature and Radiation
	1 Introduction
	2 Mathematical Formulation
	3 Solution of the Problem
	4 Result and Discussion
	5 Conclusion
	References

	Isogeometric Boundary Element  Method for Analysis and Design Optimization—A Survey
	1 Introduction
	2 Fundamental Solutions
	2.1 Discretization
	2.2 Numerical Integration of Kernels

	3 Applications
	4 Research Groups and Other Information
	5 Conclusions and Future Directions
	References

	Unsteady Boundary Layer Flow of Magneto-Hydrodynamic Couple Stress Fluid over a Vertical Plate with Chemical Reaction
	1 Introduction
	2 Mathematical Statement of the Problem
	3 Solution Methodology
	4 Discussion of Numerical Results
	5 Conclusions
	References

	A Mathematical Approach to Study the Blood Flow Through Stenosed Artery with Suspension of Nanoparticles
	1 Introduction
	2 Mathematical Formulation
	3 Solution
	4 Result Analysis
	5 Conclusion
	References

	Non-Newtonian Fluid Flow Past a Porous Sphere Using Darcy's Law
	1 Introduction
	2 Statement of the Problem
	3 Results and Discussion
	4 Conclusions
	References

	Navier Slip Effects on Mixed Convection Flow of Cu–Water Nanofluid in a Vertical Channel
	1 Introduction
	2 Mathematical Formulation
	3 Results and Discussion
	4 Conclusion
	References

	Heat Flow in a Rectangular Plate
	1 Introduction
	2 Mathematical Formulation
	3 Solution of the Problem
	3.1 Method-1
	3.2 Method-2

	4 Results and Discussions
	References

	Flow of Blood Through a Porous Bifurcated Artery with Mild Stenosis Under the Influence of Applied Magnetic Field
	1 Introduction
	2 Mathematical Formulation
	3 Results and Discussion
	4 Conclusions
	References

	Finite Element Model to Study the Effect of Lipoma and Liposarcoma on Heat Flow in Tissue Layers of Human Limbs
	1 Introduction
	2 Mathematical Model
	3 Results and Discussion
	4 Conclusion
	References

	Effects of Thermal Stratification and Variable Permeability on Melting over a Vertical Plate
	1 Literature Review
	2 Mathematical Formulation
	3 Heat Transfer Coefficient
	4 Graphs and Discussions
	References

	Effect of Chemical Reaction and Thermal Radiation on the Flow over an Exponentially Stretching Sheet with Convective Thermal Condition
	1 Introduction
	2 Mathematical Formulation
	3 Numerical Solution
	4 Results and Discussions
	5 Conclusions
	References

	Soret and Viscous Dissipation Effects on MHD Flow Along an Inclined Channel: Nonlinear Boussinesq Approximation
	1 Introduction
	2 Mathematical Modeling
	3 Results and Discussion
	4 Conclusion
	References

	Optimization of Temperature of a 3D Duct with the Position of Heat Sources Under Mixed Convection
	1 Introduction
	2 Mathematical Formulation
	2.1 Standard k−ε Turbulence Model
	2.2 Boundary Conditions

	3 Method of Solution
	4 Validation of the Numerical Scheme
	5 Results and Discussion
	6 Conclusion
	References

	Viscous Fluid Flow Past a Permeable Cylinder
	1 Introduction
	2 Statement and Formulation of the Problem
	3 Boundary Conditions
	4 Solution of the Problem
	5 Pressure
	6 Bounds for Permeability Parameter
	7 Drag Acting on the Cylinder
	8 Results and Discussions
	8.1 Streamlines
	8.2 Drag

	9 Conclusions
	9.1 Drag

	References

	Numerical Solution of Load-Bearing Capacity of Journal Bearing Using Shape Function
	1 Introduction
	2 Analysis
	3 Conclusion
	References

	A Numerical Scheme for Solving a Coupled System of Singularly  Perturbed Delay Differential Equations of Reaction–Diffusion Type
	1 Introduction
	2 Statement of the Problem
	3 Derivation of Method
	4 Numerical Examples
	5 Conclusions
	References

	A Computational Study on the Stenosis Circularity for a Severe Stenosed Idealized Artery
	1 Introduction
	2 Methods
	2.1 Problem Setup
	2.2 Validation

	3 Results and Discussion
	3.1 Flow Behavior in the Downstream
	3.2 Oscillatory Shear Index (OSI)

	4 Conclusion
	References

	Flow and Heat Transfer of Carbon Nanotubes Nanofluid Flow Over a 3-D Inclined Nonlinear Stretching Sheet with Porous Media
	1 Introduction
	2 Formulation of the Problem
	3 Results and Discussion
	4 Conclusion
	References

	MHD Boundary Layer Liquid Metal Flow in the Presence of Thermal Radiation Using Non-similar Solution
	1 Introduction
	2 Mathematical Formulations
	2.1 Gӧrtler Transformation

	3 Method of Solution
	3.1 Discretization and Grid

	4 Results and Discussions
	5 Conclusion
	References

	Similarity Analysis of Heat Transfer and MHD Fluid Flow of Powell–Eyring Nanofluid
	1 Introduction
	2 Problem Formulation
	3 Problem Formulation
	4 Results and Discussions
	5 Conclusion
	References

	Entropy Generation Analysis of Radiative Rotating Casson Fluid Flow Over a Stretching Surface Under Convective Boundary Conditions
	1 Introduction
	2 Flow Analysis
	3 Numerical Solution
	4 Entropy Generation Analysis
	5 Results and Discussion
	6 Conclusion
	References

	Study on Effects of Slots on Natural Convection in a Rectangular Cavity Using CFD
	1 Introduction
	2 Physical and Mathematical Demonstration
	3 Numerical Modeling
	4 Results and Discussion
	5 Conclusion
	References

	Numerical Investigation on Heat Transfer and Fluid Flow Characteristics of Natural Circulation Loop with Parallel Channels
	1 Introduction
	2 Numerical Methodology
	2.1 Governing Equations
	2.2 Solution Method and Grid Independency Test

	3 Results and Discussion
	4 Conclusions
	References

	Numerical Study of Heat Transfer Characteristics in Shell-and-Tube Heat Exchanger
	1 Introduction
	2 Literature Review
	3 Mathematical Model and Analysis
	4 Formulations
	5 Shell-Side Calculation
	6 Tube-Side Calculation
	7 Results and Discussions
	8 Conclusion
	References

	Application of Green’s Function to Establish a Technique in Predicting Jet Impingement Convective Heat Transfer Rate from Transient Temperature Measurements
	1 Introduction
	2 Methodology and Mathematical Formulation
	2.1 Procedure to Calculate Heat Transfer Coefficient and Reference Temperature

	3 Results and Discussions
	4 Conclusion
	References

	Mathematical Simulation of Cavitation with Column Separation in Pressurized Pump Pipeline Systems
	1 Introduction
	2 Methodology
	3 Discrete Vapour Cavitation Model
	4 Numerical Simulation—Results and Discussions
	5 Conclusions
	References

	MHD Flow of Micropolar Fluid in the Annular Region of Rotating Horizontal Cylinders with Cross Diffusion, Thermophoresis, and Chemical Reaction Effects
	1 Introduction
	2 Problem Statement
	3 Numerical Method for Solution
	4 Comparison of Analytical and Numerical Solutions
	5 Results and Discussions
	6 Conclusions
	References

	Numerical and CFD Analysis of Joints in Flow-Through Pipe
	1 Introduction
	2 Experimental Setup and Operating Procedure
	2.1 Experimental Setup
	2.2 Operating Procedure

	3 Results and Discussion
	3.1 Experimental Results

	4 CFD Analysis
	4.1 Modeling Details
	4.2 Post-processing

	5 Comparison of the CFD Results with the Experimental Results
	6 Conclusion
	References

	2D Numerical Analysis of Natural Convection in Vertical Fins on Horizontal Base
	1 Introduction
	2 Problem Description
	2.1 Mathematical Model

	3 Results
	4 Conclusion
	References

	Effect of Loop Diameter on Two-Phase Natural Circulation Loop Performance
	1 Introduction
	2 Mathematical Modeling
	2.1 Governing Equations

	3 Result and Discussion
	4 Conclusions
	References

	Studies on Heat and Mass Transfer Coefficients of Pearl Millet in a Batch Fluidized Bed Dryer
	1 Introduction
	2 Experimental Setup and Procedure
	3 Results and Discussion
	3.1 Heat Transfer Studies
	3.2 Mass Transfer Studies

	4 Conclusion
	References

	Effect of Channel Confinement and Hydraulic Diameter on Heat Transfer in a Micro-channel
	1 Introduction
	2 Model Description
	3 Mathematical Formulations
	4 Results and Discussions
	4.1 Validation of the Computed Results
	4.2 Hydrodynamic Entry Length
	4.3 Comparison of Fluid and Wall Temperature
	4.4 Effect of Hydraulic Diameter on Heat Transfer

	5 Conclusions
	References

	Numerical Study on Performance of Savonius-Type Vertical-Axis Wind Turbine, with and Without Omnidirectional Guide Vane
	1 Introduction
	2 Problem Description and Solution Methodology
	2.1 Geometry and Computational Domain
	2.2 Formulae and Solver Settings

	3 Results and Discussion
	4 Conclusion
	References

	Free Convection of Nanofluid Flow Between Concentric Cylinders with Hall and Ion-Slip Effects
	1 Introduction
	2 Mathematical Formulation
	3 Results and Discussion
	4 Conclusions
	References

	Chemically Reacting Radiative Casson Fluid Over an Inclined Porous Plate: A Numerical Study
	1 Introduction
	2 Mathematical Formulation
	3 Numerical Solution with Galerkin Finite Element Method
	4 Results and Discussion
	5 Conclusions
	References

	Field-Driven Motion of Ferrofluids  in Biaxial Magnetic Nanowire  with Inertial Effects
	1 Preamble
	2 Micromagnetic Model and Governing Dynamics
	3 Explication of DW Motion
	4 Conclusion
	References

	Analytical Study of Fluid Flow in a Channel Partially Filled with Porous Medium with Darcy–Brinkman Equation
	1 Introduction
	2 Mathematical Formulation
	3 Velocity Profiles
	4 Result and Discussions
	4.1 Limiting Cases
	4.2 Velocity Profiles

	5 Conclusions
	References

	Dissipative Effect on Heat and Mass Transfer by Natural Convection over  a Radiating Needle in a Porous Medium
	1 Introduction
	2 Mathematical Formulation of the Problem
	3 Integral Treatment
	4 Results and Discussion
	5 Conclusion
	References

	Numerical Solution of Sixth Order Boundary Value Problems by Galerkin Method with Quartic B-splines
	1 Introduction
	2 Description of the Method
	3 Procedure to Find a Solution for Nodal Parameters
	4 Numerical Results
	5 Conclusions
	References

	Numerical and Experimental Studies of Nanofluid as a Coolant Flowing Through a Circular Tube
	1 Introduction
	2 Experimental Setup
	2.1 Numerical Modeling and Simulation Procedure

	3 Results and Discussion
	4 Conclusions
	References

	Influence of Slip on Peristaltic Motion of a Nanofluid Prone to the Tube
	1 Introduction
	2 Mathematical Formulation
	3 Solution of the Problem
	4 Results and Discussions
	5 Conclusion
	References

	Exact Solutions of Couple Stress Fluid Flows
	1 Introduction
	2 Couple Stress Fluids
	3 Exact Solutions
	3.1 Velocity Potential A= (0 ,0 ,f(x2+y2 ) )
	3.2 Velocity Potential  A= (0 ,z+ f(r)r,0)
	3.3 Velocity Potential A= (0 ,r2 f(r),0)
	3.4 Conclusion

	References

	Finite Element Study of Convective Heat and Mass Transfer of Two Fluids in a Vertical Channel of Variable Width with Soret and Dufour Effects
	1 Introduction
	2 Mathematical Formulation
	2.1 Governing Equations

	3 Solution of the Problem
	4 Results and Discussion
	5 Conclusions
	References

	Thermal Modeling of a High-Pressure Autoclave Reactor for Hydrothermal Carbonization
	1 Introduction
	2 Thermal Modeling of Autoclave Reactor
	2.1 Algorithm for Thermal Modeling

	3 Conclusion
	References

	Effects of MHD and Radiation on Chemically Reacting Newtonian Fluid Flow over an Inclined Porous Stretching Surface Embedded in Porous Medium
	1 Introduction
	2 Mathematical Formulation
	3 Results and Discussion
	4 Conclusions
	References

	Couple-Stress Fluid Flow Due to Rectilinear Oscillations of a Circular Cylinder: Case of Resonance
	1 Introduction
	2 Basic Equations
	3 Statement and Formulation of the Problem
	4 Boundary Conditions
	5 Solution of the Problem
	6 Pressure
	7 Drag Acting on the Cylinder Per Length L
	8 Results and Discussions
	References

	Effect of Heat Generation and Viscous Dissipation on MHD 3D Casson Nanofluid Flow Past an Impermeable Stretching Sheet
	1 Introduction
	2 Analysis and Solution of the Problem
	3 Results and Discussion
	4 Conclusions
	References

	Radiation, Dissipation, and Dufour Effects on MHD Free Convection Flow Through a Vertical Oscillatory Porous Plate with Ion Slip Current
	1 Introduction
	2 Mathematical Formulation
	3 Method of Solution
	3.1 Velocity (F), Temperature (θ) and Concentration (ϕ)

	4 Results and Discussion
	5 Conclusions
	References

	Bottom Heated Mixed Convective Flow in Lid-Driven Cubical Cavities
	1 Introduction
	2 Physical System
	3 Numerical Method
	4 Results and Discussion
	5 Conclusion
	References

	Effect of Magnetic Field on the Squeeze Film Between Anisotropic Porous Rough Plates
	1 Introduction
	2 Analysis
	3 Squeeze Film Characteristics
	4 Results and Discussion
	5 Conclusions
	References

	A Numerical Study on Heat Transfer Characteristics of Two-Dimensional Film Cooling
	1 Introduction
	2 Problem Formulation and Boundary Conditions
	3 Result and Discussions
	3.1 Heat Transfer Coefficient
	3.2 Turbulence Intensity

	4 Conclusion
	References

	Instability Conditions in a Porous Medium Due to Horizontal Magnetic Field
	1 Introduction
	2 Basic Equations
	3 Boundary Condition
	4 Linear Stability Analysis
	4.1 Marginal Stability When Rayleigh Number R Is a Dependent Variable
	4.2 Marginal Stability When Rayleigh Number R Is an Independent Variable

	5 Conclusion
	References

	Mathematical Analysis of Steady MHD Flow Between Two Infinite Parallel Plates in an Inclined Magnetic Field
	1 Introduction
	2 Mathematical Formulation
	3 General Solution
	4 Results and Discussions
	5 Conclusion
	References

	Laminar Mixed Convection Flow of Cu–Water Nanofluid in a Vertical Channel with Viscous Dissipation
	1 Introduction
	2 Formulation of the Problem
	3 Results and Discussion
	3.1 Asymmetric Heating
	3.2 Symmetric Heating

	4 Conclusion
	References

	A New Initial Value Technique for Singular Perturbation Problems Using Exponentially Finite Difference Scheme
	1 Introduction
	2 Description of the Method
	3 Error Estimates
	4 Numerical Examples and Results
	5 Conclusions
	References




