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1 Introduction

Neuroeconomics combines classical economics and neuroscience to deepen our
understanding about the role played by human brain in economic decision-making
(Fehr et al. 2005; Goetz and James III 2008). Classical economics is the “science of
choice, constrained by scarce resources and institutional structure” (Camerer 2013,
p. 426) and neuroeconomics provides a mechanistic, mathematical and behavioural
framework to understand these choices (Glimcher and Rustichini 2004).

The revealed preference approach (Sameulson 1938) which used observable
choices to infer unobservable preferences (subject to certain axiomatic constraints)
fundamentally changed the field of economics. Human behaviour was attributed
to maximisation of some utility function which could be rigorously tested through
empirical means. But the psychological and/or neurobiological accounts of prefer-
ence were ignored for several decades.

Economic theorists were confounded by the emergence of numerous axioms
aimed at explicating the same arrays of choices. A powerful way to adjudicate among
theories was to insist that theorists must articulate specific predictions about under-
lying neural correlates (Glimcher and Fehr 2014). Herbert Simon’s assertion that
humans are boundedly rational (Simon 1955; 1997), Kahneman and Tversky’s mod-
elling of choices in real-life (1979), and Gigerenzer and Todd’s (1999) findings on
the trade-off between efficient choice, computational complexity and use of sim-
ple heuristics in decision-making highlighted that humans often failed to execute
optimal courses of actions in their daily lives. In parallel, advances in neuroscience
and cognitive psychology revealed the constraints of neural activity (in a way defin-
ing the boundaries of boundedly rational decision-making) and thus supported the
development of neuroeconomics.
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The interest of economists in psychology and neurobiology dates back to late
nineteenth century when Thorstein Veblen (1898) posited in his essay, “Why is Eco-
nomics Not an Evolutionary Science?”, that economic behaviour can be understood
by studying the underlying mechanisms which created those behaviours. There were
also fantastic ideas, by earlier economists including Edgeworth, Fisher, and Ramsey
(see Colander 2007), about developing “hedonimeters” to link biology and choices
directly. However, we had to wait till late 1990s and early 2000s to see significant
growth in the study of neuroeconomics.

Evolutionary theory posits that the singular goal of any behaviour of natural
organisms is maximisation of inclusive fitness which maximises the survival of the
organism’s genetic code. Accordingly, the primary function of the nervous system,
which mediates behaviour, is to produce motor responses, under conditions of uncer-
tainty, that yield the highest possible inclusive fitness for an organism. Economic
theory provides us with the optimal decision for a given context through a rational
computational route. This optimum economic solution combined with the goal of
nervous system to make decisions aligned with inclusive fitness could help us in
understanding the spectrum of human behaviour (Glimcher 2003).

Neuroeconomics today informs research in a range of management disciplines
including finance (Efremidze et al. 2017; Frydman et al. 2014), consumer behaviour
(Berns and Moore 2012; Egidi et al. 2008), organisational behaviour (Beugré 2009;
Lori 2017), strategy (Hodgkinson and Healey 2011), and others.

1.1 Anatomy and Essential Features of the Brain:
Significance for Neuroeconomics

Detailed examination of the brain anatomy, from a neuroeconomic perspective, has
centred around basal ganglia and cerebral cortex, which form part of the telen-
cephalon or forebrain. While cerebral cortex is a much more recently evolved struc-
ture, the basal ganglia is more evolutionary ancient. Some of the sub-regions of the
basal ganglia like the striatumwhich consists of the caudate and putamen,1 the globus
pallidus, substantia nigra pars reticulate2 and the dopaminergic system3 figure promi-
nently in neuroeconomic studies. The amygdala4 along with hypothalamus,5 which
are parts of the telencephalon, receive inputs from many sensory systems and in turn

1The ventral striatum plays an important role in encoding of option values during choice tasks.
2The core circuit of basal ganglia receives information from frontal cortex (through caudate and
putamen), and post-processing, transfers it back to frontal cortex (through globus pallidus and
substantia nigra pars reticulate).
3There is substantive evidence that the dopamine-releasing neurons in the dopaminergic system
encode a reward prediction error signal which aids reinforcement learning.
4The amygdala has been implicated in a host of studies related to psychological states.
5The hippocampus figures repeatedly in neuroscientific studies of learning and memory.
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Fig. 1 Anatomy of the brain

intimate and regulate activity in several frontal cortical areas (Glimcher 2014a). A
general anatomy of the brain, with relevant regions, is presented in Fig. 1.

Certain features of the brain stand out from a neuroeconomic perspective, namely
modularity of the brain, neuronal stochasticity, synaptic plasticity and asymmetric
information flow.

The behavioural and cognitive abilities of the brain are deemed to be the outcome
of a complex multi-tiered processing system involving independent sub-processes
which interconnect with other systems through well-defined inputs and outputs.
Fodor (1983)6 highlighted the presence of such independent modules, which appear
to handle a certain class of information, perform specific computations and pass on
their outputs to other modules for further processing (Glimcher 2014a).

The strong limits imposed on the firing rates of cortical neurons define the upper
bounds on the amount of information that a neuron can transmit. The stochastic
nature of neuronal firing connects the analysis of neuronal activity to random utility
or discrete choice approach. Synaptic plasticity is the ability of synapses to strengthen
or weaken over time. The biochemical mechanism by which information is stored in
the nervous systemover periods of days or longer is a process of synapticmodification
(Glimcher 2014a).

Selective or asymmetric flow of information can lead to time lags in various
parts of the brain receiving the same information. Evolutionary processes prefer
conservation of energy and this imposes certain limitations on the brain which is the
most energy-intensive organ in the human body. These limitations present themselves
in the form of limited neural connectivity constraining free flow of information in
the brain (Alonso et al. 2014).

6Fodor insisted that the modularity of brain should be considered only in the context of psycho-
logical studies. Nevertheless, his propositions gained significant attention in the neurobiological
community.
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1.2 Tools and Methods in Neuroeconomics

Techniques used by neuroeconomists to observe brain activity can be broadly classi-
fied into two categories: measurement techniques, which measure changes in brain
function, while a subject engages in an experimental task, and manipulation tech-
niques, which examine how disruptions in neural processing of specific regions
change choices and related behaviour. Measurement techniques are “correlational”,
while manipulation techniques are deemed as “causal” in their approach (Ruff and
Huettel 2014).

Neuroscientists typically select a research method based on requisite temporal
resolution, spatial resolution and invasiveness (Ruff and Huettel 2014). The methods
employed to identify the neural foundations of economic behaviours involve a wide
range of techniques, such as neurophysiological measures, neuroimaging studies,
neuromodulation (including neurostimulation), brain lesion analysis. The commonly
used tools are fMRI, fNIRS, EEG, MEG, PET, TMS, tDCS, single-unit recording,
pharmacological interventions, and brain lesion studies (See Crockett and Fehr 2014;
Efremidze et al. 2017; Houser and McCabe 2014; Kable 2011; Lin et al. 2010; Ruff
andHuettel 2014; Vercoe and Zak 2010; Volk andKöhler 2012; Zhao and Siau 2016).
A brief summary of the primary tools and methods used in neuroeconomics has been
presented in Exhibit (Table 1).

Othermethods such as eye tracking (fixations and saccades), scanpaths, pupil size,
blink rate, skin conductance rate, pulse rate and blood pressure have also been used
to detect biological and emotional responses to stimuli in decision-making contexts
(Zhao and Siau 2016).

Besides these, in non-human primates and rats, invasive methods such as micros-
timulation and optogenetics are used to detect and manipulate electrical activity in
neurons with the help of inserted microelectrodes, intracranial light application or
genetic engineering (Ruff and Huettel 2014).

Since different methods have unique strengths and weaknesses, current research,
in the quest to understand the neurological underpinnings of human behaviour,makes
an attempt to combine different techniques, either sequentially or in parallel, in order
to achieve complementary support for its findings (Zhao and Siau 2016).

In this chapter, the primary research themes in neuroeconomic decision-making
have been identified and organised around role of reinforcement learning systems
in valuation and choice, value-based decision-making, decision-making under con-
ditions of risk and ambiguity and intertemporal discounting. In addition to this,
social preferences and context-dependencies in decision-making have also been dis-
cussed. Finally, fallacies in interpretations,methodological issues in neuroeconomics
research, current concerns and future directions have been summarised.
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2 Role of Reinforcement Learning Systems in Valuation
and Choice: Evidence from Neuroeconomics

Natural organisms are constantly challenged to optimise their behaviour in various
environments.With the help of the computational frameworks provided by reinforce-
ment learning (RL) systems, they rely on prior experiences tomake predictions about
the current context and choose appropriate behaviourswhich can lead to rewards or to
avoidance of punishments. Since the computational algorithms of RL appear to have
distinct neural correlates (such as the phasic activity of dopamine neurons) (Dayan
and Niv 2008), neuroeconomists believe that an understanding of neural systems can
contribute to the comprehension of choice behaviour. The neutrally distinct learning
systems are detailed below.

2.1 Reinforcement Learning Systems

2.1.1 Pavlovian Learning

Pavlov (1927) discovered that when a stimulus is repeatedly paired with a reward or
punishment, the stimulus by itself can trigger behaviour associated with the reward
or create aversion for the punishment, in subsequent trials. As an example, if the
reward is a food item, then the stimulus can elicit salivation, or in the case of pain as
punishment the stimuluswill elicit awithdrawal reflex. Pavlovian conditioningmakes
the organism learn to make predictions about the likely occurrence of significant
events on the basis of preceding stimuli. Brain imaging studies have shown a strong
association of several brain structures, particularly the amygdala, the ventral striatum
and the orbitofrontal cortex, in this learning process (Gottfried et al. 2003; O’Doherty
et al. 2002).

2.1.2 Instrumental Conditioning

Instrumental Conditioning associates actions with outcomes. These associations are
shaped by reinforcement rules, and strengthen or weaken depending on the desirabil-
ity of the outcome. The purpose is tomake action choices such that they optimise goal
achievement (Dayan and Niv 2008). Learning in instrumental systems is correlated
with activity in the ventral striatum (Daw and O’Doherty 2014).

Habitual Learning Habitual Learning is a special case of instrumental learning
where the learner repeats actions which have previously resulted in “satisfaction”
without resorting to discrete evaluations with every new instance of the action. This
implicit neural autopilot is activated for repeated low-value decisions but is incapable
of analysing new contexts or re-evaluating previously experienced ones. Habitual
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actions are also indifferent to short-term value changes and hence display short run
choice elasticities of close to zero (Camerer 2013).

It has been demonstrated that increasing activity in right posterolateral striatum
over the course of training relates to the emergence of habitual control (Tricomi
et al. 2009). Diffusion tensor imaging has also shown significant correlation of the
strength of connectivity between right posterolateral striatum and premotor cortex
and the preference of habitual responding over goal-directed behaviour (deWit et al.
2012).

The above three systems can be categorised as model-free RL where experiences
are used to learn about values directly in order to arrive at optimal solutions without
resorting to estimations or reference to a world model.

2.1.3 Goal-Directed or Model-Directed Learning

Goal-directed learning is classified as a model-based learning system, wherein expe-
riences are used to construct a model which is a best approximation of the transitions
and outcomes in the environment. Unlike model-free systems which require direct
learning, goal values can be inferred from indirect methods like deliberation and
communication. This method appears to be unique to humans (Daw and O’Doherty
2014). In a model-directed system, goal values associated with different choices are
integrated with the help of abstract information, to arrive at an inclusive choice. The
ventromedial prefrontal cortex (vmPFC), which has been of keen interest in the study
of neuroeconomics due to numerous reports of correlationwith expected value/utility,
is associated with goal-directed learning (Balleine and O’Doherty 2010). Studies
have also observed that expected value correlates in vmPFC comply more with
model-based (versus model-free) values (Daw et al. 2011). Further, with the help
of diffusion tenor imaging, it has been shown that goal-directed choice behaviour
is correlated with the strength of interconnections between ventromedial prefrontal
cortex and dorsomedial striatum (de Wit et al. 2012).

The above findings associate specific and segregated neural systems with each
type of learning. However, these systems also interact among themselves, in a facil-
itatory or adversarial manner, to mediate the control of actions. For instance, the
amygdala and ventral striatum have been implicated in human studies in Pavlovian-
instrumental transfer (PIT); an example of a facilitatory interaction, where a Pavlo-
vian association between a cue and reward can trigger an instrumental association
between the reward and action (Prevost et al. 2012; Talmi et al. 2008). The ventral
striatum has also been highlighted in scenarios where instrumental choice has been
weakened by aversive Pavlovian cues (Chib et al. 2012). Further, lesion studies indi-
cate that activity in the basolateral amygdala and ventral striatum is correlated with
conditioned reinforcement effect (Cador et al. 1989). Similarly, neuropsychological
models of addiction and compulsive behaviours have revealed a relationship between
habitual and goal-directed systems, with over-active habitual systems overwhelming
goal-directed choices and behaviour (Everitt and Robbins 2005).
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2.2 Dopamine Reward Prediction Error

Prediction error, which denotes the difference between the predicted and the actual
reward, is a key variable in learning systems. A large enough quantum of prediction
error triggers more learning to update predictions. The more recent rewards get
weighed more heavily compared to prior rewards, and the latter’s weight declines
exponentially with lag (Daw and Tobler 2014). According to Camerer (2013, p. 429),
such reward values closely resemble an “economic construct of a stable utility for a
choice”.

• Studies have posited that dopamine plays a role in the reward prediction error
of a particular event by signalling changes in the anticipated value of rewards.
Dopamine neurons regulate their firing rates in sync with the reward prediction
error with a positive surprise leading to a higher firing rate and vice versa, while
rewards received on predicted lines do not lead to any change in firing rates (Bayer
and Glimcher 2005; Nakahara et al. 2004). This implies that the dopamine neurons
encode the reward prediction error. Studies have identified neurons which code the
values of specific actions in dopaminergic target areas, that keep track of which
actions have just been produced, and even pass on expectations about what rewards
can be anticipated in the immediate future (Lau and Glimcher 2008). Further
experiments have revealed that interventions which stimulate the dopaminergic
system can influence the rate of learning (Pessiglione et al. 2006). These studies
suggest that the dopaminergic system is used to imprint into the brain the subjective
values of goods and actions which are learned from experience.

2.3 Future Directions

Learning systems play an important role in valuation and choice. However, how
and why a particular system dominates behaviour at a certain point is still largely
unanswered. Understanding is also limited about how neural regions interconnect
with each other to compete or collaborate. More clarity is needed on the relationship
between model-based and model-free reinforcement learning systems. While there
has been some hypothesis to explain the competition between goal-directed and
habitual behaviours, these have yet to be mapped to neural mechanisms. Similar
associations need to be elucidated for Pavlovian vs. Instrumental competition (Daw
and O’Doherty 2014).

Studies have shown when reward systems change, organisms do not “unlearn”
previously learned predictive associations; they rather acquire a new association
paradigm which might suppress the earlier relationship. There is lack of clarity on
how this process fits in with the RL framework.

Current research in neuroeconomics has considered simple classical and instru-
mental conditioning cases. However, there are questions around how the dopaminer-
gic system operates in more complicated scenarios like multiple actions contributing
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to an outcome/outcomes, or in hierarchical tasks, which remain unanswered and
provide interesting avenues for future research.

3 Value-Based Decision-Making

A biological framework, based on howmillions of neurons interact in different brain
systems, to understand choice behaviour is a major quest in neuroeconomic research.
Value-based decision-making refers to a process in which choices are guided by
subjective valuation of available options (Camerer 2013; Platt and Glimcher 1999;
Rangel and Hare 2010). Two separate academic streams have emerged in decision-
making research. Sensory neuroscientists (see Newsome, Britten, and Movshon
1989) study perceptual decision-making through the lens of sensation, while motor
neuroscientists (see Glimcher 2003) approach the problem from the perspective of
subjective valuation, that is idiosyncratic preferences or internal representations that
guide choice. In this section, we follow the subjective valuation path and explore
the basic principles and neural correlates of value-based decision-making. We also
consider associated streams of research here such as cost-based decision-making and
debates around utility measurement.

3.1 Valuation and Choice

Sequentially arranged neural mechanisms of valuation and choice combine together
to create the value-based decision-making framework. The valuation mechanism
learns, stores and retrieves the value of actions in consideration, and the choice
mechanismusing theoutput of the valuation circuit generates an actual choice fromall
available options (Glimcher 2014b).Valuationmechanism incorporates idiosyncratic
preferences like those over risk and time through a variety of mechanisms including
reinforcement learning processes. Choice mechanisms are focussed on choosing
from the available choice set that element which has the highest value to us.

TheChoice Circuit and its Neural CorrelatesUnderstanding the biological frame-
works through which the neoclassical choice behaviour theory operates its argmax
operation, to identify the highest valued option in the current choice set, has been
a principal goal of neuroeconomic research over the last two decades. The current
consensus says that subjective values are encoded through the topographical features
of the brain and scalar qualities are encoded in neural firing rates. Stochasticity of
neural firing rates could be responsible for the kind of variability in behaviour as
described by the random utility theory models (see McFadden 2005) of economics.

Research has shown that signals closely related to subjective values have been
detected from neurons in three interconnected topographic maps, namely the supe-
rior colliculus, frontal eye fields and the lateral intraparietal area (Ding and Hikosaka
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2006; Platt and Glimcher 1999). Further research has also discovered that under sim-
ulated conditions neurons encode expected utility (reward magnitude/probability),
not choice probability and further, in a stochastic manner which could account for
unpredictability in behaviour. This lends support to both neuroscientific and eco-
nomic explanations of decision variables (Dorris and Glimcher 2004). Also firing
rates, which encode subjective value while organisms are considering their choice
set, reconfigure to encode the choice once a decision has been made (Louie and
Glimcher 2010).

The Valuation Circuit and its Neural Correlates Study of dopamine neurons and
fMRI signals have discovered that activity in the striatum and the ventromedial pre-
frontal cortex consistently predicts people’s preferences (Chib et al. 2009; Kable
and Glimcher 2007; Levy and Glimcher 2011; Sanfey et al. 2003). Human prefer-
ences for various types of rewards are encoded in a single common neural currency.
The subjective value signals generated by these areas always correlate with and pre-
dict choice behaviour. A complex network of brain areas contributes to the subjective
value signals generated in the medial prefrontal cortex and the striatum. For instance,
dorsolateral prefrontal cortex provides critical inputs for valuing social cooperation
and goods that require or invoke self-control processes, while orbitofrontal cortex
contributes to valuation of many consumable rewards. Neurons in amygdala play a
critical role in the emotional regulation of value by generating contextual effects of
fear and stress.

Many researchers support a multi-stage model which describes how decision-
making is determined by subjective valuation signals (Levy andGlimcher 2012; Platt
and Plassmann 2014). Accordingly, first varied features of choices are combined to
create subjective valuation signals. The latter are transformed into action valuation
signals. Finally, a comparison is made between the two valuation signals, and stored
assessments are updated to improve future choices. These stages do not necessarily
operate in sequence nor are fully separable.

3.2 Cost-Based Decision-Making

Neural mechanisms have been shown to play an active part in discriminating between
costs associated with choice. These costs can be broadly divided into energy costs
(that is, effort expended in pursuing a choice) and costs related to delay in rewards.
The anterior cingulate cortex, the orbitofrontal cortex, and the striatum are the key
brain areas associated with cost-based decision-making. There is evidence to show
that effort and delay costs are handled by different neural mechanisms (Denk et al.
2005; Prevost et al. 2010; Wallis and Rushworth 2014). Model-based fMRI and
computational modelling studies have also demonstrated that individuals are differ-
entially sensitive to cognitive and physical effort with amygdala playing an important
role in valuing rewards associated with cognitive effort.
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3.3 Debates Around Utility Measurement

Measurement and comparison of reward utility for economic decision-making is
complicated as the kind of utility can be as varied as experienced utility, decision util-
ity, anticipated or predicted utility, and rememberedutility (seeBerridge andAldridge
2008, for a taxonomy of reward utilities). Some clarity has emerged regarding the
neural correlates of few types of utility, while confusion remains around others. For
instance, research shows that the orbitofrontal cortex is robustly associatedwith expe-
rienced utility. But debates still continue about whether dopamine mediates a pure
form of decision utility or that of remembered utility as a prediction error mechanism
of reward learning (Bayer and Glimcher 2005; Berridge 2012; Glimcher 2011; Niv
et al. 2012). The entanglement and conflation of distinct utility measures also leads
to misrepresentations. For instance, decision utility which alludes to “wanting”, and
experienced utility which is synonymous with “liking”, are frequently regarded in
the same vein, though they are associated with unique neural systems and occur at
distinctive points in time. Integration of diverse forms of utility remains a challenge
given the multidimensionality of the problem (Witt and Binder 2013).

3.4 Future Directions

Theoretical models and empirical studies have begun to link traditionally divergent
models of perceptual decision-making and valuation-based decision-making. While
results of valuation circuits have been linked and generalised to discrete and simple
choices, we are not yet sure whether these circuits can explain more abstract and
complex choices. Further, even though these ubiquitous circuits have been gener-
alised to the study of decision-making, we still do not know their general boundary
conditions. Glimcher (2014b) recommends more investigations into models of val-
uation circuit and its interactions with choice circuit. Valuation circuits are riddled
with redundancies, and it would be interesting to investigate whether these contribute
to different stages in the decision-making process and thus represent different men-
tal states (Platt and Plassmann 2014). Another interesting line of research will be
to integrate the pharmacological results with those from neurophysiology to deter-
mine how neuromodulators such as dopamine affect neuronal encoding (Wallis and
Rushworth 2014).

4 Intertemporal Choice

Intertemporal choices, choosing between outcomes occurring at different points
in time, is associated with complex neural mechanisms, which encode proximate
rewards and predict and evaluate distal rewards (Camerer 2013).
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4.1 Intertemporal Discounting

Across species which have been tested, it has been noted that there is a consistent
discounting of future rewardswhen comparedwith immediate rewards. Vastmajority
of studies have found that discounting of future outcomes tends to follow hyperbolic
and quasi-hyperbolic functions rather than exponential functions (Ainslie and Haen-
del 1983; Soman et al. 2005). Similar results have been obtained while researching
impulsive behaviour among addicts (Ainslie 1975).

fMRI experiments based on dual-systems hypothesis have observed that differ-
ent sets of brain areas are activated while considering intertemporal choices. It has
been observed that ventral striatum (VS), posterior cingulate cortex (PCC), and ven-
tromedial prefrontal cortex (vmPFC) demonstrate higher activation while consid-
ering immediate reward choices when compared to choices involving only delayed
rewards. Simultaneously, posterior parietal cortex (PPC) and lateral prefrontal cortex
(LPFC) are activated to greater extent than other regions for a spectrum of choices
across the board. Kable and Glimcher (2010) disputed the dual-system interpretation
and contended that active brain regions might be reacting to larger subjective value
of immediate rewards and not to the immediacy. Blood-oxygen-level-dependent
(BOLD) activity in VS, PCC and vmPFC seems to support this contention as these
regions show higher correlation with subjective values in comparison with objective
reward dimensions (Kable and Glimcher 2007). While the role of LPFC and PPC is
still disputed, multiple studies have affirmed that in intertemporal choice, VS, PCC,
and vmPFC play a significant role (Ballard and Knutson 2009; Kable and Glimcher
2010; Pine et al. 2009). Peters and Büchel (2010) have suggested that a relationship
exists between working memory, time preferences and patience, which adds salience
to future rewards.

4.2 Self-control

Dual-system accounts of intertemporal choices are closely linked to notions of self-
control. Thaler and Shefrin (1981) have postulated that a battle for internal control
rages on between a myopic “doer” and a farsighted “planner”. While the “doer”
can be associated with the limbic system, the “planner” is identified with the pre-
frontal cortex. Hare et al. (2009) examined the neural circuitry associated with the
planner-doer and self-control dimensions and found a strong correlation between dor-
solateral prefrontal cortex (DLPFC) and self-control choices. DLPFC’s significance
in determining self-control has been corroborated by experiments where temporary
disruption of the region by transcranial magnetic stimulation (TMS) led subjects to
become more impatient. Left DLPFC has also been associated with a range of task-
related functions involving working memory and inhibitory control (Camerer 2013;
Peters and Büchel 2010).
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4.3 Future Directions

Questions remain about the neural correlates of intertemporal discounting. It is pos-
sible that brain regions which get activated while appraising immediate rewards are
different from those engaged during discounting calculations (Harrison 2008). Con-
siderable research efforts are being directed towards resolving the debate between
dual-system and unified system of discounting. While small neural units could be
indifferent to subjective values, it is possible that the sumof activity across these units
could lead to prominent BOLD activity across a wider brain region. This hypothe-
sis remains open for examination. Further, within the same brain region, different
areas show different rates of discounting (Tanaka et al. 2004), which calls for future
examination.

Harrison (2008) also emphasizes the need for more precise operationalisation of
variables studied in intertemporal discounting, such as front end delay on earlier
options, as related confounding leads to competing explanations for apparently huge
discount rates.

Demographic and socio-economic factors also seem to play role in intertem-
poral choice with Westerners displaying larger time-discount rates than Easterners.
Future studies can investigate the interactions between biological, cultural and socio-
economic factors in intertemporal choice (see Read and Read 2004; Takahashi et al.
2010).

5 Risky Choice

Choice under risk and ambiguity constitutes a distinctive form of decision-making as
choice options yield multiple outcomes with varying probabilities (Camerer 2013).
In this section, the neural processes and mechanisms involved in choice under risk
and ambiguity are examined.

Regardless of the uncertainty, choice options have to be assigned values for com-
parison and selection. Value assignments can be either outcomes and probabilities
or standard statistical measures of probability distribution like mean, variance and
skewness. Brain areas engaged in value encoding like dopamine neurons, striatum,
orbitofrontal cortex and medial prefrontal cortex have been associated with process-
ing of probability and outcome information (Tobler and Weber 2014).

5.1 Choice Under Risk, Ambiguity, Gains and Losses

Ambiguity is characterised by lack of knowledge of outcomedistribution, so a gamble
with unknown pay-offs is ambiguous, while a gamble with well-defined pay-offs and
probability distributions is termed risky (Smith et al. 2002). Numerous studies and
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experiments have shown that humans avoid ambiguity in both gains and losses. We
prefer the riskier gambles only in loss situations while avoiding them in gain situation
(Tversky and Kahneman 1992; Smith et al. 2002).

Pay-off structure (gain/loss) is held separable, if not independent, from belief
structure (ambiguity/risk), in economics and decision theory. Research by Smith
et al. (2002) has shown brain activity in neocortical dorsomedial system while pro-
cessing loss information in risk-based gambles, and in ventromedial region under
other conditions of risk-gain and ambiguous-gain or ambiguous-loss. The researchers
have postulated from this findings that brain areas underlying the belief and pay-off
structures, while being dissociable, are functionally integrated and interact with each
other.

Breiter et al. (2001) suggested brain structures, distinct from Smith et al. (2002),
associated with decision-making and expectancy; these included amygdala, hip-
pocampus, nucleus accumbens, orbitofrontal cortex, ventral tegmentum and sub-
lenticular extended amygdala. Ambiguity, as compared to risk, displays increased
BOLD activity in orbitofrontal cortex (Hsu et al. 2005; Levy et al. 2010), amygdala
(Hsu et al. 2005) and in some studies also in parietal cortex (Bach et al. 2011), and
this higher level of activity could be signalling that information is missing (Tobler
and Weber 2014).

Experiments have shown that subjective value of risky and ambiguous choice
options is commonly coded in themedial prefrontal cortex, posterior cingulate cortex
and the striatum (Levy et al. 2010). It is also possible that individual regions, while
being engaged in representing decomposed components of risky choice models,
interact with common regions for valuation of choice options (Tobler and Weber
2014). Research also shows that individual differences in choice behaviour can be
predicted based on relative activation of the brain areas identified above (Huettel
et al. 2006).

5.1.1 Loss Aversion

Tom, Fox, Trepel, and Poldrack’s (2007) study showed strong association between
differences in value-related neural activity and degree of loss aversion inferred
behaviourally. Studies by Yacubian et al. (2006) highlighted neural activity related
to gains in ventral striatum, while temporal lobe regions (lateral to striatum) and
amygdala showed activity related to losses. Camerer (2013) and De Martino et al.
(2010) demonstrated that patients with inhibited activity in bilateral amygdala due
to lesions did not exhibit any loss aversion. Some researchers used diverse physio-
logical methods to examine these associations. For instance, Hochman and Yechiam
(2011) demonstrated that the increase in heart rate and pupil dilation correlated sig-
nificantly with losses relative to comparable gains, while Sokol-Hessner et al. (2009)
showed (with the help of skin conduction response) that “perspective-taking” helps
in diminishing loss-aversive behaviour.
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5.1.2 Endowment Effect

Neuroeconomic research of endowment effect7 is of recent vintage and is still pri-
marily focussed on identifying basic neural correlates. Weber et al.’s (2007) subjects
demonstrated higher activation in amygdala during the selling trials of digital copies
of songs, relative to buying trials. Kahneman et al. (1990), in order to adjust for the
relative wealth positions of the seller and buyer in an endowment effect scenario,
offered a “choice price” option.8 fMRI studies conducted by Knutson et al. (2008),
using high-value consumer goods, have found neural activity to indicate that selling
prices were greater than choice prices, which in turn were greater than buying prices.
The medial prefrontal cortex activation, which is known to have a negative corre-
lation with losses and a positive correlation with gains (see Knutson et al. 2003),
in this experiment showed consistent negative correlation with buying and choice
prices and positive correlation with selling prices. Further, negative correlation with
buying prices was much stronger than with choice prices.

Knutson et al. (2008) found that activation in right insula was positively and
significantly correlated with endowment effect estimates. Since activation of insula
is closely identified with distress (Masten et al. 2009; Sanfey et al. 2003), these
results support the hypothesis that quantum of distress experienced by participants is
positively correlated with endowment effect. However, subsequent studies by Tom
et al. (2007) could not find any evidence of neural activity within insula or amygdala
which are supposed to be related to negative emotions. Rather they found a direct
correlation, positive for gain and negative for losses, in the ventromedial prefrontal
cortex and dorsal and ventral striatum. Additionally, asymmetric neural activity for
higher quantum of reduction for losses compared to quantum of increase in profits
was observed as expected with behavioural loss aversion. Some of these results
have been questioned given the limitations of fMRI (Knutson and Greer 2008). A
strictly behavioural study comparing loss aversion behaviour of participants with
inhibited amygdala, who could not process fear, and normal participants offered
further contradictory evidence (DeMartino et al. 2010).While non-lesioned subjects
exhibited standard loss-aversive behaviour, subjects with lesions in amygdala did not
exhibit any loss aversion. A supplemental study found that the differences in loss
aversionwere limited only to loss situations andwere not exhibited in gain situations.

7Endowment effect refers to the difference between the minimum amount a person is prepared to
receive in order to give away something she/he owns (selling price), and the maximum amount a
person is prepared to give in order to acquire the same (buying price).
8Choice price refers to the indifference price point where subjects are neutral between getting goods
and an equivalent amount of money.
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5.2 Statistical Moments and Value Assignments

Studies have suggested that varied brain regions allow for coding of statistical mea-
sures like mean and variance of rewards (Platt and Huettel 2008). The statistical
moments of reward distributions can be weighed and integrated to create choice
values, and choice behaviour can be thereby examined (Camerer 2013; Tobler and
Weber 2014). But objective valuations ofmultiple statisticalmeasure decompositions
are scarce due to limitations in experimental design. However, electrophysiological
and neuroimaging of single cells using specialised designs have shown that mean-
variance decompositions appear to be implemented in the orbitofrontal cortex while
insula appears to decompose risk processing by separate representations of variance
and skewness risk (Tobler and Weber 2014).

5.3 Future Directions

Understanding of the neural mechanisms underlying choice under risk and ambiguity
is still at fairly rudimentary levels. It is still not clear whether single ormultiple neural
systems are engaged simultaneously or whether and howmeasures of probability and
magnitude are decomposed at the neural level. Dissociations reported in the fMRI
domain still await confirmatory evidence from other methods.

6 Context Effects

Standard deterministic models of normative choice, like expected utility theory,
assume that choices are largely independent of context. However, numerous studies
have shown that a number of contextual factors, like size of choice set, framing of
decision problem, temporal history, play a critical role in the decision-making pro-
cess (Louie and De Martino 2014). Decision-making is a dynamic process subject
to the spatial and temporal context of the choice itself.

Contextual effects can occupy a wide spectrum including emotional states, moti-
vational states, environmental situations and the like (Buehler et al. 2007; Witt and
Binder 2013). Mental states include cognitive overload, attention levels, physiolog-
ical states such as hunger, exhaustion, pain, discomfort and emotions like fear or
anxiety. These states could act as constraints or sources of helpful information. For
instance, fear could serve as a useful signal for immediate danger or noise. Fear
and anxiety can also force a bias for quick resolution of uncertainty (Camerer 2013;
Caplin and Leahy 2001). Contextual factors also include deprivation states such as
sleep deprivation which leads to slow, noisy decisions (Camerer 2013; Menz et al.
2012). High states of deprivation can lead to “hot” visceral conditions where physi-
ological factors can have an overriding influence on future estimation. In such con-
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ditions, future visceral states are not properly accounted for leading to discrepancies
between different kinds of utility (Witt and Binder 2013).

6.1 Neural Correlates of Context-Dependent Valuation

Neurobiological constraints on neural activity, which defines the minimum andmax-
imum activity levels, could be the underlying source of contextual effects (Louie and
DeMartino 2014). Influence of contextual factors has been observed in ventromedial
prefrontal cortex, a region that is also associated with computation of goal values
(Plassmann et al. 2008) and neural coding of prediction error signal (Nieuwenhuis
et al. 2005).

De Martino et al. (2006) postulated that framing effects in decision-making is
moderated by the emotional system through an affect heuristic. This was based on
their discovery of significant activation of bilateral amygdala when a typical choice
is made. But it was not conclusive whether the amygdala activity is associated with a
choice input, or moderation of emotional system during the choice process, or post-
choice. They also discovered a strong correlation between of framing effects and
ventromedial prefrontal cortex (vmPFC) activation and concluded that vmPFC plays
a prominent role in evaluating and integrating emotional and cognitive information
during choice behaviour.

Sokol-Hessner et al. (2013) experiment using the reverse contrast method yielded
more clarity and showed heightened activity in the insula, anterior cingulate cortex
and dorsolateral prefrontal cortex. These areas are also implicated in conflict res-
olution, emotion regulation and response inhibition. Insula is an active participant
of encoding bodily sensations (especially discomfort) which is consistent with the
feelings of discomfort experienced while making risky decisions.

Recent studies have suggested that framing evokes different kinds of affect and
overriding of this affect leads to limiting the framing effect (Miu and Crişan 2011).
Susceptibility of individuals to framing effect has shown significant variability. Evi-
dence suggests that the medial orbitofrontal cortex (mOFC) plays a key role in
controlling the framing effect, by modulating the amygdala approach avoidance sig-
nal, leading to more consistent and context independent decisions (De Martino et al.
2006).mOFC lesions inmacaques result in strong framing effects in choice behaviour
(Noonan et al. 2010). It has also been shown that amygdala’s susceptibility to framing
effect can bemodulated by a specific polymorphism of the serotonin transporter gene
(SERT). This has been linked to a reduced functional connectivity between mOFC
and amygdala, essentially indicating that participants carrying the SS polymorphism
carry a reduced ability to counteract the biasing influence (Hariri et al. 2002; Louie
and De Martino 2014).

Stress (even artificially induced) can increase risk aversion (see Porcelli and Del-
gado 2009). Viewing of negative emotion-laden images prior to choice-making influ-
ences risk aversion (Kuhnen and Knutson 2011). Stimulation of dorsolateral pre-
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frontal cortex leads to increased risk aversion (Fecteau et al. 2007), while disruption
of the same leads to decreased risk aversion (Knoch et al. 2006a).

However, context-dependency also introduces a fundamental ambiguity that there
is no correspondence betweenvalue quantities andfiring rates as the givenvalue could
be influenced by a variety of contextual factors. In fact, it is still not clear whether
and how contextual neural coding underlies context-dependency at the behavioural
level (Louie and De Martino 2014).

6.2 Do Emotions Play a Role in Decision-Making? Neural
Evidence

Emotions play a significant role in decision-making and are integral to success.
The emotional content of heuristic decision-making increases with the complexity
of decisions (Forgas 1995; Lo and Repin 2002). This has been neurologically sub-
stantiated with lesion studies on patients with impaired ventromedial cortex. The
impairment “degrades the speed of deliberation and also degrades the adequacy of
choice” (Bechara and Damasio 2005, p. 339). Emotions like anticipated disappoint-
ment and regret act as learning signals influencing future decisions (Coricelli et al.
2007; Steiner and Redish 2014). It has also been observed that dread of an anticipated
negative experience is linked to neural activity related to physical pain (Dayan and
Seymour 2009).

Even though influence of emotions in decision-making is undisputed, relatively
few studies have measured or manipulated emotional variables during decision-
making (Lempert and Phelps 2014). Some of the difficulties in studying emotions
relate to the neurological anatomy. The ventromedial cortex can be divided into cau-
dal/posterior and rostral/anterior areas. While the former exhibit a direct connection
with regions moderating emotions, the latter are indirectly connected (Ongur and
Price 2000). The caudal/posterior areas process events with high probability and the
rostral/anterior areas process the less probable outcomes. Given the indirect con-
nections, outcomes with lower probability would require to be more emotionally
intense, in order to produce a significant emotional reaction (Bechara and Damasio
2005; Goetz and James III 2008). This creates confounding problems.

Emotion modulates decision-making through two paths: incidental affect or
through inclusion into the value computation process. Research has identified distinct
affective processes that incidentally influence decisions (Lempert and Phelps 2014).
For instance, stress impacts the prefrontal cortex function whereby the decision
process becomes more habitual and automatic. As mentioned earlier, in affect-as-
information model (Schwarz and Clore 1983), the affect acts as additional informa-
tion, even when it is irrelevant, which influences the judgement or decision. Conse-
quently, even subliminal manipulations of emotions have an impact on valuation of
the choice set (Lempert and Phelps 2014).
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6.3 Future Directions

Reference points, used to evaluate gains and losses in a relative manner, are a con-
struct which is widely used to explain contextual effects, but little is known about the
actual neurobiology underlying the computation of reference points. Flexibility of
emotions, adaptive in one circumstance and maladaptive in another, leading to flex-
ibility in decision-making is also relatively unexplored in neuroeconomic research.
There is still very limited information about explicit linking of the neural circuits and
emotions with value representations (Lempert and Phelps 2014). Impact of other fac-
tors, like drugs and cognitive overloads, which modulate emotions and consequently
moderate behavioural loss aversion is also underexplored (Paulus et al. 2005).

7 Examining Social Preferences: Game Theory, Empathy
and Theory of Mind

Game theory examines how individual players make decisions in a multi-player
environment where decisions of one player can impact the opportunities and pay-
offs of other players. This is an interesting research area for neuroeconomics as game
theory links individual decisions to group level outcomes through precise structures
(Houser andMcCabe 2014). Neuroeconomic studies can help answer some of the key
problems in social decision-making such as examining the incentives for individual
decisions, influence of emotions in decision-making or how behaviour is a function
of the bounded rationality of participants (Fehr et al. 2005).

7.1 Social Preferences in Decision-Making: Neural Evidence

7.1.1 Competition and Cooperation

Studies have shown that humans prefer cooperation as opposed to defection in social
dilemmas, notwithstanding equivalent monetary gains, thereby indicating a desire
for benefits beyond monetary gains (Fehr et al. 2005; Fehr and Camerer 2007).
Neuroimaging studies have revealed that dorsal striatum is activated in cooperative
scenarios (Rilling et al. 2002), while ventromedial prefrontal cortex and ventral
striatum are activated in competitive scenarios (Cikara et al. 2011; Dvash et al.
2010). Interestingly, the latter also figure dominantly in the “reward”-related neural
networks.

Votinov et al. (2015) examined neural activity in strictly competitive games where
one player’s outcome is negatively correlated with the outcome of her/his opponent.
They discovered two distinct neural activation areas associated with the two types
of winning, one by direct increase in pay-offs (in ventromedial prefrontal cortex,
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typically associated with rewards) and the other by loss avoidance (in precuneus and
temporoparietal junction, typically associated with mentalising and empathy). Both
types of winnings also showed activation in striatum.

Reputation plays an important role in repeated games with private information.
Studies by Bhatt et al. (2012) found direct correlation of amygdala activity (associ-
ated with threat and risk perception) with doubts of credibility of the other player.
Evidencewas also found that beliefs were updatedwith data from recent behaviour in
a continuous process. Separate but interconnected neural structures appear to medi-
ate the uncertainty of the other players’ behavioural reputation. Delgado et al. (2005)
observed differential neural activation in caudate nucleus and several other areas in
response to cooperative and competitive behaviour by opponents. Interestingly dif-
ference in activity was not observed where the other player had a good reputation to
start with. This resonates with the view that subsequent “bad” behaviour is excused
when the player has been “good” initially (Camerer and Hare 2014).

Lambert et al. (2017) investigated the role of neuromodulators (oxytocin) in
improving the accuracy of social decision-making in complex situations. In an assur-
ance game, simulating a win–win environment, oxytocin increased nucleus accum-
bens activity and seemed to facilitate cooperation. In a chicken game, simulating a
win–lose environment where aggression while desirable could be fatal if the partner
also responds with aggression, oxytocin down-regulated the amygdala and increased
the valence of cues to decide on aggression or retreat moves.

7.1.2 Inequity Aversion and Reciprocity in Social Dilemmas

Sanfey et al.’s (2003) fMRI study demonstrated that insula activity is positively cor-
related with propensity to reject unfair offers in an Ultimatum Game. The activation
of insula (and its correlation with negative affect) indicates that negative emotions
drive rejection decisions in Ultimatum Game. Knoch et al. (2006b) found evidence
for the crucial role of right DLPFC in mediating between self-interest and fairness
impulses. In this study, the right DLPFC, implicated in overriding or weakening
self-interest impulses, was inhibited with repetitive transcranial magnetic stimula-
tion (rTMS) and subjects were found to be more willing to act selfishly. Moreover,
where the opponent was a computer, which tends to inhibit the reciprocity motive,
the right DLPFC disruption showed no behavioural effect.

DeQuervain et al. (2004) found evidence that people have a preference for pun-
ishing norm violations. Neural activity in a two-player sequential social dilemma
game, where the players had the opportunity to punish the partner for abuse of trust,
was observed using positron emission tomography (PET) imaging. It was noted that
subjects experienced the punishing as satisfactory or rewarding and that the quantum
of anticipated satisfaction and level of punishment was positively correlated (Fehr
et al. 2005).



252 K. Sharda

7.1.3 Trust

While oxytocin is associated with trust levels, it does not seem to change the eval-
uation of the other player’s trustworthiness. It seems to operate more at the level
of subject’s preferences by making the subject more optimistic and inhibiting their
exploitation aversion making them more receptive to the risk of being exploited
(Bohnet and Zeckhauser 2004; Fehr et al. 2005; Kosfeld et al. 2005).

Krueger et al. (2007) indicated that two different trust mechanisms are in play in
a repeated two-player trust game. The initial mechanism involving anterior paracin-
gulate cortex makes way for spatial activation in the later stages. This suggests the
operation of a conditional trust system in the later stages of the game, while avoiding
trust in the early stages when temptations to defect are high.

7.1.4 Attitude Towards Strategic Uncertainty

The uncertainty of another person’s actions in a cooperation task is referred to
as strategic uncertainty (Ekins et al. 2013). Chark and Chew (2015) used a com-
bined behavioural and neuroimaging approach to study response to strategic uncer-
tainty as compared to non-strategic uncertainty. Their findings indicate that subjects
showed aversion to strategic ambiguity in competitive environments and were ambi-
guity seeking in cooperative environments. They also exhibited source preference
(self-regarding) rather than social preference (other-regarding) in their valuation of
expected utility.

7.2 Association with Theory of Mind and Empathy

Decision-making in a game theory situation presupposes that players build a theory
of mind or engage in mentalising about other players which helps to understand
their motivations, preferences and thereby predict their actions (McCabe and Singer
2008; Singer and Fehr 2005). While theory of mind is a cognitive understanding of
another person’s mental state, empathy refers to the “ability to share the feelings and
affective states of others” (Singer and Tusche 2014; p. 514). Comparative study of
brain areas involved when humans play against each other, and when humans play
with computers, has shown involvement of medial prefrontal lobe in mentalising.
Empathy-related activation has been observed in anterior cingulate cortex and ante-
rior insula. Empathy studies have shown that people tend to positively value pay-offs
when the other player has played fairly and negatively value the other player’s pay-
off during unfair play. This indicates that people prefer to punish unfair opponents
and choose to cooperate with fair ones (Fehr and Gächter 2000).
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7.3 Pharmacological Manipulations of Social Preferences

Pharmacological manipulations have highlighted some causal effects. For instance,
increased testosterone drives more fair offers (Eisenegger et al. 2010); increased
serotonin and benzodiazepine lead to reduced rejection rates (Crockett and Fehr
2014;Gospic et al. 2011). Prosocial behaviour and accuracy of higher-order decision-
making are enhanced by oxytocin administration (Kosfeld et al. 2005; Lambert et al.
2017).

7.4 Future Directions

Bhatt and Camerer’s (2005) and Mohr et al. (2010) studies establish a link between
differential insula activity and first- and second-order beliefs. This association can
support future research on self-referential bias in second-order beliefs and in risk-
related decision-making.

In-depth research is required to understand the neurological factors which mod-
ulate empathetic brain responses to better understand the conditions under which
prosocial and anti-social behaviour is fostered (Singer and Tusche 2014). More
detailed examination of the theory of mind and its neural correlates could provide
linkages between strategic thinking and neural activity (Camerer and Hare 2014).
Understanding the neural basis of exceptional skills in bargaining which contribute
to game play success, can aid in building valuable management skills and compe-
tencies such as strategic thinking and negotiation. Explorations of linkages between
different brain regions can bring more specificity and depth to our understanding of
the relationship between relevant neural circuitry and social decision-making.

8 Discussion and Future Research Directions

Neuroeconomics started gaining traction with the rise of the “neuroessentialism”
view (Racine et al. 2005) that the definitive way of explaining human psychological
experience can be through understanding the brain and its activity. This has been
fostered by rising capabilities and accessibility of neuroimaging techniques like
fMRI. With well-developed experimental designs researchers can explore the neural
substrates of behaviour and understand the mental processes which lead to certain
behaviour. This helps in developing better theories and also in testing theories in
multiple ways (Becker et al. 2011; Volk and Köhler 2012).

In this section, we discuss the fallacies researchers need to guard against, method-
ological issues in neuroeconomics research, concerns and future directions.
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8.1 Frequent Fallacies

“Forward inference” involves manipulating a specific psychological function and
identifying its localised effects in brain activity (Huettel and Payne 2009). However,
some researchers engage in the “reverse inference” while interpreting experimental
results. Reverse inference involves fallacious analysis as the concerned researcher
selects activated brain regions and makes inferences about the mental processes
associated with it. This results in low predictive power as specific brain regions
can be related with multiple cognitive processes (Poldrack 2006). While reverse
inference may be used to generate novel hypotheses about potential neural correlates
(Poldrack 2011), researchers need to be circumspect in its use and design appropriate
boundaries to enhance specificity of neural studies (Hutzler 2014; Volk and Köhler
2012). The other common fallacy to guard against is mereological fallacy which
ascribes psychological processes like memory, perception, thinking, imagery, belief,
consciousness to the brain, while theymight be emerging from interaction ofmultiple
parts of the body (Bennett and Hacker 2003; Powell 2011).

8.2 Methodological Issues

Researchers have highlighted some methodological concerns regarding design, exe-
cution and statistical analysis of neuroeconomics experiments. A brief summary of
the same has been shared here.

To begin with, statistical analysis of neural data can often be challenging due to
very small sample sizes (Fumagalli 2014; Ortmann 2008), resulting in “data sets
in which a few brains contribute many observations at each point in time, and in a
time-series” (Harrison 2008; p. 312). Neuroeconomic predictions are valid only over
very limited time intervals (spanning few hundred milliseconds) making it irrelevant
both for real-world use and for other economists (Fumagalli 2014).

Experimental results can be contaminated through experimenter-expectancy or
demand characteristics effects as in neuroeconomics laboratories researchers, not
blind to research questions and hypotheses, may provide instructions to subjects
(Ortmann 2008). Other factors which reduce signal-to-noise ratio of the research
findings include artificiality of laboratory settings (Ortmann 2008) and the use of
deception in experiments (see Coricelli et al. 2005; Knoch et al. 2006a; Rilling et al.
2002; Sanfey et al. 2003). Issues relating to representativeness of stimuli which
figured in behavioural economics apply to current neuroeconomics experiments as
well (Ortmann 2008).

Resolution capabilities of the available imaging techniques are not able to cap-
ture the physiological heterogeneity of many neural structures and circuits, limiting
our understanding of the complex functions of these structures (Fox and Poldrack
2009). Further, invasive data-collection techniques like repetitive transcranial mag-
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netic stimulation can lead to unknown, irreversible damage in experimental subjects
(Ortmann 2008).

Socio-demographic diversity is often lacking in sample sets whichmakes creating
consensus on the applicability of results across contexts challenging (Harrison 2008).
Further social, cognitive and affective capacities change over the course of life due
to different developmental trajectories of the respective underlying neural structures.
Initial studies have shown the potential benefits of investigating the developmental
aspects of neuroeconomics (Steinbeis et al. 2012; Singer and Tusche 2014).

Concerns have been raised that researchers are driven more by the availability of
new technology rather than by deeper understating of the underlying brain function
or of what they are recording. As a result, when data are being collected or analysed,
errors may go undetected, leading to inaccurate results. Research results may lead to
overstated or implausible claims or may be reinterpreted to fit a previously held view
(Cabeza and Nyberg 2000; Harrison 2008; Ortmann 2008; Ruff and Huettel 2014).

Triangulation through multiple research methods like pharmacological interven-
tions, cross-cultural designs and genetic-imaging approaches could be helpful in
arriving at a holistic comprehension of neural interconnections and can lead to a bet-
ter understanding of the underlying affective, motivational and cognitive processes
in decision-making (Singer and Tusche 2014; Volk and Köhler 2012).

8.3 Neuroeconomic Research: Concerns and Future
Directions

Technology available currently imposes limitations on our understanding of the
brain’s neurobiological complexity. For example, we are not able to capture the
structural features of many brain regions at a granular level nor are we able to grasp
the extensive heterogeneity which resides at the cellular level (Fox and Poldrack
2009).

Neuroeconomics has identified the neurological underpinnings of many
behaviours examined through prospect theory and provides strong evidence that
“anomalies” are real. Prospect theory interprets risk attitudes in multiple ways like
loss aversion, diminishing sensitivity to money and probability. During empirical
neuroeconomic research, we run the risk of conflating these factors. We also need
to establish whether an activity is causal and necessary for the presence of the phe-
nomena and is not just an effect of these factors. This calls for a combined approach
of identifying the neural correlates and establishing their necessity for the presence
of a phenomenon (Fox and Poldrack 2009).

Some researchers have questioned the appropriateness and relevance of game the-
ory contexts in understanding the reality of social preferences (see Binmore 2007;
Levitt and List 2007). Use of subjective labels such as “trust” and “trustworthiness”
to describe the behaviour of participants in laboratory experiments can lead to mis-
perception aroundmotives and can lead to situations where labelling is confusedwith
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explanation. Precise operationalisation of variables is needed to control for possible
confounds (Harrison 2008; Rubinstein 2006).

Context-dependencies are difficult to untangle given their multiplicity and simul-
taneity. Huettel and Payne (2009) urge researchers to be cautious in their interpre-
tations, given the multidimensionality of context effects, and to be circumspect in
providing overgeneralised explanations of results.

One key concern around neuroeconomic research is whether the validity of results
obtained from simple games and choices can be extended to more complicated con-
texts (Ortmann 2008). While it is commonly believed that results obtained in a
laboratory setting may not find resonance in field, Volk and Köhler (2012) high-
light the availability of strong empirical evidence that majority of laboratory results
demonstrate generalizability in “real world”.

9 Conclusion

Neuroeconomics has managed to grow beyond the initial scepticism: whether it will
add any value beyond correcting the “errors” believed to pervade economics and
whether it will provide better answers to traditional questions. Real-world behaviour
of economic agents in decision-making situations often tends to be suboptimal and
deviates from rational optimal behaviour. Study of neural circuitry helps us compre-
hend the computations an agent makes, and how those computations are made. This
knowledge might help us in understanding the deviations from optimal behaviour
in a more fundamental way. Paradoxically, as Glimcher (2003) states, the value of
neuroeconomic research might be enhanced by studying precisely those events when
economic agents do not behave in the optimal manner, as predicted by theory.
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