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Abstract Organophosphate pesticides are extensively used for the control of 
weeds, diseases, and pests of crops. Hence, these insecticides persist in the envi-
rons and thereby cause severe pollution problems. Synthetic pesticides including 
organophosphates insecticides are found to be toxic and/or hazardous to a variety 
of organisms like living soil biota along with valuable arthropods, fish, birds, 
human beings, animals, and plants. Organophosphate pesticides might be decon-
taminated quickly through hydrolysis on exposure to biosphere, which are respon-
sible to be significantly influenced by abiotic and/or biotic factors. The bacterial 
cultures isolated from various places are the major entities in the environment with 
a unique capability to break down different organophosphate pesticides for their 
growth. Additionally, a potential engineered strain(s) application for the bioreme-
diation of organophosphate(s) is of great interest. In the current chapter, the pub-
lished information on organophosphates impact on environment, toxic effects, and 
the available results of their degradation are discussed.

Keywords Toxicity · Chlorpyrifos · Methyl parathion · Quinalphos · Profenofos · 
Degradation

13.1  General Introduction

The green revolution has directed to an upsurge in the food production and, how-
ever, triggered many environmental problems with the increased use of agrochemi-
cals (including pesticides). The pesticides are classified into four major groups 
(Table 13.1). First and foremost are the groups of persistent organochlorine pesti-
cides such as dichlorodiphenyltrichloroethane, heptachlor, hexachlorobenzene, 
etc. Organochlorine insecticides introduced in the1940s are used in various crop 
protections from the pests. The extensive use of these insecticides, during the 
1950s–1970s, interfere with food and nonfood crops such as corn, wheat, and 
tobacco. Organochlorine pesticides fluctuate in their mechanisms of toxicity due to 
their differences in chemical structures. These are also known as lipophilic chemi-
cals, and their accumulation in the higher trophic levels leads to biomagnifications 
with the food chain (Poon et al. 2005). For example, increased concentrations of 
dichlorodiphenyltrichloroethane and its metabolites have been found in soil, water, 
and sediment samples (Bould 1995; Miersma et al. 2003; Shen et al. 2005; Yanez 
et al. 2002).

S. I. Mulla et al.



267

Table 13.1 Major classes of pesticides

Pesticides classes Examples Chemical name Structure

Organochlorine 
pesticides

DTT 1,1′-(2,2,2-trichloroethane-1,1-
diyl)bis(4-chlorobenzene)

Cl
ClCl

ClCl

Dicofol 2,2,2-trichloro-1,1-bis(4-
chlorophenyl)ethanol

Cl

Cl
Cl Cl

Cl

HO

Organophosphate 
pesticides

Parathion O,O-diethyl O-(4-nitrophenyl) 
phosphorothioate

P
O

O

O

S

N+

O

-O

Diazinon O,O-diethyl O-[4-methyl-6-
(propan-2-yl)pyrimidin-2-yl] 
phosphorothioate P

OO

O SN

N

Diethyl 
2-dimethoxy

Malathion 2-[(dimethoxyphosphorothioyl)
sulfanyl]butanedioate, diethyl

O

O

O

O

S
PO
O

S
O

O

Profenofos O-(4-bromo-2-chlorophenyl) 
O-ethyl S-propyl 
phosphorothioate P

O O

OS

Cl

Br

Quinalphos O,O-diethyl O-quinoxalin-2-yl 
phosphorothioate

P
O

OO

S

N

N

Methyl 
parathion

O,O-dimethyl 
O-4-
nitrophenylphosphorothioate

ON
P

O
O

SO

O

CH3
CH3

Chlorpyrifos O,O-di 
ethyl-O-(3,5,6-trichloro-2-
pyridinyl)- phosphorothioate N

NCl

Cl

Cl

O P

S

O

O C2H5

C2H5

(continued)
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Organophosphates are the second major group of pesticides. The important 
organophosphate pesticides are malathion, methyl parathion, diazinon, endosulfan, 
dimethoate, chlorpyrifos, quinalphos, profenofos, and monocrotophos. The third 
group is carbamate insecticides, based on the carbonic acid. The most recently 
developed and least persistent of these insecticides belong to pyrethroids, which are 
derived from the chrysanthemum. In addition to the natural group of insecticides 
collectively called pyrethrins, some synthetic pyrethroids like cypermethrin, delta-
methrin, and fenvalerate insecticides are available under various brand names in the 
marketplace. These insecticides have rapid knockdown effects and are most fre-
quently used against flying insects (e.g., as aerosols for the control of household 
insects like flies, mosquitos, etc.). Pesticides with varied chemical nature have been 
used around the world in the agricultural sector for crop protection from pests, 
resulting in increased agricultural productivity (Kuo and Regan 1999). On the other 
hand, their extensive usage leads to the contamination of environmental surround-
ings (Barcelo 1991).

Table 13.1 (continued)

Pesticides classes Examples Chemical name Structure

Carbamate 
pesticides

Carbendazim Methyl 
1H-benzimidazol-2-
ylcarbamate

NH

O
O

N

N
H

Carbofuran 2,2-dimethyl-2,3-dihydro-1-
benzofuran-7-yl 
methylcarbamate

NH

O

O
O

Carbosulfan 2,2-dimethyl-2,3-dihydro-1-
benzofuran-7-yl 
[(dibutylamino)sulfanyl]
methylcarbamate N

O

O S N

O

Pyrethroid 
pesticides

Cyphenothrin Cyano(3-phenoxyphenyl)
methyl 2,2-dimethyl- 3-(2-
methylprop-1-en-1-yl)
cyclopropanecarboxylate

O

O

O

N

Cypermethrin [Cyano-(3-phenoxyphenyl)
methyl]3-(2,2-dichloroethenyl)-
2,2- dimethylcyclopropane- 1-
carboxylate

O

-O

Cl

Cl
O

N
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13.2  Organophosphate Pesticides as Environmental 
Pollutants

Constantly growing human population significantly depends on agriculture (which 
represents the world’s largest terrestrial biome) for food and nourishment (Mugni 
et al. 2016). Hence, for food safety, agrochemicals (pesticides, herbicides, and 
fungicides) are often used in crop production. These agrochemicals, especially 
pesticides, help to enhance the production of crops by protecting from pests in the 
course of pre- and post-harvest (Abhilash and Singh 2009). Among the four groups 
of pesticides, organophosphates are widely used. Some of these pesticides history, 
half-life period and uses are provided in Table 13.2.

The  organophosphate pesticides are used to save crops from pests; however, 
most of their unused portion as well as their by-products is driven to waste and 
remains contaminant in the soil, thereby causing loss of fertility, acidification of 
soil, nitrate leaching, increased resistance of weed species, and loss of biodiversity 
(Mohapatra 2008; Tilman et al. 2002; Verma et al. 2013).

13.2.1  Chlorpyrifos as an Environmental Pollutant

Chlorpyrifos is introduced in the year 1965 by Dow Chemical Company, USA, and 
is known by many trade names (including Dursban and Lorsban). The World Health 
Organization classified chlorpyrifos as class II moderately toxic chemical. It is a 

Table 13.2 History, half-life period, and uses of organophosphate pesticides

Pesticide 
name

Introduction 
(year)

Half-life 
period in 
soil (Days) Uses

Chlorpyrifos 1965 10–120 Controls Coleoptera, Diptera, Homoptera, and 
Lepidoptera in soil and on foliage in over large 
number of crops including rice, cotton, oilseeds, 
pulses, vegetables, and plantation

Methyl 
parathion

1949 25–130 Methyl parathion controls boll weevils and many 
biting or sucking insect pests of agricultural crops, 
primarily on cotton. It kills insects by contact or 
stomach and respiratory action

Quinalphos 1969 29–60 Quinalphos applied for controls caterpillars on fruit 
trees, cotton, vegetables, and peanuts; scale insect on 
fruit trees and pest complex on rice and also controls 
aphids, bollworms, borers, leafhoppers, mites, thrips, 
etc.

Profenofos 1982 7–15 It controls the tobacco budworm, cotton bollworm, 
armyworm, whiteflies, spider mites, plant bugs, and 
fleahoppers. Profenofos also control lepidopteron 
species (the worm complex) at varying rates
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broad-spectrum chlorinated organophosphate insecticide (Yadav et al. 2016). It is 
used in agriculture as a nematicide and acaricide for pest control on various crops. 
The chlorpyrifos persists for long period in soil and water, because of its nonpolar 
nature and readily soluble in organic solvents. In addition to the unused chlorpyrifos 
applied directly in the surroundings, pollution of soil can also be generated in the 
progress of handling the insecticide in the farmyard as well as in the containers 
(Yadav et al. 2016). Moreover, due to its slow degradation rate, chlorpyrifos can 
persist for long periods in soil and thereby affect a substantial risk to the ecosystem 
(Kulshrestha and Kumari 2011; Singh and Walker 2006; Yadav et al. 2016).

13.2.2  Methyl Parathion as an Environmental Pollutant

Methyl parathion (an insecticide) is extensively used in agriculture crops, primarily 
cotton, emulsion concentrate, granular food packing, and pest control management, 
because of its effectiveness toward insect pests (Abhijith et al. 2016). Nevertheless, 
the uncontrolled usage of methyl parathion may cause potential risk to the aquatic 
organisms and interfere with the general health, reproductive, and developmental 
process (Rico et al. 2010). Methyl parathion was detected in many water samples 
(Diagne et al. 2007). In addition, the accumulation of methyl parathion and its resi-
dues in various components of aquatic surroundings has been reported (Diagne 
et al. 2007; Huang et al. 2011). It is also polluted dairy products (Patnaik and Padhy 
2016; Srivastava et al. 2011). On the basis of methyl parathion toxic effect and resi-
due concentration, it has been classified as extremely hazardous and is listed in the 
HazDat database of chemicals detected in surface and/or groundwater at National 
Priorities List (NPL) sites (WHO 2004), as a result, encouraging numerous nations 
to ban or control its usage. Though, methyl parathion is still misused in several 
developed nations (Ghosh et al. 2010).

13.2.3  Quinalphos as an Environmental Pollutant

Quinalphos is a synthetic, non-systemic, and broad-spectrum organophospate pesti-
cide and used extensively to control pests of a variety of crops such as cotton, paddy, 
peanuts, coffee, cocoa, soya beans, tea plantation, vegetables, and fruit trees for 
controls of caterpillars, scale insect, aphids, bollworms, borers, leafhoppers, mites, 
and thrips (Talwar et al. 2014). However, merely 1% of the used chemical (pesti-
cide) interacted with target insect, whereas the rest of the chemical floats into the 
environmental surroundings (Gangireddygari et al. 2017). The large-scale usage of 
quinalphos poses a health hazard to animals and human beings, because of its per-
sistence in the soil and crops (Katti and Verma 1992; Talwar et al. 2014).
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13.2.4  Profenofos as an Environmental Pollutant

Profenofos is a non-systemic and broad-spectrum organophosphate insecticide. It is 
widely used to control lepidopteron insects, whiteflies, aphids, hoppers, and spider 
mites from a variety of crops including cotton, corn, sugar beet, soybeans, potatoes, 
vegetables, and tobaccos (EPA 2012; Reddy and Rao 2008; Talwar and Ninnekar 
2015). Profenofos is a contaminant in a wide range of aquatic and terrestrial ecosys-
tems (Safiatou et  al. 2007; Talwar and Ninnekar 2015). Harnpicharnchai et  al. 
(2013) reported that the average value of profenofos in soil was about 0.041 mg kg−1 
in summers whereas 0.016 mg kg−1 in winters. In addition, profenofos pesticide 
residue was also detected in water, sediments, as well as in muscle tissues of 
Cyprinus carpio (Mahboob et al. 2013).

13.3  Toxicity of Pesticides

In most instances, various pesticides affect the human beings and animals health 
due to their capability to interact with living system especially endocrine system 
(Munoz-de-Toro et  al. 2006). Moreover,  some of these insecticides were easily 
transferred from nursing mothers to children through breast milk (Munoz-de-Toro 
et al. 2006). Carbamate pesticides are related to organophosphates by their mode of 
action, but the dose required to produce minimum poisoning symptoms and mortal-
ity in human beings is higher for carbamate compounds than for organophosphate 
compounds (Goldberg et al. 1963; Vandekar et al. 1971).

13.3.1  Toxicity of Organophosphate Pesticides

Organophosphates are the one of a major group of pesticides. These chemicals are 
neurotoxic that act by inhibiting acetylcholine esterase in the central and peripheral 
nervous system, resulting in choline and acetate formation (Elersek and Filipic 
2011). Further, nerves are significantly enhanced and blocked. This suppression 
leads to convulsion, paralysis, and lastly death for insects and mammals (Singh and 
Walker 2006). Additionally, organophosphates also bear the potentiality to cause 
genotoxic and carcinogenic effects (Kaushik and Kaushik 2007).

13.3.1.1  Toxicity of Chlorpyrifos Pesticide

Chlorpyrifos is moderately toxic to human beings, because, it acts on the nervous 
system by inhibiting acetylcholinesterase activity (Reiss et al. 2012; Schuh et al. 
2002). There are reports of genotoxic and mutagenic effects of chlorpyrifos in 
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human beings (Sandal and Yilmaz 2011; Sobti et al. 1992) and rat (Ojha et al. 2013). 
Nasr et al. (2016) reported that the chlorpyrifos has the tendency to affect significant 
oxidative damage in brain and kidney of rat. There is an increased risk of various 
cancers in pesticide applicators, in particular colorectal (Lee et  al. 2007), breast 
(Engel et al. 2005), lymphoma (Karunanayake et al. 2012), prostate (Alavanja et al. 
2003), hematopoietic, leukemia, and brain cancers (Lee et al. 2004). Additionally, 
there is an evidence of immunotoxicity, including the effects on lymphocytes 
(Blakley et al. 1999) and thymocytes (Prakash et al. 2009). This epidemiological 
evidence has been linked to neurological effects, persistent developmental disor-
ders, as well as autoimmune disorders. However, many countries have recognized 
the hazards of chlorpyrifos and have slowly limited or banned their usage. 
Recently, Jegede et al. (2017) reported that changes in temperature can influence the 
toxicity of chlorpyrifos toward soil microarthropods.

13.3.1.2  Toxicity of Methyl Parathion Pesticide

Human beings exposed to methyl parathion reported headaches, nausea, sleepless-
ness, diarrhea, restlessness, breathing problem, dizziness, abdominal cramps, exces-
sive sweating, and mental confusion (Rubin et  al. 2002). The toxicity of methyl 
parathion is associated with hindering acetylcholinesterase (the enzyme responsible 
for the hydrolysis of the acetylcholine) in mammals especially human beings and 
pests leading to severe health complications (Liu et al. 2016b). In previous studies, 
researchers reported that when fish are exposed to methyl parathion, changes were 
observed in acetylcholinesterase activity, hematological and biochemical parame-
ters (Duquesne and Kuester 2010; Uzunhisarcikli et al. 2007). Moreover, Abhijith 
et al. (2016) reported that an acute and sublethal dose of methyl parathion induces 
substantial variations in the enzymatic profiles (in Catla catla).

13.3.1.3  Toxicity of Quinalphos Pesticide

Quinalphos is an insecticide affecting acetylcholinesterase inhibition with interac-
tion and also on stomach and respiratory system (Yashwantha et al. 2016). The toxi-
cological effects of quinalphos in rats and other animals have been well documented 
(Dwivedi et al. 1998). For example, quinalphos (at doses of 1.5 mg kg−1 body weight) 
administered to pregnant rats produced inhibition of acetylcholinesterase activity in 
fetal brain and placenta, indicating a possible transfer of pesticide from dams to 
fetuses (Srivastava et al. 1992). In addition, it is also adversely affects the activity of 
testicular steroidogenic enzymes and thereby causes degeneration of germ cell and 
reduction in sperm count (Ray et al. 1992). However, quinalphos is primarily metab-
olized by desertification to quinoxalin-2-ol and phosphorothioate, of that approxi-
mately 87% of quinoxalin-2-ol is excreted through urine and the remaining exists in 
the bile duct. Debnath and Mandal (2000) reported that quinalphos is an environmen-
tal xenoestrogenic insecticide, which interferes with the expression of the sex 
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hormones leading to abnormalities in mammals. Moreover, quinalphos is also 
showed at certain concentration; it becomes toxic in female reproduction (Khera 
et  al. 2016). In another study, a research group reported that quinalphos will be 
hazardous to silver barb, Barbonymus gonionotus (Sadiqul et al. 2016).

13.3.1.4  Toxicity of Profenofos Pesticide

The presence of profenofos residue in the soil poses high environmental risk due to 
its adverse impact on biosphere (Fosu-Mensah et al. 2016; He et al. 2010). Thus, 
human populations are certainly exposed to profenofos residue and its by-products. 
For example, a study reported the presence of profenofos and its intermediate 
(4-bromo-2-chlorophenol) in human plasma and urine (Gotoh et  al. 2001). In 
another study, a research group demonstrated in vitro toxic profile of profenofos by 
using lymphocytes from peripheral blood samples of healthy human donors 
(Prabhavathy Das et al. 2006). In addition, profenofos is also highly toxic to fish and 
invertebrates (Talwar and Ninnekar 2015). The high-level exposure to profenofos 
causes hepatocellular injury (Gomes et al. 1999). Moreover, high doses of the pro-
fenofos induced tissue vacuolization, hemorrhage, and hyperplasia of kupffer cells 
in the liver. In adddion, swelling of Bowman’s capsules and tubular degeneration in 
the kidney were also documented (Fawzy et al. 2007). It is also able to induce oxi-
dative stress; this may be an earlier diagnostic index in profenofos poisoning (Lin 
et al. 2003). Likewise, Ruparrelia et al. (1986) reported that semi-static exposure of 
profenofos was used to understand the toxic effect in aquatic environment, with the 
special importance on behavioral, morphological, and target enzyme interaction and 
bioaccumulation of the toxicant in various areas of the body of Oreochromis moss-
ambicus (Tilapia). Furthermore, in chromosomal experimental investigation, sam-
ples of the metaphase plates were treated with sublethal doses of profenofos shown 
in satellite links and chromatid disruptions and gaps, demonstrating the effect of 
profenofos on chromosomes (Kushwaha et al. 2016).

13.4  Bacterial Degradation of Organophosphate Pesticides

Bioremediation is a process in which microorganisms and plants are used as bio-
logical mediators to detoxify toxic/hazardous organic and inorganic chemicals into 
less risky smaller compounds (Bharagava et al. 2017a, b; Saxena and Bharagava 
2017; Chandra et  al. 2015; Liu et  al. 2007). It is an environmental-friendly and 
greatly effectual method that can be used as a substitute to chemical and physical 
methods (Gilani et al. 2016). Pesticide pollutants can be degraded either by biotic 
and/or abiotic pathways. However, biodegradation of such chemicals by organisms 
is the primary mechanism in different soils. Hence, it is an advantageous process in 
the developmental strategies for bioremediation of pesticides contaminated soil, 
sediment, and water (Qiu et al. 2006). Numerous reports are available on degradation 
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of different class of pesticides (Mulla et al. 2016; Tallur et al. 2015; Talwar and 
Ninnekar 2015). The successful removal of pesticides (including chlorpyrifos, 
endosulfan, methyl parathion, coumaphos, ethoprop, parathion, diazinon, and 
dimethoate) by bacteria has been reported (Singh and Walker 2006; Zheng et al. 
2013). Isolation of pure bacterial cultures capable of degrading organophosphate 
pesticides has gained significant attention, because, these bacteria are easily acces-
sible and offer an environmental-friendly method of in situ reclamation (Ortiz- 
Hernández and Sánchez-Salinas 2010).

The hydrolysis is the most significant step in organophosphate pesticides catabo-
lism, which causes compounds more exposed to further biodegradation, and the 
mechanism of hydrolysis along with its kinetic characteristics is well presented in 
literature  (Ortiz-Hernández and Sánchez-Salinas 2010). Bacterial isolates having 
the ability to degrade organophosphate pesticides by metabolically and/or co- 
metabolically are listed in Table 13.3.

13.4.1  Bacterial Degradation of Chlorpyrifos

Previous results revealed that in Flavobacterium sp. and Pseudomonas diminuta, 
chlorpyrifos degraded co-metabolically in culture medium (Serdar et  al. 1982; 
Sethunathan and Yoshida 1973). In contrast, these strains do not have the ability to 
utilize chlorpyrifos as a carbon source. The degradation of chlorpyrifos was medi-
ated by soil microorganisms and greatly influenced by abiotic factors (Price et al. 
2001). Furthermore, the isolated Enterobacter sp. strain B-14 from Australian soil 
could transform chlorpyrifos to diethylthiophosphoric acid and 3,5,6-trichloro- 2-
pyridinol (Fig. 13.1) (Singh and Walker 2006).

The isolated Alcaligenes faecalis DSP3 (Yang et  al. 2005) and 
StenotrophomonasYC1 (Yang et al. 2006) were shown to be capable of degrading 
chlorpyrifos and 3,5,6-trichloro-2-pyridinol. In another study, a bacterial strain, 
Serratia sp. (isolated from an activated sludge), can transform chlorpyrifos to 
3,5,6-trichloro-2-pyridinol (Xu et al. 2007). Additionally, enhanced degradation of 
chlorpyrifos by bacterial strain Arthrobacterspxz-3 has been reported (Qian et al. 
2007). Moreover, the bacterial strains, Stenotrophomonas sp. YC-1 and 
Sphingomonas sp. Dsp-2 (isolated from a wastewater effluent of a pesticide- 
producing division), are correspondingly capable of chlorpyrifos degradation 
(100%) within a day (Li et al. 2007; Yang et al. 2006). But, Paracoccus sp. TRP 
(isolated from activated sludge sample) mineralizes completely at a given concen-
tration of chlorpyrifos within 4 days. In contrast, a bacterium, Serratia sp., is capa-
ble to mineralize the same concentration of chlorpyrifos within 18 h only which 
indicates bacterial strain Serratia sp. is highly efficient than Paracoccus sp. (Xu 
et al. 2007, 2008). Additionally, Li and research group isolated various pure bacte-
rial cultures (Stenotrophomonas sp., Bacillus sp., and Brevundimonas sp.) having 
the ability to degrade chlorpyrifos (Li et al. 2008). Later, Anwar et al. (2009)  isolated 
a bacterium Bacillus pumilus strain C2A1 from soil and was found greatly effective 
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Table 13.3 Bacterial cultures having the capability to degrade organophosphate pesticides either 
by metabolically and/or co-metabolically

Pesticide Organisms References

Chlorpyrifos Achromobacter xylosoxidans (JCp4) Akbar and Sultan (2016)
Acinetobacter sp. strain MemCl4 Pailan et al. (2016)
Acinetobacter calcoaceticus Akbar et al. (2014)
Alcaligenes faecalis Yang et al. (2005)
Bacillus cereus Liu et al. (2012)
Bacillus cereus strain ATCC14579 Ishag et al. (2016)
Bacillus licheniformis Zhu et al. (2010)
Bacillus pumilus Anwar et al. (2009)
Bacillus safensis strain FO-36b Ishag et al. (2016)
Bacillus sp. Li et al. (2008)
Bacillus subtilis Lakshmi et al. (2008)
Bacillus subtilis subsp. inaquosorum strain 
KCTC13429

Ishag et al. (2016)

Brevundimonas sp. Li et al. (2008)
Brucella melitensis Lakshmi et al. (2008)
Cupriavidus sp. Lu et al. (2013)
Enterobacter sp. Singh et al. (2003)
Flavobacterium sp. ATCC27551 Mallick et al. (1999)
Klebsiella sp. Ghanem et al. (2007)
Lactobacillus brevis WCP902 Cho et al. (2009)
Lactobacillus plantarum WCP931 Cho et al. (2009)
Lactobacillus sakei WCP904 Cho et al. (2009)
Leuconostoc mesenteroides WCP907 Cho et al. (2009)
Micrococcus sp. Guha et al. (1997)
Ochrobactrum sp. FCp1 Akbar and Sultan (2016)
Ochrobactrum sp. JAS2 Abraham and Silambarasan 

(2016)
Pseudomonas sp. Yadav et al. (2014)
Pseudomonas kilonensis SRK1 Khalid et al. (2016)
Pseudomonas mendocina Akbar et al. (2014)
Pseudomonas putida John et al. (2016)
Pseudomonas putida KT2440 Gong et al. (2016a)
Ralstonia sp. Li et al. (2010)
Rhizobium sp. Rayu et al. (2017)
Serratia Xu et al. (2007)
Serratia marcescens Cycon et al. (2013)
Sphingomonas sp. Li et al. (2008)
Sphingomonas strain HJY Feng et al. (2017)
Staphylococcus warneri John et al. (2016)
Stenotrophomonas sp. G1 Deng et al. (2015)
Stenotrophomonas maltophilia John et al. (2016)

(continued)

13 Organophosphate Pesticides: Impact on Environment, Toxicity, and Their…



276

Table 13.3 (continued)

Pesticide Organisms References

Stenotrophomonas maltophilia MHFENV20 Dubey and Fulekar (2012)
Xanthomonas sp. Rayu et al. (2017)

Methyl 
parathion

Acinetobacter radioresistens USTB-04 Liu et al. (2007)

Bacillus sp. Sharmila et al. (1989)
Burkholderia jiangsuensis Liu et al. (2016b)
Citrobacter freundii Pino and Peñuela (2011)
Flavobacterium sp. Pino and Peñuela (2011)
Flavobacterium balustinum Somara and Siddavattam 

(1995)
Klebsiella sp. Pino and Peñuela (2011)
Proteus sp. Pino and Peñuela (2011)
Proteus vulgaris Pino and Peñuela (2011)
Pseudomonas sp. Chaudhry et al. (1988)
Plesiomonas sp. M6 Zhongli et al. (2001)
Pseudomonas putida Rani and Lalithakumari (1994)
Pseudomonas putida X3 Zhang et al. (2016)
Pseudomonas putida KT2440 Gong et al. (2016b)
Pseudomonas sp. R1 Sharmila Begum and Arundhati 

(2016)
Pseudomonas sp. R2 Sharmila Begum and Arundhati 

(2016)
Pseudomonas sp. R3 Sharmila Begum and Arundhati 

(2016)
Pseudomonas sp. WBC Yali et al. (2002)
Serratia sp. strain DS001 Pakala et al. (2007)
Stenotrophomonas sp. G1 Deng et al. (2015)

Quinalphos Bacillus Dhanjal et al. (2014)
Bacillus thuringiensis Gangireddygari et al. (2017)
Ochrobactrum sp. Talwar et al. (2014)
Pseudomonas Pawar and Mali (2014)
Pseudomonas spp. Dhanjal et al. (2014)
Pseudomonas sp. Nair et al. (2015)
Pseudomonas aeruginosa Q10 Nair et al. (2015)
Serratia sp. Nair et al. (2015)

Profenofos Bacillus subtilis Salunkhe et al. (2013)
Burkholderia gladioli Malghani et al. (2009b)
Pseudomonas sp. Salunkhe et al. (2013)
Pseudomonas aeruginosa strain PF2 Siripattanakul-Ratpukdi et al. 

(2015)
Pseudomonas aeruginosa strain PF3 Siripattanakul-Ratpukdi et al. 

(2015)

(continued)
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in degrading chlorpyrifos and its hydrolysis by-product 3,5,6-trichloro- 2-pyridinol. 
Dubey and Fulekar (2012) studied Stenotrophomonas maltophilia MHF ENV20 
(isolated from the Pennisetum rhizosphere) potentiality for chlorpyrifos degrada-
tion. They reported that the presence of mpd gene makes Stenotrophomonas malto-
philia MHF ENV20 to survive at higher concentration of chlorpyrifos. Cycon et al. 
(2013) demonstrated that Serratia marcescens was competent of degrading chlorpy-

Table 13.3 (continued)

Pesticide Organisms References

Pseudomonas plecoglossicida strain PF1 Siripattanakul-Ratpukdi et al. 
(2015)

Pseudomonas putida Malghani et al. (2009b)
Pseudomonas putida (DB17) isolate
Pseudoxanthomonas suwonensis strain HNM Talwar and Ninnekar (2015)
Stenotrophomonas sp. G1 Deng et al. (2015)
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Fig. 13.1 Bacterial degradation of chlorpyrifos (Adapted from Xu et al. 2007; Yadav et al. 2016)
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rifos (at rate constant between 0.017 and 0.052 d−1 with T1/2 of 13.6–37 days) in 
various types of soils. In another study, a research group isolated two bacterial 
strains, namely, Achromobacter xylosoxidans JCp4 and Ochrobactrum sp. FCp1, 
demonstrating chlorpyrifos-degradation potential. The authors reported that these 
organisms were capable to degrade 84.4% and 78.6% of the initial concentration of 
chlorpyrifos (100 mg L−1) within 10 days (Akbar and Sultan 2016). Abraham and 
Silambarasan (2016) studied biodegradation of chlorpyrifos and its by-product 
3,5,6-trichloro-2-pyridinol by a novel bacterium, Ochrobactrum sp. JAS2 (isolated 
from paddy rhizosphere soil). They reported mpd gene responsible for organophos-
phorus hydrolase production was identified in the bacterium, Ochrobactrum sp. 
JAS2 (Abraham and Silambarasan 2016). On the other hand, Ishag et  al. (2016) 
experimental results revealed that α and β half-lives (days) of chlorpyrifos in 
Bacillus safensis culture were 2.13 and 4.76, respectively. On the other hand, 
Bacillus subtilis as well as Bacillus cereus cultures values were 4.09, 9.45, and 4.33, 
9.99 for chlorpyrifos, respectively. They also reported that during degradation of 
chlorpyrifos, no metabolites were detected in Bacillus subtilis subsp. inaquosorum 
strain KCTC 13429 as well as Bacillus cereus strain ATCC14579 culture medium 
(Ishag et  al. 2016). Conversely, a key intermediate (hydroxy O-ethyl O-3,5,6-
trichloropyridin- 2-ylphosphorothioate) was detected after biodegradation by 
Bacillus safensis strain FO-36b culture medium (Ishag et al. 2016). Furthermore, a 
research group reported that the engineered MB285 strain (a solvent-tolerant bacte-
rium, Pseudomonas putida) was capable of completely mineralizing chlorpyrifos 
through direct biodegradation and two intermediates, namely, 3,5,6-trichloro-2-pyr-
idinol and diethyl phosphate, appeared in the culture medium (Liu et al. 2016a). In 
another study, a bacterial strain (Acinetobacter sp. strain MemCl4) having the abil-
ity to utilize chlorpyrifos as a sole source of carbon was isolated by enrichment 
culture technique from an agricultural soil sample, and 3,5,6 trichloro-2-pyridinol 
was identified as a major intermediate of chlorpyrifos catabolism (Pailan et  al. 
2016). Rayu et  al. (2017) isolated Xanthomonas sp., Pseudomonas sp., and 
Rhizobium sp. from sugarcane farm soils by enrichment method and reported all 
three isolates completely mineralize chlorpyrifos (10 mg L−1) in mineral salt media 
as a sole source of carbon and nitrogen. Recently, Feng et al. (2017) demonstrated 
chlorpyrifos degradation using endophytic bacterium, Sphingomonas sp. strain HJY 
that was isolated from Chinese chives (Allium tuberosum Rottl. ex Spreng). They 
reported that strain HJY-gfp inoculated in Chinese chives showed higher degrada-
tion of chlorpyrifos inside the plants than in noninoculated plants.

13.4.2  Bacterial Degradation of Methyl Parathion

Studies on the degradation of methyl parathion by different microorganisms have 
been reported in the literature (Singh and Walker 2006). Previously, Chaudhry et al. 
(1988) isolated a bacterium Pseudomonas sp. that can co-metabolically degrade 
methyl parathion. Thereafter, Rani and Lalithakumari (1994) isolated a bacterium 
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(Pseudomonas putida) that can hydrolyze methyl parathion as well as utilize 
p-nitrophenol as a source of carbon and energy (Fig. 13.2).

Later, Somara and Siddavattam (1995) reported that Flavobacterium balustinum 
can also utilize methyl parathion as a sole source of carbon. Additionally, methyl 
parathion degradation by free- and immobilized-cells of the bacterium (Pseudomonas 
sp.) on sodium alginate beads was studied and reported (Ramanathan and 
Lalithakumari 1996). On the other hand, Charoensri et al. (2001) studied methyl 
parathion degradation rates at different conditions including inoculum sizes of bac-
teria, with and without glucose, pH, salinity, concentrations of methyl parathion, 
and the metabolism of p-nitrophenol. In Plesiomonas sp. strain M6 isolate, methyl 
parathion was transformed to dimethyl phosphorothioate and p-nitrophenol by 
hydrolysis; however, further degradation of p-nitrophenol was not observed (Zhongli 

Fig. 13.2 Bacterial degradation of methyl parathion (Adapted from Singh and Walker 2006)
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et al. 2001). Yali et al. (2002) reported Pseudomonas sp. WBC (isolated from pol-
luted soils around a Chinese pesticide factory) was capable to mineralize methyl 
parathion completely and can utilize it as a sole source of carbon and nitrogen. In 
addition, a soil bacterium, Serratia sp. strain DS001, capable of utilizing methyl 
parathion as the sole source of carbon was isolated by selective enrichment tech-
nique. In Serratia sp. strain DS001, p-nitrophenol and dimethylthiophosphoric acid 
were observed as main by-products of methyl parathion catabolism (Pakala et al. 
2007). In another study, a newly isolated bacterium, Acinetobacter radioresistens 
USTB-04 was used for the degradation of methyl parathion. In a bacterium, methyl 
parathion (1200 mg L−1) was completely degraded; however, no intermediate was 
observed during the degradation (Liu et al. 2007). Pino and Peñuela (2011) demon-
strated the degradation of the pesticide methyl parathion (150 mg L−1) by bacterial 
consortium achieved by selective enrichment from highly polluted soils in Moravia 
(Medellin, Colombia). They reported in the presence of glucose 98% of methyl 
parathion degradation achieved within 120 h. Additionally, Zhao et al. (2014) inves-
tigated an influence of kaolinite and goethite on microbial degradation of methyl 
parathion. They observed during methyl parathion degradation catabolic activities 
of Pseudomonas putida cells were increased by the presence of kaolinite and 
decreased by the presence of goethite. On the other hand, Gong et  al. (2016b) 
reported metabolic engineering of Pseudomonas putida KT2440 for complete min-
eralization of methyl parathion. They observed that the strain was genetically stable 
and its growth was not inhibited. Furthermore, the engineered strain showed higher 
degradation of spiked methyl parathion (50 mg kg−1 soil) in soil samples. In another 
study, a research group reported that the genetically engineered Pseudomonas 
putida X3 strain can utilize methyl parathion as a sole source of carbon for growth. 
In an engineered X3 strain, methyl parathion was hydrolyzed to p-nitrophenol. 
However, no further degradation was observed, this might be due to the lack of 
p-nitrophenol degrading genes in X3 strain (Zhang et al. 2016).

13.4.3  Bacterial Degradation of Quinalphos

The hydrolysis of the ester bond connecting the aromatic moiety to dimethyl phos-
phorothioate in quinalphos leads to 2-hydroxyquinoxaline, which has also been 
identified as the key metabolite (Fig. 13.3).

Pawar and Mali (2014) experimental results revealed that Pseudomonas strain 
can degrade quinalphos up to 90.4% in the presence of co-substrate (glucose) 
whereas up to 38.2% observed in the absence of glucose. Moreover, Dhanjal et al. 
(2014) were isolated Bacillus and Pseudomonas sp. from different contaminated 
soils having the ability to degrade quinalphos. They reported that more than 80% of 
quinalphos was degraded within 17 days in the presence of isolated bacteria; how-
ever, no intermediates were observed in the course of the biodegradation process. 
An organism having the ability to degrade quinalphos was isolated and identified as 
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Ochrobactrum sp. strain HZM from the pesticide-contaminated soil samples by 
enrichment on quinalphos as a sole source carbon (Talwar et al. 2014). They reported 
isolated Ochrobactrum sp. strain HZM can utilize various organophosphate pesti-
cides like quinalphos, profenofos, methyl parathion, and chlorpyrifos as carbon 
sources. Furthermore, they also reported 84.61% of quinalphos degradation (in 
Ochrobactrum sp. strain HZM) can be achieved under the optimum pH 7 and 27 °C 
by response surface methodology. The degradation of quinalphos in Ochrobactrum 
sp. strain HZM proceeds via hydrolysis to yield 2-hydroxyquinoxaline and diethyl 
phosphate. Additionally, the gene responsible for organophosphate hydrolase was 
detected in Ochrobactrum sp. strain HZM by PCR technique. Nair et  al. (2015) 
isolated 12 different bacterial strains (having the ability to grow on quinalphos) of 
which 3 competent isolates such as Pseudomonas sp., Serratia sp., and Pseudomonas 
aeruginosa degraded quinalphos (at a given concentration) up to 86%, 82%, and 
94%, respectively. In Pseudomonas aeruginosa, 2-hydroxyquinoxaline and phos-
phorothioic acid were accumulated during quinalphos degradation (Nair et  al. 
2015). Recently, Gangireddygari et al. (2017) studied the effect of environmental 
factors on quinalphos degradation in Bacillus thuringiensis. They reported that 
highest quinalphos degradation was achieved by using an inoculum of 1.0 O.D with 
optimum pH (6.5–7.5) and 35–37 °C. Furthermore, there results also revealed that 
addition of yeast extract slightly improves quinalphos degradation rate 
(Gangireddygari et al. 2017).
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Fig. 13.3 Bacterial degradation of quinalphos (Adapted from Talwar et al. 2014)
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13.4.4  Bacterial Degradation of Profenofos

Profenofos has been reported to be degraded by few bacterial strains, Pseudomonas 
aeruginosa (Malghani et  al. 2009a), Pseudomonas putida, Burkholderia gladioli 
(Malghani et  al. 2009b), Bacillus subtilis (Salunkhe et  al. 2013), and 
Stenotrophomonas sp. G1 (Deng et al. 2015). 4-Bromo-2-chlorophenol was identi-
fied as the major intermediate during profenofos catabolism (Fig. 13.4).

On the other hand, this intermediate (4-bromo-2-chlorophenol) offers a sensitive 
and precise biomarker of profenofos contact (Dadson et al. 2013). The profenofos 
degradation by Bacillus subtilis has been studied in the vineyard soil, but environ-
mental pH of vineyard soil impacts on degradation of profenofos. In addition, 
degradation is faster in alkaline than the acidic environments; not only soil pH, 
physicochemical properties of soil, and the microbial diversity may also affect the 
degradation of profenofos (Salunkhe et al. 2013). In another study, Siripattanakul- 
Ratpukdi et al. (2015) isolated three bacterial strains, Pseudomonas plecoglossicida 
strain PF1, Pseudomonas aeruginosa strain PF2, and Pseudomonas aeruginosa 
strain PF3 having the ability to degrade profenofos. These bacterial strains individu-
ally degrade profenofos (20 mg L−1) up to 95.0%, 93.1%, and 95.3% within 96 h, 
respectively. On the other hand, Talwar and Ninnekar (2015) studied profenofos 
degradation by free- and immobilized-cells of Pseudoxanthomonas suwonensis 
strain HNM (isolated from pesticide-contaminated soil samples by enrichment 
technique) in sodium alginate, sodium alginate-polyvinyl alcohol, and sodium 
alginate- bentonite clay matrices, and they reported that the sodium alginate- 
bentonite clay immobilized cells showed enhanced degradation rate of profenofos 
than freely suspended cells and other matrices (Talwar and Ninnekar 2015). 
Furthermore, Abdullah et al. (2016) studied degradation of profenofos by endogenous 
bacterial isolates. Their results revealed that isolate DB17 (Pseudomonas putida) 
showed the maximum efficacy to degrade profenofos. Furthermore, in DB 17 isolate, 
a gene responsible for organophosphate pesticide was detected.
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13.5  Conclusion

In view of the extensive pollution of environmental surroundings caused by organo-
phosphate compounds usage along with their toxicity toward biological living sys-
tems, considerable attention has been paid to understanding organophosphate 
pesticides degradation. Biotic mediators (especially bacteria) have a possibility to 
degrade pesticides into their less toxic by-products. Several bacterial strains that can 
decompose organophosphate insecticides via metabolism and/or co-metabolism 
have been isolated and demonstrated. The usage of microbes (biological mediators) 
is highly efficient as they are environmentally friendly and inexpensive. Certain 
biological mediators (bacteria) could degrade numerous organophosphate com-
pounds, and some could degrade either single or a small number of such compounds. 
The organophosphate pesticides hydrolysis decreases the toxicity toward human 
beings and animals. However, the impact of the subsequent decomposition interme-
diates on environmental surroundings has not been completely investigated. The 
mechanisms of different organophosphate pesticides degradation pathways are not 
yet fully investigated. Hence, this part of investigation issues needs concentrated 
efforts, as intermediates of several organophosphates catabolism are contaminants 
and might have a harmful impact on the environmental surroundings as well as 
nontarget living organisms. Additionally, bioremediation of organophosphates can 
be further enhanced by the use of engineered microorganisms.
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