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Chapter 8
Modeling Applications in Bioremediation 
of Hydrocarbon Pollutants

Mahmoud Nasr

Abstract  This chapter addressed various statistical and modeling techniques that 
have been recently employed for studying the bioremediation of hydrocarbon pol-
lutants. Isotherm adsorption models such as Temkin, Freundlich, Langmuir, and 
Dubinin-Radushkevich were used for describing the removal of hydrocarbon con-
taminants from aqueous phases. Statistical techniques, viz., regression analysis, 
quadratic model, and response surface methodology, were performed to demon-
strate the effects of operational conditions on the remediation of water contaminated 
with hydrocarbon. Artificial intelligence including artificial neural network (ANN) 
and fuzzy inference system (FIS) was also presented as a black-box model for the 
prediction of hydrocarbon removal efficiencies. In addition, this chapter included 
literature studies that have implemented advanced modeling techniques within the 
field of hydrocarbon bioremediation.

8.1  �Introduction

The term “bioremediation” is used to define the reduction, degradation, detoxifica-
tion, and mineralization of pollutants via biological mechanisms (Olawoyin 2016). 
The objective of bioremediation is to transform contaminants into less harmful sub-
stances using microorganism and biomasses. Bioremediation technologies are clas-
sified into in situ and ex situ, depending on several factors such as source and 
concentration of pollutants, site characteristics and type, and cost saving (Sanusi 
et al. 2016). The bioremediation process undergoes a high degree of nonlinearity 
regarding physical, chemical, and biological reactions. In addition, bioremediation 
is influenced by several factors such as medium pH, temperature, aeration rate, agi-
tation speed, and substrate to inoculum ratio (San-Valero et  al. 2015). Hence, a 
significant effort should be exerted for developing adequate modeling techniques 
that can address the performance of bioremediation.
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The term “modeling” is used to describe a particular system using mathematical 
language that comprises a set of factors, variables, and equations (Bas and Boyacı 
2007). The designed models should be able to simulate, predict, and control the 
behavior of the system under study with a reasonable accuracy. Modeling of the 
bioremediation process is an essential procedure for reactor design and performance 
prediction (Nasr et al. 2017). The bioremediation process can be addressed by either 
a white-box model (also known as deterministic models, physically based models, 
or knowledge-driven models) or a black-box model due to missing process informa-
tion (Pakravan et al. 2015). In white-box systems, the process variables are trans-
formed into a number of mathematical equations. However, this type of model 
requires all necessary information and a lot of assumption to improve the prediction 
accuracy (Zadeh 1997). Black-box models are used to provide an adequate descrip-
tion of a system when the process knowledge is not enough. Artificial intelligence, 
which is defined as a black-box model, can be used for the prediction of nonlinear 
and complex systems. Multivariate analysis is another reliable black-box modeling 
technique that can be employed as a statistical tool for isolation, monitoring, and 
assessment (Alalm et al. 2016). Other modeling methods such as hybrid and sto-
chastic gray-box systems have been employed in bioremediation studies for the 
determination of microorganisms’ activities.

Sequential steps should be conducted to develop a reliable model. The procedures 
include (a) problem identification, (b) model selection, (c) data collection and prepa-
ration, (d) model calibration and parameters estimation, (e) model validation, and (f) 
testing and scenario evaluations (Nasr et al. 2014). Model calibration is an important 
step, which is used to find a reliable explanation of a particular set of data. During 
calibration, the model parameters are adjusted to improve fitting accuracy (Fawzy 
et al. 2017). The parameters used as initial conditions can be obtained from the litera-
ture. In the validation procedure, the readings not used for calibration are compared 
with the model outputs to obtain a reliable model. The model inadequacy can result 
from different sources such as input and output data, physical properties and configu-
ration of the system, operational conditions, and model structure (Panja et al. 2017).

Several hazardous pollutants can result from sewage, hydrocarbons, dyes, agro-
chemicals, chlorinated compounds, and heavy metals. Hydrocarbons are considered 
as an essential cause of environmental damage and several health risk problems 
(Nwadiogbu et al. 2016). Most studies on bioremediation have focused on hydrocar-
bons due to their toxic impact on soil and groundwater. In addition, aquatic systems 
receive significant variations in wastewater discharge and composition, which may 
contain multiple hydrocarbon contaminants (Srinivasan and Viraraghavan 2010a, b).

This chapter attempted to cover different modeling and statistical techniques that 
have been recently employed for describing the bioremediation of hydrocarbons. 
Different statistical and artificial intelligence methods were used to represent the 
highly complex models that undergo the bioremediation process. The application of 
adsorption isotherm models such as Temkin, Freundlich, Langmuir, and Dubinin-
Radushkevich was also demonstrated. In addition, this work covered literature 
studies that have employed reliable techniques within the field of hydrocarbon 
bioremediation.
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8.2  �Stoichiometry and Kinetics of Bacterial Activity

Several microorganisms have been found to have important applications in the bio-
remediation of hydrocarbon-contaminated water (Nasr and Ismail 2015). The bio-
logical activities of these organisms are influenced by various physicochemical and 
environmental parameters. Some mathematical models are based on the theory that 
microorganisms can utilize hydrocarbons from the aqueous medium. Other models 
are used to couple mass transfer with Monod or first-order kinetics for hydrocarbon 
biodegradation (Boparai et al. 2011).

Monod equation, as expressed by Eq. (8.1), is a kinetic model employed to deter-
mine the microbial growth via the correlation between substrate concentration and 
specific growth rate (Ateia et al. 2015). Monod-type model is also used to predict 
the substrate removal efficiencies in bioremediation processes at a large-scale 
application.
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where μ is specific growth rate constant (1/day), μmax is maximum specific growth 
rate (1/day), S is limiting substrate concentration (mg/L), and KS is half-saturation 
constant (mg/L), provided at μ = 0.5μmax. The correlation between μ and S is used to 
estimate the bio-kinetic growth constants (i.e., μmax and KS) by either statistical or 
graphical technique.

The Monod equation can be employed to calculate the bacterial growth rate, as 
given by Eq. (8.2).
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(8.2)

where dX/dt is biomass growth rate (mg/L/d) and X is biomass concentration 
(mg/L).

The stoichiometric correlation between the consumed substrate and produced 
biomass can be presented by Eq. (8.3).
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where Y is the stoichiometry of biomass yield coefficient (dimensionless) and kd is 
the kinetic rate of cell decay (1/day).

The specific substrate utilization rate is calculated by Eq. (8.4).
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where U is the specific substrate utilization rate (1/day) and dS/dt is substrate utili-
zation rate (mg/L/d).

As presented by Eq. (8.5), a plot of μ versus U results in a linear line having a 
slope of Y and an intercept of kd.

	 m = ´ -Y U kd 	 (8.5)

8.3  �Bacterial Behavior in a Controlled Batch System

Figure 8.1 displays a batch reactor that contains an initial substrate concentration (So) 
and a biomass concentration (X). The reactor is operated under an aerobic and com-
pletely mixed condition; thus, the concentration of dissolved oxygen (DO) is not a 
limiting factor for bacterial growth. During batch experiments, microorganisms uti-
lize substrate for synthesis of new cells, energy generation, and formation of by-prod-
ucts (Eq. 8.6). Hence, as time proceeds, the substrate concentration decreases (negative 
dS/dt) along with an increase in the microorganisms concentration (positive dX/dt).

	 Substrate Biomass Newcells Energy Byproducts+ ® + + 	 (8.6)

Figure 8.2 shows a plot of biomass concentration versus time, resulting in a growth 
curve that contains five distinct phases. The phases can be illustrated as follows 
(Gupta et al. 2017):

	(a)	 Lag phase, which diminishes when the cells are acclimated (adapted) to the 
environmental condition. This phase occurs directly after bacterial inoculation.

	(b)	 Exponential phase, where the biomass concentration increases steadily due to 
the utilization of substrate for growth.

	(c)	 Stationary phase that occurs when essential substrates (e.g., carbon and nutrient 
species) and/or DO reach a threshold level. Under this condition, the bacterial 
population is neither growing nor decreasing.

	(d)	 Death phase, in which some bacterial cells are damaged due to death and lysis. 
Under this environment, the net biomass growth becomes negative.

S (mg/L)

X (mg/L)

O2 (mg/L)

Water

MixerFig. 8.1  Mixed batch 
reactor supplied with 
substrate, inoculum, and 
dissolved oxygen
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8.4  �Mathematical Modeling of Trickling Filter 
for Bioremediation Application

San-Valero et al. (2015) developed a mathematical model used for estimating the 
removal of the hydrophilic volatile organic compound by biotrickling filters. Their 
study reported that the mass balance of pollutant (or DO) in the gas phase could be 
represented by Eq. (8.7).
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where CG and CL are concentrations of gas and liquid phases, respectively (mg/L), 
KLa is mass transfer coefficient (1/s), H is Henry’s law constant (dimensionless), t 
is time (s), z is vertical distance from the bottom of the reactor (m), vG is superficial 
air velocity (m/s), and θG is porosity of the bed (dimensionless).

The mass balance of the mobile liquid phase is given by Eq. (8.8).
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where D is diffusion coefficient of contaminant (or DO) in water (m2/s), a is specific 
surface area of the packing medium (m2/m3), β is the thickness of liquid-biofilm 
interface (m), S is the concentration of pollutant (or DO) in biofilm interface (mg/L), 
and vL is superficial liquid velocity (m/s).
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Fig. 8.2  Typical biomass growth curve in a batch system
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The mass balance of the biofilm is represented by Eq. (8.9).
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where S is concentration inside biofilm (mg/L); f(Xv) is correction factor of diffusiv-
ity in solution due to biomass (dimensionless); Xv is the concentration of biomass 
(mg/L); μmax is maximum specific growth rate (1/s); KO and KP are the half-saturation 
constants of oxygen and pollutant, respectively (mg/L); and Y is yield coefficient 
(dimensionless).

8.5  �Adsorption Models

Adsorption isotherms and kinetics are appropriate models that can be used to inves-
tigate the removal of hydrocarbons from water bodies (Fawzy et al. 2016a). The 
most common isotherm models are Langmuir, Freundlich, Dubinin-Radushkevich 
(D-R), and Temkin. In addition, pseudo-first-order and pseudo-second-order are 
performed for examining the kinetic studies of adsorption.

8.5.1  �Langmuir Adsorption Isotherm

Langmuir isotherm is applied to quantitatively describe the transfer of pollutants from 
the aqueous solution to the solid surface at equilibrium. Langmuir model has been 
developed according to the following assumptions (Langmuir and Waugh 1940):

	(a)	 Monolayer coverage; i.e., the outer surface of adsorbent is covered by a single 
layer of adsorbate.

	(b)	 The solid surface contains a finite number of vacant pores, where each site 
occupies one molecule, and no interaction occurs among adsorbate species.

	(c)	 The solid surface is homogeneous; i.e., adsorption sites are identical (equal size 
and shape), and the heat of adsorption is uniform for each site.

The Langmuir model in Eq. (8.10) demonstrates that a linear plot of Ce/qe against 
Ce gives a slope of 1/Qm and an intercept of 1/(KL · Qm).
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where Ce is the concentration of adsorbate at equilibrium (mg/L), qe is the milligram 
of adsorbate per gram of adsorbent at equilibrium (mg/g), Qm is the maximum 
monolayer capacity (mg/g), and KL is the Langmuir isotherm constant (L/mg).
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The Langmuir-type adsorption is then used to determine the isotherm shape in 
terms of a separation factor (Li et al. 2010); see Eq. (8.11).

	
r

K C
=

+ ×
1
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where r is a separation factor (dimensionless), KL is Langmuir constant (L/mg), and 
Co is initial adsorbate concentration (mg/L).

The factor “r” is used to evaluate the favorability of Langmuir adsorption based 
on the following classifications: “unfavorable” at r > 1, “linear” at r = 1, “favorable” 
at 0 < r < 1, and “irreversible” at r = 0.

8.5.2  �Freundlich Adsorption Isotherm

Freundlich isotherm model is developed to describe the adsorption of a single solute 
onto heterogeneous surfaces (Freundlich 1906). The model describes the distribu-
tion of adsorbate between the solid and liquid phases, assuming an exponential 
distribution of adsorption energies. The Freundlich formula in Eq. (8.12) implies 
that a plot of log(qe) against log(Ce) results in a linear form with a slope of (1/n) and 
an intercept of log(KF).

	
log log logq

n
C Ke e F( ) = æ

è
ç

ö
ø
÷ ( ) + ( )1

	 (8.12)

where KF is Freundlich constant indicating the adsorption capacity ((mg/g)·(L/
mg)1/n), and 1/n represents surface heterogeneity or adsorption intensity, in which 
the sorbent surface is more heterogeneous at 1/n close to zero.

The Freundlich exponent “1/n” reveals the type of isotherm, which is “unfavor-
able” at 1/n > 1, “favorable” at 0 < 1/n < 1, and “irreversible” at 1/n = 0 (Saruchi and 
Kumar 2016). The value of 1/n lower than 1 implies a chemisorption process, 
whereas 1/n > 1 indicates a cooperative process.

8.5.3  �Dubinin-Radushkevich (D-R) Isotherm

Dubinin-Radushkevich (D-R) isotherm model assumes that the sorption mechanism 
undergoes pore-filling rather than layer-by-layer surface coverage. The model is 
applied to structurally homogeneous systems, i.e., micropores having similar 
dimensions (Hutson and Yang 1997). In addition, this isotherm is temperature 
dependent and valid for physical adsorption processes involving van der Waals 
forces (Boparai et al. 2011).
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The linearized form of D-R isotherm equation is expressed by Eq. (8.13). A plot 
of ln(qe) versus ε2 results in a straight line having a slope  =  -KDR and an 
intercept = ln(qs).

	
ln lnq K qe DR s( ) = - ( ) + ( )e 2

	 (8.13)

where qe is the milligram of adsorbate per gram of adsorbent at equilibrium (mg/g), 
qs is the theoretical isotherm saturation capacity (mg/g), KDR is D-R isotherm con-
stant that describes adsorption energy (mol2/kJ2), and ε is Polanyi potential or the 
mean free energy (kJ/mol).

The Polanyi potential can be calculated by Eq. (8.14).
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where R is the gas constant (8.314 J/mol/K) and T is the temperature (K).
As seen in Eq. (8.15), the value of KDR is used to determine the mean sorption 

energy.
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where E is the mean sorption energy (kJ/mol).

8.5.4  �Temkin Isotherm

The Temkin isotherm model describes the interaction effect of adsorbent/adsorbate 
in terms of the binding heterogeneity (Temkin 1941). The model assumes that the 
heat of adsorption of the molecules in a particular layer decreases linearly rather 
than logarithmically while neglecting deficient and high concentrations (Aljeboree 
et al. 2014). In this isotherm, adsorption is characterized by a uniform distribution 
of binding energies up to a certain extent. The Temkin isotherm is presented by Eq. 
(8.16), which shows that a linear plot of qe vs. ln(Ce) gives a straight line with a 
slope = B and an intercept = B·ln(AT) (Boparai et al. 2011).

	
q B C B Ae e T= × ( ) + × ( )ln ln

	 (8.16)

where AT is the equilibrium binding constant equivalent to maximum binding energy 
(L/mol) and B is a constant related to the heat of sorption (J/mol), and it equals 
R·T/bT, in which R is the universal gas constant (kJ/mol/K), T is the adsorption tem-
perature (K), and bT is Temkin isotherm constant.
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8.5.5  �Pseudo-First-Order Kinetic

Pseudo-first-order model assumes that the interaction between sorbate and sorbent 
occurs due to hydrogen bonds and/or van der Waals forces, suggesting that the reac-
tion is possibly physisorption (Saruchi and Kumar 2016). The formula of Eq. (8.17) 
presents the linear equation of the pseudo-first-order model. A plot of ln(qe – qt) 
versus t obtains a straight line with a slope of k1 and an intercept of ln(qe).

	
ln lnq q k t qe t e-( ) = - ´ + ( )1 	 (8.17)

where qe and qt are the milligram of adsorbate per gram of adsorbent at equilibrium 
and time t, respectively (mg/g), and k1 is the pseudo-first-order rate constant (1/
min).

8.5.6  �Pseudo-Second-Order Kinetic

Pseudo-second-order model assumes that electrons are covalently exchanged 
between adsorbate and adsorbent via chemical interaction, also known as chemi-
sorption (Fawzy et  al. 2016b). According to Eq. (8.18), a plot of t/qt against t 
results in a linear relationship with slope and intercept of 1/qe and 1/(k2 × qe

2), 
respectively.
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where k2 is the rate constant of second-order adsorption (g/mg/min).

8.5.7  �Application of Adsorption for Hydrocarbon Remediation

Okiel et al. (2011) investigated the adsorption of oil from oil-contaminated effluents 
using deposited carbon (DC), bentonite, and powdered activated carbon (PAC). 
Their study found that at initial oil concentration of 1000 mg/L and for 30 min, the 
adsorption capacities were 250, 244, and 150 mg/g for DC, bentonite, and PAC, 
respectively. In addition, Freundlich isotherm provided a better description of the 
adsorption data rather than Langmuir model.

Rasheed et al. (2016) investigated the removal of polycyclic aromatic hydrocar-
bons, namely, anthracene and pyrene, from wastewater using PAC.  Their study 
found that the removal efficiency of hydrocarbons was above 99% after an adsorp-
tion time of 4 h. The experimental data fitted well to Elovich model, suggesting that 
chemisorption was dominant during the adsorption process.
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Nwadiogbu et al. (2016) investigated the treatment of oil spill through adsorption 
onto an agricultural waste of corncobs. Their study indicated that the adsorption 
process was described by surface reaction and intraparticle diffusion mechanisms. 
In addition, Langmuir isotherm provided a better fit to the adsorption data than the 
Freundlich model, and the maximum monolayer sorption capacities ranged between 
0.0043 mg/g and 0.0768 mg/g.

Li et al. (2010) studied the application of coal for remediation of oily wastewater. 
The experimental factors were medium pH, oil concentration, coal type, particle 
size distribution, and contact time. Their results indicated that the equilibrium time 
was 1.5 h and the adsorption process followed the Freundlich isotherm. The adsorp-
tion capacities were 23.8 and 840.0 mg/g at initial oil concentrations of 160.5 and 
1023.6  mg/L, respectively. The absorption mechanism comprised physical and 
chemical processes.

Angelova et  al. (2011) revealed that rice husks could be used as a promising 
environmental material for the remediation of water contaminated with oil and oil 
products. Their study created a correlation between morphology and surface func-
tional groups of the sorbent and adsorption mechanisms of the material.

Srinivasan and Viraraghavan (2010a, b) investigated the application of different 
types of biomaterials, i.e., Mucor rouxii and Absidia coerulea cultured in chitosan 
and walnut shell media, for the removal of oil from aqueous solutions. The selected 
oil types were cutting oil, standard mineral oil, and vegetable oil, achieving adsorp-
tion capacities of 84.0, 77.2, and 92.5 mg/g, respectively. The treatment efficiencies 
of oil-contaminated water by the fungal biomass of Mucor rouxii ranged between 
77% and 93% at pH of 5.0.

Srinivasan and Viraraghavan (2008) investigated the adsorption of oil from aque-
ous solutions by walnut shell media. The findings depicted that the sorption capaci-
ties were 580  mg/g for Bright-Edge oil, 300  mg/g for standard mineral oil, and 
510 mg/g for vegetable oil.

Ibrahim et al. (2010) examined the remediation of wastewater contaminated with 
emulsified oil using agricultural waste barley straw. The experimental factors were 
solution pH, temperature, loading of adsorbent, and particle size. Results revealed 
that the adsorption capability was favorable at a neutral pH environment. Langmuir 
model described well the experimental data, and the monolayer adsorption capacity 
was 576.0 ± 0.3 mg/g at 25 °C.

8.6  �Design of Experiments

Design of experiments is a statistical approach employed to estimate the influences of 
multiple independent factors on a single variable. The optimization of experiments 
can be considered using different techniques such as one-factor-at-a-time and factorial 
design (Elhalil et  al. 2016). The results of experimental design can be graphically 
displayed using a response surface methodology (RSM). RSM undergoes different 
mathematical and statistical techniques for optimizing, predicting, and improving a 
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study of interest (Bas and Boyacı 2007). It can be applied to define the effects of mul-
tiple independent variables on chemical and biochemical processes. In addition, RSM 
can be employed for the determination of enzyme stability and kinetic constants.

8.7  �One-Factor-at-a-Time Statistical Method

In a one-factor-at-a-time method, only one variable (or factor) differs with the 
experimental time, whereas other inputs are maintained constant. The optimum 
value of the first variable is used for the subsequent experimental runs, in which this 
step is repeated for other variables. However, this method fails to consider the inter-
action effects between factors.

8.8  �Factorial Design Statistical Method

Factorial design is used to simultaneously determine the effects of two or multiple 
factors on output. In addition, factorial design can be developed to describe the inter-
action effects between the independent variables (Nasr et al. 2017). This technique 
can predict accurate outputs with a minimum number of experiments and reduced 
time. Factorial design is classified into full-factorial and fractional-factorial.

A full-factorial design, which contains n-factors and each factor has m-levels, is 
termed as a mn factorial experiment. For instance, a full-factorial design noted as 23 
describes three factors (e.g., pH, time, and temperature) with two levels for each 
factor (e.g., minimum and maximum); i.e., hence the number of experiments is 
23 = 8. Similarly, a 32 factorial design has two factors, each with three levels (e.g., 
minimum, average, and maximum), and 32 = 9 experimental runs. Based on the 
aforementioned, full-factorial design represents all possible combinations/interac-
tions among factors, which can then be displayed in a single interface.

However, when the number of input variables is large (e.g., more than four fac-
tors), the full-factorial design becomes time-consuming. Under this condition, 
fractional-factorial design, which investigates the most important correlations 
between factors using a minimum number of experiments, becomes preferable 
(Srinivasan and Viraraghavan 2010a, b). Fractional-factorial design can be per-
formed using central composite and Box-Behnken methods.

8.9  �Application of Design of Experiments for Hydrocarbon 
Remediation

Srinivasan and Viraraghavan (2010a, b) employed a factorial design analysis to 
describe the removal of oil from aqueous solution by a fungal biomass, namely, 
Mucor rouxii. The selected oil types were cutting oil, standard mineral oil, and 
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canola oil. The experimental factors were solution pH (3–9), temperature (5–30 °C), 
sorbent mass (0.05–0.5  g), initial oil concentration (50–350  mg/L), and mixing 
speed (100–200 rpm). The results of their study revealed that the medium pH was 
the most influential factor, in which the removal efficiencies ranged between 80% 
and 99% at pH of 3.0.

Tansel and Regula (2008) conducted a 2 × 2 × 3 factorial design experiment to 
determine the impacts of operational factors on the remediation of water contami-
nated with petroleum hydrocarbons (PHC). The input attributes were oil concentra-
tion (150 ppm “low” and 3000 ppm “high”), coagulant type (Cat floc K-10, Cat floc 
T-2, and no coagulant), and the source of water (pond and brackish). The model 
outputs were (a) turbidity removal and (b) petroleum hydrocarbon removal. Results 
indicated that the highest turbidity removal of 93.53% was obtained at “low” oil 
concentration, “pond” water source, and “Cat floc K-10” coagulant. In addition, a 
PHC removal of 92.53% was developed at “low” oil concentration, “brackish” 
water source, and “Cat floc K-10” coagulant.

Sivagurunathan et  al. (2003) investigated the effects of several factors of 
medium pH (5, 7, and 9), temperature (18, 22, and 26 °C), and agitation speed (50, 
150, and 250 rpm) on the bioremediation of water containing hydrocarbon residues 
using Pseudomonas fluorescens. A face-centered cube design having three factors 
and three levels for each factor (i.e., 33) was employed. A RSM was applied to plot 
the results of a quadratic equation having linear, second-order, and interaction 
terms. Results indicated that the optimum condition was temperature 22.48  °C, 
pH 7.31, and agitation speed 206 rpm, achieving a total biodegradation of toluene 
(R2-value 0.98).

8.10  �Artificial Intelligence Modeling

Artificial intelligence (AI) is the development of computer-based systems able to 
achieve tasks that involve human intelligence, including decision-making, speech 
recognition, translation between languages, and visual perception (Fawzy et  al. 
2017). AI can be employed for organization and classification of large datasets, as 
well as for capturing complex relationships. It is a black-box model that uses 
machine learning such as artificial neural networks (ANN) and fuzzy logic 
concepts.

8.11  �Artificial Neural Network

Artificial neural network (ANN) is a computer-based approach that implements 
learning procedures similar to the nervous system of the human brain (Nasr et al. 
2017). ANN is composed of a large number of interconnected nodes, also known 
as neurons, which are organized in layers. The input layer receives experimental 
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data and transfers results to the last layer through successive hidden layers. The 
neurons in a particular layer are fully interrelated to those in the subsequent layer 
through weights and biases (Panja et al. 2017). In addition, activation functions are 
used to transfer results between successive layers. During training, the weights and 
biases are adjusted until the mean squared error (MSE) between the simulated 
outputs and the actual results is minimized. A back-propagation method with a 
Levenberg-Marquardt (trainlm) algorithm has been widely used for network train-
ing (Olawoyin 2016). In this method, the training process undertakes two phases: 
i.e., in the forward phase, the external signals are propagated from the input layer 
to the output layer, whereas in the backward phase, the error between the predicted 
and observed values at the output layer is propagated backward to modify weights 
and biases (Pakravan et al. 2015). These iterations are successively repeated until 
achieving the minimum MSE. After network training, a portion of data is used for 
validation and testing processes to prevent data overfitting and examine the stabil-
ity level of the trained network. These procedures result in attaining a high degree 
of prediction accuracy even when ANN receives noisy and/or erroneous input data 
(Sanusi et al. 2016).

8.12  �Fuzzy Inference System

A fuzzy inference system (FIS) is employed to describe nonlinear and complex rela-
tions between a number of input factors and one (or more) output (Zadeh 1997). As 
shown in Fig. 8.3, a FIS is achieved by conducting three major steps (a) fuzzifica-
tion, (b) “if-then” rules, and (c) defuzzification (Gupta et al. 2017). During fuzzifi-
cation, crisp (numeric) values are converted into fuzzy inputs using fuzzy linguistic 
variables, fuzzy linguistic terms, and membership functions. For example, an input 
factor such as hydrocarbon concentration can be converted according to linguistic 
concepts into “low,” “medium,” and “high.” Each linguistic expression can be 
graphically represented as a membership function, e.g., linear, trapezoidal, and 
Gaussian fuzzy sets (Nasr et al. 2014). After that, an inference engine is performed 
using a set of “if-then” rules, in which a single fuzzy rule has the form “if x is A, 
then y is B.”

Assume x and y are the variables “bioremediation” and “residual hydrocarbon,” 
respectively, whereas A and B are linguistic variables “high” and “low,” respec-
tively. The “if-then” rule will have the form “if bioremediation is high, then residual 
hydrocarbon is low.”

The aggregation of rules is undertaken when the rule-based system comprises 
several numbers of “if-then” rules. Finally, defuzzification step is carried out to 
convert the fuzzy result into a crisp output (Zadeh 1997). The widely used defuzzi-
fication methods in the literature are center of gravity, mean-max, max-membership, 
weighted average, and center of sums. Mamdani, Sugeno, and Tsukamoto are dif-
ferent types of fuzzy inferences that have been widely used to implement the fuzzy 
logic procedures (Nasr et al. 2014).
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8.13  �Application of Artificial Intelligence for Hydrocarbon 
Remediation

Sanusi et al. (2016) applied an ANN model for optimizing the degradation perfor-
mance of total petroleum hydrocarbon by Paspalum scrobiculatum L. Hack with 
R2-value over 0.95. Their study found that the optimum condition achieving a 
removal efficiency of 85.5% was an aeration rate of 1.02 L/min, diesel concentra-
tion of 3%, and 72 sampling days.

Olawoyin (2016) proposed an ANN model with the Levenberg-Marquardt back-
propagation training algorithm for the prediction of potential toxicity of polycyclic 
aromatic hydrocarbons in soils. The input parameters were treated soil (I and IV), pH 
(5.02–7.25), electrical conductivity (54–195 mS/cm), and dissolved organic carbon 
(31.18–62.96 mg/L). The model achieved a high accuracy with R2-value above 0.99.

Panja et al. (2017) developed an ANN with a structure of 8–14–3 to predict the 
production of hydrocarbon from shales. The eight input factors were bottom hole 
pressure (500, 1000, and 1500  psi), gas relative permeability (1, 2, and 3  ng), 
hydraulic fracture spacing (60, 180, and 300 ft), initial dissolved gas-oil ratio (800, 
1900, and 3000), initial reservoir pressure (4000, 5250, and 6500  psi), reservoir 
permeability (10, 225, and 5000 nD), rock compressibility (4 × 10−6, 4 × 10−5, and 
4 × 10−4 1/psi), and slope of gas-oil ratio (0.50, 0.65, and 0.80). The input factors 
were distributed according to Box-Behnken design of experiment. The model out-
puts were oil recovery, gas recovery, and gas-oil ratio. The model showed a high 
predictive accuracy in terms of coefficient of determination (R2-value) and normal-
ized root mean square error.

Vaferi et al. (2014) applied an ANN model to predict the treatment efficiency of 
wastewater contaminated with aromatic hydrocarbons. The ANN structure was 
multilayer perceptron with one hidden layer containing 15 neurons. The input attri-
butes were contact time (0–1440 min), initial concentration of H2O2 (0–1942 mg/L), 
pollutant concentration (200–840 mg/L), pH (3.1–11.6), temperature (25–86 °C), 
and UV intensity (225–304 nm). The output variable was final pollutant concentra-
tion (4–840 mg/L). It was found that the optimum experimental factors were three 
UV lights illumination and acidic pH of 3.1. The proposed model predicted the 
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Fuzzy input set Fuzzy output set

“If-then” rules

(Step-1)
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Fig. 8.3  A fuzzy inference system

M. Nasr



195

degradation of aromatics hydrocarbon with a mean square error of 5 × 104 (i.e., high 
accuracy).

Pakravan et  al. (2015) investigated the effects of pH (1.5–10.5), initial COD 
(200–800  mg/L), concentration of H2O2 (2.2–15.4  mM), and contact time (45–
135 min) on the treatment of petroleum refinery wastewater. The data were obtained 
from 30 experimental runs, i.e., a central composite factorial design of 24 + 6 center 
points + 8 star points. It was found that at an initial COD concentration of 300 mg/L, 
the optimum condition was pH, 5; H2O2, 8.8 mM; and time, 120 min. A RSM, along 
with a quadratic regression model, was employed to describe the relationship 
between the input factors and the output variable (i.e., COD removal efficiency). 
The findings of the statistical modeling technique were compared to those obtained 
from ANN (as typical artificial intelligence method). For this purpose, a feed-
forward back-propagation ANN model with a structure of 4–5–1 was applied for the 
prediction of COD removal efficiency. Results indicated that ANN (R2, 0.96; adj-R2, 
0.96) provided a higher predictive capability than RSM (R2, 0.94; adj-R2, 0.91). A 
sensitivity analysis using the network weights was employed, which indicated that 
the initial COD concentration was the most dominating factor.

8.14  �Conclusion

This study presented recent applications of white-box and black-box models that 
have been used for the prediction of bioremediation performances of hydrocarbon 
pollutants. In addition, this chapter described various physicochemical and environ-
mental parameters that affect the biological activities of hydrocarbon degradation. 
Isotherm and kinetic studies that have been employed for the adsorption of hydro-
carbon contaminants from aqueous solution were investigated. The sorbent materi-
als used in the literature were deposited carbon, bentonite, powdered activated 
carbon, coal, microorganisms, and agricultural waste (e.g., corncobs, rice husks, 
and barley straw). Factorial design experiments were demonstrated to determine the 
effects of several factors, viz., culture pH, temperature, pollutant concentration, 
mixing speed, and reaction time, on hydrocarbon removal efficiencies. Artificial 
neural network and fuzzy inference systems were also applied for modeling, devel-
oping, controlling, and simulating hydrocarbon remediation processes.
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