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Chapter 2
Biosurfactants in Improving 
Bioremediation Effectiveness 
in Environmental Contamination 
by Hydrocarbons

Paulo Renato Matos Lopes, Renato Nallin Montagnolli, 
Jaqueline Matos Cruz, Elis Marina Turini Claro, and Ederio Dino Bidoia

Abstract Recent biotechnological advances currently evidence new surfactant 
production technologies. Biocompounds produced by fermentative processes 
appeared as an economic and sustainable alternative to many synthetic molecules. 
Thereby, biosurfactants have become a promising substitute due to their synthesis 
potential by a wide variety of microorganisms. Biosurfactants are a highly diverse 
group of structures, such as glycolipids, lipopeptides, polysaccharide-protein com-
plexes, phospholipids, fatty acids, and neutral lipids. This diversity promotes many 
advantages compared to synthetic surfactants, thus making biosurfactants the most 
natural choice for technological advances associated with sustainable development. 
Such advantages include fermentative production viability by using renewable 
resources, effectiveness in small concentrations even under extreme conditions, 
selective and specific potential for several applications, lower toxicity, higher biode-
gradability, and better stability to physicochemical variations. Despite their benefits, 
biosurfactants are not widely used because of the high production costs. Hence, 
cost-effective substrates, optimized cultivation conditions, and mutant lineage 
development are imperative to make these biomolecules an economically competi-
tive product to propose a widespread replacement of synthetic surfactants.

2.1  Introduction

Petroleum spills, including oil-based products, can cause considerable damage to 
the environment, generating an enormous public concern. Oil pollution demands 
fast and cost-effective solutions. It is estimated that about 0.40% of global oil 
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production eventually reaches the oceans (Banat et al. 2000). Several accidents with 
oil spills in recent years have continuously shown the environmental damage from 
hydrocarbons (Montagnolli and Bidoia 2012).

The major oil spill sources can be traced down to all stages of petroleum process-
ing (exploration, refining, and transport). Accidents are prone to occur in marine 
tanks, complex bed drilling, marine fleets, refineries, and associated leaks 
(El-Tarabily 2002; Mille et  al. 2006). In Brazil, many accidents involving petro-
leum, including derivatives such as gasoline and jet fuel, have caused serious envi-
ronmental problems. In 1998, 1.200 m3 of diesel oil were released due to pipeline 
corrosion underneath a considerable area below the city of Cubatão-SP. Pipeline 
corrosion was also responsible for 1.300 m3 of hydrocarbons spilled in Guanabara 
Bay in Rio de Janeiro, which had a history of being contaminated constantly by oil 
spills (Benincasa 2007).

The lubricating oils are an important petroleum-based product, reaching about 
60% of petrochemical products. Its importance is mostly industrial but also due to 
the massive automobile applications (Mang and Gosalia 2017). However, this high 
consumption also means a serious potential for environmental problems (Rahman 
et  al. 2002). Lubricants often leak chronically from storage tanks (Lopes et  al. 
2008). Thus, continuous and prolonged release sets up the scenario for a long-term 
and highly persistent pollution regarding lubricant oils, leading to the contamina-
tion of soils and groundwaters (Chavan and Mukherji 2008). In addition, used lubri-
cant oil suffers structural changes caused by high pressures and temperatures inside 
automobile engines that affect the biodegradability (Lopes and Bidoia 2009).

The persistence of petroleum hydrocarbons in the environment depends on sev-
eral factors, such as chemical structure, concentration, and dispersion (Atlas 1981; 
Mille et al. 2006; Prosser et al. 2016; Duan et al. 2017). Physicochemical treatments 
are applied in the event of the oil spill; however, these treatments are very expen-
sive, and even more strategy might be necessary depending on the chemical agents 
chosen as dispersants or catalysts (Elanchezhiyan et al. 2016; Grote et al. 2018).

Alternatively, the conventional physical treatments can separate soil and con-
taminants without destroying or chemically modifying the oils. Most of the hydro-
carbons are absorbed in the soil matrix, reducing the removal efficiency of any 
treatment. Biological processes, on the other hand, are promising clean decontami-
nation technologies, as they combine simplicity and cost-effectiveness. Thus, 
among many novel strategies, bioremediation emerges as the least aggressive and 
the most suitable method for keeping the ecological balance (Montagnolli and 
Bidoia 2012).

The decrease of contaminant concentrations by biodegradation or other treat-
ment does not always indicate a decreased toxicity. The incomplete degradation and 
consequent formation of toxic intermediate compounds (metabolites) can result in 
increased toxicity during remediation processes (Tamada et al. 2012). Therefore, 
the combination of chemical analysis and ecotoxicity assays is recommended to 
elucidate the risks associated with contamination. In this way, a detailed monitoring 
is crucial for better bioremediation strategies and the establishment of environmen-
tal safety standards (Al-Mutairi et al. 2008).
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2.2  Bioremediation of Areas Impacted by Petroleum 
Hydrocarbon

The microbial ability to use petroleum hydrocarbons as a carbon source was first 
demonstrated by Zobell (1946), who also revealed that these organisms were widely 
distributed in nature. The author described 100 bacterial species, belonging to 30 
genera capable of metabolizing petroleum. Later, Bartha and Atlas (1977) expanded 
this list into another 22 bacterial genera, 14 fungi, and 1 alga. Any efficient biore-
mediation proposal should demonstrate that the contaminant removal is primarily 
due to biodegradation rates. In other words, the biodegradation must be higher than 
natural attenuation degree of decontamination. Among the many difficulties in the 
development of bioremediation methods is the reliability of laboratory-scale experi-
ments in comparison to field results (Juhasz et al. 2000; Simpanen et al. 2016).

There are also several strategies for improving natural attenuation processes. 
Many of them are extremely cost-effective compared to physical and chemical treat-
ments. The most common approaches in bioremediation are biostimulation, bio- 
aeration, bioaugmentation, land farming, composting, and phytoremediation (Wu 
et  al. 2016; Agnello et  al. 2016). The insertion of nutrients (biostimulation) and 
oxygen (bio-aeration) favors microbial metabolism when using pollutants as sub-
strates (Seklemova et al. 2001). Another commonly used procedure known as bio-
augmentation is the inoculation of an enriched microbial consortium in soil (Richard 
and Vogel 1999; Barathi and Vasudevan 2001; Agnello et al. 2016). Montagnolli 
et al. (2009) obtained biodegradability datasets of lubricating oils using respiromet-
ric flasks. Kinetic models have been applied to biodegradation curves, which dem-
onstrated the rate of biodegradation of automotive lubricating oils compared to 
vegetable oils. It was observed that petroleum degradation tends to decrease slower 
and last longer. However, the influence of other factors in biodegradation had not 
been determined. To better establish the optimal conditions of biodegradation, it is 
important to know the key features of an impacted area, such as residual oil concen-
tration, density of degrading microorganisms, and microbial biodegradation 
potential.

Generally, an accelerated biodegradation of hydrocarbons depends on the pres-
ence of specific microorganisms. In addition, the composition of the microbial pop-
ulation is directly affected by the environmental conditions and the type of 
hydrocarbons (Admon et al. 2001). However, these indigenous communities lack 
species with proper enzymatic mechanisms necessary for a rapid biodegradation, 
which results in long-term biodegradation processes if not bioremediated (Díaz- 
Ramírez et al. 2008).

In this regard, the bioremediation of soils contaminated with mixed hydrocar-
bons from petroleum sources is a challenge due to the poor bioavailability and com-
plex chemical composition of these compounds (Lee et al. 2008; Sabate et al. 2004; 
Yu et  al. 2018). The hydrocarbon concentration and the presence of oxidative 
metabolites with potential risks to the environment can also remain after treatment 
(Pagnout et al. 2006).
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The chromatographic profile of lubricating oils (Lladó et al. 2012), for example, 
shows a considerable fraction of a nondegradable complex mixture (unresolved 
complex mixture, UCM). In fact, little is known about the composition of the UCM, 
although the major components of oils are characterized by their high resistance to 
biodegradation (Wang and Fingas 2003; Wang et al. 2016). Most of the petroleum- 
based products are composed of branched and cyclic aliphatic and aromatic com-
pounds, including polycyclic aromatic hydrocarbons (PAH) (Nievas et al. 2008).

The PAHs are often found in the environment due to atmospheric deposition 
originated from natural sources such as burning biomass and volcanic activity or 
artificial sources including burned fuels and many environmental accidents from the 
petrochemical industry (Lors et al. 2010). The release of PAHs represents a great 
concern due to their toxic, mutagenic, and carcinogenic properties (Martins et al. 
2013). Although these aromatic molecules can undergo chemical oxidation, pho-
tolysis, adsorption, and volatilization, however, the microbial degradation of PAHs 
is, in most cases, the main alternative of soil treatment (Yu et al. 2018, Liu et al. 
2017) .

Several studies on petroleum hydrocarbon biodegradation have been adopting 
different methodologies (Bidoia et  al. 2010; Cerqueira et  al. 2014; Zhang et  al. 
2016), but they all indicate that degradation occurs at least in some specific fractions 
of these substances. There is no general rule in petroleum biodegradation patterns, 
as most cases shown with preferential remediation of the lighter compounds were 
observed, whereas, in other studies, it was directed toward the heavier hydrocarbons 
(Huang et al. 2004).

In aquatic environments, the biodegradation of pollutants is limited and depends 
on the bioavailability of nutrients (such as nitrogen and phosphorus) required for the 
onset of microbial growth. The use of soluble salts containing these elements is an 
effective way to recreate and optimize the biodegradation under laboratory condi-
tions. Field results are often not the same, as in situ treatments yield unsatisfactory 
stirring of the medium as well as a much reduced dissolution of salts. As a viable 
alternative, biosurfactants can be associated with the nutrient solution. This is 
importantly aimed toward petroleum pollution, because the oil is emulsified by the 
action of biosurfactants and thus provides a rapid microbial growth (Thavasi et al. 
2011; Bezza and Chirwa 2015a, b; Mnif et al. 2017).

2.3  Surfactants

Surfactants are amphipathic molecules, i.e., compounds which have polar (hydro-
phobic) and nonpolar portions (hydrophilic), shifting solubility of other molecules 
in aqueous solutions based on polarity. These molecules act on the water-oil inter-
face, thus forming micelles in various shapes and sizes (Van Hamme et al. 2006). 
Surfactants are an important class of chemicals widely used in modern industry 
(Develter and Lauryssen 2010; Franzetti et al. 2010). In 2007, chemical surfactant 
production reached about 10 million tons (Van Bogaert et al. 2007). In this context, 
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the market share is led by cleaning detergents (up to 50% of surfactant production), 
generating a 60-billion-dollar revenue in 2004 (Scheibel 2004). It is known that 
almost all commercially available surfactants are now chemically synthesized from 
petroleum.

The conventional chemical surfactants derived from petroleum are subject to the 
availability of fossil fuels and pose potential threats to the environment due to their 
recalcitrant nature (Makkar and Rockne 2003; Aparna et al. 2012). Approximately, 
0.57 tons of petrochemical intermediates are consumed for each ton of surfactant 
produced (Patel et al. 1999). By projecting these values to the global production of 
surfactants, it is estimated that 7.40 million tons of petrochemicals are destined 
annually for the production of surfactants (Reznik et al. 2010). Thus, there is a trend 
toward eco-friendly technologies mobilizing the search for novel biodegradable 
compounds and renewable substrates, including industrial waste (Marchant and 
Banat 2012; Sasayama et al. 2018).

2.4  Biosurfactants

The advances in surfactant technologies are within the scope of many biotechno-
logical types of researches. There was a subtle increase in the number of patents 
involving biosurfactants at the beginning of this century. More than 70% of these 
were reported between 2000 and 2010. In contrast, most of the patent registrations 
for chemical surfactants were performed in the 1900s, with a sharp drop after 2000 
(Müller et al. 2012).

Biosurfactants are a natural choice as substitutes to synthetic surfactants because 
they have several advantages, such as (1) viable fermentative production using 
renewable resources; (2) effectiveness in small quantities, even under extreme con-
ditions; (3) selective and specific potential for various applications; (4) low toxicity; 
(5) high biodegradability; and (6) stability to pH, salinity, and temperature varia-
tions (Abdel-Mawgoud et al. 2010; Banat et al. 2000; Cameotra and Makkar 2010; 
Lovaglio et al. 2011; Hazra et al. 2011; Zhao et al. 2017).

The biosurfactants are produced by microorganisms to increase cellular access to 
hydrophobic substrates. This facilitates the metabolism and promotes the develop-
ment of biomass, hence increasing biodegradation (Bordoloi and Konwar 2009; 
Singh et al. 2007). The major advantage of biosurfactants compared to synthetic 
surfactants lies in their structural diversity and environmental acceptability. 
Biosurfactants are biodegradable, biocompatible, and less toxic with higher speci-
ficity, the possibility of in situ production. They can be produced from renewable 
substrates and organic residues (Mulligan 2009). A wide range of biosurfactants are 
potential to apply in various industrial approaches: food, petrochemical, mining, 
agriculture, cosmetics, pharmaceutical, textile, leather, construction, dyes, and 
chemicals (Araújo et al. 2016; Ferreira et al. 2017). In addition, these molecules 
have the ability to decrease surface and interfacial tension. These properties can 
promote microbial growth, aid microbial enhanced oil recovery (MEOR)  procedures 
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in drilling oil wells, and facilitate bioremediation of pollutants (Zhao et al. 2017). 
Thus, biosurfactants are a multifunctional material and an important alternative to 
replace compounds and chemical processes (Silva et al. 2017).

Typically, biosurfactants have hydrophilic structures (amino acids, peptides, 
mono-/disaccharides, and/or polysaccharides) and hydrophobic structures (satu-
rated and/or unsaturated fatty acids) in their molecules (Smyth et al. 2010; Shao 
et al. 2015). Biosurfactants are classified by their chemical structure, and this com-
position depends on the producing microorganisms, the substrate, and the condi-
tions of the fermentation process (Cameotra and Makkar 2004; Nitschke et  al. 
2005a; Singh et al. 2007; Makkar and Cameotra 1999; Nitschke and Pastore 2006).

Among the various microorganisms able to produce biosurfactants, bacteria 
belonging to the genus Pseudomonas are often the most promising group. They are 
able to synthesize biosurfactants known as rhamnolipids. These molecules are gly-
colipids containing fatty acid groups linked to a rhamnose. The lipid portion is 
composed of β-hydroxydecanoic acid (Benincasa et  al. 2004; Mulligan 2009; 
Abdel-Mawgoud et al. 2010). These different types of rhamnolipids slightly differ 
on their chemical structures and surface activities. The production of each homolog 
depends on the nutrient availability, the environmental conditions, and the biosyn-
thesis capabilities of the specific P. aeruginosa strain (Oluwaseun et  al. 2017; 
Mondal et al. 2017).

Rhamnolipids are considered as the most promising biosurfactant class in terms 
of industrial production, due to their physicochemical characteristics, outstandingly 
high productivity, and deep understanding of the rhamnolipid production (Müller 
et al. 2012).

2.5  Biological Function of Biosurfactants

Biosurfactants reduce surface tension or emulsify hydrophobic substrates (Diaz de 
Rienzo et al. 2016). However, the biological function of the biosurfactants into the 
cell is beyond just solubilizing substrates. From the ecological point of view, biosur-
factants provide advantages to surfactant-producing microorganisms in relation to 
other organisms that do not have such capacity. Biosurfactants also have different 
chemical structures and are produced by different microorganisms (Mulligan 2009; 
Abdel-Mawgoud et al. 2010, Banat et al. 2010). These biosurfactants are described 
in the literature as molecules with antimicrobial and antiviral activities (Plaza et al. 
2013, Remichkova et al. 2014). This ability benefits ecological interactions (e.g., 
competition).

There is a quorum sensing mechanism that controls the genes rhl and pqs respon-
sible to produce rhamnolipids (Pearson et al. 1997; Dusane et al. 2010). Quorum 
sensing (“sufficient amount” in Latin) is a mechanism for assessing population den-
sity through molecular signals to activate a response that requires a certain popula-
tion density (Madigan et  al. 2015). Rhamnolipids are also important for the 
formation of water channels in the biofilm. These channels provide the homogenous 
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flow of nutrients and oxygen in the biofilm, in addition to allowing the release of 
metabolites. Davey et al. (2003) silenced the rhl gene of Pseudomonas aeruginosa, 
which caused the blockade of rhamnolipid production and prevented the formation 
of water channels in the biofilm.

Due to the multiple functions of these biosurfactants, their applicability was 
observed in activities such as the recovery of areas contaminated with hydrophobic 
compounds (Amani et al. 2013), emulsifiers in cosmetics and the pharmaceutical 
industry (Ferreira et al. 2017; Bhadoriya et al. 2013), and phytopathogen control 
(Ongena and Jacques 2008; D'aes et al. 2010, Falardeau et al. 2013). However, the 
cost of producing these biomolecules today is high, resulting in unfeasible applica-
tions. In comparison with synthetic surfactants with an average cost around $ 1 to $ 
3 per kg, rhamnolipids cost $ 20 to $ 25 per kg (Chong and Li 2017). To overcome 
these challenges, many strategies are being adopted to increase productivity and 
reduce costs. These costs are mainly related to the costly carbon source required for 
the biosurfactant production and also to extraction and purification processes 
(Chong and Li 2017).

2.6  Production of Biosurfactants from Alternative 
Substrates

At the beginning of scientific interest in biosurfactants around 1980 (Syldatk and 
Wagner 1987), only pure hydrocarbons were used as carbon sources for their pro-
duction (Fish et al. 1982; Hisatsuka et al. 1971; Itoh and Suzuki 1972; Syldatk et al. 
1985). This consequently raised the biosurfactant market value to an unfeasible 
acceptance scenario. Despite its many advantages over synthetic chemical surfac-
tants, the biosurfactants still have economic obstacles to overcome in the large-scale 
process, including a drastic reduction in production costs. In fact, there are efforts 
in the recent decades that focused on minimizing biosurfactant production costs to 
promote commercial acceptance (Mukherjee et al. 2006; Costa et al. 2008; Nitschke 
et al. 2011; Heryani and Putra 2017).

Currently, biosurfactants commercialized in the USA are more expensive than 
synthetic surfactants (Rosenberg and Ron 1997; Maier and Soberon-Chavez 2000; 
Makkar et  al. 2011). In this context, alternative strategies have been adopted to 
establish a competitive price. Among the strategies are the development of geneti-
cally modified microorganisms toward better yields during the fermentation process 
(Dobler et al. 2016; Du et al. 2017), use of more cost-effective raw materials for 
biosurfactant production, and the development of economically viable production 
processes on a large scale (Mukherjee et al. 2006; Hazra et al. 2011; Makkar et al. 
2011).

The use of agro-industrial waste becomes an economically interesting strategy 
since the raw material accounts for about 10–30% of the total cost in this biotech-
nological process (Makkar and Cameotra 1999; Mukherjee et  al. 2006; Makkar 
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et al. 2011). There are many alternative substrates currently proposed for the pro-
duction of biosurfactants: residues generated by the vegetable oil manufacturing 
(peanut, coconut, corn, olive, soybean), cooking oils (sunflower, olive, soy), vegeta-
ble processing waste (potato, barley, cashew, cassava, wheat), sugar cane molasses, 
whey, peat, oily waste from oil refineries, lignocellulosic waste (fruit peels, corn-
cobs), and glycerol from biodiesel production (Desai and Banat 1997; Nitschke 
et al. 2004; Benincasa 2007; Moldes et al. 2007; Barros et al. 2008; Thavasi et al. 
2008; Monteiro et al. 2009; Rocha et al. 2009; Thavasi et al. 2011; Aparna et al. 
2012; Cruz et al. 2017; Meneses et al. 2017; Rane et al. 2017). These compounds 
are known to exhibit high levels of carbohydrates and lipid, both required for the 
growth of microorganisms and the biosynthesis of biosurfactants (Nitschke et al. 
2005b; Nee’ Nigam and Pandey 2009; Benincasa 2007; Diaz et al. 2018).

Many microbial genera proved to be able to produce biosurfactants from these 
residues – Azotobacter, Bacillus, Brevibacterium, Burkholderia, Corynebacterium, 
Flavobacterium, Lactobacillus, Micrococcus, Nocardiopsis, Pseudomonas, 
Pseudoxanthomonas, Rhodococcus, Tsukamurella, Candida, Pseudozyma, and 
Trichosporon (Boudour et  al. 2004; Thavasi et  al. 2008; Monteiro et  al. 2009; 
Thavasi et al. 2011).

Agricultural residues result in lower production costs and a much smaller vol-
ume of compounds released into the environment. By successfully developing 
effective ways of producing surfactants, the environmental impact of surfactant 
industry may become smaller. Moreover, there is a sustainable gain by recycling 
waste (Mulligan 2009; Accorsini et al. 2012).

2.7  Conclusion

Microbial ability to use petroleum hydrocarbons as a carbon source enables an alter-
native treatment based on bioremediation. Moreover, biotechnological strategies are 
able to improve natural attenuation processes, and they present cost-effectiveness 
compared to physicochemical treatments. Generally, an accelerated hydrocarbon 
biodegradation depends on the presence of specific microorganisms and/or bioavail-
ability of pollutant compounds. Thus, environmental contamination by petroleum 
derivatives presents many hydrophobic molecules, and microbial metabolism can 
be enhanced by using tensioactive compounds. In this context, biosurfactants are 
demonstrated to act on water-oil interface thus forming micelles that raise bioavail-
ability of hydrocarbons to biological treatment. This facilitates the metabolism and 
promotes the development of biomass, hence increasing biodegradation. Therefore, 
these biocompounds produced by microorganisms increase cellular access to hydro-
phobic substrates, and they are a natural choice as substitutes for synthetic surfac-
tants. The advantages of biosurfactant application are currently based on 
technological advancement associated with sustainable development. Biosurfactants 
still have economic obstacles to overcome in the large-scale process, including a 
drastic reduction in production costs. In fact, there are efforts in the recent decades 
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that focused on minimizing biosurfactant production costs to promote commercial 
acceptance. Hence, the use of agro-industrial waste as a substrate for fermentative 
processes becomes an economically interesting strategy. There are many alternative 
substrates currently proposed for the production of biosurfactants, and also many 
microbial genera proved to be able to produce biosurfactants from these residues.
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