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Foreword

Volumetric 3D optical coherence tomography (OCT) imaging of the eye has
revolutionized diagnosis and management of patients with ophthalmic diseases.
OCT was introduced in the 1980s with first biomedical OCT imaging applications
appearing in the 1990s. The first broadly available ophthalmic OCT system—Zeiss
Stratus—was introduced in 2002 and offered 2D “depth” imaging of the retina. As
the technology developed, true 3D volumetric retinal scanners began to appear
around 2008 with a number of manufacturers offering ophthalmic 3D-OCT imaging
devices. Over the years, many variants of retinal OCT were introduced, starting
with primarily 2D time-domain OCT technology capable of acquiring 400 axial
scans (A-scans) per second, followed by spectral-domain OCT offering 50 times
faster image acquisition with 27,000 A-scans/s, swept-source OCT (100,000
A-scans/s), Doppler OCT, adaptive-optics OCT, etc. Soon after, clinical utilization
of the OCT for imaging the retinal layers and the optic nerve head became common
and other ophthalmic applications emerged including OCT imaging of the choroid,
optic disk, retinal vasculature, and other parts of the eye anatomy. OCT is
increasingly used to image vascular flow, as well as eye function including
anatomy-derived visual function. Consequently, OCT imaging is employed for
diagnostic and treatment-guidance purposes in many diseases including age-related
macular degeneration, diabetic macular edema, macular hole, papilledema, retinal
vein occlusion, glaucoma, intraretinal tumors, etc.

Quantitative ophthalmic OCT image analysis has trailed the introduction of
retinal OCT scanners with only a minimal delay. The experience with volumetric
biomedical image analysis, which was developed in radiologic, cardiologic, and/or
neuroscience applications over several decades, and the associated expertise of
medical imaging researchers allowed rapid translation of this knowledge to oph-
thalmic OCT image analysis. The transition from primarily 2D retinal imaging
using fundus photography, fluorescein angiography, and other 2D approaches that
were mostly qualitative in clinical care to quantitative 3D analyses was arguably the
fastest among all areas of clinical and translational medicine.
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This book offers a timely overview of this very area of the ophthalmic
imaging—OCT image acquisition, formation, quantitative OCT image analysis, and
clinical applications. The book, edited by Xinjian Chen, Fei Shi, and Haoyu Chen,
and entitled Retinal Optical Coherence Tomography Image Analysis, gives a
comprehensive summary of the state of the art in 2018. The book is logically
divided into 13 chapters, written by teams of international experts—medical
imaging researchers, medical image analysis scholars, and clinically active research
physicians. As a result, the book offers an excellent insight in translational appli-
cations of ophthalmic OCT imaging, starting with introductory aspects of imaging
physics and covering many areas of analysis with a special focus on their relevance
for retinal disease diagnosis, treatment, and outcome prediction.

The first chapter motivates the entire book and provides an introductory overview
of clinical applications of OCT retinal imaging. The next group of chapters—Chaps.
2–4—give fundamentals of OCT imaging physics and OCT image acquisition,
describe methods of obtaining high-quality OCT image data via denoising and
enhancement, and provide a forward-looking synopsis of OCT image formation
from sparse representations. The third and largest group of chapters—Chaps. 5–12—
are devoted to quantitative OCT image analysis. It focuses on image segmentation,
quantitative description of retinal morphology, diagnostic abilities of OCT for var-
ious ophthalmic diseases, and diagnostic utilization of retinal-layer-specific optical
intensities. Separate chapters provide information about OCT-based analysis of the
optic nerve head in glaucoma and methods for the analysis of the choroid. Three
additional chapters deal with the difficult problems of retinal layer segmentation in
the presence of morphology/topology-modifying diseases—fluid formation in the
outer and inner retina in pigment epithelial detachment, quantification of the external
limiting membrane integrity, and/or assessment of geographic atrophy and drusen.
The entire family of detection and quantification of SEADs—symptomatic
exudate-associated derangements—characteristically occurring in age-related mac-
ular degeneration, diabetic macular edema, and other retinal diseases is also covered.
The last Chap. 13 outlines the predictive capabilities of OCT imaging for therapy
guidance and outcome prediction from temporal OCT image sequences—while
based on only a very small sample of patients, it provides a futuristic forward-looking
peek in the envisioned capabilities of clinical OCT usage of longitudinal patient data.

The book is a welcome addition to the field of quantitative ophthalmic imaging.
Its focus on and consistent treatment of volumetric retinal images from 3D retinal
optical coherence tomography, its stress of translational aspects of these approa-
ches, and the demonstrated advances obtained by direct shoulder-to-shoulder col-
laborations of medical imaging scholars, engineers, physicists, and physicians are
an unquestionable strength of this interdisciplinary book. It will undoubtedly be
well received by graduate and post-graduate students, ophthalmic imaging
researchers, OCT imaging practitioners, and ophthalmic physicians alike.

Iowa City, USA Milan Sonka, Ph.D.
The University of Iowa
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Chapter 1
Clinical Applications of Retinal Optical
Coherence Tomography

Haoyu Chen, Tingkun Shi and Danny Siu-Chun Ng

The developments of medical imaging techniques and medical image analysis meth-
ods are alwaysmotivated by the needs arising from clinical applications. This chapter
introduces anatomy of the eye and the retina, describes various types of eye diseases
that can be visualized with OCT imaging, and therefore presents the must-know
background knowledge for readers interested in retinal OCT image analysis.

1.1 Anatomy of the Eye and Retina

1.1.1 Simple Anatomy of the Eye

The eye is an organ that perceives light and visual information. There are five senses
in human body, including vision, hearing, smell, touch and taste. More than 80% of
information we received is obtained through vision perceived by the eyes.

The structure of the eye is like a ball, although it is not a perfect sphere. There are
three layers of coats, enclosing three intraocular components: (1) The front of the
eyeball is cornea, which is transparent and contribute to most of the refractive power
of the eye; the posterior part of the outermost layer is sclera, which consists of fibrous
tissue and protects the inner structures. (2) Themiddle layer of the eyeball is vascular
tunic or uvea, which consists of iris, ciliary body and choroid. The center of iris is
open and called pupil. The muscles inside the iris control the size of pupil and the
amount of light getting into the retina. Ciliary body is responsible for the generation
of aqueous humor and accommodation. The choroid is located just outside the retina
and provides nutrition and oxygen for the outer part of retina. (3) The innermost
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2 H. Chen et al.

Fig. 1.1 Illustration of the anatomy of human eye

layer is retina, which is an extension of central nerve system and responsible for the
transduction of visual signal into neural signal. The intraocular components include
aqueous humor, lens and vitreous body. The lens is connected to ciliary body by
the zonules. Aqueous humor and vitreous body locate in front and back of the lens
(Fig. 1.1).

The eye is a very special organ. The optical media, including cornea, aqueous
humor, lens and vitreous, are transparent. This character allows light getting into
the innermost layer, retina, and also allows visualization of retinal structure using
various instruments, including optical coherence tomography.
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Fig. 1.2 Cross-sectional diagram showing the structure of human retina

1.1.2 Simple Histology of Retina

Retina is the most important structure of the eye. It is a neural tissue and transduces
light into neural signal.

The histology of the retina consists of ten layers. From inner to outer, they are
internal limiting membrane, retinal nerve fiber layer, retinal ganglion cell layer,
inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer,
external limiting membrane, photoreceptor inner and outer segment, retinal pigment
epithelium. Retina is transparent except for the blood vessels and retinal pigment
epithelium monolayer (Fig. 1.2). Transparency of retina allows light passing though
and reaching the photoreceptors, where the photo-neural transduction occurs.

There are twoblood supply systems to retina, retinal vascular systemand choroidal
vascular system. The retinal vascular system rises from optic disc, branches on the
retinal nerve fiber layer, and forms three layers of capillary, located in the retinal
ganglion cell layer, inner plexiform layer and outer plexiform layer. The retinal
vascular system supplies the inner layers of retina. The outer retina is avascular, and
oxygen and nutrition is supplied from the choroidal capillary through retinal pigment
epithelium.

On fundus photography, the optic disc is an important landmark of the retina.
It is about 1.5 mm diameter, with a cup at the center. It is located about 2.5 optic
disc diameter nasal to the fovea, which is the center point of the macula. The fovea
is special because it consists of abundant number of cone photoreceptors, which is



4 H. Chen et al.

Fig. 1.3 Fundus photography of a normal human retina

responsible for fine vision and color vision. There is no inner retinal structure in
fovea, hence, there is no blood vessel and allows light to reach the photoreceptors
without any disturbance (Fig. 1.3).

1.1.3 Normal Macular OCT Image

OCT provides high resolution imaging for the cross-sectional structure of retina. The
reflectivity of tissue is determined by the optical character of tissue itself. Vitreous
has the lowest reflectivity in normal subjects. The highest reflective band at the
inner retina is retinal nerve fiber layers, which is thickest at the parapapillary region
and thinnest just temporal to the fovea. Generally, the nerve fiber layers have higher
reflectivity comparedwith nuclear layers. OCTnot only demonstrates the 10 layers of
retina, but it is also able to visualize the detail structures of photoreceptor and choroid
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Fig. 1.4 Retinal layers on optical coherence tomography in normal subject

[1]. There are four hyper-reflective bands at outer retina: external limitingmembrane,
inner segment ellipsoid zone, interdigitation zone, and RPE/Bruch’s complex. The
choroidal-scleral interface can be identified and the thickness of choroid can be
measured (Fig. 1.4).

1.2 Vitreomacular Interface Diseases

The vitreous body is a transparent structure which fills the space in front of the retina.
In physiological condition, vitreous body provides mechanical support for retina.
However, vitreous may degenerate with aging or under pathologic conditions. The
disorders at vitreomacular interface cannot be well-recognized until recently due to
the availability of OCT, which provides high resolution cross-sectional imaging for
visualizing the vitreomacular interface.

There are several disorders at vitreomacular interface, including vitreomacular
adhesion, vitreomacular traction, macular hole, epiretinal membrane. The disorders
of vitreomacular interface can be seen in aging population, and also secondary to
other diseases, such as high myopia, proliferative diabetic retinopathy, etc.
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Fig. 1.5 Vitreomacular adhesion. There is separation of vitreous from retina at perifoveal region.
Please note there is no morphological change of intraretinal structure

1.2.1 Vitreomacular Adhesion

Vitreomacular adhesion is defined as perifoveal vitreous detachment with the adhe-
sion of vitreous at fovea, without changing the intraretinal structures [2]. Vitreomac-
ular adhesion is a physiological status, becausemost eyes have complete vitreoretinal
adhesion at birth, and develop to posterior vitreous detachment with aging. The vit-
reous is adhered to retina most tightly at fovea, optic disc and peripheral retina. The
process of posterior vitreous detachment begins at perifoveal region. Vitreomacu-
lar adhesion can be further classified as focal (≤1500 um) and broad (>1500 um)
adhesions according to the size of adhesion (Fig. 1.5).

1.2.2 Vitreomacular Traction

Vitreomacular traction is defined as perifoveal vitreous detachmentwith the adhesion
of vitreous at fovea which changes the intraretinal structures [2]. Traction at the
fovea may result in contour changes at the inner surface, intraretinal pseudocyst
and separation of retina from the RPE. These changes lead to metamorphopsia and
vision decrease. Vitreomacular traction can also be classified as focal (≤1500 um)
and broad (>1500 um) adhesion according to the size of adhesion (Fig. 1.6).
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Fig. 1.6 OCT of focal vitreomacular traction shows the high reflectivity band incompletely
detached from the retina and changes of the contour of the intraretinal structures due to the slightly
elevated inner surface of fovea

1.2.3 Full Thickness Macular Hole (FTMH)

Macular hole was defined as interruption of full thickness retina tissue at fovea. The
opening of retina involves all neural retinal layers, from internal limiting membrane
to photoreceptor. On fundus photography, macular hole is usually round, with a
circus of edema around the hole.

Macular hole is classified into 4 stages byGass based on biomicroscopic examina-
tion: stage 1: impending macular hole; stage 2: small hole; stage 3: large hole; stage
4: full thicknessmacular hole with PVD [3]. Now, with OCT, the staging is redefined:
stage 1 is now called vitreomacular traction; stage 2 is a small or medium macular
hole with vitreomacular traction (Fig. 1.7); stage 3 is a medium or large macular hole
with vitreomacular traction; stage 4 is a macular hole without vitreomacular traction
(Fig. 1.8) [2].

OCT can help measuring the diameter of macular hole. The diameter is not con-
sistent at different layers. It is most narrow in the middle. Therefore, usually two
diameters are measured, the minimal diameter and the basal diameter. The diameter
of macular hole usually ranges from 50–1000 µm. Furthermore, OCT demonstrates
the detail morphological changes ofmacular hole. There are usually some intraretinal
cysts around the hole.

OCT can also help differential diagnosis of macular hole. There are some cases
with pseudo macular hole, which is actually caused by epiretinal membrane that
elevated retina around fovea without interruption of neural retinal tissue (Figs. 1.9
and 1.10). There are also some cases with lamellar macular hole, with interruption
of inner layers, but not the full thickness of retina.
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Fig. 1.7 Small full thickness macular hole with vitreomacular traction. The OCT image shows
attachment of the vitreous to the lid of the hole and cystic changes

Fig. 1.8 Large full thickness macular hole without vitreomacular traction. The OCT image shows
a full-thickness macular hole with intraretinal cystic spaces and an overlying operculum

OCT is also helpful in following up of macular hole after surgical repair. It shows
that the inner layer of macular hole connects with each other first. Repairing of
the outer retinal layers disruption takes a longer time which explains the prolonged
visual disturbance after surgery. The morphology of repaired macular hole can be
categorized into three patterns, U type (normal foveal contour), V type (steep foveal
contour) andW type (foveal defect of neurosensory retina). This classification system
correlates with visual recovery [4].



1 Clinical Applications of Retinal Optical Coherence Tomography 9

Fig. 1.9 Fundus photography demonstrates fibrocellular proliferation on macular region except
fovea. It appears like a macular hole

1.2.4 Epiretinal Membrane

Epiretinal membrane (ERM) is due to proliferation of fibrocellular tissue on the inner
surface of retina (Fig. 1.9). On OCT, it is characterized by medium to high reflective
lines above neural retina. There are some adhesions of the epiretinal membrane to the
inner surface of retina in multiple locations. Some adhesions may be wide and some
may be focal. Sometimes in early stages of epiretinal membrane, the adhesionmaybe
very wide and the deadhesion area may not be identifiable. This is characterized by
flattening of the retina inner surface (Fig. 1.10).

OCT is used not only for diagnosing epiretinal membrane, but also help planning
for operation. From OCT images, the surgeon can identify the region where the
distance between ERM and ILM is maximumwhich is the best location for initiation
of membrane grasping to avoid damage of retinal tissue [5].
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Fig. 1.10 OCT of the case in Fig. 1.9 shows high reflectivity anterior to the retina. Retinal inner
surface is flattened and the retinal thickness is increased. There is no disruption of retina tissue and
the fovea appear as a macular pseudohole

1.2.5 Myopic Traction Maculopathy

The pathogenesis of highmyopia is axial elongation of the eyeball. The sclera remod-
els and elongates, however, the retina tissue and choroid do not elongate equivalently
with the sclera, especially the internal limiting membrane and the retinal vessels [6].

The morphological characters of myopic traction maculopathy include the fol-
lowing:

1. Vitreous adhesion and traction at vitreomacular interface. The adhesions are not
limited to the fovea, but also at other locations, especially large vessels.

2. Retinoschisis, which is the separation of retinal layers, caused by the traction
force on the inner retinal surface.

3. Disruption of photoreceptor, which may manifest as “outer lamellar hole”.
4. Localized retinal detachment at fovea, without full thickness macular hole

(Fig. 1.11).
5. Full thickness macular hole with or without retinal detachment.

1.3 Glaucoma and Optic Neuropathy

Glaucoma is a group of ocular disorders characterized by progressive degeneration of
optic nerve. OCT provides early diagnosis and monitoring of the disease progression
[7]. Because retina is an extension of the central nervous system (CNS), many CNS
diseases may manifest in the retina, where the optic nerve head is located.

There are several different commercially available OCT devices providing differ-
ent scans and analyses modules. Generally, there are three important measurements
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in retinal OCT for glaucoma and optic neuropathy, including parapapillary retinal
nerve fiber layer thickness, retinal ganglion cells complex layer thickness, and mor-
phology of optic nerve head.

1.3.1 Parapapillary Retinal Nerve Fiber Layer Thickness

Retinal nerve fibers are the axons of retinal ganglion cells which make up the retinal
nerve fiber layer (RNFL) lying just below the internal limiting membrane. RNFL
has high reflectivity and can be easily identified and segmented on OCT images.
The nerve fibers exit the eyeball and connect to the brain via optic nerve. Therefore,
RNFL thickness is the highest at the parapapillary regions. Typically, OCT provides
a cube scan centered on the optic nerve head and produces a RNFL thickness map.
The RNFL thickness at the 3.4 mm diameter circle is calculated at each pixel. The
average thickness at each clock hour and quadrant are also calculated. The results
have been compared to the distribution of normal database and displayed as false
color scale. The symmetry of RNFL thickness has been calculated [8]. In early stage
of glaucoma, the RNFL reduced mostly on the superotemporal and inferotemporal
bundles, but the late stage, RNFL thinning involves the entire region (Fig. 1.12).

Fig. 1.11 OCT of a patient with high myopic maculopathy. There is vitreomacular interface trac-
tion, retinoschisis, disruption of photoreceptor
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Fig. 1.12 Parapapillary retinal nerve fiber layer thickness and optic nerve head analysis of a case
with glaucoma
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1.3.2 Macular Ganglion Cell Thickness

The ganglion cell layer appears as a relatively hyporeflective layer between the
RNFL and inner plexiform layer on OCT. It is the thickest at the macular region.
However, it is difficult to segment ganglion cell layers basedon reflectivity. Therefore,
it was measured with other layer(s) together. In Zeiss Cirrus OCT, the Ganglion Cell
Analysis consists of ganglion cell layer and inner plexiform layer. In Optovue OCT,
the Ganglion cell complex include RNFL, GCL and IPL. Topcon OCT provides
macular RNFL, GCL+IPL, and NFL+GCL+IPL thickness measurements. The scan
region is divided into various sectors. The macular ganglion cell thickness map
is displayed using similar color scale which are compared to normal database. In
glaucoma patients, the ganglion cell thickness is reduced [9] (Fig. 1.13).

1.3.3 Optic Nerve Head Morphology

The morphology of optic nerve head is an important parameter for analyses of the
amount of optic nerve damage using biomicroscope. In OCT, the borders of optic
disc and optic cup can be automatically segmented in a similar way to the evaluations
performed by ophthalmologists. The border of optic disc is defined as the termination
of Bruch’s membranes. The software can then calculate the disc area, cup area, rim
area, average cup to disc ratio, vertical cup to disc ratio. These parameters are then
compared to a normative database [10]. In patient with glaucoma, the optic cup/disc
ratio is increased and the neuro-retinal rim thickness is reduced (Fig. 1.12).

1.4 Retinal Vascular Diseases

Retinal vascular diseases include retinal artery occlusion, retinal vein occlusion,
retinal vasculitis, diabetic retinopathy, and others.

1.4.1 Retinal Artery Occlusion

Retinal artery occlusion is the sudden blockage of retinal blood supply. It can be fur-
ther classified into central retinal artery occlusion and branch retinal artery occlusion.
On fundus photography, retinal artery occlusion is characterized by whitening and
opacity of retina, which is transparent in physiological condition. The fovea lacks
inner retinal tissue and therefore, cannot be affected by the retinal artery occlusion.
The fovea remains red but surrounded by the white opacity retina, which is known
as “cherry red spot” (Fig. 1.14). On OCT, retinal thickness increases at acute stages
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Fig. 1.13 Macular ganglion cell complex thickness analysis in a patient with primary open angle
glaucoma
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Fig. 1.14 Fundus photography of a CRAO case with a ‘cherry-red spot’ at the macula

and then reduces after regression of the whitening, mostly on the inner retinal layers
[11]. Besides change of retinal thickness, the optical intensity of inner retinal layers
increase, which suggest retinal ischemia, while the optical intensity of outer reti-
nal layers decrease, which is caused by the shadowing effect of inner retinal layers
(Fig. 1.15) [12]. Further study suggested that the optical intensity ratio of inner and
outer layers is correlated with the visual outcome in patients with central retinal
artery occlusion [13].



16 H. Chen et al.

Fig. 1.15 OCT of the same eye as Fig. 1.14 shows diffuse retina thickening, high reflectivity at
inner retina and reduced reflectivity at photoreceptor and RPE

1.4.2 Diabetic Retinopathy

Diabetic retinopathy is the most common cause of vision loss among people with
diabetes and a leading cause of blindness among working-age adults. It is caused by
damage to microvascular endothelial cells. The clinical manifestations of diabetic
retinopathy include retinal hemorrhage, hard exudates, cottonwool spots andmacular
edema (Fig. 1.16).

OnOCT, cottonwool spots are localized hyperreflectivity at retinal inner layers. Its
appearance suggests retinal ischemia. Hard exudates are also hyperreflective spots,
but located at deeper layers. They are caused by extracellular lipid which has leaked
from abnormal retinal capillaries.

Macular edema is accumulation of fluid in macular region. Clinically, macular
edema is defined as thickening of macular retina. On OCT, there are three types
of macular edema, serous retinal detachment, intraretinal cysts and diffuse retinal
thickening. Most macular edema are the combination of these characters (Fig. 1.17).
Besides the cross-sectional morphology, OCT also provides quantitative measure-
ment of retinal thickness atmaculawhich is divided into 9ETDRS regions (Fig. 1.18).
The retinal thickness is useful for monitoring the progress of macular edema and its
response to treatment [14].
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1.4.3 Retinal Vein Occlusion

Retinal vein occlusionmay involve either the central or branch retinal veins. The fun-
dal manifestation of retinal vein occlusion also includes retinal hemorrhage, cotton
wool spots, retinal hard exudates, macular edema. The OCT appearances are similar
to those of diabetic retinopathy (Figs. 1.19 and 1.20).

1.5 Outer Retinal Degenerative Diseases

Outer retinal layers include outer nuclear layer, photoreceptor inner and outer seg-
ment, retinal pigment epithelium. Degeneration of outer retina can be caused by
genetic mutation, or secondary to other factors, including traumatic impact, retinal
detachment, inflammation, toxicity, or age related macular degeneration.

Fig. 1.16 Fundus photography of a patient with diabetic retinopathy showing extensive hard exu-
dates around macular fovea and scattered dot hemorrhages
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Fig. 1.17 OCT of the same eye as Fig. 1.16 shows high reflectivity spots at the intra neuroepithelial
layer corresponding with extensive hard exudates, intraretinal cysts and serous retinal detachment

Fig. 1.18 Retinal thickness map (left) and the average retinal thickness at 9 ETDRS regions

Degeneration of photoreceptor is the major character of outer retinal diseases.
Photoreceptor plays a critical role in vision. Therefore, degeneration of photoreceptor
will lead to visual impairment. On OCT, disruption of photoreceptor inner segment
ellipsoid zone is correlated with visual loss. Furthermore, retinal thickness would
reduce, especially in outer retinal layers (Figs. 1.21 and 1.22) [15].

On fundoscopy, RPE changes are characterized by focal areas of mobilization
of pigment (hypopigmentation and hyperpigmentation). On OCT, it appears as RPE
deformation or thickening that may form irregularities which may progress to RPE
atrophy in some cases. On OCT, in addition to the loss of RPE layer, the optical
intensity of choroidwould increase due to loss of shadowing effect of RPE (Figs. 1.21
and 1.22) [16].
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Fig. 1.19 Fundus photography of branch retinal vein occlusion shows flame-shaped and blot hem-
orrhages, cotton wool spots and venous tortuosity at superotemporal retina

Fig. 1.20 OCTof the same eye as (Fig. 1.18) shows retinal thickening, inner retinal high reflectivity
and serous retinal detachment at fovea
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Drusen is degenerative nodular formations located in Bruch’s membrane and
beneath RPE. It consists of proteins, lipids, mucopolysaccharides, and other com-
ponents. It is a landmark character of age-related maculopathy. On OCT, it is char-
acterized by sub-RPE nodules with low or middle reflectivity (Figs. 1.21 and 1.22)
[17].

1.6 Choroidal Neovascularization and Polypoidal
Choroidal Vasculopathy

Choroidal neovascularization is the growth of new blood vessels from choroid vascu-
lature through a break of the Bruch’s membrane into sub-retinal or sub-RPE space.
The etiology of choroidal neovascularization includes age related macular degen-
eration (AMD), high myopia, ocular inflammation and ocular trauma. Age related
macular degeneration is a leading cause of irreversible blindness in elderly patients.
It is usually located at macula and can cause central scotoma and severe visual loss.
The choroidal neovascularization would lead to hemorrhage, exudation, and fibrosis.
It can be further classified into type 1, type 2 and type 3. Type 1 neovascularization
is also called occult. It refers to the neovascular tissue under RPE. Type 2 neo-
vascularization refers to the neovascular tissues that break through RPE and grow
into subretinal space. Type 3 neovascularization is also called retinal angiomatous
proliferation and characterized by retinal-choroidal anastomosis [18].

OnOCT, choroidal neovascularization is demonstrated asmoderate to high reflec-
tive lesion located under or in front of RPE. It is usually accompanied by subretinal

Fig. 1.21 Fundus photography shows geographic atrophy of retinal pigment epithelium at fovea
and some soft drusen at perifoveal region
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Fig. 1.22 OCT image shows defect of retinal pigment epithelium at fovea. Please note that the
reflectivity of choroid increase because of reduced shadowing effect of RPE. Photoreceptor inner
segment ellipsoid zone disruption and atrophy of outer nuclear layer can be found in the region
of geographic atrophy. At temporal perifoveal region, RPE is elevated and there is mid-reflective
material under RPE. These are drusen

Fig. 1.23 Ansubretinal fibrovascular lesion inmacula surroundedby some intraretinal hard exudate
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Fig. 1.24 OCT of the same eye as Fig. 1.23 showing a sub retina high reflectivity mass with
subretinal and intraretinal fluid

Fig. 1.25 Serosanguineous retinal pigment epithelial detachment with associated subretinal hem-
orrhage
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Fig. 1.26 OCT of the same eye as Fig. 1.25 showing sub-retinal hemorrhage and retina pigment
epithelial detachment

Fig. 1.27 The same eye as Fig. 1.25 on ICGA image showing hyperfluorescence due to polyps,
branching vascular network and subretinal hemorrhage
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or sub-RPE hemorrhage or fluid. In the late stage, choroidal neovascularization may
progress to fibrosis and appear as hyperreflective lesion. The leaky neovascularization
can cause intraretinal cysts which appear as non-reflective cysts in retina (Figs. 1.23
and 1.24). The thickness of macula can also be measured at the 9 ETDRS regions
which are important parameters to monitor the prognosis of disease or response to
therapy [18].

Polypoidal choroidal vasculopathy (PCV) is characterized by a branching vascular
network from choroidal vasculature with polypoidal lesions under RPE. It is still
controversial whether PCV is a subtype of AMD or a distinct disease. On OCT,
pigment epithelium detachment, double-layer sign, and thumb-like polyps are more
common in PCV eyes than in AMD eyes [19] (Figs. 1.25, 1.26 and 1.27).
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Chapter 2
Fundamentals of Retinal Optical
Coherence Tomography

Delia Cabrera DeBuc, Gábor Márk Somfai and Bo Wang

Understanding the underlying theory of medical imaging acquisition helps interpre-
tation of the features manifested in the images and also gives guidance in developing
medical image analysis methods. This chapter introduces the development and prin-
ciples of retinal OCT imaging, and also explains the OCT features of multiple retinal
structures.

2.1 Introduction

During the last few years, the retinal research field has undergone a dramatic change
regarding diagnostic tools and therapies that have resulted in substantial benefits for
patients suffering from retinal disease. Optical coherence tomography (OCT) has
revolutionized the diagnosis and treatment of macular diseases which was enhanced
by the widespread use of intravitreal anti-vascular endothelial growth factor (VEGF)
agents for the treatment of neovascular age-related macular degeneration, branch
and central vein occlusion and diabetic macular edema (DME). It is supposed that
OCT is one of the most widely used ophthalmic decision-making technologies [1].
The recent introduction of OCT angiography (OCTA) and wide field imaging in
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daily routine have resulted in some of the mean changes to the understanding and
management of retinal diseases [2].

OCT uses retroreflected light to provide micron-resolution, cross-sectional scans
of biological tissues [3–5]. The first micron-resolution OCT system for imaging the
human retina in vivo was introduced in 1991 [3]. OCT is a compelling medical
imaging technology in ophthalmology because it enables visualization of the cross-
sectional structure of the retina and anterior eye with higher resolutions than any
other non-invasive imaging modality [3]. The depth resolution of OCT is excellent,
typically on the order of 0.01 mm or 0.4 thousandths of an inch. An OCT image
represents a cross-sectional, micron-scale picture of the optical reflectance properties
of the tissue [3]. This image can either be used to assess tissue features andpathologies
qualitatively or to make quantitative measurements objectively.

2.2 Developments and Principles of Operation of Optical
Coherence Tomography

OCT is an extension of optical coherence domain reflectometry to imaging in two
or three dimensions [6]. This imaging technique generates a cross-sectional image
by recording axial reflectance profiles while the transverse position of the optical
beam on the sample is scanned. Thus, the longitudinal location of tissue structures is
determined by measuring the time-of-flight delays of light backscattered from these
structures. The optical delays are measured by low coherence interferometry. The
light reflected from deeper layers has a longer propagation delay than light reflected
from more superficial layers.

OCT can be used for retinal and anterior segment imaging. The OCT for oph-
thalmic examination is similar to a combination of a slit lamp for anterior segment
imaging and a fundus camera for retinal imaging. The instrumentation includes a
video display for operator viewing of the anterior segment or fundus while obtaining
the OCT images and a simultaneous computer display of the tomograms. Images are
stored via computer for the diagnostic record [7].

2.2.1 Time Domain OCT

Conventional or time domain OCT (TD-OCT) is based on the principle of low coher-
ence interferometry: a powerful tool to “section” a transparent object. Low coherence
means that the system employs a wide range of wavelengths. The most straightfor-
ward and currently the most common interferometer for OCT is a simple Michelson
interferometer [8]. The scheme of a typical fiber optics TD-OCT system is shown in
Fig. 2.1. A low-coherence source illuminates the interferometer. The light is split by
a 50/50 fiber-coupler into a sample and a reference path. Light retroreflected from
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Fig. 2.1 Scheme of a typical fiber optics TD-OCT system

the reference and the sample is recombined at the fiber-coupler and half is collected
by a photodetector in the detection arm of the interferometer. Also, the reference arm
light is typically attenuated by orders of magnitude to improve the signal-to-noise
ratio (SNR).

By rapidly varying the reference arm mirror and synchronously recording the
magnitude of the resulting interference signal, a single axial profile or A-scan is
obtained which is a graph of the optical reflectivity versus distance in the eye. A
sequence of such A-scans is obtained by scanning the probe beam across the entire
retina which forms a B-scan tomogram. As a result, a cross-sectional view of the
structure, similar to a histology section is attained.

The axial resolution of an OCT image depends on the coherence length which is
a fundamental property of the light source, whereas transverse resolution for OCT
imaging is determined by focused spot size, as in microscopy. TD-OCT can achieve
a translational resolution of about 8–10 µm, but the A-scan rate is only a few kHz
which limits real-time 3D imaging application. For example, the motion of human
eye often blurs the OCT images in the long imaging time duration.

2.2.2 Fourier Domain OCT

Fourier domain optical coherence tomography (FD-OCT) obtains the longitude infor-
mation by measuring the reflective spectrum of the tissue. FD-OCT systems do not
need mechanical time delay, and thus the A-scan rates are greatly improved. There
are two mechanisms of FD-OCT systems: spectral-domain systems (SD-OCT) and
swept-source systems (SS-OCT) [9, 10]. In the case of SD-OCT (Fig. 2.2), a broad-
band and continuous-wave low-coherence source is employed to illuminate the inter-
ferometer. The reference arm length is fixed, and the length of the reference arm and
sample arm is approximately equal. The sample arm also contains a 2D lateral scan-
ner and an objective lens. The detection arm includes a spectrometer, which consists
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Fig. 2.2 Scheme of a FD-OCT system

of a dispersion grating and a linear detector, to measure the backscattering spec-
trum of the sample tissue. In the case of SS-OCT (Fig. 2.3), a swept-source laser
is used to tune the broad bandwidth frequency quickly. The reference arm length is
also fixed. A single point photodetector is employed in the detection arm to measure
the magnitude of each component of the spectrum separately. SS-OCT systems can
incorporate a balance detector design to suppress the impact of the laser heat fluc-
tuation which can increase the sensitivity the sensitivity by approximately 10 dB.
The A-scan longitude information can be retrieved by inverse Fourier transform of
the spectrum data after interpolation processing which remaps the data linearly from
wavelength space to wavenumber space. FD-OCT suffers from artifacts such as the
direct current (DC), autocorrelation, and complex conjugate items which are caused
by the inverse Fourier transform of real signals rather than complex signals. Methods
such as phase shifting or quadrature projection phase correction are introduced to
remove these artifacts [11–13]. The A-scan rate of SD-OCT depends on the data
acquisition speed of the linear detector, while the A-scan rate of SS-OCT depends
on the tuning speed of the swept-source. Both SD-OCT and SS-OCT systems can
achieve a high A-scan rate.

Currently, the Swept-source OCT (SS-OCT) is able to obtain the highest imaging
speed of any commercially availableOCTdeviceswith 100,000A-scans obtained per
second [14, 15]. The swept-soruce OCT technology enables high-resolution imaging
with less artifacts due to the movement of the subject’s eye. A significant advantage,
compared to conventional OCT, is that it is possible to obtain clearer images in
patients with cataracts and image deep structures such as the choroid and lamina
cribrosa because the long wavelength of SS-OCT is less subject to light scattering by
the retinal pigment epithelium (RPE). A further advantage of SS-OCT technology
is that it does not suffer from a drop off in sensitivity with changing scan depth as
conventional OCT. Therefore, the retina, vitreous, and deep ocular structures can be
visualized in a single scan.
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Fig. 2.3 Scheme of a SS-OCT system

2.2.3 Other Evolving OCT Technologies

Evolving OCT technologies are always under exploration and often ongoing to
improve image resolution and further capabilities to generate better vessel contrast.
For example, Doppler OCT imaging has demonstrated its clinical utility in detect-
ing blood flow change in patients with various diseases as well as evaluating the
three-dimensional architecture of neovascular complexes [16, 17]. Optical coher-
ence angiography (OCA), one of the latest ophthalmic imaging developments, can
be used to both quantitatively analyze blood flow and provide high-contrast images of
the retinal vascular bed immediately and without the need for dye injection [18–20].
Recent studies have shown the potentialities of this modality to assess capillary
dropout and confirm neovascularization in other retinal diseases [20–22]. Several
studies reported to date have demonstrated that OCA applications in eye diseases
may provide an alternative to more accurate diagnosis and management of these
diseases by quantitatively assessing capillary dropout and retinal neovascularization
[23].

Polarization Sensitive OCT (PS-OCT) exploits the information that is carried by
polarized light to obtain additional evidence on the tissue [24]. Particularly, structures
in the eye such as the retinal nerve fiber layer, retinal pigment epithelium, and the
cornea change the light’s polarization state.Consequently, a tissue-specific contrast in
PS-OCT images is observedwhen using this technology due to polarization changing
light-tissue interactions. Compared to conventional OCT, PS-OCT adds polarization
contrast channel and provides quantitative measurements to the specific tissues. PS-
OCT imaging systems adopt circular polarization light illumination in the sample
arm and two orthogonal linear polarization state detectors in the detection arm to
measure the full polarization state of the backscattering light from sample tissue. In
the PS-OCT systems, more attention is needed to maintain the polarization of light
precisely during the transmission which affects the measurement and reconstruction
of polarization characteristics of tissues seriously.
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Confocal scanning laser ophthalmoscopy (SLO) is integrated with OCT in most
of commercial ophthalmology OCT systems. SLO utilizes two-dimensional scan-
ning mirrors to scan a specific fundus area. This is same as the B-mode imaging
in standard OCT. SLO and OCT share the same optical design in the sample arm
and use a switchable reflector to guide backscattered light to a different detection
arm. SLO, especially adaptive optics SLO (AOSLO) can provide better transverse
resolution than OCT and needs no pupil dilation measurements [25]. SLO technol-
ogy also enables accurate eye movement tracking which can guide and correct the
scanning procedure of OCT. Fundus autofluorescence (FAF), a further SLO modal-
ity whose excitation light and detection light are in different wavelength regime are
also introduced to integrate with OCT [26]. FAF images reflect density distribution
of lipofuscin which is a biomarker of the retinal pigment epithelium. Also, adaptive
optics OCT (AO-OCT) was introduced to compensate for aberrations to the imag-
ing beam caused by the optics of the eye, which limits the transverse resolution in
OCT [27]. In the sample arm of AO-OCT, a wavefront sensor measures the aber-
rations of light and then information is fed back to a wavefront corrector such as a
deformable mirror which compensates the wavefront aberrations. It can improve the
lateral resolution of retinal imagery near the diffraction limit. A combination of AO
with PS-OCT has also been introduced by Cense et al. [28].

Full-field OCT (also called en-face OCT) is another way to achieve high lateral
resolution retinal images [29, 30]. It employs full field illuminating and parallel
detector to produce en-face imaging of tissues like a conventional microscope. With-
out the transverse scanning of sample light beam, the lateral resolution of en-face
OCT is limited by the objective numerical aperture instead of scanning beam spot
size. However, the lateral resolution can exceed 1µmwith the use of objectives with
high numerical aperture such as water-immersion objectives. The B-mode images of
en-face OCT are continuous which benefits the visualization of small lesions due to
the scanning direction parallels the anatomic fabric of retina.

OCT systems are still pursuing powerful imaging abilities to meet the require-
ments of medical diagnosis, especially the diagnosis of disease at the early stage
when the structural images do not show obvious changes but the function of tis-
sue becomes abnormal. The total oxygen metabolic rate is supposed to be a potential
biomarker for early diagnosis of glaucoma, diabetic retinopathy and age-relatedmac-
ular degeneration [31]. A multi-modality OCT system combining the advantage of
photoacoustic (PA) imaging and OCT is introduced tomeasure the oxygenmetabolic
rate where PA imaging could measure the oxygen saturation (SO2) in the retinal and
choroidal vasculature and Doppler OCT could obtain the blood flow velocity [32].
However, PA-OCT is currently limited to animal eye experiments due to the higher
excitation laser energy which may cause unnecessary damage. Alternatively, visible
light OCT (vis-OCT) is developed to obtain structural images, blood flow, oxygen
saturation and oxygen metabolic rate of the human retina simultaneously with a sin-
gle technique [33, 34]. The principle of vis-OCT is based on the absorption spectrum
method which utilizes different absorption spectra of deoxygenated and oxygenated
hemoglobin in the visible light regime.
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Further developments of OCT technology may impact the diagnosis of eye dis-
eases and improve the management of the significant clinical and public health prob-
lems associated to visual impairment. Finally, there is growing evidence to incorpo-
rate the OCT technology into clinical settings managing cerebrovascular and neruo-
logical diseases [35]. However, a low-cost approach solution must be reached to
successfully introduce its application in telemedicine and population-based screen-
ing programs [36].

2.3 Interpretation of the Optical Coherence Tomography
Image

The OCT signal from a tissue layer is a combination of its reflectivity and the absorp-
tion and scattering properties of the overlying tissue layers. Strong reflections occur
at the boundaries between two materials of different refractive indices or may orig-
inate from a tissue that has a high scattering coefficient along with a disposition to
scatter light in the perfectly backward direction [3, 26]. Thus, an OCT image is a
map of the reflectivity of the sample. In most tissues, primary sources of reflection
are collagen fiber bundles, cell walls, and cell nuclei. Dark areas (i.e. areas with low
reflectivity) on the image represent homogeneous material with low reflectivities,
such as air or clear fluids. The imaging light is attenuated in the sample which leads
to an exponential decrease in the intensity of the image with depth. Blood attenuates
the signal faster than collagenous tissues while fat and fluids attenuate the signal the
least.

In OCT images, the signal strength is represented in false color or grey-scale. In
the case of false color representation, high backscatter appears red-orange and low
backscatter appears blue-black (see Fig. 2.4). Thus, tissues with different reflectivity
are displayed in different colors. It is important to note that OCT image contrast arises
from intrinsic differences in optical properties of tissues. Thus, coloring of different
structures represent different optical properties in a false-color image, and it is not
necessarily different tissue pathology (see Fig. 2.4). The exact relationship between
the histology of the tissue and the OCT map is still under investigation. Usually,
relative high layers correspond to areas of horizontal retinal elements such as the
RNFL at the retinal surface or the deeper plexiform layers and finally the outermost
single layer of RPE. Relative low reflectivity layers correspond to the nuclear layers
and a single layer of photoreceptor inner and outer segments (see Figs. 2.4 and 1.4).
Warm colors (red to white) represent areas of relatively high reflectivity, while cold
colors (blue to black) represent areas of relatively low reflectivity. However, from
a qualitative point of view, grey-scale OCT images are superior to the color-scale
pictures, avoiding misleading interpretations of the OCT reflectivity.

A typical example of color coded OCT images of the human macular for normal
and pathologic eyes is shown in Fig. 2.4. The OCT image shown in Fig. 2.4b is
from a subject with DME. This image demonstrates thickening of the macula with
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Fig. 2.4 OCT images of the retina for a healthy and pathologic human eye. a Image of the retina
of a normal healthy subject. Note that the fovea has a characteristic depression with thinning of
the retina corresponding to its normal anatomy. b OCT image from a subject with diabetic macular
edema. Note the thickening of the macula with several sizeable hypo-reflective cystoid spaces in
the central region. The OCT signal strength is represented in false color using the normally visible
spectrum scale, and low backscatter appears blue-black

several large hyporeflective cystoid spaces in the fovea. When comparing the image
of the pathologic subject with the one obtained in the normal healthy subject, the
importance of quantifying the structural changes of retinal features and pathologies
is more than evident.

In the retina, the vitreoretinal interface is demarcated by the reflections from
the surface of the retina. The RPE and choriocapillaris layer (ChCap) is visualized
as a highly reflective red layer and represents the posterior boundary of the retina.
Below the choriocapillaris weakly scattered light returns from the choroid and sclera
because of attenuation of the signal after passing through the neurosensory retina,
RPE, and ChCap. The outer segments of the rods and cones appear as a dark layer
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Fig. 2.5 OCT tomogram through the optic nerve (a) and corresponding video image (b). The retinal
nerve fiber layer which emanates from the optic disc and decreases in thickness toward the macula
can be clearly visualized. Source Savini et al. [37]

of minimal reflectivity anterior to the RPE and ChCap. The intermediate layers of
the retina exhibit moderate backscattering (see Fig. 2.4). The fovea appears as a
characteristic depression of the retina. The lateral displacement of the retina anterior
to the photoreceptors is evident (see Fig. 2.4).

Retinal blood vessels are identified by their increased backscatter and by their
blocking of the reflections from the RPE and ChCap (see Fig. 2.4). The larger
choroidal vessels have minimally reflective dark lumens. Serial radial tomograms
can be taken through the optic disc. These show the retinal thickness as it varies in
the different planes. OCT imaging of the optic nerve head (ONH) clearly shows the
cupping, as well as the ending of the choriocapillaris at the lamina (see Fig. 2.5)
Circular tomograms around the optic nerve are very useful in documenting RNFL
thickness andRNFLdamage. These tomograms can be takenwith different diameters
while being centered on the optic nerve head. The circular tomogram is unwrapped
and viewed as a section. Increased thickness at the superior and inferior margins of
the ONH is evident and expected from the known retinal anatomy (see Fig. 2.5).
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Chapter 3
Speckle Noise Reduction
and Enhancement for OCT Images

Zahra Amini, Raheleh Kafieh and Hossein Rabbani

The OCT imaging produces speckle noise due to multiple forward and backward
scattered waves. The most important step of OCT preprocessing is noise reduction,
which is helpful for more sophisticated processes like segmentation. Three OCT
despeckling and enhancement methods are presented in this chapter, which are based
on statistical modeling, data adaptive and non data adaptive transform based models,
respectively.

3.1 OCT Background

Noninvasive methods for determination of anatomic information are of interest for
many years. Some familiar methods are magnetic resonance imaging (MRI), com-
puted tomography (CT scan) and ultrasound. Optical Coherence Tomography (OCT)
is recently introduced to replace the ultrasound source with infrared light source and
measure reflectance properties of tissue [1]. Each reflectance beam is called A-scan
and a row of these beams make 2 dimensional B-scans. Series of such 2D images
can be combined to produce a 3D volumetric measure of the anatomical area. Trans-
parent anatomy of the retina to OCT energy source (light), makes this tissue a nice
place to be scanned by this method. This transparency is easy to be understood since
the light beam needs to pass through the whole retina to reach photoreceptors (on
posterior surface) which have the responsibility of turning the light to electric signal
of the brain. Figure 3.1 depicts the standard OCT scheme.
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Fig. 3.1 Block-diagram of optical coherence tomography

In this chapter, we discuss the structural information of OCT with focus on its
denoising. Several publications have addressed the theory and performance of OCT
imaging, but very few works have principal information for applications like denois-
ing.

Speckle noise is dominant in OCT and causes erroneous interpretation similar to
ultrasound images. In time-domain techniques, axialmovement of reference reflector
would produce interferometric fringes and this movement was the main reason of
low acquisition speed. In Fourier domain OCT, the fixed reference reflector leads to
higher speeds up to several hundred thousand lines per second [2]. The resolution of
Fourier domain OCT is also high in both axial and lateral directions.

Regarding the resolution of OCT images, a simple assumption is Gaussian profile
sample arm beam in the region of the beam focus. This approach is a reasonable
approximation and provides that spot size is proportional to the numerical aperture
(N A) of the sample arm focusing optics, while depth of focus is proportional to
N A2. However, a more correct model is to treat the sample arm of an OCT system
as a reflection-mode scanning confocal microscope. In such a case, lateral and axial
resolutions are:

lateral_resolution δx � 0.37
λ0

N A
(3.1)

Axial_resolution δz � 2 ln(2)

π

λ2
0

�λ
(3.2)
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where λ0 is the center wavelength of the light source, numerical aperture of the
objective is given by N A � sin(α), α is half the angular optical aperture subtended
by the objective [3].

Because of using coherent illuminations, speckle noise also affects OCT in both
axial and lateral directions. Therefore, the effective resolution of OCT images, as the
smallest detectable detail, is limited by this factor [4–9]. The speckle should not be
treated as pure noise since it carries correlated information with noise [10].

3.1.1 Speckle

Speckle noise in OCT is because of multiple forward and backward scattered waves.
Multiple forward scatter occurs because of the media between the source and the
tissue to be measured. The media has a refractive index and corresponding forward
scatter causes random delay both traveling to the sample and on the return trip.
Multiple backscatter comes from material within the sample volume and material
that is close by the volume that is the focus of the measurement [9]. Speckle noise
must be accounted for either by filtering or using model based methods [11].

3.1.2 Speckle Properties

Interference of waves with random phases generates the speckle. Multiple forward
and backward scattered wavelets have random phases since scattering objects in
the sample have random depth distribution and refractive index in the sample is
fluctuating [12].

First-order statistical properties of speckle can readily be quoted if amplitudes
and phases of the individually scattered contributions are statistically independent,
and identically distributed, have phases uniformly distributed over (−π, π), and
have waves that are perfectly polarized. Then we have ‘fully developed’ speckle [13]
and the resultant phasor of the sample wave is a circular complex Gaussian random
variable. The corresponding statistics of the sample intensity is negative exponential
and the probability density function is [14]:

PI s(I s) �
⎧
⎨

⎩

1
〈Is 〉 exp

(
− Is

〈Is 〉
)
, if Is ≥ 0

0, otherwise
(3.3)

with moments 〈I n〉 � n! 〈I 〉n.
The contrast of a speckle pattern is defined as

C � σIs

〈Is〉 (3.4)
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Leading to the well known high speckle contrast C � 1 of fully developed
polarized speckle; σIs is the standard deviation of Is .

Second order statistics of speckle is concerned with their temporal or spatial
structure. A standardmeans to describe such properties are correlation functions. The
characteristic depth extension of speckle in the OCT signal, e.g. can be estimated as
correlation length of its intensity fluctuations. We assume statistically independent
backscattered wavelets. In this case the intensity correlations can be obtained from
the amplitude correlation G(τ ) by [15]

〈I (t)I (t + τ 〉 � 〈I (t)〉2[1 + |G(τ )|2]. (3.5)

Since the spectrum of light scattered back from the sample has approximately the
same spectrum as the probe beam, the correlation length of its intensity fluctuations
can be estimated by the corresponding coherence length Ic. In fact the real situation
in OCT can be more complex: first, because of the reference beam we do not have
fully developed speckle in OCT. Second, light backscattered at specularly reflecting
interfaces does not generate speckle. Third, due to absorption, backscattered light
can have a modified spectrum.

3.2 OCT Image Modeling

OCT images produce enormous amount of information of retina that interpretation
of them with simple observation and common methods is generally impossible. So,
some automatic systems for analyzing medical images are needed to decrease the
amount of great information and help doctors for interpretation of them. In this
regard, modeling of images can be known as a core of many processes. As soon as
we determine a reliable model for OCT images, the rest of the processes may be
explored more correctly.

It is understood that contrast enhancement and noise reduction algorithms for
OCT images are also obtained based on the proposed model for image. In this base,
Fig. 3.2 shows a classification of image modeling methods [16]. According to this
classification, denoising methods such as other image processes may be studied in
spatial domain or transform representations. The latter may also be subcategorized
into parametric (non data adaptive) and non parametric (data adaptive) methods.

In data adaptive models basis functions of transform are directly defined by data.
Algorithms such as Principle Component Analysis (PCA) [17], Independent Com-
ponent Analysis (ICA) [18–20] and Dictionary Learning (DL) [21] lie in the data
adaptive subgroup. In the other branch,wehave somemodels in the frequencydomain
such as Fourier and Discrete Cosine transform (DCT) and some others involve differ-
entX-lets. TheseX-lets themselves can be subdivided into somegroups based on their
definition’s space. A summarized table about various atomic representation methods
and their parameters is given in Table 3.1 [16, 22]. Based on Fig. 3.2, scale-translation
transforms like wavelets take place in the first group of these X-lets [23]. In the sec-
ond group frequency is also added to the scale and translation parameters; some
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Image modeling methods

Spatial Domain Transform Domain

Data 
Adaptive 

Transform

Non-data 
Adaptive 

Transform 

*-Translation Domain
(X-lets)

Frequency Domain 

contourlets

Scale-translation Scale-translation-
frequency 

Translation-duration-
frequency

Scale-translation-
angle

wavelets
wavelet 
packets

cosine 
packets

wedgelets

geometrical X-lets

curvelets
bandlets

S T

TN TD

Dictionary Learning

ICA

Kernel Regression 

TD1

TD3
TNF TNX

DCT 

Fourier
TNF1

TNF2
TNX1 TNX2 TNX3 TNX4

TNX11
TNX21 TNX31

TNX41

TNX42

TNX43

TNX44

TNX45

DeterministicStochatic

I II III IV

PDE

Variational
methods
Non-linear 
diffusion 

IV-1

IV-2Marginal Joint

GMM

GSM

RMF

HMM 

I-1 I-2

I-11

I-12

I-21

I-22

Geometric 

MorphologicalGraph based Deformable 

Level set

Active contour

Opening

Dilation
Erosion 

Closing

III-1 III-2 III-3

III-21

III-22

III-31

III-32

III-33

III-34

Complex 
wavelets

TD4 PCA

TNX12

TD2

TD5 Diffusion map

Fig. 3.2 A classification of various modeling methods [16]
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transforms like wavelet packets are placed in this group. Three parameters included
translation, duration and frequency are saved and studied in the third group models
like cosine packet transform. Finally, X-lets that involve scale, translation and angle
(or rotation) such as Curvelet, Contourlet, Wedgelet and Bandlet lie to the last group.

Besides, both of the spatial and transform models can be used as a deterministic,
stochastic, partial differential equation (PDE) based [24–26] or geometric models
[24, 27–29]. For example, using a deterministic model an image can be proposed as
a matrix while in statistical model image is proposed as a random field. In this base
for denoising problem average operator is obtained using first model while in the
context of second model denoising is converted to an estimation problem.

It is noteworthy that these models aren’t entirely distinct from each other and in
some cases they may have overlap. Combinations of these models results in new
image modeling frameworks such as using energy flow model [30] which is a PDE-
based model in sparse domain [31] or Likewise combination of statistical model and
transform-based model [32]. Similarly the theory of multi-resolution representation
can be added on top of graph-based methods for using diffusion wavelet for image
modeling [33].

In particular about OCT images, the denoising methods have been categorized to
denoising methods before producing magnitude of OCT interference signal which
usually are hardware based methods, and denoising methods after producing mag-
nitude of the OCT signal. Table 3.2 shows a review of proposed denoising methods
for OCT data [22].

Because of our limitation in access to hardware of devices and also to have an
investigation from modeling point of view, we focus more on the second group
denoising methods. Based on our classification in Fig. 3.2, these denoising methods
can be work in the spatial or transform domain. Some spatial models for decreasing
noise in OCT images are traditional methods such as low pass filters, linear smooth-
ing, mean, median and wiener filters and using two one dimensional filters. However,
some advancedmethods like non linear anisotropic filter [34, 35], directional filtering
[36, 37], complex diffusion [38], support vector machine (SVM) approach [39] and
adaptive vector-valued kernel function [40] are used in this domain. In the transform
based group, some data adaptive methods like PCA [41] and some non-data adaptive
models which are based on wavelets [42] [43], Curvelets [44], dual tree Complex
Wavelet [45–47], and wavelet diffusion [48] have been used for denoising.

Until now, the best results have been reported for the sparse data-driven meth-
ods [22], they improved the result of denoising by combination of DL and wavelet
thresholding.

In Table 3.3, various methods which used in OCT denoising are summarized
and also define that each of these methods lie on which group of image modeling
classification (based on Fig. 3.2). For example, “T-TD3” shows using DL model in
transform domain and “T-TNX11” indicates using wavelet.

Based on specific characteristics of OCT images and provided results of different
modelsmentioned in Table 3.3, it can be concluded that twomore appropriatemodels
in denoising tasks on OCT images are statistical models and transform models. The
next sections are devoted to these two dominant models and the transform models
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Table 3.2 Available denoising methods in OCT images [22]

Denoising method

Complex domain
methods
(hardware
methods)

Modification in optical setup Alternation in incident angle of
the laser beam [5, 84–86]

Alternation in the recording
angle of the back reflected light
[87]

Alternation in the frequency of
the laser beam [88]

Adjustment in imaged subject itself Weighted averaging schemes
[89]

Registration of multiple frames
by cross correlation [90, 91]

Eye tracking systems [92]

Magnitude domain
methods

Spatial domain Traditional
methods

Low-pass filtering [93]

2D linear smoothing [1]

Median filter [94–100]

Adaptive wiener filter [71]

Mean filter [71, 101, 102]

Two 1D filters [103]

Advanced methods I-divergence regularization
approach [104]

Non-linear anisotropic filter [27,
34, 35, 62]

Complex diffusion [26, 38]

Directional filtering [36, 37]

Adaptive vector-valued kernel
function [40]

SVM approach [39]

Bayesian estimations [105]

Transform domain Non-Parametric
methods

Sparsity-based denoising [54,
106]

Robust principal component
analysis [41]

Parametric
methods

Wavelet–based methods [42, 43,
51, 62, 63, 107]

Dual tree complex wavelet
transformation [43, 45–47, 69,
108]

Curvelet transform

Circular symmetric Laplacian
mixture model in wavelet
diffusion [44, 65]

None [109–114]
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Table 3.3 Summary of different processing on OCT images and their related models based on
Fig. 3.2 [16]

Method Application Modeling approach Researchers

Low-pass filtering Denoising S-II Hee [93]

2D linear smoothing Denoising S-II Huang [1]

Median filter Denoising S-II Koozekanani [95], Rogowska
[96], Shahidi [97], Boyer [98],
Srinivasan [99], Lee et al. [100],
George[115], Herzog [116]

Adaptive wiener filter Denoising S-I Ozcan [71]

Mean filter Denoising S-II Ozcan [71], Ishikawa [101],
Mayer [102]

Two 1D filters Denoising S-II Baroni [103]

Non-linear anisotropic
filter

Denoising S-IV-2 Garvin[27], Cabrera Fernández
[34], Gregori [35],
Puvanathasan [62]

Complex diffusion Denoising S-IV-2 Bernardes [38], Salinas [26]

Directional filtering Denoising S-II Bagci [37], Rogowska [36]

Adaptive vector-valued
kernel function

Denoising T-TD Mishra [40]

SVM approach Denoising S-II Fuller [39]

Bayesian estimations Denoising S-I Wong [105]

Sparsity-based denoising Denoising T-TD3 Fang [54]

Sparsity-based denoising Denoising T-TD3/TNX11 Fang [106]

Robust principal
component analysis

Denoising T-TNX Luan [41]

Complex wavelet/ksvd Denoising T-TD3/TNX12 Kafieh [22]

Wavelet –based methods Denoising T-TNX11 Gupta [42], Mayer [43],
Pizurica [51], Adler [63],
Zlokolica [64], Quellec [107]

Dual tree complex
wavelet transformation

Denoising T-TNX12 Mayer [43], Chitchian [45],
Kajic [46, 47], Rabbani [69],
Forouzanfar [108]

Curvelet transform Denoising T-TNX42 Jian [67], Jian [44]

Circular symmetric
Laplacian mixture model
in wavelet diffusion

Denoising T-TNX11/T-I-1 Kafieh, R. [48]
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Fig. 3.3 The block diagram of the proposed method [49]

in subcategories of data adaptive and non data adaptive will be more elaborated by
providing details of sample methods and corresponding results.

3.3 Statistical Model for OCT Contrast Enhancement

3.3.1 Method

In [49] we presented a new statistical model for OCT images and used it for contrast
enhancement of these images. This model is based on a nonlinear Gaussianization
transform and tries to convert the probability distribution function (pdf) of each OCT
intra-retinal layer to a Gaussian distribution.

As mentioned before, OCT images suffer from speckle noise as a multiplicative
noise and using a logarithm operator can approximately convert this noise to additive
Gaussian noise [32, 50]. Hence, OCT data is firstly transformed to the logarithmic
domain and the proposed method which includes three main blocks is implemented
in logarithmic space. Finally, the exponential operator is applied to the enhanced
data. Figure 3.3 shows the block diagram of the proposed method whereas in the first
block after logarithm transform, we try to find a suitable well-fitted mixture model
and its parameters for the OCT image. Because of layered structure of the retina and
also monotonically decaying behavior of the OCT intensities in each layer [10], a
Normal-Laplace mixture model is chosen as a suitable prior distribution for OCT
images. Now each component of this mixture model is gaussianized with specific
mean and variance, so that each enhanced component can be obtained in the second
block. These components are combinedwith each other in the third block to construct
the entire enhanced image. Indeed, in this block all of the gaussianized components
are combined by the Averaged Maximum A Posterior (AMAP) method.

The pseudo code of the proposed algorithm for contrast enhancement is summa-
rized as follows:

1. Transform image to the logarithmic domain by logarithm operator
2. Fit a Normal-Laplacemixturemodel to the data using Expectation-Maximization

(EM) algorithm
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2.1. Initialization: Choose initial values for a0i , μ
0
i , σ

0
i ; where ai is the coeffi-

cient of ith component’s pdf and μi and σi are the pdf parameters of ith
component,

2.2. E-step: Compute responsibility factors as a N × 1 auxiliary variable that
for each observed data represents the likelihood that the observed data is
produced by component i.

2.3. M-step: Update parameters aki , μ
k
i , σ

k
i using likelihood functionmaximiza-

tion
2.4. Iteration: Substitute the updated parameters in the previous step to calcu-

late pdf for each component ( fi (y))
2.5. Continue until the parameters satisfy convergence conditions

3. Calculate the CDF of each Normal-Laplace component using final values of μi ,
σi and σn

4. Gaussianize each Normal-Laplace component using proposed Gaussianization
Transform

5. Use AMAP method to obtain a weighted summation of enhanced components
6. Apply exponential operator to find the contrast enhanced image.

3.3.2 Results

To analyze the proposed model for OCT contrast enhancement, two datasets from
different OCT imaging systems, Topcon 3D OCT-1000 and Cirrus HD-OCT (Carl
Zeiss Meditec, Dublin, CA), are used and three evaluation measures are applied. The
first two measures are Contrast to Noise Ratio (CNR), and Edge Preservation (EP)
and are computed based on methods described in [51]. In addition, another measure
Evaluation Measure of Enhancement (EME) which is introduced by Agaian et al.
[52] is used as a new measure for evaluating contrast enhancement. The proposed
method is compared with the Contrast-Limited Adaptive Histogram Equalization
(CLAHE) method and Agaian’s method for contrast enhancement (transform his-
togram shaping) [52]. All of these three methods are tested on both datasets. Both
the visual and numerical results illustrate the superiority of the proposed method.
Figure 3.4 displays an example of the proposed method in comparison to other meth-
ods. Furthermore, Table 3.4 shows the results averaged over all 130 Topcon B-scans
and the averaged result over 60 Zeiss B-scans is displayed in Table 3.5.

This improvement in contrast enhancement in compare to other methods stems
from considering a specific pdf for the OCT data and then converting it to a pro-
portionate Gaussian distribution, thus providing the possibility of enhancement for
these images. These computations are useful for pre-processing retinal OCT images
to make them more suitable for visualization or further automated processing like
alignment or segmentation tasks. Hence, using this model as a preprocessing step
improves intra-retinal layer segmentation results and demonstrates the efficacy of
this model.
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(a) (b) (c) (d) 

(a) (b) (c) (d) 

Fig. 3.4 Contrast enhancement results in a sample Topcon image. a original image, b proposed
method, c transform histogram shaping method, d CLAHE method. The second row shows an
enlargement of the specified region of first row images [49]

Table 3.4 Evaluation measure results; averaged over 130 OCT B-scans from the Topcon device
[49]

Method Measure

CNR EP EME

Original 5.4880 1.0000 2.3250

Proposed method 13.4171 0.9037 5.4956

Transform hist.
shaping

11.6249 0.8875 1.3270

CLAHE 4.5240 0.9626 4.0596

Table 3.5 Evaluation measure results; averaged over 60 OCT B-scans from the Zeiss device [49]

Method Measure

CNR EP EME

Original 6.0480 1.0000 13.8075

Proposed method 14.7005 0.9235 15.9087

Transform hist.
shaping

12.4268 0.8930 0.4188

CLAHE 5.6013 0.9990 9.4917
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3.4 Data Adaptive—Transform Models for OCT Denoising

As mentioned in Sect. 3.2, in non-parametric (data adaptive) methods, the basis is
extracted regarding each dataset and there is no parameter to be selected. Single scale
andmulti scale non-parametricmodelsmay be subcategorized formore detail. Single
scale models include PCA, ICA, diffusion maps and dictionary learning methods.
Diffusion wavelets and complex wavelet transform along with dictionary learning
are instances for multi scale models [22].

Nonparametric representations are relatively new in OCT denoising [43, 53, 54],
but they have specific properties which makes them appropriate for this task. They
are acquired from the data (better fit to OCT data), applicable on higher dimensional
data (adaptable to 3D OCT data), and able to provide multi scale representation (to
match different anatomical properties of OCT).

One sample denoising method on OCT, with focus on nonparametric models is
elaborated below [16]. The method incorporates dictionary learning to improve the
performance of available wavelet-thresholding. To do so, dictionaries are learned
from the data instead of applying ready-to–use basis functions. Furthermore, con-
ventional start dictionary (discrete cosine transform) is replaced by dual tree complex
wavelet to take advantage of its shift invariant properties. Three dimensional versions
of the method are also introduced to be applied on 3D volumes of OCT.

3.4.1 Conventional Dictionary Learning

Dictionary learning in denoising of OCT was first proposed in [54, 55] by learning
a sparse dictionary from a selected number of higher signal-to-noise ratio (SNR)
B-scans and using such dictionaries for denoising of low-SNR B-scans. The main
problem in this work was need for high-SNR slices which are not accessible in most
of available datasets.

In this section, K-SVD algorithm [56] is applied on OCT data. For construction
of sparse land, each data (x) can be represented over a redundant dictionary matrix
D ∈ �n×k(with k > n):

α̂ � arg minα‖Dα − x‖22 subject to ‖α‖0 < t (3.6)

for a defined value of t . Having a noisy version of x named y, the maximum a
posteriori (MAP) estimator for denoising the data is built by solving:

α̂ � arg minα‖Dα − y‖22 + μ‖α‖0 (3.7)

In K-SVD, the algorithm iterates in two stages to solve the above equation [56,
57] and the dictionary D can be learned on patches extracted from the image. In the
first stage, D is supposed to be unknown, and similar to [56]:
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{
D̂, α̂i j , X̂

}
� arg minD̂,αi j ,X

λ‖X − Y‖22 + 	i jμi j

∥
∥αi j

∥
∥
0 + 	i j

∥
∥Dαi j − Ri j X

∥
∥2
2

(3.8)

In this expression, the first term is the log-likelihood global force to guaranty the
proximity between the noisy version Y , and its denoised (and unknown) version X
[57]. The second and the third terms represent the data prior and assure that in the
denoised version, every patch (xi j ) has a sparse representation. αi j is expected to be
the representation of each patch (xi j ) on dictionary D (according to the third term).
Every patch is shown by xi j � Ri j X by size of

√
n × √

n where Ri j is a n × N
matrix for an

√
N × √

N image, that extracts the (i j) blocks.
In the second stage, D and X are assumed to be fixed, and the representation using

a sparse coding stage by orthonormal matching pursuit (OMP) [58] is computed.
Having the representations in hand, the dictionary can be updated using K-SVD
approach [56]. This method is called 2D conventional dictionary learning (2D CDL)
in next sections for comparison of performance.

3.4.2 Dual Tree Complex Wavelet Transform

The original method in [56] uses redundant DCT as start dictionary, but due to
a highly non-convex functional for penalty minimized in (3.8) is, local minimum
solutions should be devised to be eliminated. A dual tree complex wavelet transform
(CWT) [59] is then proposed instead of redundant DCT to improve the results of
conventional algorithms [16].

CWT is nearly shift invariant and directionally selective in two and higher dimen-
sions because of a redundancy factor of 2d for d-dimensional signals (lower than
the undecimated Discrete wavelet transform (DWT)). The multidimensional (M-D)
dual-tree CWT is non-separable but is based on a computationally efficient, separable
filter bank (FB) [60].

A complex-valued scaling function and complex-valued wavelet are required in
CWT [59]:

ψc(t) � ψh(t) + jψg(t) (3.9)

where ψh(t) is real and even and jψg(t) is imaginary and odd. In order to have an
analytic signal, supported only on one-half of the frequency axis, ψh(t) and ψg(t)
should form a Hilber transform pair.

The oriented complex 2D dual-tree wavelet transform is four-times expansive, but
it has the benefits of being oriented, approximately analytic, and full shift-invariant. A
2Dwavelet transform that is both oriented and complex (approximately analytic) can
also be easily developed by taking complex part ofψ(x, y) � ψ(x)ψ(y) whereψ(x)
is a complex (approximately analytic) wavelet given by ψ(x) � ψh(x) + jψg(x).
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Similar to 2D approach, 3DDWTsuffers frommore serious checkerboard artifact.
It is shown in [61] that 3D dual-tree wavelet transforms is a good candidate for
processing medical volume data and video sequences.

3.4.3 Dictionary Learning with Wise Selection of Start
Dictionary

Thismethod is called 2D/3D complexwavelet-based dictionary learning (2D-CWDL
and 3D-CWDL) [16]. The CWT cannot be used in its algebraic form since in dic-
tionary learning approaches an explicit dictionary is needed to be multiplied by the
data. The matrix representation can be calculated for this purpose.

Suppose that the usual 2D separable Discrete Wavelet Transform (DWT) imple-
mented using the filters {h0(n), h1(n)} can be represented by the square matrix Fhh .
If x is a real image, the real and imaginary parts of the oriented complex 2D dual-tree
wavelet transform can be represented by Wr2D and Wi2D , respectively [60], where I
is an identity matrix.

Wr2D � 1

2

[
I −I
I I

][
Fhh

Fgg

]

x . (3.10)

Wi2D � 1

2

[
I I
I −I

][
Fgh

Fhg

]

x . (3.11)

Therefore, the complex coefficients can be calculated by:

FC2D � 1

4

⎡

⎢
⎢
⎢
⎣

I −I I I
I I I −I
I I −I I
I −I −I −I

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

Fhh

Fgg

i.Fgh

i.Fhg

⎤

⎥
⎥
⎥
⎥
⎦

(3.12)

This dictionary can now be used as start dictionary in dictionary learing of 2D-
CWDL.

Similarly, one may use 3D dual-tree wavelet transform as start dictionary of 3D-
CWDL. It can be shown that real and imaginary parts of the oriented complex 3D
dual-tree wavelet transform can be represented by Wr3D and Wi3D:

Wr3D � 1

4

⎡

⎢
⎢
⎢
⎣

I −I −I −I
I −I I I
I I −I I
I I I −I

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

Fhhh

Fggh

Fghg

Fhgg

⎤

⎥
⎥
⎥
⎥
⎦

. (3.13)
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Wi3D � 1

4

⎡

⎢
⎢
⎢
⎣

I −I I I
−I I I I
I I I −I

−I −I I −I

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

Fhgh

Fggg

Fghh

Fhhg

⎤

⎥
⎥
⎥
⎥
⎦

. (3.14)

The complex coefficients can be calculated in 3D as start dictionaries of 3D-
CWDL by:

FC2D � 1

16

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I −I −I −I
I −I I I
I I −I I
I I I −I

I −I I I
I I I −I

−I I I I
−I −I I −I

I I I −I
I I −I I
I −I I I
I −I −I −I

I I −I I
I −I −I −I

−I −I −I I
−I I −I −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fhhh

Fggh

Fghg

Fhgg
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.15)

3.4.4 Results

Datasets from two different OCT imaging systems are utilized [16] which includes
Topcon 3D OCT-1000, and Cirrus Zeiss Meditec. Each set is consisted of six ran-
domly selected 3D OCTs. Subjects in Topcon dataset are diagnosed to have Retinal
pigment epithelial detachment (PED), and the ones in Zeiss dataset are diagnosed to
have symptomatic exudates associated derangement (SEAD). OCT data for Topcon
dataset is obtained from Feiz eye hospital, Isfahan, Iran; and Zeiss dataset is provided
by Retinal Image Analysis Laboratory of Iowa [45]. The performance of 11 different
speckle reduction methods are compared [16] (described in Table 3.6).

The value of the measurements for each denoising method on 144 randomly
selected slices is summarized in [16] and results for 72 randomly selected slices
acquired from Topcon OCT imaging is provided in Table 3.7. Some samples of
datasets are also depicted after application of denoising methods in Fig. 3.5. As it
can be seen in Table 3.7, the performance of the proposed method in 3D R/I CWDL
are considerably better than other methods in CNR and Equivalent Number of Look
(ENL). Performance of all of the studied methods are similar in EP and 2D SDWT
had the highest Texture preservation (TP) which is obtained because of the least
difference appeared in the resulted image which cannot be considered as a positive
point. TP is low for 3D CCWT which shows unwanted flattening of this method.
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Table 3.6 List of speckle reduction methods, evaluated in [16]

Category Name Short name

Dictionary learning 2D conventional dictionary
learning

2D CDL

2D/3D double sparse dictionary
learning

2D/3D DSDL

Real part of 2D/3D dictionary
learning with start dictionary of
dual tree complex wavelet

2D/3D RCWDL

Imaginary part of 2D/3D
Dictionary learning with start
dictionary of dual tree complex
wavelet

2D/3D ICWDL

Wavelet transform 2D separable discrete wavelet
transform

2D SDWT

Real part of 2D dual tree
Complex wavelet transform

2D RCWT

Complex 2D dual tree Complex
wavelet transform

2D CCWT

Complex 3D dual tree Complex
wavelet transform

3D CCWT

3.5 Non Data Adaptive—Transform Models for OCT
Denoising

The non data adaptive models are the most common models in sparse domain. For
OCT despeckling, since wavelet domain techniques (as a well known non data adap-
tive transform model) incorporate the speckle statistics in the despeckling process
usually better results comparing to spatial domain methods could be achieved. Such
techniques apply wavelet transform [42, 44, 45, 62–65] directly on data or on log-
transformed data (i.e., non-homomorphic/ homomorphic methods). As elaborated in
[69], in wavelet domain, noise is converted to additive noise [51] and an appropri-
ate shrinkage function can be used for speckle noise reduction in wavelet domain
(Fig. 3.6).

It is clear from Fig. 3.6 that the kind of transform and shrinkage function play
the main roles in denoising process. As explained in Sect. 3.4.2, dual-tree complex
wavelet transform has several properties such as shift invariance and directional
selectivity which makes it superior comparing to many other sparse transforms. Spe-
cially in high dimensional data analysis, some of these properties such as directional
selectivity (and good compactness of energy and sparsity in each subband) makes it
of more interest. For OCT data which is a 3D capturing of data from the eye, it is
better to use a 3D transform instead of slide-by-slide applying of 2D transforms (it
results in a better sparsity which is one of the main properties of sparse transforms).
So, 3D dual-tree complexwavelet transform is chosen as a 3D transform. In this base,
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Fig. 3.5 Denoising results in a sample Topcon image. a Original noisy image, b 2D CDL, c 2D
ICWDL, d 2D RCWDL, e 3D ICWDL, f 3D RCWDL, g 2D DSDL, h 3D DSDL, i 2D SDWT, j
2D RCWT, k 2D CCWT, l 3D CCWT [16]

OCT image --> -->denoised OCT Shrinkage Func onForward Transform Inverse Transform

Fig. 3.6 The block diagram of non data adaptive transform based OCT denoising
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when we use hommomorphic method in 3D dual-tree complex wavelet domain, the
forward transform in Fig. 3.6 would be log transform+forward 3D dual-tree complex
wavelet transform.

Another important factor in transform-based denoising process is finding an
appropriate shrinkage function. Using sparse transforms facilitate statistical mod-
eling of data due to attractive properties of data in sparse domains. For example, in
wavelet domain the marginal pdfs of natural signals have leptokurtic distribution and
although adjacent coefficients within/between subband(s) are uncorrelated but they
are not independent. Case we can propose the following model for OCT data in 3D
dual-tree complex wavelet domain:

pw̄(k)(w̄(k)) � a(k)p1(w̄(k)) + (1 − a(k))p2(w̄(k))

� a(k)e
− w21 (k)

2σ211(k)
− w22 (k)

2σ212(k)

2πσ11(k)σ12(k)
+
(1 − a(k))e

− w21 (k)

2σ221(k)
− w22 (k)

2σ222(k)

2πσ21(k)σ22(k)
(3.16)

For kthwavelet coefficient, w̄(k)� (w1(k),w2(k))wherew2(k) represent the parent
of w1(k) at the spatial position k (at the next coarser scale), and a(k) ∈ [0, 1],
σ11(k), σ12(k), σ21(k), σ22(k) are the parameters of mixture model which will be
estimated using EM algorithm.

The proposedmodel of “mixture of bivariateGaussian pdfswith local parameters”
is bivariate mixture and local which is able to simultaneously capture the persistence,
sparsity and clustering properties of wavelet coefficients.

The correlation index of this bivariate pdf represents is zero:

E(w1(k)w2(k)) �
¨

w1(k)w2(k)pw̄(k)(w̄(k))dw̄(k)

� (1 − a(k))
¨

w1(k)w2(k)p2(w̄(k))dw1(k)dw2(k)

+ a(k)
¨

w1(k)w2(k)p1(w̄(k))dw1(k)dw2(k) � 0 (3.17)

The marginal pdf of w1(k) and w2(k) would be univariate Gaussian mixture pdfs
with local parameters [68]:

pw1(k)(w1(k)) �
∞∫

−∞
pw̄(k)(w̄(k))dw2(k)

� a(k)
exp

(
− w2

1(k)
2σ 2

11(k)

)

σ11(k)
√
2π

+ (1 − a(k))
exp

(
− w2

1(k)
2σ 2

21(k)

)

σ21(k)
√
2π

(3.18)
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pw2(k)(w2(k)) �
∞∫

−∞
pw̄(k)(w̄(k))dw1(k)

� a(k)
exp

(
− w2

2(k)
2σ 2

21(k)

)

σ21(k)
√
2π

+ (1 − a(k))
exp

(
− w2

2(k)
2σ 2

22(k)

)

σ22(k)
√
2π

(3.19)

It is clear that

pw̄(k)(w̄(k)) �� pw1(k)(w1(k))pw2(k)(w2(k)) (3.20)

which means w1(k),w2(k) are not independent.

3.5.1 Denoising by Minimum Mean Square Error (MMSE)
Estimator

As a commonmodel the followingmultiplicativemodel is proposed for speckle noise
in 3D OCT data:

x(i) � s(i)g(i) (3.21)

where i indicates the ith voxel of 3D OCT data.
Applying log transformation in homomorphic methods we would have:

W (log x(i)) � W (log s(i)) +W (log g(i)) (3.22)

where W represents 3D RCWT.
This equation can be written as:

y(k) � w(k) + n(k) (3.23)

where w(k) and y(k) shows respectively the kth noise-free and noisy 3D RCWT
coefficients, and n(k) represents the noise in the 3D RCWT domain.

In contrast, in non-homomorphic techniques the wavelet transform is directly
applied on speckled data which results in an unbiased estimation of the data. So, we
would have:

W (x(i)) � W (s(i)g(i)) � W (s(i) + s(i)(g(i) − 1)) � W (s(i)) +W (s(i)(g(i) − 1))
(3.24)

which can be written as:

y(k) � w(k) + n(k) (3.25)
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where w(k) and y(k) shows respectively the kth noise-free and noisy 3D RCWT
coefficients, and n(k) represents the noise in the 3D RCWT domain. Considering an
independent unit-mean random process for g, we would have E[W(s(g − 1))]�0
and since E[W(s)W(s(g − 1))]�0, w(k) and n(k) would be zero-mean uncorrelated
random variables.

So, we can use the following bivariate model in 3D RCWT domain for both
homomorphic and non-homomorphic approaches:

ȳ(k) � w̄(k) + n̄(k) (3.26)

where w̄(k) � (w(k),wp(k)), ȳ(k) � (y(k), yp(k)), n̄(k) � (n(k), np(k)) and wp(k),
yp(k), and np(k) show the parent coefficients of w(k), y(k), and n(k) respectively.
Here, we test both Additive white Gaussian noise (AWGN) and two-sided Rayleigh
model for noise in wavelet domain [66–68]:

pn̄(n̄(k)) � 1

2πσ 2
n

exp

(

−n21(k) + n22(k)

2σ 2
n

)

(3.27)

pn̄(n̄(k)) � |n1(k)n2(k)|
4α4

exp

(

−n21(k) + n22(k)

2α2

)

(3.28)

where σ 2
n � 2α2 is the noise variance.

Using MMSE estimator for the estimation of w̄(k) from ȳ(k) � w̄(k) + n̄(k), the
optimal solution would be the posterior mean:

ŵ(k)�
˜

w(k)pn̄ (ȳ(k)−w̄(k))pw̄(k)(w̄(k))dw̄(k)˜
pn̄ (ȳ(k)−w̄(k))pw̄(k)(w̄(k))dw̄(k)

(3.29)

which for amixturemodel of pw̄(k)(w̄(k)) � a(k)p1(w̄(k))+(1−a(k))p2(w̄(k)) would
be:

ŵ(k) �
˜

w(k)pn̄(ȳ(k) − w̄(k))[a(k)p1(w̄(k)) + (1 − a(k))p2(w̄(k))]dw̄(k)˜
pn̄(ȳ(k) − w̄(k))[a(k)p1(w̄(k)) + (1 − a(k))p2(w̄(k))]dw̄(k)

� a(k)
˜

w(k)pn̄(ȳ(k) − w̄(k))p1(w̄(k))dw̄(k)

a(k)g1(ȳ(k)) + (1 − a(k))g2(ȳ(k))

+
(1 − a(k))

˜
w(k)pn̄(ȳ(k) − w̄(k))p2(w̄(k))dw̄(k)

a(k)g1(ȳ(k)) + (1 − a(k))g2(ȳ(k))
(3.30)

where

gi (ȳ(k)) �
¨

pn̄(ȳ(k) − w̄(k))pi (w̄(k))dw̄(k), i � 1, 2 (3.31)
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By substituting “mixture of bivariate Gaussian pdfs with local parameters” as the
prior distribution of 3D RCWT coefficients, i.e., pw̄(k)(w̄(k)) for AWGN we would
have:

gi (ȳ(k)) �
exp

(
− 1

2

(
y2(k)

σ 2
n +σ 2

i1(k)
+

y2p(k)

σ 2
n +σ 2

i2(k)

))

2π
√

(σ 2
n + σ 2

i1(k))(σ
2
n + σ 2

i2(k))
, i � 1, 2 (3.32)

Similarly, after some simplifications for two-sided Rayleigh noise gi (ȳ(k)) would
be:

gi (ȳ(k)) �
exp

(
− y2(k)

2σ 2
i1(k)

− y2p(k)

2σ 2
i2(k)

)

8π (1 + σ 2
i1(k)
α2 )(1 + σ 2

i2(k)
α2 )σi1(k)σi2(k)

× (2 + zi (k)
√

πer f cx(−zi (k))

− zi (k)
√

πer f cx(zi (k)))(2 + zip(k)
√

πer f cx(−zip(k))

− zip(k)
√

πer f cx(zip(k))),

i � 1, 2 (3.33)

where

zi (k) � y(k)

σ 2
i1(k)

√
1

2
α2 + 2

σ 2
i1(k)

, i � 1, 2 (3.34)

zip(k) � yp(k)

σ 2
i2(k)

√
1

2
α2 + 2

σ 2
i2(k)

, i � 1, 2 (3.35)

The numerators of (3.30) can be obtained as MMSE estimate of a single com-
ponent model [69]. So, for AWGN, the shrinkage function (3.30), which is called
BiGaussMixShrinkL, can be written as:

ŵ(k) �
σ 2
11(k)

σ 2
11(k)+σ 2

n
+ R(ȳ(k)) σ 2

21(k)
σ 2
21(k)+σ 2

n

1 + R(ȳ(k))
y(k) (3.36)

where

R(ȳ(k)) �
(1 − a(k))

exp

(

− 1
2

(
y2(k)

σ2n +σ221(k)
+

y2p (k)

σ2n +σ222(k)

))

√
(σ 2

n +σ 2
21(k))(σ

2
n +σ 2

22(k))

a(k)
exp

(

− 1
2

(
y2(k)

σ2n +σ211(k)
+

y2p (k)

σ2n +σ212(k)

))

√
(σ 2

n +σ 2
11(k))(σ

2
n +σ 2

12(k))

(3.37)
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Similarly, for two-sided Rayleigh noise, the shrinkage function (3.30), which is
called BiGaussRayMixShrinkL, can be written as:

ŵ(k) � 1

1 + R(ȳ(k))

2z1(k)
√
2

(

2 − σ 2
11(k)
α2

)

+
√

π
2

(

1 − σ 2
11(k)z

2
1(k)

α2

)

(er f cx(z1(k)) − er f cx(−z1(k)))
√

1
α2 + 1

σ 2
11(k)

(2 + z1(k)
√

πer f cx(−z1(k)) − z1(k)
√

πer f cx(z1(k)))

+
R(ȳ(k))

1 + R(ȳ(k))

2z2(k)
√
2

(

2 − σ 2
21(k)
α2

)

+
√

π
2

(

1 − σ 2
21(k)z

2
2(k)

α2

)

(er f cx(z2(k)) − er f cx(−z2(k)))
√

1
α2 + 1

σ 2
21(k)

(2 + z2(k)
√

πer f cx(−z2(k)) − z2(k)
√

πer f cx(z2(k)))

(3.38)

where

R(ȳ(k)) � 1 − a(k)

a(k)

(

1 +
σ 2
11(k)
α2

)(

1 +
σ 2
12(k)
α2

)

σ11(k)σ12(k)
(

1 +
σ 2
21(k)
α2

)(

1 +
σ 2
22(k)
α2

)

σ2i1(k)σ22(k)

exp

(

− y2(k)
2σ 2

21(k)
− y2p (k)

2σ 2
22(k)

)

exp

(

− y2(k)
2σ 2

11(k)
− y2p (k)

2σ 2
12(k)

)

× (2 + z2(k)
√

πer f cx(−z2(k)) − z2(k)
√

πer f cx(z2(k)))(2 + z2p(k)
√

πer f cx(−z2p(k))

(2 + z1(k)
√

πer f cx(−z1(k)) − z1(k)
√

πer f cx(z1(k)))(2 + z1p(k)
√

πer f cx(−z1p(k))

−z2p(k)
√

πer f cx(z2p(k))

−z1p(k)
√

πer f cx(z1p(k))
(3.39)

Figure 3.7 shows shrinkage functions BiGaussMixShrink and BiGauss-
RayMixShrink with sample constant parameters.

To apply BiGaussMixShrink and BiGaussRayMixShrink shrinkage functions on
3D RCWT data, we should estimate the parameters σ ij(k) for i, j�1, 2 and a(k) (that
are for noise-free data) from noisy observation. For this reason, the following local
EM algorithm is employed:

ŵ(z1 ,z2) 

z1 
z2 

ŵ(z1 ,z2) 

z2 
z1 

Fig. 3.7 Shrinkage functions produced from BiGaussMixShrink (left image) and BiGauss-
RayMixShrink (right image) for sample parameters
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Table 3.8 Outline of the proposed OCT despeckling algorithm

Step 1: 3D Complex Wavelet Transformation of Noisy
OCT to Find ȳ(k) and σn .

Step 2: Estimation of the Prior (Finding Mixture
Model Parameters in Each Subband).

2.1.3. Initialization for a(k) and σ11(k),σ12(k), σ21(k), σ22(k).
2.2. Using (3.40) to find r1(k), r2(k).
2.3. Using (3.41) to update a(k) by substituting r1(k), r2(k) from step 2.2.
2.4. Updating the parameters of prior, σ11(k), σ12(k), σ21(k), σ22(k), using (3.42) and (3.43).
2.5. Finding gi (ȳ(k)) from (3.32) for AWGN and (3.33) for two-sided Rayleigh noise using
updated value in step 2.3.
2.6. Iteration step 2.2 to 2.4 until parameter convergence.

Step 3: Substituting the Final Parameters in Step 2 in
Shrinkage Function (3.36) for AWGN (after
obtaining R(ȳ(k)) using (3.37)) and Shrinkage
Function (3.38) for two-sided Rayleigh noise
(after obtaining R(ȳ(k)) using (3.39)).

Step 4: Inverse 3D Complex Wavelet Transformation.

E step:

r1(k) ← a(k)g1(ȳ(k))

a(k)g1(ȳ(k)) + (1 − a(k))g2(ȳ(k))
, r2(k) ← 1 − r1(k) (3.40)

M-step:

a(k) ← 1

M

∑

j∈N(K )

r1( j), (3.41)

σ 2
1m(k) ←

∑
j∈N(K ) ri ( j)y

2(k)
∑

j∈N(K ) ri ( j)
− σ 2

n , m � 1, 2 (3.42)

σ 2
2m(k) ←

∑
j∈N(K ) ri ( j)y

2
p(k)

∑
j∈N(K ) ri ( j)

− σ 2
n , m � 1, 2 (3.43)

where M shows the number of samples in window N(k),
which is centered at ȳ(k) and σn is estimated by σn �
median{| noisy wavelet coe f f icients in f inest scale |}/0.6745 [69].

The final OCT despeckling algorithm is concluded in Table 3.8.
As discussed in the literature [69, 70], instead of proposing isotropicwindowN(k),

using anisotropic window would result in better modeling and denoising results. In
this base local polynomial approximation- intersection of confidence intervals (LPA-
ICI) method [70] can be employed to obtain the anisotropic window around each
pixel (Fig. 3.8) and this method can be extended to 3D space (Fig. 3.9).
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Fig. 3.8 The red line illustrates the manually depicted SEAD by an ophthalmologist. The yellow
circles illustrates the isotropic windows with various radiuses. The green line shows the obtained
anisotropic based on LPA-ICI rule

Fig. 3.9 Comparison between a circular sector for direction θ in 2D case (right image) with a
conical body produced for direction (θ, ϕ) in 3D case (left image) [72]
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Fig. 3.10 A sample B-scan
and proposed ROIs. MSNR
and CNR reported in
Table 3.9

Noise ROI

SEAD ROI

Intra-layer ROI

3.5.2 Results

The proposed despeckling algorithm in Table 3.8 was applied on 20 3DOCT datasets
in the presence ofwetAMDpathology (SEAD) andMSNRandCNRweremeasured.
The Region of Interest (ROI) region was defined within the SEAD as shown in
Fig. 3.10.

Table 3.9 shows MSNR and CNR of selected ROIs. In addition CNR curves for
156 selected ROIs in Fig. 3.11 show the SNR improvements of various versions of
proposed method. It can be concluded that non-homomorphic BiGaussMixShrinkL
method outperforms other methods.

Another way for evaluation of proposed despeckling algorithm is investigation
of the performance of intralayer segmentation algorithms before and after applying
our despeckling algorithm. Figure 3.12 illustrates this comparison for the segmented
layers of a 650×512×128 Topcon 3D OCT-1000 imaging system by applying
the proposed method in [74]. It is observed that although the first layer and layers
under inner/outer segment junction cannot be detected before despecking, they are
detectable truly after despeckling by our algorithm.
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Table 3.9 The results of MSNR and CNR using several ROIs such as shown in Fig. 3.10

Methods

Local (L)
Non-Local
(NL)

Homomorphic
(H) Non-
Homomorphic
(NH)

Gaussian
Noise (G)
Two-sided
Rayleigh
Noise (R)

MSNRROI1 MSNRROI2 CNR

L H G 7.00 15.76 8.76

NL H G 7.56 17.03 9.47

L NH G 12.27 27.76 13.49

NL NH G 10.77 22.73 11.95

L H R 5.89 13.11 7.22

NL H R 8.63 19.59 10.95

L NH R 10.75 22.55 11.81

NL NH R 10.88 23.05 12.17

Original image 2.56 5.30 2.74

no. of selected ROIs 

CNR

Fig. 3.11 A comparison between CNR curves for 156 selected ROIs from OCT dataset

3.6 Conclusion

In this chapter we discussed about severalmethods ofOCT despeckling and enhance-
ment in themodeling point of view. Considering statistical and transform basedmod-
eling, three algorithmswere introduced based on (1) statistical gaussinization of each
OCT intraretinal layer, (2) 3D data-adaptive sparse modeling of OCT, and (3) sta-
tistical modeling of OCT in 3D non-data-adaptive sparse domain. Incorporating the
structural information of OCT data (geometric modeling) on top of the advantages
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Fig. 3.12 A comparison between the segmented layers of a 650×512×128 Topcon 3DOCT-1000
imaging system using proposed method in [74]. From left to right: original image, denised image
by nonlocal homomorphic BiGaussRayMixShrinkL method, and local homomorphic BiGauss-
RayMixShrinkL method

of statistical and transform-based models can result in an optimum solution for OCT
enhancements as the current model usually are not able to satisfy all requirements
of clinicians. Some methods are able to preserve the edges while corrupt the impor-
tant intra-retinal texture vs. the others which cannot keep the layers’ information
while they aim to keep the texture and attenuate the noise. It seems that finding an
optimum combination of mentioned image models for modeling layers, intra-retinal
textures and edges/textures of abnormalities in OCT images will guide us toward the
state-of-the-art OCT enhancement technique.
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Chapter 4
Reconstruction of Retinal OCT Images
with Sparse Representation

Leyuan Fang and Shutao Li

In addition to the speckle noise introduced in the acquisition process, clinical-used
OCT images often have high resolution and thus create a heavy burden for storage
and transmission. To alleviate these problems, this chapter introduces several sparse
representation based reconstruction methods for denoising, interpolation and com-
pression, which enhance the quality of the OCT images and efficiently manage such
large of amounts of data.

4.1 Introduction

Optical coherence tomography (OCT) is a non-invasive, cross-sectional imaging
modality which has been widely applied for diverse medical applications, especially
for diagnostic ophthalmology [1]. In clinical diagnosis, the ophthalmologists often
require high resolution and high signal-to-noise-ratio (SNR) OCT images. However,
due to the highly controlled imaging environment (e.g., limited light intensities),
the acquired OCT images are seriously interfered by heavy noise [2–4]. In addition,
to accelerate the acquisition process, relatively low spatial sampling rates are often
used in capturing clinical OCT images [5]. Both the heavy noise and low spatial
sampling rates negatively affect the analysis of the OCT image, necessitating the
utilization of effective denoising and interpolation techniques. Furthermore, storage
and transmission of the high resolution and high SNR OCT images consumes a
vast amount of memory and communication bandwidth, which exceeds the limits
of current clinical data archiving systems, and creates a heavy burden for remote
consultation and diagnosis. Therefore, development of efficient image compression
technique is often required to process such large amounts of data.
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Denoising, interpolation and compression are well-known reconstruction prob-
lems in the image processing field [6]. During the past decades, various models have
been proposed to reconstruct high quality OCT images for many applications [3,
4, 7–14]. Classical reconstruction methods often design a smoothness priori based
model (e.g., anisotropic filtering, Tikhonov filtering [15], and total variation [7]), and
reconstruct the image in spatial domain. Some recent approaches transform the input
image into another domain (e.g., using the discrete cosine transform (DCT) [16],
wavelet transformation [17], and curvelet transformation [18]). Although the trans-
form based methods can provide a better reconstruction performance compared with
the spatial domain methods, the transform based methods (e.g. DCT and wavelet)
are often built on a fixed mathematical model and may have limited adaptability [19]
for representing structures in ocular OCT volumes.

Recently,motivated by the sparse codingmechanism ofmammalian vision system
[20], the sparse representation theory has been demonstrated to be a very powerful
tool for numerous image processing applications [2, 5, 21–24]. The sparse repre-
sentation can decompose the input image as a linear combination of basis functions
(also called as the atoms) selected from the dictionary. The dictionary atoms can be
trained from a number of sampled images similar to the input image [25], and so
can be more adaptive for representing the input image. Several very recent works
have also applied the sparse representation to OCT image reconstruction problems
[2, 5, 9, 11–13, 26, 27]. Unlike the 2-D natural image, the 3-D OCT image has more
complex spatial-temporal structures. For example, the 3-D OCT image has many
types and scales of pathology structures (e.g., different layers and drusen) in the
spatial domain, while still has high correlations in the temporal domain. Therefore,
according to the special structures of 3-D OCT image, this chapter will introduce
three sparse representation models and apply them to the OCT image denoising,
interpolation and compression.

The rest of this chapter is organized as follows. Section 4.2 briefly reviews the
traditional sparse reconstruction model and how to utilize it for the reconstruction
problems. Considering the OCT image structures, we introduce three our proposed
sparsity based methods and apply them for the OCT image denoising, interpolation
and compression problems in Sect. 4.3. Section 4.4 concludes this chapter.

4.2 Sparse Representation for Image Reconstruction

Given an input 2-D image of size N × M , most sparse representation methods first
divide this image into ϒ overlapping (for image denoising and interpolation [28,
29]) or non-overlapping (for image compression [30–32]) patches Xi ∈ R

n×m, i �
1, 2 . . . , ϒ, n < N andm < M. Here, i represents a particular patch corresponding
to the lateral and axial position of its center in a 2D image. The vector form of each
patchXi is represented as xi ∈ R

q×1(q � n×m), obtained by lexicographic ordering.
The sparse representation can represent the input patch xi as a linear combination of
a few atoms selected from a dictionary (D ∈ R

q×z, q < z), as follows
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xi � Dαi (4.1)

where theαi ∈ R
z×1 is the sparse coefficient vector for the patch xi and the dictionary

D consists of z atoms {d j }zj�1.
For a denoising problem, the sparse model assumes that the clean OCT image

patch can be well decomposed on a few atoms selected from the dictionary, whereas
the noise cannot be represented by the dictionary. Therefore, the sparsity based
denoising model can be formulated as follows [28]

α̂i � argmin
αi

‖αi‖0 subject to‖xi − Dαi‖22 ≤ ε, (4.2)

where ‖αi‖0 is the �0-norm counting the number of non-zero coefficients in αi and
ε � q(Cσ ) is the error tolerance. C is a constant, and σ is the standard deviation
of noise in the input patch xi , which can be estimated by the approach in [33]. The
problem (4.2) can be rewritten by considering the sparsity level constraint,

α̂i � argmin
αi

‖xi − Dαi‖22 subject to ‖αi‖0 ≤ T, (4.3)

where T is the sparsity level, representing the maximum number of non-zero coeffi-
cients in αi . In both (4.2) and (4.3), two fundamental problems need to be addressed:
(1) design the dictionary D to best represent the patch xi and (2) obtain the sparse
coefficient αi . For the first problem, machine learning based methods (e.g., K-SVD
[25] and recursive least squares dictionary learning algorithm [32]) are popularly
utilized to learn the dictionary D from a large number of training samples similar to
the test image. For the second problem, the greedy pursuit (e.g., orthogonal matching
pursuit (OMP) [34]) can be used to obtain an approximate solution. After obtaining
the dictionary D and sparse coefficient α̂i of each patch, we can use Dα̂i to recon-
struct the related patch and all the reconstructed patches are returned to their original
positions to generate the denoised image.

For the interpolation problem, we first denote an original high resolution image
as YH ∈ R

N×M , the decimation operator as S, and the corresponding low resolution
image as YL � SYH ∈ R

(N/ S)×(M/ S). Given the observed low resolution image YL ,
the objective of the image interpolation is to obtain the estimated high resolution
ŶH , such that ŶH ≈ YH . In [29], Yang et al., extended the above sparse model
to interpolation problem by jointly learning two dictionaries DL and DH in the
low resolution feature space χL and high resolution feature space χH . This method
assumes that the sparse coefficient of low resolution image patch xL ∈ χL on DL is
the same as that of the high resolution image patch xH ∈ χH with respect to DH .
Therefore, given the observed xL , we can seek its sparse coefficient and reconstruct
the high resolution image patch x̂H as well as the corresponding image ŶH with DH .

For the compression problem, we firstly subtract the mean of each image patch
Xi and denote the patch as Xs

i . Then, we solve the (4.2) or (4.3) to obtain the sparse
coefficient αs

i of each image patch Xs
i . The obtained αs

i is very sparse which means
that only a very small number of non-zero coefficients exist in αs

i . Then, the com-
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pression of patch xi can be achieved by storing the positions and values of non-zero
coefficients in αs

i and the mean value of xi .

4.3 Sparsity Based Methods for the OCT Image
Reconstruction

4.3.1 Multiscale Sparsity Based Tomographic Denoising
(MSBTD)

4.3.1.1 Multiscale Structural Dictionary

As described in Sect. 4.2, a fundamental problem for the sparsity based denoising
model is the selection of the dictionary D. The popular sparsity based denoising
algorithms usually use the noisy image itself to train the dictionary (denoted as
DNoise) [28]. Though these kinds ofmethods can provide promising results for natural
images, the high level of noise in OCT images will negatively interfere with the
training process, degrade the quality of the trained dictionary, and subsequently lead
to a suboptimal denoising result. An ideal approach is to train the dictionary from
the noiseless image. Since in practice, such an ideal OCT image is not available, we
create a less noisy image YAve, obtained from registering and averaging a sequence
of (e.g., T) repeated B-scans from a unique position (see Fig. 4.1). Compared with
the DNoise, the dictionary trained on this averaged image, DAve, is less affected by
noise.

To compare the above two dictionary training strategy, we use the popular K-
SVD training algorithm [25] and the proposed MSBTD algorithm described in the
following subsection for the dictionary training. Figure 4.2 shows examples of the
dictionaries trained by theK-SVDalgorithmon a low-SNRB-scan (see Fig. 4.3a) and
MSBTD algorithm on an averaged high-SNR image (see Fig. 4.3b, c), respectively.
As can be observed, compared with the DAve, the DNoise is more affected by noise in
the OCT image. Therefore, unlike the work in [28], the proposed MSBTD algorithm
denoises each low-SNR image utilizing a dictionary learned from a nearby (or even
distant) averaged image. This learning strategy can reduce the noise disturbance in
the dictionary learning process, and thus is expected to enhance the denoising result,
without significantly increasing the image acquisition time.

On the other hand, the popular learning algorithms (e.g., K-SVD [28] and its
variants [19]) often learn a universal dictionary D on a large number of training
patches. Such a universal dictionarymight be neither optimal nor efficient to represent
different kinds of structures in the retinal OCT images. Therefore, the proposed
MSBTD algorithm learns a set of subdictionaries

{
DStr

k ∈ R
Q×Q

}
, k � 1, 2, . . . ,K,

each best fit a particular structure [35, 36]. This is achieved by first clustering the
training patches into K structural clusters using the k-means approach. The centroid
of each cluster (ck ∈ R

Q) will be used in a later dictionary selection step. Then, the
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principle component analysis (PCA) algorithm is utilized to train a subdictionary
from each of the K clusters.

To effectively exploit the properties of different structures and textures on ocular
OCT images (e.g. each retinal layer has a different thickness and various kinds
of pathology), different scales information should be considered in the dictionary
training process. To achieve this, a multiscale strategy is incorporated into the above
structural learning process. Specifically, the training image is first zoomed in and out
via upsampling and downsampling processes. Then, the original and these magnified
images are divided into same sized patches. In this way, although the patch size is
fixed, patches from different magnified scales can be considered as variable sized
patches from a particular scale. Next, the structural learning process is applied on
the patches from the same scale (s) to create the multiscale structural dictionary,
which is the concatenation of the subdictionaries (

{
DMstr

k,s

}
, s � 1, 2, . . . ,S) from

all scales. A schematic representation of the multiscale structural dictionary learning
process is illustrated in Fig. 4.3. The upsampling and downsampling processes are
implemented by the bilinear interpolation.

4.3.1.2 Nonlocal Denoising Process

This subsection introduces how to utilize the learned dictionary for denoising OCT
images. For each patch xi , we find an appropriate subdictionary DA

i from the learned

Fig. 4.1 Creation of a less
noisy (averaged) frame by an
average operation on the
multiple frames captured
form a unique position
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Fig. 4.2 Dictionaries trained on a the original low-SNR OCT image by the K-SVD algorithm,
b averaged high-SNR image by the K-SVD algorithm, and c averaged high-SNR image by the
proposed MSBTD training algorithm (due to the limited space, only the first atom of each learned
subdictionary is shown)

Upsampled and 
downsampled Clustering

Structural
dictionary
learning

Training image

 Patches extracted from 
images at different scales

Upsampled Image
(Finer scale)

Multiscale
structural
dictionary

Structural clusters 
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Downsamped image
(Coarser scale)

1,1
MstrD

K,S
MstrD

K,1
MstrD

1,
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sD

1,S
MstrD

Cluster 1,1 Cluster K,1

sCluster 1, sCluster K,

Cluster 1, S Cluster K, S

Fig. 4.3 Algorithmic flowchart of multiscale structural dictionary learning process

multiscale structural dictionary to sparsely represent the patch, which achieves
denoising of that patch. The denoising steps are detailed as follows.

To seek the best subdictionary among the learned subdictionaries for each noisy
patch, the representative features of the patch xi is comparedwith each subdictionary.
To represent each subdictionary, we use the centroid atom (ck,s ∈ R

(w·z)×1) of the
corresponding k-means cluster (noted in the above Section) [36]. For the represen-
tative feature of each patch, its high-frequency component (denoted by xH f

i ) is used.
We find the best fitted subdictionary DA

i for the patch xi based on the normalized
correlation [21] between ck,s and xH f

i :

A � (ki , si ) � argmax
k,s

∣∣∣
〈
ck,s, xH f

i

〉∣∣∣. (4.4)
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Fig. 4.4 The outline of the MSBTD algorithm

After finding the best representative subdictionary, as in work [37], we define the
objective function for the sparse representation of the noisy patch as follows:

(α̂i , β̂i ) � argmin
αi ,βi

{∥∥xi − DA
i αi

∥∥2

2 + λ1‖αi‖0 + λ2

∥∥αi − βi
∥∥
0

}
, (4.5)

where λ1 and λ2 are scalar Lagrange multipliers and αi is a sparse coefficient of the
patch xi . βi represents the sparse coefficient of a noiseless patch. The term ‖αi‖0 can
utilize the sparsity in a local patch, while the term

∥∥αi − βi
∥∥
0 (via βi ) attempts to

exploit the non-local similarities in the images [38]. Since there is no noiseless patch
available, we adopt the average patch as the noiseless patch. The average patch is
computed by the average of J patches with the highest similarity to the processed
patch xi searched within a window. The problem (4.5) can be solved by an iterative
reweighted algorithm [37]. After obtaining the sparse coefficient α̂i , we can compute
the related denoised patch and the reconstructed image with the dictionary DA

i . The
outline of the whole denoising process is illustrated in Fig. 4.4.

4.3.1.3 Experimental Results

To verify the effectiveness of the proposed MSBTD method, its performance is
compared with that of four denoising approaches: Tikhonov [15], New SURE [39],
K-SVD [28], and BM3D [40]. In these experiments, the parameters of the proposed
MSBTDmethod are empirically selected and kept unchanged. Since most structures
in the SDOCT image lie on the horizontal direction, the patch and the search window
sizes are selected to be rectangle of size 3 × 20 and 40 × 60 pixels, respectively.
The number J of similar patches in each searching window is set to 20, while the
cluster number K is set to 70 in the k-means clustering. Before the multiscale learn-
ing process, the original image is upsampled two times, each by a factor 1.25 and
downsampled three times, each by a factor of 1.5625 to create the training images
of six scales. The parameters of the iterative reweighted algorithm for solving the
problem (4.5) are set to the default values in [37]. The parameters of the Tikhonov
method [15] are tuned to achieve its best results, while the parameters of the New
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SURE, K-SVD, and BM3D methods are chosen to the default values as in [28, 39,
40].

All the methods are tested on datasets from 17 eyes from 17 subjects with and
without non-neovascular age-related macular degeneration (AMD) enrolled in the
A2ASDOCT study. Ten datasets are selected from normal subjects while the remain-
ing datasets are from AMD subjects. All the datasets are acquired using the SDOCT
imaging systems fromBioptigen, Inc. (ResearchTriangle Park,NC). For each patient,
two kinds of SDOCT scans were acquired. (1) A square (~6.6 × 6.6 mm) volume
scan with 1000 A-scans and 100 B-scans, including the fovea. (2) An azimuthally
repeated scan with 1000 A-Scans and 40 B-Scans targeted at the fovea. Each A-
scan is cropped to achieve B-Scans of size 280 × 1000, which only includes the
informative areas (excluding the smooth dark areas deep below the choroid or in
the vitreous). For the repeated 40 B-scans, the ImageJ (software; National Institutes
of Health, Bethesda, Maryland, USA) StackReg Registration plug-in [41] is firstly
used for the registration and then the registered B-scans are averaged to create the
corresponding noiseless B-scan.

The mean-to-standard-deviation ratio (MSR) [42], contrast-to-noise ratio (CNR)
[43], and peak signal-to-noise-ratio (PSNR) are adopted as the quantitative metrics
to evaluate the performance of different denoising methods. The MSR and CNR are
computed as,

MSR � μ f

σ f
, (4.6)

CNR � |μ f − μb|√
0.5(σ 2

f + σ 2
b )

, (4.7)

where μb and σb are the mean and the standard deviation of the background region
(e.g. red box #1 in Fig. 4.5), whileμ f and σ f are the mean and the standard deviation
of the foreground regions (e.g. red box #2–6 in Fig. 4.5). The PSNR is global metric,
which is computed as,

PSNR � 20 · log10

⎛

⎜⎜
⎝

MaxR√
1
H

∑H
h�1

(
Rh − R̂h

)2

⎞

⎟⎟
⎠, (4.8)

where Rh is the hth pixel in the reference noiseless image R, R̂h represents the hth
pixel of the denoised image R̂, H is the total number of pixels, and MaxR is the
maximum intensity value of R. Since there is no ideal “noiseless” image available,
the averaged foveal image is used as a noiseless approximation to the corresponding
foveal B-scan from the noisy volumetric scan.

Figure 4.5 shows two raw SDOCT retinal images (from a normal and an AMD
subject) and their visually denoised results obtained from various denoisingmethods.
Since the boundaries between retinal layers contain important pathologic information
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Fig. 4.5 Denoising results for two test SDOCT retinal images using the Tikhonov [15], New SURE
[39], K-SVD [28], BM3D [40] and the proposed MSBTDmethod. The left and right columns show
the foveal images from a normal subject and an AMD patient, respectively. a, b The averaged (high-
SNR) images for the multiscale structural dictionary training. c, d Low-SNR noisy foveal images
from the volumetric scans. e, f Denoising results using the Tikhonov method. g, h Denoising results
using the New SUREmethod. i, jDenoising results using the K-SVDmethod. k, l Denoising results
using the BM3D method. m, n Denoising results using the MSBTD method



82 L. Fang and S. Li

Table 4.1 Mean and standard deviation of the MSR and CNR results for seventeen SDOCT retinal
images using the Tikhonov [15], New SURE [39], K-SVD [28], BM3D [40] and the proposed
MSBTD method

Original Tikhonov
[15]

New SURE
[39]

K-SVD
[28]

BM3D [40] MSBTD

Mean
(CNR )

1.27 3.13 2.49 4.11 3.89 4.76

Standard
deviation
(CNR)

0.43 0.94 0.60 1.23 1.05 1.54

Mean
(MSR)

3.20 7.62 6.74 11.22 11.52 14.76

Standard
deviation
(MSR)

0.46 0.95 1.69 2.77 2.42 4.75

The best results in the table are labeled in bold

Table 4.2 Mean and standard deviation of the PSNR (dB) for seventeen SDOCT foveal images
obtained from the Tikhonov [15], New SURE [39], K-SVD [28], BM3D [40], and the proposed
MSBTD method

Tikhonov [15] New SURE
[39]

K-SVD [28] BM3D [40] MSBTD

Mean (PSNR) 23.67 23.46 26.13 26.04 26.46

Standard
deviation
(PSNR)

0.96 1.40 1.70 1.65 1.72

The best result the table is labeled in bold

[44], three boundary regions (boxes #2, 3, 4) in these images are marked with red
rectangle and magnified. As can be seen, the Tikhonov and New SURE methods
show limited noise suppression for the test images. Though the K-SVD method can
better remove the noise, it introduces over-smoothing, thus leading to significant loss
of image details. The BM3D method can achieve improved noise suppression and
limit the over-smoothing problem to some extent, but creating obvious artifacts. By
contrast, application of the proposedMSBTDmethod results in noticeably improved
noise suppression, while preserving details compared to other methods. Especially,
note in the layer boundary preservation in the area magnified by the red boxes (e.g.
#2 and #4).

To quantitatively compare these methods, the MSR and CNR are computed on
six regions of interest (similar to the red boxes #1–6 in Fig. 4.5) from 17 test images
of different (randomly selected) subjects. For each image, the averaged the MSR
and CNR values for the five foreground regions (e.g. red box #2–6 in Fig. 4.5) is
computed. We report the mean and standard deviation of these averaged MSR and
CNR results across all the test images in Table 4.1.

Next,we compared the PSNRof all the testmethods on the seventeen subjects. The
mean and standard deviation of the PSNR results are reported in Table 4.2. Similar
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to the case of MSR and CNR in Table 4.1, we observe that the MSBTD method also
delivers the best results in the PSNR. Furthermore, we note that although the PSNR
of the K-SVD is close to that of the MSBTD method, two clinical experts preferred
the visual outcome of the MSBTD method, as illustrated in Fig. 4.6.

4.3.2 Sparsity Based Simultaneous Denoising
and Interpolation (SBSDI)

As described in the Sect. 4.2, Yang et al., introduced a sparsity based interpolation
method for the nature images [29]. However, unlike the natural images, the real
obtained low resolution OCT image is interfered by very high levels of noise. In this
subsection, we introduce a novel SBSDI method, which can simultaneously denoise
and interpolate OCT images.

4.3.2.1 Low-Resolution-Low-SNR and High-Resolution-High-SNR
Dictionary Pair and Mapping Training

Inspired by the machine learning based approaches [29, 45, 46], the objective of the
proposed SBSDI method is to obtain the relationship between two feature spaces:
low-resolution-low-SNR (LL) spaceχL ,L and ideal high-resolution-high-SNR (HH)
space χH,H from a large number of training samples. After the relationship is
obtained, we can reconstruct the ideal HH image YH,H ∈ χH,H using the observed
LL image YL ,L ∈ χL ,L .

Dictionary and Mapping Training

To create HH images as the ideal training datasets, we first adopt a customized
scanning pattern to acquire a number of repeated densely sampled B-scans from
nearly the same position. Then, we register and average all these images to obtain
the idealHH image [47]. In the densely acquiredB-scans, we randomly select a single
noisy yet still high resolution frame and downsample this noisy frame to create the
related LL image. The process for generating the HH and LL training images is
illustrated in Fig. 4.7.

We link the LL and HH spaces by establishing a relationship between their related
dictionary atoms and sparse coefficients. Instead of enforcing the equality restric-
tion on the sparse coefficients [29], we require the dictionaries (denoted as DL ,L

and DH,H ) for the two feature spaces to be strictly matched. That is, the selected
dictionary atoms for reconstructing the LL image strictly correspond to the coun-
terpart atoms for recovering the HH image. To meet this, we can directly extract a
large number of spatially matched LL and HH patches from training image pairs
(Fig. 4.8). However, sparse coding over the dictionary with large number of samples
will create very high computational cost. To achieve a more compact representa-
tion, we can train the dictionary pair on a large number of extracted training patches
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Fig. 4.6 Visual comparison of denoising results from the Tikhonov [15], New SURE [39], K-SVD
[28], BM3D [40] and the proposed MSBTD method on two SDOCT test images. a, b Test SDOCT
images. c, d Averaged images. e, f Denoising results using the Tikhonov method (Left: PSNR �
22.67, Right: PSNR �24.01). g, h Denoising results using the New SURE method (Left: PSNR �
25.39, Right: PSNR = 25.35). i, j Denoising results using the K-SVDmethod (Left: PSNR�27.98,
Right: PSNR�25.81). k, l Denoising results using the BM3Dmethod (Left: PSNR�27.72, Right:
PSNR �25.69). m, n Denoising results using the MSBTD method (Left: PSNR �28.19, Right:
PSNR �26.06)
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Fig. 4.7 Process for generating the HH and LL training images

Fig. 4.8 Selection of patches from the LL and HH images to construct their corresponding dictio-
naries

[25]. Then, we make the learned dictionary pair matched. In the dictionary learning
stage, the positions of the nonzero sparse coefficients determine the selected training
patches to update the atom [25]. Therefore, if the positions of non-zero coefficients
in

{
αi
L ,L

}Z

i�1
are the same as that in

{
αi
H,H

}Z

i�1
, the dictionary atoms in DL ,L and

DH,H will be updated with the spatially matched patch pairs [25] and thus DL ,L will
still match with DH,H in the learning process. Based on this, we modify the original
OMP algorithm [34], and propose a coupled OMP (COMP) algorithm to pursuit the
position matched coefficients

{
αi
H,H

}Z

i�1
and

{
αi
L ,L

}Z

i�1
. Since DH,H is unknown in

the image reconstruction phase, during the atom selection process, positions of the
selected atoms in DH,H should be the same as that of the chosen atoms in DL ,L . To
achieve this, we first employ the original OMP algorithm to seek the coefficient αi

L ,L

of xi
L ,L and preserve the index set of the selected atoms G. Then, we compute αi

H,H
with the atoms set G



86 L. Fang and S. Li

Fig. 4.9 Sparse coefficients αL ,L and αH,H obtained by the decomposition of LL patch xL ,L and
HH patch xH,H over dictionaries DL ,L and DH,H with the OMP algorithm

αi
H,H � (

DT
GDG

)−1
DT

Gxi
H,H . (4.9)

After the
{
αi
L ,L

}Z

i�1
and

{
αi
H,H

}Z

i�1
are obtained, we learn the dictionary pair DL ,L

and DH,H with the quadratically constrained quadratic programming (QCQP) [48]
algorithm.

After the above dictionary training step, the positions of the non-zero coefficients
in both αi

L ,L and αi
H,H are the same. However, the non-zero values in αi

L ,L and αi
H,H

might be different, as illustrated in Fig. 4.9. Therefore, we find a mapping function
(M) which relates sparse coefficients in the LL space to the sparse coefficients in the
HH space:

αi
H,H � Mi

L ,L . (4.10)

As in [49], we train this mapping matrix using the sparse coefficients
{
αi
H,H

}Z

i�1
and

{
αi
L ,L

}Z

i�1
from the dictionary learning stage,

M̂ � argmin
M

∥∥∥
{
αi
H,H

}Z

i�1
− M

{
αi
L ,L

}Z

i�1

∥∥∥
2

F
+ β‖M‖2F , (4.11)

where β is a regularization parameter to balance the terms in the objective function.
Since (4.11) is a ridge regression problem, it can be solved as,
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M �
({

αi
H,H

}Z

i�1

)({
αi
L ,L

}Z

i�1

)T
(({

αi
L ,L

}Z

i�1

)({
αi
L ,L

}Z

i�1

)T
+ β · I

)−1

, (4.12)

where I is an identity matrix.
We incorporate the structural clustering strategy into the dictionary pair and map-

ping training process. Specifically, we first adopt the K-means approach to cluster
the training patches

{
xi
L ,L

}R

i�1
and

{
xi
H,H

}R

i�1
into ( f +v) structural clusters. Then, in

each cluster s � 1, . . . , ( f +v), we learn one pair of compact LL andHH dictionaries
Ds

L ,L , and Ds
H,H as well as the corresponding mapping function Ms with the above

learning method. In addition, one centroid atom cs can be computed to represent
each cluster.

4.3.2.2 Image Reconstruction

In the image reconstruction stage, for each test LL patch xi
L ,L , we first seek the best

sub-dictionary (DA
L ,L andDA

H,H ) andmapping transform (MA) based on the Euclidian
distance between xi

L ,L and cs ,

A � si � argmin
s

∥∥cs − xi
L ,L

∥∥2

2
. (4.13)

After the best sub-dictionary is found, we use the learned dictionary DA
L ,L to seek

the sparse coefficients αi
L ,L of the observed LL patches (xi

L ,L ) from

α̂
i
L ,L = argmin

αi
L ,L

∥∥αi
L ,L−DA

L ,LαL ,L

∥∥
2
+ λ

∥∥αi
L ,L

∥∥
0
. (4.14)

Then, we reconstruct the latent HH patch as DA
H,HMAα̂

i
L ,L . In this way, we can

directly reconstruct the single 2-D images. Furthermore, since OCT is a 3-D image,
its information from nearby slices should also be used to enhance the denoising
performance. Therefore, we further propose to utilize the information of nearby
slices in the reconstruction process with a joint operation. The basic assumption of
the joint operation is that similar patches from nearby slices can be well decomposed
on the same atoms of the selected dictionary, but with different coefficient values. The
current processed patch is denoted as xi

L ,L while the patches from its nearby slices are

denoted as
{
xi+w
L ,L

}W
w�−W

. Simultaneous decomposition of the patches
{
xi+w
L ,L

}W
w�−W

with the joint assumption equals to the problem,

{
α̂
i+w
L ,L

}W

w�−W
� min

{αi+w
L ,L}Ww�−W

W∑

w�−W

∥∥xi+w
L ,L − DA

L ,Lα
i+w
L ,L

∥∥
2
subject to

∥∥αi+w
L ,L

∥∥
0

≤ T, w � −W, . . . ,W, (4.15)
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Fig. 4.10 Outline of the SBSDI framework

where T is the maximum number of nonzero coefficients in αi+w
L ,L , and the position

of the nonzero coefficients in
{
α̂
i+w
L ,L

}W

w�−W
are the same while coefficient values

become different. The SOMP algorithm [50] can be employed to efficiently solve
the above problem. Then, the joint operation can reconstruct the current HH patch

as: x̂i
H,H �

W∑

w�−W
bw
i x̂i+w

H,H , where x̂i+w
H,H � DA

H,HMA
i α̂

i+w
L ,L is the estimated patch and

bw
i is the weight, computed by

bw
i � exp

(
−∥∥xi+w

L ,L − xi
L ,L

∥∥2

2
/h

)
/Norm. (4.16)

Norm is a normalization factor and h is a predetermined scalar. Finally, we return
the estimated patches to their original positions to reconstruct the OCT image. The
outline of the SBSDI framework is illustrated in Fig. 4.10.

4.3.2.3 Experimental Results

The proposed SBSDI method was tested on two kinds of retinal OCT images: (1)
synthetic images created from high resolution images that were then subsampled and
(2) real test images consisting of images captured at a low sampling rate. For test
synthetic images, we subsampled the previously acquired high-resolution images
with both random and regular patterns, thus reducing the number of A-scans in
each B-scan. For real test datasets, we directly acquired low-resolution images with
a regularly sampled pattern. Both the human and mouse retinal images were used
in these experiments. All these studies followed the tenants of the Declaration of
Helsinki.
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We first tested a compressive sampling method [51] on both randomly and regu-
larly subsampled synthetic datasets to examine the random sampling scheme advo-
cated in [12, 13]. As can be observed in Fig. 4.11, random sampling had insignificant
benefits over the conventional regularly sampling scheme for our application. There-
fore, we apply the regular sampling for both the synthetic and real experimental
datasets. In these experiments, we compared our proposed SBSDI method with four
competing approaches: Tikhonov [15], Bicubic, BM3D [40] +Bicubic and ScSR
[29]. The BM3D+Bicubic method is a combination of the state-of-the-art denoising
algorithm BM3Dwith the bicubic interpolation approach. The ScSRmethod utilizes
the joint dictionary learning operation to train the LL and HH dictionaries from the
related LL and HH training patches, without considering the correlations from 3D
nearby slices.

In these experiments, the parameters of the proposed method were empirically
selected and kept unchanged for all images in both synthetic and real experimen-
tal datasets. Since most of the similar structures in SDOCT images lay along the
horizontal direction, the patch size was chosen to be 4 × 8 and 4 × 16 pixel wide
rectangles for 50 and 75% data missing, respectively. As the patch size becomes big-
ger, our algorithm will remove the noise more efficiently, but may result in stronger
smoothing and the loss of image detail. We set the number of nearby slices for the
joint operation to 4 (2 slices above and 2 slices below the current processed image,
respectively). Slices that are far distant from the target B-scan being processed have
not been added since they often have different image content. In the clustering stage,
the cluster number f in the detailed group and v in the smooth group were set to
70 and 20, respectively. As the detailed group has more complex structures than the
smooth group, the f number of the detailed group is larger than that of the smooth
group. From each cluster, 500 vectors were selected to construct the initial structural
sub-dictionary. The sparsity level T for both COMP and SOMP algorithms were set
to 3. We select the iteration number J in the dictionary learning process to 10, which
almost reaches convergence in our learning problem. We select the parameters β in
(11) and h in (16) to 0.001, 12, and 80, respectively.

For the synthetic datasets, the low-SNR-high-resolution datasets previously uti-
lized in the Sect. 4.3.2.3 were also used here. As described in Sect. 4.3.2.3, these
datasets were acquired from 28 eyes of 28 subjects with andwithout non-neovascular
age-related macular degeneration (AMD). For each patient, we acquired two sets of
SDOCT scans. The first scan was a volume containing the retinal fovea with 1000
A-scans per B-scan and 100 B-scans per volume. The second scan was centered at
the fovea with 1000 A-scans per B-scan and 40 azimuthally repeated B-Scans. We
selected the central foveal B-scan within the first volume and further subsampled
this scan with both random and regular patterns, to create simulated LL test images
(e.g. Fig. 4.11a, c). The set of azimuthally repeated B-scans was registered using the
StackReg image registration plug-in [41] for ImageJ to construct the HH averaged
image (e.g. Fig. 4.11j). In the 28 datasets, 18 LL and HH pairs from 18 different
datasets were randomly selected to test the performance of the proposed method,
while the remaining 10 LL and HH pairs were used to train the dictionaries and the
mapping functions. The constructed dictionaries and mapping functions were also
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Fig. 4.11 Two types of sampling patterns and their reconstruction results by CS-recovery, Bicubic,
Tikhonov, BM3D+Bicubic, ScSR, and our SBSDI method. a Randomly sampled image with 50%
data missing. b Image (a) reconstructed by CS-recovery (PSNR�19.46). c Regularly sampled
image with 50% data missing. d Image (c) reconstructed by CS-recovery (PSNR�19.01). e Image
(c) reconstructed by Bicubic (PSNR�17.77). f Image (c) reconstructed by Tikhonov [15] (PSNR�
22.23). g Image (c) reconstructed by BM3D+Bicubic (PSNR�23.26). h Image (c) reconstructed
by ScSR (PSNR�22.11). i Image (c) reconstructed by SBSDI (PSNR �24.56). j Registered and
averaged image which was acquired 80 times slower than the image in (i)

used for the following real experimental datasets. For the real experimental datasets,
we utilized the Bioptigen SDOCT imagers to directly acquire full and subsampled
volumes from 13 human subjects with a regularly sampled pattern in clinic. That is,
for each subject, we scanned a square volume centered at the retinal fovea with 500
A-scans per B-scan and 100 B-scans per volume.

Figure 4.11a–d and Fig. 4.12a–d show qualitative comparisons of regularly and
randomly sampled foveal images (with 50 and 75% of the original data discarded)
and their reconstructed versions obtained from the CS-recovery method [52]. As can
be observed, the CS-recovery results from the random sampling scheme (Figs. 4.11b
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and 4.12b) have more areas exhibiting striped blurring (e.g. blue ellipse areas) than
their regularly sampled counterparts (Figs. 4.11d and 4.12d). Based on this, we tested
the Tikhonov [15], Bicubic, BM3D [40] +Bicubic and the proposed SBSDI method
on regularly sampled images (Fig. 4.11c). For better visual comparison, we mark
and magnify three boundary areas (boxes #2, 3, 4) in these images. Results from the
Tikhonov, Bicubic, and ScSRmethods appeared noisy with indistinct boundaries for
many meaningful anatomical structures. Although the BM3D [53] +Bicubic tech-
niquedelivers improvednoise suppression, it introduces splotchy/blocky (cartoonish)
artifacts. By contrast, application of our SBSDI method that exploits the 3D infor-
mation resulted in noticeably improved noise suppression while preserving details
compared to other methods. Especially in the regions marked by red boxes #3, 4, the
SBSDI result even shows clearer layers comparedwith the densely sampled averaged
image (Figs. 4.11j and 4.12j).

4.3.3 3D Adaptive Sparse Representation Based Compression
(3D-ASRC)

As described in Sect. 4.2, the traditional compression method is only designed for
the 2-D image. In common clinical scanning protocols, neighboring OCT slices have
very similar content in many regions, as can be observed in Fig. 4.13b. On the other
hand, those same nearby slices can also exhibit localized differences (see the areas
labeled with the red rectangles in Fig. 4.13b). Therefore, the 3D-ASRC algorithm
was proposed for the compression of 3D OCT images, which can utilize the high
correlationswhile still considering the differences of nearby slices. The proposed 3D-
ASRCmethod is composed of threemain parts: (a) 3Dadaptive sparse representation;
(b) 3D adaptive encoding; (c) decoding and reconstruction, which will be described
in the following subsections. The outline of the proposed 3D-ASRC algorithm is
illustrated in Fig. 4.14.

4.3.3.1 3D Adaptive Sparse Representation

The volume of OCT B-scans are divided into several groups, each with T nearby
slices according to the similarities among them [54] and each slice in anOCT volume
is partitioned into many non-overlapping patches with the mean of each patch is
subtracted from them. Meanwhile, we define nearby patches as a set of patches
centered around the patch x1

i from slices in the same group as
{
xt
i

}T
t�1, where t

denotes a particular B-scan in that group. The i in
{
xt
i

}T
t�1 indexes the i-th nearby

patch of the similar group. By rewriting Eq. (4.2), the sparse coefficient vectors{
αt
i

}T
t�1 of the nearby patches

{
xt
i

}T
t�1 can be obtained by optimizing:
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Fig. 4.12 Two types of sampling patterns and their reconstruction results by CS-recovery [51],
Bicubic, Tikhonov [15], BM3D [40] + Bicubic, ScSR [29], 2D-SBSDI-nomap, 2D-SBSDI, and our
SBSDI method. a Randomly sampled image with 75% data missing. b Image (a) reconstructed by
CS-recovery [51] (PSNR = 20.83). c Regularly sampled image with 75% data missing. d Image (c)
reconstructed by CS-recovery [51] (PSNR = 20.67). e Image (c) reconstructed by Bicubic (PSNR
= 17.75). f Image (c) reconstructed by Tikhonov [15] (PSNR = 22.68). g Image (c) reconstructed
by BM3D [40] + Bicubic (PSNR = 23.28). h Image (c) reconstructed by ScSR (PSNR = 23.09). i
Image (c) reconstructed by SBSDI (PSNR = 24.58). j Registered and averaged image which was
acquired 160 times slower than the image in (g, h, i)

{
α̂
t
i

}T
t�1 � argmin

αt
i

T∑

t�1

∥∥αt
i

∥∥
0 subject to

∑

t∈{1,...,T }

∥∥xt
i − Dαt

i

∥∥2
2 ≤ ε (4.17)

To solve (4.17), there are two problems: dictionary construction and nearby patches
sparse decomposition. Therefore, we proposed an offline structural dictionary learn-
ing strategy and an online 3D adaptive sparse decomposition algorithm to obtain the
sparse coefficients vectors

{
α̂
t
i

}T
t�1 , as described in the following.
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Fig. 4.13 Clinical OCT scan patterns sample the field-of-view, to avoid missing small abnormali-
ties, and thus result in highly correlated neighboring B-scans. a Summed-voxel projection [55] en
face SDOCT image of a non-neovascular age-related macular degeneration (AMD) patient from
the Age-Related Eye Disease Study 2 (AREDS2) Ancillary SDOCT (A2A SDOCT) [52]. b Three
B-scans acquired from adjacent positions. The red rectangular regions are zoomed into show the
differences between these neighboring scans

Structural Dictionary Construction

We learn the appropriate overcomplete dictionary of basis functions from a set
of high-quality training data. The high-quality training data is obtained by captur-
ing, registering, and averaging repeated low-SNR B-scans from spatially very close
positions [56]. In addition, typical clinical OCT images may contain many complex
structures (e.g. retinal OCT scans show different layers and pathologies such as cysts
[54]) and thus one universal dictionary D might not be optimal for representing these
varied structures. Therefore, following our previous works in [5, 26], we learn H
sets of structural sub-dictionaries

{
Dstructural

h ∈ R
q×n

}
, h � 1, . . . , H , each designed

to represent one specific type of structure. This is achieved by first adopting the k-
means approach to divide the training patches intoH clusters. For each cluster h, one
sub-dictionary Dstructural

ĥti
is learned by the K-SVD algorithm [25] and one centroid

ch ∈ Rq patch is also obtained by the k-means approach.

3D Adaptive Sparse Decomposition

Firstly, we search for the structural sub-dictionary that ismost suitable to represent
each test patch (xt

i ). We use the Euclidian distance between the patch and the sub-
dictionary centroid ch for selecting the appropriate sub-dictionary Dstructural

ĥti
:

ĥti � argmin
hti

∥∥ch − xt
i

∥∥2
2, t � 1, . . . , T, and h � 1, . . . , H. (4.18)
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Fig. 4.14 Outline of the proposed 3D-ASRC algorithm

Then, we find the set of sparse coefficients corresponding to such sub-dictionaries

to best represent a set of nearby patches
{
xt
i

}T
t�1. We utilize index

{
ĥti

}T

t�1
to define

two classes of nearby patches: “similar” and “different” since the nearby slices have
most similar areas and still have large localized differences (see the areas labeled
with the red rectangles in Fig. 4.13b). In a similar set of patches (

{
xt
sim,i

}T
t�1

), all
patches correspond to the same sub-dictionary, while in a different set of patches{
xt
dif,i

}T
t�1

, each patch may correspond to different sub-dictionaries.
The “similar” nearby patches are highly compressible as they can be jointly rep-

resented by the same atoms from the commonly selected sub-dictionary Dstructural
ĥcomi

.

This is achieved by incorporating the row-sparsity constraint [50] on the sparse coef-
ficients matrix Asim,i � [

α1
sim,i , . . . ,α

T
sim,i

]
:

Âsim,i � arg min
Âsim,i

∥∥Asim,i

∥∥
row,0 subject to

∑

t∈{1,...,T }

∥∥∥xt
sim,i − Dstructural

ĥcomi
αt
sim,i

∥∥∥
2

2
≤ ε,

(4.19)

where ‖·‖row,0 stands for the joint sparse norm [50, 57, 58], which is used to select
a small number of most representative non-zero rows in Asim,i . We utilize simulta-
neous OMP (SOMP) [50] to solve this problem. In Âsim,i , while the values of the
nonzero coefficients in different sparse vectors α1

sim,i , . . . ,α
T
sim,i might be different,
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their positions are the same, a property which we will exploit in the next subsection
for enhanced compression.

A simple trick that can help us further reduce the total number of nonzero coeffi-
cients needed to represent a similar set of patches is to estimate the variance of the
sparse vectors

{
α̂
t
sim,i

}T
t�1

. If the variance of the sparse vectors in a set is below
a threshold, we denote this set as “very similar” and then fuse the correspond-
ing sparse vectors into one vector αvs,i . Otherwise, we denote them as “not very

similar”
{
αt
nvs,i

}T
t�1

and keep all the coefficients:
⎧
⎪⎨

⎪⎩

αvs,i � mean
{
αt
sim,i

}T
t�1

, if variance
({

αt
sim,i

}T
t�1

)
≤ b × ε

{
αt
nvs,i

}T
t�1

� {
αt
sim,i

}T
t�1

, if variance
({

αt
sim,i

}T
t�1

)
> b × ε

, (4.20)

where b is a constant and the mean is the operation to compute the mean of the{
αt
vs,i

}T
t�1

.

The “different” nearby patches
{
xt
dif,i

}T
t�1

are independently decomposed on the
sub-dictionariesDstructral

ĥti
that can best fit each of them,which amounts to the problem:

{
α̂
t
dif,i

}T
t�1

� argmin
αt
dif

T∑

t�1

∥∥αt
dif,i

∥∥
0
subject to

∑

t∈{1,...,T }

∥∥∥xt
dif,i − Dstructural

ĥti
αt
dif,i

∥∥∥
2

2
≤ ε.

(4.21)

We solve this problem by applying the OMP algorithm [34] separately on each patch.
Note that the positions and values of the nonzero coefficients in

{
α̂
t
di f,i

}T
t�1

might

be varied for reflecting the differences among the nearby patches
{
xt
dif,i

}T
t�1

. The
proposed 3D sparse representation algorithm is summarized in Fig. 4.15.

4.3.3.2 3D Adaptive Encoding, Decoding and Image Reconstruction

To encode the positions and values of the nonzero coefficients representing a set
of nearby patches, we first quantize the sparse vectors using a uniform quantizer
[32]. Then, we utilize an adaptive strategy to preserve the positions and values of the
nonzero coefficients as follows:

For the “very similar” nearby patches, both the positions and values of the nonzero
coefficients are the same and these sparse vectors are already fused into one vector
αvs,i . Thus, only one sequence is required to store the position information and one
sequence is used to preserve the value information, as shown in Fig. 4.16a.

For the “not very similar” nearby patches, the positions of the nonzero coefficients
in

{
αt
nvs,i

}T
t�1

are the same while their values are different. Thus, only one sequence
is needed to store the position information while another T sequences are employed
to preserve the value information, as shown in Fig. 4.16b. For the “different” nearby
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3D Adaptive Sparse Representation
Input: Offline: 1,..., Ux x training patches extracted from the less noisy training images;

Online: 1,..., T
i ix x nearby patches extracted from the position i of the nearby slices.

A) Offline Structural Dictionary Construction:
1: Cluster the training patches 1,..., Ux x into H groups using the k-means approach.

2: For each cluster, compute one centroid hc and learn one structural sub-dictionary structural
hD .

B) Online 3D Adaptive Sparse Decomposition:  

1: Select the fitted sub-dictionaries structural
ˆt
ih

D for the nearby patches 1,..., T
i ix x in Eq. (4-18).  

2: Based on the selected sub-dictionaries, divide the nearby patches into two groups: Similar and 
Different. 

3: If nearby patches are similar, obtain their sparse vectors { }sim, 1
ˆ

Tt
i t =

α by jointly decomposing 

nearby patches on the same atoms from the commonly selected sub-dictionary in Eq. (4-19).

4: Further divide the sparse vectors { }sim, 1
ˆ

Tt
i t =

α into two groups: very similar s,v iα and not very 

similar { }nvs, 1
ˆ

Tt
i t =

α in Eq. (4-20).  

5: If nearby patches are different, obtain their sparse vectors { }dif , 1
ˆ

Tt
i t =

α by separately 

decomposing nearby patches on different sub-dictionaries in Eq. (4-21).

Output:{ }dif , 1
ˆ

Tt
i t =

α if the nearby patches are different; { }nvs, 1
ˆ

Tt
i t =

α if the nearby slices are not very 

similar; s,v iα if the nearby patches are very similar. 

Fig. 4.15 3D adaptive sparse representation algorithm

Fig. 4.16 3D adaptive encoding for the three classes of the nearby sparse vectors a Very similar;
b Not very similar; c Different. Note that the color blocks in the sparse vectors denote the nonzero
coefficients. Different colors represent different values
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patches the positions andvalues of the nonzero coefficients in
{
α̂
t
di f,i

}T
t�1

are different.
Thus, the position information is preserved using T different sequences, while the
value information is stored with other T different sequences, as shown in Fig. 4.16c.
We label the three classes (“Very similar”, “Not very similar”, and “Different”)
of nearby slices as 0, 1, and 2, respectively. These class types are stored in one
sequence. In addition, the means

{
mt

i

}T
t�1 of nearby patches

{
xt
i

}T
t�1 are quantized

and stored into T different sequences. Furthermore, indexes
{
hti

}T
t�1 of the selected

sub-dictionaries for nearby patches are stored with another T sequences. Finally, we
apply Huffman coding [59] on the above sequences to create one bit stream. At the
decoding site, given the compressed bit stream, we first extract the mean

{
mt

i

}T
t�1,

sparse vectors
{
αt
i

}T
t�1, and indexes

{
hti

}T
t�1 of the selected sub-dictionaries for each

set of nearby patches. Then, a set of nearby patches
{
xt
i

}T
t�1 are reconstructed by,

xt
i � Dstructural

hti
αt
i + mt

i , t � 1, . . . , T . (4.22)

Subsequently, each patch x̂ts
i (where ts denotes a specific patch) is further enhanced

by weighted averaging of the nearby patches: x̂ts
i �

T∑

t�1
w

t,ts
i x̂t

i , where w
t,ts
i [5] is

estimated as:

w
t,ts
i �

exp
(
−∥∥x̂t

i − x̂ts
i

∥∥2

2/h
)

Norm
. (4.23)

In (4.13), Norm is defined as
T∑

t�1
exp

(
−∥∥x̂t

i − x̂ts
i

∥∥2

2/h
)
and h is a predefined scalar.

Finally, we recover each B-scan by combining its reconstructed patches in a raster-
scan order.

4.3.3.3 Experimental Results

To validate the effectiveness of the proposed 3D-ASRC algorithm, we compared
its performance with those of four well-known compression approaches: JPEG
2000, MPEG-4, SPIHT [60], K-SVD [30], and three variants of the proposed algo-
rithm: SRC-Dif, 2D-ASRC, 3D-ASRC-WA. For the SRC-Dif method, we utilize the
“different-patch” based sparse representation and encoding scheme for compression.
For the 2D-ASRC method, we denoted a number of spatial nearby patches within
one slice as the nearby patches. For the 3D-ASRC-WAmethod, we do not use the 3D
weighted averaging technique for the final reconstruction, compared to the 3D-ASRC
method.

In our experiments, we first used volumetric scans of human retinas from 26
different subjects with and without non-neovascular AMD, imaged by an 840-nm
wavelength SDOCT system from Bioptigen, Inc. (Durham, NC, USA) with an axial
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resolution of ~4.5 μm per pixel in tissue. In addition, we also performed our experi-
ments on a mouse dataset acquired by a different SDOCT system, (Bioptigen Envisu
R2200), with ~2 μm axial resolution in tissue.

Based on our experiments on training data, we empirically selected the parameters
for the proposed 3D-ASRC algorithm. We chose the patch size in each slice to be
a rectangle of size 6×12 pixels (height×width). The number of nearby slices T
was set to 5 (corresponding to ~300 μ azimuthal distance). In retinal imaging, slices
from farther distances may have significant differences and thus adding them might
actually reduce compression efficiency. In the dictionary training stage, the value of
cluster H was chosen to be 10. In each cluster, the size of the trained dictionary was
set to 72×500. The parameter b in (4.20) was set to 0.001. For the test datasets in our
experiments, the mean and standard deviation of parameter C for the compression
ratios � [10, 15, 20, 25, 30, 35, 40] were [1.00, 1.07, 1.12, 1.15, 1.17, 1.19, 1.21],
and [0.053, 0.054, 0.052, 0.055, 0.055, 0.057, 0.059], respectively. The parameters
for the JPEG 2000 and MPEG-4 were set to the default values in the Matlab [43]
and QuickTime Player Pro 7.0 software [61], respectively. For the K-SVD algorithm,
the patch size was set to 6×12 and the trained dictionary was of size 72×500. For
the 2D-ASRC method, the number of spatial nearby patches was selected to 9 and
the other parameters were set to the same values as in our 3D-ASRC method. We
adopted the peak signal-to-noise-ratio (PSNR) and feature similarity index measure
(FSIM) [62] to evaluate the performances of the compression methods.

We tested the JPEG 2000, MPEG-4, SPIHT [60], K-SVD [30], SRC-Dif, 2D-
ASRC, 3D-ASRC-WA, and 3D-ASRC methods on seven different compression
ratios ranging from 10 to 40. The corresponding quantitative comparisons (PSNR
and FSIM) of all the test methods at different compression ratios are reported in
Table 4.3. As can be seen in Table 4.2, the proposed 3D-ASRC method consistently
delivered better PSNR and FSIM results than the other methods. Figures 4.17 show
qualitative comparisons of reconstructed results from the tested methods using the
compression ratio of 10. Since boundaries between retinal layers and drusen contain
meaningful anatomic and pathologic information [44], we magnified one boundary
area and one dursen area in each figure. As can be observed in Fig. 4.17, results
from JPEG 2000, K-SVD, and MPEG-4 methods appear very noisy with indistinct
boundaries for many important structural details (see the zoomed boundary areas of
both the dataset 1 and 2). The SPIHT method greatly suppresses noise, but increases
blur and introduces visible artifacts (see the zoomed drusen and boundary areas in
Fig. 4.17). Compared to the above methods, the proposed SRC-Dif, 2D-ASRC, 3D-
ASRC-WA methods deliver comparatively better structural details, but still show
some noise artifacts. By contrast, the proposed 3D-ASRC method achieves notice-
ably improved noise suppression, and preserves meaningful anatomical structures.
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Table 4.3 Mean of the PSNR (left) and FSIM (right) for 16 foveal images from 16 different
subjects reconstructed by JPEG 2000, MPEG-4, SPIHT [60], K-SVD [30], SRC-DIF, 2D-ASRC,
3D-ASRC-WA, and 3D-ASRC under different compression ratios

Method Compression ratio

10 15 20 25 30 35 40

JPEG
2000

19.67/0.65 20.33/0.67 20.70/0.69 21.34/0.70 21.92/0.70 22.41/0.71 22.78/0.71

MPEG-4 20.42/0.72 22.44/0.78 22.63/0.79 22.71/0.79 22.76/0.79 23.21/0.78 23.22/0.79

SPIHT 25.56/0.80 26.17/0.82 26.50/0.82 26.68/0.82 26.79/0.82 26.86/0.82 26.89/0.82

K-SVD 20.74/0.68 22.51/0.70 22.51/0.72 23.06/0.74 23.56/0.75 23.94/0.75 24.28/0.76

SRC-Dif 26.98/0.85 27.26/0.86 27.45/0.87 27.54/0.87 27.56/0.87 27.58/0.86 27.55/0.86

2D-ASRC 26.14/0.81 26.51/0.82 26.73/0.82 26.85/0.83 26.89/0.83 26.91/0.83 26.99/0.83

3D-
ASRC-
WA

26.31/0.82 26.70/0.83 26.97/0.84 27.11/0.85 27.23/0.85 27.29/0.85 27.33/0.85

3D-ASRC 27.60/0.88 27.65/0.87 27.68/0.87 27.71/0.87 27.75/0.87 27.75/0.87 27.74/0.87

The best results in this table are labeled in bold

4.4 Conclusions

In this chapter, we presented three adaptive sparse representation methods for the
denoising, interpolation, and compression of OCT images. Specifically, for the
denoising problem, we proposed a multiscale sparsity based method calledMSBTD,
which can well represent the multiscale information of the pathology structures and
learn highquality dictionaries from thenearbyhighSNRB-scan. For the interpolation
problem, we proposed an efficient sparsity based image reconstruction framework
called SBSDI that achieve a simultaneous interpolation and denoising of the clinical
SDOCT images via a pair of semi-coupled dictionaries. For the compression prob-
lem, we introduced a 3D adaptive sparse compression called 3D-ASRC, which can
simultaneously represent the nearby slices of the SDOCT images via a 3D adaptive
sparse representation algorithm. Such a 3D adaptive algorithm exploits similarities
among nearby slices, yet is sensitive in preserving their differences. Experiments on
real acquired clinical OCT images demonstrate the superiority of the proposed three
sparsity based reconstruction methods over several state-of-the-art reconstruction
methods.
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Fig. 4.17 Reconstructed results using the JPEG 2000, MPEG-4, SPIHT [60], K-SVD [30], SRC-
Dif, 2D-ASRC, 3D-ASRC-WA and 3D-ASRC with compression ratio�10 on two human retinal
datasets
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Chapter 5
Segmentation of OCT Scans Using
Probabilistic Graphical Models

Fabian Rathke, Mattia Desana and Christoph Schnörr

Themost prominent structure in retinal OCT images is the intra-retinal layers. There-
fore layer segmentation is one of themost studied problems inOCT imageprocessing.
In this chapter, a probabilistic approach for retinal layer segmentation is presented.
It exploits texture and shape information based on a graphical model. The approach
can be extended to a locally adaptive graphical model that additionally discriminates
between healthy and pathologically deformed scan structure.

5.1 Introduction

Since its introduction in 1991 [1], optical coherence tomography (OCT) has become
a standard tool in clinical ophthalmology [2]. The introduction of spectral-domain
OCT [3] dramatically increased the resolution as well as the imaging speed and
enabled the acquisition of 3-D volumes composed of hundreds of 2-D scans. Since
the manual segmentation of retina scans is tedious and time-consuming, automated
segmentation methods become evermore important given the growing amount of
gathered data.
Related Work. Various segmentation approaches have been published. All have in
common that they utilize texture information, based on the spatial variation of the
intensity functions and its gradient. In order to obtain accurate and stable segmen-
tations and to reduce the sensitive to texture artifacts, some form of regularization
is applied. We focus on the methods used for regularization in related work and to
which degree shape prior knowledge is utilized.

Many approaches solely impose smoothness on segmented retina boundaries,
without any shape prior information. References [4–7] find column-wise maxima
of the appearance terms and then apply outlier detection along with interpolation
to account for erroneous segmentations. Chiu et al. [8] construct a graph for each
boundary with weights determined by gradient information and find the shortest path
using dynamic programming. Starting with easy to detect boundaries, the segmenta-
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tion of subsequent boundaries is guided by restricting their search region. They also
demonstrated the applicability of their approach to the segmentation of pathological
scans [9, 10]. Tian et al. [11, 12], which use an adaptation of [8], published two OCT
benchmark datasets which we will use for performance evaluation along with their
results as baselines. Finally, Duan et al. [13] proposed a similar approach, with the
exception that the shortest path is found in the continuous domain.

Another set of approaches, including [14–17], build an undirected graphicalmodel
that includes more than one boundary. Here shape regularization is imposed on the
pairwise interactionofadjacent boundaries, constraining their relative positions. This
form of shape prior information is encoded into the model either as hard constraints
[14] or as probabilistic soft constraints [15, 16]. Inference is performed via graph
cuts. Due to computational limitations, only local shape information is used and not
all boundaries are inferred at the same time.

Finally, Kajic̀ et al. [18] apply the popular active appearance approach for match-
ing statistical models of appearance and shape to a given OCT scan. Although non-
local shapemodeling iswithin the scope of their approach, only landmarks at sparsely
sampled boundary positions are used, and only a maximum likelihood point estimate
is inferred, rather than employing a global probabilistic shape model as does our
approach.
Contribution.We present a probabilistic approach to the segmentation ofOCT retina
scans (See Fig. 5.1 for the segmented retina layers). We utilize a global shape prior
that takes into account both short and long-term dependencies between retina layers,
which has not be explored in related work so far. All boundaries are detected at the
same time, which makes obsolete additional processing steps required in other work,
like detectionof the fovea, flatteningof the retina, or denoising. Since imposingglobal
shape information is not justified when dealing with pathological deformations, we
outline ongoing work that demonstrates how the model can be adapted to such cases.
Organization. We introduce in Sect. 5.2 our graphical model and explain how infer-
ence is done by evaluating the posterior distribution of segmentations. A thorough
evaluation on five different datasets, composed of healthy data and mild pathologies,
follows in Sect. 5.3. We highlight benefits of inference based on a full probability
distribution. In Sect. 5.4, we discuss an extension of our approach that also handles
severe pathological deformations. We conclude and point out further directions of
research in Sect. 5.5.

5.2 A Probabilistic Graphical Model for Retina
Segmentation

5.2.1 The Graphical Model

Mathematically, an OCT scan is a matrix y ∈ R
N×M of N rows and M columns, con-

taining gray values yi, j in the range [0, 1] = {x ∈ R | 0 ≤ x ≤ 1}. A segmentation
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Fig. 5.1 The retinal layers segmented by our approach and their corresponding anatomical names:
Nerve fiber layer (NFL), ganglion cell layer and inner plexiform layer (GCL + IPL), inner nuclear
layer (INL), outer plexiform layer (OPL), outer nuclear layer and inner segment (ONL + IS),
connecting cilia (CC), outer segment (OS), retinal pigment epithelium (RPE)

Fig. 5.2 a Important variables used throughout this section. Note the difference between real
valued boundary position bk, j and its discretized counterpart ck, j . b The different components of
our graphical model

of y with K retina boundaries (corresponding to K + 1 layers) is given by the matrix
b ∈ R

K×M , where each entry bk, j has the range [1, N ]. While b is continuous, graph-
ical models typically are discrete, since they exist in the pixel-domain of y. We thus
introduce c ∈ N

K×M , the discretized version of b, with entries ck, j ∈ {1, . . . , N }.
The ansatz for our probabilistic graphical model is given by

p(y, c, b) = p(y|c)p(c|b)p(b), (5.1)

where the factors are

p(y|c) appearance, data likelihood term,
p(c|b) Markov Random Field regularizer, determined by the shape prior and
p(b) global shape prior.

In what follows we will detail each component, thereby completing the definition
of our graphical model. Figure5.2b depicts the components of this model.
Notation. Figure5.2a illustrates our notation: Subindices j = {1, . . . , M} and i =
{1, . . . , N } denote image columns and rows and k ∈ {1, . . . , K } denotes boundaries
1 to K , e.g. bk, j ∈ R is the position of the kth boundary in column j . We use • to
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include all possibilities for k, i, j : For example b•, j ∈ R
K are all boundary positions

in column j . When possible, we will drop • and write b j to denote b•, j . Finally, b\ j
denotes all entries of b except those for column j .
Appearance p( y|c). Given a segmentation c, we can assign class labels xi, j ∈ X to
each pixel from

X = {Xl,Xt }, Xl = {l1, . . . , lK+1}, Xt = {t1, . . . , tK },

where labels inXl indicate affiliation of pixel yi, j to retina layers 1 to K + 1 (K = 10
in this work) and labels in Xt to boundaries between them, c.f. Fig. 5.1. To obtain
a mapping c �→ x = x(c) consistent with physiology, we require c to satisfy the
ordering constraint

1 ≤ c1, j < c2, j < · · · < cK , j ≤ N , ∀ j = 1, . . . , M. (5.2)

We will use a patch-based model. Since OCT scans display a large variability
in brightness and contrast, each patch is normalized by subtracting its mean and
projected onto a low-dimensional subspace using PCA. We define the probability of
pixel yi, j belonging to the class xi, j as

p(yi, j |xi, j (c)) = N (ỹi, j ;μxi, j , �xi, j ), (5.3)

where ỹi, j is the low-dimensional projection of the patch around pixel yi, j . Note
that in this definition, p(yi, j |xi, j (c)) does not integrate to 1 over the range of yi, j .
This is taken care of, when we introduce discriminative appearance terms in the next
section. The class-conditional moments μx , �x for all x ∈ X are learned offline.
Regularized estimates for �x are obtained by utilizing the graphical lasso approach
[19], imposing sparsity on �−1

x .
We define pixels yi, j to be conditionally independent given c. Furthermore, in

Rathke et al. [20] it was shown that the model performs best when restricted to terms
belonging to transition classes tk . Thus p(y|c) factorizes into

p(y|c) =
M∏

j=1

∏

i :xi, j∈Xl

p(yi, j |xi, j (c))0
∏

i :xi, j∈Xt

p(yi, j |xi, j (c)), (5.4)

where we do not take into account pixel with labels X l = {l1, . . . , l10}.
Shape Prior p(b). We use a shape model to represent typical shape variations, due
to both biological variability as well as to the image formation process. We model b
as random vector with Gaussian distribution

p(b) = N (b;μ,�), (5.5)

where parameters μ and � again are learned offline. We regularize the estimation of
� by probabilistic PCA [21], which assumes a linear Gaussian model for b:
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Fig. 5.3 Samples drawn from the the shape prior distribution p(b) trained on volumes (left) and
circular scans (right). Only one half of the volume is shown

b = Ws + μ + ε, s ∼ N (0, I ), ε ∼ N (0, σ 2 I ). (5.6)

The matrixW ∈ R
K ·M×q maps the low-dimensional vector s ∈ R

q onto b. Each col-
umn of W denotes a certain shape variation that gets added to the mean shape μ.
Given n training segmentations X ∈ Rn×M ·K , W is obtained by the first m eigen-
vectors of cov(X) weighted by the corresponding eigenvectors, and μ simply is X .
Figure5.3 depicts samples drawn from two different p(b), modeling fovea-centered
3-D volumes (left panel, with the fovea clearly visible) and circular scans (right
panel).

A very useful feature of this representation of b is the fact, that both the covariance
matrix as well as its inverse can be decomposed into a low-rank representation based
on W , reducing complexity as well as memory requirements of many operations
related to � and �−1.
Shape-Induced Regularizers p(c|b). Shape b and appearance y are combined via
a Markov random field over the discrete variable c. It is composed of independent
column-wise chain models, enabling parallel inference:

p(c|b) =
M∏

j=1

p(c•, j |b), p(c•, j |b) = p(c1, j |b)
K∏

k=2

p(ck, j |ck−1, j , b). (5.7)

The conditional distributions in (5.7) are specified in terms of b:

p(c1, j = n|b) =
∫ n+ 1

2

n− 1
2

p(b1, j = τ |b\ j )dτ, (5.8a)

p(ck, j = n|ck−1, j = m, b) =
∫ n+ 1

2

n− 1
2

∫ m+ 1
2

m− 1
2

p(bk, j = τ |b\ j )p(bk, j = τ |bk−1, j = ν)dτdν. (5.8b)
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As a result the communication across image columns is induced not by the struc-
ture of theMarkov randomfield but by the definition of itsmarginal distributions, con-
ditioning on b\ j . While the definition (5.8) does not take the ordering constraint (5.2)
into account, this is done during inference (Section “Second Summand log P(c|b)
of J (qb, qc)” in Appendix).
2-D versus 3-D. Our description so far considered OCT scans of dimension two.
Nevertheless, our approach is equally applicable to 3-D volumes. We use the very
same notation, since adding additional B-Scans will only increase the number of
image columns M . Similarly, the connectivity of the graphical model p(y, c, b) can
be transferred one-to-one.

5.2.2 Variational Inference

We wish to infer the posterior distribution

p(b, c|y) = p(y|c)p(c|b)p(b)
p(y)

. (5.9)

Since we lack a closed form solution and the problem at hand is high-dimensional,
it is intractable. As a consequence we resort to an approximative scheme based on
variational inference: Approximate the posterior by a tractable distribution q(b, c)
and minimize its distance to p(b, c|y). We choose the factorized approximating
distribution

q(b, c) = qb(b)qc(c). (5.10)

This merely decouples the continuous shape prior Markov random field, but other-
wise both components will be represented exactly, see the definition of qb and qc
below. Similarity between q and p is measured by the Kullback-Leibler distance

KL
(
q(b, c)

∥∥p(b, c|y)) =
∫

b

∑

c

q(b, c) log
q(b, c)

p(b, c|y)db

= −
∫

b

∑

c

q(b, c)
(
log

(
p(y|c)p(c|b)p(b)) − log p(y) − log q(b, c)

)
db .

(5.11)

Weuse themarginal likelihood log p(y) to introducediscriminative appearance terms
into the model, using

log
p(y|c)
p(y)

= log
p(y|c)p(c)

p(y)
− log p(c) = log p(c|y) − log p(c).
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where we used Bayes theorem [22, Eq. (A.3)] to equate p(y|c)p(c)
p(y) with p(c|y). Since

p(b) already contains prior knowledge about the shape of boundary positions, we
assume an uninformative prior for c. Hence dropping p(c) and taking into account
the factorization of q, (5.11) results in the objective function

J (qb, qc) = −
∫

b

∑

c

qb(b)qc(c) log
(
p(c|y)p(c|b)p(b)

)
db − H [qb] − H [qc],

(5.12)
where H [qb] and H [qc] are the entropies of qb and qc.
Definitions of qc and qb. For qc we adopt the structure of p(c|b), that is, written in
a slightly different but equivalent form

qc(c) =
M∏

j=1

qc(c1, j )
K∏

k=2

qc(ck, j , ck−1, j )

qc(ck−1, j )
. (5.13)

For qb we adopt the Gaussian model of b

qb(b) = N (b; μ̄, �), (5.14)

where the bar-notation distinguishes the parameters of qb from those of p(b).
Explicit Form of J(qb, qc). Direct optimization of the objective (5.12) requires to
sum over all combinations of c and integrating over b, and therefore is intractable
as well. In order to obtain a tractable formulation, we have make use of the inde-
pendence assumption q(c, b) = qb(b)qc(c) (5.10) and rewrite J (qb, qc) accordingly.
The resulting expression derived in Section “Derivation of the Objective (5.15)” in
Appendix reads

min
qc,μ̄,�

−
M∑

j=1

(
(qc;1, j )T θ1, j +

K∑

k=2

〈qc;k∧k−1, j ,�k, j 〉 + (qc;K , j )
T θK , j

)
− H [qc]

+ 1

2
〈K , � + μ̄μ̄T − 2μ̄μT 〉 − 1

2
log det� + C

(5.15)
subject to normalization and marginalization constraint for qc [23, p. 78]. The term
log det� automatically enforces positive definiteness of �̄, necessary for a valid
Gaussian density qb. Here terms qc;k, j and qc;k∧k−1, j denotes vectors containing all
elements of distributions qc(ck, j ) and qc(ck−1, j , ck, j ).

Broadly speaking, terms in the first row correspond to the optimization of qc, and
are derived in Sections “First Summand log P(c|y) of J (qb, qc)”, “Second Summand
log P(c|b) of J (qb, qc)” and “Entropy Terms H [qb] and H [qc]” in Appendix, while
terms in the second row correspond to the the optimization of qb and are derived in
Sections “Third Summand log P(b) of J (qb, qc)” and “Entropy Terms H [qb] and
H [qc]” in Appendix.
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Optimization. We minimize (5.15) with respect to the parameters of qb and the
discrete distributions qc;k, j and qc;k∧k−1, j . Since the factorization (5.10) decouples
qc and qb, these optimizations can be carried out independently. Recall that qc has a
tree-structure in each image column, thus can be optimized using the sum-product
algorithm, e.g. [24, Chap. 8.4.4]. The optimizationwith respect to μ̄ and� is given in
closed form. Details about the optimization of qb can be found in Section “Optimiza-
tion with Respect to qb” in Appendix. Both subproblems are strictly convex, thus
by alternatingly optimizing with respect to qb and qc, the functional J (qb, qc), being
bounded from below over the feasible set of variables, is guaranteed to converge to
some local minimum.

To initialize the optimization, we set qb to a uniform distribution. Afterwards we
initialize qb given qc and iteratively optimize until convergence.

5.3 Results

5.3.1 Segmentation Performance

5.3.1.1 Datasets

We will evaluate our approach on five datasets, two of which contain 2-D circular
scans and the other three consist of 3-D volumes, c.f. Table5.1. Besides in-house
datasets, we also measure performance on two publicly available datasets, both pub-
lished by Tian et al. [11, 12].

Both 2-D datasets consist of circular scansmeasured around the optical nerve head
with a diameter of 12◦, corresponding to approximately 3.4mm, with 768 A-scans
of depth resolution 3.87µm/pixel and 496 pixel. While the first dataset consists of
healthy scans, the second one contains eyes with glaucoma in different stages: A
medical expert provided ground truth for the boundary separating NFL and GCL,
crucial for Glaucoma, as well as a grading for the pathological scans: pre-perimetric
glaucoma (PPG), meaning the eye is exhibiting structural symptoms of the disease
but the visual field and sight are not impaired yet, as well as early, moderate and
advanced primary open-angle glaucoma (PGE, PGM and PGA). Ground truth for
the remaining eight boundaries was produced by the first author.

Table 5.1 Datasets used for performance evaluation

Type Source Subjects # Surfaces # Labeled
B-Scans

Pathology

2-D In-house 80 9 1 –

In-house 55 9 1 Glaucoma

3-D In-house 35 9 17 –

Tian et al. [11] 10 6 10 –

Tian et al. [12] 10 5 5 Mild RP
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(a) 2-D circular scan (b) 3-D volume

Fig. 5.4 Fundus images that depict a the trajectory and radius of a 2-D circular scan centered around
the optic nerve head and b the area covered by a 3-D volume consisting of 61 fovea-centered B-
Scans. Alternating coloring illustrates the partitioning into 17 different regions. For each region a
separate model is trained

The 3-Ddatasets consist of fovea-centered volumes.Our in-house dataset contains
35 subjects and each volume is composed of 61 B-Scans with 768 × 496 pixel.
To exclude the nerve head, our model covers a smaller area of 500 × 496 pixel,
corresponding to approximately 5.7 × 7.3mm.Ground truthwasobtained as follows:
Each volume was divided into 17 regions, and a B-scan randomly drawn from each
region was labeled. Figure5.4b depicts the location of all 61 B-Scans and their
partition into regions indicated by color. Both datasets of Tian et al. consist of 10
volumes each, with 10 and 5 B-Scans labeled. The ground truth provided is a subset
of the surfaces labeled by us. The second dataset consists of subjects with mild
non-proliferative diabetic retinopathy, an early stage of the disease with only small
deformations, which our approach can handle easily.

5.3.1.2 Model Parameters

Table5.2 summarizes the model parameters and the values they were set to for all
experiments. For the appearance models we set αglasso to 0.01, a parameter of the
glasso approach [19] that controls the sparseness of�−1

xi, j . A patch-size of 15 × 15 and
the projection onto the first qpca = 20 eigenvectors resulted in smooth segmentation
boundaries. Similar, we used qppca = 20 eigenvectors to build the shape prior model,
after examining the eigenvalue spectrum of the empirical covariance matrix S.

Table 5.2 Set of model parameter values used throughout all experiments

Parameters Appearance Shape Inference

αglasso qpca Patch-Size qppca Variance of
p(bk, j |b\ j )

Value 0.01 20 15 × 15 20 10
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An important parameter during the inference is the variance of p(bk, j |b\ j ), which
balances the influence of appearance and shape. Artificially increasing this parameter
results in broader normal distributions (that is wider stripes in Fig. 5.12b), which
makes qc less dependent of μ̄ during inference, and qb less sensitive to qc when
estimating μ̄.

5.3.1.3 Error Measures and Test Framework

For each boundary as well as the entire scan we computed the unsigned distance
in µm (1 px= 3.87µm) between estimates ĉk, j = Eqc [ck, j ] and manual segmenta-
tions sk, j ∈ R, that is

Ek
unsgn = 1

M

M∑

j=1

|ĉk, j − sk, j |, Eunsgn = 1

K

K∑

k=1

Ek
unsgn .

For volumes we additionally averaged over all B-Scans in the volume.
Results were obtained via cross-validation: After splitting each data set into a

number of subsets, each subset in turn is used as a test set, while the remaining subsets
are used for training: We used 10-fold cross-validation for the healthy circular scans
and leave-one-out cross-validation for our 3-D dataset, to maximize the number of
training examples in each split. For the glaucoma dataset we trained a model on all
healthy circular scans and similar for the Tian et al. datasets we used all our volumes
for training, without any cross-validation.

5.3.1.4 Performance Evaluation

Results for all datasets are summarized in Table5.3. Datasets are reported in the same
order as in Table5.1.
2-D. In general, boundaries 1 and 6–9 turned out to be easier to segment than bound-
aries 2–5. While boundary 1 has an easily detectable texture, boundaries 6–9 with
their regular shape particularly profit from the shape regularization. Boundaries 2-5
on the other hand pose a harder challenge with their high variability of texture and
shape. Figure5.5a depicts an example segmentation.

For the pathological scans segmentation performance decreased with the pro-
gression of the disease. However, the average error for the first three classes was
still smaller than or equal to one pixel. The decline in performance had several rea-
sons: Since glaucoma is known to cause a thinning of the nerve fiber layer (NFL), the
shape prior trained on healthy scans encounters difficulties adapting to very abnormal
shapes. Furthermore, we observed a reduced scan quality for glaucomatous scans,
also reported by others (e.g. [6, 7]). In the most advanced stage of the disease the
NFL can vanish at some locations. Since this anomaly is not part of the training data,
the model failed in these regions.We discuss possible modifications to overcome this
problem in Sect. 5.4. The right panel in Fig. 5.5 shows an example of a PGA-type
scan and its segmentation.
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Table 5.3 Unsigned error for all datasets (c.f. Table5.1) inμm (1px = 3.87µm). Boundary numbers
1–9 correspond to Fig. 5.1. Results for other approaches are marked by a citation. Duan et al. [13]
only provide the average result and detailed results for two boundaries

Dataset Type Avg. 1 2 3 4 5 6 7 8 9

2-D Healthy 2.92 2.06 4.68 3.67 3.31 3.30 2.10 2.34 2.81 2.01

2-D PPG 3.64 2.66 6.66 4.57 4.43 4.34 2.67 2.59 2.82 2.06

PGE 3.97 3.76 5.65 5.37 5.78 4.40 2.76 2.95 3.40 1.63

PGM 4.00 4.51 6.74 5.49 5.44 4.15 2.88 2.21 2.94 1.64

PGA 5.62 6.53 9.95 8.80 8.30 5.05 2.99 2.42 4.19 2.36

3-D Healthy 2.46 1.36 3.32 3.17 3.23 3.27 1.61 1.86 2.27 2.07

3-D Healthy 3.17 2.93 3.24 3.63 3.92 4.00 1.65 – 3.43 2.61

3.87
[11]

2.67 4.34 3.73 3.89 5.18 2.10 – 6.23 2.83

3.10
[13]

– – – – 3.55 1.57 – – –

3-D Mild
RP

4.08 4.39 4.15 3.84 – 4.65 – – – 3.37

4.48
[12]

3.70 4.49 3.84 – 5.75 – – – 4.63

Fig. 5.5 Top panel: (Left) Segmentation of a healthy 2-D circular scan and (right) an advanced
glaucomatous circular scan. Bottom panel: Two B-Scans of subject 6 from the dataset with mild
diabetic retinopathy [12]
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3-D. In contrast to 2-D scans, the labeling of OCT volumes is very time consuming,
hence our dataset only consisted of 35 samples. Thus we were left with less data
points to train a shape model of much higher dimension. Consequently, we observed
a reduced ability of p(b) respectively qb(b) to generalize well to unseen scans. We
tackled this problemby suppressing the connectivity betweendifferentB-scans inside
the volume, which corresponds to a block-diagonal covariance matrix�, where each
block is obtained separately using PPCA. This significantly reduced the amount of
parameters that had to be determined, and improved accuracy significantly.

We tested our approach on our in-house dataset as well as the two datasets pub-
lished byTian et al. For the latter twowe had to dealwith the problem, that no position
inside the volume was given for the B-Scans. Since this information in necessary to
pick the correct shape prior, we used the following approach: We run the model for
each region 1–17 (see Fig. 5.4b for the distribution of regions) and then picked the
region (a) with the lowest error (supervised) and (b) with the highest model likeli-
hood (unsupervised). This gave an upper and lower bound on the true error, and we
averaged over these two to obtain the final result.

In Table5.3 we also report results from Tian et al., which we could outperform
in both datasets, as well as those of Duan et al. [13] for the first Tian dataset, which
are very good as well. Unfortunately, they only provided specific results for two
boundaries besides the average error, so its difficult to fully grasp their strong and
weak points. For all 3-D datasets results are worst for the retinopathy dataset due
to its pathological nature. Still, the segmentation of our approach is fairly accurate,
with an average error of around 1 pixel.

5.3.2 Pathology Detection

5.3.2.1 Model Likelihoods

A key property of our model is the inference of full probability distributions over
segmentations qc and qb, instead of only modes thereof. Figure5.6 shows boxblots
of four terms (b–e) of the objective function J (qb, qc) and compares them to the
unsigned error (a), broken down for the healthy scans as well as the different stages
of glaucoma. Singleton entropy (b) andmutual information (c) are the two summands
of the negative entropy of qc, see (5.33). The data (d) and shape (e) terms represent
the first two summands of J (qb, qc) (5.12), presented in details in the Sections “First
Summand log P(c|y) of J (qb, qc)” and “Second Summand log P(c|b) of J (qb, qc)”
in Appendix.

The shape term, which measures how much the data-driven distribution qc differs
from the shape-driven expectation Eqb [log p(c|b)], is highly discriminative between
healthy and pathological scans. The data term on the other hand measures how well
the appearance terms fit the actual segmentation and correlateswell with the unsigned
error.
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Fig. 5.6 Different terms (b–e) of the objective function J (qb, qc) and the unsigned error (a) for
healthy (H) as well as glaucomatous scans (PPG, PGE, PGM and PGA). While “Shape” is very
discriminative for glaucomatous scans, “Mutual” and “Data” correlate well with the unsigned error

5.3.2.2 Abnormality Detection

Glaucoma detection. A state-of-the-art method for the clinical diagnosis of glau-
coma is based on NFL thickness, averaged for example over the whole scan or one of
its four quadrants (superior, inferior, temporal and nasal) [25, 26]. We will compare
this methodology to an approach based on the shape term presented in the previous
section. Estimates of the NFL thickness were obtained from the Spectralis device
software, version 5.6. Using the setup of Bowd et al. [25], we investigated specifici-
ties of 70 and 90% as well as the area under the curve (AUC) of the receiver operating
characteristic (ROC).1 In all cases, our shape-based discriminator performed at least
as good as the best thickness-based one. Especially for pre-perimetric scans, which
feature only subtle structural changes, our approach improves diagnostic accuracies
significantly: Fig. 5.7a provides ROC curves of the two overall best performing NFL
measures and our shape-based measure for this class.
Global Quality. We obtained a global quality measure, by combining the mutual
information and the shape term. Given the values for all scans, we re-weighted
both terms into the ranges [0, 1] and took their sum. Thereby we could establish a
quality index that had a very good correlation of 0.82with the unsigned segmentation
error. See Fig. 5.7b for a plot of all quality index/error pairs and a linear fit thereof.
The estimate of this fit and the true segmentation error differs on average by only
0.51µm. This shows that the model is able to additionally deliver the quality of its
segmentation.
Local Quality. Finally, we determined a way to distinguish locally between regions
of high and low model confidence. This could for example point out regions where a
manual (or potentially automatic) correction is necessary. To this end we examined

1The AUC can be interpreted as the probability, that a random pathological scan gets assigned a
higher score than a random healthy scan.
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Fig. 5.7 Left: ROC curves for the two overall best performing NFL-based classifiers and our shape
prior based approach for the earliest stage of glaucoma. Right: High correlation of our quality
estimation index, obtained by comparing terms (c) and (e) from Fig. 5.6 to the actual unsigned error
Fig. 5.6a. We see a large correlation between both measures

(a) (b) (c)

Fig. 5.8 aAn advanced primary open-angle glaucoma scan and the segmentation thereof (Eunsgn =
6.81µm), augmented by the local quality estimates of the model, with red representing highest
uncertainty. b and c Close-ups of the three areas, the model is (correctly) most uncertain about.
White dotted lines represent ground truth

the correlation of the data terms with the unsigned error. We calculated its mean for
instances with segmentation errors smaller than 0.5 and bigger than 2 pixels. This
yielded three ranges of confidence in the quality of the segmentation. For each image
we fine-tuned these ranges by dividing by max(Quality Index(CurrentImage), 1).

Figure5.8a shows a PGA-type scan with annotated segmentation, whose error
is 6.83µm. The advanced thinning of the NFL and the partly blurred appearance
caused the segmentation to fail in some parts of the scan. Close-ups (b) and (c) show
that the model correctly identified those erroneously segmented regions. The average
errors of the three categories are 4.67, 5.43 and 18.36µm respectively.
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5.3.2.3 Pathology Classification

Srinivasan et al. [27] published a dataset of 45 volumetric scans, composed of 15
healthy scans, and 15 scans affected by diabetic macular edema (DME) and age-
related macular degeneration (AMD) respectively. Since deformations for these
pathologies can become very large, our model cannot adapt to them. Figure5.9
displays segmentations of typical representatives for each class with overlaid con-
fidence estimates (green not shown explicitly). The red and yellow areas exhibit
characteristic patterns for both pathologies, which we can use to train a classifier.

For each volume we segmented all B-Scans, calculated the confidence values and
averaged them over regions 1–17 (Fig. 5.4b). In this way we obtained a feature vector
of fixed size, while the number of B-Scans varied between 31 and 97 throughout
the dataset. Using PCA, we then found more compact representations and finally
concatenated all low-dimensional vectors of one volume. Having obtained a feature
vector for each volume, we then removed one example from each class and used the
remaining volumes to train a random forest and predicted the classes for the leave-out
set of 3 scans. We repeated this procedure for the whole dataset.

Our results are given in Table5.4 together with the results of three published
classification approaches, which rely on different feature descriptors from computer
vision.While our approach classifies one volumewrong, [27, 28]make twomistakes.
And while Wang et al. [29] also only make one mistake, they prefilter the AMD and

(a) Healthy (b) AMD (c) DME

Fig. 5.9 Segmentations of a healthy and two pathological scans. While the segmentation fails
in pathological areas, the model detects those failures (yellow, orange and red markings). These
patterns can be used to train a classifier for the detection of AMD and DME

Table 5.4 Classification results of various approaches for the dataset of Srinivasan et al. [27].
Our approach only makes one mistake, classifying one DME volume as AMD, outperforming or
performing on par with actual classification approaches

Normal AMD DME Methoda

Our approach 15/15 15/15 14/15 Model likelihoods + RF

Lemaitre et al. [28] 13/15 – 15/15 LBP-Features + RF

Srinivasan et al. [27] 13/15 15/15 15/15 HOG-Features + SVM

Wang et al. [29] 14/15 15/15 15/15 LCP-Features + SVM
aLBP linear binary patterns,HOG histogram of oriented gradients, LCP linear configuration pattern,
SVM support vector machine, RF random forest
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(a) AMD (b) DME

Fig. 5.10 Preliminary results for our proposed model extension using SPNs, demonstrating the
potential of the approach. Red windows indicate a modified shape prior model θ illia,b (c.f. (5.16))

DME datasets from all B-Scans without deformations, a step that requires human
interaction.

5.4 Segmenting Pathological Scans

In this section we propose an extension of our probabilistic model in order to take
also into account retina images with pathologies, characterized by strong local defor-
mations of the normal retina structure. While using the prior probability distribution
that was learned from healthy data (Sect. 5.2.1) helps in segmenting healthy OCT
scans, it can be detrimental for scans including pathological structure, since it makes
segmentation more robust against noise but on the other hand less adaptable to irreg-
ularities caused by pathologies. This problem can be addressed by augmenting the
shape prior by a set of local priors, which can be selected in a globally optimal way
using the principle of maximum-likelihood and dynamic programming. Figure 5.10
shows two preliminary results.
Setup. We assume that models of pathological structure are translation invariant,
local and approximately independent. This assumption is appropriate for actual reti-
nal scans, since pathologies result in local deformations and appear at multiple hor-
izontal positions of the image. Independence and locality allow to factorize the full
distribution p(y, b, c) into local distributions. Translation invariance implies that the
same modification can be applied at every horizontal position in the scan.

Recall that the shape prior W in Eq. (5.6) represents typical shape variations of
healthy retina layers. In order to extend the graphical model to local pathological
deformations, we define a set of I translation-invariant pathology-specific modes
{Will1 ,Will2 , ...,W illI } and obtain a model of local deformations by adding these
translation-invariant modes to W . The modified prior in the horizontal region [a, b]
between columns a and b, and with pathological model W illi , is determined by

θ
illi
a,b := (

Wa,b W illi
1,b−a

)
, θ

healthy
a,b := Wa,b, i ∈ {1, . . . , I }. (5.16)
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Here subscripts a, b indicate the truncation of W to entries of columns between
a and b. Truncating the modes in W corresponds to taking the marginal Gaussian
model over the corresponding area. Also, note that the subscript 1, b − a indicates
the translation invariance of our pathological shape modifications.

Now, let La,b(θ
l
a,b) be the log-probability of the retina segmentation for region

[a, b] for some l ∈ {healthy, ill1, ill2, . . . , illI }:

La,b(θ
l
a,b) := log q

(
ca,b, ba,b|θ l

a,b

)
. (5.17)

Herewemade explicit the dependency on θ l
a,b of q. Furthermore, let X = {x1, x2, ...,

xK , M} denote the partition of the M columns into K + 1 regions, and let θ =
{θ l1

1,x1 , θ
l2
x1,x2 , . . . , θ

lK
xK ,M} denote a corresponding set of modified shape priors. Then,

exploiting the independence property, the log-probability for the full scan can be
written as sum of local terms:

L1,M(θ, X, K ) = L1,x1(θ
l1
1,x2) + Lx1,x2(θ

l2
x1,x2) + . . . + LxK ,M(θ

lK
xK ,M). (5.18)

Maximum Likelihood. The objective is to find the optimal combination of regions
and corresponding priors θ :

max
K

max
X

max
θ

L1,M(θ, X, K ). (5.19)

The global optimum of this combinatorial problem can be found with dynamic pro-
gramming. To this end, let L∗

a,b denote the optimal selection of X and θ in region
[a, b] which satisfies the recursion (cf. Fig. 5.11)

L∗
a,b = max

(
max
x∈(a,b)

(
L∗
a,x + L∗

x,b

)
, max
li∈{healthy,ill1,ill2,...,illI }

La,b(θ
li
a,b)

)
. (5.20)

This equation expresses L∗
a,b as themaximumbetween the best singlemodel over area

[a, b] and the optimal factorization in two adjacent areas L∗
a,x and L∗

x,b. To compute

Fig. 5.11 Graphical representation of Eq. (5.20). The quantity L∗
a,a+1 is efficiently reused in several

computations. This structure implements a Sum-Product Network, as discussed in Sect. 5.5.2
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L∗
a,b for regions of width w = b − a, we need quantities L∗

a,x , L
∗
x,b for all regions of

smaller width. Given these, the complexity is dominated byO(I ) evaluations of the
base model to determine the rightmost maximum in (5.19).

This leads to an iterative algorithm: for increasing w ∈ {wmin, 2wmin, . . . , M},
compute L∗

a,b for all regions of that width. Finally, L∗
1,M is the optimal selection

of θ, X, K over the whole image. The total number of base model evaluations is
O(I (M/wmin)

2), which is tractable for sufficiently large wmin .

5.5 Discussion

5.5.1 Conclusion

We presented a probabilistic approach for the segmentation of retina layers in OCT
scans. The approach entails to infer a full posterior distribution p(b, c|y) that we
evaluate using a variational method. This turned out to be beneficial in several ways:
Since the inference scheme comprises efficient subproblems, segmenting oneB-Scan
only requires about 2 s. Furthermore, the quality of the computed segmentation can
be assessed and further used for pathology detection. The segmentation performance
was very good for five datasets, even in the presence of mild pathologies.

5.5.2 Prospective Work

While our major focus has been on healthy data and mild pathologies so far, we
outlined in Sect. 5.4 ongoing work about an adaption of our model to more severe
pathological deformations. We conclude this section by briefly discussing two major
aspects of corresponding ongoing and future work.
Interpretation as Sum-Product Network. The algorithm of Sect. 5.4 has an inter-
pretation as maximum a posteriori (MAP) inference in a probabilistic architecture
called Sum-ProductNetwork (SPN), introduced in [30]. This connectionmay support
future extensions and applications of our model.

Let X be a set of continuous variables. A SPN S(X) is a directed acyclic graph
with sums and products as internal nodes and probability distributions {Lk(Xk)} as
leaves, where Xk ⊆ X . In SPNs, product nodes represent factorizations and sum
nodes represent mixtures of the distributions rooted in children nodes, thus creating
a hierarchical mixture model. Inference has linear costs in the number of edges,
and it is performed by first evaluating the leaf distributions and then evaluating the
internal nodes from the leaves to the root. MAP inference is similarly performed
after replacing the sum operator by the max mapping.

Our algorithm can be directly interpreted as MAP inference on a SPN per-
formed in logarithmic space, by substituting the sums with products in Eq. (5.18)
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(since ln
∏

(·) = ∑
ln(·)) and leaving the max nodes unchanged (since ln max(·) =

max ln(·)). This allows us to treat our model as a fully fledged tractable probabilis-
tic model. In particular, the posterior probability of a leaf node Lk ∈ S is given by
Lk(Xk)

∂S(X)

∂Lk
, where Lk(Xk) denotes the value of Lk for evidence Xk , and

∂S(X)

∂Lk

denotes the derivative of the SPN value S(X) with respect to leaf node Lk , which
can be computed in time that is linear in the number of SPN edges [30]. In our case,
leaf models constitute the retina segmentation model, and consequently posterior
marginals for these models can be computed efficiently, to assign a probability to
each choice of segmentation and priors. This property can be used to evaluate the
confidence of a segmentation and to suggest explicitly alternative segmentations
weighted by the respective probability - an aspect to be explored in our future work.
Learning Local Pathological Priors. There are various ways, how pathology spe-
cific modes can be obtain. Given a sufficient amount of labeled data, they can be
learning in a supervised fashion. In the semi-supervised case, one can hand-design
pathological modes according to the known properties of the pathology, as was done
in our preliminary experiments. For example, pathological modes for the circular-
shaped fluid deposits in AMD are very similar to sinusoidal functions.

Finally, it is also possible to learn priors in a completely unsupervised way by
defining a parametric shapemodel, e.g. a spline, performa grid-search over parameter
configurations and select those splines that yielded the best fits in terms of the likeli-
hood of the segmentations. While computationally expensive, this can be performed
offline, with only the best k splines used in the final model.

Acknowledgements Support of the German Science Foundation, grant GRK 1653, is gratefully
acknowledged.

Appendix

Derivation of the Objective (5.15)

In this section we will perform the derivations that are needed to rewrite the objective
J (qb, qc) in (5.12) into the final optimization problem (5.15).

First Summand log P(c| y) of J(qb, qc)

The term p(c|y) does not depend on b, so qb integrates out. Moreover, using the
structure of qc and p(c|y), we have

−
∫

b

∑

c

qb(b)qc(c) log p(c|y) = −
M∑

j=1

∑

c•, j

qc(c•, j )
N∑

i=1

log p(xi, j (c•, j )|yi, j ),
(5.21)
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where the second sum takes into account all combinations of boundary assignments
for c•, j . Since we only use terms for labels inX t and each label depends only on one
ck, j , we can further simplify (5.21) into

−
M∑

j=1

K∑

k=1

qc(ck, j ) log p(xck, j , j = tk |yck, j , j ) = −
M∑

j=1

K∑

k=1

qT
c;k, jψk, j , (5.22)

where ψk, j ∈ R
N contains all log-probabilities for boundary tk in column j . Here

qc;k, j ∈ R
N denotes the full discrete probability for all image rows (c.f. (5.13)). If we

would also consider appearance terms belonging to layers lk , the derivation would
be similar as for the term p(c|b) in the next section.

Second Summand log P(c|b) of J(qb, qc)

We consider the expectation of p(c|b):

−
∫

b

∑

c

q(b, c) log p(c|b) = −Eqc

[
Eqb [log p(c|b)]

]
. (5.23)

We begin by giving expressions for the conditional densities of p(b) defined in (5.8).
Using the standard form for conditional normal distributions (e.g. [22, Eq. (A.6)]),
the moments of p(b j |b\ j ) are

p(b j |b\ j ) = N (b j ;μ j |\ j , � j |\ j ),
μ j |\ j = μ j − � j |\ j K j,\ j (b\ j − μ\ j ), � j |\ j = (K j j )

−1. (5.24)

The marginal density p(bk, j |b\ j ) is obtained by restricting the moments of (5.24) to
k. The moments of p(bk, j |bk−1, j ) are defined in the same way.
Expectation with respect to qb. We note that terms p(b j |b\ j ) depend on b\ j via
(μ j |\ j )k . It suffices to adopt the most crude numerical integration formula (integrand
= step function) tomake this dependency explicit:

∫ a+1/2
a−1/2 f (x)dx ≈ f (a). Applying

the logarithm, we obtain a representation that is convenient for the evaluation of∫
b · · · qbdb. For (5.8a) we have:

Eqb [log p(c1, j = n|b)] = Eqb [log p(b1, j = n|b)]
= C − 1

2(� j |\ j )1,1

(
n2 − 2nEqb

[
(μ j |\ j )1

] + Eqb

[(
(μ j |\ j )1

)2] )
.

(5.25)

Replacing (μ j |\ j )1 with its definition (5.24) and abbreviating the kth rowof� j |\ j K j,\ j
∈ R

K×K ·(M−1) by the column vector λ
j
k yields
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= C − 1

2(� j |\ j )1,1

(
2(n − μ1, j )(λ

j
1)TEqb [b\ j ] + (λ

j
1)

T
(
Eqb [b\ j bT\ j ] − 2μ\ jEqb [b\ j ]

)
λ
j
1

)
,

where the moments of b\ j with respect to qb are

Eqb [b\ j ] = μ̄\ j , Eqb [b\ j bT\ j ] = �\ j,\ j + μ̄\ j μ̄T
\ j . (5.26)

Terms in (5.8b)

Eqb [log p(ck, j = n|ck−1, j = m, b)]
= Eqb [log(p(bk, j = n|b\ j )p(bk, j = n|bk−1, j = m))], (5.27)

are products of two Gaussians. The dependency on b\ j is again due to p(bk, j =
n|b\ j ). The product of two Gaussians is again Gaussian, e.g. [22, Eq. (A.7)], and
evaluating (5.27) in the same manner as above yields a similar result as for (5.25).
We define matrices 
k, j and vectors ω1, j by

(
k, j )m,n =Eqb [log p(ck, j = n|ck−1, j = m, b)],
(ω1, j )n =Eqb [log p(c1, j = n|b)], (5.28)

for k = 2, . . . , K , j = 1, . . . , M and 1 ≤ m ≤ n ≤ N . To enforce ordering con-
straints (5.2), we set all entries of 
k, j for m > n to zero. Figure5.12 illustrates
how the transition matrix 
k, j (right panel) is composed of the two components
Eqb [log p(bk, j |bk−1, j )] (left panel) and Eqb [log p(bk, j |b\ j )] (middle panel). While
the first termprovides local information about the distance of two neighboring bound-
aries in one column, the latter provides global information about the expected posi-
tion of bk, j taking into account Eqb [b\ j ], the expected boundary positions at all other
image columns given qb.
Expectation with respect to qc. The Markov random field factorizes over columns.
Furthermore, each term in p(c|b) depends on at most two ck, j . We thus have

(a) Local: bk,j |bk−1,j (b) Global: bk,j |b\j (c) Both terms combined

Fig. 5.12 Illustration of a transition matrix 
k, j (c) and the local (a) and global (b) shape infor-
mation it is composed of
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−
∫

b

∑

c

q(b, c) log p(c|b) = −
M∑

j=1

∑

c•, j

qc(c•, j )Eqb [log p(c•, j |b)]

= −
M∑

j=1

N∑

c1, j=1

qc(c1, j )Eqb [log p(c1, j )|b)]

+
K∑

k=2

N∑

ck, j=1

N∑

ck−1, j=1

qc(ck, j , ck−1, j )Eqb [log p(ck, j |ck−1, j , b])

(5.29)

Finally, using the notation introduced in (5.28), we can rewrite (5.29) in vectorized
form as

−
M∑

j=1

(
(qc;1, j )Tω1, j +

K∑

k=2

〈qc;k∧k−1, j ,
k, j 〉
)

. (5.30)

Third Summand log P(b) of J(qb, qc)

We use the relation
aT Ba = tr(aaT B) = 〈aaT , B〉,

valid for symmetric matrices, where 〈·, ·〉 denotes here the inner product over matri-
ces. Making use of (5.26), we obtain

−
∫

b
qb(b) log p(b)db = C + 1

2
〈�−1, � + μ̄μ̄T − 2μ̄μT + μμT 〉. (5.31)

Entropy Terms H[qb] and H[qc]

Finally, we make explicit the entropies of qb and qc. For the normal distribution qb
we have that

− H [qb] =
∫

b
qb(b) log qb(b)db = C − 1

2
log |�|, (5.32)

see for example [22, Eq. (A.20)]. For the negative entropy of qc, making use of the
structure of qc, we have

−H [qc] =
M∑

j=1

( K∑

k=1

∑

ck, j

qc(ck, j ) log qc(ck, j )

+
K∑

k=2

∑

ck−1, j

∑

ck, j

qc(ck, j , ck−1, j ) log
qc(ck, j , ck−1, j )

qc(ck−1, j )qc(ck, j )

)
.
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Optimization with Respect to qb

The previous section derived the terms of the objective function J (qb, qc). We now
turn to the problem of optimizing J (qb, qc) with respect to μ̄ and �, the parameters
of qb. Recall that in (5.28) we defined vectors ω1, j and matrices 
k, j whose entries
were all depend on μ̄ and �. More dependencies are due to the expectation of p(b)
with respect to qb (5.31) and the entropy of qb (5.32). Inspecting all these terms,
we see that μ̄ and � are independent from each other, so we can optimize them
separately.
Optimization With Respect to �. Optimizing (5.15) with respect to � yields

min
�

−1

2
log |�| + 1

2
〈K + P̃, �〉, (5.33)

whichhas the closed-formsolution:� = (K + P̃)−1. Thenewly introducedmatrix P̃
contains the dependencies of terms ω1, j and 
k, j on � as detailed next.
Derivation of P̃ . Only considering terms in the nth entry of (ω1, j ) that depend on
�, we obtain

(ω1, j )n(�) = − 1

2(E j |\ j )1,1
(λ

j
1)

T�\ j,\ jλ
j
1,

and accordingly for (
k, j )m,n(�). We defined λ
j
k in Sect.A.1.2 as the kth row of

� j |\ j K j,\ j , hence as a column vector of length K · (M − 1). We introduce the
extended version λ̃

j
k of length KM , padded with zero entries such that

(λ̃
j
k )

T� λ̃
j
k = (λ

j
k )

T�\ j,\ jλ
j
k . (5.34)

Note that entries of (
k, j )(�) and (ω1, j )(�) are independent of m and n and
therefore independent of qc. Thus

(qc;1, j )Tω1, j (�) = 1 · ω1, j (�), 〈qc;k∧k−1, j ,
k, j (�)〉 = 1 · 
k, j (�).

Using bT Bb = 〈bbT , B〉, we obtain for (5.30)

−
M∑

j=1

(
(qc;1, j )Tω1, j (�) +

K∑

k=2

〈
qc;k∧k−1, j ,
k, j (�)

〉)

= 1

2

M∑

j=1

K∑

k=1

〈
1

(E j |\ j )k,k
λ̃
j
k (λ̃

j
k )

T , �

〉

= 1

2
〈P̃, �〉.
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Since P̃ is independent of qc and depends only on the sufficient statistics of p(b),
we do not have to update it while optimizing J (qb, qc). Furthermore, since it is
composed of linear combinations of submatrices of K , it can be expressed solely in
terms of W and σ 2 I .
Optimization With Respect to μ̄. Optimizing (5.15) with respect to μ yields

min
μ̄

1

2
〈K + P̃, μ̄(μ̄ − 2μ)T 〉 + p̃T μ̄, (5.35)

with the solution μ̄ = μ − (K + P̃)−1 p̃. Again p̃ captures the dependencies of ω1, j

and 
k, j , this time on μ̄, and is derived below. P̃ is the same as above. To minimize
(5.35), we use conjugate gradient descent which enables us to calculate μ̄ using
(K + P̃) instead of (K + P̃)−1.
Derivation of p̃. Only considering terms in ω1, j depending on μ̄, we obtain

(ω1, j )n(μ̄) = − 1

2(E j |\ j )1,1

(
2(n − μ1, j )λ

j
1μ̄\ j + λ

j
1(μ̄\ j μ̄T

\ j − 2μ\ j μ̄T
\ j )(λ

j
1)

T
)

and accordingly for (
k, j )m,n(μ̄). The first term is dependent on n and thus on qc,
whereas the remaining terms are again independent and qc marginalizes out as above.
Using again (λ̃

j
1)

T as the extended version of λ
j
1 (see (5.34)) we obtain

−
M∑

j=1

(
(qc;1, j )Tω1, j (μ̄) +

K∑

k=2

〈
(qc;k∧k−1, j )

T , 
k, j (μ̄)
〉)

= 1

2

M∑

j=1

K∑

k=1

1

(E j |\ j )k,k

(
2

(
Eqc [ck, j ] − μk, j

)
(λ̃

j
k )

T μ̄ + 〈
λ̃
j
k (λ̃

j
k )

T , μ̄(μ̄ − 2μ)T
〉)

= 1

2

M∑

j=1

K∑

k=1

2 p̃Tk, j μ̄ + 〈
P̃k, j , μ̄(μ̄ − 2μ)T

〉

= p̃T μ̄ + 1

2

〈
P̃, μ̄(μ̄ − 2μ)T

〉
.

Since p̃ is dependent on qc, it is updated at every iteration.
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Chapter 6
Diagnostic Capability of Optical
Coherence Tomography Based
Quantitative Analysis for Various Eye
Diseases and Additional Factors
Affecting Morphological Measurements

Delia Cabrera DeBuc, Jing Tian, Andrea Szigeti, Erika Tátrai,
Boglárka Enikő Varga and Gábor Márk Somfai

Successful retinal layer segmentation allows quantitative studies of the retinal struc-
tures based on OCT images, which mainly refer to the layer thickness measurements
and morphology analyses. The aim of this chapter is to summarize the diagnostic
capability of OCT based quantitative analysis for various eye diseases and additional
factors affecting morphological measurements.

6.1 Introduction

OCT provides a non-invasive, high-speed and high-resolution approach to visualize
the cross-sectional or even three-dimensional tissue structures in vivo.OCThas added
significant contributions tomany fields of clinical research since its invention in 1991
and since then it has possibly become the most commonly used ophthalmic decision-
making technology [1–4]. The diagnostic capabilities of OCT have renovated the
ophthalmology practice and provided demonstrable clinical benefits. Widespread
clinical adoption of this technology has resulted in ophthalmic OCT images obtained
each second by the medical community, anywhere in the world. This success has
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been accomplished throughout teamwork of clinicians, researchers and industry that
significantly contributed to facilitating clinical solutions into a medical device.

During the last decade, OCT technology has advanced drastically in terms of
speed, resolution and sensitivity and has become a key diagnostic tool in the areas
of retinal and optic nerve pathologies [5]. Recent advancements in OCT imaging
allow the visualization of retinal structures in a few seconds with an axial resolution
of ~2 microns. The upgrade of both scanning speed and resolution has significantly
increased the potential of OCT to visualize more detailed retinal structures, and
thus has further enhanced its capability of providing qualitative assessment of tissue
features and pathologies or objective quantitative measurements.

The qualitative assessment of the OCT image involves mostly the description
of the structural changes of the retina from the vitreo-retinal interface down to the
choroid. In this chapter, we are not aiming to describe these morphological features
as theywould involve almost the entire spectrum of retinal pathologies. However, it is
important to emphasize the common language intended to be used for the description
of retinal structure that has been the source of substantial debate ever since OCT
imaging has been introduced in the clinical practice. Recently, the International
Nomenclature for Optical Coherence Tomography (IN·OCT) Panel has developed
its recommendations for the usage of common language in OCT nomenclature (see
[6].

The quantitative assessment of retinal OCT images refers mostly to the thickness
measurements on OCT images. These thickness measurements can help the clinician
in the decision-making process in various pathologies, for example, in DME. The
Diabetic Retinopathy Clinical Research Network (DRCR.net) has made substantial
work in defining the nomenclature and landmarks to be used for OCT diagnostics,
the most important of these being the central subfield mean thickness of the macula
[7–10]. However, quantitative measurements can also be made for various retinal
features, like the area of retinal atrophy and drusen volume in dry age-related macu-
lar degeneration, the thickness of the macular ganglion cell complex (GCC), retinal
nerve fiber layer (RNFL) and the opening of the Bruch’sMembrane in the optic nerve
head (ONH) in glaucoma diagnostics [11–14]. Recently, the thickness measurement
of the choroid has become possible and offers an exciting insight into retinal patho-
physiology [15]. Finally, the optical and textural properties of the OCT scans can
be quantitatively described, although this latter has not yet been used in the daily
diagnostic routine [16, 17].

An exciting field in OCT diagnostics is the segmentation of the retinal layers seen
on the B-scans. Our group has been among the first in the field to describeOCT image
segmentation [18] and applied it clinically to both time- and frequency-domain OCT
imaging data. The assessment of retinal microstructure can help to better understand
the cross-talk between the various cell types and cellular layers of the retina in health
and disease and it may provide a window to the central nervous system. In glaucoma,
the macular ganglion cell complex (GCC, comprising the macular RNFL, Ganglion
cell layer (GCL) and inner plexiform layer (IPL)) seems to be a very sensitive marker
for diagnostics and monitoring of disease progression [19].
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It has been shown that there is a loss of the GCC in both type 1 and 2 diabetes
before clinically detectable retinopathywould occur that is most possibly attributable
to retinal diabetic neurodegeneration [20–22]. We could also show that in the case
of cataract surgery the photoreceptors seem to be mostly involved in the subtle
thickening of the retina, an effect that can be potentially avoided using femtosecond-
laser assisted surgical procedures [23].

There aremultiple, promising results withOCT segmentation inmultiple sclerosis
(MS), Alzheimer’s disease, Parkinson’s, vascular dementia, etc. where the thickness
of the RNFL (cpRNFL) and the macular GCL may provide a surrogate marker for
pathological processes in the central nervous system [16, 24–32]. Recently, it has
been shown that circumpapillary RNFL measurements may even predict the risk of
disability worsening in MS [33].

OCT image segmentation has also been shown to be useful in heredodegenerative
diseases, for example in retinitis pigmentosa, Stargardt’s disease, and other macular
dystrophies. In the case of retinitis pigmentosawe could show that inner retinal layers
can still be preserved when there is already observable damage in the outer layers of
the macula.

In this chapter, the diagnostic capability of OCT based quantitative analysis for
various eye diseases and additional factors affecting morphological measurements
are outlined based on a review of the literature and specific related studies published
to date from our group. We have organized the chapter as follows. The quantitative
measurements of retinal pathology based on theOCT image alongwith image quality,
artifacts and error issues is presented in Sect. 6.2. Section 6.3 provides the necessary
clinical background about the specific retinal diseases that will be outlined in this
chapter to show the diagnostic capabilities of OCT technology as well as additional
factors affecting OCT measurements. Section 6.4 offers some concluding remarks.

6.2 OCT-Based Retinal Morphological Measurements

6.2.1 Quantitative Measurements of Retinal Morphology

OCT can aid in identifying, monitoring and quantitatively assessing various pos-
terior segment conditions including macular edema, age-related macular degenera-
tion, full and partial-thickness macular hole, epiretinal membrane, intaretinal exu-
date, idiopathic central serous chorioretinopathy, RPE detachment, detachment of
the neurosensory retina, macular lesions associated with ONH pits or glaucoma and
numerous other conditions.

As a matter of fact, OCT can demonstrate the presence of edema where it is
not seen on biomicroscopy or angiographically. A very important feature of the
OCT system is that it provides information on the retinal structures. For example,
the location of fluid accumulation in relation to the different retinal layers may
be determined and the response to treatment without the need to perform invasive
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studies such as fluorescein angiography may be objectively monitored. At the same
time, it may be possible to explain why some patients respond to treatment while
others do not. OCT has significant potential both as a diagnostic tool and particularly
to objectively monitor subtle retinal changes induced by therapeutic interventions.
Thus, OCT may become a valuable tool in determining the minimum maintenance
dose of a certain drug in the treatment of retinal diseases, and may demonstrate
retinal changes that explain the recovery in some patients without angiographically
demonstrable improvement and lack of recovery in others.

In the clinical routine, measurement of retinal thickness by the OCT software
depends on the identification of the boundaries of the various cellular layers of the
retina. Once the various layers can be identified and correlated with the histological
structure of the retina, it may seem relevant to measure not only the entire thickness
of the retina, but the thickness of the various cellular layers. Moreover, measuring
the reflectance of the various retinal layers on OCT images may also be of interest.
Drexler et al. have shown in in vitro and in vivo studies that physiological processes
of the retina lead to optical density changes that can be observed by a specialM-mode
OCT imaging, known as optophysiology [34, 35]. Thus, it also seems rational that
quantitative analysis of reflectance changes may provide clinically relevant informa-
tion in retinal pathophysiology [16].

6.2.2 Quality, Artifacts, and Errors in Optical Coherence
Tomography Images

Several investigators have demonstrated a relatively high reproducibility of OCT
measurements [7, 8, 36–42]. However, quantitative retinal thickness data generated
by OCT could be prone to error as a result of image artifacts, operator errors, decen-
tration errors resulting from poor fixation, and failure of accurate retinal boundary
detection by the commercial and custom-built software algorithms. Therefore, the
correct image acquisition along with the accurate and reproducible quantification of
retinal features by OCT is crucial for evaluating disease progression and response
to therapy. Usually, image analysis quality largely depends upon the quality of the
acquired signal itself. Thus, controlling and assessing the OCT image quality is of
high importance to obtain the best quantitative and qualitative assessment of retinal
morphology. At present, the commercial software of some OCT systems (e.g. Cirrus
OCT) provides a quality score, identified as the signal strength (SS) but the clinical
advantage of this parameter is not really known. The quality score is based on the
total amount of the retinal signal received by the OCT system. We note that the SS
score should not be used as an image quality score since it is basically a SS score.
Stein et al. found that SS outperformed signal-to-noise ratio (SNR) in terms of poor
image discrimination [42]. SNR is a standard parameter used to objectively evalu-
ate the quality of acquired images. Stein et al. suggested that SS possibly provides
insight into how operators subjectively assess OCT images, and stated that SS is a
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Fig. 6.1 Inter-B-scan (Heidelberg Engineering, Heidelberg, Germany) and inter-volume
reflectance variation due to the tilted incident beam. a The B-scan from a baseline visit. b The
B-scan of the repeated OCT volume scan. The incident angle could be visualized from the image
border formed from the speckle noise on (b). The intensities on the left and right side of the retina
(region 1 and 2) were different due to the difference of path length drawn as indicated with the long
arrows. The incident angle generates the intra B-scan variations on region 1 and 2 inter-volume
variation between volume (a) and (b)

combination of image quality (SNR) and uniformity of SS within a scan [43]. How-
ever, additional detail about SS interpretation is not available from the manufacturer
because of its proprietary nature.

On the other hand, certain types of retinal pathology have a propensity to generate
poorer quality images and it is difficult to determine whether these pathological
images are of poor quality, or if these are the best possible quality images that can
be acquired in an eye with advanced retinal damage. While scanning patients in
our clinic, we have observed several different types of scan artifacts. Some of these
artifacts have been observed previously, and have been also analyzed in a systematic
manner [40, 44, 45]. In general, six types of scan artifacts have been identified and
classified in two different categories: (I) artifacts caused by limitations in the built-in
algorithm identifying the retinal boundaries, such as (1) misidentification of the inner
retina, (2) misidentification of the outer retina, and (3) artifacts caused by a degraded
scan image; (II) artifacts derived from poor scan acquisition related to operator error:
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Fig. 6.2 Inter-B-scan (Heidelberg Engineering, Heidelberg, Germany) and inter-volume
reflectance variation due to difference in image quality a B-scan of a OCT volume on superior
quadrants with Q�29. b the adjacent B-scan of image (a) in the same volume with Q�25. c B-
scan of repeated volume on the same location as image (a) withQ�23. The image quality difference
caused drastic change in reflectance between adjacent scans and repeated volumes

(4) “off center” artifacts that occurredwhen the foveal center ismisidentified; (5) “cut
edge” artifacts, that occurred when the edge of the scan is truncated improperly; (6)
“out of register” artifacts, defined as a scan that is shifted superiorly such that the inner
retina is truncated [45]. Changes in internal reflectivity due to error related artifact
procedures in a normal healthy subject obtained with Spectralis OCT (Heidelberg
Engineering,Heidelberg,Germany) are shown inFigs. 6.1, 6.2 and6.3.TheSpectralis
SD-OCT system advises quality score (Q) values ≥15 on a scale of 0 to 40.

Finally, it is worth to mention that the retinal thickness values provided by the
commercial OCT mapping software should be carefully reappraised. For example,
due to the operator pitfall’s errors, it may be possible that the OCT custom built-
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Fig. 6.3 Imaging artifacts in enface map of ganglion cell layer and inner plexiform layer complex
in volumetric OCT data (Heidelberg Engineering, Heidelberg, Germany). Left and right images are
the enfacemaps of ganglion cell layer and inner plexiform layer complex from two repeatedmacular
OCT volumes (496×768×61 voxels) of right eye of a healthy patient acquired by Spectralis SD-
OCT. Regions highlighted with white rectangles illustrated (1) intra-B-scan reflectance variations
(2) inter-B-scan reflectance variation and (3) inter-volume reflectance variation

in algorithms fail to locate properly the inner and outer boundaries of the various
cellular layers of the retina. The estimated locations could be sensitive to relative
differences in reflectance between the outer and deeper retinal structures. Thus, even
scans of normal eyes could have boundary misidentification artifacts under operator
errors.

6.2.3 Effect of Axial Length on Thickness

The measurement of the axial length (AL) of the eye and the thickness of the ocular
wall is obtained using ultrasound which is a standard diagnostic method in ophthal-
mology [46]. The first paper describing the measurement of the ocular coat dimen-
sions using ultrasound and the correlation between the thickness of the ocular wall
and AL was published in 1984 [47]. Eight years later, Németh et al. showed that
the volume of the ocular coats is nearly constant in healthy eyes; furthermore, their
results confirmed that the thickness of the ocular wall correlates negatively with the
AL of the eye [48]. On the other hand, in eyes with uveitis, hypotonia or exophthal-
mus, the thickness and volume of the ocular wall were increased, as a result of the
edema, while in eyes with glaucoma both the thickness and volume of the ocular wall
were decreased, probably as a consequence of the destruction of the ganglion cells
[48]. Previous studies suggested that there is a correlation between retinal thickness
and AL, age, OCT image quality, gender or race in healthy eyes [49–55]. This study
evaluated the effect of AL on the thickness of the total retina and the thickness of
the intraretinal layers in healthy eyes using OCT image segmentation.
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Szigeti et al. evaluated the correlation betweenAL and the thickness of intraretinal
layers in themacula. Their results showed that in themacular area the thickness of the
retina and all intraretinal layers, except for the RNFL, GCC and the RPE, correlated
withALwith an increasing trend towards the outer layers in the peripheral ringwhich
suggests that the outer layers are elongating or “stretching” with increasing eyeball
length [56] (see Table 6.1). Since the OCT examination was carried out in the macula
in a limited, 6 mm diameter wide retinal area, they did not have the opportunity to
measure the total volume of the retinal layers involving the entire retina to the ora
serrata and thus they were not able to get comparable results to those published by
Németh et al. using ultrasound [48].

Conflicting results were reported in previous studies about the correlation between
AL and thickness of the intraretinal layers. Cheung et al. measured the thickness of
the circumpapillary RNFL and other characteristic parameters of the optic disc (like
the area of the ONH, the area of the rim area, the area of the excavation and the
cup/disc ratio) using spectral domain OCT (SD-OCT) [57]. They found that AL was
significantly and strongly correlated with each examined parameter. Mwanza et al.
examined the effect of AL on the thickness of the GCL+IPL complex in the macula,
also using SD-OCT [58]. Their results indicated that the thickness of the GCL+IPL
complex decreased significantly by the increase in AL. On the contrary, Ooto et al.
did not find the same trend as the above authors for the correlation between AL
and the thickness of any of the intraretinal layers using automatic segmentation and
intraretinal layer thickness measurement on SD-OCT images [53]. It is worth to note
that mild and high myopic eyes were excluded from the study by Ooto et al., while
these were included in the study by Cheung et al. and Mwanza et al. [53, 57, 58].
Therefore, the explanation for the different results could at least in part be that the
standard deviation of the AL of the examined eyes was very low in the study of Ooto
et al., hence the significant deviations which are observable in the case of shorter or
longer eyes did not affect their results.

Szigeti et al. results showed that the weightedmean thickness of the nuclear layers
(GCL+IPL, INL and ONL) correlated with AL after adjustment for age, sex and
image quality, the correlation getting stronger towards the outer layers. Compared to
the above-mentioned studies, in Szigeti et al. study the AL of the eyes was relatively
in a wide range which could also contribute to their results [56].

According to two previous studies using OCT, the total thickness of the central,
1mmdiameterwide area of themacula (the central subfield) and totalmacular volume
also correlate with AL, although with relatively low coefficients of correlation (r�
−0.222 and r�0.308, respectively) [59, 60]. Szigeti et al. results were in line with
these findings as the correlation between total retinal thickness (a derivative of total
macular volume) and ALwas somewhat higher (r�−0.378) compared to the above-
mentioned studies [56].

It remains unknown whether thinning in axial myopia occurs equally in all retinal
layers. Abbott et al. studied the changes in retinal thickness (in total and across
layers) in a mammalian animal model (tree shrews, Tupaia belangeri) of high axial
myopia using OCT and histological sections from the same retinal tissue. Analysis
of retinal layers revealed that the IPL, INL, and OPL are showing the most thinning
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Table 6.1 Results of thickness (µm)measurements of intraretinal layers of our study subjects. The
results are organized by study regions, in the central area, pericentral and peripheral rings (source
Szigeti et al. [56])

Macular layer Mean±SD
(µm)

Unadjusted correlation Partial correlation

r p r p

RNFL

Whole 36.38±2.48 0.167 0.232 0.169 0.241

pericentral
ring

23.88±2.47 0.238 0.086 0.222 0.121

peripheral
ring

41.49±2.99 0.137 0.329 0.138 0.338

GCL+IPL

Whole 70.42±5.62 −0.310 0.024 −0.328 0.020

pericentral
ring

94.79±6.47 0.036 0.796 0.015 0.919

peripheral
ring

65.85±6.12 −0.387 0.004 −0.402 0.004

GCC

Whole 106.80±7.08 −0.188 0.178 −0.199 0.166

pericentral
ring

118.66±7.65 0.108 0.443 0.086 0.552

peripheral
ring

107.34±7.76 −0.253 0.068 −0.262 0.066

INL

Whole 33.92±1.94 −0.319 0.020 −0.321 0.023

pericentral
ring

38.49±2.52 0.087 0.534 0.121 0.402

peripheral
ring

33.81±2.14 −0.418 0.002 −0.429 0.002

OPL

Whole 32.36±1.53 −0.290 0.035 −0.277 0.051

pericentral
ring

37.99±2.37 0.009 0.948 0.004 0.980

peripheral
ring

31.90±1.57 −0.369 0.007 −0.360 0.010

ONL

Whole 81.44±5.68 −0.318 0.005 −0.399 0.004

Fovea 118.43±9.69 −0.150 0.282 −0.119 0.409

pericentral
ring

90.53±7.95 −0.310 0.022 −0.330 0.019

peripheral
ring

77.51±5.33 −0.426 0.001 −0.448 0.001

(continued)
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Table 6.1 (continued)

Macular layer Mean±SD
(µm)

Unadjusted correlation Partial correlation

r p r p

RPE

Whole 12.20±1.49 0.130 0.925 0.063 0.665

Fovea 14.56±1.65 −0.234 0.092 −0.212 0.140

pericentral
ring

11.90±1.93 −0.242 0.081 −0.214 0.135

peripheral
ring

12.17±1.48 0.058 0.680 0.140 0.333

Total retina

Whole 292.23±12.49 −0.383 0.005 −0.378 0.007

Fovea 237.13±19.55 0.108 0.442 0.148 0.304

pericentral
ring

321.82±13.39 −0.112 0.424 −0.114 0.431

peripheral
ring

285.55±13.09 −0.456 0.001 −0.450 0.001

cpRNFL 102.88±7.73 −0.198 0.204 −0.171 0.290

SD standard deviation, RNFL retinal nerve fiber layer,GCL+IPL ganglion cell and inner plexiform
layer complex, INL inner nuclear layer, OPL outer plexiform layer, ONL outer plexiform layer,
RPE retinal pigment epithelium, cpRNFL circumpapillary retinal nerve fiber layer. The p values in
bold represent statistically significant differences with p«0.05. The results in bold letters indicate the
significant correlations obtained betweenALwith thickness ofmacular layers, with both unadjusted
data and data after adjusting for age, signal strength value and sex

[61]. From the biomechanics point of view, thinning of intermediate thinner layers
in myopic eyes could be explained by stiffness conditions of the tissue exposed to
mechanical stress with traction and shear forces acting at its innermost surface [62].

A real cell density measurements (cells/mm2) showed all neuronal cell types
(photoreceptors, bipolar/horizontal cells, amacrine cells and ganglion cells) were
involved in retinal thinning [61]. Szigeti et al. results are in accordance with the
above; however, they also observed changes of the ONL suggesting the additional
involvement of the photoreceptors, as well. These changes in the outer retina may be
mediated by fluid forces (e.g. active flows), such as the RPE active pump flux that
creates a pressure-driven fluid flow between the choroidal space and the subretinal
space [63].

Wolsley et al. showed retinal thinning measured by OCT in human myopes com-
pared to emmetropes along a line from 16° superior temporal to the fovea to 16°
inferior nasal. The thinning appeared to slowly increase from 4° to 16° nasally and
temporally, but regional differences were not analyzed in detail. Their possible expla-
nation is the retinal laminar thickness change due to the shearing between retinal cell
layers and cone packing [64]. The fact that the retinal thinning was more pronounced
in the peripheral retinal layers correlateswith our results that the correlations between
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AL and thickness of the retinal layers are stronger in the outer regions, perhaps due
to the lower shear resistance of the thinner peripheral retina [65, 66].

The introduction of the latest SD-OCT devices led not only to a dramatic increase
in mapping speed and some increase in axial resolution, but the examination of the
choroid became also possible. In the past years, promising results have been obtained
by themanual segmentation andmeasurement of choroidal thickness onOCT images.
Li et al. and Sogawa et al. demonstrated strong negative correlation between AL and
choroidal thickness measured in the subfoveal area of young and healthy eyes (r�
−0.624 and r�−0.735, respectively) [67, 68]. Unfortunately, it is not possible to
obtain choroidal thickness from TD-OCT images due to the poor penetration and
thus low resolution beneath the RPE, which is one of the shortcomings of this study.

As the growth of the eyeball is stipulated to continue until the age of 20 years
[69], it is important to note that a longitudinal study spanning from adolescence to
early adulthood would be necessary to evaluate the effect of AL on the thickness of
intraretinal layers of the macula under and above the age of 20 years. Szigeti et al.
hypothesized that as the eyeball stops to grow the nuclear layers follow the shape of
an elongated globe and get thinner by lateral stretching, while the other layers are not
capable of this stretching [56]. It should, however, be taken into consideration with
such a study that longer AL decreases the magnification of fundus imaging, making
transverse dimensions appear smaller on the OCT scan, in inverse proportion to AL
[52]. Based on the Szigeti et al. study it is suggested that the effect of AL should be
taken into consideration when using OCT image segmentation techniques in future
clinical studies involving [56].

6.3 Capability of Optical Coherence Tomography Based
Quantitative Analysis for Various Eye Diseases

The diagnostic capabilities of OCT have renovated the ophthalmology practice and
provided demonstrable clinical benefits. Widespread clinical adoption of this tech-
nology has resulted in ophthalmic OCT images obtained each second by the medical
community, anywhere in the world. During the last decade, the upgrade of scanning
speed, resolution, and sensitivity has significantly increased the potential of OCT to
visualize more detailed retinal structures. However, the amount of data to be ana-
lyzed has also increased significantly. Automatic analysis algorithms or software are
therefore essential to the clinical applications because the huge amount of volumetric
data is no longer possible to be analyzed by visual identification or manual labeling.
As the retina is a multi-layered tissue, it is important to segment the various layers
or surfaces to fully explore the retinal structure and function. The development of
OCT segmentation software has progressed extensively during the last decade. It
was originally a proprietary software solution of individual manufacturers of OCT
but it has become a generic software solution of various research groups that have
developed algorithms to automatically detect retinal surfaces [18, 70–83]. A review
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of the early methods can be found in [84]. What follows is by no means an in-
depth review of diseases, methods and technological advancements in the diagnosis
of the retinal diseases outlined; rather, it is intended to provide a short review of
our research findings about OCT diagnostic capabilities for various retinal disorders
using quantitative analyses.

6.3.1 Diabetic Retinopathy

Diabetic retinopathy (DR) is a leading cause of adult vision loss world-wide that
offers a significant diagnostic challenge. DR has sporadic visual or ophthalmic warn-
ings until visual loss develops [85]. It is now obvious that satisfactory screening
protocols can identify diabetic retinopathy at an earlier stage, when preventive steps
can be taken in time. Therefore, the effective management and prevention of eye
complications in diabetes requires the development of novel functional and struc-
tural techniques, therapeutic strategies as well as methods for immediate quantitative
results, and interpretation of clinical data. The current diabetic eye healthcare strate-
gies only aim at a model of care for treating DR based on diagnosis rather than an
opportunity for preventative eye care and health promotion. Ophthalmoscopy, fun-
dus photography, and fluorescein angiography are the standard tools to diagnose DR
and DME [86, 87]. However, a wide range of possible solutions, such as advanced
imaging devices likeOCTs, eyewear innovations, groundbreaking eye care treatment,
functional tests, vision training, andmobile applications are demonstrating newways
to promote better eye health and improve the general well-being of individuals with
diabetes.

Particularly, in DR assessments, OCT has been used to measure volume and total
thickness of the retina along with structural changes of the various cellular layers of
the retina with the aid of segmentation algorithms [84, 88]. In addition to reveal the
presence of exudate, photoreceptor atrophy, and haemorrhage; OCT facilitates the
visualization of fluid regions. The role of OCT in the assessment and management of
diabetic eye complications has become significant in understanding the vitreoretinal
relationships and the internal architecture of the retina in diabetes [88–93]. OCT has
improved DR and mostly DME management by enabling the direct evaluation of
retinal thickness and the quantitative follow-up of retinal thickness changes that may
greatly influence therapeutic decisions.

Several studies support the concept that early DR includes a neurodegenerative
component [90–104]. In 2009, thinning of the total retina in T1D patients with mild
non-proliferative diabetic retinopathy (MDR) relative to normal controls was found
to be a result of selective thinning of intraretinal layers [105]. This study team also
published results that demonstrated loss of visual function in the macula and related
thinning of the GCL in the pericentral area of the macula of diabetic individuals [21,
94].

Another study comparing eyes with MDR to diabetic eyes with no DR, found
a reduced RNFL thickness in the pericentral and peripheral macular regions, and
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reduced thickness of the GCL+IPL in the pericentral region of the macula [20].
While Vujosevic et al. [97] and van Dijk et al. [21, 22] only found early alterations
in the inner retina in diabetics without DR or with initial DR; Cabrera DeBuc et al.
study suggested that the outer segment of the photoreceptor layer may be vulnerable
in both type 1 diabetic individuals both with and without early DR [96]. The results
by Cabrera DeBuc et al. might also indicate that an early sign of vascular alteration
development could be detected by investigating the changes in optical properties
and thickness of the OPL. However, further investigation is required to find whether
outer retinal changes might be associated with long-term inner retinal pathology
[96]. Akshikar et al. [98] has also reported significant thinning of the outer retinal
segment in the ETDRS (Early Treatment Diabetic Retinopathy Study) regions when
investigating macular thickness differences in age-matched subjects using Spectralis
SD-OCT. Inconsistent results are present across different studies and indicate that
caution should be taken when preparing future studies involving diabetic subjects
and OCT imaging [21, 90, 91, 99–103].

Doppler OCT imaging has also demonstrated its clinical utility in detecting blood
flow change in patients with DR as well as evaluating the three-dimensional archi-
tecture of neovascular complexes in proliferative DR (PDR) [104]. OCTA, one of the
latest ophthalmic imaging developments, can be used to both quantitatively analyze
blood flow and provide high-contrast images of the retinal vascular bed immedi-
ately and without the need for dye injection [106–109]. Recent studies have shown
the potentialities of this modality to assess capillary dropout and confirm neovascu-
larization in other retinal diseases [110–112]. Although not too many studies have
been reported to date, OCTA applications in diabetes eye complications may pro-
vide an alternative to more accurate diagnosis and management of DR and DME by
quantitatively assessing capillary dropout and retinal neovascularization [113].

Further developments of OCT technology may impact DR diagnosis and improve
the management of this major clinical and public health problem. However, a low-
cost approach solution must be reached to successfully introduce its application in
population-based screening programs.

6.3.2 Multiple Sclerosis

Multiple sclerosis (MS) is a chronic inflammatory disorder that affects the central
nervous system. The disease is characterized by demyelination that leads to axonal
dysfunction and neuronal loss [114]. Unmyelinated neuronal axons offer a good
possibility to examine axonal loss as the thickness of the myelin sheath does not
affect the nerve thickness results. The innermost layer of the retina is the RNFL
being comprised of the axons of the retinal ganglion cells which get myelin sheath
only after leaving the eye through the lamina cribrosa. Therefore, the thickness
measurement of the RNFL might be a good marker of the axonal damage in MS
patients.
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The loss of retinal nerve fibers around the optic disc (cpRNFL) has been found
in the eyes of MS patients both with and without optic neuritis (ON) in the his-
tory [28, 112–119]. However, recent studies have shown that also macular thickness
and volume are decreased in the eyes of patients with MS [27, 28, 115, 120, 121],
presumably caused by the thinning of the GCL and IPL [33, 119, 121–123]. Objec-
tive markers might be necessary not only for the diagnosis but also the follow-up
of neuronal damage in MS, which could help to determine the effect of any possi-
ble therapeutic interventions in the future as well. Most of the published studies on
MS using OCT technology have assessed axonal damage by analyzing retinal thick-
ness measurements. However, optical properties and texture measures of the retinal
tissue are also attractive parameters to consider in the overall evaluations. In what
follows we review the studies that considered both structural and optical properties
measurements.

6.3.2.1 Thickness Measurements

Tatrai et al. [13] evaluated the usefulness of macular OCT image segmentation in
patients with MS to determine the structural changes of the retina of MS patients.
Particularly, OCT examination was performed in thirty-nine patients with MS and in
thirty-three healthy subjects. In this study, the parameter which could discriminate
best the eyes of healthy subjects from the eyes of MS patients was also determined.
Their results showed that the thickness of themacularGCChad the highest sensitivity
and specificity to detect axonal loss independent of ON, outperforming the cpRNFL
thickness data providedby the analysis software of the commercially available Stratus
OCT device. A strong correlation with disease severity measured by the Expanded
Disability Status Scale (EDSS) score was also obtained in the case of the GCC
thickness which implies that this parameter might also be useful in the estimation
of disease progression as a surrogate marker. This study has also shown that ON
is followed by a targeted loss of ganglion cells in the macula which can also be
objectively assessed by quantitative analysis of OCT macular images.

Several studies have reported the atrophy of the RNFL around the optic disc
in patients with MS with and even without ON in medical history [28, 112–119].
Tatrai et al. [13] findings confirmed that the mean overall cpRNFL thickness and the
cpRNFL thickness in each quadrant is significantly lower in the eyes of MS patients
with a history of ON compared to the non-ON-affected eyes and also in compari-
son with healthy eyes except for the nasal quadrant (see Fig. 6.4.). However, their
results showed that in the non-affected eyes of MS patients the cpRNFL thickness
is decreased only in the temporal quadrant compared to healthy eyes. Furthermore,
the most pronounced reduction in the thickness of cpRNFL (27 and 17% in the
ON-affected and non-affected eyes, respectively) was also observed in the temporal
quadrant. These findings agree with previous OCT studies confirming that the fibers
of the papillomacular bundle are the most susceptible to damage in ON [117, 124].
One important aspect of this fact, as it has been widely reported in glaucomatous
damage, is that the evaluation of the sectoral thickness values could provide the pos-
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Fig. 6.4 Regional differences between the non-affected eyes of MS patients and healthy eyes. The
colors show the extent of thinning based on the p-values of the thickness comparisons. We note
the central subfield (R1: black color) was excluded from the analysis for the layers which are not
present in the foveal area. Abbreviations: GCC, ganglion cell complex; GCL+IPL, ganglion cell
layer and inner plexiform layer complex; RNFL, retinal nerve fiber layer; TR, total retina

sibility to discriminate the RNFL atrophy caused by glaucomatous damage and other
disorders affecting the optic nerve, such as MS [28].

Because of neuronal loss, not only the thickness of the cpRNFL is decreased
but also the macula was found to be thinner in the eyes of MS patients in previous
reports [27, 28, 115, 120, 121]. Histopathological studies had qualitatively shown the
atrophy of the inner retina in the eyes of MS patients, while atrophy of the ONL was
not detected [125, 126]. However, no quantitative measurements were performed
because of technical difficulties, e.g. the partial post-mortem detachment occurring
in the retina in many of the eyes. Lately, some studies evaluating a low number
of patients and using OCT technology showed that the thickness of the inner retinal
layers is decreased in the eyes ofMSpatients [119, 121–123]. However, the reliability
of the methodologies used in these studies is not known. Burkholder et al. analyzed
a large sample consisting of 530 subjects with relapsing remitting MS, assessing the
volume of the total retina in the inner and outer ETDRS rings (also referred to as
pericentral and peripheral macular rings). Their results showed the thinning of the
inner and outer retinal ETDRS rings in the eyes of MS patients; however, the local
morphological changes of the observed thinning could not be identified as they did
not use any segmentation methodology. The OCT image segmentation methodology
used in our study allowed the quantification of local retinal changes in patients with
MS in vivo. Our results confirmed that the atrophy of the RNFL, GCL+IPL and
consequently the GCC is present in the macula of patients with MS even in eyes
without ON in previous history. Furthermore, Tatrai et al. [13] demonstrated that the
outer layers of the retina are not involved in this process. Although it was not an
inclusion criterion, all patients had only one episode of ON in the history; therefore,
the observed changes were not biased by the number of ON episodes. The thinning of
the retina was most pronounced in the inner inferior, inner temporal, outer superior
and outer nasal regions (see Fig. 6.4). The average cpRNFL thickness showed the
strongest correlation with the thickness of the GCL+IPL and GCC in the macula
while a weaker correlation was observed with the thickness of the total retina.
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Previously, the mean overall cpRNFL thickness was found to correlate signif-
icantly with functional parameters such as EDSS score and contrast sensitivity
[127–129]. However, the thickness of the GCL+IPL in the macula as reported by
Tatrai et al. [13] was found to correlate better with these functional parameters, which
might thus be a bettermarker of axonal damage [130]. Tatrai et al. [13] results showed
good correlation between the EDSS score and the mean overall cpRNFL thickness
and the thickness of the GCL+IPL and the GCC in the macula. However, the ROC
(Receiver operating characteristic) analysis revealed that the value most capable of
determining the presence of neuronal damage was the weighted mean thickness of
the GCC having an AUC (Area under curve) value of 0.892 with a cutoff value of
104µmhaving the highest sensitivity and specificity. The thickness of the RNFL and
GCL+IPL separately showed lower AUCs than the GCC which could be explained
with the better reproducibility of the GCC due to the high contrast between the IPL
and INL layers. Although Tatrai et al. results showed that the weighted mean GCC
thickness may provide a sensitive tool for the assessment of axonal degeneration,
care should be taken when interpreting its value as numerous neurodegenerative dis-
orders, such as glaucoma [19, 131–134]. Alzheimer’s disease [29, 30] or Parkinson’s
disease [24–26] may also lead to ganglion cell death. The use of regional values
could help the differential diagnosis between various forms of neurodegeneration,
as glaucoma could presumably lead to an infero-superior pattern of GCC loss in the
macula, while according to Tatrai et al. [13] results MS is rather leading to a hori-
zontal loss of the GCC most probably due to the loss of the papillo-macular nerve
bundle. However, further research is warranted to justify the above hypothesis.

Tatrai et al. [13] results imply that mainly the ganglion cells are affected in MS
and changes can be already present in eyes without previous history of ON which
could be the result of axonal loss due to the disease process of MS or mild ON
events not accompanied by pain. Using OCT image segmentation, Tatrai et al. could
also show in vivo that the neuronal damage affects the ganglion cells and not the
outer retina, while episodes of ON are resulting in a further pronounced loss of
the retinal ganglion cells. Furthermore, their measurements obtained with a custom-
built software were shown to be more sensitive compared to standard measurements
extracted by theStratusOCTdevice (e.g. cpRNFL, totalmacular volume) and showed
a stronger correlation with physical disability measured by the EDSS. This implies
the potential clinical usefulness of the quantification of the macular GCC thickness
by OCT image segmentation, which could also facilitate the cost-effective follow-up
of neuronal damage due to MS.

6.3.2.2 Optical Properties Measurements

Although thickness differencesmay discern regionswith signs of retinal disease from
normal regions, differences in texture descriptors of normal and abnormal retinal
tissue may also provide additional information of disease development. In fact, the
appropriateness of texture to classify tissues in OCT images has been shown in
previous studies [135]. By analyzing the spatial arrangement of color or intensities
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in an image or selected region of interest (ROI), the image irregularities can be
measured. Consequently, texture features, such as contrast and fractal dimension
could be analyzed for the macula and each intraretinal layer. The fractal dimension
(FD) of a profile or surface is a roughness measure regarded as a local property of
the system with higher values indicating rougher surface [136]. There are different
methods to determine the FD. The typical conventional approach used to calculate
the FD of an image is the box-counting method but the power spectrum method is
demonstrated to be more robust [137, 138].

The most common parameter investigated during the OCT examination is retinal
thickness. Reflectance is the direct measurement from which thickness is calculated
in OCT systems. The human retina is an almost transparent tissue that only reflects
about 1% of the incident light [139]. Retinal tissue is characterized by many small
random fluctuations in refractive index caused by the ultrastructure of the tissue
[140]. Therefore, incident light on tissue is deflected or scattered off this structure.
Therefore, differences in optical properties of normal and abnormal retinal tissue
may also provide additional information of disease development in pathological
eyes allowing OCT technology to be used for quantitative analysis of tissue optical
properties [43, 141, 142]. Accordingly, Bizheva et al. have shown previously that
optical properties of the retina may change due to their metabolic activity. They were
using OCT for this purpose and named the method optophysiology [34]. Huang et al.
have shown the early changes of reflectance of the RNFL in a rat model of glaucoma
preceding the pathological changes in the retina [52]. Gao et al. shown previously
that diabetes not only causes thinning of the inner retinal layers, but also reduces
the amplitude of the back-reflected signal from these layers [142]. Consequently,
diagnostic predictors based on reflectance changes may be of interest in MS as well
where pathological processes of the inner retina have been well described previously.

Varga et al. assessed the differences in texture descriptors and optical properties
of retinal tissue layers in 38 patients with MS and 24 healthy subjects [16]. Patient
group was divided based on the medical history, whether they previously had had
ON episode or not. Optical parameters such as contrast, FD, layer index and total
reflectanceweremeasured. They found significant difference in contrast in theRNFL,
GCL+IPL, GCC, INL and OPL when comparing MS with ON to the other groups.
Higher fractal dimension values were observed in GCL+IPL and INL layers when
comparing healthy and MS with ON groups. A significant difference was found in
layer index in the RNFL, GCL+IPL andGCC layers in all comparisons. A significant
difference was observed in total reflectance in the RNFL, GCL+IPL and GCC layers
between the three examination groups. Overall, this study found that texture and
optical properties of the retinal tissue undergo pronounced changes in MS even
without ON. These results draw attention to the structural and optical changes in
the macular area in MS even without ON supporting the previous view of ongoing
neurodegeneration also present in the retina [31, 32, 120, 143]. The inner retinal
changes appear to be related to central nervous system changes, e.g. intracranial or
brain substructure volume reduction (i.e. brain atrophy) [31, 144, 145]. Therefore,
OCT may provide a possibility to better understand the neurobiological changes in
neurodegenerative diseases such as MS and may help to develop both diagnostic
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and prognostic biomarkers that can predict clinical progress. In addition, the authors
reported that the outer retina showed no significant differences between the groups
whichwas in contrastwith Somfai et al. earlier report showing significant FD changes
in diabetic patients where, similarly, neurodegeneration was a proposed mechanism
in the background of the observed changes [17]. This could point to the fact of a
different disease mechanism at the level of the photoreceptors.

The observed differences in optical properties in Varga et al. study can be related
both to circulation or inflammatory alterations of the inner retina. There is only little
evidence about the changes in microcirculation of the retina inMS. A recent study by
Wang et al. using OCT angiography showed significantly reduced flow index around
the ONH in eyes after ON compared to healthy controls but no differences were
shown in the parafoveal circulation [146]. Although this may suggest that our obser-
vations weremost possibly not influenced by alterations inmacular microcirculation,
recent results also using hemodynamic information have revealed retinal impaired
microcirculation in the macular region [147–150]. Therefore, further investigation is
needed to better characterize the structure-function relationship in MS. On the other
hand, inflammation may presumably be present also in the retina, possibly supported
by the “inside-out” theory ofMS, namely the migration of autoreactive T cells across
the blood-brain barrier from the systemic circulation leading to inflammation [146].
The blood-retina barrier is very like the blood-brain barrier and indeed, the histo-
logical study by Green et al. described inflammatory cellular infiltrates surrounding
retinal veins in the connective tissue of the RNFL and GCL in 29% of the relaps-
ing remitting and secondary MS eyes [125]. It should be noted, however, that the
observed inflammation was more localized (i.e. not in all vessels or the entire retina)
than the neurodegeneration observed which makes the direct correlation with our
observed trends questionable in terms of revealing inflammatory alterations present
or not in our study data. However, considering that the inner capillary network lies in
the GCL and the outer capillary network runs from the IPL to the OPL through the
INL, the significant differences observed between the study groups when analyzing
reflectance and texture descriptors of the RNFL and GCL+IPL complex should be
further explored in a larger study and correlated to microvasculature measurements
(e.g. blood flow velocity and perfusion) using advanced optical imaging technologies
[146, 151, 152]. Investigating these two capillary networks in relation to structural,
optical and functional measures may provide a much better insight to determine the
role of the retinal microcirculation (i.e. capillaries, arterioles and venules) in the
increased risk of progression of MS in the presence of vascular comorbidities [153].

Although optical properties of the retinal tissue are not standardized measures for
detecting pathological changes of the retina, in contrast to thickness measurements,
reflectance-based measures are direct measures obtained from OCT images. There-
fore, it is expected that these additional properties along with thickness information
could facilitate a better diagnosis of retinal diseases.
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6.3.3 Amblyopia

Amblyopia remains an important cause of low visual acuity, affecting 2–6% of
the general population [154–157]. Unilateral amblyopia is defined as reduced best-
corrected visual acuity (BCVA) secondary to an abnormal visual experience during
the critical period of visual development. Classic causes include strabismus, ani-
sometropia, form deprivation or a combination of these factors [158].

The neural sites that are influenced by visual deprivation are still under investi-
gation. Nevertheless, it has been reported by several studies in humans [159, 160]
and also in animal species [160–164] that visual deprivation has an effect on the cell
growth in the lateral geniculate body that receives input from the amblyopic eye and
on the shift in the dominance pattern in the visual cortex [165], Banko et al. revealed
that latencies of the event-related potential components increased and were more
variable in the amblyopic eye compared to the fellow eye, although the initial neural
site of the visual deficit in this condition is still under investigation [166].

Evidences for direct retinal changes in amblyopic eyes are still inconclusive and
controversial [167–169], although electroretinograms elicited by patterned stimuli in
humans with various types of amblyopia were found to be significantly reduced [170,
171]. Studies usingOCT imaging of the retina have produced discordant results, some
investigators have found an increased circumpapillary RNFL(cpRNFL) [172–174]
or/and macular thickness [172, 174–178] in amblyopic eyes, whereas others have
found no significant differences between amblyopic and healthy eyes [179–184].

Amblyopia occurs during the periodwhen the neuronal network between the retina
and the cerebral cortex is developing andmaturing.Theneural sites that are influenced
by visual deprivation are still under investigation. However, some animal studies
demonstrated abnormal findings in retinal microstructures, including degeneration
of retinal ganglion cells [158, 185], decreased nucleolar volume and cytoplasmic
cross-sectional area of retinal ganglion cells [168], an increased number of amacrine
synapses in the IPL [186, 187], a reduction in the number of bipolar synapses in the
IPL [186], thinning of the IPL [168, 188], and a decrease in the density of Müller
fibres [188].

Evidence for direct retinal changes in amblyopic eyes remain inconclusive and
controversial. Yen et al. hypothesized that amblyopia may affect the postnatal matu-
ration of the retina, including the postnatal reduction of retinal ganglion cells, which
would lead to a measurable increase in the thickness of the RNFL in amblyopic eyes
[173]. If this indeed occur, it is likely that the arrest of normal postnatal changeswould
result not only in increased RNFL thickness but also would affect the normal matura-
tion of the macula, including movement of Henle’s fibers away from the foveola and
a decrease in foveal cone diameter, and would result in increased foveal thickness
[173]. According to this assumption and the above-mentioned animal studies we
could reasonably hypothesize that some anatomic rearrangement could be present in
the retina.

A small number of previous studies that aimed the assessment of retinal structural
changes in amblyopia has been reported. Enoch were the first of many authors to sug-
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gest a specific cause for an organic anomaly affecting the retina in amblyopia [189].
More recently, using a third-generation nerve fiber analyzer (GDx, Laser Diagnostic
Technologies, San Diego, CA), Colen et al. measured RNFL thickness in strabismic
amblyopia and reported no significant difference between amblyopic and sound eyes
[190]. In 2005,Altintas et al. carried outOCTexamination on 14 unilateral strabismic
amblyopic patients and no difference was seen in macular and cpRNFL thickness
or macular volume [179]. Kee et al. enrolled 26 unilateral amblyopic children (6
strabismic, 15 anisometropic, 5 combined amblyopes), and found no difference in
cpRNFL in any of examined 4 quadrants (superior, inferior, nasal, temporal) and
foveal thickness between neither the amblyopic eye and fellow eye, nor between val-
ues of these amblyopic patients and 42 normal control children using TD-OCT [181].
However, they found statistically significant difference in mean thickness values of
the fovea and the RNFL of the amblyopic eyes of the children with anisometropic
amblyopia (n�15) and strabismic amblyopia (n�6) (146.5 vs. 173.1µm p�0.046,
cpRNFL 112.9 vs. 92.8 µm p �0.034). They did not measure the AL, and in the
anisometropic group 10 of 15 children were myop.

Repka et al. completed studies in 2006 and 2009 evaluating 17 patients aged
5–28 years and subsequently 37 amblyopic children and found no difference in
cpRNFL thickness between amblyopic and sound eyes using TD-OCT [182, 183].
Similarly, in 2011, Walker et al. investigated 30 adults (mean age: 56 years) with
amblyopia (using Cirrus HD-OCT) and found no statistically significant difference
in RNFL thickness of any circumpapillary quadrants and macular thickness in any
anatomical location [184].

In 2004, Yen et al. used 2nd generation OCT to measure cpRNFL in 38 patients
(mean age 26.4, range 6–75 years) with unilateral amblyopia (strabismic and refrac-
tive amblyopia) and found no significant difference between strabismic amblyopic
and normal eyes [173]. However, the cpRNFL was significantly thicker in eyes
with refractive amblyopia compared with the fellow eye and the differences were
significant in the multivariate regression analysis as well with adjustment for AL,
spherical equivalent(SE), age and sex [173]. Yoon et al. had similar findings in a
study of 31 hyperopic anisometropic children regarding cpRNFL thickness (115.2
vs. 109.6 µm, p �0.019) but found no difference in mean macular retinal thickness
(252.5 vs. 249.7 µm) [174]. They did not measure the AL.

In the Sydney Childhood Eye Study, Huynh et al. tested 48 unilateral amblyopes
(17 strabismic, 19 hyperopic anisometropia) and reported that amblyopic eyes had
slightly greater foveal minimum thickness than the normal fellow eye (by 5.0 µm)
and the right eyes of non-amblyopic children (by 10 µm) [177]. This difference was
more pronounced in 6-year old children (6.9µm) than 12–year old children (4.2µm)
[177]. The IOD in foveal minimum thickness was greater in children who did not
receive any treatment for unilateral amblyopia [177]. Foveal minimum thickness
remained significantly greater in amblyopic than non-amblyopic eyes, after adjusting
for amblyopia severity and Interocular difference (IOD) in AL (p �0.01). In their
study the inner macular ring was significantly thinner in amblyopic children, and
there were no significant differences in outer macular ring thicknesses, central and
total macular volume or in cpRNFL [177].
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In 2011, Alotaibi et al. evaluated 93 unilateral amblyopic eyes (36 strabismic,
33 anisometropic, 24 combined) and found significantly thicker RNFL (259.3 vs.
255.6 µm, p <0.0001) in the overall amblyopic group, and no significant difference
in macular and foveal thickness [172]. There was slightly higher macular and foveal
thickness only in the anisometropic amblyopic group (macular thickness: 256.76 vs.
246.61 µm p �0.050; foveal thickness: 187.12 vs. 177.61 µm p �0.039). However,
they did not measure the AL either [172].

In the studies by Dickmann et al. a significant difference between the ambly-
opic and the fellow eye was found in mean macular thickness only in the strabismic
amblyopic group, and there was no difference for the refractive amblyopic group,
similarly to the cpRNFL in any of the amblyopic groups [175, 176]. Alotaibi and
Dickmann suggested based on their findings that amblyopia of different etiologies is
associated with the loss of different neural cells [172, 175, 176]. Later, in 2012, Dick-
mann evaluated 15 strabismic (esotropic) and 15 anisometropic amblyopic patients,
and found no intereye differences in cpRNFL, macular thickness and foveal volume
in neither group using SD-OCT [180].

In 2011, Pang et al. investigated 31 myopic children with unilateral ambly-
opia [178]. The refractive error in spherical equivalent in the amblyopic eyes was
−10.79±3.40 diopters and in the normal fellow eyes was −1.67±2.90 D. The
mean magnitude of anisometropia was 9.12±3.53 D, ranging from 3.63 to 17.50
D. They found a statistically significant difference in macular thickness between
amblyopic and fellow eyes, with amblyopic eyes having greater foveal thickness but
reduced inner and outer macular thickness [178]. No statistically significant differ-
ences were identified in the macular thicknesses between subgroups (purely myopic
anisometropia n�24, combinedmechanism amblyopia n�7). IOD inAL (measured
AL with A-scan ultrasound biometry) showed a moderate correlation with the nasal,
superior and temporal outer macular thickness [178].

To the best of our knowledge, there are three recent studies that employed some
form of OCT image segmentation in amblyopia so far. Al-Haddad et al. used one
single horizontal SD-OCT scan for the manual segmentation of six layers of the
central 1000 µm diameter area and found an increase in the INL and a decrease
in the ONL in the temporal area in amblyopic eyes compared to the fellow eyes,
while the mean foveal thickness was increased in amblyopic eyes (228.56±20.2
vs. 221.7±15.3 µm) [191]. Tugcu et al. used the built-in analysis option of the
RTVue OCT platform to measure the thickness of the GCC and found an increase in
strabismic amblyopia (99.29 vs. 103.08 µm, p �0.019, amblyopic vs. nonamblopic
eye) while there was no such difference for the anisometropic or combined sub-
groups [171]. Park et al. enrolled 20 unilateral amblyopic children (16 strabismus, 2
anisoastigmatism, 2 unilateral ptosis) with a mean age of 9.0±4.03 (4–19 years) and
examined horizontal and vertical SD-OCT scans through the fovea [182]. Thickness
values were measured at the foveal centre and in 500 and 1500µm distance from the
foveal centre in all 4 quadrants (superior, inferior, nasal, temporal). The thickness of
each retinal layer (GCL+IPL, INL,OPL,ONL, IS, OS, RPE)wasmeasuredmanually
using the callipers provided with the SD-OCT instrument. They found significantly
decreased thickness in the thickness of the GCL+IPL at all four nasal and temporal
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macular locations and at the outer superior and inferior locations. The ONL was
thinner at the inner and outer temporal locations and thicker at the inner and outer
superior and inner nasal locations. The NFL and OPL were thicker in the amblyopic
eyes than in the fellow eyes in some areas and thinner in other areas [182]. It should
be noted that none of these studies corrected their results for either age or AL.

Szigeti et al. [192] used OCT image segmentation methodology involving the
entire macular area, extracting seven retinal layers. They found that subtle changes
may be present in the retina in unilateral amblyopia. As there was evidence showing
the confounding effect of AL and age they used state-of-the-art statistical method-
ology to keep these variables under control. As most of the similar previous studies
in the field were using basic comparisons, they also performed such analyses. Inter-
estingly, the basic pairwise comparisons indicated significant changes in the GCC
r in the pericentral region and in the OPL layer calculated for the total macula
and measured in the peripheral region. However, after applying rigorous statistical
methodology to account for the effects of AL and age, these differences disappeared,
while a significant difference was revealed for the central (foveal) ONL. This implies
that the photoreceptors and not the ganglion cells could be affected by amblyopia,
this being the opposite of what was earlier speculated.

Previous studies reported that there was a correlation between retinal thickness
and AL, age, or even race in healthy eyes [51, 59, 60, 193, 194] and that AL may
influence the thickness of the intraretinal layers in the macula [13]. Song et al. found
that AL correlated negatively with average outer macular thickness, overall average
macular thickness and macular volume [59].

In unilateral amblyopia, Szigeti et al. found significant difference in AL between
amblyopic and fellow eyes (not only in the anisometropic subgroup), and multiple
regression showed a statistically significant correlation between IOD in the thickness
of most retinal layers and IOD in AL [192]. For this reason, the effect of AL must
be taken into consideration in statistical analyses to obtain reliable results, just as we
did in our study. In contrast, most of the previous studies about amblyopic retinal
OCT measurements were not considering this potential effect of AL, which could
influence their results. A summary of these studies, also mentioned above, can be
found in Table 6.2.

In support of Szigeti et al. results, there is early evidence showing that photore-
ceptors may be affected in amblyopia. First, Enoch suggested that photoreceptor
orientation is abnormal in amblyopic eyes using the Stiles-Crawford function [189],
while others did not found indication of retinal dysfunction at the level of the cone
photoreceptors in amblyopic eyes. Later, three groups described electro-oculographic
abnormalities in amblyopic patients, with their results providing evidence for a reti-
nal abnormality in amblyopia [195–197]. These results were also suggestive of the
RPE being involved in the process. Indeed, the RPE plays an important role in main-
taining visual pigment density and perhaps also in the maintenance of photoreceptor
orientation.

Leone et al. reviewed the literature on measuring macular thickness in amblyopes
and proposed that increased macular thickness found by several studies may be due
to inadvertent measurement of a parafoveal eccentric point in amblyopia [198]. To
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Table 6.2 Summary of previous studies employing optical coherence tomography of the retina in
patients with amblyopia (source Szigeti et al. [192])

Study (first
author,
year)

Study
size
(n)

Age
(years)

Type of
amblyopia

OCT type AL data cpRNFL Macular
parameters
(amblyopic
vs. fellow
eyes)

Yen et al.
[173]

38 26.4±18.3 Mixed (S,
A)

TD-
OCT(2)

A-scan Increased Not
studied

18 25.4±18.6 A Increased Not
studied

20 27.4±18.6 S No
difference

Not
studied

Yoon et al.
[174]

31 7.7 (5–12) Hyperopic
A

TD-
OCT(3)

ND Increased Not
studied

Altintas
et al. [179]

14 10.4
(5–18)

S TD-
OCT(3)

ND No
difference

No
difference

Kee et al.
[181]

26 8 (4–12) Mixed (S,
A, AS)

TD-
OCT(3)

ND No
difference

No
difference

Repka
et al. [182]

17 11.2
(5–30)

Mixed (S,
A, AS)

TD-
OCT(3)

ND No
difference

Not
studied

Huynh
et al. [177]

48 6 and
12 year-
children

Mixed TD-
OCT(3)

Optical No
difference

Increased
FMT

Repka
et al. [183]

37 9.2 (7–12) Mixed (S,
A, AS)

TD-
OCT(3)

ND No
difference

Not
studied

Dickmann
et al. [176]

20 14.8
(5–47)

S
(esotropia)

TD-
OCT(3)

ND No
difference

Increased
MT and
FV

20 15.6
(6–56)

A ND No
difference

No
difference

Walker
et al. [184]

30 56 (33–82) Mixed (S,
A, AS)

SD-OCT ND No
difference

No
difference

Pang et al.
[178]

31 9.6 (5–18) Mixed
(myopic A,
AS)

TD-
OCT(3)

A-scan Not
studied

No
difference

AL-
Haddad
et al. [204]

45 20±12 Mixed (S,
A)

SD-OCT ND No
difference

No
difference

(continued)
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Table 6.2 (continued)

Study (first
author,
year)

Study
size
(n)

Age
(years)

Type of
amblyopia

OCT type AL data cpRNFL Macular
parameters
(amblyopic
vs. fellow
eyes)

Park et al.
[174]

20 9.0 (4–19) Mixed (S,
A, ptosis)

SD-OCT ND Not
studied

No
difference
in mean FT
and MT,
but
difference
in retinal
microstruc-
ture (e.g.
decrease in
the
GCL+IPL
layer)

Dickmann
et al. [175]

15 19.7
(13–30)

S
(esotropia)

TD-
OCT(3)

ND No
difference

Increased
MT and
FV

15 19.8
(10–38)

A ND No
difference

No
difference

Alotaibi
et al. [172]

93 8.7 (5–12) Mixed (S,
A, AS)

OCT ND Increased No
difference

36 S Increased No
difference

33 A Increased Increased
MT and
FV

24 AS Increased No
difference

Dickmann
et al. [180]

30 11.5
(5–23)

Mixed (S,
A)

SD-OCT ND No
difference

No
difference

AL-
Haddad
et al. [204]

45 20.6±13.4 Mixed (S,
A)

SD-OCT ND Not
studied

Increased
mean FT

ND no data,FT foveal thickness,FV foveolar volume,MT macular thickness,FMT fovealminimum
thickness; type of amblyopia: A anisometropic amblyopia, S strabismic amblyopia, AS combined
amblyopia patientswith strabismus and anisometropia;TD-OCT (2) second generation time-domain
OCT, TD-OCT(3) third generation time-domain OCT, SD-OCT spectral domain OCT
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address this issue, central fixation was confirmed in each subject in our study by
ensuring the location of the foveal depression at the center of the macular scan.
Furthermore, interocular mean differences of macular thickness in non-amblyopic
patients have been investigated and were minimal, even if degrees of asymmetry
existed in considered individual patients. In addition, Szigeti et al. concluded that
patient age and AL should be taken into consideration in segmentation studies in
amblyopia [192]. Using their methodology they could observe subtle changes in
amblyopic eyes affecting theONLof the fovea suggesting the possible involvement of
the photoreceptors. However, further studies arewarranted to support this hypothesis.

6.4 Concluding Remarks

In conclusion, we consider that macular OCT image segmentation showing in vivo
structural changes of retinal tissue will yield a better insight into macular pathology
and therefore should play an important role in the future of the diagnosis and follow-
up of neurological diseases affecting the optic nerve, such as MS which influences
a continuously increasing number of patients worldwide. Furthermore, it seems that
texture and optical properties of the retina derived from OCT images may provide a
useful additional tool in the hands of clinicians for the assessment of neurodegenera-
tion and neuronal loss-related changes occurring in MS and other neurodegenerative
diseases. This may help the better differentiation of eyes with pathology and more
precise targeting of potential therapeutic interventions and could also be useful in the
follow-up of patients. In both types of diabetes there are early changes observable in
the retina of both the structure and its optical properties that may shed light on the
pathological processes preceding the occurrence of manifest retinopathy.

It is important to point out that retinal thickness measured by SD-OCT is different
from that measured by TD-OCT because the delineation of the outer boundary of the
retina differs in the two instruments as most SD-OCT instruments include the outer
segment–RPE–Bruch’s membrane–choriocapillaris complex in the measurements.
This needs to be kept in mind when making therapeutic decisions based on thickness
data, like, for example, in diabetes. It is well known that segmentation errors are
less frequent with SD-OCT that can be attributed to the greater acquisition speed and
better resolution of SD-OCTdevices. Partly for this reason, the custom-built software
used in our studies facilitates the manual correction of segmentation errors by the
operators reducing the number of erroneous thickness calculations due to artifacts.
It is known that there is a high agreement and intraclass repeatability of macular
thickness in eyes with pathologies obtained by three OCT devices (Stratus TD-OCT
and two SD-OCTs, Spectralis and Cirrus OCT) even though each OCT device has a
unique method of defining algorithms and cannot be used interchangeably [199].

When performing OCT image segmentation studies involving adults it is sug-
gested to take the effect of AL into consideration; additionally, it will be useful to
verify our observations in young subjects [56, 192].



156 D. Cabrera DeBuc et al.

The development of automated segmentation software is essential in exploiting the
diagnostic capability of OCT. The clinical segmentation reality of common patholo-
gies could vary across retinal regions and diseases. Therefore, the segmentation
accuracy of the retinal structure is critical for the proper assessment of retinal pathol-
ogy and current treatment practice. However, the optimal automated segmentation
software for OCT volume data remains to be established.While the need for unbiased
performance evaluation of automated segmentation algorithms is obvious, there does
not exist a suitable dataset with ground truth that reflects the realities of everyday
retinal features observed in clinical settings (e.g. pathologic cases which contain dis-
continues surfaces and additional abnormalities disrupting the retinal structure). In
addition to the lack of a common ground truth in OCT imaging, minor information of
the retinal tissue from the OCT volume data is commonly revealed besides the thick-
ness of retinal layers [96, 200–202]. Recent advances in OCT technology are adding
the capability to extract information on blood flow and perfusion status of the retinal
tissue as well as on changes in the polarization state of the probing light beam when
interacting with the retinal tissue [203]. Therefore, it is expected that a more com-
plete characterization of the retinal tissue could potentiate the diagnostic capability
of the OCT technology. This chapter has introduced and discussed several important
issues surrounding the diagnostic capabilities of the OCT technology and different
factors should be considered when both obtaining and analyzing the OCT images. In
summary, the use of OCT technology in clinical settings is of great value, but reliable
data analysis and proper diagnosis of the various retinal diseases requires careful con-
siderations when using OCT devices. There is no doubt that further improvements
are warrantee as the technology evolves to help advance the judgment and decision
making processes of OCT developments and clinical applications.
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Chapter 7
Quantitative Analysis of Retinal Layers’
Optical Intensities Based on Optical
Coherence Tomography

Enting Gao, Fei Shi, Haoyu Chen and Xinjian Chen

In addition to the morphologic parameters of retinal structures, OCT images also
provide the signal/reflection intensity information, which is however much less stud-
ied. This chapter introduces several studies on the quantitative analysis of the retinal
layers’ optical intensity, both for normal subjects and for patients with central retinal
artery occlusion.

7.1 Introduction

Optical coherence tomography (OCT) is an in vivo, non-invasive imaging technol-
ogy providing cross-sectional images of the retina structure [1]. It has significantly
improved our understanding in eye physiology and in pathogenesis of ocular diseases.
It also greatly helped the clinicians in diagnosis and management of retinal diseases
[2]. OCT not only allows observation of themorphology of normal or disordered reti-
nal tissue, but also provides quantitative measurement. Currently, most commercial
OCT machines provide automatic measurements of the peripapillary retinal nerve
fiber layer (RNFL) thickness and total macular retinal thickness. Advanced imaging
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analysis further provides the measurement of optic head [3], macular ganglion cells
complex [4], choroidal thickness [5], etc.

However, OCT is not only valuable in providing morphological indices, but also
offers quantitative measurements of local optical intensities (also called optical den-
sity or reflectivity) of the underlying normal and/or pathological tissues. It has been
qualitatively observed that OCT optical intensity can provide clues for distinguishing
pathological changes, for example, the optical intensity of inner retina increased in
retinal artery occlusion [6]. In age-related macular degeneration, the optical intensity
increased with development and regression of choroidal neovascularization [7]. In
glaucoma patients, the optical intensity of the retinal nerve fiber layer (RNFL) has
been shown to be lower than that in normal subjects, and decreases with increasing
disease severity [8, 9]. Compared to normal vitreous, exudation lesions show higher
reflectivity, whereas degeneration changes have lower optical intensity [10]. Simi-
larly, optical intensity of pigment epithelial detachment can be used to differentiate
serous, fibrovascular and drusenoid types [11]. In addition, reflectivity of the cystoid
space varies with fluorescein pooling intensity, suggesting that blood—retinal barrier
disruption can lead to content changes in diabeticmacular edema [12].Moreover, loss
of reflectivity in the photoreceptor ellipsoid region has been reported to occur early
and can be detected from the first clinical presentation in patients with idiopathic
perifoveal telangiectasia [13]. These results suggested that the optical intensities of
intraretinal or subretinal spaces can be used as biomarkers and provide clues to the
pathogenesis of retinal diseases.

However, quantitative assessment of OCT optical intensity was much less
reported, compared to the dimension analysis. In 2000, Pons et al. [8] reported
that the internal reflectivity of RNFL was lower in patients with glaucoma compared
to control. It was confirmed in spectral domain OCT recently [14, 15]. A study by
Giani et al. [16], using OCT, shows that quantitative analysis of choroidal neovas-
cularization (CNV) reflectivity can differentiate leaky CNV from that without leak-
age, providing additional information regarding the fluorescein angiography leakage
status.

There are also lack of the information of normal range and physiological varia-
tion of retinal optical intensities. Since application of newly developed parameters
depends on an understanding of normal conditions, it is critical to establish a norma-
tive database of specific criteria. To our knowledge, few studies have been carried out
on retinal optical intensity distribution in normal subjects. The effect of determinants
such as sex, age, race, optic disc area, axial length and refractive error [17–19] which
affect retinal thickness measurements on optical intensity remained unknown.

In this chapter, we will introduce a few studies on the OCT optical intensity of
retinal layers based on a validated automatic computer algorithm [20–23]. In the
first study [24], the optical intensities in all retinal layers on spectral domain OCT
was measured, and the variations and relationships among retinal layers’ optical
intensities in normal subjects were investigated. In the second study [25], the retinal
optical intensity distribution of normal subjects was investigated in each retinal layer
and nine macular sectors based on areas defined in the Early Treatment Diabetic
Retinopathy Study (ETDRS) [26]. To collect reference data on the determinants,
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they also evaluated the effects of age, sex, height, weight, refractive status, axial
length, image quality, optic disc area and rim/disc area ratio on optical intensity.
In the third study [27], the optical intensity of each retinal layer in central retinal
artery occlusion (CRAO)was quantitatively investigated and comparedwith the same
measurements obtained from normal controls.

7.2 Automatic Layer Segmentation in OCT Images

The segmentation of retinal layers inOCT scans has been an important work sincewe
want to establish the distribution and variations of the intensity in the retinal layers.
Eleven surfaces were automatically segmented using a validated 3D graph search
approach [20–23]. Theworkflow includedpreprocessing and layer segmentation.The
preprocessing part was a denoising step. OCT data speckle noise was first reduced by
a curvature anisotropic diffusion filter. Retinal boundaries were later automatically
detected by finding an optimal closed set in a vertex-weighted graph. The RNFL,
ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL),
outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor layer and
retinal pigment epithelium (RPE) were identified (Fig. 7.2). Every B-scan image was
visually inspected by an ophthalmologist (B.C.) and excluded if anymisidentification
of boundaries between retinal layers occurred. Choroid was defined as the region
within 25 pixels below the RPE (Fig. 7.1).

7.3 The Optical Intensity of Retinal Layers of Normal
Subjects

7.3.1 Data Acquisition

Forty normal subjectswere included in the first study. Spectral domainOCT scanning
was obtained using the Topcon 3D OCT-1000 (Topcon Corporation, Tokyo, Japan).
6 × 6 mm macular-centered OCT volumes were obtained, which consisted of 64
B scans. Axial and transverse resolution was 6 and 20 μm respectively. A fundus
photograph was obtained at the same time. The image was 512×64×480 voxels,
with each voxel corresponding to 11.72×93.75×3.50μm3. The image quality index
was given by the OCT software and ranged from 0 to 100. Raw data were exported
with intensity ranged from 0 to 65,535. Intensity was expressed in arbitrary units
(AU).
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Fig. 7.1 Segmented surfaces and regions on macular spectral domain optical coherence tomogra-
phy

7.3.2 Statistical Analysis

For each layer, and for each subject, the mean and standard deviation of optical inten-
sities were calculated. The optical intensities of each layer were compared between
male and female by Student’s independent t-test. The correlations between the mean
intensities of each two layers, and between each layer’s intensity and age/imaging
quality were analyzed with Pearson’s correlation. Correlation coefficient r was cal-
culated. The adjusted variance with image quality index as normalizing parameter
and was calculated as variance × (1 − r2wi th_imaga_quali t y). Adjusted coefficient of
variation was calculated as adjusted standard deviation over the mean.
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Table 7.1 Mean and standard deviation of optical intensities in different layers

Mean SD Variance r2 (%) Adjusted
variance

Adjusted
SD

Adjusted
coeffi-
cient of
variation

Vitreous 13,963.50 105 11,032 27.90 7955 89.2 0.0064

Retinal nerve
fiber layer

28,516.50 1491.2 2,223,605 55.90 980,035 990 0.0347

Retinal
ganglion cells

22,821.30 1301.4 1,693,558 75.50 415,076 644.3 0.0282

Inner
plexiform
layer

22,351.70 1329.1 1,766,570 81.80 322,371 567.8 0.0254

Inner nuclear
layer

19,092.10 1047.9 1,098,045 89.90 110,480 332.4 0.0174

Outer
plexiform
layer

20,095.20 1225.2 1,501,154 89.20 162,590 403.2 0.0201

Outer nuclear
layer

17,005.00 782.7 612,695 94.70 32,542 180.4 0.0106

Photoreceptor 28,615.40 1669.9 2,788,601 62.70 1,041,087 1020.3 0.0357

Retinal
pigment
epithelium

30,780.20 1489.6 2,218,907 64.30 791,861 889.9 0.0289

Choroid 19,791.60 964.5 930,165 58.40 386,699 621.9 0.0314

All areas 15,863.30 292.3 85,435 87.60 10,630 103.1 0.0065

7.3.3 Results of Quantitative Analysis of Retinal Layer
Optical Intensities of Normal Subjects

The mean, standard deviation and adjusted standard deviation of different layers’
optical intensities were listed in Table 7.1 and showed in Fig. 7.2.

As shown in Fig. 7.3, the correlation among the optical intensities of intraretinal
layersweremoderate to good,with r ranged from0.524 to 0.988, allp<0.001.Among
them, the correlation between optical intensities of GCL, IPL, INL, OPL were very
strong, with r>0.934, all p <10−18. On the contrary, the correlation of intensities
of vitreous with all intraretinal layers were only mild to moderate, with r ranged
from 0.363 to 0.541 (all p <0.03), except the low correlation with photoreceptor
(r�0.251, p �0.119). The choroid layer’s intensity had moderate correlation with
intraretinal layers, with r ranging from 0.418 to 0.725 (all p <0.01).

Totally 23 male and 17 female subjects were included in the study. The mean
age were 37.9±14.9 years old. No statistically difference of the optical intensi-
ties were found in any layers between male and female (all p >0.05). The mean
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Fig. 7.2 The mean and standard deviation of optical intensities of each layers

Fig. 7.3 Correlation coefficient matrix of optical intensities among all layers and image quality
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Fig. 7.4 Correlation of optical intensity in retinal nerve fiber layer with age

image quality index were 51.8±8.3. The image quality index had strong correlation
with optical intensities of retinal layers (r between 0.748 and 0.973, p <10−8), but
moderate correlationwith vitreous intensity (r�0.528, p�0.0005). Agewas not cor-
related with optical intensities in any layers except RNFL, which has r�−0.365, p
�0.021 (Fig. 7.4). The correlation remained significant after adjust of image quality
(b�−24.2, p �0.025).

7.3.4 Discussion

This analysis is based on3Ddata and investigated all retinal layers, therefore provided
complete profile of the scanned area. Furthermore, this study is fully automatic,
which eliminated inter-observer variation. Although the study used the data from
Topcon 3D-OCT 1000, the algorithm can be applied to SD-OCT images from any
manufacturer.

It is found in the study that the optical intensities in different layers correlated with
each other. They were also strongly correlated with image quality, which represented
signal strength in Topcon 3D-OCT 1000. Therefore, the study confirmed that optical
intensity was affected by the signal strength.
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From the conclusion above, it is necessary to normalize the intensity with signal
strength. Various methods have been used in the literature [10, 12, 16] and different
layer intensities have been used as reference. This study found that in normal subjects,
the optical intensity in GCL, IPL, INL, OPL and ONL were highly correlated with
each other and image quality, their r2 with image quality is more than 80%. Based
on these results, we recommend GCL, IPL, INL, OPL or ONL as references for
normalization. In addition, as the image quality index and the optical intensity of all
areas both had good correlation with optical intensities of intraretinal layers, they
can also be the reference for normalization.

A week negative correlation was found between RNFL with age (r�−0.365, p�
0.021), even after adjust of image quality, which did not apply to other layers. It is a
new finding. It is well recognized that the RNFL thickness was reduced in glaucoma
patients [28] and aged subjects [29]. The optical intensity of RNFLwas also reported
lower in patients with glaucoma compared to control or ocular hypertension [8, 14].
Hence, further investigations are desired to clarify the role RNFL optical intensity
in diagnosis of glaucoma.

7.4 Distribution and Determinants of the Optical Intensity
of Retinal Layers of Normal Subjects

The automatic segmentation approach was also used to determine the distribution of
optical intensity of each layer and regions specifiedby theEarlyTreatment ofDiabetic
Retinopathy Study (ETDRS) in 231 eyes from 231 healthy subjects ranging in age
from 18 to 80 years old [26]. Forty-four eyes were randomly chosen to be scanned by
two operators for reproducibility analysis. Univariate and multivariate analysis were
performed between retinal optical intensity and sex, age, height, weight, spherical
equivalent (SE), axial length, image quality, disc area and rim/disc area ratio (R/D
area ratio).

7.4.1 Data Acquisition and Image Processing

All subjects received scans by experienced operators with Topcon 3D OCT-2000
(Topcon, Tokyo, Japan, software version: 8.11.003.04) without pupil dilatation.
Three-dimensional image data were acquired using the scan mode of 3D macu-
lar (512×128) centered at the fovea and covering a 6×6 mm2 area. Scanning was
performed with the measurement beam perpendicular to the retina (light entered the
eyes across the central position of the pupil). Forty-four eyes were randomly chosen
to be scanned by the two operators on the same day for reproducibility analysis.
The axial resolution was 5–6 μm and transverse resolution was 20 μm. Images, of
a quality of 45 or higher, were included. Parameters, such as disc area and rim/disc
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Fig. 7.5 Early treatment diabetic retinopathy study (ETDRS) chart of the right (R) and left (L)
eyes. The ETDRS plot is centered at the fovea. It includes three circles with diameters of 1, 3
and 6 mm. The area is further divided into four quadrants: superior, inferior, nasal and temporal.
Cen, central subfield; Sin, Superior inner ring; Nin, Nasal inner ring; Iin, Inferior inner ring; Tin,
Temporal inner ring; Sout, Superior outer ring; Nout, Nasal outer ring; Iout, Inferior outer ring;
Tout, Temporal outer ring

area ratio, were obtained through the 3D disc (512×128) scan. Reference plane for
optic disc parameters analysis was set at 120 μm above the RPE according to the
default setting.

As in the previous section, the OCT images were segmented using the automatic
method to obtain the retina layers. In addition, we identified the lowest location of
surface 1, built an ETDRS chart (Fig. 7.5) centered at this point and measured the
optical intensities of every voxel in each layer and each ETDRS sector.

7.4.2 Statistical Analysis

Statistical analysis was performed with commercial statistical software (IBM SPSS
Statistics v.17 forWindows; SPSS Inc. Chicago, IL). To evaluate interoperator differ-
ences, the intraclass correlation coefficient (ICC) was used. The mean and standard
deviation (SD) of optical intensity for each retinal layer were calculated in the six
age groups. Independent samples t-test and Pearson’s correlation were used to eval-
uate the effect of sex, age, height, weight, spherical equivalent, axial length, image
quality, disc area and rim/disc area ratio on optical intensity. Factors significant at p
<0.05were included in the stepwisemultiple regression analysis. Sigmaplot (version
12.5, Systat Inc.) was employed to draw contour plots. A p <0.05 was considered
statistically significant.
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Fig. 7.6 Mean optical intensity of retinal layers in different age groups. Groups 1–6 represent the
agegroups (age 20–29, 30–39, 40–49, 50–59, 70+). Mean optical intensity of different retinal layers
are shown in correspondinglegends. Mean optical intensity was highest in RPE layer, followed by
photoreceptor layer, RNFL, IPL, GCL, OPL, INL and ONL. Optical intensity was stable prior to
50 years of age, and then decreased in most retinallayers (RNFL to photoreceptor layer)

7.4.3 Retinal Optical Intensity Measurement

The reproducibility of retinal optical intensity analysis is high. For measurements
over the entire scan area and each retinal layer, ICCs ranged from 0.815 to 0.941.

Table 7.2 shows the mean and SD of the macular retinal optical intensity of each
age group. Mean optical intensity was highest in RPE layer, photoreceptor layer and
RNFL, followed by IPL and GCL, and lowest in ONL (Fig. 7.6). Optical intensity
from RNFL to photoreceptor layer decreased with age after 50 years old (r ranged
from −0.440 to −0.158, all p <0.01, Spearman’s test). For RPE layer, the optical
intensity increased with older age groups (r�0.318, p <0.01, Spearman’s test).

Mean optical intensity for all subjects by ETDRS region is shown in Table 7.3.
Optical intensity maps (Fig. 7.7) show specific distribution patterns. In the central
area, the optical intensity of RNFL, GCL, IPL, INL, OPL and photoreceptor layer
were at a lower level while that of RPE was at its highest. There was a circinate
area with higher intensity at the parafoveal region in ONL. In RNFL and GCL,
mean optical intensity of the nasal sectors was greater than the temporal sectors,
while ONL, photoreceptor layer and RPE showed the opposite distribution (p <0.05,
paired t-test).
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Table 7.3 Macular optical intensity in ETDRS regions
Retinal
layers

Cen Inner ring

Sin Nin Lin Tin

RNFL 24,102.52±1251 30,843.87±1384 29,839.42±1422 30,687.22±1322 29,005.43±1545

RGCL 25,053.23±1124 26,148.73±1131 25,942.91±1061 25,876.91±1091 25,798.12±1064

IPL 25,903.58±1137 26,641.79±1126 26,615.80±1064 26,336.48±1096 26,583.51±1055

INL 24,052.05±1133 23,625.45±1076 23,624.06±1012 23,300.45±1047 23,619.90±1006

OPL 24,023.62±1217 25,261.45±1120 25,256.25±1038 24,893.74±1094 25,194.93±1093

ONL 21,486.65±975 21,807.71±1015 21,652.77±961 21,569.35±1013 21,617.72±971

PR 31,574.06±1734 32,899.26±1859 32,778.81±2176 32,590.06±2165 33,227.47±1839

RPE 36,030.78±1070 35,443.49±1003 35,489.23±1103 35,060.54±1218 35,672.81±983

Retinal
layers

Outer ring Whole ETDRS

Sout Nout Iout Tout

RNFL 32,285.48±1480 32,742.87±1521 31,618.63±1231 29,972.42±1564 31,558.68±1098

RGCL 27,122.16±1257 26,911.89±1121 26,825.53±1040 26,494.2±1156 26,653.71±896

IPL 26,852.89±1275 26,799.34±1111 26,397.12±1032 26,788.47±1141 26,677.85±903

INL 23,603.41±1178 23,563.84±1039 23,141.81±963 23,692.28±1064 23,538.66±876

OPL 24,926.75±1242 25,050.16±1084 24,343.63±1057 25,121.60±1125 24,824.14±933

ONL 21,377.63±1029 21,406.76±944 20,987.83±882 21,605.05±943 21,381.69±794

PR 31,920.69±1905 31,902.14±2123 31,221.00±1843 32,614.52±1723 31,759.63±1445

RPE 34,686.48±1048 34,707.6±1102 33,936.19±1058 35,206.9±900 34,677.20±696

7.4.4 Determinants of Retinal Optical Intensity

Differences between men and women in mean optical intensity were not signifi-
cant (all p <0.05, independent-samples t-test). The results of Pearson correlation
analysis between optical intensity and age, height, weight, spherical equivalent,
axial length, image quality, disc area and rim/disc area ratio. Image quality was
significantly correlated with all retinal layer optical intensities, with the correlation
coefficient r ranging from 0.503 to 0.851 (all p <0.01). Age was negatively corre-
lated with optical intensity from RNFL to photoreceptor layer (−0.517< r<−0.242,
p <0.01), but positively correlated with that in RPE (r�0.287, p <0.01). Axial
length was also negatively correlated with optical intensity from OPL to RPE.
Spherical equivalent was positively correlated with only ONL and RPE opti-
cal intensity. The relationship of disc area and optical intensity in most layers
was weak but significant in RPE layer. No statistically significant relationships
were found between retinal optical intensity and height, weight and rim/disc area
ratio.

The results of stepwise multiple linear regression analysis was calculated. Factors
significant at p <0.05 with any retinal layer optical intensity from the univariate
analysis were included. Significant determinants of optical intensity for most retinal
layers were age and image quality. The effect of image quality was more pronounced
in the optical intensity of ONL (β�0.851), followed by INL, OPL and IPL, and was
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less pronounced in photoreceptor layer. The negative correlation between age and
optical intensity from RNFL to OPL, except for ONL and photoreceptor layer, as
well as the positive correlation between age and RPE optical intensity, remained after
adjustment of other factors, such as image quality. The strongest association with
age was the optical intensity of RPE layer (had the highest standardized β values�
0.456). No correlation was found, after adjustment, between retinal optical intensity
and sex, height, weight, SE, axial length, disc area and rim/disc area ratio.

7.4.5 Discussion

In this study, by analyzing three-dimensional OCT data with our automatic software,
the retinal optical intensity of adults in different age groups was described, and the
effects of various factors on this parameter was explored. The interoperator repro-
ducibility of optical intensity measurement in healthy eyes was good. Mean optical
intensity was highest in RPE layer, photoreceptor layer and RNFL, and lowest in
ONL. Optical intensity was low in the central area of RNFL, GCL, IPL, INL, OPL
and photoreceptor layers, and high in the center of RPE layer. In RNFL and GCL,
mean optical intensity of the nasal sectors was greater than in the temporal sectors,
whereas the ONL, photoreceptor layer and RPE had the opposite distribution. The
results also demonstrated that retinal optical intensity of most retinal layers increased
with image quality, and decreased with age. There was no relationship between reti-
nal optical intensity and sex, height, weight, SE, axial length, disc area or rim/disc
area ratio.

7.5 The Optical Intensity Distribution in Central Retinal
Artery Occlusion (CRAO)

7.5.1 Central Retinal Artery Occlusion

Central retinal artery occlusion (CRAO) is an ocular emergency that can lead to
severe ischemia of the retina and cause a sudden loss of vision [30]. In the acute
phase, whitish opacification of the retina is present at the posterior pole except fovea,
which does not have inner retinal layers. The opacification typically resolves spon-
taneously within a month [31]. On fundus fluorescein angiography, delay of arterio-
venous transit time and retinal artery filling time is usually observed [32]. However,
fluorescein angiography is invasive, and subject to severe complications, including
a possibility of allergic shock. Furthermore, fluorescein angiography provides only
limited information about the severity of retinal damage [33].
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Fig. 7.7 Mean optical intensity distribution of retinal layers. Color spectra to the right of each
image show the optical intensity range of each layer. The right side of each image represents the
nasal quadrant, the left side represents the temporal quadrant. The retinal layer is stated in the upper
left of images. a RNFL, b GCL, c IPL, d INL, e OPL, f ONL, g photoreceptor, and h RPE
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In 2006, it was first reported that the retinal thickness was increased in the acute
phase of CRAO, andwas subsequently reduced at follow-up of several months. How-
ever, the observed extent of retinal edema did not correlate with the visual prognosis
[34]. Later, with the introduction of spectral domain OCT with higher resolution, it
was found that the thickness of inner retina decreased in chronic phase of CRAO
but there was no similar change in the outer retina [35]. Recently, it was reported
that in the acute phase of branch retinal artery occlusion (BRAO), the thicknesses
were markedly increased in the inner layers including the retinal nerve fiber layer
(RNFL)/ganglion cell layer (GCL), inner plexiform layer (IPL) and inner nuclear
layer (INL)/outer plexiform layer (OPL), and mildly increased in the outer nuclear
layer (ONL). In the chronic phase, reduction of thickness was noted with an observed
loss of differentiation between the IPL and INL/OPL. In contrast, no thickness change
of the photoreceptor/retinal pigment epithelium (RPE) layer was observed in either
the acute or chronic phase [36].

Besides change of the retinal thickness, it was also observed that the reflectivity
increased in the inner retina and correspondingly decreased in the outer retina in
the acute phase of CRAO. In the chronic phase, the increased reflectivity of the
inner retinal layers were reduced and the decreased reflectivity in the outer retina
layer recovered [37, 38]. However, the observed reflectivity changes have not been
assessed quantitatively in any of the previous studies.

7.5.2 Subjects and Data Acquisition

In this study [27], forty eyes of 40patients diagnosed asCRAOwho received 3D-OCT
examination within one week of onset were included. Since most CRAO patients are
elderly, we included 33 eyes of 33 subjects aged >=65 years old without any retinal
disorder or high myopia were included as controls. All the study subjects received
comprehensive ophthalmic examinations including fundus photography and spectral
domain 3D-OCT examination.

Spectral domain OCT examination was performed using Topcon 3D OCT-1000
(Topcon Corporation, Tokyo, Japan). Macula was scanned using standard 6×6 mm
protocol, in which 3D acquisition consisted of 64 B-scan slices. Fundus photographs
were obtained from each subject at the same time. The OCT image size was 512×
64×480 voxel. Image quality index was provided by the on-board OCT software.
The raw images were exported from the OCT scanner for analysis.

7.5.3 Image Analysis

The same automatic segmentation method was used to obtain the retinal layers from
the OCT image volumes. The following layers were obtained between the surfaces,
vitreous,NFL,GCL, IPL, INL,OPL,ONL+Henle’s fiber layer (HFL), photoreceptor
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Fig. 7.8 Segmented surfaces and regions on macular spectral domain optical coherence tomogra-
phy. a, b: control subjects; c, d: central retinal artery occlusion patients with correctly segmented
retinal layers; e, f : central retinal artery occlusion patients with substantially increased brightness
of the inner retina and related insufficient separation of inner retinal layers on OCT, causing layer
segmentation errors—an example is shown. a, c, e: original OCT images; b, d, f : segmentation
results

and RPE. The surface between the choroid and the sclera is difficult to identify
for Topcon 3D-1000 images, therefore the region, 25 pixels (about 125 mm) wide,
immediately under the RPE was used to represent the choroid.

As the method was original designed for normal retina, no segmentation error
was observed in any of the 33 control subjects, and correct 3D OCT segmentation
was achieved in 29 of 40 CRAO patients. The 29 images were included in further
analysis. The segmentation of the OCT images of the remaining 11 CRAO cases
was not good due to insufficient quality of OCT image data. These cases were not
included in further analysis. In these cases, the optical intensity was very high at
each layer of inner retina and the overall brightness (saturation) of image intensities
made finding interfaces between layers impossible. Figure 7.8 shows examples of
OCT image segmentation.
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7.5.4 Results

Due to the difficulty to enroll exactly age-matched normal controls, the CRAO sub-
jectswere slightly older compared to the control group (77.0±5.7 vs 71.9±4.5 years
old, p <0.001). There was no statistically significant difference of gender distribu-
tion or perceived quality of included images between the CRAO and control groups.
No statistically significant correlation was found between the optical intensities of
retinal layers and the disease duration from the onset to the image acquisition (all p
>0.05).

The mean and standard deviation of optical intensities and optical intensity ratios
in each layer are shown in Table 7.4. Results of multilinear regression after adjusting
for optical intensity of the entire region and age are given in Table 7.4 and Fig. 7.9.
There was no statistically significant difference of optical intensities between the
CRAO and control subjects in the vitreous and RNFL (standardized beta�0.160 and
0.050 respectively, both p >0.5). Optical intensities in GCL, IPL, INL and OPLwere
higher in CRAO compared to controls (standardized beta�0.657, 0.702, 0.777 and
0.694, respectively, all p <0.001). Optical intensity at ONL+HFL was not different
between the CRAO and control groups (standardized beta�0.047, p >0.5). Optical
intensities at the photoreceptor, RPE, and choroidal layers were lower in the CRAO
cases compared to controls (standardized beta�−0.412, −0.611 and −0.559, all
p <0.001). Discriminant analysis found that the optical intensity of INL was most
strongly associated with the CRAO disease status (Wilks’ Lambda�0.641).

7.5.5 Discussion

The optical intensities in each segmented retinal layer detected from 3D-OCT for
CRAO patients and normal controls have been quantitatively investigated in this
study. The results showed that the optical intensities of vitreous, RNFL and ONL
were not different between CRAO and controls. The optical intensities of layers in
the inner retina, from GCL to OPL, were higher in CRAO than in controls, with the
most prominent increase identified at the INL. While the optical intensities from the
photoreceptor to choroidal layers were lower in CRAO patients than in controls, the
photoreceptor layer exhibited the most pronounced OCT image intensity decrease.
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Table 7.4 Comparison of optical intensity in each layers between central retinal artery occlusion
and control adjusting for age and the optical intensity of the entire scanned regions

Optical
intensity

Optical
intensity
ratio

Unstandardized
beta

Standardized
beta

P

Control CRAO Control CRAO

Vitreous 13,893.9±96.5 13,953.9±164.6 0.89±0.01 0.88±0.02 4.2 0.16 0.901

Retinal
nerve fiber
layer

26,598.5±1598.1 28,232.6±2120 1.69±0.09 1.77±0.11 202.6 0.05 0.584

Retinal
ganglion cell
layer

21,567.8±1301.4 26,219.3±1980.1 1.37±0.06 1.64±0.11 3709.4 0.657 <0.001

Inner
plexiform
layer

21,052.8±1211.5 26,559.5±1915.7 1.34±0.06 1.66±0.1 4441 0.702 <0.001

Inner
nuclear layer

18,235.6±857.9 23,899.1±1758.6 1.16±0.04 1.5±0.09 4863.3 0.777 <0.001

Outer
plexiform
layer

18,791.6±1084.7 23,389.7±1660.4 1.15±0.03 1.4±0.1 3708.8 0.694 <0.001

Outer
nuclear
layer+
Henle’s fiber
layer

16,380.9±657.5 16,757.9±1002.9 1.04±0.03 1.05±0.05 80.3 0.047 0.664

Photoreceptor 25,458.3±1893.3 22,885.4±3406.9 1.62±0.11 1.44±0.21 −22,440.8 −20.412 0.001

Retinal
pigment
epithelium

30,454.5±1375.2 26,160.6±3998 1.94±0.07 1.64±0.25 −24,376.7 −20.611 <0.001

Choroid 20,638.7±1130.9 19,224.1±1753.5 1.32±0.06 1.21±0.1 −21,787.7 −20.559 <0.001

Entire region 15,688.0±252.7 15,943.2±333.4 NA NA NA NA NA

NA: not applicable; CRAO: central retinal artery occlusion
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Fig. 7.9 Regression of optical intensities in each layer with intensities of the entire retinal region
in retinal artery occlusion patients and controls. Circles represent patients with central retinal artery
occlusion, black dots represent control subjects
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It is well known that there are two sources of blood supply to the neurosensory
retina; the central retinal artery and the choroidal blood vessels, which supply the
inner and outer retina, respectively. There are two layers of capillary networks orig-
inating from the branches of the central retinal artery. The inner capillary network
lies within the GCL. The outer capillary network runs from the IPL to the OPL
through the INL [39]. The results showed that the optical intensities increased from
the GCL to the OPL in CRAO patients. This finding shows a local correspondence of
image intensity increases with layers supplied by the central retinal artery. On histol-
ogy of a CRAO mouse model, pyknotic nuclei, vacuolated spaces, and degenerative
changes were noted in the GCL and INL [40]. In this study, the maximum increases
of optical intensity or optical intensity ratio were detected in the INL. Furthermore,
discriminant analysis found that the optical intensity of INL is the best indicator of
CRAO. Recently, it was reported that deep capillary ischemia frequently manifests
itself by increased optical intensities in the middle retinal layers, especially the INL
[41]. There is a large number of metabolically active cells in the INL and the INL
is surrounded by a deep capillary network branched from the central retinal artery
system and is therefore subject to ischemia.

Most impressively, the optical intensity of RNFL was not different between the
CRAO and control groups. The blood supply of RNFL is also provided from the
central retinal artery system. In a pathological study of human autopsy eyes with
CRAO, severe edema of the RNFL was frequently noted [42]. It is conceivable that
edema of RNFL does not affect its OCT optical intensity. The exact cellular and
molecular mechanism of change of optical intensity in CRAO remains unknown and
deserves further investigation. TheONL, photoreceptor,RPEand choroidal layers are
not supplied by the retinal artery and its branches. Animal and human autopsy studies
previously showed that the outer retina does not change inCRAO [40, 42]. Our results
found that the optical intensities in the outer retina from the photoreceptor layer to
the choroid were reduced in the acute CRAO phase, especially in the photoreceptor
and RPE layers. However, the optical intensities of the photoreceptor and RPE layers
are still high at the foveal region, where no layered inner retinal structure is present
(Fig. 7.9c–f.) On ophthalmoscopic examination, the whitish opacification of the
CRAO retina is caused by reduced transparence of the inner retina, and the cherry
red spot at the fovea is due to a relative transparency of the fovea devoid of the inner
retina layer tissue [43]. This evidence suggests that the reduction of optical intensities
in outer layers may be associated with a shadowing effect caused by increased optical
density in the inner retina as observed on CRAO patients.

In conclusion, the OCT optical intensity of inner retina increases in patients with
CRAO compared to normal controls, possibly due to layer-specific ischemia, while
the optical intensities of the outer retina and the choroid decrease, possibly due to a
shadowing effect associated with the inner retinal density increases.
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7.6 Summary

This chapter describes studies of optical intensity, a new index of retina conditions
basedonOCT images. These studies used avalidated automatic segmentationmethod
to quantify the optical intensities in each retinal layer on 3D OCT for normal and
CRAO subjects. With the advantage of this method, changes of optical intensity in
each layer can be quantified and objectively analyzed. The statistical distribution and
location distribution of optical intensity, and its correlation with demographic and
other ocular characteristics can be studied. The optical intensity of CRAO patients
can be compared with normal controls. Intriguing results were obtained by these
studies. The change of optical intensity for each retinal layer will be further studied
for other types of ocular diseases, and it is expected that this index can be used for
in vivo studies of OCT-derived disease severity.
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Chapter 8
Segmentation of Optic Disc
and Cup-to-Disc Ratio Quantification
Based on OCT Scans

Menglin Wu, Theodore Leng, Luis de Sisternes, Daniel L. Rubin
and Qiang Chen

With optical nerve head centered OCT imaging, this special region can be visualized
in 3-D, enabling detailed quantification of its structure. In this chapter, an automated
algorithm is presented for optic disc segmentation in 3-D spectral domain optical
coherence tomography, based on which the cup-to-disc ratio an important indicator
of early glaucoma can be calculated.

8.1 Introduction

Glaucoma is a chronic neurodegenerative disease of the optic nerve, which demon-
strates classic structural characteristics including cupping of the optic nerve head,
focal and diffuse retinal rim loss, and nerve fiber layer defects [1]. There is a need to
identify early internal structural changes in glaucoma. The cup-to-disc (C/D) ratio
is an important indicator for evaluating the glaucomatous changes of the optic nerve
head (ONH) [2]. To quantify the ratio, specialists commonly perform planimetry
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in 2-D color fundus photographs. However, manual planimetry has been proven
time-consuming and is wrought with interobserver variability [3, 4]. With the intro-
duction of spectral-domain optical coherence tomography (SD-OCT), which is a
high-resolution cross-section and noncontact imaging technology, it is possible to
image the ONH in a 3-D manner, enabling a more detailed quantification of its
structure and possible changes [5].

(a) (b)

Fig. 8.1 a Central B-scan (number 100 of 200) of an example SD-OCT volume. The two NCO
points at the end of the RPE (indicated by the yellow outline as automatically segmented by 3-D
graph search algorithm) are denoted by red dots. The green line indicates the reference plane and
its intersections with inner limiting membrane (ILM, indicated by the blue outline as automatically
segmented by 3-D graph search algorithm) are cup boundary points denoted by green circlemarkers.
b The projection fundus image of the same volume. The red and green dots are the points of optic
disc and cup margin, respectively, which correspond to the columns of NCO and cup borders in (a)

Fig. 8.2 Flowchart of the proposed algorithm
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In [1, 6], Strouthidis et al. pointed out that neural canal opening (NCO) is an
objective anatomic landmark consistent with SD-OCT optic disc margin anatomy.
Furthermore, Hu et al. found out that the NCO can serve as longitudinally stable
reference plane and it is not likely to change with glaucomatous progression [7].
As shown in Fig. 8.1a, NCO is defined as the termination of the retinal pigment
epithelium (RPE) layer. A parallel line of 150 µm above the connecting line of
the two NCO points indicates the standard reference plane [8, 9]. The circular ring
between two intersections of the ONH surface and the reference plane are defined
as the cup border. Although there has been some debate about the determination
of the reference plane [10–12], we adopted this classic definition. In Fig. 8.2b, the
red and the green dots are the points of disc and cup margin in projection fundus
image, corresponding to the columns of the NCO and the cup borders, respectively.
Therefore, the disc margin can be constituted by the NCO in SD-OCT images.

8.2 Optic Disc Segmentation

In order to quantify theC/D ratio, many automatic methods have segmented the optic
disc and cup in color fundus photographs. For example, Aquino et al. proposed a
template-basedmethod to detect optic disc boundary, using circular Hough transform
for boundary approximation [13]. Yu et al. also presented a hybrid level-set approach
for optic disc segmentation based on the deformable model, which combined region
and local gradient information [14]. In [15], a superpixel classification based algo-
rithm was applied to determine the optic disc by contrast enhanced histogram and
center surround statistics. Furthermore, comparisons of the active contour models
for glaucoma screening were performed in [16].

Recently, there have been several studies for glaucoma detection in SD-OCT
images [17–23]. Antony et al. presented an automated intraretinal layer segmentation
algorithm to calculate the thickness of the retinal nerve fiber layer in normal and
glaucoma scans [17]. To detect glaucoma structural damage at an early stage, Xu
et al. generated a 2-D feature map from a SD-OCT volume by grouping super pixels
and utilized a boosting algorithm to classify glaucoma cases [18]. Another category
of approaches is based on optic disc segmentation.Work byHu et al. [19] transformed
the SD-OCT slices to planar projection images, and used graph search algorithm to
detect the two boundaries of optic disc and cup simultaneously. In [20, 21], Lee
et al. proposed a multi-scale 3-D graph search algorithm to segment retinal surfaces
for OCT scan flattening, and then classified each voxel column (A-scan) using k-NN
classifier according to the features obtained from the projection image and the retinal
surfaces. By observing that the optic disc bounded by RPE has a different structural
appearance from the area with the disc, Fu et al. applied low-rank reconstruction to
detect the boundary of optic disc [22]. Based on this work, Miri et al. proposed a
multi-modal pixel classification method to segment the optic disc, combining stereo
fundus and SD-OCT volumes [23]. However, these previous methods required the
assistance of color fundus photographs. Additionally, A-scan-based classification
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may suffer from morphological diversity of the ONH and lose important 3-D global
information.

In this chapter, we introduce an automated optic disc segmentation and C/D ratio
quantification method based on neural canal opening (NCO) detection in the optic
nerve head [24]. Unlike the methods that directly segment the optic disc in projection
image or using classifier to determine which A-scan belongs to the cup or rim, our
approach attempts to extract the NCO from SD-OCT scans for the delineation of the
disc margin. The proposed approach utilizes a two-stage strategy. The first step is to
locate the coarse disc margin by the segmentation of the retinal pigment epithelium
(RPE) layer and the smooth constraint of consecutive B-scans. In the second step,
we develop a support vector machine (SVM)-based patch search method to find the
most likely patch centered at the NCO and refine the segmentation result. Using
the NCO and reference plane, the cup border can be evaluated. Finally, the C/D
ratio is calculated by the cup diameter dividing the disc diameter. To the best of
our knowledge, our approach is the first to automatically segment the optic disc by
a NCO detection-based patching search method. The two-stage strategy combines
the global and local information for optic disc segmentation. When determining the
coarse discmargin location, we utilize the structural characteristics ofONH for initial
NCO detection, while in the patch searching procedure, the visual content similarity
near the NCO is applied for the final segmentation.

8.2.1 Overview of the Method

Figure 8.2 shows the flowchart of the proposed algorithm, which comprises two
main stages: the coarse disc margin location and the SVM-based patch search. In the
first stage, each B-scan in the volume is denoised and rescaled during preprocessing.
Then, a 3-D graph search algorithm is applied to automatically segment the RPE
layer [21]. Based on the segmentation result, we determined the initial NCO position
by the maximum curvature of the detected RPE boundary and the smooth spatial
constraint of the consecutive B-scans. In the second stage, we select image patches
from SD-OCT volumes, and utilize a probabilistic SVM classifier for training after
feature extraction of the patches. Then, the searching procedure is generated at the
region restricted by the initial NCO location. The patch of maximum probability,
centered at NCO, is regarded as the final NCO position. After the two steps, the cup
border can be calculated by the location of the NCO and the ILM boundary, and the
C/D ratio can be quantified.



8 Segmentation of Optic Disc and Cup-to-Disc Ratio Quantification … 197

8.2.2 Coarse Disc Margin Location

The purpose of this step is to limit NCO region for the subsequent patch search
procedure. This step involves image preprocessing, RPE segmentation and initial
NCO detection.

8.2.2.1 Preprocessing

Since coherent optical beams have low temporal coherence and high spatial coher-
ence, SD-OCT images contain speckle noise [25]. Speckle size may vary in the
axial and lateral dimensions, which is mainly determined by source bandwidth and
numerical aperture. In addition, shot noise is also present in SD-OCT images, which
can be adequately described by the additive white Gaussian noise (AWGN) process
[26]. To facilitate the segmentation of RPE and ILM layer, we pre-processed the
images by bilateral filtering denoising [27, 28], which has proven adequate for edge
preservation.

For added effectiveness in the NCO detection, we also resampled the SD-OCT
images in x-axis direction. Specifically, each B-scan in the volumewas rescaled from
200×1024 to 600×400 in the axial and x-axis direction, respectively. An example
of a B-scan after denoising and rescaling is shown in Fig. 8.3b.

8.2.2.2 RPE Layer Segmentation

The 3-D graph search-based segmentation algorithm has proven to be effective for
detecting multiple intraretinal surfaces [29–31]. With some appropriate feasibility
constraints, the surface segmentationproblemcanbedirectly converted to aminimum
closed set finding problem in a geometric graph and solved in a low-order polynomial
time. We applied the multi-scale 3-D graph search approach introduced in [14] to
segment the outer boundary of the RPE for subsequent NCO detection. As shown
in Fig. 8.3c, the green and yellow curves indicate the segmented ILM and RPE
boundaries, respectively.

8.2.2.3 Initial NCO Detection

From the RPE curve fitting in Fig. 8.3c, we observed that the visible parts of the RPE
follow an approximately linear curvature, and change dramatically at the termination
of the RPE. Therefore, we selected points with maximum curvature as the NCO.
However, there are several morphological characteristics that should be noticed: (1)
The NCO points are restricted in a certain region by the imaging position and prior
anatomical knowledge. The NCO always localizes near the center of the image, as
the images are taken aimed to be centered at the optic disc, and it is also noticeable
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Candidate points

Reference standard

h2

h1

(a)

(b)

(c) (d)

(e) (f) (g)

Fig. 8.3 Procedures of coarse margin location. a Original B-san. bDenoised and rescaled image. c
Layer segmentation result. d Initial NCO detection. e Projection image with initial NCO detection.
f Convex hull fitting after initial NCO detection result. g Expert-defined reference standard

that the axial depth of the NCO locations do not vary substantially from the average
height of the visible parts of RPE. (2) The position of the NCO locations should not
appreciably change in consecutive B-scans. In this paper we refer to this as a spatial
correlation smoothness constraint. Based on these constraints, we firstly calculated
the positions of NCO candidates as:

p0 �
{
(x, y)|argmax

(x,y)∈RPE
C(x, y), x ∈ [

1
4w, 3

4w
]
, y ∈ [h1, h2]

}
(8.1)
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where p0 denotes the NCO candidate in the RPE boundary and C(x, y) represents
the curvature of the given point. We used the location constraint to ensure p0 in an
appropriate region. w denotes the width of the image so that the lateral position x
is limited at the center part of the image. We also restricted the height of the NCO
between h1 and h2, which are two adaptive parameters. Taking the left NCO point
as an example, we fitted a straight line to the left-side flat part of the RPE boundary,
indicated as g(x) (shown in red in Fig. 8.3d), and assigned h1 � min(g(x1), g(x2))
and h2 � max(g(x1), g(x2)), where x1 and x2 are assumed as the start and the end
x-coordinate of the fitting line, fixed to 0–300 in this paper. The equivalent operation
was also conducted for the right NCO point and the right-side part of the RPE
boundary. An example of the initial NCO detection is shown in Fig. 8.3d.

In the projection fundus image, we firstly defined a scope of disc margin in x-axis
direction as [xl − 10, xr + 10], where xl and xr are the average x-coordinate of the
left and right NCO candidates in B-scans 95#–105#, respectively, considering the
distance between the left and right NCO is largest in central B-scans, and filtered
the individual outliers beyond this scope. Then, we defined a disc margin smoothing
procedure by the spatial correlation smoothness constraint as:

pi �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x, yi ) if
∑

p j∈N (pi )
||x − x j ||/n ≤ k

( ∑
p j∈N (pi )

x j/n, yi

)
else

(8.2)

where pi indicates the point of the disc margin in projection image corresponding
to the column of p0, and yi is the serial number of the B-scan. The N (p) denotes
the disc margin points in former 2 and latter 2 consecutive B-scans of the current
B-scan defined as a neighborhood and n � 4 represents the neighborhood size, while
the constant k is set to 5. The x-coordinate locations of the initially selected points
are smoothed by considering the selected locations in neighboring B-scans, in order
to restrict the NCO locations in the consecutive B-scans to not change more than a
threshold amount.

Figure 8.3e shows the NCO detection result in the projection fundus image. The
green curve indicates the coarse disc margin by mapping NCO points from each B-
scan to the projection image. For preserving the shape of the optic head, we refined
the disc margin using a convex hull fitting operation, as shown in Fig. 8.3f. A manual
expert-defined reference standard is shown in Fig. 8.3g for comparison.

Although the result indicates that the coarse disc margin is close to the reference
standard, its determination still depends on the precision of the RPE segmentation.
The points with maximum curvature may not be the optimal location for the NCO
when the segmentation result is poor. Therefore, we developed a SVM-based patch
searching method to refine the NCO detection in a following step.



200 M. Wu et al.

(a)
(b)

(c)

(d)

(e)

Fig. 8.4 SVM-based patch searching. a Patch searching using slide windows denoted by red dotted
boxes. b–e four classes of the image samples

8.2.3 SVM-Based Patch Searching

Because the initial NCO detection is influenced by the RPE segmentation, we devel-
oped a patch searching method to refine the optic disc segmentation. The purpose
of this method is to find the most likely patch whose center represents the NCO.
We utilized a SVM classifier [32] to select the patches with maximum probability of
belonging to classes defined as those centered at the left or right NCO (Figs. 8.4b, c,
obtained from slide windows near the initial NCO location (Fig. 8.4a).

8.2.3.1 Sample Selection

For SVM classifier training, we selected 1600 image samples from 20 SD-OCT
volumes as training set, which were divided into four classes: (1) patches centered
at the left NCO (Fig. 8.4b); (2) patches centered at the right NCO (Fig. 8.4c); (3)
patches including the RPE layer (Fig. 8.4d); (4) patches of background among two
NCO points (Fig. 8.4e). The size of each patch was set to be 81×81 to ensure that
it is discriminative and robust for classification. All the patches were selected near
the true NCO or NCO candidates calculated in Sect. 8.2.2.3.

8.2.3.2 Feature Extraction

We extracted two kinds of texture features for patch description: local binary pat-
tern (LBP), histogram of gradient (HOG). The LBP and HOG features were then
combined to form a complete feature set.

The LBP is a simple and efficient textural operator which labels the pixels of an
image by thresholding the neighborhood of each pixel with the value of the center
pixel and generates the result as a binary number [33, 34]. It can be viewed as a



8 Segmentation of Optic Disc and Cup-to-Disc Ratio Quantification … 201

unifying approach to the traditionally divergent statistical and structural models of
texture analysis. In this paper, we applied a typical circle LBP operator introduced in
[34] for computational efficiency, where the number of neighborhood and the radius
are 8 and 2, respectively. Therefore, we obtained a 59 dimensional feature vector of
LBP for each image sample.

The HOG descriptor counts the occurrences of gradient orientation in localized
portions of an image [35, 36]. It considers that the local object appearance and shape
within an image can be described by the distribution of intensity gradients or edge
directions. Because of its discriminative power and computational simplicity, HOG
has become a popular approach in various applications. An 81 dimensional HOG
feature vector was calculated for each image sample here.

We used a serial fusion strategy to combine LBP and HOG features. By a serial
linear combination, the two types of the feature vectors are fused into a discriminating
vector for classification. Hence the dimension of the fusion feature is 140.

8.2.3.3 Patch Searching

After SVM training, we determined a searching range and calculated the probability
of each patch within the range belonging to class 1 or 2. We assumed that the true
NCO is near the NCO candidate selected in the initial detection step, so we limited
the search range in the x-direction to [x0 − 30, x0 + 30] pixels, where x0 denotes the
x-coordinate of the NCO candidate. To reduce the influence of RPE segmentation
error, we allowed a height offset of [−5, 10] pixels from the detected RPE boundary.
We also defined an interval between two slide windows of 5 pixels.

Considering {I1, I2, . . . In} ∈ Rm as the feature vectors obtained from the patches,
the probability that a patch I j belong to class k is determined by the prediction of
SVM as p jk . The maximum of p j1 (or p j2) indicates that I j is the most likely patch
centered at left (or right) NCO.

For achieving more precise segmentation results, we finely imposed a set of con-
strains and refinements in the optimal patch selection. Firstly, we assumed that the
calculated NCO should be close enough to the initial NCO candidates. If the dis-
tance between these two points is more than 35 pixels, we select the top 5 patches
with maximum probability of belonging to class 1 or 2, and refined NCO location
as the center of the patch closest to the NCO candidate. Secondly, according to the
spatial correlation smoothness constraint of the consecutive B-scans, we adjusted the
position of NCO by Eq. (8.2).
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8.3 Evaluation of Optic Disc Segmentation and C/D Ratio
Quantification

8.3.1 Evaluation of Optic Disc Segmentation

To evaluate the performance of the proposed algorithm, we compared our segmen-
tation results with a previously proposed A-scan classification-based segmentation
method and a manual segmentation on the 42 SD-OCT test volumes. Segmentation
methods based on A-scan classification have been previously proposed in [20, 21,
23] and aim to label each A-scan (corresponding to one pixel in the projection image)
in B-scan images as cup, rim or background using k-NN classifier. We extracted a 15
dimensional feature vector from each A-scan as described in [21] to train the k-NN
classifier. The manual segmentations were generated by two experienced experts
who manually marked the NCO for each B-scan and calculated the cup border by
the reference plane to segment optic disc and cup in projection images. The refer-
ence standard was obtained based on the two readers’ consensus results in projection
images.

We utilized unsigned border error (UBE) and Dice similarity coefficient (DSC) to
estimate the accuracy of the tested segmentation algorithms [20, 21]. The UBE indi-
cates the average closest distances between all boundary points from segmentation
regions of an algorithm and reference standard, while the DSC denotes the spatial
overlap between those two regions. Considering S and R as the regions outlined by
a segmentation algorithms and a reference standard, respectively, the UBE and DSC
were calculated as:

UBE �
(∑

Distmin(S − R, S) +
∑

Distmin(R − S, R)
)
/Num(S + R) (8.3)

DSC(S, R) � 2(S ∩ R)/(S + R) (8.4)

where the Distmin(r, s) denotes the minimum Euclidean distance between one pixel
in region r and all the pixels in region s, and Num(a) is the number of pixels in
region a.

Tables 8.1 and 8.2 report the UBE and DSC of the disc and cup segmentations
using the algorithm presented here and different feature sets (LBP, HOG, and fusion
of both of them). It is observed that the performance using the fusion of LBPandHOG
features is slightly better than LBP and HOG, which indicates that the fusion features
are more discriminative for our segmentation algorithm. Therefore, we selected the
fusion features for subsequent evaluation.

As a qualitative evaluation, Fig. 8.5 displays the NCO detection by our algorithms
in B-scan images and the comparisons of ONH segmentation by different algo-
rithms in projection images. It was apparent that our patch searching-based method
achieved a more accurate disc and cup segmentation than the coarse disc margin
location method (introduced in Sect. 8.2.2.3) and A-scan classification-based seg-
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mentation. The optic disc margin segmented by coarse disc margin location seems
consistently larger than by the manual segmentation since it applies convex hull fit-
ting to preserve the largestmargin for the patch searching procedure. The disc and cup
margins segmented by the patch searching-based method are smoother than by the
A-scan classification-based segmentation because it considers the spatial correlation
smoothness constraint, rather than by directly classifying eachA-scan independently.
Tables 8.3 and 8.4 show theUBE andDSC of the different evaluated algorithms com-
paring with the reference standard from the 42 SD-OCT test volumes.

To evaluate the efficiency of optic disc segmentation, we recorded the average
computational time of our algorithm with different features and compared this with
that from theA-scan classification-based segmentation algorithm, shown inTable 8.5.
We determined that the run time of patch searching is mainly determined by fea-
ture extraction. Although fusion feature is more discriminating for our algorithm,
it required more time to perform segmentation. The computation cost of an A-scan
classification-based segmentation is high because the k-NN classifier cannot use a
pre-training model and needs to calculate the distance of each query instance to all
training samples.

8.3.2 Evaluation of C/D Ratio Quantification

C/D ratio is an important ONH parameter for early glaucoma detection. There are
several definitions of the C/D ratio, such as area C/D ratio, horizontal C/D ratio,
vertical C/D ratio [37] and linear C/D ratio [4]. In this paper, we used areaC/D ratio,
defined as:

ratioc,d � Scup/Sdisc (8.5)

Table 8.1 Unsigned border error for LBP, HOG and fusion feature (Mean±SD)

LBP HOG Fusion

Disc (pixel) 2.771±1.571 2.225±1.418 2.216±1.406

Disc (mm) 0.084±0.047 0.067±0.043 0.067±0.042

Cup (pixel) 1.509±0.886 1.242±0.893 1.164±0.869

Cup (mm) 0.045±0.027 0.037±0.027 0.035±0.026

Table 8.2 Dice similarity coefficient for LBP, HOG and fusion feature (Mean±SD)

LBP HOG Fusion

Disc 0.910±0.035 0.918±0.034 0.919±0.034

Cup 0.908±0.127 0.925±0.115 0.928±0.116
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Fig. 8.5 Visualization of the ONH segmentation produced by our algorithms from 7 randomly
selected eyes, compared with A-scan classification-based method and the reference standard. From
left to right: NCO detection in central B-scan (number 100 of 200) of the SD-OCT volume (the red
dots denote the NCO points, the red lines indicate the disc border and the green line indicate the
cup border), A-scan classification-based segmentation, coarse optic disc and cup margin location,
patch searching-based segmentation and reference standard. The red and green curves denote the
disc and cup margin, respectively
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Table 8.3 Unsigned border error for different segmentation algorithms (Mean±SD)

A-scan Classification Coarse margin
location

Patch searching

Disc (pixel) 3.245±1.531 3.971±1.870 2.216±1.406

Disc (mm) 0.098±0.046 0.120±0.056 0.067±0.042

Cup (pixel) 2.338±0.993 1.140±0.763 1.164±0.869

Cup (mm) 0.070±0.030 0.034±0.023 0.035±0.026

Table 8.4 Dice similarity coefficient for different segmentation algorithms (Mean±SD)

A-scan Classification Coarse margin
location

Patch searching

Disc 0.905±0.035 0.868±0.057 0.919±0.034

Cup 0.917±0.113 0.925±0.125 0.928±0.116

Table 8.5 Computational time comparison

LBP HOG Fusion A-scan
classification

Time (s) 86.68 12.57 103.04 109.62

Table 8.6 Error of C/D evaluation by different algorithms (Mean±SD)

A-scan Classification Coarse margin
location

Patch searching

Evaluation error 0.060±0.044 0.073±0.036 0.045±0.033

where Sdisc is the area of optic disc and Scup is the area of cup, both defined in
a projection image. Area C/D ratios were calculated by the proposed algorithm,
A-scan classification-based segmentation and the reference standard are shown in
Fig. 8.6a, and the error of C/D ratio evaluation (defined as the difference between
C/D ratios calculated by algorithms and the collectedmanual segmentation) is shown
in Fig. 8.6b. The mean and standard deviation of the error are also summarized
in Table 8.6. The results indicate that the evaluation error of the patch searching-
based segmentation is lower than those of the other two segmentation algorithms
for automated C/D ratio calculation. The coarse margin location causes the highest
error because it fails to obtain the precise disc margin. Our algorithm proposed here
achieved the best performance in C/D ratio quantification.

8.4 Conclusion

In this chapter, a patch search-based optic disc segmentation algorithmhas been intro-
duced for quantifying the C/D ratio in SD-OCT volumes. Compared with traditional
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methods, our algorithm has several advantages: (1) A two-stage strategy combines
the global and local information for optic disc segmentation. In coarse disc margin
location, we consider the structural characteristics of ONH for initial NCO detection.
In the patch searching procedure, we seek to find the most likely patch centered at
the NCO near NCO candidates. (2) Unlike A-scan classification-based segmentation
methods that directly classify every column in B-scan images as disc (rim or back-
ground), our algorithm only searches in a restricted region, increasing efficiency.
Furthermore, the SVM classifier spends less computational time than a k-NN clas-
sifier because it can use pre-training model data, further boosting efficiency. (3) As
shown in Fig. 8.5, the segmentation results of the proposed algorithm have smoother

Fig. 8.6 Comparisons of C/D ratio quantification by different algorithms. a Area C/D ratio quan-
tification. b Error of C/D ratio evaluation
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Fig. 8.7 An example of inaccurate NCO detection

margins than those of other methods. This is due to the fact that our method imposes
spatial correlation smoothness constraints to finely tune the final segmented result.

Although the experimental results demonstrate that the proposed algorithm can
achieve high segmentation accuracy and be an efficient clinical tool for quantifying
the C/D ratio, there are several limitations: (1) The computation cost principally
depends on feature extraction. In Table 8.5, it is observed that the time cost of our
algorithm with the fusion feature does not yet meet the needs of real-time segmenta-
tion. Therefore, efficient feature extraction is required. (2) The results produced by
our method could present inaccuracies in severely tilted images. Figure 8.7 shows an
example of inaccurate NCO detection. The patch has a maximum probability of class
2 in the searching procedure, but the detected NCO is far away from the true NCO
since the similarity of visual content may not fully reflect anatomical characteristics.

In future research,we plan to improve our algorithm in twoways. Feature selection
will be refined to increase the computational efficiency and NCO detection will
be improved by incorporating anatomical structures to improve the segmentation
accuracy.
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Chapter 9
Choroidal OCT Analytics

Kiran Kumar Vupparaboina, Ashutosh Richhariya,
Jay Chhablani and Soumya Jana

The advance in OCT imaging techniques allow visualization of the deeper structures
of the eye, including the choroid, the structural change of which is associated with
various diseases. In this chapter, methodologies are presented for automatic quan-
tification of choroidal measurements such as thickness, volume and stromal-luminal
ratio, which are indicators crucial in disease diagnosis and treatment response mon-
itoring.

9.1 Introduction

The choroid layer, sandwiched between the retinal pigment epithelium (RPE) and the
sclera, has complex vasculature, performs critical physiological functions [1–5], and
assumes crucial role in diagnosing various disease conditions. Such diseases include
age-related macular degeneration (AMD), central serous chorioretinopathy (CSC),
Vogt-Koyanagi-Harada syndrome, and choroiditis [6–10]. The advent of OCT has
lead to improved visualization of the choroid, and hence improved diagnosis [11].
Among various OCT technologies, the spectral domain OCT (SD-OCT) is perhaps
the most ubiquitous [12]. Typical SD-OCT images are shown in Fig. 9.1. The left
portion of each image, called en-face, depicts the infrared face-on view of retina,
while the dashed line on it indicates the vertical location of the OCT plane. The right
part depicts an OCT scan, consisting of retina (layered), including RPE (bright),
choroid (granular), and sclera (smooth), from top to bottom (from inner to outer
layer, physiologically), as labeled in the last image [13]. Usually, OCT is performed
at various (e.g., 97) vertical locations, and the ophthalmologist browses throughOCT
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Fig. 9.1 Three sample
images of a set of 97
SD-OCT images of the
posterior segment of the eye
(courtesy Dr. William R
Freeman, University of
California, San Diego, La
Jolla, CA). A typical OCT
image contains en-face on
the left portion, and retina,
RPE (outermost part of
retina), choroid and sclera on
the right portion

images, paying attention to the choroid region to assess its condition. Further, to
perform accurate diagnosis and monitoring of treatment response, ophthalmologists
envision to seekvarious parameters of interest such as choroidal thickness distribution
and volume, and stromal-luminal ratio.

Accordingly, this chapter focus on choroidal analytics with a aim to (i) facilitating
clinicianswith automated tools for quantifying various parameters of interest, and (ii)
providing next generation screening/visualization tool for performing better/stress-
free diagnosis. In particular, we discuss automated quantification of (i) thickness and
volume, as well as (ii) stromal-luminal ratio pertaining to the choroid.

The rest of the chapter is organized as follows. In Sect. 9.2, automated quan-
tification of choroid thickness and volume is discussed. Subsequently, automated
quantification of choroidal stromal-luminal ratio is discussed in Sect. 9.3. Finally.
we conclude in Sect. 9.4 with a summary.

9.2 Automated Segmentation and High-Level Analytics

In managing choroidal diseases, high-level OCT analytics of choroid assumed sig-
nificant role. In particular, gross indicators such as choroidal thickness distribution
has been widely examined in understanding effect of various diseases on choroid and
in turn on visual acuity [14]. Recently, choroid volume has also been investigated and
has shown improved understanding of diseases [15]. In this backdrop, this section
primarily focuses on quantification of such gross indicators. However, quantifica-
tion of finer details of the choroid facilitate much better understanding of diseases
associated with choroid [16], which will be discussed in Sect. 9.3.
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9.2.1 Problem Setup and Solution Approaches

Choroidal thickness distribution estimated from OCT images emerged as an impor-
tant metric in disease management [14]. Consequently, estimation accuracy has
assumed a vital role in ensuring accurate diagnostic outcome [17]. Choroidal thick-
ness measurements have in turn been used to obtain choroidal volume. So far, such
thickness measurements have been performed by experts by manually delineating
the choroid inner and outer boundaries and then taking the difference. Such manual
analysis of OCT scans is time consuming, laborious as well as susceptible to fatigue-
induced error. Manual estimation of choroidal volume is rarely performed in view of
the inordinate time and effort involved. Against this backdrop, automated segmen-
tation of choroid layer could be crucial in reducing professional effort and time per
subject, potentially allowing more subjects to obtain specialized medical attention.
Further, choroidal volume now being routinely used in addition to the usual choroidal
thickness. Automation would also avoid human error induced by fatigue and tedium.
Accordingly, we propose a novel automated algorithm for choroid segmentation and
related thickness and volume measurements.

Since the last few years, automation of choroid segmentation have been attracting
considerable attention. In viewof the eye physiology (Fig. 9.1), choroid segmentation
consists of two tasks: detecting (i) choroid inner boundary (CIB) and (ii) choroid outer
boundary (COB). Of these, the first task is relatively well posed because the RPE,
defining the CIB, is significantly brighter than adjacent layers. Indeed, the gradient-
based approach in various flavors has proven accurate not only in detecting CIB [18,
19], but also in the related problem of detecting boundaries between successive reti-
nal layers with well-defined brightness transition [20, 21]. Accordingly, we shall also
adopt a gradient-based approach for CIB detection. In contrast, the task of detecting
the COB poses considerable challenge. This happens because the COB is essentially
a notional divide between the choroidal granularity and the scleral uniformity, which
is not defined by marked variation in brightness, and often open to subjective inter-
pretation. Even so, gradient-based deterministic methods have been suggested for
COB detection [22, 23]. However, statistical methods appear more suitable to handle
the inherent uncertainties involved. Accordingly, machine learning [24, 25] as well
as gradient-based probabilistic methods [19] have been attempted. Yet, aforemen-
tioned attempts does not directly exploit the structural transition from granularity to
uniformity across the COB. Against this backdrop, SSIM-based method has been
proposed to quantify the structural dissimilarity between choroid and sclera using the
yardstick of structural similarity (SSIM) index to find an initial estimate of the COB,
followed byHessian analysis to remove the discontinuities in the initial estimate [26].
However, the resulting boundary, although adequately separates the choroidal ves-
sels from scleral uniformity, generally is not smooth and deviates substantially from
smooth boundaries manually drawn by experts [27]. With a view to obtaining close
match with the latter, tensor voting is employed to achieve the desired smoothing.
From a clinical perspective, even accurate estimate of choroidal thickness on its own
could sometimes be inadequate in assessing choroidal involvement in chorioretinal
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diseases. To see this, suppose specific scans are taken at selected foveal locations.
Then the thickness measure would clearly be inadequate in representing the overall
choroidal distribution. In contrast, volumetric analysis of the choroid would be bet-
ter suited to assess the disease course and response to treatment [17]. Against this
backdrop, SSIM-based method also automated choroidal volume measurement [26].

Turning to performance comparison among algorithms reported, it poses consid-
erable challenge due to various factors. In several cases standard datasets and ground
truth results did not exist. Specifically, algorithms, considered the state of the art,
were tested on disparate datasets, making comparison among those algorithms diffi-
cult. Further, as manual measurements are also subjective in nature, those also should
not be used as reference. Against this backdrop, SSIM-based method proposed to
use the variability in manual measurements as the reference, and the compare against
that the variability between mean manual and algorithmic performances [26]. Fur-
ther, thorough statistical analysis is carried out comparing algorithmic results with
observer repeatability. Importantly, quotient measures are defined to facilitate com-
parison among algorithms tested on different datasets vis-à-vis manual methods. In
view of above observations, the rest of the section focuses on detailed description
of the SSIM-based methodology for automated quantification of choroidal thickness
and volume.

9.2.2 Materials and Methods

Primarily this algorithm attempts to automatically detect choroid inner boundary
(CIB) and choroid outer boundary (COB), which are manually drawn by an expert
in Fig. 9.2. We begin by describing the experimental datasets and the proposed
methodology.

9.2.2.1 Experimental Datasets

OCT scans considered are performed by a single retina specialist, using Heidelberg
Retina Angiograph (HRA - Spectralis, Heidelberg Engineering, Dossenheim, Ger-
many). The Spectralis OCT device provides up to 40,000 A scans/s with a depth
resolution of 7 µm in tissue and a transverse resolution of 14 µm using a superlu-
minescence diode with a mean wavelength of 870 nm. Raster imaging consisting of

Fig. 9.2 Choroid inner
boundary and choroid outer
boundary, labeled manually
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97 high-resolution B scans was performed with each eye, centered on the fovea. An
internal fixation light was used to center the scanning area on the fovea. Each scan
was 9.0 mm in length and spaced 30 µm apart from each other. Single OCT images
consisting of 512 A lines were acquired in 0.78 ms. The scans were obtained for
analysis after 25 frames, and averaged using built-in automatic averaging software
(TruTrack; Heidelberg Engineering, Heidelberg, Germany) to obtain a high qual-
ity choroidal image. In this work, experimental evaluation is performed on B-scans
taken from three healthy adult subjects, from whom one eye randomly chosen per
subject and 97 B-scans are taken per eye. The first two datasets has image resolu-
tion 351 × 770 and the third dataset has 496 × 1536 (covering larger area). Manual
segmentation is performed twice by same expert on each scan to study the observer
repeatability. In particular, ImageJ software is used to perform manual segmentation
[28]. The average of two such manual segmentations is taken as the reference.

9.2.2.2 Methodology

As depicted in Fig. 9.3, the SSIM-based methodology consists of various steps:
(i) denoising, (ii) localization of choriod and (iii) choroid outer boundary (COB)
detection.

9.2.2.2.1 Denoising: Generally, OCT images are noisy (Fig. 9.4a), and appropriate
denoising improves algorithmic accuracy. Accordingly, for denoising, the block-
matching and 3D filtering (BM3D) algorithm, which is generally accepted as the
state of the art, is adopted [29]. This algorithm is based on an enhanced sparse
representation in transform-domain, where enhancement of the sparsity is achieved
by grouping similar 2D image blocks into 3D data arrays called “groups”, followed
by performing collaborative filtering on them. As groups exhibit high correlation, a
decorrelating transform attenuates noise. Finally, denoised images are obtained by
applying the inverse transform (Fig. 9.4b).

9.2.2.2.2 Localization of Choroid: Next RPE inner boundary is located. This further
helps us locate the RPE outer boundary, which defines the CIB, and specify a region
of interest (ROI) between CIB and sclera which is expected to contain the COB.

Fig. 9.3 Schematic of SSIM-based methodology
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A. RPE inner boundary detection: Noting the higher brightness of the RPE com-
pared to that of the adjacent layers, an initial edge map is obtained using the
gradient-based Canny edge operator [30]. However, also notice in Fig. 9.4a that
sharp change in brightness occurs not only at the RPE inner boundary, but at
the retinal inner boundary as well. Accordingly, the edge operator principally
detects both the above boundaries alongside some secondary edges (Fig. 9.4c).
Of these, the outer one of the principal edges is taken as the RPE inner boundary
and removed its discontinuities using the dilation operator (Fig. 9.4d) [30].

B. Choroid inner boundary (CIB) detection: Now the various retinal layers inside
RPE inner boundary are peeled off (Fig. 9.4e). The RPE outer boundary, which
also defines theCIB, occurs at amore or less uniformdistance from theRPE inner
boundary, and is then detected based on gradient-based bright-to-dim transition.
subsequently, the RPE layer is also peeled off (Fig. 9.4f). At this point, detection
of the COB is remained. To this end, a region of interest (ROI) of sufficient
thickness outside the CIB is selected such that the ROI would contain the COB
(Fig. 9.4g).

9.2.2.2.3 Choroid Outer Boundary (COB) Detection: The steps employed for COB
detection are outlined in the flowchart of Fig. 9.3.

A. Initial COB estimate based on SSIM: Observe in Fig. 9.4a that the sclera (uni-
form) and the choroid (granular) have dissimilar structure. Accordingly, such
dissimilarity is exploited by taking a small window from sclera as a template,
and calculate the structural similarity (SSIM) index between the template and
the neighborhood (of the same size as the template) of every pixel throughout the
ROI. Here SSIM between two windows A and B of equal dimensions is given
by [31]

SSIM(A,B) = (2μAμB + c1)(2σAB + c2)

(2μ2
Aμ

2
B + c1)(σ2

A + σ2
B + c2)

, (9.1)

where μA and μB denote the respective means, and σ2
A and σ2

B the respective
variances of windows A and B, whereas σAB denotes their covariance. Further,
c1 and c2 are small constants, chosen to stabilize the expression. As the template
is chosen from the sclera, we expect scleral pixels to have higher and choroidal
pixels to have lower SSIM indices. Indeed the lowest SSIM values are observed
in the transition region between sclera and the choroid, i.e., near the COB.
More accurately, pixels with SSIM index below a suitable threshold are mostly
concentrated on the choroid side of theCOB, and generally isolated on the scleral
side (Fig. 9.4h). Such scleral pixels are removed using the connected components
algorithm (Fig. 9.4i) [30]. Finally, the lower boundary of the remaining sub-
threshold pixels is taken as an initial estimate of the COB (Fig. 9.4j), which
however is generally discontinuous.
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B. Refinement via eigenvalue analysis of the Hessian matrix: To remove such dis-
continuities, an adaptive Hessian analysis method is adopted [32, 33]. In partic-
ular, first whether a pixel belongs to a blood vessel (present only in the choroid)
or not is found. To this end, we estimate the Hessian matrix H at every pixel
based on its neighborhood, compute the eigenvalues λ1 and λ2 of H, and ver-
ify whether λ1 is small and λ2 is large, which has been shown to correspond
to dark tubular structures such as choroidal blood vessels [34]. To complicate
matters, the intensities across the length of the scan was not uniform, and hence
a unique threshold pair on the eigenvalues may not suffice in detecting choroid
vessel cross-sections accurately. Accordingly, to improve accuracy, thresholds
on λ1 and λ2 are picked in an adaptive manner, and add the outer boundary of
newly detected choroid vessels to our initial COB estimate, thereby removing
undesirable discontinuities (Fig. 9.4k).

C. Smooth interpolation using tensor voting: The refined COB estimate appears to
divide the choroidal granularity and the scleral uniformity adequately, albeit in
jagged manner. In contrast, manual delineation of the COB by an expert is gen-
erally smooth (Fig. 9.4l). To achieve similar smoothness in our automated COB
estimate, tensor voting is adopted [35, 36]. Directly applying tensor voting on
the refined COB estimate may lead to omission of some choroid vessels, because
final boundarymay pass through the choroid layer cutting some of the blood ves-
sels. Therefore, post preprocessing is performed on the refined COB estimate,
which involves discarding boundary pixels that are close to local minima. This
is done by dividing each scan into three windows along the length and fixing
a local threshold based on mean thickness value of the corresponding window.
Further, threshold is chosen slightly greater than the local mean. Before proceed-
ing further, we describe in brief the tensor voting technique, which propagates
information using tokens, conveying various objects’ orientation preferences
(i.e., votes) to their neighbors. When such votes are tallied, objects belonging to
the same structure tend to join together. The influence of a vote decays away from
the object, and the saliency decay function (DF) is generally taken as Gaussian:

DF(s, k,σ) = e( s2+ck2

σ2
)
, (9.2)

where s denotes arc length, and k curvature, while c controls the degree of decay
with curvature, and σ the scale of voting, which in turn determines the effective
neighborhood size [36]. Now, in order to achieve the desired smoothing of the
post-processed COB, tensor voting is applied in two stages. First, a relatively
large σ is applied with a view to finding a mean interpolated COB. Finally,
a smaller σ is used to smoothen small left-over transients. This results in our
final estimation of the COB (Fig. 9.4m). Subsequently, the choroid between the
estimated CIB and the estimated COB is segmented (Fig. 9.4n), and hence obtain
the thickness distribution (Fig. 9.4o).
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9.2.3 Results and Statistical Analysis

Following the aforementioned steps, the CIB and the COB estimates in each OCT
B-scan of the three datasets at hand are obtained. In Fig. 9.5, results for six B-
scans per dataset as representative are depicted. For visual comparison, manual COB
delineations performed by experts are also depicted alongside. Next a quantitative
assessment of the proposed automated algorithm in terms of estimation accuracy of
the resulting choroidal thickness distribution and volume is presented.

9.2.3.1 Choroidal Thickness

First estimation of choroidal thickness distribution is considered, and then the esti-
mation accuracy is quantified.

9.2.3.1.1 Thickness Distribution: Choroidal thickness distribution obtained using
the proposed method is presented for each dataset in Fig. 9.6c, while the correspond-
ing distribution obtained using the manual reference, taken as the average of the two
manual segmentations, is presented in Fig. 9.6b. For positional reference, correspond-
ing en-face images are depicted in Fig. 9.6a. Further, the estimation error, measured
by the difference (D) between the automated and themanual reference thickness esti-
mates, is presented in Fig. 9.6d, while the corresponding absolute error/difference
(AD) is presented in Fig. 9.6e. The absolute error appears to be tolerable, while
a tendency to underestimate thickness is noticed. Ideally, one desires automated
algorithms to perform as well as the manual approach. Next, a thorough statistical

Fig. 9.5 Left: 6 B-scan images from 97 scan dataset—1; Middle:—6 B-scan images from 97 scan
dataset–2; Right:—6B-scan images from 97 scan dataset—3with labeledmanual (orange, maroon)
and SSIM-based automated (yellow) segmentation
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(a) En-face

(b) Thickness distribution in manual reference

(c) Thickness distribution obtained by the proposed automated method

(d) Difference (c)-(b)

(e) Absolute difference |(b)-(c)|

Fig. 9.6 Thickness distribution comparison for the three datasets

analysis is presented to quantitatively establish closeness to such ideal goal as well
as comparative advantage over reported algorithms.

9.2.3.1.2 Statistical Performance Measures: For a collection {zk}Nk=1 of samples of
quantity z, its mean Mz, standard deviation (SD) SDz, and coefficient of variation
(CV) CVz are defined by
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Mz = 1

N

N∑

k=1

zk , SDz =
√√√√ 1

N

N∑

k=1

(zk − Mz)2, CVz = SDz

Mz
, (9.3)

which respectivelymeasure the central tendency, the dispersion, and the standardized
dispersion. In particular, the estimation accuracy of choroidal thickness distribution
is quantified in terms of four quantities—namely, difference (D), absolute difference
(AD), correlation coefficient (CC) andDice coefficient (DC). Accordingly, we define
specific measures, such as MAD, MCC, SDDC, CVCC, CVDC (replacing z by the
suitable specific quantity). Here note that the standardized dispersion measure CVz
is meaningful only if z is nonnegative. Accordingly, since difference (D) is signed,
CVD is not meaningful and not reported. Further, statistical measures are computed
for results obtained not only by the proposed algorithm (superscripted ‘auto’) but
by manual methods (superscripted ‘ref ’) as well. In particular, the average of the
two manual segmentations is taken as reference in such computations. To ensure
fair comparison, the results are reported vis-à-vis observer repeatability, i.e., the
consistency of performing manual segmentations multiple times by same observer.

A. Difference andAbsolute difference: Suppose xi and yi denote the thickness values
at the i-th (i = 1, . . . ,N ) column (A-scan index) in twomeasurements. Then the
difference (D) and the absolute difference (AD) between those measurements at
the i-th column are respectively given by

Di = (xi − yi), ADi = |xi − yi|. (9.4)

For each scan, corresponding mean difference (MD) and mean absolute dif-
ference (MAD) are obtained based on (9.3). For the 291 B-scans from the
three datasets, the proposed algorithm achieves MD between −52.98µm and
13.75 µm with an average of −16.63 µm and standard deviation (SDD) of
19.79µm, while the MD between the two manual segmentations varies between
−30.67µm and 20.18µmwith an average of−5.65µm and SDD of 14.53µm.
Figure 9.7 provides further dataset-wise details. Difference plots for the three
datasets are furnished in Fig. 9.6. Inspecting those values, there appears to be
a slight negative bias in the proposed method vis-à-vis the reference manual
method, indicating room for further improvement. However, the standard devi-
ations appear to be desirably close.
Proceeding further, the sign of the error is ignored and turned to obtain the abso-
lute difference (AD) measure. The MAD between the estimated thickness and
the reference thickness for our 291 B-scans, are plotted in Fig. 9.8a. To facili-
tate comparison, MAD between two manual segmentations, measuring observer
repeatability, are also presented. The proposed automated algorithm achieves
MAD between 5.63 and 52.98 µm with an average of 21.88 µm and standard
deviation (SDAD) of 17.43µm, while the MAD between manual segmentations
varies between 5.55 and 38.71 µm with an average of 13.74 µm and SDAD of
11.67 µm.
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cient, and cDice’s coefficient; notation:M1—Manual segmentation-1,M2—Manual segmentation-
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B. Correlation coefficient: For two measurements xi and yi, i = 1, . . . ,N , seen
earlier, the correlation coefficient (CC) is defined by [37]

CC =
∑N

i=1 xiyi√∑N
i=1 x

2
i

∑N
i=1 y

2
i

. (9.5)

The scan wise CC between the estimated choroid thickness and the reference
thickness are now plotted in Fig. 9.8b. In the same figure, the corresponding CC
between the thickness values obtained by two manual segmentations, measuring
observer repeatability, are also plotted for comparison. The proposed automated
algorithm achieves CC between 97.90% and 99.95% with an average (MCC) of
99.54%and standard deviation (SDCC) of 0.31%, across three datasets,while the
CC between manual segmentations varies between 98.18% and 99.97% with an
MCC of 99.77% and SDCC of 0.16%, thus demonstrating the general reliability
of our method.

C. Dice coefficient: Denote the respective sets of pixel indices in the i-th (i =
1, . . . ,N ) column of two segmentations by Cx

i (|Cx
i | = xi) and Cy

i (|Cy
i | = yi).

Then the Dice coefficient (DC) is defined by [38]

DC = 2
∑N

i=1 |Cx
i ∩ Cy

i |∑N
i=1 |Cx

i | + ∑N
i=1 |Cy

i |
. (9.6)

Now scanwise DC between the estimated choroid thickness and the reference
thickness are plotted in Fig. 9.8c, alongside DC between two manual segmen-
tations as a measure of observer repeatability. The proposed algorithm achieves
DC between 88.81% and 98.73% with an average (MDC) of 94.65% and SDDC
of 1.67%, while DC between two manual segmentations varies between 89.44%
and 98.79% with an average (MDC) of 96.73% and SDDC of 1.24%.

9.2.3.1.3 Performance Comparison

A. General comparison: With the above observations, now the performance of
SSIM-based [26] algorithm is compared against that of other reported algo-
rithms. However, it remains problematic to clearly establish the advantages of
recent methods over earlier work. First, experimental datasets used by various
researchers differ in terms of mean wavelengths used in SD-OCT acquisition.
Further, some scans have been obtained from healthy subjects, some from dis-
eased subjects [22–24], some from adult, and some from pediatric subjects [19].
Moreover, some scans have been taken only near the foveal cross section [23,
38], rather than at various vertical locations over a wide range. In addition, a
variety of evaluation criteria, including correlation coefficient (CC) [22], Dice
coefficient (DC) [19, 23, 38], mean border position difference (MBPD) [22, 25],
and mean absolute difference (MAD) [19], have been used. The image quality
and subjective complexity also appear to vary among various datasets rendering
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performance comparison amongvarious algorithms. For fair comparison, ideally,
there should be standard datasets, fairly representing possible OCT images, as
well as standardized performance measures. Indeed, desired standardization has
been achieved in certain fields, such as stereo vision [39] and electrocardiogram
(ECG) signal analysis [40]. However, such standardization requires enormous
resources. Pending similar standardization in the study of choroid segmentation,
to improve contextual comprehension, SSIM-based method compared results
generated by the proposed automated algorithm against observer repeatability
figures on the same datasets as those figures implicitly reflect image quality.
Various aspects of the reported literature including SSIM-based method is pre-
sented in Fig. 9.9.
To highlight the issues, consider comparing the SSIM-based algorithm [26]
against that reported by dual-gradient-based method by Alonso-Caneiro et
al. [19], which is considered as state-of-the-art prior to SSIM-based algo-
rithm. Specifically, we have rival mean difference (MD) values of −16.63 ver-
sus 2.35 µm, and rival standard deviation on difference (SDD) 19.79 versus
15.48 µm (see Fig. 9.7). If one considers the above numerical figures alone,
one would infer the superiority of the latter algorithm. However, such simplis-
tic comparison inherently ignores the fact that the respective datasets on which
the competing algorithms are applied do not necessarily pose similar level of
difficulty in choroidal delineation. Indeed, when presented to the human expert,
those datasets exhibit respective standard deviation (SDD) values of 14.53 and
6.08µmon observer repeatability, indicating the relatively higher difficulty level
posed by the former (SSIM-based method’s) dataset. In other words, SDD for
SSIM-based algorithm worsens by 36% compared to manual methods, while
such worsening factor is 155% for Alonso-Caneiro et al. Thus, with reference
to manual methods, SSIM-based approach exhibits less relative dispersion.
Now similar comparison ismade based on other performance criteria. In terms of
correlation coefficient (CC), SSIM-based method achieves an overall mean CC
(MCC) value of 99.54%, which compares well with the corresponding observer
repeatability value of 99.77%. Further, our algorithmic MCC value of 99.54%
is much higher than the value 93% reported by Hu et al. [22] (refer to Fig. 9.9).
However, as seen in the previous paragraph, the above comparison is not neces-
sarily fair in the absence of the observer repeatability value for the later method.
Turning to Dice coefficient (DC), the results reported by Alonso-Caneiro et al.
[19], appears to improve on the earlier methods (refer to Fig. 9.9), albeit in an
absolute sense, because observer repeatability values are not available. Referring
to Fig. 9.7, SSIM-basedmethod obtained an overall meanDC (MDC) of 94.65%,
which compares well with the corresponding observer repeatability of 96.73%,
but is lower than the algorithmic MDC of 96.7% reported by Alonso-Caneiro
et al. Unfortunately, their observer repeatability value, expected to be higher, is
unavailable, ruling out fair comparison.

B. Performance quotients: Proceeding further, quotient measures that incorporate
observer repeatability are proposed, which not only facilitate performance com-
parison with reported algorithms, but also to set benchmarks for future research.
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Specifically, two quotients are defined. The quotient of mean, QMz, is defined
by the ratio

QMz = |Mzauto − zideal |
|Mzref − zideal | , (9.7)

where Mzauto and Mzref , respectively, indicate the mean values obtained by the
algorithm and the manual method, and zideal denotes the ideal value of z. A
low QMz value is desirable. Specifically, QMz = 1 would make the algorithmic
accuracy indistinguishable from the accuracy of manual methods in terms of
mean error. Similarly, quotient of CV, QCVz, is defined by

QCVz = CVzauto

CVzref
, (9.8)

where CVzauto and CVzref , respectively, indicate the CV obtained by the algo-
rithm and that obtained manually. Again, we desire QCVz, measuring relative
standard dispersion, to be low, and QCVz = 1 would make the algorithm at par
with manual methods. In (9.7) and (9.8), the general quantity z can specifically
be either AD, or CC, or DC, as mentioned earlier.
In this backdrop, the respective overall QMAD and overall QCVAD values,
obtained by SSIM-based method, are observed to be, 1.59 and 0.93. Interest-
ingly, QCVAD value for SSIM-based algorithm is less than one, indicating that
the algorithmic consistency exceeds manual consistency. Further, those quo-
tient values improve upon the respective quotients of 2.03 and 1.69 reported
by Alonso-Caneiro et al. [19] by respective factors of 27.67% and 81.72%.
Figure 9.7 provides further dataset-wise details. In particular, the SSIM-based
method achieves consistent QMAD values of 1.55, 1.87, 1.35 for the three
datasets, indicating consistent algorithmic performance across datasets. Such
performance consistency is further buttressed by the corresponding consistent
QCVAD values of 0.84, 0.83 and 1.22. In addition, the low overall QMCC and
QCVCC (resp. QMDC and QCVDC) values of 2 and 1.94 (resp. 1.63 and 1.37),
respectively, further corroborate the effectiveness of the SSIM-based algorithm.
Figure 9.7 presents further details on dataset-wise performance.

9.2.3.2 Choroidal Volume

Finally, estimation choroidal volume is attempted.Asmentioned inSect. 9.2.2.1, each
of the three datasets consists of 97 B-scans taken at a uniform vertical separation
of 30µm. As these datasets were taken from in vivo imaging, all the scans are not
spatially aligned, specifically along Z-axis, due to the eye movement. Therefore,
choroid layer is not aligned spatially in all the scans and thus volume could not be
estimated directly. In view of this, first the scans are geometrically aligned, thereby
aligning the choroid layer. In particular, building on eye structure, spherical alignment
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is performed which is not only useful for volume estimation but also facilitated life-
like visualization of the choroid layer.

9.2.3.2.1 Geometrical Alignment Although eye anatomy is nominally a sphere, all
internal layers of the eye are not spherical. For example, the retinal shape deviates
considerably from a sphere, especially, near the fovea. Fortunately, the RPE, except
in the proximate region of the optic disc, is approximately spherical. In view of this
observation, RPE inner boundaries in all the OCT sections are aligned on a nominal
sphere. In particular, note that any 3D point (X ,Y ,Z) lies on the surface of a sphere
with center (Xc,Yc,Zc) and radius R, if it satisfies

(X − Xc)
2+(Y − Yc)

2+(Z − Zc)
2=R2. (9.9)

Therefore, the goal is to find (Xc,Yc,Zc) and R that best align the boundaries at hand.
To this end, the following steps are employed:

A. Scaling: Before proceeding further, it is crucial to notice that X -, Y - and Z-axes
are sampled at different intervals. So, in preparation to spherical alignment, all
axes are scaled (with the help of OCT metadata) so as to endow each axis with
the same unit of length.

B. Optimization: Assuming proper scaling, identifyNi (which should be reasonably
large) 3D points {(Xij,Yij,Zi)}Ni

j=1 on the retina-RPE boundary on the i-th OCT
section, 1 ≤ i ≤ K . Here we assume that there are K such sections (in our case,
K = 31). Now the task is to provide a planar transformation (which possibly
varies from slice to slice) to eachOCT slice in such amanner that the transformed
points deviate the least from a nominal sphere. Since Y -coordinates are already
aligned, planar transformations that alters the X -coordinate, but leaves the Y -
and Z-coordinates unchanged are considered. Finally, we shall leave the first and
the last sections unaltered in order to avoid ambiguity.
Formally, such planar transformation for the i-th (1 ≤ i ≤ K) section takes the
form Ti : (Xij,Yij,Zi) → (X ′

ij,Y
′
ij,Z

′
i ), where

X ′
ij = αiXij + βiYij + γi

for some (αi,βi, γi), Y ′
ij = Yij and Z ′

i = Zi. Further, we fix

(αi,βi, γi) = (1, 0, 0) = (αK ,βK , γK ),

i.e., X ′
ij = Xij for each 1 ≤ j ≤ Ni as long as i = 1 or i = K .

Thus the task boils down to solving the following optimization problem:

(Φ∗, Ψ ∗) = arg min
(Φ,Ψ )

K∑

i=1

Ni∑

j=1

((X ′
ij − Xc)

2 + (Yij − Yc)
2 + (Zi − Zc)

2 − R2)2. (9.10)



9 Choroidal OCT Analytics 229

where we optimize the center (Xc,Yc,Zc) and radius R of the nominal sphere,
denoting Φ = {Xc,Yc,Zc,R} for convenience, jointly with the free planar trans-
formation parameters Ψ = (αi,βi, γi)

K−1
i=2 .

C. Optimal planar transformations: The optimal choice ofΨ ∗ in (9.10) specifies the
collection of optimal planar transformations Ti, 2 ≤ i ≤ K − 1. So, in order to
achieve spherical alignment, it is tempting to simply transform the i-th prepro-
cessed section, 2 ≤ i ≤ K − 1. However, this method generally maps a point on
the integer grid to a point that does not lie on the integer grid on the transformed
axes. Appropriate interpolation will be performed to obtain image values on the
desired integer grid.

In the experiment, a lightfield display (Holovizio 721RC) is used for 3D visual-
ization of volume data. However, here we include several 2D views for easy appreci-
ation by the reader. In Fig. 9.10, the reference unaligned sections, the corresponding
spherically aligned sections are depicted. In each row, approximately same perspec-
tive is maintained for easy comparison. Notice that the spherically aligned sections
stack up to approximate the natural geometry. Indeed those highlight a circular fovea
indicating proper alignment.

Further, the choroid layer is visualized in 3D from six different perspectives in
Fig. 9.11. Notice the depletion in choroid thickness in the vicinity of the optic disc. In
this connection, recall that the presented images are pictures taken of the 3D rendering
on a lightfield display. In practice, the depletion stands outmore dramatically. In view
of this, the current methodology for 3D visualization is believed to come to the aid
of ophthalmologists.

For volume computation, one needs choroidal thickness estimates even at inter-
vening vertical locations. To this end, cubic interpolation is performed, while con-
verting B-scan pixels to the physical unit of length (mm). As earlier, ideally, we
would like the automated volume measurement to approximate the reference manual

Fig. 9.10 3D visualization using lightfield display: a–d various perspectives of unaligned OCT
sections; e–h corresponding perspectives after performing spherical alignment
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Fig. 9.11 3D visualization of extracted choroid layer from various views using lightfield display

measurement. Accordingly, to quantify the proximity between those volume esti-
mates, next certain statistical measures are introduced systematically.

9.2.3.2.2 General Performance Measures For the three datasets at hand, the respec-
tive automated volume estimates by SSIM-based method are obtained as 2.9947,
2.5853, and 8.4426 mm3 with an average of 4.6775 mm3. The corresponding esti-
mates found by reference manual segmentation are 3.1532, 2.8755, and 9.1847 mm3

with an average of 5.0711 mm3, demonstrating the general accuracy of our method.
Now lets turn tomore involved performance criteria, beginningwith absolute volume
difference (AVD). Specifically, the AVD between automated algorithm and manual
reference is defined by

AVDauto = |volauto − volref |, (9.11)

where volauto denotes the volume estimated by the proposed method, and volref

denotes that per the manual reference (average of manual segmentations M 1 and
M 2). Similarly, the AVD between the manual segmentations M 1 and M 2 is given
by

AVDref = |volM 1 − volM 2|, (9.12)

which we take as a measure of observer repeatability. As comparing raw AVD values
across various eyes could be unfair, we define relative AVD (RAVD) as the ratio of
AVD to volref :

RAVDflag = AVDflag

volref
, (9.13)

where “flag” could stand for either “auto” (automated) or “ref ” (manual reference).
Further,MAVDflag (resp.MRAVDflag) indicates themeanofAVDflag (resp.RAVDflag)
values taken across datasets.

For the three datasets, the SSIM-based method achieves an MRAVDauto of 7.76%
vis-à-vis observer repeatability MRAVDref of 3.59%. Table 9.1 provides further
dataset-wise details. In particular, for the datasets under consideration, the respective
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Table 9.1 Comparison of choroidal volumes obtained from algorithmic andmanual segmentations.
Notation: M1—Manual segmentation-1, M2—Manual segmentation-2, M—Average of M1 and
M2, AVD—Absolute volume difference, RAVD–AVD relative to reference (M), QAVD—Quotient
of AVD, MAVD–Mean AVD, MRAVD–Mean RAVD, QMAVD—Quotient of MAVD

Unit Method Dataset-1 Dataset-2 Dataset-3 Mean

Volume mm3 Algorithmic
(P)

2.9947 2.5853 8.4426 4.6775

M1 3.1664 2.9174 9.4024 5.0169

M2 3.1399 2.8335 8.9669 5.1253

M 3.1532 2.8755 9.1847 5.0711

AVD
(RAVD)

mm3 (%) MAVD
(MRAVD)

P and M 0.1580
(5.01)

0.2902
(10.09)

0.7421
(8.08)

0.3936
(7.76)

M1 and M2 0.0265
(0.84)

0.0839
(2.92)

0.4355
(4.74)

0.1820
(3.59)

QAVD Ratio QMAVD

5.9 3.4 1.7 2.2

RAVDauto values are 5.01, 10.09, and 8.08%. In contrast, the corresponding observer
repeatability (RAVDref ) figures are 0.84, 2.92, and 4.74%. Notice that the datasets
pose dissimilar challenges to automated and manual methods with regards to volume
computation. In particular, dataset-1 is highly amenable to manual approach, but
poses significantly more challenge to the automated algorithm. On the other hand,
dataset-3 is relatively less amenable to manual approach, but poses only marginally
more difficulty to the automated algorithm.

9.2.3.2.3 Performance quotients Now, to quantify the closeness of algorithmic per-
formance with observer repeatability in each dataset, the quotient of absolute volume
difference

QAVD = AVDauto

AVDref
= RAVDauto

RAVDref
, (9.14)

is calculated for which a low value is desirable. Similarly, the corresponding quotient
QMAVD across all three datasets is defined by

QMAVD = MAVDauto

MAVDref
= MRAVDauto

MRAVDref
. (9.15)

Over the three datasets, a QMAVD value of 2.2 is achieved, i.e., the SSIM-based
algorithm incurs just twice the error compared to human expert while computing
choroidal volume. However, the dataset-wise QAVD values of 5.9, 3.4 and 1.7 vary
significantly.
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9.3 Fine-Grain Analysis

In this section, we discuss fine-grain analysis of choroid. In general, such analy-
sis can be performed in multiple ways by considering various fine features of the
choroid including choroid vascularity index, variation of choroid vessel diameter,
choroid thickness/volume variation within sublayers of choroid. However, in view
of recent developments,we restrict our focus to one such parameter namely, choroidal
stromal-luminal ratio, employed as a measure of choroidal vascularity index. To this
end, we begin by presenting the clinical underpinnings of stromal-luminal analysis.
Subsequently, we present present various solution approaches with specific focus on
recent methodology.

9.3.1 Problem Setup and Solution Approaches

So far, only two disease determinants namely, choroid thickness distribution and vol-
ume are considered for choroidal disease management. Those could even predict the
responsiveness of the retina and the choroid to anti-vascular endothelial growth factor
[42]. However, those gross indicators provide limited information about the struc-
tural changes in the choroid, and ophthalmologists seek additional information for
better understanding of diseases. Specifically, quantifying choroidal vascular region
is crucial in diagnosing diseases affecting choroid vascularity [15]. Consequently,
ophthalmologists visually inspect OCT scans paying attention to the choroid layer,
and form an opinion about the relative proportion of the constituent vessel (luminal)
and interstitial (stromal) regions (Fig. 9.12). Naturally, they seek to corroborate the
qualitative assessment with quantitative evidence.

To reduce physician’s burden, it now becomes imperative to algorithmically esti-
mate the ratio of stromal to luminal regions from such images. Here the principal
difficulty lies in the absence of ground truth. In certain other clinical studies, such
as estimation of choroid thickness distribution, manual demarcation of the inner and
outer boundaries of the choroid is taken as the reference, albeit subject to variability
in human performance [26]. In contrast, marking choroid vessels at acceptable levels
of accuracy is practically infeasible even for experts. To appreciate this, consider the
two attempts at manual vessel segmentation, depicted in Fig. 9.13, where most larger
and some medium vessels could be marked with reasonable accuracy, but vessels
with smaller diameters were largelymissed. Here the said infeasibility arises because
vessels are sometimes indicated by such extremely fine features that one cannot pin-
point individual features, but can form a gross opinion about the density of such
features. Thus it is imperative to leverage technology to identify those features.

In this context, use of the software package, ImageJ, has been widely reported
for stromal-luminal analysis [43]. Yet, while this software is versatile, it has not
been developed specifically for OCT image analysis, and does not incorporate the
idiosyncracies of this imagingmodality. So, researchers used ImageJ as an interactive
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Fig. 9.12 a Typical SD-OCT image choroidal vessel (luminal) and interstitial (stromal) regions

Fig. 9.13 Manual delineation of choroid vasculature: a reference image, and bmanually segmented
vessels using ImageJ software

platform, and developed specific protocols for using this platform. Such a protocol
generally involves manual selection of a region of interest (ROI), and sample neigh-
borboods that certainly belong to prominent vessels. The software then determines
local thresholds according to the Niblack rule involving a combination of local mean
and local standard deviation of intensity values. This approach, while an improve-
ment over the qualitative approach, is still cumbersome, and not suitable for high
throughput and volume (involving large number of B-scans) analysis. To fill the gap,
Vupparaboina et al. proposed a fully automated work flow which produces fast and
accurate stromal-luminal analysis for individual B-scans as well as volumes con-
sisting of large number of B-scans [44]. In particular, Vupparaboina et al.’s method
considers specific aspects of SD-OCT imaging, including speckle noise, exponential
dynamic range compression, and depth-dependent attenuation, and alleviate those
using targeted techniques, including median filtering and exponential enhancement.
Further, this method builds on earlier reported SSIM-based automated choroid local-
ization method [26] to accurately confine the analysis only to the choroid region. In
the subsequent sections, the methodology and experimental results of Vupparaboina
et al.’s method, here after referred as exponentiation-based method, are discussed in
detail.
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9.3.2 Methodology

The exponentiation-based methodology is outlined using a flow chart in Fig. 9.14.
Key steps are described below.

9.3.2.1 Preprocessing

OCT B-scan images are generally affected by low-level speckle noise, character-
istics of the imaging modality, as seen in Fig. 9.15a [45]. In view of this, median
filtering is first employed to mitigate such noise (Fig. 9.15b). At the same time, due
to heterogeneity in absorption properties of the eye tissue, the OCT images suffer
from regional variation in contrast and brightness levels. Accordingly, the image
was divided into 8 × 8 blocks, and adaptively equalized based on local histograms
(Fig. 9.15c).

9.3.2.2 Exponential Enhancement and Thresholding

In SD-OCT imaging, the intensity range is compressed and quantized, while produc-
ing the usual B-scans. Noting this, Girard et al. suggested an exponential enhance-
ment method, which is adopted by Vupparaboina et al.’s methodology [46]. To this
end, first one needed to undo the associated non-linear mapping (compression), per-
formed before quantization, and transform the OCT B-scan image into raw intensity
format (Fig. 9.15d). The said transformation takes the form:

Jraw(i, j) =
(
J (i, j)

255

)4

,

where J (i, j) is the intensity of the compressed image, and Jraw(i, j) is the intensity
of the raw image obtained by OCT machine, both at location (i, j).

Subsequently, contrast enhancement is performed by increasing the dynamic
range of pixel intensities via exponentiation. In particular, the exponentiated image
(Fig. 9.15e) is obtained, where the intensity at location (i, j) was computed as

Fig. 9.14 Schematic of choroidal stromal-luminal analysis
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Fig. 9.15 Steps in stromal-luminal analysis: a acquired noisy B-scan; bmedian filtering; c adaptive
histogram equalization; d gray scale to raw intensity transformation; e exponentiation; f multipli-
cation of intensity at each row by square of the row index; g intensity transformation to gray scale,
median thresholding, and removal of outliers using connected components method; h detected
choroid inner and outer boundaries; and i binarized choroid layer

Jexp(i, j) = (Jraw(i, j))n

2
∑p

k=i(Jraw(k, j))n

subject to suitable normalization. Here n denotes the exponentiation factor and the
value is empirically fixed as n = 6 after trials and errors.

Further, inOCT imaging, a tissue at less depth produces higher intensity, compared
to a similar tissue at a greater depth. Noting this, to further enhance the choroidal
structures, especially, near sclera, each row of Jexp was multiplied by square of its
row index to produce the enhanced image Jenh (Fig. 9.15f), i.e.,

Jenh(i, j) = i2Jexp(i, j)

is obtained at each location (i, j). Notice the following. In the original image J , a pixel
belonging to a blood vessel generally had a darker shade of gray, and a non-vessel
pixel a lighter shade. In the enhanced image Jenh, the former took on a much darker
shade, and latter a much lighter one, as desired. In view of this, the enhanced image
was binarized by setting a threshold at the median intensity. Unwanted outliers were
removed via connected components method (Fig. 9.15g).
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9.3.2.3 Choroid Localization and Binarized Choroid

At this point, localizing the choroid is left, so that only the choroid layer could be
binarized in exclusion of other layers such a retina and sclera. To this end, choroid
inner boundary (CIB), and choroid outer boundary (COB) is obtained by employing
the SSIM-based methodology described in Sect. 9.2 on raw OCT scans (Fig. 9.15h)
[26]. Subsequently, thus obtained boundaries are used to obtain desired choroid
region from the previous binarized estimate (Fig. 9.15i).

9.3.3 Stromal-Lumial Analysis: Experimental Results

In this section, performance of Vupparaboina et al.’s methodology is presented vis-
à-vis earlier ImageJ-based protocol for different subjects is presented. Subsequently,
Vupparaboina et al.’s algorithm is applied for stromal-luminal analysis of OCT vol-
ume data.

9.3.3.1 B-Scans

As alluded earlier, the absence of reference (ground truth) procedure does not allow
quantitative comparison. So the comparison was made visually, and based on expert
opinion. To this end, SD-OCT B-scans acquired from multiple subjects are consid-
ered. Those images were analyzed using ImageJ-based protocol reported by Sonoda
et al. [16], as well as the Vupparaboina et al.’s method. While Sonoda et al. manually
extracted the choroid layer, to ensure fair comparison, the same choroid localiza-
tion employed by Vupparaboina et al.’s method was also used in conjunction with
the ImageJ method. Results for six B-scans from six different subjects (A–F) is
depicted in Fig. 9.16. Results obtained by Vupparaboina et al.’s method appear to
closely resemble intuitive estimation of vasculature. Indeed, subjective interpretation
by multiple clinicians found results of Vupparaboina et al.’s method superior.

9.3.3.2 Volume Analysis

Next volumetric stromal-luminal analysis is performed on each of the eyes of two
healthy subjects (subjects A and B). In particular, 97 OCT B-scans with uniform
separation of 30 µm were acquired from each eye of the subject and evaluated
using the proposed algorithm. Further, bright-dark ratios (ratio between stromal and
luminal regions) were estimated for all the B-scans. Figure 9.17 depicts variation in
bright-dark ratios with scan index for each eye under consideration. Further, overall
bright-dark ratio of each eye is quantified, by first estimating volumes of luminal and
stromal regions. Such volume estimates were in turn obtained using cubic interpo-
lation. Table 9.2 presents volume bright-dark ratios for each eye of the two subjects.
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Fig. 9.16 Vupparaboina et al.’s method [44] versus ImageJ-based method [16]: Left—OCT image;
middle—ImageJ-based method; right—Vupparaboina et al.’s method
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Fig. 9.17 Stromal-luminal ratio obtained across all the B-scans from two healthy subjects: a left
and b right eye of Subject A; c left and d right eye of Subject B
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Table 9.2 Volumetric analysis: Bright-dark ratios between estimated stromal and luminal volumes
for each eye of two subjects

Subject Left eye Right eye

A 0.828 0.872

B 0.741 0.644

9.4 Summary

In this chapter, automated quantification of choroidal thickness, volume and stromal-
luminal ratio is discussed. Firstly, automated quantification of thickness and volume
is discussedwhichmainly involves choroid layer segmentation. To this end, the focus
was mainly on recent SSIM-based method which has demonstrated higher accuracy
over earlier methods. In particular, this method exploits the structural dissimilarity
of the choroid and the sclera layers using structural similarity (SSIM) index. Fur-
ther, upon smoothening using tensor voting, automated choroid segmentation that
exhibits good correlation with manual segmentation is obtained. Subsequently, this
method reported automated choroid volume analysis. This method also reported a
exhaustive statistical analysis to (i) establish closeness of the automated estimates to
the correspondingmanual ones, (ii) demonstrate superior performance of ourmethod
over known results, and (iii) facilitate future benchmarking.

Secondly, a fully automated exponentiation-based methodology for obtaining
binarized choroid based on OCT B-scans for stromal-luminal analysis is discussed.
In particular, this method considers specific artefacts of SD-OCT imaging includ-
ing speckle noise, exponential dynamic range compression, and depth-dependent
attenuation, and removed those in a targeted manner via median altering and expo-
nential enhancement. In experts’ opinion, this method achieved improved accuracy
when compared to earlier ImageJ-based protocol in a representative B-scan dataset.
This method also demonstrated volumetric analysis on a subset of subjects. Clinical
indicators including choroidal thickness, volume, and stromal-luminal ratio, can be
used to develop automated disease detection tool that learns the correlation between
various diseases and the indicators [47]. Such tool could assist physicians in making
disease diagnosis. Further, such a tool could dramatically enhance the efficacy of
early diagnosis and remote eyecare.

As discussed earlier, clinical studies studies are based on only gross indicators
such as overall choroidal thickness and volume for disease management. However,
choroid consists of sublayers, namely, choriocapillaries, Sattler’s and Haller’s layers,
which are classified according to increasing diameter of blood vessels. In view of this
fact, now clinicians envisage to make even more precise diagnosis by investigating
choroidal sublayers. For instance, there is active interest in studying the correlation
between the Haller’s layer (containing vessels with large diameter) thickness and
various diseases. Further, there also interest towards understanding the effect of
various diseases on vessel diameter in a particular sublayer [48].
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Chapter 10
Layer Segmentation and Analysis
for Retina with Diseases

Fei Shi, Weifang Zhu and Xinjian Chen

Though segmentation of normal retina has been successful, segmentation and anal-
ysis of pathological retina are far more important. This chapter first presents an
automatic layer segmentation method for retinas with certain deformed layers, and
then introduces two layer disruption detection methods based on feature analysis of
segmented layers.

10.1 Introduction

It is with the development of optical coherence tomography (OCT) technique, an
in vivo and noninvasive scan of the retina that shows its cross-sectional profile, that
the layered structure of retina canbe extensively studied.Recently introduced spectral
domain (SD) OCT produces high resolution real 3-D volumetric scan of the retina
that visualize most of the anatomical layers. Automated retinal layer segmentation
for normal eyes based on SD-OCT images have been successful [1–14]. However,
layer segmentation of retina with diseases is of more value to both pathological study
and clinical practice. Some of the methods proposed for normal retinas can also be
applied to retinas with certain types of diseases, such as glaucoma [9–11], multiple
sclerosis [12], dry age-related macular degeneration (AMD) [13], or other diseases
at an early stage, when no dramatic change in the layer structure happens. However,
layer segmentation for diseased retina still remains a challenging problem, especially
when additional structures exist, such as intraretinal cysts, subretinal or sub-RPE
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fluid in diabetic macular edema (DME) and wet AMD. In these cases, the large
variety of layer morphology and degraded image quality caused by abnormalities
greatly affect the segmentation performance. In the first part of this chapter, we focus
on segmentation for retinas with serous pigment epithelium detachments (PEDs),
which are associated with sub-RPE fluid and RPE deformation. The fully automated,
unsupervised 3-D method [15] integrates layer and region segmentation, and can
segment the retina into 10 layers.

With the help of retinal layer segmentation, quantitative analysis of the layer mor-
phology can be conducted. This is especially useful for retinal disease detection or
progress analysis. Certain retinal diseases affect certain retinal layers. The change of
retina layer may occur at an early stage of the disease, and becomemore evident with
the progress of disease. Most existing layer analysis focus on simple indices such
as layer thickness [16–20] or intensities [21, 22], but texture analysis can also pro-
vide important information. In the second part of this chapter, we describe a method
to quantify the disruption of external limiting membrane (ELM) caused by DME
from SD-OCT [23]. With the method, each A-scan is classified as disrupted or non-
disrupted based on 6 texture features. In the third part of this chapter, we describe an
extended method for automatic three-dimensional detection of photoreceptor ellip-
soid zone (EZ) disruption caused by trauma [24]. 57 features are extracted, and
feature selection and classification is performed to classify each voxel of the EZ as
disrupted or non-disrupted. Both methods can effectively differentiate patients with
normal ones.

10.2 Segmentation of Retinal Layers with Serous Pigment
Epithelial Detachments

10.2.1 Background

Retinal pigment epithelium detachment (PED) is a symptom associated with many
chorioretinal diseases, such as AMD, polypoidal choroidal vasculopathy, central
serous chorioretinopathy, and uveitis [25, 26]. There are three type of PED, namely
serous, fibrovascular, or drusenoid PED. Study shows that the existence of serous
PED in AMD patients is related to the development of choroidal neovascularization
(CNV), which is a main cause of visual acuity loss [26, 27]. In SD-OCT B-scans,
the profile of serous PED is visualized as a dome-shaped elevation of the bright RPE
layer (Fig. 10.1). Note that the layers around the PED may appear discontinuous,
and thus need to be treated specifically during detection.

Following the definition of Iowa Reference Algorithm [14], we define 11 retinal
surfaces (Fig. 10.2), numbered consecutively from top to bottom. The 10 retinal
layers thus defined are nerve fiber layer (NFL), ganglion cell layer (GCL), inner
plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer
nuclear layer and inner segment layer (ONL +ISL), connecting cilia (CL), outer
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Fig. 10.1 An OCT B-scan visualizing the PED. The black arrow indicates the elevated RPE and
the white arrow indicates the detached region

Fig. 10.2 OCT image of a normal eye and the 11 surfaces defining 10 retinal layers, visualized
by the software OCT explorer contained in [14]. a B-scan image of OCT volume, obtained using
Topcon 3D-OCT 1000. b 11 surfaces overlaid on the OCT image

segment layer (OSL), Verhoeff’s membrane (VM), and retinal pigment epithelium
(RPE). As the RPE floor (surface 11) is elevated, the original position of RPE floor
is also estimated and defined as surface 12. We describe an automated 3-D method
to segment these layers based on multi-resolution graph search algorithm [15]. In
this work, layer segmentation and abnormal region segmentation are effectively inte-
grated, where the position of layers and regions serve as constraints for each other.
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10.2.2 Method

The automated method consists of pre-processing, layer segmentation and region
segmentation. The pre-processing, includes fast bilateral filtering for denoising and
B-scan alignment for motion distortion correction. During layer segmentation, Sur-
faces 1–6, 11, and 12 are detected by multi-resolution graph-search method [2, 28]
with various smoothness constraints. Region segmentation is carried out based on
the positions of surfaces 11 and 12. Their difference in height (z-coordinate) is used
to form a PED footprint map. Finally, the other surfaces are detected in a flattened
OCT volume and then corrected using the PED footprints.

In this section, we define the 3-D coordinates as follows. The x-axis is along the
width of a B-scan, the y-axis represents the different B-scans, and the z-axis is in the
vertical direction. Therefore a B-scan is in the x-z plane.

10.2.2.1 Multi-resolution Graph Search

The 3-D graph search algorithm was proposed by Li et al. [29] for optimal surface
segmentation in volumetric images. In the method, the volumetric image is defined
as a 3-D matrix I (x, y, z) with size X ×Y × Z , and a feasible surface is defined by a
function S(x, y) as the surface height, where x ∈ {0, . . . , X −1}, y ∈ {0, . . . ,Y −1}
and S(x, y) ∈ {0, . . . , Z − 1}. Two parameters, �x and �y , control the smoothness
of feasible surfaces, defined as the maximum height difference between neighboring
surface points in x- and y- direction, respectively.Acost function c(x, y, z) is assigned
to each voxel, and the optimal surface is found to be the one with minimum overall
cost.

To find the optimal surface, the volumetric image is first transformed into a node-
weighted directed graph where each node corresponds to one and only one voxel.
Arcs are constructed according to the spatial relationship between voxels as well as
the smoothness constraints, and node weights are computed from the cost function.
Searching for the optimal surface is transformed to seeking aminimumweight closed
set in this graph. This graph is then further transformed to an arc-weighted digraph
where the optimal solution can be found in polynomial time by computing aminimum
s-t cut [30, 31].

In the following we focus on the cost functions, smoothness parameters, and
constraints used in our method. From prior knowledge, in each B-scan, surfaces 1, 3,
5, 7, 9 and 10 are edges with dark-to-bright transition, while surfaces 2, 4, 6, 8 and 11
are with bright-to-dark transition. For most surfaces, the edge-based cost functions
are used, calculated by 2-D Sobel operator in the z-direction. For different type of
transitions, values of the cost function are inversed. An additional region-based cost
is used for detection of surface 1, calculated as the summation of intensities of the
voxels above but within certain distance to the current voxel. Both surface 1 and 7
are high-contrast dark-to-bright edges, but the region above surface 1 is darker than
that above surface 7. Therefore, by adding the region-based cost to the edge-based
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cost, surface 1 will have lower costs than surface 7 and can be correctly detected as
the optimal surface.

Different smoothness constraints �x and �y are used for detection of different
surfaces. Prior knowledge is used in determining the values, namely two facts: the
image resolution and the shape of surface. When the resolution is high, small values
are used to and ensure the smoothness of the surfaces preventing perturbation caused
by noise. On the contrary, when the resolution is low and when quick change in
surface height is possible, large values are needed to ensure the desired surface is
in the feasible surface set. For example, in the dataset for test, the resolution in y-
direction is low, and quick changes may occur in surface 1 around the fovea and in
surface 11 above the PED region. Therefore, large �y is set for these two surfaces.

In our method, two approaches are used to improve the performance of surface
detection. First, the surfaces with higher contrasts are detected first, and the surfaces
detected later are constrained in the subimage defined by previously detected ones.
This approach both reduces the interference of different edges and cuts the searching
space, resulting in improved accuracy and efficiency. Second, the multi-resolution
approach [2] is used to improve the efficiency of surface detection. A three-level
image pyramid is constructed by downsampling the image volume by a factor of 2
twice in z-direction. The graph search is first applied in the low resolution image
to get a initial result. Then, a rectangular subimage with its height representing the
refining range is constructed in the next higher resolution, so that the initial surface
position lies in the center. The surface position is then refined using graph search in
this subimage. For different surfaces, detection starts from different resolution levels
according to prior knowledge of their contrast. Different smoothness parameters are
set for different resolutions. The details for the detection orders, constraints, start
levels, and smoothness parameters used for the test dataset are given in Table 10.1.
Note that, with the aforementioned approaches, the global optimum property of the
graph search method is compromised.

10.2.2.2 Pre-processing

(1) Denoising by bilateral filtering

As the dominant quality degrading factor in OCT scans, the presence of speckle
noise may affect the accuracy and efficiency of image processing and analysis algo-
rithms. Edge-preserving de-speckling methods are particularly important for seg-
mentation tasks. In this study the bilateral filtering [32] is chosen. The bilateral filter
is essentially a weighted average filter, which is an improved version of Gaussian
filter. The weights decrease with both the difference in location (distance in the spa-
tial domain S) and the difference in intensity (distance in the range domain R). The
filtering result of bilateral filtering is given by

I b fp � 1

Wbf
p

∑

q∈Sp
Gσs (‖p − q‖)Gσr (Ip − Iq )Iq , (10.1)
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Table 10.1 Detailed constraints and parameter selection in surface detection. Note that �x � 1
for all surfaces and all levels

Order in
detection

Surface # Surface above Surface below Initial
detection level

�y in initial
level

1 1 N/A N/A 1 6

2 7′ 1 N/A 1 6

3 2 1 7′ 2 3

4 4 2 7′ 2 3

5 6 4 7′ 2 3

6 3 2 4 3 6

7 5 4 6 3 6

8 11 7′ N/A 1 6

9 12 7′ N/A 1 1

10 10 7 11 3 1

11 8 7 10 3 1

12 9 8 10 3 1

with

Wbf
p �

∑

q∈Sp
Gσs (‖p − q‖)Gσr (Ip − Iq ), (10.2)

where p denotes the pixel being processed, q denotes the pixel in its neighborhood
Sp, Ip and Iq represent their original intensities and I b fp is the intensity of p after
filtering.Gσs andGσr are two Gaussian weighting functions with standard deviations
σs and σr , called the space and range parameters, respectively. To improve efficiency,
a fast approximation technique reported in [33] is applied in this study. The filtering
is applied to each B-scan of the OCT volume, with intensities linearly normalized
to [0, 1]. The spatial and range parameters are selected empirically as σs � 20 and
σr � 0.05.

(2) Alignment of B-scans

Eye movement during the in vivo OCT imaging is inevitable and causes distortion
in the volumetric OCT data. This distortion is most notable as the vertical shift
between adjacent B-scans. This misalignment ruins the continuity of the retinal
layers in 3-D space, and thus leads to difficulties for 3-D segmentation. This artifact
can be visualized in the y-z image, as in Fig. 10.3a, where each column corresponds
to a B-scan. Image flattening, which is a common pre-processing step for motion
artifact correction in OCT images [1, 2, 5], is not used in this study, because with
the deformation of RPE, it is difficult to obtain a reference plane in the early stage.

Instead, we propose a fast B-scan alignment method, which works as follows.
First, surface 1 is detected using the multi-resolution surface detection method. As
surface 1 is themost prominent among all surfaces, it can be detected quite accurately
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Fig. 10.3 B-scan alignment. a, b The y-z image before and after B-scan alignment with surface 1
overlaid. c, d Surface 1 before and after B-scan alignment. The red curves correspond to surface 1
in the y-z image as shown in (a) and (b)

even in themisaligned data. Then the position of the retina in eachB-scan is estimated
as the average z position of the peripheral surface 1, namely, the left most 20% and
the right most 20% of surface 1. The center part is excluded from the averaging
because it may include the fovea, which is naturally concave. Each B-scan is then
shifted so that the average z positions of peripheral surface 1 become the same for
all B-scans.

As shown in Fig. 10.3b, the alignment results in a smoothed appearance of the
retina in the y-z image. Figure 10.3c, d further show the 3-D renderings of surface
1 before and after alignment. After alignment, the smoothness of the surfaces to
be detected is improved, so that they can be found by graph search with smaller
smoothness constraints, and therefore are less affected by image noise.

10.2.2.3 Detection of Surfaces 1–6

After pre-processing, surfaces 1–6 are detected in the denoised and aligned OCT
volume. These surfaces correspond to the inner retina layers, which are not severely
affected by PED’s. Therefore the detection bymulti-resolution graph search is similar
to that for normal retinas. To achieve higher accuracy, surface 1 is detected again
using the same method as in Sect. 10.2.2.2, but in the aligned data. Then, instead
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Fig. 10.4 Surface 7′ combining surfaces 7 and 10

of detecting surface 7 to constrain surfaces 2–6 as in normal retina [2], a surface
combined by 7 and 10, defined as surface 7′ (see Fig. 10.4) is detected. Here surface
10 replaces surface 7 where it is not visible above the detachment region. The search
for this surface is constrained in the subvolume below surface 1. After that, surfaces
2–6 are detected with the order of detection, the starting resolution level, the position
and smoothness constraints for each surface shown in Table 10.1. In particular, large
�y are set for surfaces 1 and 7′ at resolution level 1 to allow quick position changes
in adjacent B-scans caused by the fovea or the PED. To further remove the influence
of noise, each surface is smoothed in the x direction using a moving average filter.

10.2.2.4 Detection of the Abnormal Region

In this section we describe the detection of PED regions, whose location is needed
to correct the discontinuities in surfaces 7–9 around it. This is done by detecting the
elevated RPE floor (surface 11) and estimating the original RPE floor (surface 12),
and then finding their differences in height. Size and intensity are also considered to
remove false positives.

(1) Detection of the elevated RPE floor and the estimated normal RPE floor

Surfaces 11 and 12 are detected in the subvolume below surface 7′. Surface 11
follows the bottom of the high reflectance and dome-shaped RPE, which changes
abruptly in the PED region. Surface 12, as the original pre-disease position of the
RPE floor, is a smooth surface by prior knowledge. These two surfaces overlap
except where the PED occurs. Therefore, these two surfaces are detected with the
same bright-to-dark edge-related cost function, except that surface 11 is detected by
employing a large smoothness constraint and surface 12 is detected by employing
a small smoothness constraint. Even if surface 12 is invisible under the PED, it is
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Fig. 10.5 Detected surfaces 11 and 12

forced to follow the smooth bottom of the retina by the small smoothness constraint.
However, due to the loose constraint, surface 11 may be distracted by the choroid,
leading to inaccurate results outside the PED region. To handle this problem, we
correct surface 11 by replacing it with surface 12 wherever it goes below surface 12.
Figure 10.5 shows the final detection results of surfaces 11 and 12.

(2) PED footprints detection

In this step, A-scans (image columns) associated with PED’s are detected and
indicated in the x-y plane as a binary footprint image. This is done by hysteresis
thresholding based on the distances between surfaces 11 and 12. Specifically, two
thresholds d1 and d2(d2 < d1) are applied. First, the set of (x, y) coordinates are
obtained and grouped into connected components, where surface 11 is more than d1
pixels higher than surface 12. For all connected components, those with size less than
A are excluded as false positives. Next, to make the boundaries more accurate, these
connected components are extended to include connected points where surface 11
is more than d2 pixels higher than surface 12. Subsequently, the 3-D PED volumes
are detected as voxels between surfaces 11 and 12 within each footprint. Finally,
the mean intensities of all PED volumes are calculated and those with normalized
mean intensity larger than T are rejected as false positives, considering the fact that
serous PED’s usually appear as dark regions, and the false positives usually include
the bright RPE region. The initial and final footprint detection results of one OCT
volume are shown in Fig. 10.6a, b, respectively. The details of parameter selection
are described in Sect. 10.2.3.1.
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Fig. 10.6 PED footprint detection results. aRoughdetection result fromdifference between surface
11 and 12. b PED footprint after edge refinement and rejection of false positives

10.2.2.5 Detection of Surfaces 7–10

For normal eyes, surfaces 7–10 usually appears as relatively flat and almost parallel
surfaces, but they are often blurred and discontinuous near the PED volume. In this
step we try to restore the normal morphology of these surfaces by flattening the
OCT volume so that the invisible portions of surfaces 7–9 can be estimated using
smoothing constraints.

Using surface 11 detected in Sect. 10.2.2.4 as the reference surface, flattening is
done by shifting theA-scans up or down so that surface 11 becomes flat. Then surface
7 is obtained in this image by correcting surface 7′ (detected in Sect. 10.2.2.3) inside
the PED footprint by second-order polynomial curve interpolation. Afterwards, sur-
faces 8–10 are detected using small smoothness constraints between surfaces 7 and
11. Surfaces 8 and 9, which may appear discontinuous, are also corrected by interpo-
lation within the PED footprint. In the end, surfaces 7–10 are converted back to their
positions in the original OCT volume. See Fig. 10.7 for results of image flattening
and detection of surfaces 7–10.

10.2.3 Results

10.2.3.1 Experimental Settings and Parameter Selection

The test data includes the PED dataset, and the normal dataset, comprised of macula-
centeredSD-OCTscans of 20 eyes from20 subjects diagnosedwith serous PED’s and
20 eyes from 20 normal subjects (the controls), respectively. All the OCT images
were acquired using Topcon 3D-OCT 1000 (Topcon Corporation, Tokyo, Japan).
The OCT volumes comprised of 512×64×480 (X ×Y × Z ) voxels with voxel size
of 11.72×93.75×3.50 µm3, corresponding to a 6×6 × 1.68 mm3 volume. This
study was approved by the Intuitional review board of Joint Shantou International
Eye Center and adhered to the tenets of the Declaration of Helsinki. Because of its
retrospective nature, informed consent was not required from subjects.

The ground truth for evaluating the layer segmentation results comes from the
average of two independent manual tracings in the B-scan images by two retinal
specialists. For each 3-D OCT volume, 10 out of the 64 B-scans, uniformly dis-
tributed in the volumetric data, were selected for manual tracing. Among the 200
manually traced B-scans from the PED dataset, 50 B-scans weremanual labeled with
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Fig. 10.7 Detection of surfaces 7–10 on a flattened image. a Original B-scanwith reference surface
overlaid, b flattened B-scan, c surfaces 7–10 overlaid on flattened image, surface 7 is shown in red,
surface 8 in green, surface 9 in blue and surface 10 in yellow. Surface 9 may not be visible because
it overlaps with surface 10 in many places, d surfaces 7–10 mapped back to the original image

PED’s. Segmentation of surfaces 3, 8 and 9 were not evaluated because they were
not always discernible to human eyes on the test data. Surface 12 was also excluded
as it was only a virtual structure defined for auxiliary purpose. The unsigned border
positioning error is used as the main performance index, which is defined as the
absolute Euclidean distance in the z-axis between automatic segmentation results
and the ground truth. The unsigned border positioning errors were compared with
the unsigned border positioning differences between the two manual tracings. The
results of the proposed method were also compared with those obtained by the gen-
eral IowaReferenceAlgorithm [14] not specifically designed to handle PED’s. Paired
t-tests were used to compare the segmentation errors and a p-value less than 0.05
was considered statistically significant.

For surface detection, the smoothness constraints were selected according to the
rules described in Sect. 10.2.2.1 and are listed in Table 10.1. For the test data, because
the resolution was high in the x direction, �x was set to 1 for all surfaces. The
resolution in y-direction was 8 times lower, and therefore some layers might have
abrupt changes in this direction. In the test we used �y for different surfaces in the
initial detection level. As surfaces 1, 7′ and 11 were the ones affected most by the
shape of the fovea or the PED’s, large �y was required, which was set as �y � 6 at
resolution level 1. As tested, larger values were also acceptable since these surfaces
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had strong contrast and thus could endure image noise. Surfaces 2–6 were slightly
affected by the fovea or the PED and had weaker contrast. Therefore medium�y was
set for these surfaces, with �y � 3 at resolution level 2, and �y � 6 at resolution
level 3. Surface 12 and surfaces 8–10 on the flattened image were required to be
smooth surfaces. Therefore small �y was needed, set as �y � 1. For the refining
step inmulti-resolution surface detection, assuming the initial detection was accurate
enough, the surface position in higher resolution would be close to the initial one (the
center line). Therefore, small smoothness constraints

(
�x � �y � 1

)
were applied.

For PED footprint detection, the distance thresholds and the area threshold were
selected empirically as d1 � 3, d2 � 1, and A �30 in pixels. However, as tested,
the region segmentation performance was not sensitive to perturbations of these
parameters. Empirically tested, the suggested ranges of parameters were: d1 � 3–7,
d2 � 1–2 andA� 30–70. Small valueswere preferred so that PED regionswithminor
elevation of RPE and small sizes would not be discarded. Most false positives that
were not detected by the size criteria could still be ruled out by the intensity criterion
that follows. The intensity threshold T was set as the adaptive Otsu threshold [34]
considering the fact that the OCT images have a double-peaked histogram.

10.2.3.2 Layer Segmentation Results for PED Dataset

Examples of layer segmentation results are shown in Fig. 10.8 in both 2-D and 3-D.
Table 10.2 shows the mean and standard deviation of unsigned border positioning
errors for each surface computed on 200 B-scans from the PED dataset, compared
with the inter-observer variability and the errors resulting from employing the Iowa
Reference Algorithm [14]. The p-values are shown in Table 10.3, with bold fonts
indicating that the proposedmethod has statistically significantly better performance.
Compared with the difference between observers, the errors of surfaces 1 and 11 are
significantly smaller, the errors of surfaces 4 and 10 are significantly bigger, and the
errors of surfaces 2, 5, 6 and 7 are statistically indistinguishable. The overall mean
unsigned error is 7.87±3.36 µm, which is statistically indistinguishable from the
mean unsigned difference between observers (7.81±2.56µm). Comparedwith [14],
the errors of surfaces 2 and 11 are statistically significantly smaller, the errors of the
other surfaces are statistically indistinguishable, and the overall mean unsigned error
is statistically significantly smaller.

The results in Table 10.2 only showminor improvement over themethod designed
for normal retina in [14] because the PED is a localized structure. Only in a small
proportion of B-scans the layers exhibit dramatic morphological changes, and in the
remaining B-scans the retina layers appears normal, so that the segmentation method
for normal retinas performed well too. To better evaluate the layer segmentation
performance near the PED, Table 10.4 shows the mean and standard deviation of
unsigned border positioning errors calculated on the 50 B-scans labeled with PED’s,
compared with both inter-observer variability and the errors resulting from employ-
ing the Iowa Reference Algorithm [14]. The p-values are shown in Table 10.5, with
bold fonts indicating that the proposed method has statistically significantly bet-
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Fig. 10.8 Layer segmentation results. a 12 surfaces overlaid on B-scan. b–e 3-D visualization of
surfaces 1, 7, 11 and 12

ter performance. The error of surface 1 is significantly smaller than the unsigned
difference between observers. Errors of the other surfaces and the overall error are
statistically indistinguishable from the unsigned difference between observers. Com-
pared with [14], except for surface 1, errors of all the other surfaces are significantly
smaller, and the overall mean unsigned error is significantly smaller.

10.2.3.3 Layer Segmentation Results for the Normal Dataset

Though the proposed method is designed for retinas with serous PED’s, the method
can also be applied for normal retina segmentation. For normal retinas, surfaces 11
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Table 10.2 Mean unsigned positioning errors for all labeled B-scans of PED data between our
segmentation results and reference standards, comparedwithmean unsigned positioning differences
between manual tracings from two observers and mean unsigned positioning errors of the Iowa
reference algorithm [14] (Mean±SD, in µm, 3.5 µm�1 pixel)

Surface # Algo. versus Ref. Obs. 1 versus Obs. 2 [14] versus Ref.

1 3.91±0.65 5.28±0.79 4.07±0.67

2 7.79±2.47 7.22±1.33 9.82±2.55

4 10.30±2.57 8.09±2.08 12.78±7.36

5 9.14±3.83 9.48±4.59 12.36±8.81

6 9.14±2.87 8.66±1.61 11.42±8.25

7 7.19±3.57 7.18±1.73 8.36±4.26

10 8.99±3.42 7.37±2.39 10.16±5.87

11 6.53±2.28 9.09±1.36 9.49±5.38

Overall 7.87±3.38 7.80±2.54 9.81±6.42

Table 10.3 p-values of the proposed algorithm versus reference standards and the Iowa reference
algorithm [14] for all labeled B-scans of PED data

Surface # p value Algo. versus Ref. p value Algo. versus [14]

1 �0.001 0.2888

2 0.2951 �0.001

4 0.0009 0.0846

5 0.6493 0.0742

6 0.2914 0.1574

7 0.9896 0.2048

10 0.0398 0.3036

11 �0.001 0.0030

Overall 0.7357 �0.001

Here numbers in bold indicate statistically significantly better performance

Table 10.4 Mean unsigned positioning errors for B-scans with PED between our segmentation
results and reference standards, compared with mean unsigned positioning differences between
manual tracings from two observers and mean unsigned positioning errors of the Iowa reference
algorithm [14] (Mean±SD, in µm, 3.5 µm �1 pixel)

Surface # Algo. versus Ref. Obs. 1 versus Obs. 2 [14] versus Ref

1 4.21±0.89 5.52±1.53 5.17±1.56

2 8.65±3.76 7.07±1.62 10.90±3.36

4 11.48±3.09 8.90±3.02 15.70±6.90

5 11.81±4.30 11.87±6.20 16.08±8.45

6 13.00±4.54 10.25±2.79 16.68±9.55

7 8.70±2.99 10.54±3.66 14.17±5.55

10 9.70±2.95 8.82±3.99 17.99±7.88

11 8.59±6.52 9.41±2.41 18.55±7.60

Overall 9.52±4.61 9.05±3.86 14.41±7.87
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Table 10.5 p-values of the proposed algorithm versus reference standards and the Iowa reference
algorithm [14] for B-scans with PED

Surface # p value Algo. versus Ref. p value Algo.versus [14]

1 �0.001 0.4765

2 0.0733 �0.001

4 0.0062 �0.001

5 0.9503 0.0430

6 0.0056 0.0132

7 0.0981 0.0140

10 0.2834 �0.001

11 0.5595 �0.001

Overall 0.1806 �0.001

Here numbers in bold indicate statistically significantly better performance

and 12 represent the same surface and their detection results will mostly overlap.
Obtained with a large smoothness constraint, surface 11 is likely to be less smooth
than surface 12 due to the impact of noise, but the regions between surfaces 11 and 12
will be excluded as false positives in PED detection. Then flattening with respect to
surface 11 is no more than a step which further removes the eye movement artifacts,
as did in [1, 2, 5]. Additionally, correction of surfaces 7–9 is not needed and this step
will be automatically skipped when no PED region is detected.

To test the performance in normal data, the method was applied to OCT images
from a control group of 20 normal subjects. Table 10.6 shows the mean and standard
deviation of unsigned border positioning errors for each surface, compared with
inter-observer variability and the errors resulting from employing the IowaReference
Algorithm [14]. The p-values are shown in Table 10.7, with bold fonts indicating that
the proposed method has statistically significantly better performance. The overall
mean unsigned error of the proposed algorithm is significantly smaller than the mean
unsigned difference between two observers. Compared with [14], the overall error
is statistically indistinguishable.

In summary, for the tested PED dataset, the overall layer segmentation errors are
comparable to the inter-observer variability, and statistically significantly smaller
than those of the Iowa Reference Algorithm [14]. The proposed algorithm outper-
forms the algorithm in [14] especially in segmenting B-scans with abnormality. The
proposed algorithm also works well for normal retinas. For the tested normal dataset,
the overall layer segmentation errors are statistically smaller than the inter-observer
difference, and statistically indistinguishable from those of the IowaReferenceAlgo-
rithm [14]. Although the method is not the most efficient for normal retina segmen-
tation, it allows segmentation of the retinal layers in both normal and diseased retinal
images, thus bypassing a need for disease-specific diagnosis prior to automatic pro-
cessing. The proposed algorithm is an accurate and efficient replacement of manual
segmentation, and can be utilized to achieve quantitative analysis of individual reti-
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Table 10.6 Mean unsigned positioning errors for normal data between our segmentation results
and reference standards, compared with mean unsigned positioning differences between manual
tracings from two observers and mean unsigned positioning errors of the Iowa reference algorithm
[14] (Mean±SD, in µm, 3.5 µm�1 pixel)

Surface # Algo. versus Ref. Obs. 1 versus Obs. 2 [14] versus Ref

1 2.92±0.23 4.33±0.38 3.30±0.27

2 7.29±1.04 5.34±0.57 7.43±0.70

4 8.43±1.17 7.78±1.11 9.02±1.09

5 4.62±0.68 7.43±1.32 5.81±0.89

6 6.08±1.25 7.07±0.90 5.67±0.84

7 2.53±0.25 4.06±0.77 3.97±0.42

10 7.21±3.57 7.75±3.60 4.88±1.96

11 5.39±0.89 7.66±1.59 4.79±0.81

Overall 5.56±2.47 9.05±3.86 5.61±2.00

Table 10.7 p-values of the proposed algorithm versus reference standards and the Iowa reference
algorithm [14] for normal data

Surface # p value Algo. versus Ref. p value Algo. versus [14]

1 �0.001 �0.001

2 �0.001 0.5354

4 0.0589 0.0054

5 �0.001 �0.001

6 �0.001 0.0274

7 �0.001 �0.001

10 0.4430 0.0049

11 �0.001 �0.001

Overall �0.001 0.7067

Here numbers in bold indicate statistically significantly better performance

nal layers for both eyes with serous PED’s and normal eyes. The method can be
extended to other pathological cases where RPE deformation occurs.

10.3 Quantification of External Limiting Membrane
Disruption Caused by Diabetic Macular Edema

10.3.1 Background

Diabetic macular edema (DME) is the primary cause of vision impairment in patients
suffering from diabetes [35, 36]. Typically, abnormal accumulation of advanced gly-
cation end products leads to the disruption of the blood–retinal barrier, causing inter-
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stitial fluid accumulation [37], swelling and thickening of the macular layers, and
finally damage to central vision [38, 39]. The external limiting membrane (ELM)
is a structure that separates the inner segments from the outer nuclear layer, where
the Müller cells are joined to the photoreceptor cells. The ELM serves as a skele-
ton to keep the photoreceptors aligned [40]. The ELM has been hypothesized to
maintain a protein balance between the photoreceptor layer and the outer nuclear
layer [41]. Recently, several studies have shown that ELM interruptions visible on
spectral-domain optical coherence tomography (SD-OCT) are associated with lower
visual acuity outcome in patients with clinically significant diabetic macular edema
(CSME) [42–45]. Possibly this is because the integrity of the ELM has a critical role
in restoration of the photoreceptor microstructures and alignment [46–48]. Earlier
reported approaches [49–51] relied on manual tracing of the corresponding surface
or on detecting ELM on 2-D B-scans. However, such studies rely on manual inter-
pretation of the state of the ELM, and high intra- and inter-observer variabilities are
likely. Automated 3-D analysis of the ELM is of high interest because of its potential
to elucidate structural abnormalities with minimal variability and possibly predict
visual outcomes in diabetic macular edema (DME).

In this part we describe a novel and fully automated method to quantify the
integrity of the ELM in patients with CSME and in normal subjects based on SD-
OCT volumes [23]. This pilot study showing differences between 16 normal controls
and 16CSMEpatients demonstrates the practical feasibility of the presentedmethod-
ology and provide preliminary comparisons between these two groups of subjects.

10.3.2 Method

10.3.2.1 ELM Layer Segmentation

The Iowa reference algorithm based on graph search [1, 2, 14, 28, 29] is first applied
to segment the OCT volume, yielding 11 surfaces (Fig. 10.9). Then, the subvolume
between surfaces 6 and 11 (region between OPL and the ONL), which contains the
ELM, was flattened based on the segmented RPE floor (surface 11). Subsequently,
the graph search surface-detectionmethod is applied again to segment the ELM layer
in this subvolume.

10.3.2.2 ELM Disruption Area Detection

In this section, each A-scan is classified as disrupted or nondisrupted based on the
texture andmorphology in the vicinity of the ELM surface. The original OCT images
are first enhanced by standard normalization. Six texture features are then extracted
for classification, including intensity, gradient, local variance, local intensity ori-
entation, local coherence, and retinal thickness. The intensity represents the voxel’s
gray-level intensity; the gradient represents the intensity difference between the voxel
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Fig. 10.9 SD-OCT layer segmentation on a normal and a CSME subject. a Central slice from
the original raw SD-OCT from a normal subject. b Eleven-surface segmentation results for (a). c
3-D rendering of the 11-surface segmentation result for (b). d Central slice from the original raw
SD-OCT from a CSME subject. e Eleven-surface segmentation results for (d). f 3-D rendering of
the 11-surface segmentation result for (e)

and its neighbor; the local variance is calculated as the variance of the intensity at
a 3×3 window centered around the voxel; the local intensity orientation measures
the intensity distribution shape at a local line perpendicular to the ELM layer orien-
tation centered around the voxel, with length of 7 voxels, which should be similar to
Gaussian shape; the local coherence measures the coherence of the intensity at a 3×
3 window centered around the voxel; and the thickness is the distance from the top
of RNFL to the bottom of RPE. A disruption probability function based on these six
features is defined as follows:

P(x) � α1Pintensity(x) + α2Pgradient(x) + α3Pvariance(x)

+ α4Porientation(x) + α5Pcoherence(x) + α6Pthickness(x) (10.3)

Pintensity(x) � exp

(
− Ix

μI − σI

)
(10.4)

Pgradient(x) � exp

(
− gradient

μgradient − σgradient

)
(10.5)

Pvariance(x) � exp

(
− variancex

μvariance − σvariance

)
(10.6)
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Porientation(x) �
{
1 if center voxel′s intensity > two end voxels′ intensity
0 otherwise

(10.7)

Pcoherence(x) �

∑
y∈regionx

δ(Iy, μI − σI )

N
where δ(a, b) �

{
1 if a < b
0 otherwise

(10.8)

Pthickness(x) � exp

(
− thicknessmax − thicknessx

σT

)
(10.9)

In the above equations, α1 through α6 are the weights, which sum up to 1; μI

and σI represent the mean and standard deviation of the intensity calculated from
all voxels of the ELM layer; μgradient and σgradient represent the mean and standard
deviation of the gradient calculated from all voxels of the ELM layer; μvariance and
σvariance represent the mean and standard deviation of the variance calculated from
all voxels of the ELM layer; regionx represents the local neighborhood of x (3×
3 window);

∑
y∈regionx δ(Iy, μI − σI ) computes the number of voxels with intensity

below the threshold μI − σI ; N is the total number of voxels in the local region
(N � 9); thicknessx represents the total retinal thickness (from top of RNFL to
bottom of RPE) at location x ; thicknessmax represents the maximum of retinal
thickness for the entire retina; and σT represents the standard deviation of the retinal
thickness at all locations. Then, the disruption is detected as follows:

Disruption(x) �
{
0 if P(x) < T

1 otherwise
(10.10)

where T is a predefined threshold value.
The vessel silhouettes cause the ELM layer to have low intensity under the vessels

(Fig. 10.10), causing voxels in these regions to be initially classified as disrupted. To
remove these false detections, a vessel detector [52] is applied to identify the vessel
silhouettes in the en face projection image. The resulting vessel segmentation is used
as masks to remove false positive detections.

10.3.3 Results

Sixteen subjects diagnosed with CSME underwent macula-centered SD-OCT imag-
ing (Spectralis; 512×19×496 voxels; Heidelberg Engineering, Vista, CA). Sixteen
normal subjects also underwent macula-centered SD-OCT imaging (Cirrus; 200×
200×1024 voxels, Carl Zeiss Meditec, Inc., Dublin, CA). This study were approved
by the Institutional Review Board of the University of Iowa and adhered to the
tenets of the Declaration of Helsinki; written informed consent was obtained from
all participants.
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Fig. 10.10 Vessel silhouettes appear as low-intensity regions disrupting the appearance of the ELM
layer. a The arrows indicate vessel silhouettes formed by the vasculature of the retina. b The red
line indicates the location of the slice shown in (a) on the en face projection image of the retina.
Note the correspondence of the locations where vessels cross the slice and the location of the vessel
silhouettes in the slice itself depicted by colored arrows

Because the resolution of normal data in the y direction is much higher than the
CSME data, a normal down-sampled dataset was obtained by down-sampling the
OCT volumes of normal subjects in the y direction (direction of B-scan lines) to
produce the same resolution (240 µm) as the CSME data. The detected disruption
region volume and the voxel percentagewere calculated for the normal, normal down-
sampled, andCSMEsubjects. Paired t-testswere used to compare theELMdisruption
region volume between the two groups of subjects. Three different threshold values
(T �0.4, 0.5, and 0.6) were applied to compute the detection results, with the aim
of showing the robustness of the proposed method.

Figure 10.11 shows the ELM layer segmentation, disruption area detection
results, and surface views of the disruption areas on one normal and one CSME
subject. Figure 10.12a shows the detected disruption region volume for normal,
normal down-sampled, and CSME subjects at three different threshold values,
0.6, 0.5, and 0.4. For T � 0.5, the mean and 95% confidence interval of the
detected disruption volumes for normal, normal down-sampled, and CSME sub-
jects were meannormal � 0.00087 mm3 and C Inormal � (0.00074, 0.00100),
meands � 0.00076mm3, C Ids � (0.00063, 0.00089),meanCSME � 0.00461mm3,
and C Ids � (0.00347, 0.00576), respectively. Comparing the CSME group with
both full-resolution normal group and down-sampled normal group, the paired t-
test resulted both in p <0.001, which demonstrated strong statistical significance of
the volume differences between the ELM disruption volumes detected for CSME
subjects and normal controls. Figure 10.12b shows the disruption voxel percentages
in the ELM layer for normal, normal down-sampled, and CSME subjects at three
different threshold values, 0.6, 0.5, and 0.4. Figure 10.13 shows more examples of
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Fig. 10.11 The illustrations for the ELM layer disruption detection. The first column shows the
original OCT images; the second column shows the ELM layer segmentation results (indicated
by red line) and disruption area detection results (indicated by yellow) on contrast-enhanced OCT
images; and the third column shows the surface views of disruption area (indicated by yellow). The
top and bottom rows show the results for one normal and one CSME subject, respectively

the ELM disrupted area detection results on the CSME subjects, the normal controls
and normal down-sampled images (T � 0.5).

In summary, an automated method to quantify the 3-D integrity of the ELM
in patients with CSME and in normal subjects and its evaluation were introduced
in this section. In this method, texture and morphologic features are used for the
classification of theELMdisruption area. Simple thresholding is applied to determine
the disrupted voxels. The results of this preliminary study show that in patients with
CSME, large areas of disrupted ELM exist, while in normal subjects the ELM is
mostly continuous, only with small pinpoint areas detected, which are probably
false positives.

Although the detected disruption volume and its percentages over the whole vol-
ume are dependent on the threshold value T , as Fig. 10.12 demonstrate, the differ-
ences between disruption region sizes obtained from the normal and CSME subjects
are very consistent regardless of the value of T . The experimental results also show
that the disruption detection results are consistent for the normal and normal down-
sampled subjects, regardless of the value of T . Therefore the method is robust for
discerning CSME and normal subjects with respect to values of T .

There are several shortcomings in this study. First, the number of subjects was too
small to allow determination of the performance of the proposed method. Second,
there is no ground truth for the ELM disruption area, so the accuracy analysis cannot
be performed. Third, the classification using thresholding is quite crude. Advanced
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Fig. 10.12 ELMdisruption analysis. a Detected disruption volume comparison for normal, normal
down-sampled, and CSME subjects with T �0.6; T �0.5; T �0.4. b Disruption voxel percentage
in ELM layer for normal, normal down-sampled, and CSME subjects with T �0.6; T �0.5; T �
0.4. The plot shows the average and 95% confidence interval

classifiers exploiting more features can be employed for this purpose. Finally, the
study mainly focused on the development of an automatic quantification method, but
did not address the clinically more important question whether the ELM quantitative
measures developed here correlate with visual acuity and visual outcome.

10.4 Detection of Photoreceptor Ellipsoid Zone Disruption
Caused by Trauma

10.4.1 Background

Ocular trauma is a significant cause of visual impairment and blindness [53]. Com-
motio retinae is characterized by a grey-white discoloration or opacification of the
retina after closed globe trauma, when the impact at the level of the ocular surface
is transferred to the retina in the posterior segment [54]. Histopathologic studies of
human and animal eyes have found that damage of the photoreceptor is a pathogene-
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Fig. 10.13 ELM disrupted area detection (in yellow) on 4 CSME subjects (1st row), 4 normal
controls and corresponding normal downsampled images (T � 0.5)

sis of commotio retinae [55, 56]. Photoreceptors are specialized types of neurons in
the retina that are capable of phototransduction. They are critical for vision because
they convert light into biological signals. In the SD-OCT image, the ellipsoid zone
(EZ) [57], previously called the photoreceptor inner segment/outer segment (IS/OS),
is defined as the second hyper-reflective zone of the outer retina and is located just
below the external limiting membrane [57]. A disruption of the EZ integrity rep-
resents damage to the photoreceptors and is generally linked with poorer vision
in commotio retina [58] and other retinal diseases [59–69]. Therefore, it would be
very interesting to quantitatively assess photoreceptor damage by quantifying the 3D
extent and the volume of EZ disruption.

In this part we describe an automatic 3D framework to detect EZ disruption in
macular SD-OCT scans [24]. We apply an adaptive boosting (Adaboost) [70–72]
based method to classify the pixels as disrupted or non-disrupted.



266 F. Shi et al.

10.4.2 Method

10.4.2.1 Method Overview

The proposedmethod consists of threemain parts: pre-processing, classification, and
post-processing. In the pre-processing step, the SD-OCT images are first denoised
and segmented into 10 intra-retinal layers with 11 surfaces. The retina in the origi-
nal SD-OCT volume is flattened, where the 11th surface (the bottom of the retinal
pigment epithelium) is used as the reference plane. The EZ region between the 7th
and 8th surfaces is extracted, which is the volume of interest (VOI) for our analysis.
In the classification step, five categories, from a total of 57 features, are extracted
for each voxel in the VOIs. Then, principle component analysis (PCA) is adopted
for feature selection. Because the disrupted voxels (the minority) in the VOIs are far
less numerous than the non-disrupted ones (the majority), it is a typical imbalanced
classification problem. To improve the performance of the classification, we apply
the following two strategies in the classification training: (1) an Adaboost algorithm
is adopted to train some weak classifiers into an integrated strong classifier at the
algorithm level; and (2) the majority samples are randomly under-sampled at the data
level. In the classifier testing step, every voxel in the VOIs is classified as disrupted or
not disrupted. In the post-processing step, the blood vessel silhouettes are identified
and excluded by a vessel detector and the isolated points are excluded by morpho-
logical operations to avoid false detections. Finally, the volume of the disrupted EZ
is calculated.

10.4.2.2 Pre-processing

Speckle noise is the main noise in OCT images, and it affects the performance of
image processing and classification. In this paper, we propose applying the bilateral
filtering [32] method for denoising because it can remove speckle noise from images
effectively while maintaining edge-like features. We have used a fast approximation
algorithm [33] to reduce the computation time without significantly impacting the
bilateral filtering result. Each B-scan (X-Z image) of the OCT images is smoothed
separately by bilateral filtering.

The filtered SD-OCT volume is then automatically segmented into 10 intra-retinal
layers using the multi-scale 3D graph-search approach [1, 2, 14, 28, 29], which
produces 11 surfaces (see Fig. 10.14). Then, all the surfaces are smoothed using thin
plate splines. The retina in the original SD-OCT volume is flattened by adjusting the
A-scans up and down in the z-direction, where the 11th surface (the bottom of the
retinal pigment epithelium) is used as a reference plane because of its robustness.
Then, the EZ regions between the 7th and 8th surfaces are extracted as the volumes
of interest (VOIs).
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Fig. 10.14 Segmentation results of 11 intra-retinal surfaces (10 layers) on an eye with retinal
trauma. a B-scan of an eye with retinal trauma. The red arrow indicates ellipsoid zone disruption.
b Segmentation results of the eye with retinal trauma: nerve fibre layer (NFL), ganglion cell layer
(GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer
unclear layer (ONL)+ inner segment layer (ISL), outer segment layer (OSL), and retinal pigment
epithelium complex (RPE+)

10.4.2.3 Feature Extraction and Selection

For classification, the following five types of low-level features are extracted: normal-
ized intensity, blockmean, block standard deviation, the absolute intensity difference
in the 13directions to be described later (step�1, 2), and the grey-level co-occurrence
matrix (GLCM) based features (contrast, correlation, energy and homogeneity in 13
directions). Therefore, 57 features are extracted, which are listed in Table 10.8.

The normalized intensity represents the voxel’s grey level. As shown in Fig. 10.14,
the intensity level of the disrupted region of the EZ is lower than the intensity level
of the non-disrupted region. Therefore, if a voxel’s normalized intensity level is low,
it has a higher probability of being classified as a disruption, and vice versa.

The block mean and block standard deviation represent the average intensity
level and the variance of the intensity level, respectively, in the local region centred
around the voxel (region of 5×5 × 5 voxels). The absolute intensity difference in
13 directions represents the variance of the intensity between the centre voxel and
its neighbours in 13 directions. Let α1 stand for the angle between the X-axis and
the projection direction on the X-Y plane, and let α2 stand for the angle between
the X-Y projection direction and the Z-axis. The 13 directions can be described as
follows: (α1, α2)� (0, 90°), (45°, 90°), (90°, 90°), (135°, 90°), (0, 45°), (180°, 45°),
(90°, 45°), (−90°, 45°), (0, 0), (45°, 45°), (135°, 45°), and (−135°, 45°). The block
mean, block standard deviation and absolute difference in the 13 directions can be
used to distinguish the boundary between the disrupted and non-disrupted regions.

The grey-level co-occurrence matrices (GLCMs) for the 3D volumetric data
describe the spatial dependence of grey levels across multiple slices [73, 74]. The 3D
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Table 10.8 The features extracted in the feature extraction stage

Feature
number

Feature
name

Details

1 Normalized
intensity

Inormalized(i, j, k) � Ibilater_filtered(i, j,k)−Imin
Imax−Imin

(i, j, k) represents the (i, j, k) th voxel in the VOIs.

2 Block mean Mblock(i, j, k) � 1
125

i+2∑
l�i−2

j+2∑
m� j−2

k+2∑
n�k−2

Inormalized(l,m, n)

3 Block
standard
deviation

ST Dblock(i, j, k) �

√
i+2∑

l�i−2

j+2∑
m� j−2

k+2∑
n�k−2

(Inormalized(l,m,n)−Mblock(i, j,k))2

124

4, 5 Absolute
intensity
difference
in 13
directions

AI D(i, j, k) �
∑

13 directions

|Inormalized(i, j, k) − Inormalized(l,m, n)|

l � i, i + step;m � j, j + step; n � k, k + step; step � 1, 2

6–18 GLCM
based
contrast (in
13
directions)

Contrastdirectionm (i, j, k) �
Ng∑

x�1

Ng∑

y�1

(x − y)2 p(x, y)

m � 1, 2, . . . , 13
p(x, y) represents the (x, y)th entry in the GLCM, Ng represents the
number of distinct grey levels in the quantized image. Here, Ng � 8.

19–31 GLCM
based
correlation
(in 13
directions)

Correlationdirectionm (i, j, k) �
Ng∑

x�1

Ng∑

y�1

(x − μx )(y − μy)p(x, y)

σxσy

m � 1, 2, . . . , 13
μx , μy , σx and σy are the means and standard deviations of the x row
and the y column, respectively.

32–44 GLCM
based
energy (in
13
directions)

Energydirectionm (i, j, k) �
Ng∑

x�1

Ng∑

y�1

p2(x, y)

m � 1, 2, . . . , 13

45-57 GLCM
based
homogene-
ity (in 13
directions)

Homogeneitydirectionm (i, j, k) �
Ng∑

x�1

Ng∑

y�1

p(x, y)

1 + |x − y|
m � 1, 2, . . . , 13
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method searches for other grey levels in the 13 directions (mentioned above) across
multiple planes and constructs 13 GLCMs. Here, the GLCMs in the 13 directions of
every 5×5×5 block are constructed. Then, the following four features are calcu-
lated: (1) the contrast, which measures the local contrast of the volumetric image and
is expected to be higher when a large grey-level difference occurs more frequently;
(2) the correlation, which provides a correlation between the two voxels in a voxel
pair and is expected to be higher when the grey levels of a voxel pair are more cor-
related; (3) the energy, which measures the number of repeated voxel pairs and is
expected to be higher if the occurrence of repeated voxel pairs is higher; and (4)
the homogeneity, which measures the local homogeneity of a voxel pair and will be
larger when the grey levels of each voxel pair are more similar.

Based on above definitions, we have a total of 57 features extracted for each voxel
in the VOIs. To reduce the dimensionality of the feature vector and describe the
inter-correlated quantitative dependence of the features, a feature selection procedure
based on the PCA is performed. In our experiments, the first 10 principle components
are selected as the new features; they represent more than 90% of the information in
the original features.

10.4.2.4 Adaboost Algorithm and the Under-Sampling Based
Integrated Classifier

In this study, the number of non-disrupted samples in the EZ region is far greater
than the number of disrupted ones. The disrupted EZ samples and non-disrupted
EZ samples belong to the minority and majority classes, respectively. This is a typi-
cal imbalanced classification problem, which means the class distribution is highly
skewed. Most traditional single classifiers, such as the support vector machine, the
k-nearest neighbour classifier, quadratic discriminate analysis, and the decision tree
classifier, tend to show a strong bias towards the majority class and do not work
well for this type of problem because they aim to maximize the overall accuracy.
The Adaboost algorithm based integrated classifier [70–72] is one solution to over-
come this problem at the algorithm level; it integrates multiple weak classifiers into a
strong classifier and is therefore more sensitive to the minority. Hence, the Adaboost
algorithm is adopted in this study.

To further improve the classification performance at the data level, the training
datasets are balanced by under-sampling majority samples. In the training step, the
Adaboost algorithm-based classifier model is calculated according to leave-one-
out cross-validation, using all the disrupted samples and an equivalent number of
randomly selected non-disrupted samples. In the testing stage, each voxel in the
VOIs is classified as disrupted or non-disrupted using the trained Adaboost model.
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10.4.2.5 Post-processing

The vessel silhouettes in the EZ have lower values of intensity, and the voxels in
these regions may be falsely classified as disrupted. The vessel silhouettes are iden-
tified and detected based on a vessel detector [52]. As in the outer retina (EZ to
RPE), the vessel silhouettes offer excellent contrast; only those voxels between the
EZ and RPE are selected and each pixel in the 2D projection image is the average
in the z-axis direction of the selected voxels at that particular x, y location in the
OCT volume. Then, the vessel silhouettes are segmented using a KNN classifier.
If the detected EZ disruption regions have the same x and y location as the vessel
silhouettes, these regions are regarded as normal and removed as false detections.
Due to the physiological connectivity of the EZ disrupted/non-disrupted regions, iso-
lated disrupted/non-disrupted voxels are eliminated through morphological opening
operations, where the shape of the structural element is set as ball with a radius of 5
voxels.

10.4.3 Results

In total, 15 eyes in subjects with retinal trauma and 15 eyes in normal subjects
were included and underwent a macular-centred (6×6 mm) SD-OCT scan (Topcon
3D OCT-1000, 512×64×480 voxels, 11.72×93.75×3.50 µm3, or 512×128×
480 voxels, 11.72×46.88×3.50 µm3). There were 12 males and 3 females in the
trauma group, with a mean age of 30.3±11.3 years (range: 8–43 years). There were
9 males and 6 females in the normal group, with a mean age of 33.1±10.8 years
(range: 7–46 years). Subjects with other eye diseases were excluded except for those
with refractive error<=±6 diopter.

The Institutional Review Board of the Joint Shantou International Eye Center
approved this study and waived informed consent due to the retrospective nature of
this study. Our study also complies with the Declaration of Helsinki. The patient
records/information was made anonymous prior to analysis.

To evaluate the performance of the proposedmethod, all the EZ disruption regions
in the 3DSD-OCT imagesweremanuallymarkedby anophthalmologist slice by slice
using the ITK-SNAP software [75] and saved as the ground truth. The leave-one-out
methodwas used to train theAdaboost based integrated classifiermodels.Because the
sample ratio of the majority class (non-disrupted) and the minority class (disrupted)
was approximately (110±256):1 on average, non-disrupted samples were randomly
selected to match the disrupted ones. The EZ disruption volume was calculated by
multiplying the disruption number by the voxel resolution.

The mean and 95% confidence intervals of the segmented EZ disruption region
volumes were compared between eyes with retinal trauma and normal eyes. Stu-
dent’s t-test was used to evaluate the statistical significance of the disruption vol-
ume differences between the two groups of eyes. Statistical correlation analysis and
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Bland-Altman plot analysis were utilized for a performance comparison between the
proposed method and the ground truth.

To assess our experiments, several measures based on the segmented volume
of the EZ disruption including sensitivity (SEN), specificity (SPE) and balanced
accuracy rate (BAR) were adopted. These evaluation indexes are commonly used in
imbalanced classification problems and are defined as below:

SEN � T P

T P + FN
× 100% (10.11)

SPE � T N

T N + FP
× 100% (10.12)

BAR � SEN + SPE

2
(10.13)

where TP, FN, TN and FP represent true positive, false negative, true negative and
false negative, respectively.

Figure 10.15 shows one of the detection results using the proposed framework, and
the corresponding ground truth for the EZ disruption region. The en face projections
of the original VOIs, ground truth, and corresponding detected EZ disruption are
also shown. We can see from Fig. 10.15 that while the proposed method detected
the EZ disruption well, there were still some false positives and false negatives. The
detection results for a normal eye are shown in Fig. 10.16. Most of the negative
regions were correctly classified; however, there were still some false positives.

The mean and 95% confidence intervals of the detected disruption vol-
ume for the normal eyes were meannormal � 0.0037mm3 and C Inormal �
[0.0005, 0.0069]mm3, while for the eyes with retinal trauma they were
meantrauma � 0.1035mm3 and C Itrauma � [0.0126, 0.1944]mm3. The detected
EZ disruption volume comparison between the normal eyes and the eyes with retinal
trauma is shown in Fig. 10.17. Student’s t-test demonstrated a strong statistical sig-
nificance for the detected EZ disruption volume differences between the two groups
of eyes (p �9.9112×10−8 �0.001).

For the eyes with retinal trauma, the SEN was 85.69%±9.59%, the SPE was
85.91%±5.48%, and the BAR was 85.80%±6.16%. For the normal eyes, the SPE
was 99.03%±0.73%. Because there were no true positives, the values of SEN and
BAR were irrelevant.

For the eyes with retinal trauma, the correlation between the segmented EZ dis-
ruption volume and the ground truth was r =0.8795 with a significance level p
<0.0001. The 95% confidence interval for r was 0.6683–0.9595. Figure 10.18 shows
the Bland-Altman plot for the consistency analysis between the automatic segmented
EZ disruption volume and the ground truth.

In summary, in this study, we developed and evaluated an automatic method to
detect the 3D integrity of the EZ in eyes with retinal trauma. Because the disrupted
voxels in the EZ region are much less numerous than the non-disrupted ones, this
leads to a typical imbalanced classification problem. To overcome this problem,
an Adaboost algorithm (at the algorithm level) and dataset balance strategies (at
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Fig. 10.15 Examples of EZ disruption region detection results and ground truths for a subject
with retinal trauma. The red region represents the ground truth, and the yellow region represents
the segmented EZ disruption region using the proposed method. a–c Three original B-scans of an
OCT volume. d–f The corresponding ground truth in the B-scans for (a–c), respectively. g–i The
corresponding detection results using the proposed method for (a–c), respectively. j The ground
truth in a 3D view. k The detection results in a 3D view. l The en face projection of the VOIs. m
The en face projection of the ground truth (in red). n The en face projection of the detection results
(in yellow)

the data level) are utilized. The vessel silhouettes and isolated points are excluded
to remove the false detections, using a vessel detector and morphological opening
operations, respectively. The average detected EZ disruption volume in the eyes
with retinal trauma was statistically much larger than the corresponding volume in
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Fig. 10.16 An example of the detection results using the proposed method on a normal subject. a,
b The original B-scans of the OCT volume. c, d The false positive detection results (in green) using
the proposed method. e All false positive detection results in a 3D view. f The en face projection
of the VOIs. g The en face of the false positives (in green)

the normal eyes (Student’s t-test, p�9.9112×10−8 <0.001). In the eyes with retinal
trauma, the SEN, SPE and BAR, using the proposed method, were 85.69%± 9.59%,
85.91%± 5.48%, and 85.80%± 6.16%, respectively. There was a strong correlation
between the segmented EZ disruption volume and the ground truth (r=0.8795). In
the normal eyes, the SPE was 99.03% ± 0.73%.

This study has several limitations. (1) Although many studies have shown that the
disruption extent of the EZ is an important clinical indicator for the injury degree of
the photoreceptors and that EZ disruption may be closely associated with visual acu-
ity in different eye diseases [59–69], there are some controversies [76–79]. Whether
the quantitative disruptions of the EZ have quantitative relationships with visual acu-
ity and visual outcome has not yet been addressed. This study focuses on quantitative
measurements of the EZ disruption volume; further study will be carried out in the
near future to determine the quantitative correlation, if any, of these quantitative
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Fig. 10.17 Detected EZ disruption volume comparison. The blue bars show the mean volumes,
and the red error bars show the 95% confidence intervals

Fig. 10.18 Bland-Altman plot for consistency analysis

measures to visual acuity and to the outcome of eyes with retinal trauma. (2) The
sensitivity and specificity of the proposed method could also be further improved.
The classification errors could be due to two reasons. (i) The inaccuracy of the surface
segmentation results during the image pre-processing stage may cause unreasonable
extractions of VOIs. (ii) Because of the poor quality of the SD-OCT images, the
ground truths marked by the ophthalmologist are subjective, especially in the tran-
sitional region between the disrupted and the non-disrupted regions. (3) Due to the
collection difficulties and poor quality of the image data, the proposed method was
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tested on a small-sized image dataset (15 eyes with retinal trauma and 15 normal
eyes). We are still collecting more data and will validate our method on a larger
dataset in the near future.

10.5 Conclusions

In this chapter, several methods for automatic layer segmentation and analysis of
diseased retinas are presented. Layer segmentation can serve as a pre-processing
step for both abnormal layer analysis and pathological region detection, while layer
disruption detection provides quantitative information of the change caused by retinal
pathology, which is of great value to diagnosis and progress tracking of the disease.
Though these methods achieve good performance, they are tailored for specific type
of pathology. More universal method that can deal with various types of diseases is
expected, and this remains an open and hot area in OCT image analysis.
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Chapter 11
Segmentation and Visualization
of Drusen and Geographic Atrophy
in SD-OCT Images

Qiang Chen, Sijie Niu, Luis de Sisternes, Theodore Leng and Daniel L. Rubin

Age-related macular degeneration (AMD) is a major cause of vision loss for elderly
people. Drusen and geographic atrophy are two kinds of pathological changes associ-
ated with AMD. This chapter presents several methods that achieve abnormal region
segmentation for quantitative analysis or enhanced visualization for better qualitative
assessment.

11.1 Introduction

Age-related macular degeneration (AMD) is the most common cause of visual
impairment among the elderly in developed countries [1]. AMD is a degenerative
eye disease that robs a person of their central vision while typically leaving their
peripheral vision unaffected (i.e. degenerate the macula). The macula is the central,
posterior portion of the retina. It contains the densest concentration of photo-receptors
within the retina and is responsible for central high-resolution visual acuity, allowing
a person to see fine detail, read, and recognize faces [2]. AMD can be classified into
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the early and late stages. Generally, the late AMD can be further divided into ‘wet’
(neovascular) and ‘dry’ (atrophy) forms. Recent researches indicate that neovascular
AMD account for two-thirds of the late cases, while one-third are atrophic. Early
AMD, defined by the development of large drusen or pigment changes at the macula
may be associatedwith either no vision loss or early changes in reading central vision.
Late AMD includes both neovascular AMD and geographic atrophy, in a ratio of
about 2:1. Neovascular (‘wet’ or exudative) AMD is characterised by the appearance
of blurring of the central vision and distortion with straight lines appearing crooked
or wavy, with or without a dark or blank patch. Perception of colours is also often
affected. Geographic Atrophy (‘dry’ AMD) reduces capacity for near visual tasks
as central vision becomes severely impaired. Note that some people include ‘early
AMD’ within the category of ‘dry AMD’. About 1.75 million U.S. residents cur-
rently have advanced age-related macular degeneration with associated vision loss,
with that number expected to grow to almost 3 million by 2020 [3]. In this chapter,
our main focus is on drusen and geographic atrophy of the AMD diseases.

11.1.1 Drusen

With age, one change that occurs within the eye is the focal deposition of acellular,
polymorphous debris between the retinal pigment epitheliumandBruch’smembrane.
These focal deposits, called drusen (Fig. 11.1a), are observed during funduscopic
examination as pale, yellowish lesions and may be found in both the macula and
peripheral retinal [4]. Drusen are categorized as small (<63µm in diameter), medium
(63–124 µm), or large (>124 µm) on the basis of studies that classified the grade
of age-related macular degeneration [5]. Drusen are also categorized as hard or soft
on the basis of the appearance of their margins. Hard drusen have discrete margins;
conversely, soft drusen generally have indistinct edges, are usually large, and can
be confluent [6]. Most patients who develop severe visual loss from AMD have
this exudative stage. These fundus changes may predispose the eye to develop the
neovascular/exudative stages of AMD. Treatment for AMD has been shown to be
effective for only a small proportion of patients who have a well-defined choroidal
neovascular membrane (CNVM) more than 200 µ from the foveal center. Even in
successfully treated cases, severe visual loss is postponed only for about 18 months
because of the high rate of recurrent CNVMs that extend into the fovea. Thus, despite
recent breakthroughs in laser treatment for AMD, most patients who develop the
exudative form of AMD will develop central visual impairment [7].

11.1.2 Geographic Atrophy

Geographic atrophy is the advanced (late) form of dry AMD (Fig. 11.1b). Here,
atrophy refers to the degeneration of the deepest cells of the retina. These are cells
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Fig. 11.1 OCT images of drusen and GA. a Drusen image, the bottom red curve is the baseline of
the normal RPE layer. The top red curve is determined by the largest drusen height in any B-scan,
b B-scan from SD-OCT volume scans of the retina. The RPE layer and GA region are marked
with red and blue lines, respectively. The presence of GA appears as bright pixels in choroid coat
(the region underneath the RPE layer) due to the loss of the RPE layer and subsequent increased
reflections from the underlying choroid

of the retinal pigment epithelium (RPE). This RPE normally helps maintain the
health of the next deepest layer, the photoreceptor cells known as rods and cones.
These photoreceptor cells are triggered by light to set off a series of electrical and
chemical reactions that result in the brain interpreting what is in the visual field. GA
tends to progress slowly. Progression is currently studied using a technique called
autofluorescence (AF) imaging to define the areas of GA. A newer technique called
high density optical coherence tomography (OCT) allows the doctor to visualize the
different layers of the retina, and to determine when cells are becoming thinned or
destroyed. Researchers estimates that 3.5% of the United States population age 75
and older has GA, while and its prevalence rises to 22% in people older than 90
[8–10].

11.2 Drusen Segmentation and Visualization

Most of the drusen segmentation methods are proposed for color fundus photographs
(CFPs), not OCT images. Duanggate and Uyyanonvara [11] reviewed automatic
drusen segmentation from CFPs. Many different approaches to automated segmen-
tation of drusen in CFPs have been developed, which includes histogram-based
approaches [12–15], texture-based approaches [16–18], morphological approaches
[19], multi-level analysis approach [20] and fuzzy logic approaches [21–23]. A com-
mon challenge among these systems is that the margins of the drusen are difficult to
discern reliably on CFP since this is a two-dimensional imaging modality.

To achieve drusen segmentation in OCT images, manual segmentation [24, 25] is
generally adopted, and few automated methods have been reported. Farsiu et al. [26]
and Toth [27] proposed an automatic drusen segmentation algorithm. In the first step,
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the location of the retinal nerve fiber layer (RNFL) was estimated and then the RPE
layer was localized. By enforcing a local convexity condition and fitting second or
fourth order polynomials to the possibly unhealthy (abnormal)RPEcurve, the healthy
(normal) shape of the RPE layer is estimated. The area between the estimated normal
and the segmented RPE outlines was marked as possible drusen. Yi [28] utilized a
similar algorithm to automatically segment drusen. The main difference between
Farsiu’s method and Yi’s method was the extraction of RPE layers. While the prior
work on automated drusen segmentation is a step in the direction of quantitation, there
are unsolved challenges. First, drusen may obscure portions of the image needed for
accurate estimation of RPE layers. Second, RPE layer segmentation is difficult even
in normal patients because the inner segment/outer segment (IS/OS) retinal layers
are often contiguous with the RPE and there is abundant noise in low signal-to-noise
ratio (SNR) OCT images. To counteract these potential problems, [26] provided a
manual correction using a software interface. According to one study [29], drusen
detection in CFP and spectral domain optical coherence tomography (SD-OCT)
images has good concordance, and each imaging modality has its own advantages.
Our algorithm utilizes the projection image to verify and refine the segmentation
results from SD-OCT images, which reduces the influence of RPE estimation error
and improves the robustness of drusen segmentation. Gregori [30] and Iwama [31]
also segmented drusen based on the distance between the abnormal RPE and the
normal RPE floor. Recently, many researchers proposed several other methods [15,
32, 33].

In this section, we tackle the above challenges, and present several novel auto-
mated drusen segmentation method in SD-OCT images. Our proposed methods
include: (a) Automated Drusen Segmentation and Quantification in SD-OCT Images
[34], (b) An improved OCT-Derived Fundus Projection Image for Drusen Visualiza-
tion [35]. In addition, we also provide ameans of generating a high-quality projection
image based on RPE layer estimation.

11.2.1 Automated Drusen Segmentation and Quantification
in SD-OCT Images

11.2.1.1 Overview of Proposed Method

We briefly introduce the algorithm, for full detail see [34]. A flowchart of our algo-
rithm is shown in Fig. 11.2, which comprises the following operations on the input
SD-OCT image:

1. Image denoising: A modified bilateral filtering algorithm is used to reduce noise
in order to facilitate the subsequent estimation of the RNFL and RPE retinal
layer.

2. RNFL complex removal: The RNFL complex, defined as the region between
the inner limiting membrane and the outer plexiform layer (indicated by the
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Fig. 11.2 Flowchart of the proposed algorithm

orange dotted outline in Fig. 11.3a, overlies the RPE and is removed to facilitate
segmenting the RPE layer of the retina.

3. RPE segmentation: The RPE layer is extracted as a continuous structure through
interpolation. In addition, the shape it would have hadwithout drusen is estimated
though a fitting procedure to interpolate its shape in areas where it is distorted
by drusen.

4. Drusen segmentation: An initial segmentation of drusen is obtained from the
RPE segmentation image as the areas located between the interpolated and fitted
RPE shapes.

5. Drusen projection: To refine the initial drusen segmentation, an en face drusen
projection image is generated on a volume of the SD-OCT image restricted to
the sub-volume of the image containing the RPE and drusen segmentation.

6. Elimination of false positive drusen: Consecutive slices are evaluated to eliminate
detections that are not drusen.

7. Drusen refinement: The intensity and shape information of drusen on the projec-
tion image are utilized to remove false drusen.

8. Drusen smoothing: A smoothing operation is performed in three-dimensional
(3D) space to obtain the final segmentation results.

11.2.1.2 Drusen Projection Image Generation

A common method for creating 2D projection from SD-OCT datasets is summed-
voxel projection (SVP) Jiao [36], in which all the pixel values in the 3D images are
summed along axial lines, producing an image showing the retinal surface en face,
similar to the CFP. The SVP cannot effectively reflect the alteration in the RPE layer
caused by drusen [37]. To date however, the en face SVP fundus image is not ideal
for drusen visualization because most drusen have been found to not be visible when
projected using this technique [36]. In order to make drusen appear more clearly in
fundus projection images, we present a novel projection method of the RPE layer
to generate the fundus image, based on a selective volume projection, analogous



286 Q. Chen et al.

RNFL 
complex

(a) (b)

(c)

Vitreous 

RNFL

IS/OS

RPE

Choroid
Druse

Fig. 11.3 a Target retinal layers of a cross-sectional SD-OCT image (B-scan). RNFL: retinal nerve
fiber layer; IS/OS: photoreceptor inner/outer segments; RPE: retinal pigment epithelium. The loca-
tion of a druse is indicated with a yellow arrow. The RNFL complex (defined as the region between
the inner limiting membrane and outer plexiform layer) is indicated by the orange dotted region.
b SVP image of the same eye. The dashed blue line indicates the location of the B-scan presented
in a within the projection image. c Color fundus photograph of the same eye. The maroon dashed
square indicates the area in the macula present in the SD-OCT scan. The dashed blue line indicates
the location of the B-scan presented in a within the fundus photograph. The location of the druse
clearly seen in (a) is indicated with a yellow arrow

to that done in Gorczynska [38]. Figure 11.4a shows an example of selection of a
sub-volume in a narrow band zone between two parallel curves to isolate the RPE.
The bottom red curve is the base of the normal RPE layer, and the top red curve
is determined by the tallest drusen in all of B-scans. As a result, the projection
region contains only the RPE layer and drusen. To further enhance visualization of
drusen, the dark regions beneath the drusen are replaced with the bright pixels in the
same column, which enhances visibility of the drusen in the projection. Through this
approach, the larger the height of the drusen, the brighter the drusen will appear in
the projection image. Figure 11.4b shows an example of drusen projection image,
which is rescaled to a square by interpolation. The bright region in the central region
of Fig. 11.4b corresponds to the large drusen in Fig. 11.4a, marked with the orange
triangle in Fig. 11.4.
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Fig. 11.4 Drusen projection image generation. a B-scan image for projection b Drusen projection
image

11.2.1.3 Post-processing

Drusen are composed of irregularly-shaped globular masses and of distinct spherical
entities. Based on the shape characteristics of drusen, the following three step post-
processing is adopted to improve drusen segmentation precision: elimination of false
positive drusenwith consecutive slices, drusen refinementwith projection image, and
drusen smoothing.

(1) Elimination of false positive drusen. Given the density of the B-scans (128
B-scans per approximately 6 mm.), each drusen should appear in at least two
consecutive B-scans with a fixed azimuthal interval (46.9µm). Here, we assume
that the minimum size of drusen in the azimuthal dimension should be larger
than such interval. If a drusen was only present in one B-scan, it was removed
from the projection image as a likely false positive.

(2) Drusen refinement with projection image. The primary drusen segmentation
results were projected on the drusen projection image and the intensity and
shape information was utilized to remove false drusen as follows. For each
4 adjacent drusen, if the difference of the average intensity of the inner and
outer drusen regions (the outer regions are the background regions near drusen
boundaries) is lower than a threshold (4 in this chapter), or the ratio of the width
and height of the drusen is larger than a threshold (6 in this chapter), it was
considered a false positive drusen and was removed.



288 Q. Chen et al.

Fig. 11.5 Drusen refinement. a Smoothed result of (b). b Drusen refinement result based on pro-
jection image

(3) Drusen smoothing. Since drusen tend to have a smooth nature, Gaussian filtering
is used to smooth the drusen segmentation results in 3D space. The drusen
thickness map was smoothed with Gaussian filtering by keeping the baseline
of drusen, and then the smoothed drusen thickness map was remapped into the
original B-scans. Figure 11.5a is the smoothed result of Fig. 11.5b. The drusen
boundaries in Fig. 11.5a become smoother, which is consistent with the drusen
characteristics.

11.2.1.4 Evaluation of Drusen Quantitation

To show that quantitative features of drusen can be extracted from our automatic
segmentations, and to demonstrate the potential utility of using that information as a
biomarker of disease status, we performed a pilot analysis of the drusen segmentation
results in one patient who had SD-OCT on six different dates. At each time point,
we produced a “drusen thickness map” and a “drusen surface map” to summarize
the quantitative aspects of the drusen features we extracted. We analyzed two quan-
titative measurements, drusen area and volume, as biomarkers of disease status, and
we plotted them over time. We correlated the temporal evolution in these imaging
biomarkerswith the evolution of the clinical status of the patient (visual acuity). Once
the variance of the manual segmentations was established, we used the same metrics
to test the agreement between automated segmentations produced by our proposed
method and those drawn by hand. We first compared the automated segmentation
with the mean segmentation obtained from the four manual segmentations drawn by
the two experts in the dataset of four eyes, taken as the gold standard. Figure 11.6
demonstrates an example of the quantitative evaluation approach by overlapping the
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Fig. 11.6 Demonstration of the quantitative evaluation. The blue and yellow lines are the contours
of two experts’ gold standard, respectively. The red line represents the contour of the automatic
segmentation result

manual and automatic segmentation results in a single B-scan. The automatic drusen
segmentation results are marked with red line.

11.2.1.5 Drusen Segmentation Accuracy

Table 11.1 shows the segmented drusen areawithin-expert and between-expert agree-
ment in terms of correlation coefficients, paired Wilcoxon test p-values and absolute
drusen area difference (ADAD) 340 B-scans coming from 4 different eyes were con-
sidered. We noted that the boundaries of the RPE layers were often obscured due to
noise and low resolution in OCT images, which produced discrepancies in the man-
ual segmentation made by the two experts. The ADAD results are presented both in
µm and in percentage values with respect to total segmented drusen area per b-scan.
Both within-expert and between-expert evaluations present very high correlation val-
ues (between 0.97 and 0.98). The within-expert mean area differences were slightly
higher for Expert B and the differences observed between the segmentations done
by the two experts were higher in mean absolute value than those observed within-
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Table 11.1 Within-expert and between-expert correlation coefficients (cc), paired Wilcoxon test
p-values and mean absolute drusen area differences

Methods compared Number of
eyes/drusen
present B-scans

cc p-value ADAD
[µm]
(mean, std)

ADAD [%]
(mean, std)

Expert A1—Expert A2 4/340 0.97 0.0001 8.33 ± 9.50 12.38 ± 16.55

Expert B1—Expert B2 4/340 0.98 0.73 9.64 ± 6.53 14.41 ± 12.24

ExpertA1&2—ExpertB1&2 4/680 0.97 0.013 9.98 ± 9.49 14.17 ± 14.54

Table 11.2 Overlap ratio evaluation between the manual segmentations

Methods compared Number of eyes/drusen
present B-scans

Overlap ratio [%]
(mean, std)

Expert A1—Expert A2 4/340 81.08 ± 10.46

Expert B1—Expert B2 4/340 80.73 ± 8.73

Expert A1&2—Expert B1&2 4/680 79.24 ± 9.65

experts in the separate sessions. Nevertheless, all of the ADAD measurements lay
within the standard deviation of each other. The low p-values obtained from the
paired Wilcoxon test (p<0.05) indicate that there were significant differences in seg-
mented drusen area between the two readers and between the two sessions for the
first reader (A). Considering the high correlation coefficients of the measurements
and low average area differences, these low p-values may have been produced by
segmentation interpretation differences from the readers, and from the same reader at
different times (as we can see for Expert A), such as a reader consistently estimating
the drusen areas to be slightly higher than another one.

Table 11.2 shows the within-expert and between-expert agreement in terms of
overlap ratio (OR). The manual segmentations drawn by expert A were slightly more
consistent between the two sessions that those drawn by expert B in average, and the
overlapping areawas slightly higher for segmentations drawn by the same expert than
when comparing areas drawn by different experts. Nevertheless, all measurements
lay within the standard deviation of each other.

Table 11.3 shows the agreement between the automated segmentation and the
gold standard for the same dataset of 4 eyes employed in the reader agreement
measurement and for the complete dataset of 143 eyes. For the smaller dataset, the
correlation coefficient between automated segmentations and gold standard (mean
segmentation from the 4 manual segmentations) was very high (0.97), and similar
to those observed within-experts (0.97 and 0.98) and between-experts (0.97) for the
same dataset. The ADAD values were also very similar to those observed for the
readers and within their measured standard deviation. The standard deviation values
are in the order of the mean values because the segmentation results obtained from
different methods resulted very similar, both when comparing two different manual
segmentations or manual and automated segmentation results. The logic behind this
is that since we are measuring the differences between two segmentation results from
the same cases, a minimum requirement for us to say that they are similar is that
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Table 11.3 Correlation coefficients (cc), paired Wilcoxon test p-values and absolute drusen area
differences between the automated segmentation method (Aut. Seg.) and gold standard (GS)

Methods
compared

Number of
eyes/drusen
present
B-scans

cc p-value ADAD [µm]
(mean, std)

ADAD [%]
(mean, std)

Aut.Seg.—GS 4/340 0.97 0.48 10.29 ± 8.9 15.70 ± 15.50

Aut.Seg.—GS 143/143 0.94 0.006 19.97 ± 14.68 23.77 ± 13.8

the 95% of those differences for the population of tested cases includes the 0 value
(whichwould indicate that the results are exactly the same). There are still differences
in the segmentation methods as indicated by the mean values, but those differences
are small when compared to the difference ranges, which also include the 0 value.
The similar mean and standard deviation values in the inter-reader and intra-reader
agreement assessment indicates that we might expect a deviation in the differences
of two manual segmentations on the same order as their mean differences, which
makes sense since they are drawn in the same set of images. The similar observed
ranges of mean and standard deviation differences between automated and manual
segmentations indicate that the automated method thus appears to closely represent
the segmentation drawn by an average user (our gold standard in this case) in the
same ranges as different readers or even the same reader at different sessions would
agree on their manual segmentations for the given test. For the larger dataset of 143
eyes, the differences found between the automated segmentation and gold standards
(segmentation from a third reader) were higher, but they showed very high correlation
and their distribution still lay within the limits described for expert agreement. The
correlation between areas of automated and gold standard segmentationwas also very
high for both datasets, and also in the same ranges when comparing different manual
segmentations. The Wilcoxon p-values indicate that statistical differences could not
be claimed between the distribution of areas of automated segmentations and an
average manual segmentation in the first dataset. However, statistical differences (p
< 0.05) were found in the distribution when compared to manual drawings by a
third expert in the second dataset. In the same way as for the inter-reader and intra-
reader comparisons, considering the high correlation values, this might be due to
the segmenting approach of a reader, as for a reader constantly over-estimating or
under-estimating drusen borders.

Table 11.4 shows the overlap ratio (OR) between the automated segmentation and
gold standard for the two datasets. For the dataset consisting in 4 eyes, the mean
OR demonstrates that our method can obtain relatively high segmentation accuracy
when compared to the gold standard, and its standard deviation was similar to that
within and between experts. This suggests that the discrepancies in OR between the
hand-drawn segmentations are comparable to those observed between the segmen-
tation produced by our algorithm and gold standard. The mean OR observed in the
dataset consisting in 143 eyes was lower but still showed sufficient overlap in the
segmentations, being within the limits established by the smaller dataset.
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Table 11.4 Overlap ratio evaluation between the automated segmentation method (Aut. Seg.) and
gold standard (GS)

Methods compared Number of eyes/drusen
present B-scans

Overlap ratio [%] (mean, std)

Aut. Seg.—GS 4/340 76.33 ± 11.29

Aut. Seg.—GS 143/143 67.18 ± 9.14

Figure 11.7 shows two segmentation results for drusen with a convex, medium
reflectivity and nonhomogeneous pattern. The regions remarked with yellow lines
are the segmented drusen. The blue and red lines are the estimated RNFL boundary
and RPE layer, respectively. Figure 11.7 indicates that for the most common drusen
pattern, the algorithm can effectively segment the drusen. Figure 11.8 shows two
segmentation results for drusen with convex, high reflectivity and homogeneous
pattern. Since the reflectivity of drusen is similar with that of the RPE layer, it is
difficult to segment the RPE layer correctly. Specifically, the posterior RPE border
was difficult to estimate. In our algorithm, the middle axes of the RPE layer is used
to find drusen. Although the convexity of the posterior RPE border is difficult to
estimate, the convexity of the anterior RPE border is easy to estimate. Thus, the

Fig. 11.7 Segmentation results for drusen with convex, medium reflectivity, nonhomogeneous
pattern

Fig. 11.8 Segmentation results for drusen with convex, high reflectivity, homogeneous pattern
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Fig. 11.9 Segmentation results for small drusen with high reflectivity IS/OS layers

middle axes of the RPE layer will be convex for the drusen with high reflectivity
and a homogeneous pattern. Figure 11.9 shows two segmentation results for small
drusen. For these two images, the IS/OS layers have similar reflectivity with the RPE
layers, and the IS/OS layer is spatially close to the RPE layer. From Fig. 11.9, it can
be seen that although the RPE layer estimation (the red lines) is not very accurate due
to the confounding influence of the IS/OS layers, our algorithm can still obtain good
segmentation results. Figure 11.10 shows that even when estimation of the boundary

Fig. 11.10 Drusen segmentation results of one patient
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of the RNFL is not correct, the algorithm is effective. This is one of the reasons that
RNFL removal is part of the image processing pipeline.

11.2.1.6 Conclusions

We have developed a novel automated drusen segmentation algorithm for SD-OCT
images, which incorporates the 3D spatial information in retinal structures and infor-
mation in projection images of drusen. Experimental results demonstrated that the
algorithmwas able to effectively segment different patterns of drusen. The qualitative
features we extract from drusen may be clinically useful for evaluating the progress
of these lesions. The algorithm does have limitations in that drusen at the edges of
the images and small drusen can be missed. Future refinement and development of
this algorithm will be pursued in an attempt to improve detection and segmentation
of these drusen.

We have described a method for automatic segmentation of drusen on SD-OCT
images, and it addresses the several unsolved challenges emerging from the prior
work: (1) obscuration by drusen of portions of the image needed for accurate esti-
mation of RPE layers, (2) noise in low-SNR OCT images which challenges accurate
segmentation of the RPE, (3) drusen with reflectivity similar with that of the RPE
layer which makes it difficult to segment the RPE layer correctly, and (4) the IS/OS
layers have similar reflectivity as RPE.

Our method, which estimates the RPE layer through interpolation and fitting
procedures, overcomes these challenges to some degree. By finding the middle axes
of the RPE layer, our method is less sensitive to regional areas of obscuration of RPE
by drusen. The method includes a bilateral filtering denoising step which addresses
the challenge of reliably detecting the RPE. Although bilateral filtering might not be
optimal for speckle denoising in SD-OCT, it has a relatively low time complexity
and acceptable performance for the needs of our segmentation algorithm. It is also
known that a pre-processing noise filtering step can increase SNR and potentially the
resulting accuracy of the segmentations, but there is a trade-off in the degrading of the
spatial resolution that could also produce the opposite effect. In the future, we plan
on investigating the effect of adopting more effective denoising methods to improve
the performance of our method. The method can also detect drusen in cases where
drusen and RPE have similar reflectivity; in such cases, the IS/OS layer is similar
reflectivity to RPE and thus difficult to separate from RPE. Our algorithm can still
obtain relatively good segmentation results. The method includes a pre-processing
step to remove the RNFL, so even if the boundary of the RNFL is erroneously
estimated, the drusen segmentation method can be successful.

A novel aspect of the method is inclusion of analysis of the drusen in an en face
projection to eliminate false positive drusen. Not only is this useful to improve the
accuracy of the method, it provides a useful visualization to physicians, similar to
the CFP view with which they are familiar (Fig. 11.5), and it also provides a means
of computing additional imaging biomarkers for drusen evaluation, such as drusen
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area. In the future, we could calculate other drusen features from these images, such
as shape.

11.2.2 An Improved OCT-Derived Fundus Projection Image
for Drusen Visualization

Currently, the gold standard for visualizing andmeasuring drusen in non-neovascular
AMD as well as for visualizing and assessing GA is the evaluation of color fundus
photographs (CFPs). While the total drusen area and maximum drusen size are esti-
mated by visual inspection of CFPs, with comparison to a set of standard circles [39].
So, it is a big challenge to reliably locate drusen against the changing background
pigments of the macula, RPE, and choroid [40, 41]. Moreover, it is difficult to make
reproducible quantitative measurements of drusen in CFPs, and such measurements
could be better indicators of disease progression than qualitative visual assessments.

Since SD-OCT images provide 3D data, and the structures visualized in the vol-
ume can be projected into 2D, and the current method for creating 2D projections
from SD-OCT datasets is the summed-voxel projection (SVP), in which all pixel
values in the 3D images are summed along axial lines, producing an image showing
the retinal surface en face, similar to the CFP [36]. The SVP fundus image is not
good for drusen visualization because most drusen are not visible when projected
using this method [36]. Stopa [37] overcame some of these problems by locating
pathologic retinal features with color marking in each OCT image before the image
volume was collapsed along the depth axis to produce the SVP. Current technique
recently introduced intoOCT imaging devices is the “slab SVP”, is a semi-automated
method to restrict the SVP to a sub-volume of the retina in vicinity of the RPE layer
(Carl Zeiss Meditch, Inc., unpublished); in this method, user interaction to annotate
the image to localize the RPE is required. Using manually annotating pathologic
features in a stack of SD-OCT images, for large studies, can be time-consuming and
tiring. More so, the SVP image produced by the proposed methods of Stopa et al.
only gives location information, but no information about drusen thickness, which
is useful for characterizing drusen. Georczynska [38] proposed a better method of
generating projection OCT fundus images by selectively summing different retinal
depth levels, which enhanced contrast and visualized outer retinal pathology not vis-
ible with standard fundus imaging or OCT fundus imaging. In this method, drusen
were separated into several projected fundus images summed at different retinal
depth levels, and could not be directly visualized.

In this section, we analyze the reasons for poor drusen visualization in SVP
fundus images, and present a new, automated projection method combined with
image processing of drusen to generate en face fundus images from SD-OCT for
enhanced drusen visualization [35].
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Fig. 11.11 Restricting the OCT image data for generating a fundus projection (the RSVP) to the
vicinity of the RPE layer. The bottom white curve is the baseline of the normal RPE layer. The
top white curve is determined by the largest drusen height in any B-scan. The RSVP thus excludes
extraneous portions of the retina that may contain noise to the projection, such as those caused by
the vitreous, retinal nerve fiber layer, and choroid

11.2.2.1 Generation of a Fundus Projection Image Based on RPE Layer

We proposed a novel projection method based on (1) creating a fundus image from
image data only in close proximity to the RPE layer, and (2) complementing the
projection with image processing methods that enhanced the brightness of drusen
and included information related to drusen height. The SVP projection is restricted
to a sub-volume of the SD-OCT dataset, which we named restricted SVP (RSVP).
We automatically segment the pixels corresponding to this sub-volume from the
SD-OCT data.

In Fig. 11.11, we demonstrate the projection of sub-volume, which is the narrow
band-like zone between two thewhite parallel curves. This projection region contains
only the RPE layers and drusen. By restricting the volume of retina visualized to
only that portion in close proximity to the RPE, the projection includes a minimum
of extraneous retinal structure and drusen visualization is maximally enhanced. In
addition, we applied image processing to brighten the dark pixels beneath the drusen
in each axial column, replacing the original dark pixels with bright pixels. Since the
RSVP is based on the sum of the pixel values in each axial column, so the larger the
height of the drusen, the brighter the drusen in the RSVP image area.

11.2.2.2 Extraction of RPE Layer

Many OCT automated segmentation methods have been described that use informa-
tion about normal retinal layers and do not consider the presence of drusen [42–44].
Therefore, they may not be suitable for drusen segmentation with the purpose of
generating RSVP images. We present a method to determine the location of RPE,
similar to the one presented in [26], but also incorporate the presence of drusen
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into account. We first smoothen the OCT images with bilateral filtering [45] and the
location of the RNFL was estimated by detecting the margin of the vitreous with
a threshold. The initial estimate of the RPE layer was obtained through the highly
reflective and locally connected pixels spatially located below the RNFL.We applied
a morphological opening operation (erosion followed by dilation) with a kernel con-
sisting of a disk of 2 µm radius was performed on this initial estimate in order to
remove small isolated regions from the RPE estimate that are mainly artifacts due to
noise present in SD-OCT images, without removing possible drusen larger than this
considered size (2 µm). We then adopted a maximum axial thickness constrain of
20 µm for the RPE estimate, so that the influence of bright pixels wrongly detected
as part of the RPE but that may be mainly due to other RPE abnormalities such as
GA is minimal. Meanwhile, A-scans in the foreground of this estimate that had a
larger number of pixels than this threshold were removed from the initial estimation
and their RPE location was determined by bilinear interpolation. We estimated two
versions of the RPE: (1) the potentially unhealthy (abnormal) RPE in which drusen
may be present was obtained by bilinear interpolation of the initial estimate, and (2)
a healthy (normal) and drusen-free version of the RPE layer was obtained by fitting
the estimated layer with a 3rd polynomial, an operation that would “smooth-out”
any drusen. The areas located between the fitted normal and interpolated RPE layers
were marked as drusen.

The baseline of the projection region used for the RSVP generation was the fitted
lower boundary of the normal RPE layer, while the top boundary of the projection
region was determined by displacing the fitted normal RPE layer anteriorly the same
distance as the largest drusen peak found in the cube (Fig. 11.11). This selected
sub-volume of the OCT excludes structures in the retina that could interrupt with
visualization of drusen, especially the RNFL and choroid (Fig. 11.30).

11.2.2.3 Filling in the Dark Regions of Drusen

For each A-scan of the SD-OCT images, we obtained the maximum intensity pixel
in the interpolated RPE layer and replaced the values of the pixels underneath it
with this maximum intensity value. After the filling process, dark areas of drusen
become bright. Some dark regions of the RPE also become brighter, but the change in
intensity of RPE was minimal compared to that of drusen, since in the RSVP images
we only considered the projection of the pixels between a narrow region using the
fitted drusen-absent RPE as baseline (as shown in Fig. 11.11).

11.2.2.4 Algorithm Evaluation

To effectively evaluate the RSVP approach to drusen segmentation, 46 3D SD-OCT
retinal images from eight patients were analyzed. Each of the 3DOCT images set was
acquired over a 6× 6mm area (corresponding to 512× 128 pixels) with a 1024-pixel
axial resolution on a commercial SD-OCT device (CirrusOCT; Carl Zeiss Meditec,
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Inc., Dublin, CA). We performed both a qualitative and quantitative evaluations on
the dataset. To perform the qualitative evaluation, we compared both the conven-
tional SVP and our RSVP images qualitatively for the 46 OCT scans in each of the
eight patients. To improve the visualization of conventional SVP images, we also
superimposed lesion markings which we derived from applying the techniques in
[36] to the images. We also produced SVP projection fundus images using Gorczyn-
ska’s method [38] and they were compared with RSVP images obtained from the
same datasets. Some of the patients also had color fundus photographs (CFP), which
served as the gold standard for visualizing the retina in the qualitative assessment.
Both drusen and GA were visualized on CFP. To qualitatively assess drusen visu-
alization, we manually outlined the drusen and GA lesions in the CFP, SVP and
RSVP of these patients. We are only displaying the qualitative results of four scans
from four different patients of the total set of 46 SD-OCT scans evaluated, due to the
chapter length limitations. These displayed four scans are a representative example
of the results obtained throughout the whole dataset.

To quantitatively assess drusen visualization in SVP and RSVP images, 4 scans
from three patients were reviewed by two expert OCT readers independently. Each
independent reader marked drusen in the OCT B-scans by hand as previously
described [37]. Then, each reader independently marked every image two times
in two different sessions to enable assessment of intra-reader variation.

The gold standard for our quantitative evaluation was obtained by collapsing the
white bars along the depth axis to produce an en face drusen location map (known
as a “marking image”). For each of the image scan, the two drusen marking images
made per scan by each reader were combined using their intersection to produce a
single outline per reader per image:

R � R1 ∩ R2 (11.1)

where R1 and R2 are the drusen marking images of the same scan, that are made at
two different sessions by each reader. The combined reader results were produced
by the same interpolation operation between the two reader segmentations for each
drusen outline. We also outlined the drusen by hand in the corresponding SVP and
RSVP images by each reader, as shown in Fig. 11.14. Then, the outlines produced
by SVP and RSVP were then compared quantitatively to the images marked by the
readers (the gold standard). In addition, the boundaries of drusen are very blurry in
SVP and RSVP images, making the outlines not precise. Therefore, instead of pixel
by pixel classification, we used an overlap ratio of the number of visualized drusen
as the metric to quantitatively evaluate drusen visualization in each technique:

overlap_ratio � #co_drusen

#mark_drusen
(11.2)

where ‘# co_drusen’ denotes the number of drusen outlined both in the gold standard
marked image and in the SVP or RSVP images in which outlined areas intersect
(depending which technique we were evaluating), and ‘#mark_drusen’ denotes the
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number of drusen in the gold standard-marked image. This metric calculated the
accuracy of each technique in identifying drusen present in the cube: if most of the
drusen outlined in the gold standard marked images could also be visualized in the
en face image, the overlap ratio would be closer to 1. However, as more drusen are
“missed” in the en face images, this overlap ratio approached 0.

11.2.2.5 Results

Figure 11.12shows the SVP fundus image obtained from the same scan with an
overlay of white markings derived based on other published methods [37].

For every portion of the RPE that is not visualized in an OCT scan, a low
pixel intensity was used to fill the incomplete information in the RPE-based fun-
dus image. As a result, these areas appeared dark on the RSVP image. Figure 11.13
shows a comparison of the OCT image projection methods. Figure 11.13a and b are
projection results with the conventional SVP and the RSVP method, respectively.
Figure 11.13c–f are projection fundus images obtained by processing the OCT data
with Gorczynska’s method [38], which correspond to four levels at different anatom-
ical layers: outer nuclear layer, photoreceptor outer segment, RPE, and choroid,
respectively. Figure 11.13g–i show three B-scans corresponding to the dashed red,
blue and yellow lines in the fundus images, respectively. The dark shadow region
marked with red triangle (Fig. 11.13g) corresponds to the retinal vessel in the fundus
images (Fig. 11.13a–f).

The image contrast of the vessel seen in Fig. 11.13b, was higher than that in
Fig. 11.13a. The green and blue triangles show drusen with high and low reflectivity.

Fig. 11.12 The SVP fundus image (A) with an overlay of white marking drusen (B) obtained from
the method suggested by Stopa et al. [62]
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�Fig. 11.13 Comparison of OCT retinal image projections. SVP fundus image (a). RSVP image (b).
Projection fundus images (c, d, e, f) using Gorczynska’s method [38] which are the outer nuclear
layer level, photoreceptor outer segment level, RPE level, and choroid level, respectively. g, h, and
i are three B-scans corresponding to the red, blue and yellow lines in the projection images (a–f).
The red triangle shows a blood vessel in corresponding images and the green and blue triangles
show drusen with high and low reflectivity, respectively

It can be seen that both drusen can be more clearly identified in the RSVP image
than in any other individual image.

Figure 11.14 shows drusen boundaries manually outlined by referring to B-scans.
Figure 11.14g-i show three B-scans corresponding to the red, blue and yellow lines
in Fig. 11.37d–f, respectively. Drusen and GA were easily differentiated in B-scans.
The blue and green outlines represent the larger drusen and GA, respectively. Red,
blue and yellow triangles delineate corresponding locations of GA in the CFP (14D),
SVP (14E), RSVP (14F), and B-scan images (14G-I). GA extent can be identified in
the SVP image (14E). However, drusen appear more difficult to visualize with SVP.
From Fig. 11.14, it can be observed that nearly all drusen that were outlined on the
CFP were also observed in the RSVP image.

For reader 1 and 2, the mean intra-reader overlap ratio measured between two
segmentation sessions of the B-scans were 67.04 and 90.88%. While the mean inter-
reader overlap ratio measured between the B-scan segmentations of two different
readers was 65.14%. Table 11.1 shows the drusen overlap ratio for a method (SVP or
RSVP) and the gold standard (B-scan segmentation) in four OCT scans from three
different patients. The overlap ratio is evidently higher for RSVP than with SVP.
Most of the drusen were not effectively visualized with SVP images; as such, they
were completely absent in scans 3 and 4. Most of the drusen were clearly visible in
the RSVP images. The “Readers 1 and 2” column corresponds to the evaluation of
the combined segmentations of both readers.

11.2.2.6 Discussion

The ability of RSVP images and their quality to visualize retinal drusenwere superior
to those known conventional SVP images. More so, GA is not visualized with the
RSVP method because GA occurs beneath the RPE layers and is not included in the
projection images, thereby eliminating a confounding factor for visualizing drusen
that is present in conventional SVP images. The RSVP method also gives more
accurate characterization of drusen thickness than the color marking method [37]
that only defines the location of drusen. The conventional SVP was not able to
adequately visualize drusen, but the Gorczynska’s method [38] was able to display
drusen in fundus images. Hence, drusen were divided up into several fundus images
at different anatomic levels. The RSVP method enhanced the visualization of drusen
by utilizing a comprehensive single image. In addition, blood vessel visualization
was also more effective with the RSVP method because the projected region was
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Fig. 11.14 Drusen outlines on CFP (a, d), SVP (b, e) and RSVP (c, f). Blue lines demarcate drusen
and green lines outline GA. Three B-scans (g–i) correspond to the three lines in (d–f). Red, blue
and yellow triangles delineate corresponding locations of GA in the CFP (d), SVP (e), RSVP (f),
and B-scan images (g–i)

restricted to the narrow RPE neighborhood, reducing the effects of noise and the
RNFL.
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Also the RSVP method was efficient for different types and morphologies of
drusen. Due to the pixel filling step in the RSVPmethod, drusen with low or medium
reflectivity (such as the drusen marked with the blue triangle in Fig. 11.13), was able
to be visualized. The dark-region filling step had less influence on the visibility on
drusen with high reflectivity (such as the drusen marked with the green triangle in
Fig. 11.13 in the RSVP images since they were already highly visible by virtue of
their inherent pixel brightness and high reflectivity. Alternatively, all of the drusen
present were able to be visualized in a single RSVP image, thereby allowing for
easier identification of drusen. Some related work has been done in producing a
“slab” SVP of the retina to improve visualization of drusen (Cirrus SD-OCT, Carl
Zeiss Meditec, Inc, Software version 6.0.1) which is similar with the Georczynska’s
method [43]. To our knowledge there have been no articles on this method published
in the peer-reviewed literature; however, based on our understanding of the method
in the Cirrus system, the RSVP method is different, new and novel in that (1) it is
fully automated (the Cirrus software requires input from the operator to specify the
“slab” to be processed), (2) the “slab” method includes the retina from the RNFL
to the RPE, whereas the RSVP method includes a highly restricted volume of the
OCT scan in proximity to the RPE where drusen reside; thus, one expects that
drusen visualization in the RSVP approach will be degraded less than with the “slab”
method, and (3) the RSVP method incorporates image processing to enhance the
conspicuity of drusen by filling in the dark regions within drusen with bright pixels.
With respect to the qualitative and quantitative analysis above, the RSVP method is
more effective for drusen visualization than the SVP method, and more convenient
than themanualmarkingmethod [37] and the selective depth levelmethod [38]which
can be important for ophthalmologists to directly and rapidly assess the macula of
patients with non-exudative age-related macular degeneration. Our future work will
be to undertake a comparison of the RSVP method to the manual “slab” method.

Some of the limitations of the present studywill be discuss below. Because the fill-
ing of the dark region beneath drusen and extraction of theRPE layer and are based on
automatic algorithms, errorsmay occur in theRPE-based fundus image. For instance,
the red circled regions in Fig. 11.36 show areas which are not actual drusen, but rather
areas caused by the incorrect extraction of the RPE layer. Till now, these errors are
minimized or constitute to no affect on drusen visualization. Another limitation is
that filling the region under drusen with bright pixels may inadvertently fill (and
therefore obscure) small, focal pigment epithelial detachments (PEDs), incorrectly
characterizing them as drusen. Although this did not occur during this research, the
automated algorithm used will be modified in future work to recognize the relatively
dark areas under PEDs (as opposed to brighter areas contained in drusen) and exclude
such regions from the filling-in process, thereby avoiding this potential problem. The
last limitation was that the overlap ratio with the gold standard was imperfect, being
derived from two readers. An accurate gold standard would be based on histological
slides, which would be very difficult to obtain. More so, the quantity of scans and
readers we included in our quantitative evaluation was relatively small. Since each
reader needed to review many individual B-scans for drusen in each case, it would
have been too labor intensive and time consuming to manually segment many cases.
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As such, with the high differences in overlap radio were so great between SVP and
RSVP (as opposed to the inter-reader difference), the RSVP method was concluded
to be superior when compared to conventional SVP.

In conclusion, we developed a new method to improve visualization of drusen on
an RPE-based projection of 3D OCT retinal images. This method uses automated
RPE segmentation, drusen segmentation, and image post-processing to enhance the
conspicuity of drusen on the projection image and to minimize the amount of extra-
neous retinal tissue contributing to the projection. Using quantitative evaluation anal-
ysis, by comparing RSVP and conventional SVP images against a gold standard, the
RSVP method was evidently more effective for drusen visualization, which may be
useful to ophthalmologists in directly and rapidly assessing the macula of patients
who have non-exudative age-related macular degeneration.

11.3 Geographic Atrophy Segmentation and Visualization

Several semi-automatic and automatic GA segmentation methods [45, 46] have been
proposed for FAF images. A region-growing method was proposed by Deckert [47],
where separate GA regions needed to be manually seeded to be included in the seg-
mentation. Lee [48] adopted a level set model, and proposed a hybrid approach by
identifying hypo-fluorescence GA regions from other interfering vessel structures in
the FAF images [49] and an interactive segmentation approach by using thewatershed
transform algorithm [50]. Sayegh [51] evaluated SD-OCT for grading GA compared
with FAF images, and concluded that SD-OCT is an appropriate imaging modality
for evaluating the extent of GA lesions. Chiu [52] used graph theory and dynamic
programming to segment retina layers in eyes with GA and drusen. Schütze [53]
suggests that the current available automated segmentation methods are limited in
their ability to accurately assess retinal layer thickness and are thus not accurate in
detecting GA. At present, if quantitative assessment of GA in SD-OCT images is
desired, it needs to be performed by an expert who manually circumscribes the GA
lesions in the B-scan images (the primary output from an SD-OCT device, compris-
ing 2D contiguous slices through a volumetric cube of the retina), and subsequently
projecting the segmentations onto an en face image to show the extent of GA across
the retinal surface—a similar view to that seen in FAF images. Each SD-OCT volu-
metric image dataset generally contains 128 or 200 B-scan images (for CirrusOCT
(Carl Zeiss Meditec, Inc., Dublin, CA)). Since this manual circumscription of GA
lesions in the B-scans is very time-consuming, it is not routinely performed in clinical
practice. Other methods are also proposed recently by researchers [54–56].

This section presents twonovelGAsegmentation and twovisualization algorithms
for SD-OCT images, namely; (a) Semi-automatic geographic atrophy segmentation
for SD-OCT images [57], (b) Automated GA segmentation for SD-OCT images
using CVLSF model [58], (c) Restricted summed-area projection for geographic
atrophy visualization in SD-OCT images [59] and (d) A false color fusion strategy
for drusen and GA visualization in OCT images [60].
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Fig. 11.15 Flowchart of the proposed algorithm

11.3.1 Semi-automatic Geographic Atrophy Segmentation
for SD-OCT Images

Our semi-automatic approach starts with the computation of a sub-volume of the
retina from the three-dimensional (3D) SD-OCT dataset which enhances detection
of GA (rather than simply segmenting and evaluating just the RPE). In addition,
we generate a two-dimensional (2D) en face projection of the retina from that sub-
volume, similar in appearance to FAF images, in order to visualize the extent of GA.
Finally, we segment the en face projection to quantify the extent of GA.

11.3.1.1 Overview of the Method

The flowchart of the semi-automatic algorithm is presented in Fig. 11.15, which
comprises of three steps: (1) For each B-scan, the RPE layer is segmented automat-
ically, and from this, a sub-volume of the retina in the SD-OCT cube is extracted
which facilitates generating a projection image with minimal noise where possible
GA lesions reside. This sub-volume is restricted to a region beneath the RPE layer
containing the choroid, which is the site where abnormal high reflections due to
the presence of GA and RPE thinning can be observed in OCT images. (2) An en
face GA projection image is generated from the SD-OCT image sub-volume. (3) A
geometric active contour model is adopted to segment GA detected in this projec-
tion image, and this contour is used to calculate the area (extent) of GA lesions. We
propose an active contour model as a GA segmentation tool on en face projection
images with enhanced GA visualization, which are generated from the three dimen-
sional SD-OCT sub-volume data. These planar images are constructed by projecting
those voxels contained in a restricted volume within the choroid region in the axial
direction along each A-scan.

11.3.1.2 RPE Layer Segmentation

Numerous researchers have presented several automatic retinal layers segmentation
methods in SD-OCT [42–44]. These methods are based on normal retinal layers,
and do not consider the possible presence of GA. Thus, they are not ideal for the
segmentation of the RPE layers containing GA and tend to fail when GA in present.
We adopted a simplified RPE segmentation method [34] that takes into account the
possible presence of GA. As a first step, the SD-OCT retinal images are smoothed
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with bilateral filtering [61]. The location of the retinal nerve fiber layer (RNFL)
is estimated by detecting the upper vitreous region. The purpose of detecting the
RNFL layer is to facilitate segmenting the RPE layer. The reflectivity of the vitreous
region is usually similar throughout the B-scans in an OCT cube, and thus a constant
threshold can be used to extract this background region, which helps identify the
contour of the surface of the RNFL. The bottom boundary of the vitreous region
is taken as the location of the inner limiting membrane and inner boundary of the
RNFL layer.

RPE layer can be identified in SD-OCT retinal images by its bright pixel values,
as shown in Fig. 11.16. Thus, intensity-based methods can be useful to extract it. In
addition, the healthy RPE has an approximately constant thickness (20 µm). Based
on this information and the histogram statistics of the image pixels underneath the
segmented RNFL (outside vitreous region), a threshold can be determined, which
separates the bright RPE region from the darker background to produce a binary
image forming an initial RPE estimation. A narrow band with a radius 20µm (deter-
mined by approximatemean RPE thickness) is generated and the regions in the initial
estimation not connected with this band are later removed. The RPE layer segmen-
tation is then further refined by removing small selected regions (regions containing
less than 150 pixels). To ensure that the RPE is a continuous linear structure, missing
pixels between selected regions are also interpolated. Finally, the middle axis of the
resulting RPE segmentation is computed for each A-scan (i.e., the individual axial
lines forming a B-scan) which produces the final RPE segmentation. Further details
are explained in [57].

Fig. 11.16 a and c: SVP and RSVP projection for visualizing GA lesions. The red lines correspond
to the cross section of retina visualized in the B-scan shown (b). The top boundary and the lower
boundary of the projection sub-volume are marked with two parallel yellow dash lines in (b)
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11.3.1.3 Generation of GA Projection Image

A common method for creating a 2D projection from SD-OCT volumetric datasets
is the summed-voxel projection (SVP) [36], in which all the voxel values in the 3D
data are summed along the axial A-scan lines in the B-scans, producing an image
showing the retinal surface en face, similar to color fundus photographs (CFPs) and
FAF images.However, the en face SVP fundus image is not ideal forGAvisualization
due to the confounding influence of highly reflective retinal layers above and below
GA lesions in the retina (in particular the RNFL and RPE layers) which obscure GA
lesions. The commercial software on the Cirrus HD-OCT (version 6.0) provides a
sub-RPE slab function [62]. The sub-RPE slab is formed by axially projecting only
the OCT image data from a region below the contour of the RPE fit. Our projection
method, which is also derived by restricting the sum of the voxel values to the sub-
volume beneath the segmented RPE layer, where the choroid resides and where the
high reflections indicating GA will be seen, improves the traditional SVP image
in terms of GA visualization. The lower boundary of the sub-volume is parallel to
the top boundary (RPE layer), where the parallel distance is equal to the minimum
distance between the end of the cube and the segmented RPE layer. The average
intensity of the sub-volume in the axial direction is taken as the intensity value of the
GA projection image. We call this the restricted summed-voxel projection (RSVP).

Figure 11.16 shows an example, comparing the traditional SVP projection [36]
and the RSVP projection in a patient with GA. Figure 11.3 shows that the contrast
of GA in the RSVP image is higher than in the SVP image, which can improve the
performance of a computerized GA segmentation method. On the other hand, this
process can introduce aberrant bright signals (e.g., the bright spots near the upper
blood vessels in Fig. 11.16), caused by an inaccurate RPE layer segmentation. In
practice, this did not negatively impact our results (see the evaluation of our GA
segmentation method below).

11.3.1.4 GA Segmentation Based on Geometric Active Contour Model

For derivation of the shape and size of GA lesions, we used geometric active contour
model for the segmentation of the GA lesions on the RSVP images. These images
were denoised using bilateral filtering [45] as a preliminary step to reduce the influ-
ence of noise on the segmentations. Geometric active contour (GAC) models were
simultaneously proposed by Caselles [63] and by Malladi [64], introduced as an
alternative to parametric deformable models and as a way to overcome their limita-
tions. GAC models are based on the theory of curve evolution and geometric flows,
and implemented using the level-sets based numerical algorithm. The basic idea of
these models is to transform a planar curve movement track into a three-dimensional
curved surface movement track, which has the advantage of being able to handle the
change of topological structure easily. During the evolution of traditional level set
methods, re-initialization is necessary to keep the evolving level set function close to
a signed distance function. In order to eliminate the need of the costly re-initialization
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procedure, Li [65] presented a new formulation that forces the level set function to
be close to a signed distance function. The formulation proposed is:

E(φ) � μP(φ) + Em(φ), (11.3)

where

P(φ) � 1

2

∫
Ω

(|∇φ| − 1)2dxdy. (11.4)

For full detail of our approach see [58].

11.3.1.5 Qualitative Evaluation

The first dataset consisted of 55 longitudinal SD-OCT cube scans from twelve eyes
in eight patients with GA (acquired with the CirrusOCT device, Carl Zeiss Meditec,
Inc., Dublin, CA.). Each cube consisted of 512 × 128 × 1024 voxels corresponding
to a 6 × 6 × 2 mm3 volume centered at the macular region of the retina in the
lateral, azimuthal and axial directions, respectively). The second dataset consisted
in 56 SD-OCT cube scans from 56 eyes in 56 patients with GA (acquired with the
CirrusOCT device). Each cube consisted of 200× 200× 1024 voxels corresponding
to a 6× 6× 2 mm3 volume centered at the macular region of the retina in the lateral,
azimuthal and axial directions, respectively). Figures 11.17 and 11.18 show the GA
segmentation results for two different patients with GA from the first dataset who
had multiple SD-OCT studies over the course of their disease.

11.3.1.6 Quantitative Evaluation: Our Method Versus Expert Graders

We evaluated the variability observed in the GA segmentations by different graders
(inter-observer agreement) and by the same grader at different sessions (intra-
observer agreement) in the SD-OCT RSVP images using the first scan dataset.
Figure 11.16 indicates that the contrast for the visualization of GA in RSVP images
is better than that in SVP images. The results from this evaluation are summarized
in Table 11.5, where A1 represents the segmentations of the first grader in the first
session, A2 is first grader in the second session, B1 is the second grader in the first
session and B2 is the second grader in the second session.

11.3.1.7 Conclusions

This section presents a semi-automated segmentation algorithm for GA in SD-OCT
images. A projection image constructed from a sub-volume of the retina beneath the
RPE which shows the GA abnormalities most clearly appears to improve the visu-
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Fig. 11.17 GA segmentation results on RSVP images for the right eye of an 88 year old female
patient. The imaging dates of a–f are 3/14/2008, 9/26/2008, 4/3/2009, 2/17/2010, 6/16/2010,
12/8/2010, respectively

Table 11.5 Within-expert and between-expert correlation coefficients (cc), pairedU-test p-values,
absolute GA area differences and overlap ratio evaluation between the manual segmentations

Methods
compared

Number of
eyes/cubes

cc p-value
(U-test)

AAD [mm2]
(mean, std)

AAD [%]
(mean, std)

OR[%]
(mean, std)

Expert
A1—Expert
A2

8/55 0.998 0.658 0.239 ±0.210 3.70 ± 2.97 93.29 ± 3.02

Expert
B1—Expert
B2

8/55 0.996 0.756 0.243 ±0.412 3.34 ± 5.37 93.06 ± 5.79

ExpertA1&2
—ExpertB1&2

8/110 0.995 0.522 0.314 ±0.466 4.68 ± 5.70 91.28 ± 6.04

alization of GA lesions. A study of the variability in segmentations between experts
and within the same expert at different sessions suggests that these projection images
provide a robust visualization of GA. An edge-based geometric active contour model
was adopted to segment GA on the resulting RSVP projection images. Qualitative
and quantitative experimental results indicate that the algorithm shows promising
results when compared to expert segmentations in the patient datasets studied and
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Fig. 11.18 GA segmentation results on RSVP images for the right eye of a 76 year old female
patient. The imaging dates of a–j are 8/21/2008, 1/6/2010, 4/7/2010, 7/13/2010, 8/17/2010,
9/14/2010, 10/12/2010, 11/15/2010, 12/20/2010, 1/24/2011, respectively
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that the method may be effective for the GA segmentation in SD-OCT images. This
segmentation algorithm can also be used to extract and assess GA quantitative fea-
tures in longitudinal OCT studies, such as the area and extent of GA. A performance
comparison of our algorithm with a commercially-available GA segmentation soft-
ware program suggests that our algorithm provides more accurate GA segmentations
than the commercial software.

11.3.2 Automated Geographic Atrophy Segmentation
for SD-OCT Images Using Region-Based C-V Model
via Local Similarity Factor

11.3.2.1 Methods

We have developed a fully automated pipeline for GA segmentation, as shown in
Fig. 11.19. The data input comprises the series of SD-OCT scan data. The axial loca-
tion of the layered structure in the SD-OCT scans is estimated using an intra-retinal
segmentation algorithm [66], the results of which are used to generate topographic
GA projection images [57]. We segment the coarse GA regions using an iterative
segmentation method and then fill the missing regions with a set of GA candidate
regions, extracted from an intensity profile set recorded at each horizontal location
in each B-scan image. These results are then taken as the initialization for a modified
region-based Chan-Vese (C-V) [67] method with local similarity factor (CVLSF),
built to further identify and refine GA regions.

Automated initialization

SD-OCT 
scan data

SD-OCT 
layer seg-
mentation

GA projection
image genera-
tion

Iterative 
segmenta-
tion

Refinement 
using CVLSF
model

Final GA
segmenta-
tion

Maximum inten-
sity signal calcu-
lation

GA candi-
date re-
gions ex-
traction

Fig. 11.19 The pipeline of the proposed automatic GA segmentation method
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11.3.2.2 Iterative GA Segmentation

Considering the intensity inhomogeneity and high noise level typically present in GA
projection images (shown inFig. 11.20a and b), conventional thresholding techniques
[68, 69] would produce masks that are too coarse to be considered as an adequate
initialization for the subsequent CVLSF model, because they frequently exclude
large portions of GA regions that cause convergence into local minima during the
refinement step. An alternative iterative threshold method based on global image
information is proposed here to coarsely segment GA regions from the projection
image. This iterative threshold is computed considering a restricted region within
the image that gets updated during subsequent iterations, and is set to decrease and
converge to a certain value (see later experimental results and analysis section).

(a)
(b)

(c)  (d) (e) 

Restricted region 
(NR2) 

Fig. 11.20 a GA projection image with GA contour generated by manual segmentation. b His-
togram of GA region and background and the threshold using OTSU method over the whole pro-
jection image. c Segmentation result obtained by OSTU method in the first iteration. d Histogram
of the whole image where the mean value of the foreground region resulting from the first iteration
and the values corresponding to the restricted region for the second iteration are indicated. e Final
result for the coarse GA segmentation
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11.3.2.3 GA Candidate Region Extraction

The coarsely segmented GA regions obtained in the previous iterative step, are still
insufficient to be considered as an initialization outline for the CVLSF method.
Isolated low-intensity false negative regions within correctly detected GA regions
and extensive false positive regions (as can be observed in Fig. 11.20e) tend to
cause “leakage” (segmentation expansion to neighboring structures) in Chan Vese
methods, yielding sub-optimal results. A GA candidate region extraction refinement
is considered here with the goal of further including isolated background regions and
excluding false positive locations in the CVLSF model initialization outline.

11.3.2.4 Segmentation of GA Regions Based in an Improved C-V
Model via Local Similarity Factor

The results obtained after the coarse segmentation refinement are taken as an initial-
ization for an improved region-based C-V model [67] with a local similarity factor
(CVLSF), which is introduced here to suppress noise influence, while guaranteeing
detail preservation in the segmentation results. The objective function for partition-
ing an image I (x, y) ∈ � into two regions (GA region and background) is defined
as:

E(c1, c2,C) � λ1

¨

in(C)

(
|I (x, y) − c1|2 + LSF1(x, y)

)
dxdy

+ λ2

¨

out(C)

(
|I (x, y) − c2|2 + LSF2(x, y)

)
dxdy + μLength(C) (11.5)

where μ ≥ 0 is fixed constant parameter, and λ1 > 0, λ2 > 0 control the contri-
butions of the internal energy and external energy terms, respectively, where object
regions taken as internal term are the inside of the contour C (in(C)) and background
regions considered as external term are the outside of C (out(C)). Using the level set
definition [70] to represent C, that is, C is the zero level set of a level set function
�(x, y), we can rewrite this objective function as:

E(c1, c2,�(x, y)) � λ1

¨

�

(|I (x, y) − c1|2H(�(x, y))

+LSF1(x, y)H(�(x, y)))dxdy

+ λ2

¨

�

(|I (x, y) − c2|2(1 − H(�(x, y)))

+LSF2(x, y)(1 − H(�(x, y))))dxdy

+ μ

¨

�

δ(�(x, y))|∇�(x, y)|dxdy (11.6)
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where H(�(x, y)) and δ(�(x, y)) areHeaviside function andDirac function, respec-
tively, which are generally defined as:

Hε(z) � 1

2

(
1 +

2

π
arctan

z

ε

)
and δε(z) � 1

π

ε

ε2 + z2
, z ∈ R. (11.7)

If we keep �(x, y) fixed and minimize the energy function (11.6) with respect to
the constants c1 and c2

⎧⎪⎪⎨
⎪⎪⎩
c1(�(x, y)) �

˜
�
I (x,y)H(�(x,y))dxdy˜

�
H(�(x,y))dxdy

c2(�(x, y)) �
˜

�
I (x,y)(1−H(�(x,y)))dxdy˜

�
(1−H(�(x,y)))dxdy

(11.8)

The local similarity factor is then defined as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

LSF1(x, y) � ∑
(i, j)∈N(x,y)

|I (i, j)−c1|2
d(x,y),(i, j)

LSF2(x, y) � ∑
(i, j)∈N(x,y)

|I (i, j)−c2|2
d(x,y),(i, j)

(11.9)

where N(x,y) represents a neighborhood defined around the central pixel (x, y) (in
our experiments defined as a 5 × 5 pixel window) and d(x,y),(i, j) is the Euclidean
distance between pixels located at (x, y) and (i, j).

Minimizing the energy function (11.4) with respect to �(x, y), we obtain the
corresponding variational level set formulation as follows:

∂�(x, y)

∂t
� δ(�(x, y))

⎛
⎜⎝

λ2|I (x, y) − c2|2 − λ1|I (x, y) − c1|2

+ λ2LSF2(x, y) − λ1LSF1(x, y) + μ∇
( ∇�(x, y)

‖∇�(x, y)‖2

)
⎞
⎟⎠.

(11.10)

The data term in the CVLSF model (Eq. 11.10) is similar to the traditional C-V
model [67], differing by the introduction of the local similarity factor LSF. For full
detail, see [58].

11.3.2.5 Evaluation of GA Segmentation

Figure 11.21 displays several exampleswithGA regions of different size in the testing
dataset, where red outlines indicate the segmentation results for the CVLSF model.
These examples show cases with different intensity in-homogeneity and complexity,
in which accurate GA segmentation is a difficult challenge. We can observe that the
outlines produced by the method presented here were relatively precise, given the
difficulty of the task.
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Figure 11.22, displays example collected manual outlines in examples from the
first test dataset (as indicted in Sect. 2.5) with outlines made by the two readers at the
two repeated sessions indicated with different colors. The intra-observer and inter-
observer differences can be visualized. The quantitative results in inter-observer
and intra-observer agreement evaluation for this first dataset are summarized in
Table 11.6, where Ai (i � 1, 2) represents the segmentations of the first grader
in the i-th session, and Bi (i � 1, 2) represents the segmentations of the second
grader in the i-th session. Inter-observer differences were computed by considering
the union of both sessions for each grader: A1&2 and B1&2 represent the first and sec-
ond grader, respectively. The intra-observer and inter-observer comparison showed
very high correlations coefficients (cc) andU-test p-values, indicating very high lin-
ear correlation and no statistical differences both between different readers and for
the same reader at different sessions. The overlap ratios (all > 90%) and the absolute
GA area differences (all < 5%) indicate very high inter-observer and intra-observer
agreement, highlighting that the measurement and quantification of GA regions in
the generated projection images seem effective and feasible.

We evaluated the performance of the proposed segmentation algorithm in the first
dataset by comparing its results to the manual segmentation gold standard and to the
previously published QC’s method. The results obtained for four example cases are
shown in Fig. 11.23. We can observe that for these cases, the GA outlines obtained
by QC’s method slightly deviate from the gold standard boundary (expert average),
whereas the segmentation results obtained by our method seem closer to such gold

Fig. 11.21 Examples displaying the automatically segmented GA regions in SD-OCT projection
images
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Fig. 11.22 Manual segmentation examples by two different experts and at two different sessions
outlined in RSVP projection images. The region of interest outlined in orange in each RSVP
projection image is also shown zoomed in for larger detail. The color label for each observer and
session outline is indicated in the legend in the bottom right

Table 11.6 Intra-observer and inter-observer correlation coefficients (cc), paired U-test p-values,
absolute GA area differences (AAD) and overlap ratio (OR) evaluation

Methods
compared

Patients
/cubes

cc p-value
(U-test)

AAD [mm2]
(mean, std)

AAD [%]
(mean, std)

OR[%]
(mean, std)

Expert
A1—Expert
A2

8/55 0.998 0.658 0.239 ± 0.210 3.70 ± 2.97 93.29 ±3.02

Expert
B1—Expert
B2

8/55 0.996 0.756 0.243 ± 0.412 3.34 ± 5.37 93.06 ±5.79

ExpertA1&2
—ExpertB1&2

8/55 0.995 0.522 0.314 ± 0.466 4.68 ± 5.70 91.28 ±6.04

standard. Table 11.7 summarizes the results of the quantitative comparison between
our algorithmproposed here andmanual gold standard (average expert segmentation)
and between the previous QC’s method and gold standard. The values obtained
by our algorithm are displayed in the table in bold face and between parentheses.
We also compared the differences of each method to each of the manual readers
and sessions independently. Overall, our method presented higher similitudes to the
manual gold standard than QC’s method, presenting higher correlation coefficients
(0.979 vs. 0.97), lower absolute area differences (12.95 vs. 27.17%), and higher
overlap ratio (81.86 vs. 72.6%). Lower area differences indicate the area estimated
by our method seems closer to the values measured by hand by an average reader
than when estimated by the previous method, which would translate into a more
accurate GA characterization. The differences observed between our method and the
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Fig. 11.23 Segmentation results using the proposed method, QC’s method and average expert
segmentation (considered as manual gold standard). The cases shown are the same as in Fig. 11.22
for direct comparison. The region of interest outlined in orange in each RSVP projection image is
also shown zoomed in for larger detail. The color label for each segmentation method is indicated
in the legend in the bottom right

manual gold standard was also very similar to those between our method and each
of the independent readers. These differences were higher than the inter-observer
and intra-observer differences shown in Table 11.6, but they were within the same
ranges. In fact, the pairedU-test inmeasuredGA area differences between automated
method and each of the manual segmentations was not significant (all with p-value
> 0.05), while it was significant for differences between QC’s method and manual
segmentations (all with p-value < 0.05). This indicates the results produced by our
method seem more similar to manual outlines than QC’s method. In conclusion,
our algorithm showed better segmentation performance than QC’s method when
compared to the manual segmentation.

A set of example results in the second dataset evaluated is shown in Fig. 11.24,
where the outlines generated by manual segmentation, commercial software, QC’s
method, and our method are displayed. We can observe that our method produced
results that were similar to the manual outlines, correcting limitations observed in
prior methods. Table 11.8 summarizes the quantitative evaluation in this second
dataset, comparing each segmentation method (our method presented here, QC’s
method, and the commercial software) to the manual outlines drawn in FAF images.
The correlation coefficients between areas measured using different methods were
very high, and allU-test p-values testing for differences in areameasurements showed
no statistical significance (p-value > 0.05). The overlap ratio was the highest (70%)
between our method and the manual segmentation in FAF images, while it was
lower than in the previous data set (Table 11.7), most probably due to the intrinsic
differences between SD-OCT and FAF images and possible bias introduced by the
registration process. Surprisingly, the differences in AAD between our algorithm
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Table 11.7 Quantitative comparison of our algorithm segmentation results (shown in boldface and
between parenthesis) andQC’smethod results tomanual gold standard (Avg. Expert) and individual
reader segmentation

QC’s
(OurSeg.)
versus Avg.
Expert

QC’s
(OurSeg.)
versus Expert
A1

QC’s
(OurSeg.)
versus Expert
A2

QC’s
(OurSeg.)
versus Expert
B1

QC’s
(OurSeg.)
versus Expert
B2

Patients/cubes 8/55 8/55 8/55 8/55 8/55

cc 0.970 (0.979) 0.967 (0.975) 0.964 (0.976) 0.968 (0.976) 0.977 (0.975)

p-value
(U-test)

0.026 (0.221) 0.047 (0.389) 0.024 (0.201) 0.017 (0.138) 0.022 (0.191)

AAD [mm2] 1.438 ± 1.26 1.308 ± 1.28 1.404 ± 1.31 1.597 ± 1.33 1.465 ± 1.14

(0.811
± 0.94)

(0.758
± 0.99)

(0.853
± 1.04)

(0.984
± 1.08)

(0.897
± 1.05)

AAD [%] 27.17 ± 22.06 25.23 ± 22.71 26.14 ± 21.48 29.21 ± 22.17 27.62 ± 20.57

(12.95
± 11.83)

(12.62
± 12.86)

(13.32
± 12.74)

(14.91
± 12.65)

(14.07
± 11.78)

OR [%] 72.60 ± 15.35 73.26 ± 15.61 73.12 ± 15.15 71.16 ± 15.42 72.09 ± 14.82

(81.86
± 12.01)

(81.42
± 12.12)

(81.61
± 12.29)

(80.05
± 13.05)

(80.65
± 12.51)

Fig. 11.24 Comparison of outlines generated bymanual segmentation, commercial software, QC’s
method and our method presented here in three GA patients form the second dataset. The color
employed for each outline is indicated in the legend on top of the images

and manual segmentations (1.215 ± 1.58 mm2) are slightly higher than between
QC’s method and manual segmentation (0.951 ± 1.28mm2), but both were in the
same ranges. The higher overlap ratio with the manual markings observed for our
method, but also slightly higher AAD as compared to QC’s method, may be due
to QC’s method producing slight regions or both over- and under-estimation of GA
regions, while themethod presented here had overall higher similitudes to themanual
outlines.
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Table 11.8 Correlation coefficients (cc), paired p-values U-test, absolute differences and overlap
ratio in areas of GA between our segmentation method (Our Seg.), QC’s method, commercial
software segmentation (Com. Sw. Seg.), and expert segmentationsmanually outlined in FAF images
(FAF)

Methods
compared

Patients
/cubes

cc p-value
(U-test)

AAD [mm2]
(mean, std)

AAD [%]
(mean, std)

OR [%]
(mean, std)

QC’s
Seg.—FAF

56/56 0.955 0.524 0.951 ± 1.28 19.68 ± 22.75 65.88 ± 18.38

Our Seg.—
FAF

56/56 0.937 0.261 1.215 ± 1.58 22.96 ± 21.74 70.00 ± 15.63

Com.Sw.
Seg.—FAF

56/56 0.807 0.140 1.796 ± 2.51 34.13 ± 38.62 62.40 ± 21.16

11.3.2.6 Discussion

We have presented a novel automated GA region segmentation method in SD-OCT
images. As summarized in Table 11.7, our method demonstrated very high accu-
racy when compared to a manual gold standard generated by two different readers
and repeated at two separated sessions (mean OR � 81.86% ± 12.01%; AAD �
0.811 ± 0.94 mm2; cc � 0.979; U-test p-value � 0.221), and also higher than
another known semi-automated technique [57]. Ourmethod also showed good agree-
ment with manual segmentations drawn in FAF images and later registered to the
OCT image domain, presenting higher overlap than for particular commercial soft-
ware and the prior semi-automated technique (Table 11.8). The example images
shown in Figs. 11.23 and 11.24 corroborate these findings, highlighting the simili-
tudes between our proposed segmentation method and manually drawn outlines. We
anticipate that the robust results produced by our method may aid the automated
characterization of GA area, extent, and location, providing a quantitative, objec-
tive and reliable approach to measure and track GA expansion and progression of
advanced non-exudative age-related macular degeneration (AMD).

Themaindifficulties in automatedGAsegmentation inSD-OCT images is the high
noise level and variability, as image quality and noise characteristics vary throughout
images acquired using machines from the same vendor and even more so across
different vendors. A key aspect of our work to overcome this difficulty is the design
of an improvedChan-Vesemethod considering a local similarity factor (CVLSF).The
level-set nature of the method allows the algorithm to handle change of topological
structure and irregular shapes easily. The introduced local similarity factor (LSF),
balancing similarities observed by the spatial distance and gray level differences
within a local window, presents properties that allows the results to be less sensitive
to noise of higher intensity and of different characteristics.
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11.3.2.7 Conclusions

This section presents a novel algorithm for automated GA segmentation in SD-OCT
images to enable robust, accurate, and objective quantitative measurements of GA
extent and location automatically. The proposed method combines a region-based C-
V model with a local similarity factor in projection images of a choroid sub-volume.
This technique seems more robust to presence of noise, while preserving image
detail. Quantitative experimental results demonstrate that the algorithm shows good
agreement when compared to manual segmentation by different experts at different
sessions and to a consensus manual gold standard, resulting in higher agreement
than with a previously known semi-automated method and a commercially-available
software package. The proposed algorithm may be clinically useful in providing
relatively reliable GA quantitative data that may improve tracking of GA extent,
location and expansion in patients diagnosed with advanced non-exudative AMD.

11.3.3 Restricted Summed-Area Projection for Geographic
Atrophy Visualization in SD-OCT Images

The main principle of the existing fundus projection GA visualization techniques
generated from SD-OCT images lies in the identification of the typical choroidal
brightening that appears in the regions affected by GA. However, the many blood
vessels in the choroid, which normally manifest in low reflection values, decrease
the contrast and distinction of macular regions affected by GA. As an example,
Fig. 11.25 shows the choroidal vasculature influence on GA visualization, where
Fig. 11.25a and b are the SVP and Sub-RPE Slab projection images generated from
one 3D SD-OCT scan acquired with a Cirrus OCT (Carl Zeiss Meditec) system,
respectively.

The RPE boundaries were delineated by hand. Figure 11.25c displays the B-scan
corresponding to the yellow dashed line in Fig. 11.25a, and several structures that
can be observed in this image are manually labeled.

11.3.3.1 GA Visualization Based on RSAP

The main strategy of the RSAP technique lies in utilizing the intensity distribution
beneath the RPE layer as observed in SD-OCT images to fill the low intensity regions
produced by the presence of choroidal vessels. Vessel presence is identified by ana-
lyzing intensity profiles. An example of intensity distribution beneath the RPE in a
typical SD-OCT scan, namely the region between the two dashed green curves in
Fig. 11.25c, where GA is present is displayed in Fig. 11.26. We can observe that
the intensity distribution decreases towards the x direction (depth), and the rate of
this decrease in the GA region is typically slower than that in the normal region.
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Fig. 11.25 Choroidal
vasculature influence on GA
visualization. (a) SVP
projection image. b
Sub-RPE slab projection
image. c Example B-scan. d
Example B-scan with
structure labels. e Sub-CSI
slab projection image

BM

CSI

Choroid

Sclera

RPE

Choroidal vessel

GA

(a) (b)

(d)(c)
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Figure 11.28a and b show two intensity profiles (marked with the red curve) of the
sub-RPE region (Fig. 11.26a) in the GA and the normal regions, respectively. This
principle constitutes the basic idea of the proposed RSAP technique. The flowchart
of our technique is shown in Fig. 11.27, which comprises the following operations,
for full detail see [41]:
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Fig. 11.26 Intensity distribution analysis. a Flattened sub-RPE region. b Intensity surface of (a)

Fig. 11.27 Flowchart of the proposed technique

(1) Segmentation of BMboundary: The BM boundaries were segmented with the
automatic 3-D graph search method [44].
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(2) Flattening of sub-RPE region: An image is composed by taking the recorded
intensity values beneath the segmented BM boundary up to a maximum depth
where GA can be detected, constituting a flattened sub-RPE image. This maxi-
mumdepth is set up as an independent parameter in thiswork (depth of sub-RPE,
as explained in the later parameter evaluation). The flattened sub-RPE region is
shown in Fig. 11.26a.

(3) Finding local maximum intensity points. For each column in the flattened
sub-RPE region (A-scan location), the points with local maximum intensity
value (namely the intensity value of the point is larger than those of its two
connected points) are found, as marked with the blue circle in Fig. 11.28.

(4) Locating maximum intensity points at higher depths. The maximum inten-
sity points whose value follows a constantly decreasing function with depth (x
axis) are selected, as marked with the magenta stars in Fig. 11.28. The purpose
of this step is to ensure a constantly descendent intensity profile beneath RPE.

(5) Calculating the area below the surface constructed with the maximum
intensity points at higher depths. We interpolate the intensity profile in the
axial locations between the selected maximum intensity points at higher depths
using linear interpolation (magenta lines in Fig. 11.28), and calculate the area of
the polygon formed by this interpolation and a baseline of zero intensity (area
below the magenta lines marked in Fig. 11.28).

(6) Taking the calculated area above as the primary GA projection value at
each projection location.

(7) Using a median filter to smooth the generated GA projection image: To
alleviate the noise influence and make the final GA projection image smoother,
a simple median filter with a 3 × 3 neighborhood was used.

Figure 11.29a shows the GA projection image with the proposed RSAP tech-
nique, and Fig. 11.29b shows a detail comparison of three GA projection techniques
in regions of interest corresponding to the red dashed rectangles in Fig. 11.30a. Com-
pared with the SVP and Sub-RPE Slab projection images (Fig. 11.25a and b), the
RSAP projection image displays a higher contrast and also overcomes the influence
of the choroidal vasculature on GA visualization, as shown in Fig. 11.29b.

11.3.3.2 Results

The proposed RSAP technique was tested and compared with the SVP and Sub-
RPE Slab techniques qualitatively and quantitatively. The influence of the parameter
controlling the maximum considered depth for the sub-RPE region, mentioned ear-
lier, was first evaluated and later fixed for all 99 test images. Figure 11.30 shows
the GA separability for different depths of sub-RPE regions in one SD-OCT image,
where the depth was varied from 100 to 300 pixels (approximately 0.2–0.6 mm in
the collected images) with an interval of 10 pixels. Figure 11.30 demonstrates that
the GA separability increases when the depth increases from 100 to 240 pixels, and
then remains stable with further depth increases. Figure 11.31 shows the relation-
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Fig. 11.28 Intensity profiles of columns #100 (a) and #370 (b), marked with the dashed blue and
yellow lines in Fig. 11.26a, respectively. Red curve: intensity values of two columns. Blue circle:
local maximum intensity point. Magenta star: maximum intensity point at higher depths (in the x
direction). a Intensity distribution in GA region. b Intensity distribution in normal region

ship between the mean and standard deviation of the GA separability and the depth
of sub-RPE region for all 99 SD-OCT images, which indicates an optimal depth
range from 190 to 210 pixels (approximately 0.37–0.41 mm). When the depth of
sub-RPE region is much smaller than the axial region where GA can be observed
in the SD-OCT images, the GA separability is low because only a limited region of
the high-intensity values associated with GA near the BM are used. When this depth
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Fig. 11.29 GA projection image with RSAP. a RSAP projection image. b Results by the three
discussed techniques in regions of interest as indicated in (a)

Table 11.9 Average mean difference (MD) and GA separability (SGA) of the SVP, Sub-RPE Slab
and RSAP projection images

Methods compared Number of eyes/cubes MD SGA

SVP 27/99 0.129 0.880

Sub-RPE Slab 27/99 0.238 0.919

RSAP 27/99 0.276 0.938

is increased to values that are larger than optimal, the GA separability decreases
because more background intensity in sclera is included. In this chapter, the depth
of sub-RPE region was set to be 200 pixels (approximately 0.39 mm) for all test
images.

Table 11.9 shows the average performance of the three tested techniques, where all
of 99 cubes (3D SD-OCT images) from 27 eyes in 21 patients are used. Figure 11.32
shows the mean difference and separability values for each case included in our
analysis. Figure 11.33a–c show the GA projection images generated from the SD-
OCT scan of a patient’s left eye using the three techniques tested, SVP, Sub-RPE
Slab and RSAP, respectively. Figure 11.33d shows a one-line profile of the rows
of Fig. 11.33a–c marked with a dashed line. The region marked with the dashed
oval in Fig. 11.33d corresponds to the bright regions in the GA projection images
(Fig. 11.33a–c).
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GA region

Fig. 11.30 Depth of sub-RPE region forGA separability for one SD-OCT scan. FourGAprojection
images corresponding to four red points are inset

Fig. 11.31 Mean (redline) and standard deviation (pale pink shading) of the GA separability across
the 99 SD-OCT images in this study, considering different values of depth of sub-RPE region
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(a) (b)

Fig. 11.32 Comparison of the three tested GA projection techniques. a Mean difference. b GA
separability

11.3.3.3 Discussion

We have presented a novel technique, the RSAP, to increase the contrast and dis-
tinction of GA in a fundus projection image. In addition, we compared the images
produced to the ones produced by two known methods, the SVP and Sub-RPE Slab
techniques. Identifying and quantifying GA area is becoming more important in the
diagnosis and management of advanced dry AMD [71]. With the development of
pharmacologic and cell-based therapies for GA, accurately identifying and moni-
toring GA over time will be important in order to clinically determine the efficacy
or failures of these novel treatment modalities [72, 73]. Although SD-OCT has the
potential to become the preferable technique for imaging the retina, direct visualiza-
tion of GA in SD-OCT has been limited by low contrast and overlapping of retinal
pathologies and structures when generating a fundus image. The RSAP method pre-
sented here improves direct visualization ofGAby considering a restricted projection
and the contribution of the choroidal vasculature.

In conclusion, we present a projection technique from 3D SD-OCT images based
on intensity distribution in sub-RPE regions for the visualization of GA, which we
called the RSAP technique. The RSAP technique improves on the previous meth-
ods by considering and utilizing the intensity distribution characteristics in sub-RPE
regions. Quantitative comparison in 99 3D SD-OCT scans from 21 patients demon-
strated that the RSAP is more effective for GA visualization than the SVP and
Sub-RPE Slab due to increased GA contrast and distinction.
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(a)

(d)

(b) (c)

GA

Fig. 11.33 Comparison of three GA projection techniques in the left eye of one patient.
a SVP. b Sub-RPE Slab. c RSAP. d One-line profile

11.3.4 A False Color Fusion Strategy for Drusen and GA
Visualization in OCT Images

The inability to visualize drusen completely, which is the major limitation of SVP
fundus image technique in drusen visualization [36], is due to the collapsing of the
image volume during the projection. However, these small anomalies are always
indistinct when the image volume is collapsed when making these projection. Stopa
[37] presented a solution to this limitation by utilizing the pathological retinal features
to produce the SVP. The delineation of pathological features in SVP visualizations
was preserved by this method. A recent technique introduced into OCT imaging
devices is the “slab SVP”, which is a semi-automated method to limit the SVP
to a sub-volume of the retina in the neighborhood of the RPE layer (Carl Zeiss
Meditch, Inc., unpublished data); more so, the user needs to annotate the image
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to localize the RPE. Using manually annotating pathologic features in a full SD-
OCT stack images is time-consuming and costly in a clinical setting, which required
quick and precise results. However, the methods by Stopa [29] lacks information
about drusen thickness, which is needed for characterizing drusen. Georczynska
[38] presented a more robust approach using each single OCT cube by selectively
summing different retinal depth levels to generate a series of projection OCT fundus
images, which enhanced contrast and visualized outer retinal pathology that are
not visible with standard fundus imaging or OCT fundus imaging techniques. This
technique separated drusen into several-projected fundus images summed at different
retinal depth levels, hence this cannot be directly visualized in a single image. The
evolution of the GA that causes a deformation in themain retinal layer is still not very
clear; either the RPE, choriocapillaris, or photoreceptors (PR) layers that can resulted
in layer deformities in patients with GA [74, 75]. Recently, new histopathological
findings suggest that the first place in which the GA appearance can be confirm
is the RPE cell loss, then with ensuing PR cell death and choriocapillaris atrophy
[76–79]. Bearelly [75] researched on the PR-RPE interface in GA using SD-OCT in
an effort to test in vivowhether SD-OCT provides enough resolution for reproducible
measurement of the PR layer at the margins of GA, and if the relationship between
PR layer and RPE at those margins could be delineated successfully. The research
work emphasized the direct association betweenGA and cell loss or “thinning” of PR
and RPE as seen in SD-OCT images. These GA can also be viewed in en face SVP
fundus images as a bright and more uniform delimited region, due to the mentioned
cell loss and consequent increased penetration of light into the choroid coat, combine
with the constant high reflection of light from the choroid coat [72]. In addition, there
are some specific cases in which the highly reflective retinal layers, above the RPE
complex complicate and obscureGAvisualization,making the use of the SVP fundus
imaging technique for GA inspection suboptimal.

In this section, we present a new combined method for drusen and GA visualiza-
tion that enhances the conspicuity of GA lesion by utilizing RPE loss and increase of
reflections from the choroid coat. Mores so, a false color fusion technique by com-
bining drusen and GA projection images is presented to accurately and effectively
display drusen and GA in a single fundus image.

11.3.4.1 Drusen Visualization

Recently we presented the RSVP method [35], which is a fully automated technique
with no user input such as indicating a seed point. This approach restricted the
projected volume to the sub-volume in the vicinity of the RPE layer of a 3D SD-
OCT to create an en face voxel projection image. Figure 11.1a shows an example of
the vicinity region which is projected in the RSVP method.

The presence of drusen was taken into account in order to determine the location
of the RPE layers. A bilateral filter [61] was first applied to smoothen the SD-OCT
retinal images. After which, a thresholding method was applied to detect the margin
of the vitreous, which is used in estimating the location of the RNFL. The highly
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reflective and locally connected pixels that are spatially located below the RNFL
are taken as the initial estimate of the RPE layer. The morphological opening and
thickness constraint (RPE is approximately constant thickness) are adopted to smooth
and refine the RPE estimation. Lastly, the unhealthy (abnormal) and healthy (normal)
RPE layers are obtained by interpolation and fitting. The fitted lower boundary of
the normal RPE layer is taken as the baseline of the projection region used for the
RSVP generation, while the top boundary of the projection region is determined
by displacing the fitted normal RPE layer upwards the same distance as the largest
drusen peak found in the cube (Fig. 11.1a).

More so, to effectively improve the drusen visualization, this method (RSVP)
method also incorporates the brightening of the drusen substance region. We find the
maximum intensity pixel in the interpolated RPE layer and replace the values of the
pixels underneath it with this maximum intensity value, for each axial column of the
SD-OCT scans.

11.3.4.2 GA Visualization

There are two primary characteristics of GA which can be observed in SD-OCT
images: choroid brightening and RPE thinning. The choroid in GA regions is always
brighter than in healthy regions, due to RPE cell loss, increase of light penetration
in the retina, and subsequent increased reflections from the choroid coat. In the GA
regions, the RPE thickness is always thinner than in other regions. Thus, we designed
a GA visualization algorithm that is based on the detection regions with increased
brightness in the choroid region, and the RPE thinning characteristics is also used to
enhance the GA visualization.

11.3.4.3 Choroid Region Summing

We restricted the SVP projection to a sub-volume beneath the RPE layer where the
choroid resides and where the high reflections (or bright choroid) indicate where
GA is present, in order to improve the traditional SVP image for GA visualization.
Figure 11.34 shows a GA visualization example with the traditional SVP projection
(Left) and the RSVP projection (Right). The contrast of GA in the RSVP image is
higher than in the SVP image, which could potentially improve the performance of a
computerized GA segmentation method. The RSVP projection appears more blurred
than the SVP projection; this is due to smoothing with bilateral filtering for SD-OCT
retinal images.

11.3.4.4 RPE Thickness

As observed for healthy retina without GA, the RPE thickness is approximately con-
stant (20 µm). Therefore, we employed the segmented RPE layer vicinity described
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Fig. 11.34 SVP (a) and RSVP (b) projection for visualizing GA lesions. b The dashed yellow oval
represents a drusen within the big GA region

above (drusen projection region delimited with the red lines in Fig. 11.1a to obtain an
en-face mapping related to RPE thickness at each A-scan position. By selecting the
maximum of the values resulting from using a sliding window to average pixel inten-
sity in the segmented RPE layer vicinity, we computed the values of this mapping
A-scan by A-scan. A 20 µm sliding window size was chosen, which corresponded
to normal RPE thickness. The mapping done because the RPE is the brightest region
within the selected vicinity and has approximately constant brightness within the
cube, a larger number of bright pixels within the window indicates a thicker region
of the RPE, and in the same way, a lower number of bright pixels indicates RPE thin-
ning. Where there is RPE thinning, although this mapping does not produce actual
RPE thickness values, but it produces a good representation of areas.

11.3.4.5 Combination of Two Characteristics

We take P1 and P2 to be matrices representing the normalized RSVP projection
image and RPE thickness map, respectively. The resultant GA projection image can
be obtained as:

PGA � P1 ◦ (1 − P2)
a (11.11)

where the constant a belongs to (0, 1) and its purpose is to control the impart of the
RPE thickness on the GA projection image. Here we considered a � 0.5, which was
determined by observation of the results produced in a number of different cases. The
operator ‘◯’ represents the element-wise multiplication, namely the multiplications
of the corresponding elements of P1 and (1 − P2)

a .
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Fig. 11.35 GA projection image by combining two GA characteristics. Final GA projection image
(Left). One line profile (Right)

Figure 11.35 (Left) shows the final GA projection image obtained with the
Eq. (11.1), which combines the two GA characteristics: bright choroid and thin
RPE. Figure 11.35 (Right) shows one line profile of the 170th rows of Figs. 11.34
(Right) and 11.35 (Left), marked with the dashed line in Fig. 11.35 (Left). The
RPE thickness map can enhance the GA display by suppressing the background, as
marked with the dashed black circles in Fig. 11.35 (Right). The edge slope between
the GA (marked with the dashed gray circle in the middle) and background regions
indicates that the final projection image (Fig. 11.35 (Left)) has a better contrast for
the GA visualization than the RSVP projection image (Fig. 11.34 (Right)). Since the
background intensity near the GA boundary is suppressed by the RPE thickness map,
the intensity gradient of the GA boundary is higher in the final GA projection image
than that in the RSVP projection image. This is helpful for enabling automated GA
segmentation. While within the GA region, the intensity values have some decrease
in the final GA projection image.

11.3.4.6 False Color Fusion

The proposed drusen and GA projection techniques described above are specific to
display one pathological feature (either drusen or GA). To display drusen and GA
simultaneously in one image, we adopted a false color fusion strategy. The three
components (R, G, B) of the false color image consist of the SVP projection image,
the drusen image, and the GA projection image, respectively. Figure 11.36 shows
the false color fusion result (Bottom Right) by combining the SVP projection image
(Top Left), drusen (Top Right) and GA projection (Bottom Left) images. It could
be observed that GA appears in the R and B components, and drusen appears in the
G component. We also noticed that drusen are darker in the GA projection image
because they reduce the choroidal brightness. However, it is noticeable that in the
false color image, the drusen is greenish and the GA is purple hue. The false color
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Fig. 11.36 False color fusion for drusen and GA visualization. Top Left: SVP projection image
(R component). Top Right: Drusen projection image (G component). Bottom Left: GA projection
image (B component). Bottom Right: False color image, where the dashed yellow oval represents
a drusen within the big GA region

image (Bottom Right) can display drusen and GAwith different colors in one image,
and allow for analysis of the location of drusen with respect to GA. In a case shown
below, the location of drusen marked with the dashed yellow oval can be observed
within the GA region (Bottom Right).

11.3.4.7 Result

We carried out both a qualitative and quantitative evaluation of the cases analyzed.
In this work, some of the patients also had color fundus photographs (CFPs) of their
retinas, where both drusen and GA can be visualized. Manually outlining of the
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drusen and GA lesions in the CFPs, SVP and false color image of these patients was
done to qualitatively assess the drusen and GA visualization in each technique. Only
two different cases from two patients are qualitatively discussed, due to the length
limitation of this chapter.

A good assessment of drusen and GA can be done by looking at each B-scan in
an SD-OCT cube. To quantitatively evaluate drusen and GA visualization in false
color images, three SD-OCT cubes from three patients were reviewed independently,
B-scan by B-scan (128 B-scans per cube), by two readers (NSJ and SJJ) in order to
create a gold standard. Both readers had expertise in reviewing OCT retinal studies.
Manually marking all 128 B-scans each cube was a very tedious task and time
consuming, so only three of the 82 available SD-OCT cubes were reviewed in this
quantitative study. We randomly selected three cases from the set of 82. Each of
the readers independently marked drusen in the OCT B-scans by hand, in a similar
manner as in [62]. To enable the assessment of intra-reader variation, each of the
reader marked each image twice in two different sessions. The marked bars were
then collapsed along the depth axis to produce an en face drusen/GA location maps
(called “marking images”), which we used as the gold standard for our quantitative
evaluation. We combined the two segmentations of the drusen (or GA) made by each
reader in the two separate reading sessions using their intersection to produce a single
outline per reader per image. More so, we applied the same intersection operation
between the two segmentations made by different readers for each drusen (or GA)
outline, producing a combined reader result.

We also outlined the drusen and GA by hand in the corresponding CFPs, SVP
and false color images. The outlines images were then compared quantitatively to
the images manually marked by the readers (the gold standard). The outlines are
not precise, due to the blurred boundaries of drusen and GA in CFPs, SVP and false
color images. As such, we used an overlap ratio of the number of visualized lesions as
the metric to quantitatively evaluate drusen and GA visualization in each technique,
instead of pixel by pixel classification:

overlap_ratio � #co_lesion

#mark_lesion
(11.12)

where ‘#co_lesion’ denotes the number of drusen (or GA) outlined both in the gold
standard image and in the false color images, and ‘ ’ denotes the number of drusen (or
GA) in the gold standard image. Additionally, this metric represented the accuracy
of the proposed method to detect drusen and GA present in the cube: if most of
the drusen (or GA) outlined in the gold standard images could also be visualized in
the en face image, the overlap ratio would be closer to 1. Meanwhile, if most of the
drusen (or GA) are “missed” in the en face images, this overlap ratio would approach
zero. The boundaries of lesions in CFPs, SVP and false color images are too obscure
to be accurately outlined, therefore we used an overlap ratio of the number of total
lesions found in each image, and not of outlined pixels. To reflect false positives, an
over-estimated ratio is also



11 Segmentation and Visualization of Drusen … 335

Table 11.10 Overlap ratio evaluation (unit: %) in inter-reader and intra-reader segmentations

Image Patient 1 Patient 2 Patient 3 Mean

Reader
11—Reader
12

Drusen 81.8 94.9 29.4 68.7

GA 88.9 100.0 100.0 96.3

Reader
21—Reader
22

Drusen 73.2 84.4 66.7 74.8

GA 100.0 100.0 100.0 100.0

Reader
1-Reader 2

Drusen 90.3 81.5 66.7 79.5

GA 66.7 66.7 100.0 77.8

overestimated_ratio � # f alse_lesion

#mark_lesion
(11.13)

where ‘# f alse_lesion’ denotes the number of drusen (or GA) outlined in the false
color images, but not identified in the gold standard images.

11.3.4.8 Qualitative Evaluation

Figure 11.37 shows the comparison of the false color image and the CFP in one
patient. The corresponding SVP projection image is shown in Fig. 11.36 (Top Left).
Compared with the CFP (Fig. 11.37 (Top Right)), the false color image (Fig. 11.37
(Top Left)) is qualitatively better for displaying and differentiating the drusen and
GA, due to the high contrast of the false color images, while also the color difference
between drusen and GA is more obvious in the false color image. The remains of
artifacts can be seen in the false color image, due to an inaccurate RPE extraction in
some problematic areas. As shown below, the circled region in Fig. 11.37 (Top Left)
shows areas which are not actual drusen, where these artifacts only minimally affect
the drusen visualization.

11.3.4.9 Quantitative Evaluation

Table 11.10 presents the inter-reader and intra-reader agreement in terms of overlap
ratio, where “Reader ki” denotes the segmentation outlined by reader k in the i-th
session. We observed that the overlap ratio was higher for GA segmentations than
for drusen segmentations, while the manual segmentations outlined by reader 2 were
slightly more consistent between the two sessions that those outlined by reader 1 in
average.
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Fig. 11.37 Comparison of false color image (Top Left) and CFP (Top Right) in the left eye of
a patient. Three B-scans (Bottom row) correspond to the three lines in (Top row). A red triangle
indicates a druse in the fundus images (Top row) and the B-scan (Bottom Left); blue and yellow
triangles mark two drusen within GA regions; a green triangle indicates a dark hole within the
bright choroid; a yellow triangle marks a very bright region in the B-scan (Bottom Right), and a
corresponding bright region in the fundus images (Top row). The red circled region in (Top Left)
indicates artifacts in the false color image, produced by an inaccurate estimation of the RPE in a
problematic area

Table 11.11 shows the comparison between the SVP, CFP and the proposed
method for drusen and GA overlap ratio in three OCT scans from three different
patients. Table 11.12 shows the comparison of drusen and GA over-estimated ratio,
and Table 11.13 shows the number of drusen and GA in gold standard, SVP, CFP and
false color images. The rows labeled as “Readers 1 & 2” correspond to the results
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Table 11.11 Drusen andGAoverlap ratio (unit:%) in SVP,CFP, and the proposedmethod (“Ours”)
compared with the gold standard. The maximum overlap ratios for each method are shown in bold

Image Reader 1 Reader 2 Reader 1 & 2

Drusen GA Drusen GA Drusen GA

Patient 1 SVP 4.9 100.0 3.2 66.7 3.9 100.0

CFP 43.9 25.0 41.9 33.3 50.0 25.0

Ours 63.4 100.0 80.7 66.7 88.5 100.0

Patient 2 SVP 11.8 100.0 11.0 100.0 15.4 100.0

CFP 85.3 75.0 88.9 66.7 92.3 75.0

Ours 64.7 100.0 70.4 100.0 80.8 100.0

Patient 3 SVP 0.0 100.0 0.0 100.0 0.0 100.0

CFP 44.0 100.0 66.7 100.0 50.0 100.0

Ours 77.8 100.0 66.7 100.0 87.5 100.0

Mean SVP 5.6 100.0 4.7 88.9 6.4 100.0

CFP 57.7 66.7 65.8 66.7 64.1 66.7

Ours 68.6 100.0 72.6 88.9 85.6 100.0

Table 11.12 Drusen and GA over-estimated ratio (unit: %) in SVP, CFP, and the proposed method
(“Ours”) compared with the gold standard. The maximum over-estimated ratios for each method
are shown in bold

Image Reader 1 Reader 2 Reader 1 & 2

Drusen GA Drusen GA Drusen GA

Patient 1 SVP 0.0 0.0 3.23 0.0 3.85 0.0

CFP 39.0 0.0 71.0 0.0 88.5 0.0

Ours 29.3 0.0 41.9 0.0 61.5 0.0

Patient 2 SVP 0.0 100.0 0.0 100.0 0.0 100.0

CFP 52.9 100.0 51.9 100.0 84.6 100.0

Ours 26.5 100.0 11.1 100.0 42.3 100.0

Patient 3 SVP 0.0 0.0 0.0 0.0 0.0 0.0

CFP 200.0 0.0 266.7 0.0 225.0 0.0

Ours 11.1 0.0 16.7 0.0 12.5 0.0

Mean SVP 0.0 33.3 1.08 33.3 1.28 33.3

CFP 97.3 33.3 129.9 33.3 132.7 33.3

Ours 22.3 33.3 23.2 33.3 38.8 33.3

drawn by the two different readers and represent the evaluation for an average reader
from overlapping the manual outlines.

From Tables 11.11, 11.12, 11.13, we observed that the false color images are
preferably more effective for the visualization of drusen and GA than SVP and
CFP. It can be seen that the SVP images allow the visualization of GA with the same
performance as ourmethod, yet drusen are almost invisible, therefore the overlap ratio
and the over-estimated ratio with the gold standard are both very small. Meanwhile,
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Table 11.13 Number of drusen and GA in gold standard, SVP, CFP and false color images

Image Reader 1 Reader 2 Readers 1
& 2

SVP CFP Ours

Drusen Patient 1 41 31 26 2 35 38

Patient 2 34 27 26 3 45 29

Patient 3 9 6 8 0 22 7

GA Patient 1 8 3 8 6 2 6

Patient 2 4 3 4 6 6 6

Patient 3 2 1 1 1 1 1

the CFP images present a more acceptable performance in displaying drusen but
worse GA visualization, making it difficult to distinguish between the two diseases.
Because in CFPs the contrast of GA is low (as shown in Fig. 11.37, Top Right), so
it is difficult to distinguish drusen and GA, the GA overlap ratio of CFP is evidently
lower than those of SVP and false color images, and the drusen over-estimated
ratio of CFP is higher than those of SVP and false color images. For the drusen
visualization of patient 2, CFP is better than the proposed method, likely because the
proposed method missed some small drusen due to some artifacts produced by an
inaccurate segmentation of RPE layers. However, the proposed method was better
on average. The GA overlap ratio is visibly higher than the drusen overlap ratio
because GA lesions are usually larger and more easily identifiable than the drusen.
As a matter of fact, all GA regions were correctly identified in the proposed method
in the segmentations by Reader 1, and nearly all by Reader 2. When combining the
outlines drawn by the two readers, it could be observed that drusen were identified
better by Reader 2 and the overlap was very high (85.6%). It is also interesting to
note that the proposed method produced an overlap ratio both for drusen and GA
(Table 11.11) that resulted similar to the differences observed between the readers
when inspecting the cubes B-scan by B-scan (Table 11.10). The differences observed
between the segmentations drawn by a reader in the images produced by the proposed
method and the ones drawn by the same reader when inspecting B-scan by B-scan
were comparable to the ones observed when inspecting the B-scans in two separate
sessions. In the sameway, the differences found between the proposedmethod and the
gold standard (B-scan inspection) for an average reader segmentation were similar
to those observed between two different readers inspecting the B-scans.

11.3.4.10 Discussion

This section presents a novel visualization technique in which drusen and GA areas
can be clearly assessed in the same image. In the state-of-art techniques, drusen and
GA are usually identified in CFPs. In most cases, drusen can sometimes be very
hard to distinguish in CFPs and can also be masked by the presence of GA due to
the limitation of CFPs to resolve structures in the depth axis. The most efficient and
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reliable way to identify and distinguish areas of drusen and GA is by inspecting
SD-OCT cubes B-scan by B-scan.

More so, the traditional SVP projection usually masks drusen and does not take
advantage of the ability of SD-OCT to resolve structures in the depth-axis. The pro-
posed method takes advantage of this ability and allows the visualization of both
drusen and GA present in the macula in a single image, while clearly distinguishing
between them using a false color mapping. The examples of this improved visual-
ization technique is presented in Fig. 11.37. Since we analyzed visually the results
from 82 different cases, we only showed the results from two of the cases given the
chapter length limitations. We also obtained satisfactory result by visual inspection
for the rest of the cases. We analyzed the results produced by three of the cubes
quantitatively, by comparing with SVP and CFP. Overall, the proposed method is
better for the drusen and GA visualization than SVP and CFP. A combination of two
readers was able to clearly identify all GA areas in our proposed method, while also
identifying the majority of drusen.

The aim of this section is to simultaneously display drusen and GA in a single
projection image from 3D SD-OCT images, not to segment drusen and GA. Using
the difference between the actual RPE segmentation and the RPE floor (or Bruch’s
membrane), drusen can be segmented from OCT images.

In conclusion, we present a new visualization method for drusen and GA. It
enhances GA visualization by utilizing the bright choroid and thin RPE characteris-
tics of GA in the visualization method. To efficiently and effectively display drusen
and GA in a single image, we present a false color fusion strategy to combine the
drusen and GA projection images. Our experimental results show that the false color
image is more effective for the drusen and GA visualization than the SVP image and
CFP. Most of the drusen are not visible in SVP images, and the contrast of GA in
SVP images is lower than that in the GA projection image. Even though, drusen and
GA are visible in CFPs, they are difficult to distinguish because of low contrast. In
false color images, the color difference between drusen and GA is more obvious.
The proposed method may be used in improving the ability of ophthalmologist to
visualize and evaluate drusen and GA.

11.4 Conclusion

This chapter presents several novel algorithm for semi-automated, automatedGAand
drusen segmentation and visualization in SD-OCT images to enable robust, accurate,
and objective quantitative measurements of both drusen and GA extent and location
automatically. The proposed method combines different novel algorithms and uti-
lizes well known techniques in the implementation of our algorithms. Our technique
seems more robust, through quantitative and qualitative experimental results which
demonstrate that our algorithms show good agreement when compared to segmen-
tation performed by other researcher’s algorithm. The proposed algorithms may be
clinically useful in providing relatively reliable GA and drusen qualitative and quan-
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titative data that may improve tracking of GA extent, location and expansion in
patients diagnosed with advanced non-exudative AMD.
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Chapter 12
Segmentation of Symptomatic
Exudate-Associated Derangements in 3D
OCT Images

Lingjiao Pan and Xinjian Chen

Exudative AMD is an advanced form of AMD which can cause severe vision loss.
Quantitative analysis of the exudates is essential for the treatment and follow-up.
This chapter presents an automatic method for segmentation of the exudate regions
in 3D SD-OCT images using on a graph-based model.

12.1 Introduction

The primary cause of vision loss and blindness among the adults (>50 years old) is
Age-relatedmacular degeneration (AMD) [1]. Exudative AMDor neovascular AMD
is an advanced form of AMD, due to the growth of abnormal blood vessels from the
choroidal vasculature, leading to sub- and intra-retinal leakage of vascular fluid.
Recently, anti-vascular endothelial growth factor agents (including Ranibizumab
and bevacizumab) [2–4] through intra-vitreal injection, as a treatment of exudative
AMD has become available. It leads to a regression of the neovascularization and
resulting resorption of fluid. The frequency of the injections is primarily guided by
the amount of intra-retinal fluid. The amount of intra-retinal fluid can be clinically
estimated subjectively from a limited number of spectral domain optical coherence
tomography (SD-OCT) slices [5–8]. The intra- and inter-observer variability is high
potentially leading to substantial inconsistency in treatment, and automated fluid seg-
mentation has the potential to improve this [9, 10]. In this chapter, we use the term
symptomatic exudate-associated derangement (SEAD) for the main retinal manifes-
tations of AMD, including subretinal fluid, intraretinal fluid, and pigment epithelial
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Fig. 12.1 Examples of
SEADs. The red curve is a
manual segmentation of the
SEAD consisting by the
intraretinal fluid and the
green curve outlines a SEAD
resulting from a pigment
epithelial detachment

detachment (as shown in Fig. 12.1). The segmentation of SEADs is a challenging
task since the signal-to-noise ratio (SNR) is relatively low and the SEADs have con-
siderable shape variability in SD-OCT scans. Full segmentation of the 3-D SEAD
volumes is more challenging.

Graph search (GS) methods can be successfully applied to surface segmentation
[11, 12], and graph cut (GC) methods are widely used to the segmentation of region
object [13–15]. Synergistically combine the graph search and graph cuts methods
could be applied to solvemore complex and challengingmedical image segmentation
problems including segmentation of the SEADs and layers simultaneously.

In this chapter we introduce a fully 3-D and fully automated method for SEAD
segmentation, which effectively combines the GS and GC methods [16]. The top
and bottom retinal surfaces serve as the constraints for SEAD segmentation. An
automatic voxel classification based on the layer-specific texture features are used
for initialization. The new GC–GS method significantly outperformed both the tra-
ditional graph cut and traditional graph search approaches and has the potential to
improve clinical management of patients with choroidal neovascularization due to
exudative age-related macular degeneration.

12.2 Related Methods

12.2.1 Conventional Graph-Cut Algorithm

GC methods have been widely used for image segmentation in recent years [13, 15,
17–23]. A conventional graph-cut framework [13, 15] was thought to be feasible to
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solve SEAD segmentation in 3-D OCT [24]. By introducing both a boundary term
and a regional term into the energy function, the method computed a minimum cost
s/t cut on an appropriately constructed graph [17, 18]. For multiple object-region
segmentation, an interaction term can be introduced to the energy function as a hard
geometric constraint [11]. The overall problem can also be solved by computing an s/t
cut with a maximum-flow algorithm. The conventional graph-cut framework can be
applied to objects with different topological shapes, but it cannot avoid segmentation
leaks in lower resolution images.

12.2.2 Optimal Surface Approach—Graph-Search Approach

Optimal surface approach (GS methods) [12, 25–27] is another graph based method
which is important for the analysis ofmultiple intra-retinal layers in 3-DOCT images
[28, 29]. Take SEAD cases as example, most of the subretinal fluid, lesions intra-
retinal fluid and the pigment epithelial detachments are all associated with surround-
ing retinal layers. TheGSmethodsmodeled the boundaries between layers as terrain-
like surfaces and suggested representing the terrain-like surface as a related closed
set. GSmethods segment the terrain-like surface by finding an optimal closed set. For
the multiple-surface case, the optimal surface approach constructed a corresponding
subgraph for each terrain-like surface [25], and added weighted inter-graph arcs,
which enforced geometry constraints between subgraphs. The multiple optimal sur-
faces segmentation could be solved simultaneously as a single s/t cut problem by
using a maximum-flow algorithm. The method worked well in finding stable results
of globally optimal terrain-like surfaces. However, it was limited by the prior shape
requirement. For the multiple-SEAD in a single OCT image, it can be modeled as a
problem with multiple regions interacting with multiple surfaces. A surface-region
graph-basedmethodwas proposed to segment multiple regions andmultiple surfaces
simultaneously [30].

12.3 Probability-Constrained Graph Search-Graph Cut

The graph search-graph cut method consists of two main steps: initialization and
segmentation (Fig. 12.2). In the initialization step, preprocessing steps are applied
first to the input OCT image. The preprocessing steps include: segmenting the layers,
fitting a surface to the bottom [retinal pigment epithelium (RPE)] layer, determining
SEAD footprints [31], ignoring points within the SEAD footprints, and flattening
the scan images; a texture classification based method is employed producing the
initialization results. Following initialization step, probability normalization refines
the initialization results. In the segmentation step, the GS-GCmethod synergistically
integrates the results from the initialization.
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Fig. 12.2 Flowchart of the proposed system

12.3.1 Initialization

An initial segmentation of the SEAD regions is required to initialize the graph-based
SEAD segmentation algorithm. A statistical voxel classification approach is applied
directly to the preprocessed input image to find voxels that are likely inside of a
SEAD region. The classifier assigns a likelihood to each voxel that it belongs to a
SEAD. This likelihood map serves as constraints for the graph-based segmentation
algorithm.

12.3.1.1 Preprocessing

First, the output of our 11-surface segmentation [29] is used to determine the upper
and lower surface of the retina in the scan. For these 11 surfaces, the top retinal surface
corresponds to the inner limitingmembrane and bottom layer corresponds to theRPE.
Although, the top retinal surface is usually segmented successfully even inOCT scans
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Fig. 12.3 Illustration of retinal layer correction. a One slice from the original OCT image. b
Segmentation of all surfaces, with surface 11 at the bottom (cyan). c Surface 11 after thin-plate
spline fitting

with SEADs, the bottom surface segmentation can be problematic, especially with
SEADs located under the retinal pigment epithelium (RPE, see Fig. 12.3). In these
cases, the layer segmentation may follow the top of the SEAD instead of identifying
the bottom of the retina.

A method for detection of SEAD locations in the XY-plane by analyzing the
thickness and textural properties of individual layers in groups of A-scans was pre-
viously presented [31]. The likelihood that an A-scan belongs to a SEAD footprint
is calculated from the number of standard deviations from the normal atlas value.
The binary SEAD footprint is generated by thresholding the likelihood map and the
binary SEAD footprint is used to enhance the bottom surface segmentation result so
that it is approximately located at the position in the scan where the bottom of the
retina would have been located had the SEAD not been present. This is accomplished
by fitting a thin plate spline to a set of 1000 randomly sampled points from the bot-
tom surface 11, located outside of the 2-D SEAD footprint map. Figure 12.3 shows a
representative example of the bottom surface before and after thin plate spline fitting.
The retinal images are subsequently flattened according to the identified thin-plate
spline surface.

12.3.1.2 Voxel Classification

A supervised voxel classification approach trained on the voxels between the previ-
ously segmented top and bottom surface of the retina is applied to generate an initial
segmentation of the fluid-filled SEADareas. The training images are first subsampled
by a factor of 2 in the X and Y directions and a factor of 4 in depth to speed up feature
extraction and subsequent voxel classification. (1) Features: For each voxel, many of
the structural, textural and positional features are calculated (see Table 12.1). Textu-
ral features (16–45) describe local texture while structural features (1–15) describe
the local image structure. The location (height) of the voxel in the retina is encoded in
three location features (46–48), the L2 distance in voxels from previously segmented
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Table 12.1 Used classification features

Feature nr. Feature description

1–5 First eigenvalues of the Hessian matrices at
scales σ�1, 3, 6, 9 and 14

6–10 Second eigenvalues of the Hessian matrices at
scales σ�1, 3, 6, 9 and 14

11–15 Third eigenvalues of the Hessian matrices at
scales σ�1, 3, 6, 9 and 14

16–45 Output of a Gaussian filter bank up to and
including second order derivatives at scales
σ�2, 4, 8

46–48 Voxel distances from surfaces 1, 7 and 11

49–52 Layer texture features as described in [31]:
mean intensity, co-occurrence matrix entropy
and inertia, wavelet analysis standard deviation
(level 1)

surfaces 1, 7, and 11. Finally, four features (49–52) are included that were determined
in our previous work [31] as relevant to SEADdetection and description. (2) Training
Phase: In the training phase, the preprocessed training images are randomly sampled
to collect voxels that are either inside or outside of the SEADs. Due to differences
in the number of SEAD voxels in individual OCT images both the normal and the
SEAD voxels in a scan are sampled separately to ensure that a sufficient number of
positive training samples are obtained in each scan. For each training image, 10,000
positive samples and 50,000 negative samples (i.e., two classes) were randomly col-
lected. All available positive voxels were included in the training set if there were
less than 10,000 positive voxels in any training image, [32]. Since the SEADs in our
data are fluid filled, voxels inside the SEADs correspond to fluid while voxels outside
of the SEADs do not, two-class classification was used. Based on the performance
in comparative preliminary experiments on a small, independent set of images, a
k-nearest neighbor classifier was chosen. The employed k-NN implementation [33]
allows approximate nearest neighbor classification and the maximum error parame-
ter epsilon was set to two for this algorithm. Training time for this classifier is low,
taking less than 20 s. The training phase only needs to be run for once, after this, the
trained classifier can be used to classify unseen voxels [34]. (3) Testing Phase: Test
images by using the previously described trained classifier. After preprocessing and
feature extraction, each voxel between the top and the bottom surfaces was assigned
a likelihood between 0 and 1 that the voxel is inside of a SEAD region.

12.3.1.3 Initialization Postprocessing by Probability Normalization

The previously described initialization is not always successful (see second and
third rows of Fig. 12.7). A postprocessingmethodwas proposed to copewith the high
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Fig. 12.4 Initialization post-processing: Probability normalization. a Intensity distribution of
SEAD regions in the reference standard. b Intensity distribution in a specific initialization result. c
Probability normalization resulting from the flip-duplicate step (see text)

image noise in these cases. It was revealed that in the low intensity range, the intensity
distribution of the SEAD regions closely follows the Gaussian distribution. This
knowledge was used to postprocess the initialization results, as shown in Fig. 12.4.
(1) Find the largest intensity value on the original curve. (2) Using this value, flip-
duplicate the left part of the curve. (3) Set the probability of those intensity values
outside the symmetric part to zero. After the postprocessing, the subsequent graph-
based segmentation is constrained by the resulting likelihood map.

12.3.2 Graph Search-Graph Cut SEAD Segmentation

The GS and GCmethods were synergistically combined to segment the SEADs. Two
layers (one layer above the SEAD region and another below the SEAD region) are
included as the auxiliary target objects to constraint the SEAD segmentation.

12.3.2.1 Cost Function Design

The segmentation problem usually formulated as an energy minimization problem.
The goal is to find a solution that minimizes the energy function En(f). Our cost
function is designed as follows:

En(f) � E(Surface) + E(Regions) + E(Interactions) (12.1)

where E(Surface) represents the cost associated with the segmentation of all sur-
faces, E(Regions) represents the cost associated with the segmented regions, and
E(Interactions) represents the cost of constraints between the regions and surfaces.
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(1) Surface cost function: For the terrain-like multiple-surface segmentation, the
graph searchmethod [12] is utilized. Similar to [12], the cost function is designed
as

E(S) �
∑

V∈S
Cv +

∑

(p,q)∈N
h p,q (S(p) − S(q)) (12.2)

where S is the desired surface, Cv is an edge-based cost which is inversely
related to the likelihood that S contains the voxel v. (p, q) is a pair of neighboring
columns N . h p,q is a convex function penalizing the surface S shape change on
p and q.

(2) Region cost function: The graph cut method [13] has been successfully applied
to regional segmentation. The typical graph cut energy function is defined as,

E( f ) �
∑

p∈P

Rp(fp) +
∑

p∈P,q∈Np

Bp,q ( f p, fq ) (12.3)

where Np is the set of pixels in the neighborhood of p. Rp( f p) is the cost of
assigning label f p ∈ L to pwhich is usually defined based on the image intensity
and can be considered as a log likelihood of the image intensity for the target
object, and Bp,q

(
f p, fq

)
is the cost of assigning labels f p, fq ∈ L to p and q

that could be based on the gradient of the image intensity.
Importantly, the whole framework integrated the results of the initialization
step: (1) Source seeds were the high likelihood voxels (over 0.8, followed by
morphologic erosion). Sink seeds were voxels with low probability (here 0). (2)
The proposed probability-constrained energy function was defined as follows:

E �
∑

p∈P

(α · Dp( f p) + β · Cp( f p)) +
∑

p∈P,q∈Np

γ · Bp,q ( f p + fq ) (12.4)

where α, β, γ are the weights for the data term, probability constrained term,
and boundary term, respectively, satisfying α + β + γ � 1. These components
are defined as follows:

Dp( f p) �
⎧
⎨

⎩
− ln P

(
Ip

∣∣O
)
, i f f p � object label

− ln
(
P

(
Ip

∣∣B
))

, i f f p � background label
(12.5)

Bp,q ( f p, fq ) � exp(− (Ip − Iq )2

2σ 2
) · 1

d(p, q)
δ( f p, fq ) (12.6)

and

δ
(
f p, fq

) �
{
1, i f f p �� fq

0, otherwise
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Fig. 12.5 Illustration of surface-region interactions on a 2D example. a The two terrain-like sur-
faces: SS and SI, and the region R in green. b Incorporation of the constraints between the region and
surfaces. If the voxel in the region is superior to surface SS, then a penalty is given (as illustrated in
blue). And if the voxel in the region is inferior than surface SI, then a penalty is given (as illustrated
in red)

where Ip is the intensity of pixel p, object label is the label of the object (fore-
ground). P

(
Ip

∣∣O
)
and P

(
Ip

∣∣B
)
are the probabilities of intensity of pixel p

belonging to object and background, respectively, which are estimated from
object and background intensity histograms during the separate training phase
(details given below). d(p, q) is the Euclidian distance between pixels p and
q, and σ is the standard deviation of the intensity differences of neighboring
voxels along the boundary,

Cp(fp) � 1 − exp(−λ · I ni t P(p)) (12.7)

where I ni t P(p) is the probability of p which is the initialization result, λ is a
constant (here λ�1).
In the training stage, the intensity histogram of each object is estimated from
the training images. P

(
Ip

∣∣O
)
and P

(
Ip

∣∣B
)
can be computed based on this.

As for the parameters α, β and γ in Eq. (12.4), since α + β + γ � 1, only α

and β are estimate by optimizing the accuracy as a function of α and β and set
γ � 1 − α − β. The gradient descent method [35] is used for the optimization.

(3) Interaction between the surfaces and regions: The E(Interactions) represents
the interactions between the regions and surfaces. We included two surfaces:
SI and SS to constrain the regions, as shown in Fig. 12.5. If the voxel in the
region is located lower than surface SI , then a penalty is given. Similarly if the
voxel in the region is located higher than surface SS , then a penalty is given.
The proposed interaction term is defined as follows,

E(I nteractions) �
∑

v∈p
z(v)−Ss(p)>d

wv fv +
∑

v∈p
SI (p)−z(v)>d

wv fv (12.8)

where z(v) represents the z coordinate of voxel v, p is a column which contains
v, Ss(p) and SI (p) are the z values for the surfaces Ss and SI on the column p,
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Fig. 12.6 Illustration of graph construction on a 2D example. a Final constructed graph G which
consists of three sub-graphs GSS, GRand GSI. b Geometric constraints between surfaces GSS and
GR. c Geometric constraints between surfaces GRand GSI

respectively, d is a pre-defined distance threshold (here, d � 1), wv is a penalty
weight for v and fv � 1 if v ∈ region R.

12.3.2.2 Graph Construction

Three sub-graphs are constructed for superior surface Ss , inferior surface SI and
region R. These three sub-graphs are merged together to form as a single s-t graph
G which can be solved by a min-cut/max-flow technique [13].

For the surface Ss , a sub-graph GSS(VSS, ASS) is constructed by following the
method in [12]. Each node in VSS corresponds to exactly one voxel in the image.
Two types of arcs are added to the graph: (1) The inter-column arcs incorporating the
penalties hp,q between the neighboring columns p and q; and (2) The intra-column
arcswith +∞weight, which enforces themonotonicity of the target surface. Aweight
wn is assigned to each node such that the total weight of a closed set in the graph
GSS equals to the edge-cost term of E(Surface). Following the method in [36], each
node is connected to either the sink T with the weight wn if wn > 0 or the source S
with the weight −wn if wn < 0.

For the surface SI , the same graph constructionmethod is applied creating another
sub-graph GSI(VSI, ASI).

For the region term cost function, the graph cut method in [13] is used to construct
the third sub-graph GR(VR, AR). Here, each node in VR is also corresponding to
exactly one voxel in the image. The two terminal nodes: sink T and source S are the
same nodes already used in GSS and GSI. Each node has t-links to the sink and source,
which encode the data term. N-link connect each pair of neighboring nodes, which
encodes the boundary term. Figure 12.6 shows the graph construction. The nodes in
VR, VSS and VSI are all corresponding, so these three sub-graphs can be merged into
a single graph G.

Additional inter-graph arcs are added between GSS and GR, as well as between
GR and GSI to incorporate geometric interaction constraints. For GSS and GR, if a
node (x, y, z) in the sub-graph GR is labeled as “source” and the node (x, y, z+d) in
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the sub-graph GSS is labeled as “sink”, i.e. z-SSS(x, y)>d, then a directed arc with a
penalty weight from each node GR(x, y, z) to GSS (x, y, z+d) will be added, as shown
in Fig. 12.6b. For GR and GSI, the same approach is employed.

12.4 Performance Evaluation

12.4.1 Experimental Methods

For the initialization, we compared the performance before and after probability
normalization to show the efficacy of the probability normalization.

For the segmentation, we compared the traditional GC in [13], the traditional
GS method in [29] and the proposed probability constraints GS-GC. A multivariate
analysis of variance (MANOVA) test [37] was based on the three performance mea-
sures: true positive volume fraction (TPVF) which indicates the fraction of the total
amount of fluid in the reference standard delineation, false positive volume fraction
(FPVF) [33] which denotes the amount of fluid falsely identified and relative volume
difference ratio (RVDR) which measures the volume difference ratio comparing to
the reference standard volume to show the statistical significance of performance
differences. They are defined as follows,

T PV F � |CT P |
|Ctd| (12.9)

FPV F � |CFP |
|Ud − Ctd | (12.10)

RV DR � ||VM |−|VR||
|VR| (12.11)

where,Ud is assumed to be a binary scene with all voxels in the scene domain set to
have a value 1, and Ctd is the set of voxels in the true delineation, |·| denotes volume.
|VM | is the segmented volume by method M, and |VR| is the volume of the reference
standard. More details can be seen in [38].

For statistical correlation analysis, we used linear regression analysis [39] and
Bland-Altman plots [40] to evaluate the agreement and relationship between the
automatic and manual segmentations.

For the reproducibility analysis, the retinal specialist was invited to manually
segment the intra- and sub-retinal fluid at the onset of the project and again after
more than 3 months. The manual segmenting of all the slices for one eye required
more than 2 h of expert tracing, so the re-tracing was performed on 5 randomly
selected eyes from the entire data set.

Macula-centered 3D OCT volumes (200×200×1024 voxels, 6×6×2 mm3,
voxel size 30×30×1.95 μm3) were obtained from 15 eyes of 15 patients with
exudative AMD. For the reference standard, a retinal specialist (MDA) manually
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Fig. 12.7 Experimental results for four examples of SEAD initialization. The 1st column shows
the original image, the 2nd column shows the initialization results, the 3rd column shows the final
initialization results after probability normalization, and the last column shows the ground truth.
Note the improvements obtained by probability normalization in columns 3 and 4

segmented the intra- and sub-retinal fluid in each slice of each eye using Truthmarker
software [41] on iPad.

12.4.2 Assessment of Initialization Performance

Four examples of initialization and its post-processing by probability normalization
are shown in Fig. 12.7. We can see that for the 3rd and 4th images, reflective of
probability normalization, the numbers of falsely detected voxels have decreased
substantially. The initialization performance of TPVF, FPVF and RVD before and
after probability normalization are shown in the 1st and 2nd rows of Table 12.2.
We can see that after the probability normalization, the FPVF decreased noticeably
(from 5.2 to 3.0%).
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Table 12.2 Mean± standard deviation (median) of TPVF, FPVF and RVDR for initialization,
initialization after probability normalization, traditional GC in [13], traditional GS [29] and the
proposed probability constrained GS-GC

TPVF (%) FPVF (%) RVDR (%)

Initialization 72.3±17.6 (77.5) 4.5±3.7 (3.6) 21.1±41.2 (16.4)

Initialization after
probability
normalization

72.5±17.5 (77.5) 3.0±3.2 (2.5) 20.8±40.5 (16.2)

Traditional GC [13] 77.9±23.9 (81.4) 3.6±3.3 (3.2) 20.2±37.6 (6.5)

Traditional GS [29] 82.8±10.5 (86.0) 3.2±4.5 (2.6) 22.8±45.6 (12.5)

The proposed
probability
constrained GS-GC

86.5±9.5 (90.2) 1.7±2.3 (0.5) 12.8±32.1 (4.5)

12.4.3 Assessment of Segmentation Performance

Three examples of the obtained segmentation results are shown in Fig. 12.8.
Table 12.2 summarizes the quantitative assessment of the segmentation performance
achieved by the proposed method expressed in TPVF, FPVF and RVDR. The pro-
posed probability constrained GS-GC method achieved a better performance com-
pared to the traditional GC [13] and GS [29]. The p-value of the MANOVA test
for the proposed method versus the traditional GC [13] and the proposed method
versus the traditional GS [29] is p <0.01 and p <0.04, respectively, i.e., both of the
performance improvements are statistically significant. The average TPVF, FPVF
and RVDR for the proposed method are about 86.5, 1.7 and 12.8%, respectively. A
3D visualization of the typical SEAD segmentation results are shown in Fig. 12.9.

The proposedmethodwas tested on anHP Z400workstation with 3.33 GHzCPU,
24 GB of RAM. The computation times for the initialization and segmentation were
15 and 10 min, respectively.

12.4.4 Statistical Correlation Analysis and Reproducibility
Analysis

The linear regression analysis comparing SEAD volumes and Bland-Altman plots
for the fully automated probability constrained GS-GC method versus Manual 1
is shown in Fig. 12.10. The reproducibility assessment of manual tracing Manual 1
versusManual 2 is illustrated in Fig. 12.11. The figures demonstrate that: (1) the intra-
observer reproducibility has the highest correlation with r�0.991. In comparison,
the automated analysis achieves a high correlation with the Manual 1 segmentation
(r�0.945). (2) Analyzing the Bland-Altman plots reveals that the 95% limits of
agreement were [−0.34, 0.45] and [−0.24, 1.16] for the Automated method ver-
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Fig. 12.8 Experimental results for three examples of SEAD segmentation. The 1st, 2nd and 3rd
columns correspond to the axial, sagittal and coronal views, respectively. Red color represents the
upper retinal surface, green color represents the lower retinal surface, and yellow color depicts the
surface of the segmented SEAD

sus Manual 1, and Manual 1 versus Manual 2, respectively. The Automated versus
Manual 1 showed a much lower bias compared to the Manual 1 versus Manual 2.

12.5 Conclusion

The results show that the probability constrained graph cut—graph search method
significantly outperforms both the traditional graph cut and traditional graph search
approaches, and its performance to segment intra- and subretinal fluid in SD-OCT
images of patients with exudative AMD is comparable to that of a clinician expert.

12.5.1 Importance of SEAD Segmentation

As mentioned in the Introduction, current treatment is entirely based on subjective
evaluation of intra- and subretinal fluid amounts from SD-OCT by the treating clini-
cian. Though never confirmed in studies, anecdotal evidence and experience in other
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Fig. 12.9 3D visualization of SEAD segmentation on two examples (the 1st and 3rd cases in
Fig. 12.8). Red color represents the upper retinal surface, green color the lower retinal surface, and
orange color depicts the surface of the segmented SEAD

fields show that the resulting intra- and interobserver variability will lead to consid-
erable variation in treatment and therefore, under- and overtreatment. Though each
treatment, based on regular and frequent intravitreal injections of anti-VEGF, has
less than a 1:2000 risk of potentially devastating endophthalmitis and visual loss,
because of the high number of lifetime treatments, the cumulative risk is still con-
siderable. In addition, the cost of each injection is high millions of patients are being
treated every month so that the total burden on health care systems is in billions of
US$ (year 2012). The potential of our approach to avoid overtreatment is therefore
double attractive, because both lowering of the risk to patients and cost-savings can
be achieved. However, before our approach can be translated to the clinic, validation
in larger studies are required.

12.5.2 Advantages of the Probability Constrained Graph
Cut—Graph Search Method

A graph-theoretic based method for SEAD segmentation is reported here. The multi-
object strategy was employed for segmenting the SEADs, during which two retinal
surfaces (one above the SEAD region and another below the SEAD region) were
included as auxiliary target objects for helping the SEAD segmentation. Natural
constraints for the SEAD segmentation is provided by the two auxiliary surfaces
and they also make the search space become substantially smaller, thus yielding a
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Fig. 12.10 Statistical correlation analysis between the Automated method GS-GC and manual
tracingsManual 1. a Linear regression analysis results comparing SEAD volumes. bBland-Altman
plots

more accurate segmentation result. The similar idea has also been proved in [42].
The proposed graph-theoretic based method effectively combined the GS and GC
methods for segmenting the layers and SEADs simultaneously. An automatic voxel
classification-based method was used for initialization which was based on the layer-
specific texture features following the success of our previouswork [14, 31]. The later
GS-GCmethod effectively integrate the probability constraints from the initialization
which further improved the segmentation accuracy.

12.5.3 Limitations of the Reported Method

This graph-theoretic basedmethod approach has some limitations. Thefirst limitation
is that it largely relies on the initialization results. If the probability constraints from
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Fig. 12.11 Statistical correlation analysis of reproducibility comparing manual tracings Manual
1 and Manual 2. a Linear regression analysis results comparing SEAD volumes. b Bland-Altman
plots

the initialization step are incorrect, the final segmentation results may fail. One
example that mis-detects the SEAD due to the inaccurate initialization is shown in
Fig. 12.12.

The probability constrained graph cut—graph search method shows high correla-
tion with manual segmentation and if validated in a larger study, may be applicable
to clinical use. It can be seen from Figs. 12.10 and 12.11 that the Automated versus
Manual 1 showed a much lower bias compared to the Manual 1 versus Manual 2,
which may be caused by the Manual 2 analysis being available for a subset of only
5OCT images—because of the laboriousness of expert tracing, even when acceler-
ated with Truth marker.
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Fig. 12.12 One example of erroneous segmentation of a SEAD due to inaccurate initialization. a
Original OCT slice. b Ground truth. c Initialization. d SEAD segmentation result. Arrow points to
the mis-initialized and therefore mis-segmented SEAD

12.5.4 Segmentation of Abnormal Retinal Layers

Several methods were proposed for the retinal surface and layer segmentation [11,
28, 29, 43–45]. However, all these methods have been evaluated on datasets from
non-AMD subjects, where the retinal layers and other structures are intact. When the
retinal layers are disrupted, and additional structures are present that transgress layer
boundaries, as in exudativeAMDorDiabeticMacular Edema, segmentation becomes
exponentially more challenging. This chapter provided an idea for the abnormal
layer segmentation. The main task, the SEAD segmentation, has been tackled by
combining two auxiliary surfaces. In this process, the normal (surface) provides
constraints for the abnormal (SEAD) segmentation, and as a return, the abnormal
help refine the segmentation of normal. As shown by the experiment results (see
Fig. 12.8), whenever a successful SEAD segmentation is achieved, the segmentation
of bottom surface is also correct. This idea may also be applied to segment other
targets in abnormal data set, such as liver tumor segmentation in liver CT scans.
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Chapter 13
Modeling and Prediction of Choroidal
Neovascularization Growth Based
on Longitudinal OCT Scans

Fei Shi, Shuxia Zhu and Xinjian Chen

Choroidal neovascularization (CNV) is common in many chorioretinal diseases and
is a cause of severe visual impairment. This chapter presents a reaction-diffusion
CNV growth model based on longitudinal OCT images. It can be used to predict the
future CNV region and thus can provide guidance for the treatment planning.

13.1 Introduction

Choroidal neovascularization (CNV) refers to the growth of new but abnormal blood
vessels from the choroid and into the retina. It occurs in many chorioretinal dis-
eases such as age-relatedmacular degeneration (AMD), pathologicalmyopiamacular
degeneration and histoplasmosis. Due to the recurrent neovascular leakage and rup-
ture, the patients’ macula are seriously damaged, causing permanent visual impair-
ment.

According to pathological studies, the occurrence of CNV is highly associated
with the high concentration of vascular endothelial growth factors (VEGF) [1]. Cur-
rently intravitreal injection of anti-VEGF medicine is the most effective medical
treatment for CNV. It can both inhibit the growth of CNV and reduce the amount of
retinal fluid. However, multiple injections are usually needed, which adds to the risk
of serious ocular adverse events that can result in impairment of sight or complete loss
of vision. Moreover, this treatment is expensive and the patient-specific response is
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quite different [2]. Ideally, a patient-specific treatment planwithminimally necessary
number of anti-VEGF injections is required.

First proposed in 1991 by Huang et al. [3], optical coherence tomography (OCT)
is a non-invasive imaging technique which provides 3D cross-sectional images of
biological tissues with a high resolution. Based on the retinal OCT images, the
size, position and shape of lesion area, including cystoid edema, intraretinal and
subretinal fluid, and CNV, can be quantified, and tracking can be achieved from
longitudinal OCT scans [4–6]. Therefore OCT has become the most effective tool
for monitoring the condition of CNV. In PrONTO trial [7], also known as prospective
optical coherence tomography imaging of patients with neovascular AMD treated
with intra-ocular ranibizumab, OCT was used to help design the treatment plans
for CNV. All patients were given three intravitreal injections at 4 weeks interval
during an induction phase. After that, a variable dosing regimen was used, where
patients received injections when specific criteria were met. These criteria included
intraretinal or subretinal fluid viewed in OCT images and central retinal thickness
measured based on OCT. Figure 13.1 shows an example of retinal OCT image with
CNV.

Several previous studies focused on OCT based prediction of retinal diseases.
Bogunovic et al. [8] predicted the outcome of the anti-VEGF treatment for exudative
AMD based on a classifier using features extracted from longitudinal OCT images.
However they can only predict responder or non-responder at the end of the induction
phase instead of the future status of disease regions. In [9], Wolf-Dieter et al. pro-
posed two data-driven machine learning approaches to predicted the macular edema
recurrence caused by retinal vein occlusion (RVO). Only simple features including
the retinal thickness and the image gradient magnitude were used for quantitative
analysis.

Fig. 13.1 An example of retinal OCT image with CNV in green color. a A Bscan of the original
retinal OCT image, b CNV ground truth shown in green, c 3D visualization
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In this chapter, we introduce a CNV growth model for longitudinal OCT images
based on the reaction diffusion model [10]. Finite element method (FEM) is used to
solve the model equation. Optimal growth parameters are obtained byminimizing an
objective functionmeasuring prediction accuracy. Themethodwas tested on a dataset
with 7 patients, eachwith 12monthly-scannedOCT images. The experimental results
showed the accuracy of the proposed method.

13.2 Method

13.2.1 Method Overview

Figure 13.2 shows the framework of our method. Suppose there are N longitudinal
images for each subject in the study. The first N − 1 images are used for training,
from which the growth parameters are obtained to predict the Nth image. First,
image preprocessing, including registration and segmentation, are conducted on all
OCT images. Secondly, tetrahedral meshes are constructed for the segmented CNV
volumes and the related retinal regions. Thirdly, the CNV growth model is applied
on the first N − 1 images to get their growth parameters are learned by optimization.
Then, the growth parameter for the Nth image is estimated from the previous ones
by curve fitting, and is used in the model to obtain the predicted Nth image. The
prediction result is validated by comparing the synthesized image with the ground
truth of the Nth image.

13.2.2 Data Acquisition

Seven eyes from seven subjects diagnosed with CNV associated with AMD were
scanned once a month during a one year period. 3D OCT images with 512×128×
1024 voxels (each with size of 11.72×46.88×1.95 µm3), covering the volume of
6×6×2mm3 were obtained by Zeiss Cirrus OCT scanner (Carl ZeissMeditec, Inc.,
Dublin, CA). The subjectswere enrolled in a trial of anti-VEGFmedicine. In this trial,
patients were randomly divided into the treatment group or the reference group. The
treatment plan included two phases: the core treatment and the extended treatment.
The core treatment involved3monthly intravitreal anti-VEGF injections (conbercept,
0.5 mg), and the extended treatment meant injections in three-month intervals. The
difference between the two groups was that: the reference group started the real
treatment 3 months later than the treatment group, and was given condolences agent
in the first 3month. Figure 13.3 shows the detailed treatment plans of treatment group
and reference group, respectively. Among the 7 subjects studied in this experiment,
4 subjects were in the treatment group and the rest 3 were in the reference group.
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13.2.3 Preprocessing

In this longitudinal study, the images are collected onemonth each, and thus displace-
ment of the retina in OCT images caused by different eye position during scanning is
inevitable. Therefore, to guarantee of prediction accuracy, it is important to registrate
images so that the change of lesion area at the same positions can be measured. The
first image is set as the reference image and the other images are registered to it using
rigid transform based on manually inputted landmarks [11]. Figure 13.4 shows one
example of the registration results.

After registration, segmentation is performed to get the regions of interest, includ-
ing the CNV region and the surrounding tissues. A 3-D graph-search based method
[12, 13] is applied to segment several retinal surfaces. As shown in Fig. 13.5, sur-
faces 1–4 are first segmented, which corresponds to the upper boundary of nerve
fiber layer (NFL), the boundary between outer plexiform layer (OPL) and outer
nuclear layer (ONL), the boundary between Verhoeff’s membrane (VM) and retinal
pigment epithelium (RPE) and the Bruch membrane, respectively. Some inaccurate
segmentation results were manually corrected under the guidance of an experienced
ophthalmologist. Surface 5, defined as the lower boundary of choroid, is approxi-
mated by a surface with a fixed distance to surface 4. The CNV volume is defined as
including the voxels between surface 3 and 4. As shown in Fig. 13.5, the segmenta-
tion gives the CNV volume as well as three layers: the inner retina, the outer retina
and the choroid.

Fig. 13.4 Example of registration. a Fixed image; b moving image; c registration result
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(a) (b)

Surface 1

Surface 2

Surface 5

Surface 3
Surface 4

Fig. 13.5 Example of layer segmentation. a Original OCT image; b surface segmentation result
with local modification

13.2.4 Meshing

The ISO2Mesh method [14] is used for conducting tetrahedral meshing on the seg-
mented CNV volumes and the three retinal layers. It is a 3-D surface and volumetric
mesh generator that can produce high quality 3-D tetrahedral mesh or triangular
surfaces directly from segmented, binary or grayscale medical images [15].

Meshing procedure includes the following two steps: (1) Generating triangular
iso-surfaces with the specified density. (2) Filling the sub-volumes bounded by iso-
surfaces with tetrahedral elements. In the second step different labels can be supplied
so that the resulting FEM mesh carries sub-domains that correspond to CNV vol-
umes or the retinal layers. Figure 13.6 shows the result of retinal volumetric mesh
generation.

13.2.5 CNV Growth Model

The reaction-diffusion model [16], which is widely used in geology, biology and
physics, is used here to characterize the growth of CNV. The model describes the
spatial distribution and temporal development of certain substance. In [17–19], it
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Fig. 13.6 Retinal volumetric mesh generation. a The meshing surface; b the meshing CNV region
in red

was used to model the tumor growth. Compared with these existing ones, the model
used in this section can simulate not only the invasion of CNV, but also the shrinkage
of CNV under treatment. Specifically, we design the treatment term to represent the
effect of medicine. The model is defined as:

∂u

∂t
� f (u, t) + ∇ · (c∇u) − a · u (13.1)

where u represents the concentration of CNV, initialized as 4000, c stands for the
diffusion coefficient representing the growing of CNV towards surrounding tissues,
and a · u is the treatment term, where a is set to a constant.

The source function f is formulated following the Logistic model [20], a popular
technique for prediction of numeric values. It is defined as:

f (u, t) � ρ · u(1 − u) (13.2)

where ρ is the growth rate of CNV. Substituting (13.1) into (13.2), we can get

∂u

∂t
� ρ · u(1 − u) + ∇ · (c∇u) − a · u (13.3)

The boundary condition is enforced by

c∇u · �n∂� � 0 (13.4)

which is the Neumann boundary condition on the retinal domain �. Then, the FEM
[21, 22] is applied to solve the partial differential equations. Based on the Galerkin
method [23], the continuous problem can discretized in a subvectorial space of finite
dimension.
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Fig. 13.7 Two examples of the modeling result. a, b and c represent original image, CNV area
with green color and simulated CNV density, respectively

Figure 13.7 shows two examples of the resulting estimated CNV concentration.
The concentration map is segmented using the threshold value of 4000 to get the
simulated CNV binary image.

13.2.6 Estimation of Growth Parameters

In our CNV growth model, The parameters ρ and c need to be estimated for each
particular subject. We assume that c is a constant over time, while the value of ρ

varies with time. We define the set of parameters as θ � {ρ1, ρ2 . . . ρN−2; c}, whose
values are estimated from the longitudinal OCT images.

To get θ∗, the optimal value of θ , we minimize the objective function E(θ ) rep-
resenting overlap accuracy for the 2nd to N − 1th training data [24].

θ∗ � arg
θ

min E(θ ) (13.5)
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where

E(θ ) �
N−2∑

i�1

w · (1 − T PV F(I
∧

i+1(θ ), Ii+1))

+ (1 − w) · FPV F(I
∧

i+1(θ ), Ii+1). (13.6)

and

T PV F � |I
∧

i+1 ∩ I i+1|
|Ii+1| (13.7)

FPV F � |Ii+1| − |I
∧

i+1 ∩ Ii+1|
|I�| (13.8)

In (13.6)–(13.8), |*| represents the volume of *, I
∧

i+1 is the model-simulated CNV
region achieved from the true ith image and Ii+1 is the ground truth CNV region in
the i +1th image. The true positive volume fraction (TPVF) represents the proportion
of correctly identified CNV volume to the ground truth CNV volume, and the false
positive volume fraction (FPVF) represents the proportion of falsely predicted CNV
volume to the total background volume. In the experiment the weight w is set to 0.5
to enforce equal importance of true positive and false positive.

The optimization is achieved by genetic algorithm [25]. Using random initializa-
tion, the algorithm is run several times. With outliers excluded, the average value of
the output is taken as the optimal parameter.

The growth parameter ρN−1 for the last time point, is then estimated by curve
fitting based on the optimal value of ρ1, ρ2 . . . ρN−2.

13.3 Experimental Results

In the experiment, there are 7 subjects, each scanned at 12 time points, i.e., N � 12.
This means the reaction-diffusion model is applied to the first 11 images to compute
the prediction result for the 12th image. Then the result is validated by comparing it
with the real 12th image. The ground truth of CNV volumes are obtained by manual
segmentation in each B-scan by two experts independently. Figure 13.8a shows the
high correlation (r�0.978) of CNV volumes between ground truth I and II.

Figure 13.8b, c show the correlation of CNV volumes between the prediction
results and ground truth I, or ground truth II. From the figure, we can see that the
predicted results are highly positively correlated with both of the ground truth. The
correlation coefficient are 0.988 and 0.993 respectively. Therefore in the following
we choose ground truth I for comparison.

Figure 13.9 shows the curve fitting results of the CNV growth parameters for the
7 patients, in the treatment group and reference group, respectively. The last point in
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Fig. 13.8 a, b and c represent the correlation of ground truth I with ground truth II, the correlation
of ground truth I with the predicted results and the correlation of ground truth II with the predicted
results, respectively
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Fig. 13.9 a and b represent CNV growth parameters curve of treatment group and reference group

each curve represents the estimated parameter for the last time point. Figure 13.10
shows two examples of results of CNV growth prediction, compared with the ground
truth. The TPVF, FPVF and Dice coefficients (DC) for each subject are listed in
Table 13.1. The mean values of TPVF, FPVF and DC are 78.41, 2.44 and 79.22%,
respectively, which shows the efficacy of the proposed method to predict the future
status of CNV.
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Fig. 13.10 Two examples of CNV growth prediction results. Green regions represent ground truth
I. Red curves represent the boundary of predicted CNV regions

Table 13.1 TPVF, FPVF and
DC by comparing the
prediction results with ground
truth I

TPVF (%) FPVF (%) DC(%)

Patient T1 83.54 3.52 76.72

Patient T2 75.56 3.72 72.02

Patient T3 74.67 3.56 80.85

Patient T4 87.58 1.89 84.91

Patient R1 79.51 2.89 80.24

Patient R2 82.40 1.41 83.56

Patient R3 65.63 0.12 76.24

Mean 78.41 2.44 79.22

13.4 Conclusions

In this chapter, we present a method to predict the CNV status in the future time
under treatment from longitudinal OCT scans. This is a pioneer study for predicting
both the size and location of CNV in 3-D data. The proposed method is tested on
a dataset with 84 longitudinal OCT images collected from 7 patients under two
treatment plans. The average prediction accuracy, measured by the Dice coefficient,
is 79.22%. The linear regression analysis of the predicted results and the manually
segmented ground truth also show that they have strong correlations. Therefore the
method achieves promising results for prediction the future status of CNV.Moreover,
from the estimated CNV growth parameters for each time point (Fig. 13.9), the
patient-specific response to anti-VEGF injections can be analyzed. We can see the
drop in CNV growth rate corresponding to treatment for patients T1, T2, T3, T4, and
R3, while R1 and R2 respond little to the treatment. In summary, the information
provided by the method can be useful in clinical practice for guidance of treatment
planning.
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The method still has two limitations. First, it needs to be tested in a bigger
dataset to further prove its prediction accuracy. Secondly, to enhance its perfor-
mance, the image preprocessing methods, including registration and segmentation,
needs improvement.
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