
Comparative Analysis of Pre- and Post-
Classification Ensemble Methods for Android

Malware Detection

Shikha Badhani1(&) and Sunil K. Muttoo2

1 Maitreyi College, University of Delhi, Delhi, India
sbadhani@maitreyi.du.ac.in

2 Department of Computer Science, University of Delhi, Delhi, India
skmuttoo@cs.du.ac.in

Abstract. The influence of portable devices in our day-to-day activities is of a
concern due to possibilities of a security breach. A large number of malwares are
concealed inside Android apps which requires high-performance Android
malware detection systems. To increase the performance, we have applied
ensemble learning at feature selection level (pre-classification) and at prediction
level (post-classification). The features extracted are the API classes and for
generating the model, extreme learning machine (ELM) has been used. The filter
feature selection methods employed are Chi-Square, OneR, and Relief. The
experimental results on a corpus of 14762 Android apps show that ensemble
learning is promising and results in high performance as compared to the
individual classifier. We also present a comparison of the pre- and post-
classification ensemble approaches for the Android malware detection problem.

Keywords: Android malware � Extreme learning machine � Static analysis
Feature selection � Ensemble

1 Introduction

Android has become the fastest-growing mobile OS. According to Web analytics firm
StatCounter [1], in March 2017, Android dominated the worldwide OS internet usage
market share with 37.93% shooting ahead of even Windows. The esteem of
Android OS also reminds us of the influence of portable devices in our lives. These
devices have become the storehouse of the details that we provide to the various apps
that manage our day-to-day activities such as scheduling events, online shopping,
chatting, etc. Virginia Tech researchers [2] have recently discovered that various apps
which we use in our mobiles have been collaborating to trade information secretly. This
may result in a security breach. Even the latest initiative for enhancing Android
security, Google Play Protect [3], a new built-in antivirus program, failed in the
Android antivirus tests conducted by independent German lab AV-TEST [4]. It
detected only 65.8% of the latest malware and just 79.2% of month-old malware. Such
weak detection rates themselves highlight the need for more robust Android malware
detection tools. According to internal AV-TEST statistics [4], over 18 million malware

© Springer Nature Singapore Pte Ltd. 2018
M. Singh et al. (Eds.): ICACDS 2018, CCIS 906, pp. 442–453, 2018.
https://doi.org/10.1007/978-981-13-1813-9_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1813-9_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1813-9_44&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1813-9_44&domain=pdf

samples are concealing in Android apps. Also, many third-party application stores
provide more space for spreading malware.

The above-mentioned reasons were enough to motivate us to experiment and
explore new methods for detecting Android malware. Most of the Android malware
detection systems depend on three methods - static analysis, dynamic analysis, and
their hybrid variants. Static analysis has an edge of over dynamic analysis because it is
performed in a non-runtime environment and its ability to detect issues early before the
app is executed. However, dynamic analysis may reveal the concerns that could not be
detected during static analysis.

Various machine learning algorithms have been applied to detect Android malware
using static features [5–7]. ELM has been explored in the past for Android malware
detection [8–10]. However, in our study, we explore the effect of filter feature selection
methods and their ensembles on the performance of ELM. Also, the features used in
our study are API classes which differ from the ones used earlier (permissions, API
calls, binder, memory, battery, CPU, network, Dalvik instructions) along with ELM.

The API classes as per Android API level 26 [11] are in thousands which constitute
the features used in our study. It has been shown that insignificant features may be
removed without affecting the performance of the neural network based Intrusion
Detection Systems [12]. Thus, feature selection is an important step which not only
eliminates useless features but also results in faster execution and simplification of the
machine learning model [13]. Feature selection methods are categorized as filter
methods, wrapper methods and embedded methods. We use the filter methods for
selecting relevant features as they execute directly on the dataset and are not affected by
the biases of any classifier. Also, they are fast as compared to other methods.

As compared to single machine learning model, combining the output of multiple
prediction models known as ensemble learning, has been observed to achieve better
performance [14]. Apart from classification, ensemble approach has also been applied
to feature selection. In [15], five different filters were used to select a different subset of
features which were used to train and test different classifiers and their outputs were
combined using simple voting. In another study [16], three feature selection methods
were combined based on union, intersection and multi-intersection techniques. In our
work, we have compared the effect of performing ensemble at feature selection level
and at prediction level. Our aim is to achieve better accuracy. We experiment with
various filter feature selection methods and their ensembles and present a comparative
study of their effect on the accuracy of ELM on a corpus of 14762 Android apps.

The rest of the paper is organized as follows. Section 2 describes filter feature
selection methods. Section 3 introduces ELM. In Sect. 4, we present the research
design. Section 5 presents the experimental results and analysis. Finally, we conclude
in Sect. 6 along with possible future work.

2 Filter Feature Selection Methods

The essence of filter feature selection methods is that they rely on a statistical measure
and use a feature ranking technique as the core criteria for feature selection by ordering.
Filter methods are applied prior to the classification process to filter out less important

Comparative Analysis of Pre- and Post-Classification Ensemble Methods 443

features. The relevance of a feature is measured in terms of its usefulness in differ-
entiating between classes. Then, a ranking is generated based on the relevance and
subsets of features are selected according to a threshold value. Of the wide range of
filter feature selection methods available, we use the following three methods which
can be applied to categorical/binary data as the features extracted in our study are
binary.

• Chi-Square [17] measures the extent of independence between a feature and a class
and can be compared to the chi-square distribution with one degree of freedom to
judge extremeness. The initial assumption is that the feature and class are inde-
pendent of each other. A high score of chi-square signifies the dependence between
feature and the class and thus, the relevance of the feature.

• OneR [18] builds one rule for each feature in the dataset i.e., it learns from a one-
level decision tree and then ranks features based on the fact that features which
result in more accurate trees are considered to be more relevant.

• Relief [19] algorithm works by repeated random sampling of an instance from the
dataset, computing its nearest neighbor from the same class as well as from different
class and then calculating the worth of a feature based on its ability to discriminate
between instances from different classes.

3 Extreme Learning Machine

In this section, we describe the ELM concept. Feedforward neural networks have been
used extensively in the past decade due to their capability of approximating complex
nonlinear mappings directly from input samples and providing models for various
artificial and natural events [20]. However, one of the major bottlenecks in using
feedforward neural networks is their learning speed which is slower due to the slow
gradient-based learning algorithms that are used to train neural networks and the
iterative tuning required for all the parameters of the networks [21]. ELM [21, 22] was
originally proposed for training single hidden layer feedforward neural networks
(SLFNs). The core concept of ELM is: the hidden layers of SLFNs need not be tuned
but can be randomly assigned independently and a simple generalized inverse operation
of the hidden layer output matrix can be used to determine the output weights of the
network [21]. Since there is no iterative tuning involved like in gradient descent based
learning algorithms, ELM is fast and easy to implement. ELM also intends to reach
smallest training error and smallest norm of output weights [21, 22]. Apart from the
above advantages, studies have shown that it has less computational complexity,
nominal optimization constraints, better scalability, and generalization performance.

Given N unique samples of input data, the SLFN with L hidden nodes (additive or
RBF nodes) is represented as:

fL xð Þ ¼
XL

i¼1
biG ci; ai; xð Þ ð1Þ

444 S. Badhani and S. K. Muttoo

where (ci, ai) are the learning parameters of the ith hidden node, bi is the weight vector
linking ith hidden node to the output node, G(ci, ai, x) is the output of the ith hidden
node w.r.t the input x.

The fact that standard SLFNs with L hidden nodes can approximate the N input
samples (xj, tj) � R

n x Rm with zero error implies that there exist bi, ci, and ai such that

XL

i¼1
biG ci; ai; xð Þ ¼ tj; j ¼ 1; 2; . . .;N ð2Þ

The above equation can be compactly written as

Hb ¼ T ð3Þ

where,

H c1; . . .cL; a1; . . .aL; x1; . . .xNð Þ ¼
G c1; a1; x1ð Þ � � � G cL; aL; x1ð Þ

..

. . .
. ..

.

G c1; a1; xNð Þ � � � G cL; aL; xNð Þ

2
64

3
75
N�L

b ¼
bT1
..
.

bTL

2
64

3
75
L�m

; T ¼
tT1
..
.

tTN

2
64

3
75
N�m

bT is the transpose of vector b. H is called as the hidden layer output matrix [23]. The
ith row of H is the output vector of the hidden layer w.r.t input xi and the jth column of
H is the jth hidden node’s output vector w.r.t inputs x1, x2,…, xN. Now the hidden node
parameters ci and ai need not be tuned and may be assigned randomly. It has been
proved in theory [22, 24, 25] that SLFNs with randomly chosen additive or RBF
hidden nodes have the potential of universal approximation. Thus, independent of the
training data, the hidden nodes can be generated randomly, i.e., for N unique samples
of training data, randomly generated L (�N) hidden nodes, the output vector T and
output matrix of the hidden layer H comprise a linear system and the output weights b
are estimated as:

b̂ ¼ H þ T ð4Þ

where H+ is the Moore-Penrose generalized inverse [26] of H. Thus, the output weights
can be calculated in a single step without any iterative tuning of any control parameters.

The ELM algorithm can be summarized as follows [21]:
Given a training set xi; tið Þf gNi¼1� Rn � Rm, the hidden node output function G(ci,

ai, x) and L hidden nodes:

1. Randomly assign hidden node parameters (ci, ai), i = 1,2,……, L;
2. Calculate output weight vector b: b = H+T.

Comparative Analysis of Pre- and Post-Classification Ensemble Methods 445

4 Research Design

The research framework of this study is shown in Fig. 1. Our work uses static features
(API classes). Three filter feature selection methods (Chi-Square, OneR, and Relief) are
used to generate three subsets of features which were combined by taking the union of
them for the simple reason of using the maximum possible relevant features and then
classification is performed on this combined subset. This is referred to as pre-
classification ensemble approach and the rationale behind this approach is to take
advantage of the strengths of individual selectors and release the burden of deciding
which feature selection would work for a domain [27]. In another experiment, the
feature subsets generated by the three filter feature selection methods are used to train
and test three classifiers whose outputs are aggregated using ensemble technique of
majority vote which is referred to as the post-classification ensemble approach and the
concept behind this approach is that combining multiple classifiers results in more
robust solutions [28] and if the features selected by each feature selection methods are
diverse, so will be their classifications and hence, the better the ensemble would be. In
the majority voting, every classifier makes a prediction (votes) for each instance of the
test set and the final prediction is the one that receives maximum votes. The classifier
used in all experiments must be unique in order to make comparisons and we use the
ELM classifier for the same. Ensemble learning has been used earlier for Android
malware detection [6, 8, 29, 30] to improve the performance of the model since it is
based on the concept of diversity and generalization. In our study, we compare the
introduction of diversity at the feature selection level vs prediction level.

Fig. 1. Research framework

446 S. Badhani and S. K. Muttoo

4.1 Dataset Preparation

Dataset is prepared using 7381 benign and 7381 malicious Android apps. The benign
dataset is downloaded from Google play store [31] and the malicious dataset is con-
stituted from samples collected from various sources (AndroTracker [32], Drebin
database [33], Virus Total [34]). The dataset is partitioned into the training set (70%)
and the test set (30%). To generalize the performance, 10-fold cross-validation was
performed while generating classifier models in our experiment.

4.2 Feature Extraction

The Android API level 26 consists of 4140 API classes. Thus, we set the corresponding
API class feature to 1 if an API belonging to that class is used in an app. For reverse
engineering the Android app, Androguard tool [35] is used. Thus, a total of 4140
binary features are extracted.

4.3 Implementation Details

Firstly, features having zero variance are removed from the dataset as they contribute
nothing to classification. After removal, we were left with 2392 features. Now, three
filter feature selection methods (Chi-Square, OneR, and Relief) are applied on these
2392 features to generate three feature rankings. Most works in the previous research
use several thresholds that hold different percentages of most relevant features [36].
However, the thresholds are dependent on the dataset being used. For our study, we use
six different threshold values to reduce the dimension of data, including log2(n)
threshold, where n is the total number of features, following recommendations from
literature to select log2(n) metrics for software quality prediction [37]. The other five
are the top 1%, 5%, 25%, 50%, and 75% of the most relevant features of the final
ordered ranking obtained from each filter feature selection method. The classifier used
in all the experiments is ELM.

In the pre-classification ensemble approach, we take union of the feature subsets for
each of the six thresholds, generated by the three filter feature selection methods, which
is then used for classification.

In the post-classification ensemble approach, each feature subset generated is used
separately for classification thus resulting in three individual classifiers. Then, the
output of each classifier is combined by using the majority vote.

R statistical software [38] is used to perform the experiments. For feature selection,
we used the FSelector package [39] and for performing classification using ELM, we
used the elmNN package [40].

4.4 Evaluation Measures

In this research, to assess the effectiveness of our proposed system, we analyzed the
following measures: Accuracy (percentage of correctly identified applications); preci-
sion (percentage of actual malicious apps amongst the predicted malicious apps); recall
(percentage of actual malicious apps predicted amongst the total malicious apps); F-

Comparative Analysis of Pre- and Post-Classification Ensemble Methods 447

measure (harmonic mean of precision and recall); and area under Receiver Operating
Characteristic (ROC) curve. ROC curve is a graphical plot that illustrates how a
diagnostic ability of a classifier change as the internal threshold changes. The area
under ROC curve summarizes the performance of a classifier in a single number. It
varies between 0 and 1. As it reaches 1, the classifier has better performance.

5 Experimental Results and Analysis

In our experiments, we apply the proposed framework to predict Android malware. In
this section, we present the performance measure scores achieved by 10-fold cross-
validation criterion of the following experiments - single ELM classifier, three indi-
vidual feature selection based ELM classifiers (Chi-Square ranked features+ELM,
OneR ranked features+ELM, Relief ranked features+ELM), pre-classification ensemble
and lastly, post-classification ensemble. The accuracy, precision, recall, F-measure, and
area under ROC curve for six different thresholds values of selected features are shown
in Tables 1, 2, 3, 4 and 5 respectively.

As shown in Table 1, for all the thresholds, the accuracy of the post-classification
ensemble is on a higher side than the accuracies achieved by each individual feature
selection method, but it is less than the accuracy achieved by the pre-classification
ensemble for low threshold values. Also, the pre-classification ensemble outperforms
the individual feature selection methods only for the low value of thresholds, and as the
number of features increases, the accuracies show no improvement. The highest
accuracy (0.9496) is achieved by the pre-classification ensemble for the top 1% of
features. The prediction accuracy of single ELM classifier using all the features is
0.9264. Thus, the introduction of ensemble increased the accuracy by 2.32%. Due to
the fact that there may be a lot of irrelevant features introduced in the union combi-
nation when the threshold increases, the accuracy of the pre-classification ensemble
degrades. However, as we can see that the post-classification ensemble is more immune
to the introduction of irrelevant features, irrespective of the threshold, it results in the
increase in accuracy as compared to the individual feature selection methods.

Table 1. Comparison of prediction accuracy

Feature
threshold

Chi-Square
+ELM

OneR
+ELM

Relief
+ELM

Pre-classification
ensemble

Post-classification
ensemble

Log2
(n = 2392)

0.9332 0.9338 0.8598 0.9438 0.9338

1% 0.9377 0.9363 0.9097 0.9496 0.9379
5% 0.9399 0.9298 0.9404 0.9429 0.9417
25% 0.9352 0.9246 0.937 0.9402 0.9388
50% 0.9379 0.9189 0.9404 0.9313 0.9415
75% 0.9336 0.9329 0.9343 0.9205 0.9404
100% 0.9264

448 S. Badhani and S. K. Muttoo

As shown in Tables 2 and 3, highest precision (0.9426) is again achieved by the
pre-classification ensemble with top 1% of features but the post-classification ensemble
exhibits the highest recall (0.9684) for the top 25% of features. Although the precision
and recall values fluctuate for the pre- and post-classification ensembles, but the F-
measure follows the same pattern as the accuracy as shown in Table 4, with the post-

Table 2. Comparison of precision

Feature
threshold

Chi-Square
+ELM

OneR
+ELM

Relief
+ELM

Pre-classification
ensemble

Post-classification
ensemble

Log2
(n = 2392)

0.9255 0.9252 0.8752 0.9349 0.9256

1% 0.928 0.9274 0.8978 0.9426 0.928
5% 0.9395 0.9355 0.9333 0.9371 0.9386
25% 0.9303 0.92 0.9279 0.9269 0.9282
50% 0.9195 0.9106 0.9206 0.9081 0.9252
75% 0.9163 0.9158 0.9111 0.9009 0.9258
100% 0.9129

Table 3. Comparison of recall

Feature
threshold

Chi-Square
+ELM

OneR
+ELM

Relief
+ELM

Pre-classification
ensemble

Post-classification
ensemble

Log2
(n = 2392)

0.9422 0.944 0.8392 0.9539 0.9435

1% 0.949 0.9467 0.9246 0.9575 0.9494
5% 0.9404 0.9232 0.9485 0.9494 0.9453
25% 0.9408 0.93 0.9476 0.9557 0.9684
50% 0.9598 0.9291 0.9639 0.9598 0.9607
75% 0.9544 0.9535 0.9625 0.9449 0.9575
100% 0.9426

Table 4. Comparison of F-measure

Feature
threshold

Chi-Square
+ELM

OneR
+ELM

Relief
+ELM

Pre-classification
ensemble

Post-classification
ensemble

Log2
(n = 2392)

0.9338 0.9345 0.8568 0.9443 0.9345

1% 0.9384 0.937 0.911 0.95 0.9386
5% 0.94 0.9293 0.9409 0.9432 0.9419
25% 0.9355 0.925 0.9377 0.9411 0.9395
50% 0.9392 0.9197 0.9417 0.9332 0.9426
75% 0.935 0.9343 0.9361 0.9224 0.9414
100% 0.9276

Comparative Analysis of Pre- and Post-Classification Ensemble Methods 449

classification ensemble resulting in higher F-measure as compared to the individual
feature selection methods for all thresholds and the pre-classification ensemble
resulting in higher F-measure values for lower thresholds (highest F-measure of 0.95
for the top 1% of features) and then degrading as the threshold increases. As compared
to the single ELM classifier results, the introduction of ensemble increases the precision
by 2.97%, recall by 2.58% and F-measure by 2.24%. Table 5 illustrates that even area
under the ROC curve increased by 1.24% for the ensemble in comparison to the single
ELM classifier. The area under the ROC curve also complies with the accuracy and F-
measure results with the highest area value of 0.9864 for the pre-classifier ensemble
with top 1% of the features.

6 Conclusion

Android malware detection systems require classifiers with high accuracies. One of the
ways of improving the accuracy has been the use of ensemble learning. In this paper,
we employ ensemble learning at the feature selection level and at the prediction level to
address the problem of Android malware detection. API classes are extracted from
Android apps that constitute our binary feature set. At the feature selection level, we
used three filter feature selection methods and combined their feature subsets by using
the union combination where all the features selected by each of the three feature
selection methods are used. Thus, ensemble learning is performed prior to classification
and hence the name pre-classification ensemble. At the prediction level, ensemble
learning is performed by taking the majority vote of the predictions of three individual
classifiers trained on each of the feature subsets generated by the three filter feature
selection methods. This approach is referred to as post-classification ensemble since
ensemble learning is performed after classification. The significance of ensemble not
only lies in the improved performance of the models as confirmed by the experimental
results but it also relieves from the burden of selecting an appropriate feature selection
method or classification algorithm for a specific dataset. The results indicate that the
pre-classification ensemble performs good for low values of the threshold of feature
subsets and then starts degrading as the threshold increases, the reason being

Table 5. Comparison of area under ROC curve

Feature
threshold

Chi-Square
+ELM

OneR
+ELM

Relief
+ELM

Pre-classification
ensemble

Post-classification
ensemble

Log2
(n = 2392)

0.9602 0.9572 0.9321 0.9792 0.9697

1% 0.9633 0.9664 0.9618 0.9864 0.9746
5% 0.9695 0.9663 0.9777 0.9805 0.9802
25% 0.9669 0.9649 0.9798 0.9788 0.9830
50% 0.9733 0.9602 0.9768 0.9723 0.9795
75% 0.9673 0.9679 0.9737 0.9665 0.9784
100% 0.974

450 S. Badhani and S. K. Muttoo

introduction of irrelevant features. However, the post-classification ensemble is not
affected by the thresholds as the predictions are now based on majority vote of three
individual feature selection methods based classifiers.

As future work, we propose to compare the pre- and post-classification ensemble
strategies for other machine learning algorithms. Also, we used only those filter
methods that can be applied to binary data. The same can be explored with numeric
features and other filter feature selection methods.

References

1. Simpson, R.: Android overtakes Windows for first time. http://gs.statcounter.com/press/
android-overtakes-windows-for-first-time

2. Loeffler, A.: Virginia Tech researchers: Android apps can conspire to mine information from
your smartphone. https://vtnews.vt.edu/articles/2017/03/eng-compsci-androidapps.html

3. Google Play Protect. https://www.android.com/play-protect
4. AV-TEST: Android Security Apps Provide Better Protection than Google Play Protect.

https://www.av-test.org/en/news/news-single-view/android-security-apps-provide-better-
protection-than-google-play-protect/

5. Yerima, S.Y., Sezer, S., McWilliams, G., Muttik, I.: A new android malware detection
approach using Bayesian classification. In: 2013 IEEE 27th International Conference on
Advanced Information Networking and Applications, pp. 121–128 (2013)

6. Idrees, F., Rajarajan, M., Conti, M., Chen, T.M., Rahulamathavan, Y.: PIndroid: a novel
Android malware detection system using ensemble learning methods. Comput. Secur. 68,
36–46 (2017)

7. Zhu, H.J., You, Z.H., Zhu, Z.X., Shi, W.L., Chen, X., Cheng, L.: DroidDet: effective and
robust detection of android malware using static analysis along with rotation forest model.
Neurocomputing 272, 638–646 (2018)

8. Zhang, W., Ren, H., Jiang, Q., Zhang, K.: Exploring feature extraction and ELM in malware
detection for android devices. In: Hu, X., Xia, Y., Zhang, Y., Zhao, D. (eds.) ISNN 2015.
LNCS, vol. 9377, pp. 489–498. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25393-0_54

9. Demertzis, K., Iliadis, L.: Bio-inspired hybrid intelligent method for detecting android
malware. Adv. Intell. Syst. Comput. 416, 289–304 (2016)

10. Sun, Y., Xie, Y., Qiu, Z., Pan, Y., Weng, J., Guo, S.: Detecting android malware based on
extreme learning machine. In: 2017 IEEE 15th International Conference on Dependable,
Autonomic and Secure Computing, 15th International Conference on Pervasive Intelligence
and Computing, 3rd International Conference on Big Data Intelligence and Computing and
Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 47–
53 (2017)

11. Class Index. https://developer.android.com/reference/classes.html
12. Sung, A., Mukkamala, S.: Identifying important features for intrusion detection using

support vector machines and neural networks. In: Proceedings of the 2003 Symposium on
Applications and the Internet, pp. 3–10 (2003)

13. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn.
Res. 3, 1157–1182 (2003)

14. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy. Mach. Learn. 51, 181–207 (2003)

Comparative Analysis of Pre- and Post-Classification Ensemble Methods 451

http://gs.statcounter.com/press/android-overtakes-windows-for-first-time
http://gs.statcounter.com/press/android-overtakes-windows-for-first-time
https://vtnews.vt.edu/articles/2017/03/eng-compsci-androidapps.html
https://www.android.com/play-protect
https://www.av-test.org/en/news/news-single-view/android-security-apps-provide-better-protection-than-google-play-protect/
https://www.av-test.org/en/news/news-single-view/android-security-apps-provide-better-protection-than-google-play-protect/
http://dx.doi.org/10.1007/978-3-319-25393-0_54
http://dx.doi.org/10.1007/978-3-319-25393-0_54
https://developer.android.com/reference/classes.html

15. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: An ensemble of filters and
classifiers for microarray data classification. Pattern Recogn. 45, 531–539 (2012)

16. Tsai, C.F., Hsiao, Y.C.: Combining multiple feature selection methods for stock prediction:
union, intersection, and multi-intersection approaches. Decis. Support Syst. 50, 258–269
(2010)

17. Imam, I.F., Michalski, R.S., Kerschberg, L.: Discovering attribute dependence in databases
by integrating symbolic learning and statistical analysis techniques. In: Proceedings of the
1st International Workshop on Knowledge Discovery in Databases, Washington, DC, pp. 1–
13 (1993)

18. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets.
Mach. Learn. 11, 63–90 (1993)

19. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new
algorithm. In: Proceedings of AAAI 1992, pp. 129–134 (1992)

20. Ding, S.F., Xu, X.Z., Nie, R.: Extreme learning machine and its applications. Neural
Comput. Appl. 25, 549–556 (2014)

21. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of
feedforward neural networks. In: Proceedings of the IEEE International Joint Conference on
Neural Networks, pp. 985–990 (2004)

22. Huang, G.-B.B., Zhu, Q.-Y.Y., Siew, C.-K.K.: Extreme learning machine: theory and
applications. Neurocomputing 70, 489–501 (2006)

23. Huang, G.B.: Learning capability and storage capacity of two-hidden-layer feedforward
networks. IEEE Trans. Neural Netw. 14, 274–281 (2003)

24. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70,
3056–3062 (2007)

25. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive
feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17, 879–892
(2006)

26. Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications, vol. 7. Wiley,
New York (1971)

27. Petrakova, A., Affenzeller, M., Merkurjeva, G.: Heterogeneous versus homogeneous
machine learning ensembles. Inf. Technol. Manag. Sci. 18, 135–140 (2015)

28. Dietterich, T.G.: Ensemble methods in machine learning. In: International Workshop on
Multiple Classifier Systems, pp. 1–15 (2000)

29. Aswini, A.M., Vinod, P.: Android malware analysis using ensemble features. In:
Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804,
pp. 303–318. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12060-7_20

30. Sheen, S., Anitha, R., Natarajan, V.: Android based malware detection using a multifeature
collaborative decision fusion approach. Neurocomputing 151, 905–912 (2015)

31. Google Play. https://play.google.com
32. Kang, H., Jang, J.W., Mohaisen, A., Kim, H.K.: Detecting and classifying android malware

using static analysis along with creator information. Int. J. Distrib. Sens. Netw. 2015 (2015)
33. Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H., Rieck, K.: DREBIN: effective and

explainable detection of android malware in your pocket. In: Symposium on Network and
Distributed System Security, pp. 23–26 (2014)

34. Virus Total. https://www.virustotal.com/
35. Androguard. https://github.com/androguard/androguard
36. Bolon-Canedo, V., Sanchez-Marono, N., Alonso-Betanzos, A.: A review of feature selection

methods on synthetic data. Knowl. Inf. Syst. 34, 483–519 (2013)
37. Wang, H.: A comparative study of ensemble feature selection techniques for software defect

prediction. Mach. Learn. Appl. 135–140 (2010)

452 S. Badhani and S. K. Muttoo

http://dx.doi.org/10.1007/978-3-319-12060-7_20
https://play.google.com
https://www.virustotal.com/
https://github.com/androguard/androguard

38. R Development Core Team: R: a language and environment for statistical computing. The R
Foundation for Statistical Computing, Vienna, Austria (2005)

39. Romanski, P., Kotthoff, L.: FSelector: Selecting Attributes. https://cran.r-project.org/
package=FSelector

40. Gosso, A.: elmNN: implementation of ELM (Extreme Learning Machine) algorithm for
SLFN (Single Hidden Layer Feedforward Neural Networks). https://cran.r-project.org/
package=elmNN

Comparative Analysis of Pre- and Post-Classification Ensemble Methods 453

https://cran.r-project.org/package%3dFSelector
https://cran.r-project.org/package%3dFSelector
https://cran.r-project.org/package%3delmNN
https://cran.r-project.org/package%3delmNN

	Comparative Analysis of Pre- and Post-Classification Ensemble Methods for Android Malware Detection
	Abstract
	1 Introduction
	2 Filter Feature Selection Methods
	3 Extreme Learning Machine
	4 Research Design
	4.1 Dataset Preparation
	4.2 Feature Extraction
	4.3 Implementation Details
	4.4 Evaluation Measures

	5 Experimental Results and Analysis
	6 Conclusion
	References

