
Parallelization of Protein Clustering Algorithm
Using OpenMP

Dhruv Dhar(&), Lakshana Hegde, Mahesh S. Patil,
and Satyadhyan Chickerur

Department of Computer Science and Engineering, B.V.B College of
Engineering and Technology, Centre for High Performance Computing,

KLE Technological University, Hubballi 580031, Karnataka, India
dhruvdhar1@gmail.com, lakshanaghegde@gmail.com,

mahesh_patil@bvb.edu, chickerursr@kletech.ac.in

Abstract. Proteins are the building blocks of all living organisms and its
analysis can help us to understand the bimolecular mechanics of living
organisms.
Protein clustering attempts to group similar protein sequences and has diverse

applications in bioinformatics. However, this operation faces various compu-
tational challenges because of dependency on complex data structures, high
memory usage and irregular memory access patterns. In genome studies, the
time consideration for alignment is also an important parameter and should be
minimized.
Conventional solutions have rather been unsuccessful in achieving decent

runtime performance because these algorithms are designed for serial compu-
tation which means that they use a single processor to perform computations.
These algorithms can be improved upon by modifying them to use multiple
processing elements.
The purpose of this research is to modify existing protein clustering algorithm

and apply parallelization techniques on them in order to optimize protein
sequencing operation for faster results without sacrificing accuracy.

Keywords: Proteins � Protein clustering � Bioinformatics � Protein sequences
Serial computation � Parallelization

1 Introduction

Clustering or cluster analysis is the process of grouping objects in such a way that the
objects within a group have more similarities to each other than the objects in other
groups. Each group is referred to as a cluster. Each cluster can have different size and
the number of clusters that will be generated is not known at input. Clustering process
can also be employed to find out the relationship between each cluster.

Clustering has numerous applications in the field of computational biology some of
which include sequence analysis, clustering similar genes based on microarray data,
gene expression analysis. In this paper, our focus will be on using cluster analysis for

© Springer Nature Singapore Pte Ltd. 2018
M. Singh et al. (Eds.): ICACDS 2018, CCIS 906, pp. 108–118, 2018.
https://doi.org/10.1007/978-981-13-1813-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1813-9_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1813-9_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1813-9_11&domain=pdf

grouping similar protein sequences. Our work is based on the serial pclust algorithm by
Ananth et al.

Though clustering may seem to be a powerful algorithm for bioinformatics, its use
is limited and it cannot be applied to all projects. This is because clustering is a data-
intensive process and can easily become compute-intensive as well [3, 4].

The performance of the serial implementation of these algorithms is generally
limited. These algorithms also face scalability issues. That is why the serial pclust
algorithm does not scale beyond 15K–20K sequences on a desktop computer with
2 GB of RAM due to memory requirements [3, 4].

Parallelization techniques can be used to improve these algorithms. Parallelization
can not only help in improving the run-time performance but can also help in achieving
higher scalability with better results. We have tried to leverage multi-core computing
architecture to solve the problem of protein clustering in parallel. In this project, we use
OpenMP which is a shared memory parallelization library. OpenMP allows the pro-
grammer to explicitly create multiple threads. A thread is a basic unit of execution and
can be scheduled parallelly onto multiple cores for simultaneous execution of multiple
tasks. We have chosen OpenMP because it is easy to use compared to some con-
ventional multi-threading libraries like POSIX and MPI.

While writing parallel programs, it should be made sure that all the threads are
properly synchronized. Improper or incorrect synchronization may cause race condition
leading to the generation of incorrect results. OpenMP provides various synchroniza-
tion constructs like barrier, atomic and critical. However, it should also be noted that
there is a certain amount of overhead associated with these constructs so the use of
synchronization constructs must be minimized within the code.

This modified pclust algorithm which we have named as “pclust-v7” stands out
from the conventional pclust algorithm not only because it provides better performance
and output but also it offers better output visualization by use of bar graphs and pie
charts. We have deployed our code in the cloud which helps us to achieve better
security and flexibility of use. The software can be accessed from any client device at
any location.

2 Literature Survey

With the evolution of high-performance workstations, parallel computing has attracted
a lot of interest. In parallel computing, an application is designed in such a way that it
can run on multiple processing elements simultaneously. For example, consider a for
loop with 8 iterations and each iteration requires 1 unit of processing time. If we run the
for loop on a single processor, the for loop will consume 8 units of time. Now consider
a computing system with 4 processing elements. The for loop iterations are divided
among the 4 processing elements so each processor gets 2 iterations to compute. If each
of these processors perform their computations parallelly, the system would require
only 2 units of time for computation leading to 4 times performance gain. Under the
practical scenario, this is not the case as there are many overheads associated with
parallel programs including synchronization overheads, idling, and load imbalances. It
is the responsibility of the developer to minimize these overheads.

Parallelization of Protein Clustering Algorithm Using OpenMP 109

Our survey showed us that parallel computing is one of the best ways that can be
used to optimize computation. Parallel computing has been employed in various areas
of computational research for a long time. We tried different kinds of parallelization
techniques on different algorithms before applying them on the pclust algorithm and
noticed that parallelization significantly improves application performance for large
input.

In spite of the numerous applications of clustering in computational biology, it is
considered a dampening computational task due to involved complexities. In compu-
tational biology, it is also difficult to find suitable datasets.

There are two major classes of clustering methods which are hierarchical clustering
and partitioning. In hierarchical clustering, each cluster is subdivided into smaller
clusters, leading to a tree-shaped structure or a Dendrogram [15]. In partitioning
method, the data is divided into a predetermined number of subsets where there is no
hierarchical relationship between clusters [15]. The quality of clusters can be evaluated
based on how compact and well separated the clusters are.

In biological areas, graph algorithms are widely used in biology network field such
as drug target test, sequencing analysis, and alignment in getting to know the functions
of various proteins and genes, to find the relationship between diseases and determining
the antidote for them.

Biological research areas involve large computations involved in the field of
molecular biology such as molecular modelling and developing an algorithm for
analysis. Computations are also utilized by biogenetics, neural sciences etc.

As they involve a large number of computations and network analysis along with
large datasets required for accurate results, it is better and more efficient to use parallel
programming, as it would assist to reduce the time taken and often scales with the
increase in the dataset. It also helps in making the program independent of the physical
constraint of operating on a single processor (memory constraints etc.).

Clustering is one of the first steps carried out while performing gene expression
analysis. This program focusses solely on clustering of proteins i.e. grouping similar
proteins together. It uses shingling approach developed by Gibson et al. to perform
clustering of protein molecules. This clustering algorithm can be used in various
biological research fields. It is very important in the field of gene clustering where
clustering similar genes are grouped to infer a function for each group. The clustering
algorithm used in pclust can be used for gene clustering also. Optimizing the clustering
process can help us to significantly reduce the time for performing expression analysis
and other methods that involve biological clustering as a major step.

Before Pclust, BLAST algorithm was used universally for sequence alignment. In
spite of its widespread use, BLAST cannot guarantee optimal alignment of sequences.
The serial Pclust program makes use of shingling algorithm which occurs in two stages.
In shingling algorithm, denser subgraphs are created if the vertices share s of their out
links as such vertices are grouped together. As the value of s grows the probability that
two vertices share the same shingle decreases. The algorithm develops c random
shingles at the beginning for vertex v. As the value of c increases, the density of sub
graphs also increases. Pclust works in three stages:

110 D. Dhar et al.

1. Shingling Phase I
2. Shingling Phase II
3. Connected Component Detection.

All these stages involve different types of computation but the basic parallelization
techniques remain the same.

Several previous attempts have also been made in the same field. These have been
discussed below:

• Pclust-sm: A parallel approach was developed by Ananth et al., for his OpenMP
based implementation for clustering of biological graphs [3]. In his paper, he dis-
cusses use of hash tables instead of quick sort algorithm in order to reduce time
complexity of the algorithm and thus reduce the overall runtime. Hash table is used
to group together all the vertices generating a given shingle, thus eliminating the
need for a separate sorting algorithm.

• Pclust-mr: We also came across a multistage MapReduce based implementation of
serial graph clustering heuristic also developed by Ananth et al. [11]. The under-
lying algorithm transforms the Shingling heuristic operation into a combination of
standard MapReduce primitives such as map, reduce and group/sort [11]. The
algorithm was implemented and tested on a Hadoop cluster with 64 cores which did
not perform very well.

3 Proposed Solution

A solution has been proposed to improve the performance of pclust protein clustering
algorithm. This solution makes use of OpenMP library and involves the following
steps:

1. Identifying the contention spots in the algorithm.
2. Determining how parallelization can be used to reduce or eliminate contention.
3. Applying OpenMP constructs to the algorithm.
4. Testing the parallelized algorithm for errors such as race condition and comparing

its performance to the serial algorithm.
5. Verifying the results produced by the parallelized algorithm.

The algorithm involves a 2-pass Shingling process. The main idea of the Shingling
algorithm is as follows: Intuitively, two vertices sharing a shingle. The algorithm seeks
to group such vertices together and use them as building blocks for dense sub graphs
[3, 4, 11, 16]. The input to the algorithm is a FASTA file with n sequences, variables s
and c. Variables s and c denote the size of shingle and the number of trials respectively.
Larger the value of s, lesser the probability that two vertices share a shingle. The
parameter c is intended to create the opposite effect [3].

We start the parallelization process by modifying the init_vars function which is
used to allocate memory to different variables. In the following code, allocation of one
variable is completely independent from the allocation of other variables so rather than
executing these statements serially, they can be run parallelly on different processors
using the section construct. Consider the following code:

Parallelization of Protein Clustering Algorithm Using OpenMP 111

Next, we parallelize the free_vars function which is used to deallocate the variables.
Here we are using the same approach as init_vars. However, instead of using separate
sections for each free (memory deallocation) statement, we put four free statements
inside one section. This will schedule four free statements to a single processor. We do
this because the deallocation process is relatively less time taking. So if we schedule
each free statement to a single processor, the overhead increases which is undesirable.
Consider the following code:

We are only adding OpenMP constructs to the code and not modifying the logic of
the algorithm until required. It is also important to note that some parts of the algorithm
cannot be parallelized due to presence of I/O bound statements.

Parallelization can only be performed on CPU bound statements. For example,
consider the function shingle which adds a lot to the total overhead due to presence of
many for loops which are highly dependent on I/O.

It is very evident that for loops are the major contention spots in a program.
Optimizing these loops can help to improve the run-time performance of the code. One

112 D. Dhar et al.

method of optimizing them can be by splitting the iterations and scheduling them on
multiple processors.

Functions like free_hash(), free_gid_hash(), free_adjList(), free_sgl(), init_union(),
init_vidmap() have for loops with CPU bound statements which can effectively be
parallelized by using #pragma omp parallel for directive. Parallelizing these loops
effectively reduce the time for which these loops run thus improving the overall per-
formance. Consider the following for loops:

In both the code snippets, shared(i) has been used because variable i has to be
shared among all the threads. Schedule(dynamic, n) means that n iterations will be
dynamically allocated to any one of the available processors. Apart from the for
construct, we also used constructs like task and other synchronization constructs like
atomic and critical to making the algorithm more efficient and reliable.

A GUI interface was also created and attached with the algorithm for easy access to
the algorithm. The GUI interfaces were created using Qt creator which produces ‘.ui’
files as output. These ‘.ui’ files were later converted to python files using piuic4
command. The graphs were created using python Matplotlib library. These python
interfaces were attached to the c code. Following are some of the screenshots (Figs. 1,
2):

Figure 3 shows a bar graph which describes the number of members in each cluster
having more than one member. This graph shows an overall trend that can be used to
get quick insights.

Parallelization of Protein Clustering Algorithm Using OpenMP 113

4 Results

In order to evaluate performance, both the serial and the parallel algorithms were
deployed on the same machine and were run one after the other and the results were
compared. The machine used by us had a 16 thread Intel Xeon-E5 2.3 GHz processor
coupled with 32 GB memory. The dataset used was a FASTA file with 2230 protein
sequences. The protein sequences look like following:

Fig. 1. Shows the command line interface present in the original pclust algorithm. The
command line arguments -f, -n, -s, -c denote the name of file, number of vertices, size of shingle
and number of trials respectively.

Fig. 2. Graphical user interface for the new
program Pclust-v7.

Fig. 3. Graph of cluster number v/s number
of members

114 D. Dhar et al.

Figure 5 shows the side by side runtime performance comparison between both the
algorithms for s = 15. Note that we have randomly chosen s value as 15 but other
values can also be used. We have kept the number of processing elements constant here
(16). The blue bars denote the time taken by the serial pclust algorithm whereas the
green bars denote the time taken by the parallel pclust-v7 algorithm.

We can infer from the graph that for large values of c, the performance gain is also
higher. This happens because the total parallel overhead function, To is a function of
both, problem size (W) and number of processing elements (p) used [1].

W ¼ KTo W; pð Þ ð1Þ

In many cases, the overhead increases sub-linearly with respect to the problem size. In
such cases, the efficiency increases if the problem size is increased keeping the number
of processing elements constant (in this case: 16). So the performance gain will con-
tinue to increase with increasing input size (Fig. 5). The following table shows the time
taken for both the algorithms to complete clustering for various values of c (Table 1):

Fig. 4. Flow diagram listing all the processes involved in the algorithm.

Parallelization of Protein Clustering Algorithm Using OpenMP 115

The final output file displays clusters in the following format:

Fig. 5. Performance analysis of serial and parallel algorithms side by side for s = 15

Table 1. The run-time (in seconds) of pclust and pclust-v7 on various input for s = 15. The
variable t denotes the number of threads.

Number of trials Pclust runtime
(seconds)

Pclust-v7
runtime (s)
t = 4 t = 16

C = 200 6.23 5.89 4.6
C = 400 17.65 15.48 12.23
C = 600 33.84 30.87 27.56
C = 800 58.44 52.69 45.30
C = 1000 85.24 76.57 68.65

116 D. Dhar et al.

5 Conclusion and Future Scope

This paper describes a method to parallelize a protein clustering algorithm to make it
more efficient. This algorithm performs better with large input as compared to the
standard algorithm and also offers easy usage. The use of graphs also provides better
output visualization. This algorithm is deployed on cloud, so hardware scaling can also
be done flexibly when the need arises. The ability of pclust-v7 to cluster the proteins of
hundreds of organisms on a desktop computer in a matter of minutes will allow
scientists to conduct their research without the need to access expensive clustered
computers.

Pclust algorithm has shown itself as a practical substitution for BLAST algorithm.
In the future, we plan to extend the parallelization by use of libraries like CUDA which
enables the algorithm to be executed on powerful GPUs instead of CPU. The scope of
parallel computing is not just limited to bioinformatics but it can also be applied to
other domains like Big Data, image processing, 3D-simulations, artificial intelligence
etc.

The implementation discussed herein may not be highly precise and can still be
improved further for higher accuracy.

Acknowledgements. The research was performed at Centre for High Performance Computing,
KLE Technological University under the guidance of Prof. Mahesh S. Patil and Prof. Satyad-
hyan R Chickerur.

References

1. Grama, A.: Introduction to Parallel Computing, 2nd edn. Addison-Wesley, Boston (2003)
2. Bioinformatics and Computational Biology Group, School of Electrical Engineering and

Computer Science, Washington State University (2015–2016). Pclust Manual
3. Chapman, T., Kalyanaraman, A.: An OpenMP algorithm and implementation for clustering

biological graphs. In: Proceedings of the 1st Workshop on Irregular Applications:
Architectures and Algorithm - IAAA 2011 (2011). https://doi.org/10.1145/2089142.
2089146

4. Rytsareva, I., Chapman, T., Kalyanaraman, A.: Parallel algorithms for clustering biological
graphs on distributed and shared memory architectures. Int. J. High Perform. Comput. Netw.
7(4), 241 (2014). https://doi.org/10.1504/ijhpcn.2014.062724

5. Rytsareva, I., Kalyanaraman, A., Konwar, K., Hallam, S.J.: Scalable heuristics for clustering
biological graphs. In: IEEE 3rd International Conference on Computational Advances in Bio
and Medical Sciences (ICCABS) (2013). https://doi.org/10.1109/iccabs.2013.6629214

6. Introduction to OpenMP - Tim Mattson (Intel) [Video file] (n.d.). Accessed. https://www.
youtube.com/playlist?list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG

7. OpenMP Architecture Review Board.: OpenMP Application Program Interface version 4.0.
(2013). Accessed. http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf

8. Lockwood, S., Brayton, K.A., Broschat, S.L.: Comparative genomics reveals multiple
pathways to mutualism for tick-borne pathogens. BMC Genom. 17(1), 481 (2016). https://
doi.org/10.1186/s12864-016-2744-9

Parallelization of Protein Clustering Algorithm Using OpenMP 117

http://dx.doi.org/10.1145/2089142.2089146
http://dx.doi.org/10.1145/2089142.2089146
http://dx.doi.org/10.1504/ijhpcn.2014.062724
http://dx.doi.org/10.1109/iccabs.2013.6629214
https://www.youtube.com/playlist%3flist%3dPLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG
https://www.youtube.com/playlist%3flist%3dPLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://dx.doi.org/10.1186/s12864-016-2744-9
http://dx.doi.org/10.1186/s12864-016-2744-9

9. Daily, J., Kalyanaraman, A., Krishnamoorthy, S., Vishnu, A.: A work stealing based
approach for enabling scalable optimal sequence homology detection. J. Parallel Distrib.
Comput. 79–80, 132–142 (2015). https://doi.org/10.1016/j.jpdc.2014.08.009

10. Lu, H., Halappanavar, M., Kalyanaraman, A., Choudhury, S.: Parallel heuristics for scalable
community detection. In: IEEE International Parallel and Distributed Processing Symposium
Workshops (2014). https://doi.org/10.1109/ipdpsw.2014.155

11. Rytsareva, I., Kalyanaraman, A.: An efficient MapReduce algorithm for parallelizing large-
scale graph clustering. In: Proceedings of the ParGraph’ 2011 - Workshop on Parallel
Algorithms and Software for Analysis of Massive Graphs, Held in Conjunction with HiPC
2011, Bengaluru, India (2011)

12. Computational Biology, 15 Jan 2015. Accessed. https://en.wikipedia.org/wiki/
Computational_biology

13. Cluster analysis, 18 Jan 2018. Accessed. https://en.wikipedia.org/wiki/Cluster_analysis
(2018)

14. D’haeseleer, P.: How does gene expression cluster work? Nat. Biotechnol. 23, 1499–1501
(2006). https://doi.org/10.1038/nbt1205-1499

15. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense sub graphs in Massive graphs.
In: Proceedings of the International Conference on Very Large Data Bases, pp. 721–732
(2005)

118 D. Dhar et al.

http://dx.doi.org/10.1016/j.jpdc.2014.08.009
http://dx.doi.org/10.1109/ipdpsw.2014.155
https://en.wikipedia.org/wiki/Computational_biology
https://en.wikipedia.org/wiki/Computational_biology
https://en.wikipedia.org/wiki/Cluster_analysis
http://dx.doi.org/10.1038/nbt1205-1499

	Parallelization of Protein Clustering Algorithm Using OpenMP
	Abstract
	1 Introduction
	2 Literature Survey
	3 Proposed Solution
	4 Results
	5 Conclusion and Future Scope
	Acknowledgements
	References

