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Abstract. Compressive sensing is a new method of signal acquisition
and reconstruction through which one can greatly reduce the cost of
processing, transmission and storage requirements as compared with the
conventional sampling rates. This facilitates the accurate reconstruction
of the signals even at sub-Nyquist rates. The role of measurement matrix
is indispensable in loyal reconstruction. If the measurement matrix is
more obtuse then it takes large computational time for signal recon-
struction. This paper mainly focuses on different measurement matrices
which are used in compressive sensing. The performance of these mea-
surement matrices for compression and reconstruction of 4 GHz Gaussian
modulated sinusoidal pulse are compared in this paper.
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1 Introduction

The conventional digital signal processing is based on the Nyquist criteria which
states that any band-limited signal can be exactly reconstructed if it is sampled
at least twice the maximum signal frequency [1]. Most of the signal processing
systems are using the same criteria. According to this theory, it is not possi-
ble to reconstruct the signal if it is sampled at sub-Nyquist rates. Compressive
sensing (CS) is a new revolutionary technique in signal processing by which one
can do signal acquisition and reconstruction without the limits on the sampling
frequency [2]. It can reconstruct the signals based on numerical optimization
algorithm.

In the traditional communication, the data is first sampled and then the
compression is applied to reduce the storage and transmission costs. Instead, if
we combine these two steps into a single step i.e., compressing the signal at the
time of sensing itself leads to a new method called compressive sensing. This will
reduces the demand of high speed data acquisition systems and also enhances
the efficient utilization of resources.

In radar imaging applications higher frequencies are required for good reso-
lution. Designing Analog to Digital Converters (ADC) at that higher sampling
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rates may not be possible with the current day ADC technology. Different beam-
forming methods are used to extract the radar images from the radar array. In-
order to achieve the higher resolution images large number of array elements and
Ultra Wide Band (UWB) signals are required. This results in a huge data collec-
tion, storage and high computational complexity. As the processing of data takes
more time the targets may change their positions which causes blurred images.
Compressive Sensing is the promising technology to acquire reliable, high reso-
lution radar images with fewer data samples and less number of computations.

Emmanuel Candès et al., in the year 2004, proposed a new method in which
an original image was reconstructed with less number of data samples that does
not follow the Nyquist criterion [3,4]. With the application of CS, Professors
of Rice University developed the “single-pixel” camera. Since then compressive
sensing has seen many applications in industry.

Compressive Sensing can be applied to the signals which have sparse rep-
resentation. Most of the natural signals are sparse in one or other domain and
are suitable for compressive sensing. Currently, CS is applied in many fields like
image processing [5], radar signal processing [6] and communications [7] etc. In
CS, the high dimensional signal is converted to low dimension space using mea-
surement matrix. During the re-construction process in CS, the measurement
matrix plays a vital role. The measurement matrix and basis matrix should fol-
low the Restricted Isometric Property (RIP) [2]. A great deal of work is going
ahead to outline a proficient measurement matrix which will lead to lower com-
putational cost and storage space.

In the remaining part of the paper, the Compressive Sensing framework is
presented in Sect. 2. A Gaussian modulated sinusoidal pulse of 4 GHz frequency
is used as a test signal for compressive sensing. Different sensing matrices were
introduced in Sect. 3. Reconstruction quality and results are discussed in Sect. 4.
The paper concludes by summarizing the significance of different measurement
matrices for compressive sensing.

2 Compressive Sensing

Compressive sensing is a new technology by which one can reconstruct the orig-
inal signal with lesser number of random samples [2,8]. The framework of the
CS is divided into three major categories: (i) sparse representation, (ii) compres-
sion and (iii) reconstruction. The framework of CS is applicable to a signal if it
sparse. Most of the natural or man-made signals are sparse in native domain or
transform domain. The sparse signal can be compressed to a lower dimensional
signal using the measurement matrix. This process is called the compression.
These compressed signals are used to recover the original sparse signal using the
sparse recovery algorithms. This comes under the solving of under-determined
system of linear equations.

CS relies mainly on two principles: sparsity and incoherence. A signal is said
to be sparse if most of its components are zeros. In other words the signal should
have a fewer non-zero components in its representation. A signal may be sparse in
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its native domain or can be made sparse in the transformed domain. Coherence
is a quality measure of the measurement matrix, lower coherence leads to better
performance of the recovery algorithm.

Most common and man-made signals are compressible or can have compact
representations when expressed in a favorable basis. Let x represents a signal of
length N . If the signal x ∈ RN is assumed to have S-sparse representation in
the complete dictionary set of Ψ (N × N matrix), then x can be expressed as

x = Ψα (1)

where α is a sparse signal with S non-zero entries. If a signal y is acquired using
M number of random measurements, from the linear combination of the points
in x, then it can be written as

y = Φx = ΦΨα (2)

where, Φ is a measurement matrix with dimension M × N . Measurement matrix
can be framed by the random measurements or by using different transformations
or the combination of the two. If M << N it is not possible to restore the
signal accurately from less number of measurements. Such cases are treated as
underdetermined system of equations and can be solved using linear algebra but
leads to infinite solutions. However, if the signal has the sparse nature, with only
S nonzero positions and satisfies the condition S < M , then we can pick one
exact solution from many by using linear programming [9].

There exists several algorithms to solve this sparse recovery problem. Few
among them are Convex optimization, Greedy approach and Bayesian meth-
ods. In convex category, a solution is obtained using optimization algorithms
like basis pursuit, gradient descent. These are complex in nature and require
high recovery time. Greedy techniques which are iterative in nature provides the
result in a faster manner whereas bayesian based procedures requires prior infor-
mation about the sparse signal. In general, the existence of a unique solution is
dependent on the measurement matrix. This paper uses greedy based Orthogonal
Matching Pursuit (OMP) algorithm [10] for signal reconstruction and analyses
the effect of different measurement matrices in compressive sensing.

3 Measurement Matrices

Measurement matrix plays a vital role in compressive sensing. Particularly for
faithful signal reconstruction the compressed signals should contain all the sig-
nificant information. Otherwise it is not possible to reconstruct the the original
signal back. Measurement matrix takes the prominent role both in signal com-
pression and reconstruction. Choosing an efficient measurement matrix is very
much necessary for CS.

The quality of measurement matrix is decided by the following conditions:
Coherence and Restricted Isometric Property (RIP). If the measurement matrix
follows the above two properties, it ensures the uniqueness of the reconstructed
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signal. Coherence of a matrix measures the most extreme connection between
any two columns of the matrix. Smaller the coherence better the reconstruction,
which means that with fewer samples perfect recovery is possible for sparse
signal.

If Φ is a measurement matrix of M × N having normalized column vectors
Φ1, Φ2, Φ3, ....ΦN . Then the mutual coherence constant is defined as

μ(Φ) = max
i�=j

| < Φi.Φj > |
||Φi||2.||Φj ||2 (3)

Restricted Isometric Property (RIP) is also called as the uniform uncertainty
principle. It assures the success of sparse recovery algorithms. The restricted
isometric constant of order s involves all s-tuples of columns of measurement
matrix, unlike coherency which takes pairs of columns. With the coherence,
smaller restricted isometric constants are desired. The formal definition of the
RIP is as follows.

(1 − δk)||x||22 ≤ ||Φx||22 ≤ (1 + δk)||x||22 (4)

The measurement matrix Φ satisfy the RIP property if there exist a constant
δk satisfying the above equation [11]. The δk ∈ [0, 1] is called the restricted
isometric constant of Φ and the value should be smaller than 1.

A number of measurement matrices which follows the above properties has
been already proposed. These can be comprehensively partitioned into two
classes: random and deterministic.

Random matrices are produced using random functions. They are easy to
generate and satisfy the RIP with higher probabilities. These are again divided
into two types: structured and unstructured. Structured random matrices are
generated by selecting the random rows of generated random functions. Exam-
ples are partial hadamard matrix and random partial Fourier matrices. Matrices
of unstructured type are generated using the given distribution function. Exam-
ples are Gaussian and Bernoulli which are generated using the Gaussian and
Bernoulli distributions.

Unlike the random matrices which are generated in random form, determinis-
tic matrices are constructed deterministically that satisfy the RIP and coherency
properties. These are additionally of two sorts: semi-deterministic and full deter-
ministic. Semi-deterministic matrices are generated in two stages. In the initial
step, entries of the first column are generated randomly based on some func-
tions. In the second stage, remaining columns of the matrix are generated by
applying a straight forward change on the first column. Examples are Circu-
lant and Toeplitz frameworks. Full-deterministic matrices have an unadulter-
ated deterministic development. Examples of these type include Chirp sensing,
second-order Reed-Solomon and Quasi-Cyclic Low-Density Parity-Check code
(QC-LDPC).

This paper selects the Gaussian random matrices, Random Bernoulli matri-
ces, random partial Fourier matrix, partial orthogonal random matrices, partial
hadamard matrices, Toeplitz matrices and chaotic random matrices [12–16] as
measurement matrices for radar pulse compression and reconstruction using CS.
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3.1 Gaussian Random Measurement Matrix

The probability density function of a random variable x in Gaussian distribution
is given as

f(x) =
1√

2πσ2
e− (x−μ)2

2σ2 (5)

where μ is the expectation or the mean, and σ2 is the variance of the distribu-
tion. The elements of the Gaussian random matrix Φi,j are independent random
variables which obey the Gaussian distribution with mean of 0 and variance 1.
It can be written as

Φi,j = N(0, 1) (6)

The random matrix Φ (M × N) satisfies the RIP with probability of at least
1 − ε provided

M ≥ Cs

ε2
log(

N

ε2s
) (7)

where C is a common constant (C > 0), M indicates the number of measurements
to take out from N, which is the length of the input signal and s is the sparsity
level [17]. This accurately reconstruct the signal and is most commonly used. But
the problem with this matrix is that all the elements are uncertain and need to
be stored. That means this matrix requires large storage and high computational
complexity which indicates difficult hardware implementation.

3.2 Random Bernoulli Matrix

Each element in this matrix follows Bernoulli distribution which is a discrete
probability distribution and a special case of binomial distribution. If X is a
random variable with this distribution, we have:

Pr(X = 1) = p = 1 − q = 1 − Pr(X = 0) (8)

The probability mass function f of this distribution, over k possible out-
comes, is

f(k; p) =

{
p, if k = 1
1 − p, if k = 0

(9)

Bernoulli matrix B ∈ RM × N is having the entries of +1 or −1 and is given by

Φi,j =

{
1, if p = 1/2
−1, if 1 − p = 1/2

(10)

where p denotes the probability of the value.
The condition to satisfy RIP for random Bernoulli matrix is same as the

Gaussian random matrix [12].
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3.3 Random Partial Fourier Matrix

Partial Fourier matrix is formed using the Fourier matrix of size N × N . In this
case first we will generate a Fourier matrix of size N × N whose entries are
given by the equation

Φm,n = exp2πimn/N (11)

where m,n = 1, 2, 3.....N. From this N × N matrix, an M × N measurement
matrix is constructed by selecting M random rows. If M ≥ C.s.log(N/ε), [18]
this matrix follows the RIP with a probability of at least 1 − ε.

3.4 Partial Orthogonal Random Matrix

Matrix Φ is said to be orthogonal, if it satisfies the condition ΦT Φ = I. Thus
the column vector of a matrix Φ is a standard orthogonal vector. The method of
constructing a partial orthogonal matrix includes the generation of an N × N
orthogonal matrix Φ, and selecting M random rows from that matrix.

3.5 Partial Hadamard Matrix

Hadamard matrix is a square matrix composed by elements +1 and −1 and satis-
fies the orthogonality condition. The method of generating the partial hadamard
matrix is same as the partial orthogonal matrix except for the generation of
hadamard matrix in place of orthogonal matrix. This matrix follows RIP with
probability of at least 1 − 5

N − e−β , if M ≥ C0(1 + β)SlogN , where β and C0

are constants.

3.6 Toeplitz Matrix

This matrix is generated by using the successive shift of a random variable t
where t = (t1, t2 . . . ..tQ+M−1)εRQ+M−1. The vector t is generated by using the
Bernoulli distribution function whose entries are +1 or −1. This is a circulant
matrix with constant diagonal i.e. tm,n = tm+1,n+1. The matrix is framed in the
following form

Φ =

⎡
⎢⎢⎢⎢⎢⎣

tQ tQ−1 . . . t1
tQ+1 tQ . . . t2

...
...

. . .
...

tQ+M−1 tQ+M−2 . . . . . . tQ

⎤
⎥⎥⎥⎥⎥⎦ (12)

After forming the N × N matrix, a random M × N matrix is selected such
that the Toeplitz matrix follows the RIP with probability at least δk < δ if
M ≥ CδS2log(N/S). The (m,n)th entry of t is given by tm,n = tm−n. The
structural characteristics of this matrices reduce the randomness of elements,
which impacts in reducing the memory and hardware complexity. But this matrix
does not correlate with all the signals and is used only with some special signals.



348 K. Srinivas et al.

3.7 Chaotic Random Matrices

The chaotic random matrices can be derived from the logistic map function
which can be expressed as xn + 1 = μxn(1 − xn) where με(0, 4) and xnε(0, 1).
For the special case of μ = 4, the solution of the system is given by xn =
(1/2)(1 − cos(2piθ2n)), where θε[0, pi] which satisfies x0 = (1/2)(cos2piθ) [14].
It is well known that chaotic system can produce very complex sequences. The
chaotic matrix is given by

Φ =

√
2
M

⎡
⎢⎢⎢⎢⎢⎣

x0 . . . xM(N−1)

x1 . . . xM(N−1)+1

...
. . .

...

xM−1 . . . . . . xMN−1

⎤
⎥⎥⎥⎥⎥⎦ (13)

where the scalar
√

2/M is for normalization. Chaotic matrix follows the RIP for
constant δ > 0 with good probability providing that s ≤ O(M/log(N/s).

4 Simulation and Analysis

Figure 1(a) shows the Gaussian modulated sinusoidal pulse of 4 GHz frequency
which is used as input signal for compressive sensing. The Gaussian pulse itself
is treated as a sparse representation because it has more number of zeros. The
compresssion is performed using different measurement matrices as discussed
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in Sect. 3. Finally, the Gaussian pulse is successfully recovered using OMP algo-
rithm and the recovered signal is shown in Fig. 1(b). PSNR (Peak Signal to Noise
Ratio) and recovery time is taken as the key parameters to evaluate the mea-
surement matrix performance for faithful signal reconstruction. The simulations
are carried out on MATLAB R2015a software with Intel I7 octa core processor.

During simulation, the length of the original signal is taken as 3600 samples.
The value of M , which is the number of compressed measurements from the
input samples, is varied from 1 to 600 with a displacement of 30. Peak Signal to
Noise Ratio (PSNR) is calculated to show the difference between the recovered
and original signal and the equation used is PSNR = 20log MAX(x)√

MSE
, MSE =

1
N

∑
(x̂ − x)2 where x and x̂ are the original and recovered signals respectively.
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Figures 2 and 3 shows the graphs of PSNR and execution time of the recon-
structed signal for different lengths of the compressed signal respectively. From
the figures it can be concluded that partial Fourier matrix is giving the highest
PSNR for almost all measurements as compared with the other matrices. How-
ever, it fails interms of execution time. As the number of measurements increases
the execution time increases, and is the highest comparing with other measure-
ment matrices. In the case of signal recovery time Bernoulli matrix is taking the
lowest computation time as compared with other matrices. However, interms of
PSNR value it is not the lowest compared with the other measurement matri-
ces. On the other hand Hadamard matrix gives good performance in terms of
both PSNR and recovery times. Hence, this matrix is preferred as measurement
matrix for signal reconstruction using CS.

5 Conclusion

This paper uses Gaussian modulated sinusoidal pulse of 4 GHz as stimulus for
compressive sensing. The signal is further compressed with Gaussian random
matrix, Bernoulli random matrix, partial orthogonal random matrix, partial
hadamard matrix, random partial Fourier matrix, Toeplitz matrix, and chaotic
random matrix. The simulation results shows that partial Fourier matrix per-
forms better in terms of PSNR, Bernoulli matrix is good for fast signal recon-
struction whereas Hadamard measurement matrix is optimum for both PSNR
and fast signal reconstruction. This measurement matrix can be choosen as opti-
mum measurement matrix interms of PSNR and speed for compressive sensing.
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